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II. Magnetized Spin-Glass Phase and the 
de Almeida-Thouless Line 
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In this and the companion paper, we analyze the _+ J lsing spin-glass model on 
the Bethe lattice with fixed uncorrelated boundary conditions. Phase diagrams 
are derived as a function of temperature vs. concentration of ferromagnetic 
bonds and, for a symmetric distribution of bonds, external field vs. temperature. 
In this part we characterize magnetized spin-glass (MSG) phases by divergence 
of an appropriate susceptibility: at zero field this signals the existence of an 
intermediate MSG phase; at nonzero field, this is used to identify the de 
Almeida-Thouless line. 
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1. I N T R O D U C T I O N  

In this paper we continue our analysis of the + J Ising spin-glass model on 
the Bethe lattice with fixed uncorrelated boundary conditions. This analysis 
began in the companion paper (1) with a discussion of the recursion relation 
for the distribution of single-site magnetizations p(X). Certain aspects of 
the temperature vs. concentration phase diagram (Fig. 1) were derived 
rigorously using moment analysis and bifurcation theory. We found that at 
high temperatures the system is paramagnetic P, i.e., p(X)=f(X). The 
spin-glass transition (P ~ SG) corresponds to an instability associated with 
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Fig. 1. Phase diagram for the Bethe lattice spin glass, plotted as a function of p = tanh(J/kT) 
and the fraction 2 of ferromagnetic bonds. At high temperatures, the system is paramagnetic. 
As the temperature decreases, there is a transition to edither a spin-glass or a ferromagnetic 
phase, depending on 2. Between these phases there is an intermediate magnetized spin-glass 
(MSG). Like the ferromagnet, the MSG phase has nonzero net magnetization, but it also has 
glassy susceptibilities. The phase diagram for 2 < 1/2 can be obtained by reflection across the 
line 2 = 1/2, replacing F and MSG with phases which have long-range antiferromagnetic 
order. In this paper we determine the phase boundary between the magnetized spin-glass 
phase and the ferromagnetic phase. All other phase boundaries were determined in ref. l. 

the Edwards-Anderson order parameter q, which is the width of the 
distribution p. The ferromagnetic transition (P ~ F) corresponds to an 
instability associated with the magnetization m, which is the mean of p. 
The transition from the spin-glass phase to a magnetized phase, which 
is this paper we will show is in fact a magnetized spin-glass phase 
(SG ~ MSG), corresponds to an instability of the symmetric spin glass 
solution Ps~ to perturbations associated with the mean m. However in 
the neighborhood of the multicritical point, the last phase boundary, 
F-~ MSG, which corresponds to the instability of the ferromagnetic solu- 
tion to glassy order, cannot be obtained using the methods employed to 
determine the other phase boundaries. In Section 2 we demonstrate the 
existence of this intermediate phase by calculating the Edwards-Anderson 
susceptibility Z•A, which diverges at the glassy phase boundaries. At non- 
zero field, divergence of ZEA also characterizes the de Almeida-Thouless 
line (2) (Fig. 2), as shown in Section 3. 

In Section 4 we conclude this paper with a summary of the results 
obtained in this and the companion paper, and a discussion of the rela- 
tionship between the Bethe lattice spin glass and the infinite-range model. 
We show that in the formal limit where the coordination number of the 
lattice tends to infinity, the recursion relation becomes the so-called SK 
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Fig. 2. De Alrneida Thouless line. On the Bethe lattice the spin-glass transition persists in 
the presence of an external field. The asymptotic form of the AT line is h(T )~  I p -  Pal 3/2, and 
the critical exponent for the Edwards Anderson susceptibility is ~ = 1. 

equation. (3) The solution of this equation is the replica-symmetric solution 
of the SK model. Thus, at least in a formal sense, the correct solution on 
the Bethe lattice is analogous to the (unphysical) replica-symmetric solu- 
tion of the infinite-range model. 

Finally, we note that the method used to calculate the Edwards 
Anderson susceptibility also leads to a rather novel solution (on a different 
lattice) which may provide a clue to the relationship between the "replica- 
symmetric" solution on the Bethe lattice and the "replica-symmetry- 
breaking" solution of the infinite-range model. In these calculations we will 
consider a lattice constructed from two identical Bethe lattices joined 
ferromagnetically ar each site. A system of three coupled recursion rela- 
tions, derived in Appendix A of the companion paper, describes this new 
lattice. Interestingly, we find that in addition of the single-lattice solution 
which we analyze in this and ref. 1, new solutions (which do not exist for 
a single lattice) emerge in the spin-glass phase. One of these appears to be 
closely related to the replica-symmetry-breaking solution of the infinite- 
range model. (4) Further analysis of the coupled latticed system may lead to 
a more complete understanding of the relationship between the two 
models. 

2. E D W A R D S - A N D E R S O N  S U S C E P T I B I L I T Y  A N D  THE 
F E R R O M A G N E T - M S G  P H A S E  B O U N D A R Y  

In this section we calculate the Edwards-Anderson susceptibility )~EA" 

1 
ZEA --  N 2 ~ < o i o j >  2 - -  (o 'z > 2 ( o ' j >  2 (1 )  

t , j  
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ZEA is a nonlinear susceptibility, and it diverges approaching the spin-glass 
phase boundaries. It is worth noting that ;gEA is not exactly the same as the 
experimentally measured susceptibility, although both susceptibilities are 
quadratic. We except that higher even-order analogues of ZEA should also 
diverge along the spin-glass boundary. We find that in the simplest case, 
)~EA diverges crossing the spin-glass--paramagnet phase boundary. This 
result is obtained as a special case (zero field) of the calculation performed 
in Section 3, where we analyze the spin-glass transition in an external field. 
In this section, we find that near the multicritical point, )~EA diverges in the 
magnetized phase before we reach the zero-magnetization phase boundary 
discussed in Section6 of the companion paper. This calculation 
demonstrates tl~e existence of a magnetized spin-glass phase in the 
neighborhood of the multicritical point, as illustrated in the phase diagram 
(Fig. 1). The zero-temperature results of Kwon and Thouless (5) indicate 
that the MSG phase also exists for a range of ,~ when T = 0  ( p =  1). The 
MSG phase is similar to the phase which is observed below the de 
Almeida-Thouless line in the presence of a magnetic field, which will be 
discussed in Section 3. In this case it is the bond asymmetry, rather than an 
external field, which drives the transition. 

In order to calculate ZEA on the Bethe lattice, we consider two copies 
of the same realization of the lattice which are ferromagnetically coupled 
with bonds of strength R, as shown in Fig. 3. When R---0, the lattices 
decouple, and the fixed-point solution p for each of the lattices is simply 
the solution we have obtained in the companion paper. As we will show, 
)~EA may be obtained directly from the moments of the corresponding fixed- 
point solution for the coupled lattice system, in the limit of the coupling 

Fig. 3. The coupled copy lattice. Two copies of the same quench of the Bethe lattice are 
ferromagnetically coupled at corresponding sites @ on the lower lattice and ~r~ on the upper 
lattice, with bonds of strength R. 
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strength R ~ 0. Here we will calculate )(EA in the neighborhood of the 
multicritical point using self-consistent estimates for these moments. To 
obtain the complete solution for the coupled lattices requires a rather 
complex bifurcation analysis, which we expect will produce the same 
results. 

In zero external field the Hamiltonian for the coupled lattices is given 
by 

H =  Z L c v v _ 2@~rf f  (2) Ji, j(al  aj +a~ aj ) R 
<l,./> i 

where the bonds are of equal strength but random sign, Ji, j=JO,,j, with 
the 0,,j quenched and distributed independently according to (3), and 
where a~ is the ith spin on the lower lattice, which is ferromagnetically 
coupled to a~ on the upper lattice. For the reader who is unfamiliar with 
the benefits of working with coupled lattices, we include the following 
digression. The partition function is written Z = Tr e -e l l ,  where fl = 1/kr3 T. 
From this we calculate the Helmholtz free energy: A = - ( 1 / f l ) l n Z .  

Differentiating A once with respect to R, we obtain 

dA 1 _  

which at R = 0 is equal to qEa provided that 

( a ~ )  = ( a f >  (4) 

for all i. A second differentiation with respect to R yields XEA at R = 0: 

a<4 
ZEA--dR 2 R=o_N2 ~ (a~v@)2--  ( a y ) 2 ( @ )  2 (5) 

/,J 

For the half-space lattice, ZEA is given by 

~EA = N  7 <~176 <Gx > <0"i > (6) 

where ax is the spin at the origin. Thus, the coupled lattices together with 
the restriction (4) provide a straightforward method of calculating the 
Edwards-Anderson order parameter and the Edwards-Anderson suscep- 
tibility. 

The lattice formed from coupled Bethe lattices is clearly more com- 
plicated than the single lattice because it has loops. Nonetheless, if we 
consider each pair of spins @, a~ v as a unit, we see that the treelike 

822/61/5-6-8 
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structure is maintained. Hence, we can still derive recursion relations for 
this system. We give only the results here. The derivation is given in 
Theorem A.3 of Appendix A of the companion paper. 

Define the followinig random variables: 

Q x  ~" L U <~x~x> 
Sx=O(<~2> + (~>) 

D x = O ( ( a 2 ) - ( a ~ ) )  

(7) 

and the corresponding quantities for the neighboring sites y and z. In terms 
of these we obtain the following set of coupled recursion relations: 

G+rF 
Qx -- F+ rG (8) 

Op(1 + r)[Sy + S z + pZ(@Qz + SzQy)] 
S x -= (9) F+ rG 

01)(1 - r)[Dy + D~- p2(DyQz + DzQy)] 
O x --= (lO) 

F+rG 

where F and G are given by 

1 2 F= 1 + ip SySz+ p4QyQz (11) 

G = p2(Oy + O~ + �89 (12) 

and p = tanh(flJ) and r = tanh(flR). Because of the restriction (4) men- 
tioned above, in order to study XEA of the single lattice, we set Dx = 0 for 
our calculations. Consequently, when r = 0, S~ is just twice the magnetiza- 
tion X of the uncoupled lattice. 

Now Q~ is simply the summand which appears in Eq. (3). Therefore, 
for the half-space lattice XEA is given by 

ZEA = E (dd@) =sech2(flR)E ( ~r ~) (13) 

where E denotes the expectation with respect to the random bonds, as 
usual. 

We calculate ZEA using self-consistent estimates for the moments of the 
fixed-point densities of Q and S. The calculation is similar to our previous 
moment analysis; however, because we assume the existence of a solution 
for these densities, we present the calculation of the phase boundary as a 
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conjecture. The ambitious reader could verify the existence of this solution 
by proving the stability of our previous solution to perturbations in r, and 
then using the implicit function theorem to extend the old solution to r > 0. 
Although we have not explicitly carried out all of the details, we anticipate 
no difficulty with this procedure, since as r --* 0 in the ferromagnetic phase, 
estimates of the moments of the density for S reduce to known moments 
of the old solution. 

Conjecture1. Define A = p - p c  and ~ = A - I ( , ' ~ - - J ~ N ) .  In the 
neighborhood of the multicritical point, the phase boundary between the 
magnetized spin-glass and the ferromagnetic phases is given asymptotically 
by 

12 - )~NI z/: = (3PG) z/2 I P -- PGI (14) 

Remark. Bacause the coefficient o f l p - P c l  is smaller in (92) of ref. 1 
than it is in (14) here, there is nonzero overlap of glassy and magnetized 
phases, which implies the existence of the intermediate MSG phase in the 
neighborhood of the multicritical point. 

Calculation. The phase boundary is determined by divergence of 
ZZA. We calculate ZEA using self-consistent estimates for the moments. 
Let r~A. We assume Q=-E(Qx)=O(A), M=-E(Sx)=O(A), and 
Z-E(S2x) = O(A), which, when r = 0, corresponds to the correct estimates 
for the magnetized solution obtained in Section 6.2 of the companion 
paper. Using Eqs. (8) and (9) and keeping terms to O(A 3) and O(r), we 
obtain the following three equations relating M, Q, and Z:  

-2M2 p4X2 ,U ~z5 _ 6 s'-i v'2 p6X3 
= - 4 2p6Q3 + ~-~---  + - - ~ - +  r +  0 (2p 2 1 ) Q + P  2 O(A 4) (15) 

p4~'2 7 p227 
O= - 1 + 2 p ( 2 2 - 1 )  I+P2Q 2 P4~Qk---~-p4Q2j  -}-O(A4) (16) 

1 l p 6 S  3 
0 = (2p 2 - 1 ) S  + 2p2M ~ + 4p~M 2 + 4pZXQ - 2p6SQ + - - - 4 - -  

-- 6p6SZQ + O(/14) (17) 

Combining these, we can in principle solve for Q, and differentiate with 
respect to r to obtain the phase boundary. In practice, it is easier to 
combine (15) and (17) to eliminate the M dependence. This results in a 
fourth equation, 

0 = (2p 2 -- 1)[O - �88 - p4~O + 41_p4~2 + �89 

+ 7p6S2Q-2p6S2Q-2p6Q3-]-6p6S3+r+O(A4 ) (18) 
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Next we differentiate Eqs. (16) and (18) with respect to A. From (18) we 
obtain 

X' = Q'[2 - 4p2X - 2p2Q + O(A2)] (19) 

where the prime denotes the derivative with respect to r. Substituting this 
value of 2;' into the corresponding equation obtained from differentiating 
(16) results in 

O= I + Q'[2p~A + A 2 -  � 89  dQ + ! ~ X Q -  23 y'2g~_ 

_ ~Q2 + 2pGAX + pGAQ + O(d2)] (20) 

We find that 7~EA oC Q' diverges when ~=3pGA+O(A2). To see this 
explicitly, we solve Eqs. (16) and (18) for the leading behavior of X and Q: 

and 

X = 16pGA + O(A 2) (21) 

Q = 4pGA + 8pond + O(d 3) (22) 

Substituting these values into (20), we find 

sech2(flR) 
){EA -- 6Z12 _ 4pc~A + O(A 3) (23) 

Thus, to leading order, ZEA diverges crossing the line ~=3pGA, with 
critical exponent 7 = 1, as desired. | 

3. SP IN -GLASS T R A N S I T I O N  IN AN EXTERNAL FIELD 

In this section we show that on the Bethe lattice, the spin-glass 
transition persists in the presence of a small external field. We determine 
the asymptotic form of the de Almeida-Thouless (AT) line (see Fig. 2) by 
calculating the Edwards-Anderson susceptibility ~EA [Eq. (6)], which 
diverges at the transition. 

For simplicity in this analysis, we use a symmetric distribution of 
bonds and a symmetric distribution of external fields. As in the previous 
section, we perform our calculations on a system of two ferromagnetically 
coupled copies of the lattice (Fig. 3). The Hamiltonian is given by 

( i , j )  i i 

(24) 
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where ~ and ~ denote the spins at site i on the upper and lower lattices, 
respectively, the bonds J~,j are of equal strength, J~,j=JO~,j, and are 
independently and identically distributed according to 

0r j =  { +_ 1, with prob. 1/2 (25) 
' 1, with prob. 1/2 

The external fields are of equal strength Hg= H~b~, and are distributed 
independently according to 

~b~ = { + 1, with prob. 1/2 (26) 
- 1, with prob. 1/2 

and the lattices are coupled ferromagnetically with bonds of strength R. 
The recursion relations for the coupled lattice system are derived in 

Appendix A of the companion paper, Theorem A.3. We give only the 
results here. As in Section 2, at each site we define the following quantities: 

Qx U L = (O'x (Yx ) 

Sx= ( a ~ )  + (~L)  (27) 

D o  r ~ u 

In terms of these quantities we have the following set of coupled recursion 
relations: 

Gyz + rFy~ + h2(Fy~ + rGy~) + h~b~(1 + r)NSyz 
Q~=Fy,+rGy~+h2(Gy~+rFyz)+hO~(1 +r)Ny~ 

(1 + 0[(1 + h2)u~ + 2h~e,z] 
S x = 

(1 r)(1 2 d - - h  ) N ; ~  

D~ = Fy~ + rGy~ + h2(Gyz + rF,~) + h(~x(1 + r)Ny z 

(28) 

(29) 

(30) 

where 

Gyz = pZ[Qy + Qz + �89 dydz) ] 

Fyz = 1 + �89 + dydz) + paQyQz 

Ny~ = p[Oysy(1 + p2Qz ) + Ozsz(1 + p2Qy)] 

Nay~ = p[Oydy(1 - p2Q~) + O~dz(1 - p2Qy)] 

Eyz = pZOyO~sySz + (1 + p2Qy)(1 + p2Q~) 

(31) 

(32) 

(33) 

(34) 

(35) 
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and where r = tanh fiR, p = tanh fiJ, and h = tanh fill, and y and z are the 
two sites connected to the origin x. 

As shown in the previous section, )~EA is proportional to the derivative 
of Q=E(Qx) with respect to r, evaluated at D x = 0  and r = 0  [Eq. (13)]. 
We determine )~EA by evaluating the moments of the fixed point of the 
coupled lattice system, which, at h = 0 and r = 0, corresponds to the sym- 
metric spin-glass solution determined in Section 4.3 of ref. 1. Because the 
bond and field distributions are symmetric, there is no support for an 
asymmetric fixed point. It we begin with an asymmetric distribution of 
spins on the boundary, a single iteration of the recursion relations 
(28)-(30) results in a symmetric distribution on the first level. This allows 
us to ignore odd terms in the moment expansions, which greatly simplifies 
the analysis. We expect that a similar analysis for an asymmetric distribu- 
tion of bonds (provided that one remains in the spin-glass phase, i.e., 
2 < 2N) or fields will show that the spin-glass transition will also persist in 
an external field under these circumstances. 

Again, since we are assuming the existence of a solution to the coupled 
system, we present the results as a calculation. To verify existence, it would 
suffice to establish the stability of the symmetric solution of ref. 6 to pertur- 
bations in r and h and then extend the solution using the implicit function 
theorem. As before, we expect no difficulties with this, since at r = 0 and 
h = 0  the moments of the system (28)-(30) reduce to those of the old 
solution. 

C o n j e c t u r e  2. Let the Hamiltonian be as specified in Eq. (24). In 
the presence of small external fields the spin-glass transition persists, and is 
characterized by diverging ~(EA" The asymptotic form of the de Almeida- 
Thouless line is given by 

h 2 = 32pa [p--  pal 3 (36) 

where p = tanh 3J and h = tanh 3H. The critical exponent for the suscep- 
tibility is ~ = 1. 

Calculation. Let A = p - PG, and let h ~ A and r ~ A. We obtain ZEa 
using self-consistent estimates of the moments of the fixed-point distribu- 
tion for the coupled lattice system. To that end, we define Q = E(Qx) and 
Z = E ( S ~ ) ,  and assume that Q=O(A),  X=O(A) ,  and M=E(S~)=O. 
Using Eqs. (28) and (29) and keeping terms of O(A3), O(hZ), and O(r), and 
neglecting odd moments and terms of O(rA), O(h2A), and O(A4), we find 
that 

Q = 2p2Q _ �88 --t- ~paZt -- 2p6QT+ h 2 + r (37) 
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and 

Z = 2p2Z + 4 p 4 Q Z -  2p4~ -v72 + 3p6Zt - 4p6ZL + 2p6ST - 4p6QL + h 2 (38) 

where t=E(S4),  T=E(Q~),  and L=E(QxS2) .  Similarly, we obtain t, T, 
and L to lowest order: 

r ~ 3 Z  2 (39) 

T ~  Q2 4- ~y,2 (40) 

L ~ Q Z +  �89 2 (41) 

In order to simplify our notation, in (37) and (38) as well as what follows, 
equals ( = )  will mean equality modulo terms of o(rL1), o(h2A), and o(A4); 
the notation ~ [-as in (39)-(41)] will indicate equality to lowest order. 
Substituting (39)-(41) into Eqs. (37) and (38) yields a pair of equations 
relating Q and Z:  

1 p4Z2 p6 (S  3 h 2 Q = 2 p 2 a - - ~  +--~-. + O z - s a 3 ) +  +r 

and 

(42) 

�9 ~' = 2p2~ y' + 4p4QS - -  2 p 4 S  2 -~ p 6 ( ~ S 3  -- 6Z2Q - 2ZQ 2) + h 2 (43) 

To solve these, we define 6 = Q - � 8 8  Subtracting one-fourth of Eq. (43) 
from Eq. (42), we obtain 

fi = 2pefi _ p6 Z + ~p7 6 ~ 2  - p2 66~2~ -~- r (44) 

Solving for 6 yields 

r 

6 - (1/4)Z - qo - (13/32) pZZ2 + O(6Z) (45) 

where qo = (2P 2 -  1)/4P 4. From Eq. (42) we find that 

1 Z _ q o = 6  4h2 9 2Z 2 
+ p + o ( a z )  

kL'=qh+6 

Q = qh + 26 

Note that this implies 

(46) 

(47) 
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where 
9 h 2 

qh = qo + ~ qo 2 + - -  (48) 
q0 

If follows that )(Ea=2 sech2(f lR)(d6/dr) l~=o . Substituting (46) into (45) 
yields 

where 

r 
6 = (49) 

6 + a + o (6 s )  

h 2 
A = - - - q ~  (50) 

qo 

We will show that A = 0 defines the de Almeida--Thouless line. Solving (49) 
for 3, we find that 

6 ~ �89 [- - A  ___ (A 2 + 4r) 1/2 ] (s J) 

In Eq. (51), there are two criteria which could be used to choose the 
sign of the square root. The first is to require that XEA be positive, which 
always corresponds to choosing the positive root. The second is to choose 
the root which (when h = 0 )  corresponds to our symmetric spin-glass 
solution for the single lattice in the limit as r --, 0. When A > 0 (i.e., above 
the AT line), we find that both criteria require that we choose the positive 
root, and that asymptotically 

r 
a ~ -  (52) 

A 

Consequently, 

2 sechZ(flR) 
(53) )(Ea -- A 

In other words, ZEA diverges with exponent 7 = 1 as we approach the AT 
line (A = 0) from above. The asymptotic form of the AT line is given by 

h 2 = q3 = 3 2 p o A  3 (54) 

as specified in the statement of the proposition. | 

R e m a r k .  Interestingly, when A < 0 (i.e., below the AT line), we find 
that the two criteria correspond to choosing opposite roots in (51). For an 
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asymmetric distribution of bonds in zero field, this phenomenon is also 
encountered in the spin-glass and magnetized spin-glass phases. This is 
currently a topic of great interest and discussion. 

4, C O N C L U S I O N S  A N D  C O M P A R I S O N  WITH THE 
I N F I N I T E - R A N G E  M O D E L  

In this and the companion paper, we have presented an analysis of the 
static properties of the Bethe lattice spin glass with fixed uncorrelated 
boundary conditions. Mathematical rigor requires some care; however, all 
of our results follow from arguments which are relatively simple in prin- 
ciple. The treelike structure of the lattice allows us to derive recursion rela- 
tions (Appendix A in ref. 1 ) giving properties [-e.g., magnetization in (11 ) of 
ref. 1 ] of a given site in terms of the same properties of the sites connected 
to it. Analysis of the recursion relations allows us to determine the phase 
diagram near the high-temperature paramagnetic phase. The paramagnetic 
phase boundaries for the spin-glass and ferromagnetic phases follow from 
a simple linear stability analysis of the paramagnetic solution p(X)= 6(X) 
(ref. 1, Section3). At the ferromagnetic transition, p(X) develops an 
instability with respect to small perturbations to the mean of p(X); at the 
spin-glass transition, p(X) becomes unstable with respect to perturbations 
in the width. Similarly, the phase boundary separating the spin-glass and 
magnetized spin-glass phases is associated with an instability in the sym- 
metric spin-glass solution with respect to perturbations in the mean of the 
solution (ref. 1, Section6.1). Finally, the divergence of the Edwards- 
Anderson susceptibility determines the phase boundary between the 
ferromagnet and the magnetized spin glass (this paper, Section 2), as well 
as the de Almeida-Thouless line (Section 3). 

A dynamical systems analysis of the recursion relation allows us to 
determine the density of single-site magnetization p(X), which characterizes 
the bulk order in the phase. The density p(X) is the attractor of the 
dynamical system, and this analysis shows explicitly how statistical 
mechanical phase transitions in this model correspond to bifurcations in a 
dynamical system. In the paramagnetic phase, the unique globally 
attracting solution of the recursion relation is p(J()= 6(X). At the spin- 
glass transition, the paramagnetic solution becomes unstable, and a sym- 
metric solution emerges (ref. 1, Sections 4.2 and 4.3). To leading order in 
p - p ~ ,  the spin-glass solution is a Gaussian, and the higher-order correc- 
tions are given in terms of Gaussians multiplied by Hermite polynomials. 
Analysis of the ferromagnetic transition leads us to discover a continuous 
family of complete analytic functions, and the ferromagnetic solution is 
given in terms of these (ref. 1, Section 5). 
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At this point it is useful to compare our results with the corresponding 
results for the infinite-range model. The Hamiltonian for the infinite-range 
model is given by 

H =  - • Ji./ri~j (55) 
(i,j) 

where the bonds J~ i are typically chosen from a Gaussian distribution with 
width J / x ~  and mean Jo/x/~, and the sum is over all pairs of spins. 

Using the replica trick, Sherrington and Kirkpatrick proposed the first 
solution for this model. (3) Their solution is referred to as the replica- 
symmetric solution, because it is invariant with respect to permutations of 
N identical replicas (~, fl,...) of the system. For example, 

q~a = (a~) (a ( )  = qEA, V~, fl (56) 

However, in the spin-glass phase the replica-symmetric solution is 
incorrect. One manifestation of this fact is that the entropy of this solution 
is seen to be negative at low temperatures. In addition, the EA 
susceptibility is negative and the solution is unstable. (2/ 

The presumably correct solution to the SK model was obtained by 
Parisi, and is referred to as the replica-symmetry-breaking solution. (4) In 
Parisi's solultion, quantities involving a single replica are equal (e.g., 
rn~ = rn~). However, his solution breaks replica permutation symmetry. The 
Parisi solution begins with an ansatz for a hierarchy of overlaps q~ ,  which 
leads to an infinite number of extremal states. The Parisi solution has good 
agreement with simulations of the SK model, (7) and is stable. 

To make a comparison between our solution on the Bethe lattice and 
these solutions, we considered the generalization of our results to a lattice 
with forward branching ratio K, and looked at the limit as K--. ~ .  The 
recursion relation for a Bethe lattice with forward branching ratio K is 
given by 

x=dl-IK=l (1 q-pOiri)--l-[iK=l ( 1 - - p O i Y i )  

M L  1 (1 + pO, Y,) + [ I L ,  (1 --707~ Y;) (57) 

where each site y, is connected to the origin x by a bond of sign 0i, and 
X =  (ax}  with Y~ defined accordingly. As K-+ 0% this reduces to the 
familiar relation describing the replica-symmetric solution of the SK model: 

X =a tanh(aq 1/2Z) (58) 

where a = p/x//K, q is the second moment of the replica-symmetric solution 
p(X), and Z is a Gaussian of unit width. In addition, working directly with 
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(57), we have verified that as K - ,  0% the second moment qK of the dis- 
tribution pK(X) converges to q to second order in e - c ~ .  These results are 
also similar to results obtained for the replica-symmetric solution to the 
dilute long-range model. (8'9) 

The above results lead us to believe that in a certain sense our solution 
corresponds to the replica-symmetric solution of the SK model. A natural 
question to ask is whether replica symmetry breaking could be associated 
with long-range correlations in the boundary conditions, (1~ which has the 
effect of introducing loops into the system. To examine this possibility 
more carefully, recently Chayes and Chayes looked at the stability of our 
solution with respect to various types of long-range correlations in the 
boundary conditions. (11) For example, they examined the stability of our 
solution with respect to correlations which decay with the distance between 
spins, and, alternatively, they coupled all spins on the boundary equally. In 
every physically reasonable case, they found that our solution was stable 
with respect to the imposed correlations. This suggests that, given a chance, 
the Bethe lattice will choose the replica-symmetric solution. 

Finally, it is worth noting that a solution which may correspond to the 
replica-symmetry-breaking solution does exist on the coupled lattice system 
studied in Section 2 and 3. In particular, as suggested in the remark at the 
end of Section 3, in the spin-glass phase (i.e., when A < 0), there appears to 
be a solution with positive susceptibility which is distinct from the replica- 
symmetric solution. Further study of the coupled system may lead to a 
better understanding of the relationship between the Bethe lattice and the 
infinite-range model. 
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