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We investigate the properties and dynamics of defects in several disparate physi-

cal systems spanning a factor of 1015 in length scale and develop theoretical and

experimental tools to facilitate their study. In particular, we present results from

dislocations in atomic systems all the way to the creation of non-equilibrium vor-

tex states in human crowds. At the smallest scales, we develop a framework to

use interatomic models to study material properties using molecular dynamics of

atoms. We describe the complex microstructure that forms when atomic materi-

als are plastically deformed using continuum dislocation dynamics. Using similar

techniques we simulate focal conic defects using a continuum model for smectic-A

liquid crystals. At slightly larger scales we develop an experimental technique to

measure the nonlinear stresses around individual vacancies, dislocations, and grain

boundaries in colloidal crystals. On human length scales we describe the formation

of vortex-like states at heavy metal concerts and the spread of zombism across the

continental United States. Finally, we develop a new method to extract particle

sizes and positions from confocal images at a resolution 10 − 100× higher than

current methods, reaching 1 nm in precision.



BIOGRAPHICAL SKETCH

Matt Bierbaum was born in Maryland, where he attended high school, played

in numerous musical ensembles, and participated in swimming, soccer, and basket-

ball. In 2005 he moved to Chicago and graduated from Northwestern University

in 2009 with a Bachelor of Arts in Integrated Science and Physics. In 2012 he

received his Masters of Science in Physics from Cornell University under his thesis

advisor James Sethna.

Aside from science, Matt actively participates in cycling of many varieties in-

cluding road and mountain biking with his 5 bicycles, Papa Smurf, The Wiz,

Stump Thumper, The King, and Bike. Additionally, he plays classical piano in his

free time, particularly Chopin and Debussy. Occasionally he directs and edits short

films, mainly for the Cornell physics holiday party. He has built numerous websites

that interactively demonstrate topics of his research. These sites have garnered

extensive attention with unique visitors reaching into the several millions.

iii



To my family.

iv



ACKNOWLEDGEMENTS

During my time at Cornell I have learned a significant amount about physics, re-

search, and life and have had a fantastic time working on many interesting projects

while doing so. I am lucky to have been a part of such a great community. I owe all

of these things to the people that were part of my time here and for that, I thank

them. I especially would like to thank my advisor, Jim Sethna, for his continual,

infectious enthusiasm, infinite insight, and allowing me to pursue the wide array of

ideas presented in this thesis. I want to thank my research group including Alex

Alemi, Colin Clement, Danilo Liarte, Woosong Choi, Yong Chen, Ben Machta, YJ

Chen, Mark Transtrum, Lorien Hayden, Junhao Li, Archishman Raju, Kather-

ine Quinn, Eddie Lee, Jaron Kent-Dobias, Hunter Swan, Ashivni Shekhawat, and

Ricky Chachra for their friendship and wonderful ideas.

I want to thank my many collaborators for their help in every section of this

thesis, for without their support and guidance none of this would be possible. In

addition to my group members, I want to thank the Cohen group including Brian

Leahy, Neil Lin, and Jesse Silverberg for their interesting ideas and help in studying

many aspects of soft matter from colloidal physics and smectics to human motion.

I want to thank the OpenKIM advisors Ellad Tadmor and Ryan Elliott for their

bottomless patience and insight.

Thank you to my close friends from these past several years including the lunch

discussion group (a great break in the day and my only news source), Tuesday night

grilling squad (even in −20◦F), and cycling crew (so many miles). To those that

I’ve lived with these years, I apologize, but you’re doing alright too. Finally, I

thank my family for their frequent visits and constant support. Thank you to

Kate and Craig for the great visits to CO and to my Mom and Dad for everything

and then some.†

v



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

2 Locating Colloidal Spheres at the Maximum Theoretical Resolu-
tion 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Generative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Supplemental information . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.2 Bayesian framework . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 Generative model . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.4 Model considerations . . . . . . . . . . . . . . . . . . . . . . 39
2.5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.6 Benchmarks of featuring algorithms . . . . . . . . . . . . . . 58
2.5.7 Experimental Details . . . . . . . . . . . . . . . . . . . . . . 61

3 Scaling theory of continuum dislocation dynamics in three dimen-
sions: Self-organized fractal pattern formation 64
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 Continuum models . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.1 Order parameter fields . . . . . . . . . . . . . . . . . . . . . 70
3.2.2 Traditional dissipative continuum dynamics . . . . . . . . . 74
3.2.3 Our CDD model . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.1 Two and three dimensional simulations . . . . . . . . . . . . 84
3.3.2 Self-similarity and initial conditions . . . . . . . . . . . . . . 90
3.3.3 Correlation functions . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Scaling theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4.1 Relations between correlation functions . . . . . . . . . . . . 98
3.4.2 Critical exponent relations . . . . . . . . . . . . . . . . . . . 102

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.6 Physical quantities in terms of the plastic distortion tensor . . . . . 110
3.7 Energy dissipation rate . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.7.1 Free energy in Fourier space . . . . . . . . . . . . . . . . . . 111

vi



3.7.2 Calculation of energy functional derivative with respect to
the GND density % . . . . . . . . . . . . . . . . . . . . . . . 112

3.7.3 Derivation of energy dissipation rate . . . . . . . . . . . . . 113
3.8 Model Extensions: Adding vacancies and disorder to CDD . . . . . 115

3.8.1 Coupling vacancy diffusion to CDD . . . . . . . . . . . . . . 115
3.8.2 Coupling disorder to CDD . . . . . . . . . . . . . . . . . . . 117

4 Visualization, coarsening and flow dynamics of focal conic do-
mains in simulated smectic-A liquid crystals 119
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3 Experimental and simulation setup . . . . . . . . . . . . . . . . . . 126
4.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5 Coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.6 Flow dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.8.1 Convergence tests . . . . . . . . . . . . . . . . . . . . . . . . 133
4.8.2 Scaling exponent for the coarsening of focal conics . . . . . . 135
4.8.3 Linear stability analysis for SmA under dilative strain . . . . 137

5 Measuring Nonlinear Stresses Generated by Defects in 3D Col-
loidal Crystals 145
5.1 Local stress measurements . . . . . . . . . . . . . . . . . . . . . . . 145

5.1.1 Vacancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.1.2 Dislocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.1.3 Grain boundaries . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2 Supplemental information . . . . . . . . . . . . . . . . . . . . . . . 156
5.2.1 Derivation of the SALSA method . . . . . . . . . . . . . . . 156
5.2.2 Calibration of the SALSA method . . . . . . . . . . . . . . . 165
5.2.3 Vacancy Stress Fields . . . . . . . . . . . . . . . . . . . . . . 171
5.2.4 Dislocation Stress and Strain Fields . . . . . . . . . . . . . . 180
5.2.5 Polycrystal Stress Fields . . . . . . . . . . . . . . . . . . . . 186

6 Collective Motion of Humans in Mosh and Circle Pits at Heavy
Metal Concerts 191
6.1 Heavy metal concerts . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2 Flocking model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.3 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.5 Additional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

6.5.1 Video Metadata . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.5.2 PIV Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.5.3 Phase Separation . . . . . . . . . . . . . . . . . . . . . . . . 204

vii



6.5.4 Expanded MASHer Phase Diagram . . . . . . . . . . . . . . 206

7 You Can Run, You Can Hide: The Epidemiology and Statistical
Mechanics of Zombies 208
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.2 SZR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.3 Stochastic simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.4 Critical Behavior of Lattice Model . . . . . . . . . . . . . . . . . . . 222
7.5 US Scale Simulation of Zombie Outbreak . . . . . . . . . . . . . . . 230

7.5.1 Inhomogeneous Population Lattice . . . . . . . . . . . . . . 230
7.5.2 Augmented Model . . . . . . . . . . . . . . . . . . . . . . . 231
7.5.3 Simulation Details . . . . . . . . . . . . . . . . . . . . . . . 234
7.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
7.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

8 OpenKIM Processing Pipeline: A Virtual Machine Cloud-Based
Automatic Materials Property Computation Engine 243
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.2 The Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.3 Software and Virtual machine . . . . . . . . . . . . . . . . . . . . . 246
8.4 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 248
8.5 Job workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.6 Dependency resolution . . . . . . . . . . . . . . . . . . . . . . . . . 252
8.7 Status and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 253

viii



LIST OF TABLES

2.1 Position and radii errors by model complexity. . . . . . . . . . . . . 44
2.2 Crocker-Grier featuring errors . . . . . . . . . . . . . . . . . . . . . 62

3.1 Critical exponents for correlation functions at stress-free states . . 103

4.1 Convergence of simulation results with grid size . . . . . . . . . . . 135

7.1 The parameters chosen for our US-scale simulations of a zombie
outbreak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

ix



LIST OF FIGURES

1.1 Crystallized 4-(heptyloxy)benzoic acid viewed through cross-
polarizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 PERI overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Fitting the generative model to experimental data . . . . . . . . . 11
2.3 Bulk characterization comparison of PERI and CG . . . . . . . . . 14
2.4 Platonic sphere generation . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 ILM residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 ILM generated biases . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 PSF widths vs depth . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 PSF generated biases . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.9 Experimental background image . . . . . . . . . . . . . . . . . . . 36
2.10 Noise spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.11 Component complexity residuals . . . . . . . . . . . . . . . . . . . 40
2.12 Lens Positioning Jitter . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.13 Effect of missing particles . . . . . . . . . . . . . . . . . . . . . . . 47
2.14 Influence of particles outside of the image . . . . . . . . . . . . . . 49
2.15 CRB of edge particles . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.16 Pixel Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.17 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.18 Accuracy benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Representation of the crystalline line defect — dislocation . . . . . 72
3.2 Relaxation of various CDD models . . . . . . . . . . . . . . . . . . 80
3.3 Complex dislocation structures in two dimensions (10242) . . . . . 86
3.4 Complex dislocation structures in three dimensions (1283) . . . . . 87
3.5 The elastic free energy decreases to zero as a power law in time in

both two and three dimensions . . . . . . . . . . . . . . . . . . . . 88
3.6 Relaxation with various initial length scales in two dimensions . . . 89
3.7 Correlation functions of Λ in both two and three dimensions . . . . 90
3.8 Correlation functions of % in both two and three dimensions . . . . 90
3.9 Correlation functions of βp in two dimensions . . . . . . . . . . . . 95
3.10 Correlation functions of βp,I in both two and three dimensions . . . 96

4.1 Example experimental and simulation images of smectic-A . . . . . 120
4.2 Simulation results for a planar section of smectic-A . . . . . . . . . 125
4.3 Simulated energy density . . . . . . . . . . . . . . . . . . . . . . . 128
4.4 3D visualizers of a simulation of smectic-A liquid crystals with pla-

nar anchoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.5 Scaling collapses of the distribution layer-surface radii of curvature 141
4.6 Simulation and experimental results for SmA under dilative stress . 142
4.7 Energy minimization through gradient descent . . . . . . . . . . . 143
4.8 Critical strain at which undulations form . . . . . . . . . . . . . . 144

x



5.1 Particle-level stress measurements (SALSA) . . . . . . . . . . . . . 146
5.2 Stress around a vacancy . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3 Experimental dislocation stress . . . . . . . . . . . . . . . . . . . . 151
5.4 Stress near grain boundaries . . . . . . . . . . . . . . . . . . . . . . 154
5.5 Spatially smoothed stress fields of a simulated polycrystal . . . . . 160
5.6 Spatially smoothed stress fields of a vacancy . . . . . . . . . . . . . 162
5.7 SALSA and actual stresses comparison in simulation . . . . . . . . 166
5.8 SALSA pressure versus ∆ in experiment and simulation . . . . . . 167
5.9 Pressure and σxy fields for different ∆ . . . . . . . . . . . . . . . . 168
5.10 Force balance of vacancy . . . . . . . . . . . . . . . . . . . . . . . . 169
5.11 Confocal images of 20 isolated vacancies . . . . . . . . . . . . . . . 172
5.12 Effects of sample average in addition to time average . . . . . . . . 173
5.13 Vacancy pressure distribution . . . . . . . . . . . . . . . . . . . . . 175
5.14 Frozen particle border (dislocation) . . . . . . . . . . . . . . . . . . 182
5.15 Strain fields of a dislocation . . . . . . . . . . . . . . . . . . . . . . 183
5.16 Profile of the cubic moduli C33 and C23 for the dislocation . . . . . 185
5.17 Colloidal polycrystal sample . . . . . . . . . . . . . . . . . . . . . . 187
5.18 Frozen particle border (polycrystal) . . . . . . . . . . . . . . . . . 188
5.19 Per-particle virials for polycrystal . . . . . . . . . . . . . . . . . . . 189

6.1 Typical collective behavior found in a mosh pit at heavy metal
concerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.2 Experimental analysis of videos of mosh pits . . . . . . . . . . . . . 194
6.3 Simulation phase diagram and example behaviors in mosh and cir-

cle pit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.4 Experimental characterization of a circle pit . . . . . . . . . . . . . 200
6.5 Coarsening of mosh and circle pits in large-scale simulations . . . . 205
6.6 Phase diagram of additional order parameters . . . . . . . . . . . . 207

7.1 Deterministic trajectories for the SIR and SZR models . . . . . . 215
7.2 Example Gillespie dynamics for the SIR and SZR models . . . . . 216
7.3 Distribution of final states for Gillespie dynamics . . . . . . . . . . 218
7.4 Extinction rate of infections . . . . . . . . . . . . . . . . . . . . . . 219
7.5 Mean final states as a function of model parameters . . . . . . . . 221
7.6 Zombie fractal cluster at the critical point . . . . . . . . . . . . . . 225
7.7 Determination of the critical point using epidemic size distributions 228
7.8 Finite size scaling of the distribution of fractal dimensions . . . . . 229
7.9 Population density of the US . . . . . . . . . . . . . . . . . . . . . 232
7.10 Sample trace of an epidemic across the U.S. . . . . . . . . . . . . . 236
7.11 Simulation of a zombie outbreak in the continental United States . 237
7.12 Status of the United States 28 days after an outbreak . . . . . . . 238
7.13 Average infection rate from US scale runs . . . . . . . . . . . . . . 239

8.1 The architecture of the OpenKIM Pipeline . . . . . . . . . . . . . . 247

xi



8.2 Screen capture of the Pipeline’s web interface . . . . . . . . . . . . 250
8.3 Example OpenKIM figure – lattice constants . . . . . . . . . . . . 254
8.4 Example OpenKIM figure – density of states . . . . . . . . . . . . 256
8.5 Example OpenKIM figure – cohesive energy . . . . . . . . . . . . . 258

xii



CHAPTER 1

INTRODUCTION

The description of the world that physics provides is surprisingly simple and

yet it admits a wide variety of wonderfully rich behaviors (see Fig. 1.1). While we

are taught in school that there are only four foundamental forces (up to debate

with our high energy colleagues), it would be extremely intractible to describe

the complex swirling of turbulent fluids using only the strong nuclear force and

quantum electrodynamics. Just as Newtonian gravity is an effective description

of general relativity, in condensed matter physics we often turn to effective de-

scriptions of the world to try to understand complex phenomena. In the case of

turbulence in fluids, we use continuum conservation laws to describe all of the un-

derlying microscopic degrees of freedom. Even using this simplified theory we are

able to recover all macroscopic fluid properties and behaviors. Furthermore, by

employing these effective descriptions we actually gain generality and perspective

into many different areas of physics since most details in the system are typically

unimportant.

In this thesis we investigate the properties of defects, a general class of such ef-

fective descriptions which often dominate many material behaviors, and emergent

phenomena which result from microscopic rules. Using the properties of defects,

one can simplify many degrees of freedom into only a few which capture the un-

derlying complex physics. For example, the turbulence in fluids can be further

simplified into the interaction of vortices which has a set of simple rules for their

equations of motion. In the case of dislocations in metals, a large volume of atoms

can be described by a one dimensional line that has a line tension and a long

range strain field associated with it. We can then describe the deformation of

1



the material using only the interactions between dislocations in the crystal. In

this way, defects prove extremely useful and important in studying many types of

phenomena.

Figure 1.1: Crystallized 4-(heptyloxy)benzoic acid viewed through cross-
polarizers. Even within a single sample, the crystal structure of this
solidified mesogenic material (one which has liquid crystal phases) dis-
plays many different forms. The colors here illustrate the local orienta-
tion of the molecules, which are related to the crystal orientation and
amount of local deformation. While we will not describe images of this
type in this thesis, it provides a example of the rich behaviors afforded
by defects in materials. Image provided by Brian D. Leahy.

Here we describe many types of defects and collective phenomena in both ma-

terials as well as human systems. We measure their detailed properties, how they

collectively move, and the properties that they imbue in their material. At the

smallest scales we investigate how effective descriptions of quantum mechanics, in-

teratomic potentials, can be used to simulate different types of defect and material

properties using the OpenKIM project. By comparing the results of simulation

2



to reference data created with DFT or measured experimentally, we can choose

which effective potential is best able to describe particular material properties.

Experimentally, we measure these same properties in colloids, looking at the non-

linear stress fields around vacancies, dislocations, and grain boundaries in colloidal

crystals. The details of these stress fields determine basic behaviors of defect in-

teraction such as the formation of voids from vacancy aggregation.

At larger scales, we investigate the collective motion of dislocations by studying

the formation of complex fractal structures in metals as they are plastically de-

formed. We apply a similar technique to study how strange geometric structures,

focal conic defects, behave in smectic liquid crystals. At human scales we study

how gas-like and vortex-like defects in crowds at metal concerts (mosh and circle

pits respectively) form spontaneously from local interactions between ‘intelligent’

agents. Finally, we describe the spread of the disease zombism across the United

States and study the critical nature of the epidemic transition on a lattice. Along

the way, we improve techniques of particle featuring in confocal microscopes to the

theoretic maximum precision of 1 nm.
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CHAPTER 2

LOCATING COLLOIDAL SPHERES AT THE MAXIMUM

THEORETICAL RESOLUTION 1

2.1 Introduction

We increase the resolution of standard confocal microscopy to the maximum theo-

retic precision by the Parameter Extraction from Reconstruction of Images (PERI).

In this technique we model the physics of image formation, describing all of the

complexities present in typical confocal microscopes, in order to extract all avail-

able information. We provide a summary of the technique and generative model

in the main manuscript and give extensive details and a software implementation

in the supplementary information.

Super-resolution microscopy techniques have pushed the limits of optical mi-

croscopy well below the diffraction limit, enabling unprecedented views into pro-

cesses that occur in biological systems. These advances were made experimen-

tally by isolating fluorescent point sources through detailed control of emission

from fluorophores in space (STED, RESOLFT [109, 108]) or by fluctuating in

time (STORM, PALM [214, 31, 111]) to make their diffracted emitted light non-

interacting [221]. From these images, computational techniques are used to extract

the positions of point sources at the information limit as determined by the Cramér-

Rao bound (CRB) [236]. This combination of techniques has allowed detailed mea-

surement of the stepping behavior of myosin motors and Ising correlation function

of lipids in cell membranes. In this work, we focus on the computational side of

feature extraction from more traditional microscope images. Without modification

1Matthew Bierbaum, Brian D. Leahy, Alexander A. Alemi, Itai Cohen, & James P. Sethna
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Figure 2.1: PERI overview – A demonstration of model information recovered
from real confocal microscope images of 〈a〉 = 1.343(8) µm colloidal
spheres at a volume fraction of φ = 0.130(5). On the top row, we
compare (left) the true microscope image including CCD noise (mid-
dle) the reconstructed model image (right) the difference between the
true image and model image. Notice that most of the structure in the
difference image is uncorrelated white noise. In the lower left panels,
we show reconstructed global parameters of the image along two dif-
ferent slices of the 3D confocal image, perpendicular to the scanning
direction and including the scanning direction. We show the platonic
(perfect) spheres as well as the coverslip (top), the spatially varying il-
lumination field produced by the confocal scanning laser (middle), and
the fitted point spread function of the microscope (bottom). Finally,
in bottom right we show a histogram of x-y positions sampled from a
single particle displaying a variance of 2 nm in each coordinate.
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to standard confocal microscopes, we extend the accuracy of position and struc-

ture determination in dense, complex confocal microscope images by 10 − 100×,

down to ∼ 1 nm resolution by detailed reconstruction of the entire image. Our

technique provides accurate estimations of errors associated with these measure-

ments and can be used to characterize microscope details such as the point spread

function, dirt on the lens, and correlated noise.

In this work, we apply our technique to colloidal spheres, a simple but rich

system that has proven to be a useful experimental tool in understanding many

diverse phenomena including glassy dynamics, microfluidics, and microrheology.

In each case, the experiment is concerned with finding particle positions (and po-

tentially radii) and tracking them in time. Current featuring methods are based on

heuristics which are designed to quickly find sub-pixel positions so that the proper

statistics can be acquired [62, 193, 29, 17]. Currently, these techniques achieve an

accuracy around 30 nm (0.2 px) and have rudimentary error estimates. However,

much of the interesting physics in colloidal suspensions – from interparticle inter-

actions to packing questions in glasses and shear-thickening suspensions – occurs

at separations smaller than this length scale. As such, locating colloidal particles

more accurately seems of critical importance.

How precisely can a particle be located in an image? The fundamental lim-

itation in imaging resolution arises from noise in the image formation, and not

diffraction or optical limitations [205]. The fundamental limit on localization ac-

curacy in the presence of noise is known as the Cramer-Rao bound (CRB). The

CBR states that the covariance matrix of the estimated parameters θ is always

larger than the inverse of the Fisher information matrix: cov θij ≥ (I−1)ij, where

Iij ≡ −〈∂i∂j log ρ〉 depends on derivatives of the noise distribution ρ. For a deter-
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ministic image I given by parameters θ and sampled at points xk with signal-to-

noise ratio SNR, this bound simplifies to

cov θij ≥
1

SNR2

(∑
k

∂I(xk)

∂θi

∂I(xk)

∂θj

)−1

. (2.1)

We can use Eq. 2.1 to estimate the minimum uncertainty of a colloidal particle’s

position and radius. If the particle has a radiusR and is blurred by diffraction by an

amount w, in pixels, the radial derivative ∂I/∂R will affect approximately 4πR2w

pixels, and the positional derivative will affect ∼ πR2w pixels. As each of these

pixels will change by an amount ∼ 1/w, this gives a minimum uncertainty in a par-

ticle’s radii as σR ∼
√

4πR2/w/SNR, and in its position as σx ∼
√
πR2/w/SNR.

For a typical colloidal particle of diameter 1 µm, imaged with a confocal microscope

with pixel size of 100 nm and diffractive blur of 200 nm at an SNR = 20, these

correspond to about σR ∼ 1 nm and σx ∼ 1 nm, a fantastically high resolution

compared to current reconstruction errors.

2.2 Generative Model

To achieve this precise localization, we create a generative model of the microscope

image based on the physics of the light interacting with the sample and the optical

train, and we then fit every parameter in the model. This model can be simplified

to a small list of knowledge about a microscope and the sample inside: (1) the

colloidal particles are spheres, (2) the suspension fluid is illuminated unevenly by

the laser, (3) the resultant image is blurred due to diffraction, and (4) the final

image is noisy.
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Platonic image: To reconstruct the image, we start with the continuous dis-

tribution of the fluorescent dye in the sample, which we call the Platonic image.

For the samples we analyze in this work, the Platonic image is a collection of per-

fect spheres or spherical lacunae representing the colloidal particles. To represent

the spheres in the continuous Platonic image on a pixelated grid, we implement

these spheres using a real-space function that is tuned to match the exact Fourier

representation of a sphere, parameterized by their positions and radii (see SI for an

extensive, detailed discussion of this and the rest of the generative model). While

we focus on featuring only spheres in this work, in order to reach the CRB, we must

include the microscope slide in our description of the Platonic image. In general,

PERI is flexible enough to include any parameterizable object in the generative

model, such as ellipsoidal, rod-like, and dimerized particles.

Illumination field and background: The 3D images formed in confocal

microscopes are formed through an illumination and detection process. However,

due to imperfections and dirt in the optics, this illumination is not uniform but

instead can vary strongly in space. For instance, for our line-scanning confocal, the

illumination field (ILM) is highly anisotropic with large correlations in intensity

perpendicular to the scan direction caused by disorder in the optics train being

dragged across the field of view. We describe the ILM as a Legendre polynomial in

the direction perpendicular to the coverslip and a Barnes interpolant in the plane of

the coverslip to account for the small wavelength features of our line-scan confocal.

Additionally, even when not receiving input light, the microscope registers a non-

zero signal. We parameterize this background signal (BKG) similarly to the ILM

and add it to our model as well.
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Point spread function: Due to diffraction, a single dye molecule in the sam-

ple projects a comparatively large blur, known as the point-spread function (PSF)

onto the imaging camera. As a result, the image captured on the camera is not an

exact representation of the illuminated platonic image, but instead is that image

convolved with the PSF. While complicated, this PSF has been calculated exactly

by many researchers for different geometries [106, 258, 271, 181]. For microscope

samples which have a different index of refraction than the optical train’s design,

the PSF worsens with depth, becoming both significantly broader and more aber-

rated. We use a modification of these exact PSF calculations, adapted for our

line-scanning confocal, as our PSF model, optimizing over parameters such as the

acceptance angle or numerical aperture of the lens and the index mismatch of the

sample to the optics.

Putting these three processes together, the model image can be written as

M(x) = B(x) +

∫
d3x′ [I(x′)(1− Π(x′))]P (x− x′; x) (2.2)

where I is the ILM, B is the BKG, Π is the platonic image, and P is the PSF.

Each pixel value is found by sampling this function at points Mi =M(xi) (see SI

for a discussion of pixel sampling).

Noise: Finally, the image recorded on the camera is degraded by noise, either

from the finite number of photons collected or from simple electronic noise in the

camera. We accurately incorporate this noise with a Bayesian view of the genera-

tive model, forming the likelihood of our model given the experimental image. As

the noise is empirically Gaussian (see SI), the log-likelihood can be written as the

sum of the squared differences between the image and model normalized by the
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estimated noise σ,

logL({Mi} | {θ}, {d}) = −
∑
i

(Mi(θ)− di)2

2σ2
i

(2.3)

where the sum over i now indicates the sum over all pixel values in the image. It

is important to note that this sum is over all of the pixels in the image – to get a

meaningful extraction of parameters, every pixel must be described just as well as

the others. While this makes it easy to identify mis-featured regions, it also makes

the optimization much more difficult – dimerized particles and PSF leakage from

particles outside the image can affect the entire image reconstruction through their

influence on global variables.

A typical microscope image contains a few times 104 particles, each with 4 fit

parameters (x, y, z, R). In addition, there are a few dozen global parameters to op-

timize, such as the illumination and PSF parameters and the z-step size zscale of the

lens, resulting in ≈ 105 parameters per image. To optimize these parameters, we

begin by using standard particle locating techniques on the experimental image [62]

and minimize the log-likelihood for this set of particles and the global variables.

From here, we ensure that we have identified every particle in the image by adding

and subtracting particles probabilistically based on the log-likelihood. For perfor-

mance, there are many algorithmic optimizations made in the computation which

are detailed in the SI. After optimization, we sample from the log-likelihood us-

ing standard MC techniques, primarily slice sampling [182] to estimate the errors

associated with the image reconstruction.
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Figure 2.2: Fitting the generative model to experimental data – We ex-
perimentally verify our featuring algorithm by looking at the residuals
in real and Fourier domains as well as comparing the radii of tracked
particles between two different frames of a movie. (A) We plot three
cross sections of the real space residuals showing nearly Gaussian white
noise. The ‘shadows’ of spheres can be seen due to complications of
the PSF. However, the probability distribution of all residuals (lower
right) is very nearly Gaussian as shown as a quadratic on a logarithmic
scale. (B) The Fourier power spectrum of the same residuals displayed
along qx, qy, or qz = 0. In all panels, excess power is visible at scales
larger than the particles themselves but smaller than the features given
by the ILM. These residuals are associated with the approximations we
have made in the point spread function, particularly the difficulty in
calculating the long tails of the PSF and the cutoff we employ to speed
up numerical computations. The q-space histogram is also very nearly
Gaussian with slight deviation from quadratic in the tails. (C) We plot
the difference in radii across frames (red) as compared to the difference
that we estimate using the radii CRB (green). The difference in peak
high is proportional to the distance our experimental measurements
are from the theoretic limit, roughly 3× larger.

2.3 Experimental data

To verify the PERI method on experimental data, we prepare a sample of ∼ 1.3 µm

silica spheres suspended in a water and glycerol mixture. We take several images

of the particles as a function of time as the particles diffuse across the field of

view. We then feature these images using PERI with a model given by a line-

scan confocal PSF, Barnes ILM, Legendre polynomial BKG, and initial particles
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positions given by Crocker-Grier (CG) [63]. Optimization was first performed using

Levenberg-Marquardt and then all parameters were sampled to obtain estimates

of the fit covariance matrix. Each frame was analyzed independently in order to

verify that convergence is robust across images.

First, we analyze the residuals of our fits to the experimental data. In

Fig. 2.2(a,b) we show these residuals in both real- and Fourier-space. While the

overall probability distribution is nearly Gaussian in both domains, we are able to

still see slight hints of particles in the real-space difference image. In Fourier-space,

there are distinct wave vectors which are above the noise floor which represent ex-

cess signal at length scales larger than the particle but smaller than typical ILM

features. We believe that these features arise from our approximate line-scanning

point spread function, excess aberrations in the microscope, and the artificial cutoff

value we introduce in our PSF calculation that we use to speed up optimization.

Additionally, scanning noise can be seen in one slice of the Fourier-space residuals

with sharp peaks present at high q values. Overall, the remaining unexplained

signal is very small, comprising of roughly 10−3 of the power in the model residu-

als. The remaining question is how much these residuals affect the parameters of

interest, the particle positions and radii.

Since we are able to extract radii with PERI, we can directly compare positions

and radii of particles from frame to frame. Physically, the particle radii do not

fluctuate in time and particles cannot overlap, providing us with two tangible

measurements that we can use to verify our method. In Fig. 2.2(c), we see that the

variation of radii between frames is roughly 3× larger than that predicted by the

CRB. This corresponds to a radius variation of 2 nm between consecutive images

in the movie. Additionally, we find that the number of overlaps is greatly reduced
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by using PERI compared to conventional methods. In the sample presented in

Fig. 2.1 and Fig. 2.2 we find an overlap only every few frames, which is consistent

with the radii fluctuations discussed earlier.

With this increase in resolution, we compare several standard measurements

employed in colloidal science as measured by both CG and PERI. First, we measure

the radial pair correlation function g(r), the density-normalized probability of two

particles in a sample being separated by a distance r. We prepare a sample of

silica spheres at a volume fraction of φ ≈ 0.45 and compute the pair correlation

as shown in the top panel of Fig. 2.3. Focusing on the first peak, we can see

that there is roughly a factor of three increase in practical resolution given by the

relative heights of the peak at g(1) as measured by CG and PERI. In particular,

the values of g(r) that occur in the region r < 1 are mainly attributed to featuring

uncertainty and represent overlaps in the sample. However, part of the spread in

the first peak of g(r) is due to polydispersity, the fact that colloids are synthesized

at slightly different sizes. We attribute most of the weight of g(r) for r < 1 in the

PERI measurement to polydispersity.

In the bottom panel of Fig. 2.3 we show a second common experimental sample

characterization, the mean-squared-displacement (MSD) which gives ensemble in-

formation about caging, interactions, and other deviations from Brownian motion.

Here, we see the CG measurement diverges from the linear prediction given by

simple Brownian motion at 2 sec and 50 nm. Featuring with PERI, we are able

to utilize the full time resolution of the confocal microscope, following the linear

prediction down to 10 nm at 100ms, the maximum scan rate of our line-scanning

confocal.

Finally, even seemingly simple volume fraction measurements are made precise
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Figure 2.3: Bulk characterization comparison of PERI and CG – We com-
pare the pair correlation (top panel) and mean squared displacement
(bottom panel) as measured by both PERI (green) and Crocker-Grier
(red) featuring algorithms. In both probes we can see evidence of a
marked improvement in resolution by fully reconstructing the exper-
imental images. In the pair correlation function g(r), the number of
overlaps (values of r < 0) is significantly diminished – most overlaps
present in the PERI measurement are accounted for by polydispersity
(3.2%). In the MSD, we see a departure from a linear relation (dashed
line) in the CG measurements (red) at approximately 50 nm whereas
the trend continues to the time resolution of the microscope with PERI
(green).
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by PERI due to the need for complete image reconstruction. For a dense colloidal

crystal, we measure the volume fraction φ = 0.6734(3) for a single frame with

PERI, where the volume fraction takes into account all particles within the field

of view, including edge particles. Conventional methods often miss upwards of

10% of particles, measuring φ = 0.579 for this same sample. With conventional

methods, PSF overlap between particles causes some close neighbors to be skipped

and most edge particles are ignored due to low total mass.

2.4 Conclusions

In this paper we present a method for extracting nearly all information from con-

focal images of colloidal spheres, leading to precise localization and size measure-

ments, down to the resolution of 1 nm. We verify that these measurements are cor-

rect for experimental images by comparing particle radii between adjacent frames

of a movie, ensuring that their physical sizes do not fluctuate much larger than the

theoretical minimal estimate. We show pronounced improvement in several stan-

dard measurements including the pair correlation function g(r), mean-squared-

displacement, and the volume fraction.

This method of recovering parameters using generative models is quite generic

and can be applied to many other types of microscope images. Currently we are ex-

tending PERI to work for common 2D brightfield images [75] with promising initial

success. Additionally, we have recently used similar ideas to extract currents from

magnetic flux images measured by scanning SQUID microscopy [185], improving

current localization two fold. Finally, we are beginning to expand PERI to scan-

ning transmission electron microscope (STEM) images. Here, while the objects
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of interest are much smaller in pixel extent (dramatically increasing the CRB),

the role of aberrations becomes much more important. If we can directly model

these aberrations and include them in our featuring then many types of systematic

biases can be reduced or eliminated from the extracted atomic positions.

2.5 Supplemental information

2.5.1 Overview

In this supplemental material we describe the details of our method for extracting

parameters from experimental confocal images at the highest resolution possible

without modifying the microscope itself. To achieve maximal resolution, we build a

generative model which aims to describe the value of every pixel in the experimental

image. That is, we create simulated images by explicitly modeling every relevant

aspect of image formation including particle positions and sizes, the location of

dirt in the optics, amount of spherical aberration in the lens, and the functional

form of the point spread function. We describe each of these model components

in detail in Section 2.5.3 and how we decided on these particular components in

Section 2.5.4. In order to fit this model to the experiment, we adjust all model

parameters until the features present in the true experimental image are duplicated

in the simulated one. We decide when the fit is complete and create a fair sample

of the underlying parameters by using a traditional Bayesian framework which is

described in general terms in Section 2.5.2. This high dimensional optimization

is in general very difficult and so we describe our algorithmic improvements and

particular techniques in Section 2.5.5. Finally, we assess the accuracy of this
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method in extracting underlying parameters and compare its performance with

traditional featuring methods in Section 2.5.6.

Overall, this document is meant to provide a roadmap for other researchers

to follow when adapting this technique to other types of microscopy and other

types of samples in order to extract the maximal amount of information from their

experimental images.

2.5.2 Bayesian framework

When fitting a model to noisy data, it is useful to adopt a Bayesian framework

in which we rigorously treat the noise as part of our model. In the case of our

featuring method, we fit a model of each image pixel Mi to experimental data di,

which can be described as a combination of signal and noise di = Si+ηi. This noise

is present due to the detection of a finite number of photons by the microscope

sensor, noise in the electronics, etc. and can be well described for our system by

uncorrelated 〈ηiηj〉 = 2σ2δij, Gaussian noise ηi ∼ N (0, σ) (see Section 2.5.3).

In a Bayesian framework, the likelihood that an individual pixel is correctly

described by our model is given by the Gaussian likelihood,

L(Mi | di) =
1√

2πσ2
i

e−(Mi−di)/(2σ2
i ) (2.4)

For uncorrelated pixel noise, the entire likelihood of the model given the image is

given by the product over all pixels, L(M | d) =
∏

i L(Mi | di). We are ultimately

interested in the probability of the underly parameters given the image we record.
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According to Bayes’ theorem, we can write this as

P (θ | d) ∝ P (d | θ)P (θ)

∝ L(M(θ) | d)P (θ)

where P (θ) are priors that allow us to incorporate extra information about the

parameters θ. These priors can be as simple as the fact that the particle radius

is positive definite or that a group of images share similar PSFs. For example, an

overlap prior Poverlap(xi,xj, ai, aj) = H(ai+aj−|xi−xj|), where H is the Heaviside

step function, can be used to impose the physical constraint that particles cannot

overlap. However, we found that the overlap prior only becomes relevant when the

free volume of a particle is small compared to the average sampling error volume

(when a particle is caged by ∼ 1 nm on all sides) and so we ignore it most of the

time.

We primarily work with the log-likelihood function logL because the number

of pixels in the image can be very large, on the order 107. For Gaussian noise, the

log-likelihood for Gaussian noise is precisely the square of the L2 norm between

the model and the data. Therefore, we are able to maximize this log-likelihood

using a variety of standard routines including linear least squares and a variety of

Monte-Carlo (MC) sampling techniques. After optimizing, we use MC algorithms

to sample from the posterior probability distribution to extract full distributions

of the model parameters. In this way, any quantity of interest that is a function

of particle distribution can be calculated using MC integration by

〈O(θ)〉 =

∫
O(θ)P (θ | d) dθ

=
1

N

N∑
i

O(θi)

Here, θi is a parameter vector sampled fairly from the posterior probability
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distribution and O(θ) is an observable such as the pair correlation function, pack-

ing fraction, or mean squared displacement. Higher order moments can also be

calculated to estimate errors for these observables by evaluating
√
〈O2〉 − 〈O〉2.

This is one of the more powerful aspects of this method – one can generate a

probability distribution for each parameter and directly apply these distributions

to any observable that can be inferred from the parameters.

Given this Bayesian framework, the main idea of this work is to create a full

generative model for confocal images of spherical particles and provide algorithmic

insights in order to implement the model on commodity computer hardware.

2.5.3 Generative model

Most of the difficulty in our method lies in creating a generative model that accu-

rately reproduces each pixel in an experimental image using the fewest number of

parameters possible. Our model is an effective description of how light interacts

with both the sample and the microscope optics to create a distribution of light

intensity as measured by the microscope sensor and rendered as an image on the

computer. In this section we describe the model which we use to create images sim-

ilar to those generated by line-scanning confocal microscopy of spherical particles

suspended in a fluorescent fluid.

Our generative model aims to be an accurate physical description of the mi-

croscope imaging; it is not a heuristic. Creating this model requires a detailed

understanding of image formation of colloidal spheres in a confocal microscope.

In the simplest view, our samples consist of a continuous distribution of dye dis-

tributed throughout the image. If the fluid is dyed (as for the images in this work),
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due to diffusion the dye is uniformly distributed through the fluid. The fluid-free

regions, such as those occupied by the particles, are perfectly dye-free. The sample

is illuminated with a laser focused through an objective lens. This focused laser

excites the fluorescent dye only in the immediate vicinity of the lens’s focus. An

objective lens captures the dye’s emitted light, focusing it through a pinhole to

further reject out-of-focus light. The collected light passes through a long-pass

or band-pass filter, which eliminates spurious reflected laser light before collec-

tion by a detector. This process produces an image of the sample at the focal

point of the lens. Finally, rastering this focal region over the sample produces a

three-dimensional image of the sample.

However, the actual image formation is more complex than the simple view out-

lined above. Excessive laser illumination can cause the dye to photobleach. Due

to dirt and disorder in the optical train, the sample is not illuminated uniformly.

Diffraction prevents the laser light from being focused to a perfect point and pre-

vents the objective lens and pinhole from collecting light from a single point in the

sample. Moreover, additional aberration is present if the sample’s refractive index

is not matched to the design of the objective lens, broadening the diffractive blur

deeper into the sample. Both the illuminating and fluorescing light can scatter off

refractive index heterogeneities in the sample due to the particles.

Some of these complications can be eliminated by careful sample preparation.

In practice, we eliminate photobleaching by using an excessive amount of dye in

our samples and illuminating with a weak laser light. We eliminate scattering by

matching the refractive index of the particles to the suspending fluid. It is fairly

easy to match the refractive indices to a few parts in 103. Since the scattering is

quadratic in the index mismatch, the effect of turbidity due to multiple-scattering
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is very weak in our samples. However, the rest of these complications must be

accurately described by the generative model.

Based on this physical setup, we can describe the confocal images through three

main generative model components:

• Platonic image Π(x) – the physical shape of the dye distribution in the

sample (unmodified by perception of light).

• Illumination field I(x) – the light intensity as a function of position, includ-

ing both laser intensity variation from disorder in the optics and intensity

attenuation into the sample.

• Point spread function P (x; x′) – the image of a point particle due to diffrac-

tion of light, including effects from index mismatch and finite pinhole diam-

eter.

plus three minor additional fit model components:

• Image Background c, B(x) – the overall exposure of the image c and the

background values corresponding to a blank image without dye, B.

• Rastering Step Size zscale – the displacement distance of the lens as it rasters

along the optical axis.

• Sensor noise σ – the noise due to shot noise from finite light intensity reaching

the sensor or electronic noise at the sensor.

These components are combined with a fitted scale factor c to form the image

through convolution

M(x) = B(x) +

∫
d3x′ [I(x′)(1− Π(x′)) + cΠ(x′)]P (x− x′; x) (2.5)
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which is then sampled at discrete pixel locations to give the final image Mi =

M(xi).

Here, we describe each part of our model in detail along with our explanations

and motivations behind any simplifications. In subsequent sections we will also

discuss other aspects of image formation which may result in other model choices

and why we omit them from the final form of the model.

Platonic image

The Platonic image must accurately represent the continuous distribution of flu-

orescent dye in the sample on the finite, pixelated image domain. The colloidal

sample consists of a collection of spherical particles embedded in the solvent, with

either only the particles or only the solvent dyed. Our Platonic image should then

consist of the union of images of individual spherical particles, with their corre-

sponding radii and positions. Thus, if we have a method to accurately represent

one colloidal sphere, we can easily construct the Platonic image in our generative

model.

A näıve way to generate the Platonic image of one sphere would be simply

to sample the dye distributions at the different pixel locations, with each pixel

being either 0 (if it is outside the sphere) or 1 (if it is inside the sphere) with no

aliasing. This method will not work, since a pixel value in the Platonic image

can only change when a sphere’s position or radii has shifted by one pixel. This

method of Platonic image formation would produce a generative model that does

not adequately distinguish between particle locations separated by less than 1 pixel

or 100 nm! Simply multiplying the resolution and corresponding coarse-graining of

the boolean cut by a factor of N in each dimension increases the resolution of this
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method to 1/N pixels. However, calculating these high resolution platonic spheres

is computationally expensive, requiring 109 operations to draw spheres capable of

determining positions within 0.01 px. While we will use these images as ground

truth to verify our approximate platonic formation, we consider an alternative

image formation path to arrive at a fast sphere generation method.

To find the correct representation of a Platonic sphere, we examine the mech-

anism of image formation in Eq. 2.5. The final image results from a convolution

of the Platonic image with the point-spread function P (x− x′; x). Thus, we need

a representation of a sphere that will produce the correct image after being con-

volved with the point-spread function. To do this, we recall that a convolution is

a multiplication in Fourier space. However, creating the image in Fourier space is

problematic since, due to the truncation from the finite number of pixels in the

image there will be undesirable ringing (i.e. Gibbs phenomenon) in the Platonic

image. Moreover, each update of one particle requires updating all the pixels in

the image, which is exceedingly slow for large images.

Instead, we look for a functional form in real space that approximates the

numerically exact truncated Fourier series given by Π̃(k; p, a) = 4πa3(j1(k)/k)eik·p.

We can view the truncation operation as a multiplication in Fourier space by a

boxcar H(1−|qx|)H(1−|qy|)H(1−|qz|), where q is the variable inverse to position,

measured in px−1. By the convolution theorem, this truncation corresponds to

a convolution in real space with sinc(x) sinc(y) sinc(z), using the inverse Fourier

transform of the boxcar as the sinc function. However, the convolution with the

sinc function is analytically intractable. To circumvent this, we approximate the

sinc function by a Gaussian. This gives a representation of the correctly-aliased
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Platonic image Π(x; a) of a sphere of radius a as

Π(x) = S(x) ∗
[(

2πσ2
xσ

2
yσ

2
z

)−1/2
e−x

2/2σ2
xe−y

2/2σ2
ye−z

2/2σ2
z

]
(2.6)

where S(x; p, a) = H(|x − p| − a) where H(x) is the Heaviside step function,

which is either 0 or 1 depending on whether |x − p| > a or < a, and ∗ denotes

convolution. The Gaussian widths σ should be approximately 1 px; however for

zscale 6= 1 σz will not be the same as σx and σy.

While Eq. 2.6 does not generally admit a simple solution, there is a closed-

form functional form for the symmetric case σx = σy = σz. In the symmetric case

(zscale = 1) Eq. 2.6 takes the form

Π(x) =
1

2

[
erf

(
a− r
σ
√

2

)
+ erf

(
a+ r

σ
√

2

)]
− 1√

2π

σ

r

[
e−(r−a)2/2σ2 − e−(r+a)2/2σ2

]
(2.7)

where r is the distance from the particle’s center. The first bracketed group of

terms corresponds to treating the sphere as a flat surface, and the second bracketed

group corresponds to the effects the sphere’s curvature on the integral. In each

sub-grouping, the first term that depends on r− a reflects the contribution due to

the particle’s nearer edge, and the second term that depends on r + a reflects the

contribution due to the particle’s farther edge. We then fit σ in Eq. 2.7 to best

match the exact Fourier space image of a sphere, giving a value σ ≈ 0.276.

Although Eq. 2.6 does not admit a simple solution for zscale 6= 1, we can use the

exact form for zscale = 1 to construct an approximate solution. Since both erf(x)

and e−x
2

approach their asymptotic values extremely rapidly, and since at the best

fit σ ≈ 0.276 (a + r)/σ � 1 for even moderately small radii, the terms erf((a +

r)/σ
√

2) ≈ 0.5 and exp(−(r+a)2/2σ2) ≈ 0 to an excellent accuracy. Next, we write

the position vector in terms of its direction x̂ and a vector δx as x ≡ ax̂ +δx, and

replace (a−r)/σ in Equation (2.7) by
√

(δx/σx)2 + (δy/σy)2 + (δz/σz)2. Note that
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this approximation is exact in the limit of infinite sphere radii. Empirically, we find

that this approximation works quite well, giving differences in the Platonic image

of a few percent from a numerical solution to Eq. 2.6 as well as high resolution

boolean cut real-space spheres (see Fig. 2.4).

While this implementation of the Platonic image correctly captures most of

the effects of finite-pixel size, there are still some minor details that need to be

fixed to give unbiased images. By construction, Eq. (2.7) conserves volume – its

integral over all space is 4/3πa3 since the Gaussian kernel is normalized. However,

when Π(x) is sampled on a pixelated grid, its sum is not exactly 4/3πa3 but is

slightly different, depending on the position of the particle’s center relative to a

voxel’s center. The slight change in volume is important for two reasons. First, the

convolution with the PSF in our image generation (see next subsection) suppresses

high-frequency portions of the image, but it does not affect the q = 0 component,

i.e. the image sum or the particle volume. Since we aim to create a Platonic

image that accurately represents the final image, we need the q = 0 component of

the Platonic image to be correct. Secondly, as discussed in section 2.5.4 the real

microscope image is actually an integral over a finite pixel area. As such, the image

recorded on the detector preserves the particle’s volume or q = 0 component of the

image. To circumvent this issue of incorrect particle volume, instead of drawing

the particle at its actual radius we draw it with a slightly different radius that

preserves the particle’s volume, which we accomplish with an iterative scheme.

The results of this iterative scheme are shown in Fig. 2.4 along with the errors it

introduces. Incidentally, the effects of image pixelation on image moments higher

than 〈1〉, e.g. 〈x〉 and its effects on the particle positions, are much smaller than

the noise floor in our data at a moderate SNR (see section 2.5.4).
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Figure 2.4: Platonic sphere generation. A comparison of our approximate pla-
tonic sphere generation method to a sphere created by performing a
boolean cut Π(x) =

∫
pixel

dx′H(|x − x′ − p| − a) on a lattice 100×
higher in resolution in each dimension compared to the final image.
On the left we show the super resolution sphere with fractional volume
error δV/V = 10−6 and an inset displaying the jagged edges caused
by discrete jumps in distance. This is in contrast to the iterative ap-
proximate platonic sphere with volume error δV/V = 10−16 drawn at
an effective radius with error δa/a = 5 × 10−3. The errors of individ-
ual pixels along the center of the sphere are shown in the right panel
showing a high frequency structure with a maximal relative value 0.08.
These high frequency features are dramatically reduced later in the im-
age formation process through the convolution with the point spread
function.

The Platonic image needs to represent accurately all objects in the image, not

just the spheres. In particular, when the solvent is dyed there is almost always

a dark coverslip visible in the image. We model this dark coverslip as a slab

occupying a half-space. The slab is characterized by a z-position and by a unit

normal n̂ denoting the perpendicular to the plane. To capture accurately sub-pixel

displacements of the slab, we use the image of a slab convolved with a Gaussian

as above for a sphere; for the slab this gives a simple error (erf) function.
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Figure 2.5: ILM residuals. Fits to a blank confocal image using a Legendre
polynomial given by Eq. 2.9 of the order specified above the subplot
where the tuple represents the number of terms in the summations
(i, j, k). We see non-uniform structures in low order fits using (3, 3, 2)
terms continuing until there are clear stripes present at (11, 7, 2) due
to the line-scan nature of our confocal. Finally, most structure is gone
by the high order fits to ILMs of order (17, 11, 2) and (35, 19, 2).

Illumination field

In order to illuminate the sample, confocal microscopes scan a laser over the field of

view using several distinct patterns including point, line, and disc scanning. This

illumination laser travels through the optics train and interacts with fluorescent

dye in the suspension causing it to emit light in a second wavelength which is then

detected. The intensity of this illumination pattern depends on the aberrations

in the optics as well as dirt in the optical train which creates systematic fluctu-

ations in illumination across the field of view. Accounting for these variations is

important as they can account for as much as ∼ 20% of the intensity variation in

the generated image. In the case of our line scanning confocal microscope, these

patterns manifest themselves as stripe patterns perpendicular to the scan direction

overlaid on spherical aberrations which cause the corners of the image to dim.

We describe the variation in the illumination across the sample by decomposing
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the underlying field into various basis functions. Using polynomials Pi as the basis,

the illumination field can be written as

I(x) =
∑
i

∑
j

∑
k

cijkPi(xx)Pj(xy)Pk(xz) ; (2.8)

empirically Legendre polynomials work well for our optimization scheme. Since

the variation of illumination in our line-scan confocal is mostly a series of stripes

propagated along the scan direction, we can alternatively use a one-dimensional

Barnes interpolant as part of the basis functions Pi(xx). The Barnes interpolation

is a method of interpolating between unstructured data using a given weight ker-

nel [24], similar to inverse distance weighting, using a truncated Gaussian kernel so

as to allow for strictly local updates to the high frequency illumination structure.

This overall polynomial form can be simplified because the variation of light

intensity is a separate function of x,y and z – the disorder present in the optics

affects every layer of the image the same with an overall modulation in the z

direction. We model this variation by a product of two polynomials

I(x) =

(∑
i

∑
j

cijPi(xx)Pj(xy)

)(∑
k

dkPk(xz)

)
(2.9)

In particular, in the case of line-scanning confocal microscopes, it is necessary

to use a high order polynomial in x and y to account for correlated illumination

heterogeneities due to disorder being dragged across the field of view. The variation

of the illumination field I(z) accounts for the intensity variation usually associated

with the point spread function (next section). For simplicity, we group all intensity

effects into I(x) in this work.

How well do these functional forms fit to experimental data for a line-scanning

confocal microscope? We acquire blank images of a water-glycerol mixture as a

function of depth and fit this data with Legendre polynomials in the form of Eq. 2.9.
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As a function of the expansion order, we look at the magnitude and patterns of the

residuals. In Fig. 2.5, we see large scale structure in the ILM residuals, suggesting

that higher powers are necessary. Increasing the ILM order, we find stripes in x

emerge due to the line-scan nature of our machine. Finally, at higher order we

are able to adequately capture all illumination variation independent of depth into

the sample. In practice, we do not typically use such a high order of Legendre

polynomial but instead augment Pi(xx) with a Barnes interpolant to give

I(x) =

[(∑
i

∑
j

cijPi(xx)Pj(xy)

)
+B(xx)

](∑
k

dkPk(xz)

)
(2.10)

Fitting the ILM correctly is essential for finding the correct particle positions

and radii. Fig. 2.6 demonstrates the effect of featuring a real confocal image with

an illumination field of insufficient order. In the left panel is an image featured

with a high-degree polynomial illumination of 9th order in the x-direction and of

5th order in the y- and z- directions. While these polynomials are high-order, they

are not high enough to capture all of the structure in the light illumination. There

is a clear bias in the featured radii, with particle radii being systematically larger

on the edge of the image and smaller in the middle. These biases arise from large

stripes in the confocal illumination due to the line-scanning nature of our confocal.

Using a higher-order 25th degree polynomial in the x-direction (upper right panel)

eliminates the effect of these stripes, as visible in the featured particle radii plotted

as a function of x in the bottom panel. Note that the particle radii may be biased

by as much as 1 px or 100 nm due to effects of the spatially varying illumination

field.
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Figure 2.6: ILM generated biases. Using an incorrect illumination field results
in significant biases. The upper left panel shows an image featured
with a (9, 5, 5) order polynomial in (x, y, z). In the foreground are the
featured particle radii, color-coded according to their difference from
the mean. In the background is the residuals of the featured image.
Clear stripes are visible in both the featured radii and the residuals.
The particles are systematically much larger on the left side of the
image, before decreasing in size in the middle and increasing again in
a small stripe on the image’s right side. In contrast, when the image is
featured with a higher-order (25, 5, 5) degree polynomial, shown in the
upper right, these systematic residuals disappear. The bottom panel
shows the particle radii and image residuals for the two illumination
fields as a function of the image x direction.
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Point spread function

Due to diffraction, the illuminating laser light focused from the microscope’s lens

and the detected fluorescent light collected from the sample are not focused to a

single point. Instead, the light is focused to finite-sized diffraction-limited blur.

To reconstruct an image correctly we need to account for the effects of diffraction

in image formation.

A confocal microscope first illuminates the sample with light focused through

the microscope lens. The lens then collects the light emitted from fluorophores

distributed in the sample. As a result, the final image of a point source on the

detector results from two separate terms: an illumination point-spread function

Pilm that describes the focusing of the incoming laser light, and a detection point

spread function Pdet that describes the focused fluorescent light collected from the

emitted fluorophores. Since a fluorophore is only imaged if it is both excited by the

laser illumination and detected by the camera, the resulting point-spread function

for a confocal with an infinitesimal pinhole is the product of the illumination and

detection point-spread functions: P (x) = Pilm(x)Pdet(x). For a confocal with a

finite-sized pinhole, this product becomes an convolution over the pinhole area.

The two separate point-spread functions (PSFs) Pilm and Pdet can be calculated

from solutions to Maxwell’s equations in the lens train [106, 258, 271, 181]. The

PSFs can be written as integrals over wavefronts of the propagating light.

An additional complication arises from the presence of an optical interface.

Most microscope lenses are essentially “perfect” lenses, creating a perfect focus

in the geometric optics limit. However, refraction through the optical interface

destroys this perfect focus and creates an image with spherical aberration. In

addition, the refracted rays shift the point of least confusion of the lens from its
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Figure 2.7: PSF widths vs depth. The x (left panel), y (center panel), and
z (right panel) widths of the PSF as a function of distance from the
interface, for various refractive index mismatches. The width of the
point-spread function generally increases with depth and with index
mismatch due to increased spherical aberrations. The width is broadest
in the z (axial) direction, and is narrower in the y direction than along
the x direction of the line illumination.

original geometric focus. For a confocal geometry, this spherical aberration and

focal shift depend on the distance of the nominal focal point from the optical

interface zint.

All of these effects have been calculated in detail by many previous researchers

[106, 258, 271, 181]. The PSFs depend on several parameters: the wave vectors of

the incoming and outgoing light kin and kout, the ratio of the indices of refraction

nsample/nlens of the optical train design and the sample, the numerical aperture of

the lens or its acceptance angle α, and the distance focused into the sample zint.

For completeness, we repeat the key results here, as we will be using this exact PSF

to generate fake images and to study how to best approximate the class of PSFs

for confocal microscopes. In polar coordinates, the illumination PSF Pilm(ρ, φ, z)

for illuminating light with wave vector kin traveling through a lens focused to a
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depth zint from the interface is [106]

Pilm(x) = |K1|2 + |K2|2 +
1

2
|K3|2 + cos 2φ

[
K1K

∗
2 +K2K

∗
1 +

1

2
|K3|2

]
, where

K1

K2

K3

 =

∫ α

0

√
cos θ′ sin θ′e−ikinf(z,θ′)


1
2
(τs(θ

′) + τp(θ
′) cos θ2)J0(kinρ sin θ′)

1
2
(τs(θ

′)− τp(θ′) cos θ2)J2(kinρ sin θ′)

J1(kinρ sin θ′)τp(θ
′)n1

n2
sin θ′

 dθ′

f(θ) = zint cos θ − n2

n1

(zint − z)

√
1−

(
n1

n2

)2

sin2 θ

(2.11)

Here τs(θ
′) and τp(θ) are the Fresnel reflectivity coefficients for s and p polarized

light, Jn is the Bessel function of order n, and θ2 is the angle of the refracted ray

entering at an angle θ′ (n2 sin θ2 = n1 sin θ′). To derive this equation from equa-

tion (12) in Ref. [107], we used the additional assumption that all distance scales

in the image (including zint) are small compared to the focal length of the lens.

The corresponding detection PSF Pdet is identical to Pilm except for the removal

of the
√

cos θ and the replacement of kin by the wave vector of the fluorescent light

kout. For an infinitesimal pinhole, the complete PSF is the product of these two

point spread functions, P (x; zint) = Pilm(x; zint)Pdet(x; zint).

In order to extract the PSF from experimental data, we must devise a simple

parameterized description or effective model for this PSF. Based on calculations

of the exact PSF, ≈ 90% of the function can be described by a Gaussian [271].

We verified this for PSFs calculated from Eq. 2.11, and found that although the

presence of aberrations from the interface worsens the Gaussian approximation,

generally a Gaussian accounts for ≈ 90% of the PSF except for in the most aber-

rated cases (large index mismatch imaging deep into the sample).

In light of this, our simplest approximation of the PSF is as an anisotropic

33



Gaussian with different widths in x, y, and z, with the widths changing with dis-

tance from the interface. We therefore parameterize the Gaussian widths as a

function of depth,

P (x; z) =
∏
i

e−x
2
i /2σ

2
i (z)

√
2πσi(z)

(2.12)

where each width σi(z) can be described as a general function of z such as a

polynomial, Legendre, Hermite or otherwise.

How much does it matter if we don’t take into account the depth dependence

of the point spread function? In section 2.5.3, we show that there is a strong

dependence on the fit Gaussian parameters, but how much does this affect the

quality of the inferred parameters? We generate fake confocal images using a

simulated, exact PSF with random distribution of particles up to a depth of 30 µm.

Featuring this data using a 3D anisotropic Gaussian, we find a strong depth-

dependent bias in the featured z position and radii measurements. Using a low

order z-dependent Gaussian PSF decreases this bias only slightly. Therefore, we

employ the full line-scan PSF calculation into our model.

Background

Due to background, the detector CCD pixels always reads a non-zero value even

when there is no light incident on them. We incorporate this into our generative

model by fitting a nonzero background level to the images. Ideally, this background

would be constant at every pixel location. Empirically, however, we find from

blank images that this background varies with pixel location in the detector (see

Fig.2.9). For our confocal microscope, we find the background is slowly-varying in

the optical plane, perhaps due to different dwell times for different regions of the

line scan, and does not vary in z. As a result, the background is well-modeled by

34



Figure 2.8: PSF generated biases. Using an incorrect point-spread function re-
sults in significant biases, as PSF leakage affects neighboring particle
fits. Moreover, since the PSF gets significantly broader with depth, us-
ing a spatially constant PSF, there are systematic biases with depth in
both the z positions (left panel) and a characteristic drift in the fitted
radii errors with depth (right panel), as shown for the delta-function
(identity), an (x, y, z) anisotropic Gaussian, and a depth-varying Gaus-
sian point-spread function. In contrast, using the correct Chebyshev
PSF eliminates the errors in both the radii and z positions.

a low-order polynomial in x and y.

However, due to the long-tails of the PSF, the coverslip slab of the image affects

the image in a much larger z region than that of a typical particle. Rather than

dealing with this by using a large point-spread function, we use a small point spread

function to capture the effects of the PSF’s moderate tails on the particles and slab,

and fit a polynomial in z to capture the residual slab correction. This residual

correction is mathematically the same as a background level in the detector. As

a result, while the “true” background in the image is P (x, y), our model uses a

background P (x, y) + Pslab(z).
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Figure 2.9: Experimental background image. The measured background from
our line-scan confocal microscope captured by adjusting the exposure
to a full brightness image, removing the sample, and capturing a set
of images with no illumination including room lights. Note that the
range of values is from 1 to 7 out of a maximum 255 given by the
8-bit resolution of the CCD. While only a variation of 3%, we have
seen in the illumination field section that this can create a bias that
significantly alters our inference as a function of the position in the
field of view. To remove this bias we fit the background field to a low
order polynomial and add it to our model image.

Sensor noise

The last feature of the generative model is our understanding of the unrecoverable

parts of the image: noise. To study the intrinsic noise spectrum of the confocal

microscope, we subtract the long wavelength behavior from the blank image of

Fig. 2.5. After removing the background we find that the noise appears white

and is well approximated by a Gaussian distribution (see Fig. 2.10). There are,

however, some highly localized non-Gaussian parts to the noise spectrum, arising

due to the specific nature of our confocal. For instance, at high scan speeds slight

intensity fluctuations in the laser’s power couple to the dwell time on each stripe

of line-scanned pixels. This produces periodic stripes across the image with a
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wavevector mostly parallel to the scan direction, but with a random noisy phase.

How can we handle these sources of correlated noise and do they affect the quality

of our reconstruction?

In principle, these correlated noise sources can be represented in the Bayesian

model by introducing a full noise covariance matrix. That is, instead of writing

that log-likelihood as the product of all pixel values, we can write

logL(M | d) = −1

2
(Mi − di) Λ−1

ij (Mj − dj) (2.13)

where Λ−1
ij is the covariance matrix between each pixel residual in the entire im-

age. In our optimization, we would form a low dimensional representation for this

covariance matrix and allow it to vary until we find a maximum. In doing so, we

would reconstruct the image and the correlated noise simultaneously. In practice,

this introduces a large computational overhead due to the need for a full image

convolution during each update as well as many new free parameters that need to

be optimized.

Therefore, we address the effect of correlated noise by working in reverse – we

identify the several intense Fourier peaks in the confocal noise spectrum and remove

them from the raw data before the fitting process. An example of this noise pole

removal is given in Fig. 2.10. There, we can see that removing only 5 distinct poles

(Fig. 2.10(d)) removes almost all visible correlated noise structure while changing

the overall noise magnitude by a negligible amount. This small shift in estimated

noise magnitude only affects the estimate of the errors associated with parameters

such as positions and radii in a proportional way. Since these correlated errors are

very small and do not bias our inferred parameters, we often ignore them in our

analysis entirely.
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2.5.4 Model considerations

Here, we investigate several complexities of image formation in confocal micro-

scopes and systematically analyze whether or not it is necessary to include them

in our generative model. In particular, we will first analyze how much complexity

we must introduce into the model elements listed in the previous section, including

the platonic image, illumination field, and point spread function. We will also look

at elements of image formation which we have not explicitly included in our model.

For example, confocal microscopes build a 3D image by scanning in various 2D pat-

terns as discussed in Section 2.5.3 as well as in the z-direction. There is noise in

this scanning procedure which may affect the image formation process. The final

image that comes from this scan is a cropped view of a much larger sample where

the edges of this image are influenced by the excluded exterior particles. Addition-

ally, this final image is a pixelated version of a continuous electric field, potentially

modifying our inferred parameters. Finally, while the exposure is made by the

camera, particles undergo diffusional motion, blurring their apparent location. In

this next section we address each of these image formation complexities.

We would like to systematically investigate at what level omitting a detail of the

image formation from the model affects the fitted parameters. We can understand

this quantitatively by examining the optimization procedure. Let us assume that

the true image formation is completely described by a set of N parameters Θ.

Then, near its maximum, the log-likelihood is approximately quadratic: logL =

1
2

∑
ij HijΘiΘj, where the true value of the parameters is arbitrarily set to Θ = 0.

Empirically, we find that with the starting parameter values provided by our initial

featuring, the log-likelihood is extremely well-approximated by a quadratic.

If our model were complete, then the maximum of logL would be exactly at the
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true parameter values Θ = 0. However, our model is incomplete. This means that,

instead of fitting all N parameters Θ, we only fit the first (say) M parameters,

which for convenience we denote as θ. Thus we can write the log-likelihood as

three separate terms:

logL =
1

2

M∑
i,j=1

Hijθiθj +
N∑

i=M+1

M∑
j=1

HijΘiθj +
1

2

N∑
i,j=M+1

HijΘiΘj . (2.14)

The first term, containing only the parameters θ that we are fitting, is the quadratic

in the reduced space, with a maximum at the true parameter values. The unim-

portant third term reflects the separate contribution to logL of the unknown or

ignored portions of the model, and is constant in the θ space. However, the second

term mixes both the fitted parameters θ and the unknown parameters Θj. This

mixing results in a linear shift of logL in the θ space away from the true parame-

ters, and causes a systematic bias due to an incomplete model. Minimizing logL

with respect to θ gives the fitted values of the parameters gives an equation for

the best-fit incomplete model parameters θ:

θj =
M∑
k=1

H̄−1
jk

N∑
i=M+1

HikΘi (2.15)

where H̄−1 is the inverse of the sub-block H̄ of the Hessian matrix H that corre-

sponds to the fitted parameters θ.

We can use equation 2.15 to estimate the effect on one of the estimated pa-

rameters θj, if we ignore one aspect of the generative model Θk. Ignoring the

off-diagonal terms in H−1 to capture the scaling gives θj ≈ HkjΘk/Hjj. Thus, the

error in the fitted parameter θj is proportional to both the coupling Hkj between

that parameter and the ignored aspect of the generative model, and the magnitude

of the error of the generative model Θk.
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Component complexities

There are several choices one can make concerning the form and complexity of

each of the components of our model image. As discussed in the Section 2.5.3, we

have implemented many forms of the platonic image, illumination field, and point

spread function and each one of these forms has a varying number of parameters

with which to fit. How do we decide which form to use and at which complexity

(number of parameters) to stop? To decide on a per-image basis, we could employ

Occam’s factor, which is a measure of the evidence that a model is correct given

the data [162]. In practice, however, we are mainly concerned with how these

models influence the underlying observables which we are attempting to extract.

That is, we wish to use knowledge of the physical system to check which model

best predicts the particle locations and sizes. To do so (as mentioned in the main

manuscript), we often turn to particle sizes versus time as well as particle overlaps,

both physical statements that assert almost no assumptions on our system.

We can also get a sense of the magnitude of the effect these choices have on

inferred positions and radii by creating synthetic data and fitting it using a simpler

model. In Fig. 2.11 we show the residuals of such fits for various simplifications

made to the platonic form, illumination field, and point spread function. In the

left columns of the figure we see the reference image formed using the most com-

plex image model available and in each row the residuals for each choice with a

description of that choice above the panel. For all but the last column, in which we

fit the image with the exact model once again, we can see systematic errors in the

fit. We compute how much these residuals influence the extracted positions and

radii and report these errors in Table 2.1. In particular, most choices of platonic

image aside from the naive boolean cut do not influence particle featuring below
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an SNR of 30. However, the complexity of the illumination field always matters

until all long wavelength structure is removed from the image. Finally, the choice

of PSF is crucial, requiring the use of a calculated confocal PSF to even approach

the CRB.

Scan jitter

Confocal microscopes operate by taking an image with the lens at a fixed z position

to create one layer of the three-dimensional image, then moving the lens up a fixed

amount to take the next layer. In our generative model, we assume that these

steps of the lens (and the resultant image slices) are perfectly equally spaced by an

amount which is fitted internally. However, a real confocal microscope will have

some error in the vertical positioning of the lens. As a result, the actual image

taken will not be sampled at exactly evenly spaced slices in z, but at slices that

are slightly shifted by a random amount.

To test the effect of this z-scan jitter on our parameter estimation, we simulate

images taken by a confocal microscope with imperfect z-positioning. Instead of

sampling the image at a deterministic z position, we instead sampled the image at

a z position shifted from the ideal position by an uncorrelated Gaussian amount

of varying standard deviation. A representative image of a 5 px radius particle

with a step positioning error of 10% is shown in Fig. 2.12(a). There is very little

difference between this image with z jitter and the perfectly-sampled image, as

shown by the difference image in panel b. We then fit an ensemble of these images

at varying image SNR levels, over a random sampling of image noise, z-jitter noise,
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Fitting model type Position error (px) Radius error (px)
P

la
to

n
ic

fo
rm

Boolean cut 0.03376 0.01577

Linear interpolation 0.00778 0.00386

Logistic function 0.00411 0.00352

Constrained cubic 0.00674 0.00249

Approx Fourier sphere 0.00000 0.00000

Il
lu

m
in

a
ti

o
n

Legendre 2+1D (0,0,0) 0.18051 0.13011

Legendre 2+1D (2,2,2) 0.06653 0.03048

Barnes (10, 5) Nz = 1 0.13056 0.06997

Barnes (30, 10) Nz = 2 0.04256 0.02230

Barnes (30, 10, 5) Nz = 3 0.00074 0.00022

P
S
F

Identity 0.54427 0.57199

Gaussian(x, y) 0.47371 0.14463

Gaussian(x, y, z, z′) 0.34448 0.04327

Cheby linescan (3,6) 0.03081 0.00729

Cheby linescan (6,8) 0.00000 0.00000

Table 2.1: Position and radii errors by model complexity. Here we tabulate
the position and radius errors associated with the model component
choices made in Fig. 2.11. Note that while the components with the
largest impact on determining underlying parameters are the ILM and
PSF, the choice of platonic image cannot be ignored in order to reach
the theoretical maximum resolution. Interestingly, in the case of PSF
selection, Gaussian(x, y, z, z′) (3+1D) is almost no better at extracting
particle positions than Gaussian(x, y) (2D). However, its ability to ex-
tract particle sizes increases by 3 since it takes into account the variation
of the PSF in space. Additionally, in the case of the ILM, capturing
the stripes in the illumination using a 30 control point Barnes increases
the resolution by 3 whereas capturing the illumination’s dependence in
depth causes the resolution to increase 10 fold.
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Figure 2.12: Lens Positioning Jitter (a) The xz cross-section of a simulated
image of a 5 px radius colloidal particle taken with a 10% error in
the lens positioning. (b) The difference between the image with posi-
tioning error and a reference image with zero positioning error. The
differences between the images are both random and small, for this
image no more than 7% of the perfect image intensity. (c) The effect of
lens positioning error on featured particle positions, at signal-to-noise
ratios of 20, 50, 200, and 500. The solid symbols and dashed lines
show the position error for images with imperfect lens positioning,
while the solid lines denote the Cramer-Rao bound for an image with
no positioning error. At lens positioning errors of ≈ 10% or larger,
the error in featured positions from the z-slice jitter dominates that
from the simple image noise, even for an SNR of 20. However, the
featuring error due to a z jitter of ≈ 1% is less than the error due
to image noise, for any noise level than can be captured by an 8-bit
camera.

and random shifts of particle positions by a fraction of a pixel.

The results of these fits are shown in Fig. 2.12c, showing the actual error in

the featured positions versus the size of the z-positioning noise. For our confocal

which is equipped with a hyper-fine z-positioning piezo, we expect the z positioning

error to be a few nm, or a few percent of a pixel. For a 3% error in positioning,

the signal-to-noise ratio must be ≈ 100 for the effects of z-positioning jitter to be

comparable to the theoretical minimum effect from the image noise. This small
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effect of the error is partially due to the large size of our particle. If each z slice

of the image is randomly displaced with standard deviation σ, then we expect

roughly a σ/
√
N scaling for the final error in the particle’s z-position, where N is

the number of z slices the particle appears in. A 5 px diameter particle with a 4 px

axial point-spread function occupies ≈ 18 difference slices, decreasing the effect of

scan noise by a factor of ≈ 4 and putting it below the CRB for our data.

As the error in z-positioning increases, however, the effect on the featured

particle positions increases correspondingly. The error due to a ≈ 10% z jitter is

comparable to the CRB for image noises of SNR = 20. For exceptionally large

z-jitters of 40% the error due to the lens positioning dominates all other sources of

error. However, even with this large error in lens positioning, the error in featured

positions is still only 10% of a pixel, or about 10 nm in physical units.

Missing and Edge particles

The point spread function delocalizes the particle’s image over a region larger

than the particle’s size. As a result, if two particles are close enough together,

their images can overlap. This overlapping is a significant problem for heuristics

such as centroid fitting, as the true particle centers do not coincide with the fitted

centroid. In contrast, PERI’s accuracy is negligibly affected by the presence of

a second, close particle, since PERI correctly incorporates close particles in its

generative model. The CRB of two touching, 5 px diameter particles increases by

only ≈ 3%, and PERI finds particles to the same accuracy when close.

However, large systematic errors can affect PERI when one of these particles is

missing in the generative model. This situation is illustrated in its simplest form in

Fig. 2.13. If one of the two touching particles is missing from the generative model,
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Figure 2.13: Effect of missing particles. (a) The xz-cross section of an image
of two 5 px radius particles placed in contact. (b) The difference
image for a bad generative model that includes only the particle on
the left. To minimize the effect of the missing right particle, the left
particle is drawn to the right and expanded in radius. This effect
is visible as the red and blue ring on the right border of the left
particle. (c) The error in position along the separation axis, as a
function of true surface-to-surface distance, for a model with a missing
particle. When the particles are separated by ≈ 10 px the featured
particle is located correctly. However, as the particles get closer than
≈ 2 px significant biases start to appear. These biases saturate at a
separation of ≈ 0.1 px, corresponding to a featuring error of ≈ 0.4 px.

then the second particle will be enlarged and drawn into the first particle’s void

to compensate, as shown in panel b. As a result, the missing second particle will

severely bias the fitted positions and radii of the first particle. Figure 2.13c shows

the magnitude of this effect. For particles separated by 1 px or less, significant

biases on the order of 0.4 px appear in the identified particle’s featured position.

These biases matter at essentially all values of the SNR, only being comparable

to the CRB for SNR < 1. As a result, it is essential for PERI to identify all the

particles in the image to return accurate results. For this reason, we take extra

precaution and thoroughly search the image for missing particles before fitting, as

detailed in section 2.5.5.
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The biases caused by missing particles appear whether or not the missing par-

ticle is located inside or outside the image. As a result, accurately locating edge

particles requires identifying all their nearby particles, even ones that are out-

side the image! We attempt to solve this problem by padding the Platonic and

model images and the ILM by a significant portion, and including this padded

extra-image region in both the add/remove and relaxation portions of the PERI

algorithm. Nevertheless, it is extremely difficult to locate all the particles out-

side the image, for obvious reasons. As such, there is the possibility for moderate

systematic errors to enter for particles located at or near the edge.

Nevertheless, if the exterior particle is identified, PERI correctly locates the

interior particle, as shown in Fig. 2.14. To demonstrate this, we create simulated

images of two particles near the boundary of an image. One particle is placed

at z = a so that its edge just touches the boundary while the other is placed at

z = −(a + δ) on the other side of the border. We plot the CRB of the interior

particle and the measurement errors of both PERI and trackpy as a function of the

exterior particle’s coordinate in Fig. 2.14. While the CRB only changes by a factor

of 2 as the particles come within contact, the featuring errors grow drastically for

traditional featuring methods due to biases introduced by the exterior particle.

For this same data set, PERI featuring errors follow the CRB allowing precise

unbiased featuring of particles at the edge of images.

However, this apparent conundrum of edge particles presents an interesting

positive side-effect. Missing edge particles affect the fits because they contribute a

significant amount to the image. As such, we might expect that a particle outside

the field of view can still be located very precisely. This prediction is borne out by

a calculation of the Cramér-Rao bound, as shown in Fig. 2.15.
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Figure 2.14: Influence of particles outside of the image. Here we study how
particles external to the image can influence the perceived positions
of other interior edge particles. Here we place one particle at x = a
and a second particle at x = −(a+ δ) so that one is completely inside
the image and the other outside. We plot the CRB for the x, y, and
z positions and radius a of the interior particle as well as measured
errors for PERI in triangles and trackpy in circles as a function of
the position of the second particle. When the exterior particle is
further than a pixel outside the image we see that the measurements
of the interior particle are constant. However, as the PSF of the
exterior particle begins to overlap the interior particle the CRB and
all measured errors increase dramatically. While PERI’s measured
error continues to follow the CRB, trackpy’s error increases beyond
pixel resolution. Note that pixel separations at the edge are generic
in colloidal images especially in dense suspensions.

Until the particle and PSF fall off the edge of the image (distance > 1R), the

CRB remains constant for all particle parameters. When the particle is centered

on the image edge (distance of 0), the CRB is twice that of the bulk, intuitively

corresponding to a loss of half of the information about the particle. As the volume

of the particle leaves the image, the CRB decreases as 1/δ2 until the particle is no

longer part of the image. Interestingly, Fig. 2.15 shows that the PSF constrains

the particle position to within 0.1 px even when the particle is entirely out of the

image! If correctly seeded with a moderate guess for the particle position outside
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Figure 2.15: CRB of edge particles. Here we calculate the Cramér-Rao bound of
the x, y, and z positions as well as radius (in red, blue, green, purple
respectively) for an isolated particle as a function of its distance to
the edge of the image. For positive displacement (inside the image)
we see very little change with position as expected. As parts of the
PSF leak out of the image (displacements close to zero, positive) we
see that the expected error increases slightly since information is lost.
Finally, as the particle itself leaves the image, information is lost more
dramatically as indicated by a sharp rise in the CRB. However, note
that even at a displacement of one radius a, the PSF allows us to
locate the particle outside of the image to within a pixel. While in
practice it is difficult to identify these particles systematically, their
presence can greatly influence the measured positions of other edge
particles.

the image, PERI will locate the particle to a precision of the Cramér-Rao bound.

However, in practice it is very difficult to seed these particles into PERI, as a slight

change of the intensity at the image edge could be either a missing particle outside

the image or a slight variation in the ILM near the image edge. Nevertheless, PERI

is very good at locating particles that are partially outside the image.
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Figure 2.16: Pixel Integration (a) The xz cross-section of a simulated image of
a 5 px radius colloidal particle, where each pixel contains the light
intensity integrated over its area instead of sampled at its center.
(b) The difference between the pixel-integrated image and a reference
image sampled at the center of the pixels. The differences between the
images are small (10%) and centered in a ring which has mean 0 and is
positioned at the particle’s edge. (c) The effect of pixel integration on
featured particle positions as a function of particle radius, at signal-to-
noise ratios of 20, 200, and 2000. The solid symbols and dashed lines
show the position error for images generated with pixel integration
and fit without, while the solid lines denote the Cramer-Rao bound
for the images (without pixel integration). Integrating over a pixel
area has no effect on the featured positions for any SNR compatible
with an 8-bit depth camera. The effect of pixel integration only starts
to matter for an SNR ≥ 400 (not shown).

Pixel intensity integration

Our generative model considers the image formed on the camera as if the camera

pixels had an infinitesimal size. In reality, the camera pixels have a finite extent.

As a result, the image at each pixel on the camera is not a discrete sampling of

the light intensity, as in our generative model, but is instead an integration in the

detector plane over the pixel’s size.

To check whether the effect of pixel integration matters, we generated images
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that were up-sampled by a factor of 8 in the xy-plane. We then numerically

integrated these images over the size of each pixel. A representative image is

shown in Fig. 2.16a. There is very little difference between the xy-integrated

image and the generative model, as visible in panel b. We then fitted an ensemble

of these xy-integrated pixel images, both over an ensemble of noise samples and

over an ensemble of particle positions shifted by a random fraction of a pixel.

The results are shown in Fig. 2.16c. We find that there is no discernible effect

of pixel integration at a SNR of 200 or less. The error due to neglecting pixel

integration becomes comparable to that due to noise only for SNR ≥ 400, which

is significantly higher than the maximum allowed by an ordinary 8-bit camera.

Thus, the effect of integrating over a pixel size for a colloidal particle essentially

always has a negligible effect on the fitted parameters.

Diffusional motion

A typical colloidal particle is not fixed in its location, but diffuses about due to

Brownian motion. For an isolated colloidal particle, this Brownian motion results

in a random walk with mean displacement 〈x〉 = 0 and a mean-square displacement

〈x2〉 = 6Dt that is linear in time, with a diffusion constant D = kT/6πηR where

η is the solvent viscosity and R the particle radius. As a result, the microscope

takes an image not of a colloidal particle at a single position, but of an integrated

image of the colloidal particle over the trajectory that it has diffused.

First, at what length- and time- scales is a colloidal particle de-localized due

to Brownian motion by a scale that is larger than the resolution? For a 1 µm

diameter particle in water to diffuse the 1 nm resolution provided by PERI takes

a fantastically small time of t = 1 nm2/D ≈ 10µs. Even for our relatively viscous
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samples of ≈ 80% glycerol and 20% water this time slows down to only ≈ 600µs.

These times are orders of magnitude faster ≈ 5ms required by our confocal to take

a 3D image of the particle, corresponding to a 8 nm displacement. Thus, a freely

diffusing particle has always diffused much more than the featuring errors than the

uncertainty intrinsic to PERI.

However, this does not mean that the precision past 8 nm is empty. The parti-

cle’s positions are Gaussian distributed about its mean value during the exposure

time. While the extent of the distribution is much larger than the PERI featuring

errors, the particle’s mean position during the exposure time is well-defined. More-

over, the actual image on the camera from the diffusing particle is a convolution of

the particle’s trajectory with a single particle image. Since this convolution is like

an averaging, we might expect that the small Brownian excursions are averaged

out in the image formation, and that the image allows for accurate featuring of

the particle’s mean position.

We can use the formalism of Eq. 2.15 to show that Brownian motion does not

affect our featuring accuracies. Let the particle’s mean position be x̄0, and its

Brownian trajectory be x0(t). Then the actual image I(x)on the detector is

I(x) =
1

texp

∫ texp

0

I0(x0(t)) dt = I0(x̄0) +
1

texp

∫ texp

0

I0(x0(t))− I0(x̄0) dt (2.16)

where I0(x) is the image of one particle at position x and texp is the camera exposure

time. As before, we view the actual image as I(x) = I0(x̄0; θ) + (1 − Θ)∆I, in

terms of a group of fitted parameters θ and an additional parameter Θ describing

the effects of Brownian motion ∆I. For the true image Θ = 0 but for our model

image Θ = 1. Then equation 2.15 says the error will be θj ≈ Hkj/Hjj, where

HΘj = ∂Θ∂θjI = ∂θj∆I. However, for small displacements the effect of Brownian

53



Figure 2.17: Brownian Motion (a) The xz cross-section of a simulated image of
a 5 px radius colloidal particle undergoing strong Brownian motion
τexposure/(R

2D) = 0.01 during the image formation. (b) The difference
between the diffusing-particle image and a reference image without
diffusion. The differences between the images are small (10%) and
are mostly in a ring with mean 0 at the particle’s edge. (c) The
effect of Brownian motion on featured particle positions as a function
of exposure time, at signal-to-noise ratios of 20, 50, 200, and 500.
The image exposure time for our camera is located in the shaded
grey band for 20/80 water/glycerol and blue band for pure water.
The solid symbols and dashed lines show the error between the fitted
positions and the mean position in the particle’s trajectory, while the
solid lines denote the Cramer-Rao bound for the generated images.
At our exposure times and SNR of 20, the effects of Brownian motion
are small compared to those from noise in the image. Interestingly,
for higher SNR or slower exposure times, Brownian motion starts
to have a noticeable effect and must be incorporated into the image
generation model.

motion on the image is

∆I =
1

texp

∫ texp

0

∂I(x̄0)

∂xi
(x− x̄0) dt = 0

since ∂I(x̄0)/∂xi does not depend on time. As a result, ∂θk∂Θ∆I = 0 and there is

no affect of Brownian motion on the image to first order in the displacements, i.e.

when the particle displacement is moderately small compared to the radius.

54



Finally, in Fig. 2.17 we show empirically that the effect of Brownian motion

is negligible for our exposure times. To create an image of a diffusing particle

captured by a slow camera, we simulated a 200 point Brownian trajectory of a

R = 5 px radius particle, generating an image for each point in the particle’s

trajectory. We then took the average of these images as the noise-free image cap-

tured by the microscope. One such image is shown in Fig. 2.17a. Once again,

there is a slight difference (10%, as shown in panel b) between the slow image of

a diffusing particle and the reference image taken of a particle at a single loca-

tion. We then fitted an ensemble of these images, over a variety of both Brownian

trajectories and noise samples. Figure 2.17c shows the results of these fits as a

function of the mean displacement during the collection τexposure/(R
2D), where

τexposure is the exposure time of the camera and D the particle’s diffusion con-

stant. Brownian motion has a negligible effect on the featured positions for our

experimental images of freely-diffusing particles (camera exposure time of 100 ms

and D = 0.007 µm2/s corresponding to a 1 µm particle in 80:20 glycerol:water,

corresponding to τexposure/(R
2D) ≈ 10−3). Interestingly, however, to achieve a

higher localization accuracy at a higher SNR of ≈ 200, Brownian motion must be

correctly taken into account in the image formation. Incorporating Brownian mo-

tion at these high signal-to-noise ratios would allow the teasing out of information

about the particle’s trajectory from a single image.

2.5.5 Implementation

A typical confocal image is roughly 512 x 512 x 100 pixels in size and contains 104

particles meaning that the number of degrees of freedom in our fit is roughly 107

described by 105 parameters, a daunting space to optimize. On modern hardware
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using the highly optimized FFTW, the typical time for an FFT the size of a single

image is ∼ 1 sec. Given this time, a single sweep through all parameters would

take an entire week while a full optimization would consume a year of computer

time. However, since particles have finite size, we are able to optimize most of

these parameters locally with a small coupling to global parameters (ILM, PSF).

Additionally, the finite intensity resolution of microscope sensors, typically 8 or 16

bits, allows us to make further simplifications to our model. Here we describe the

practical algorithmic optimizations that we have made as well as the optimization

schedule that we have devised to quickly reach the best fit model.

Partial image updates

First and foremost, we optimize our fitting procedure by working in image updates

and only updating parts of the image that are required at any one time. In order

to modify the position of one particle by a small amount, the number of pixels

that are affected is simply (2a + w)3 where a is the particle radius and w is the

PSF width, both in pixels. For a typical particle, the ratio of this volume to the

entire image volume is typically 10−4 which represents a speed up of the same

factor due to the roughly linear scaling of FFT performance with problem size

(N logN). The practical scale of the width w is set by the bit resolution of the

microscope camera used to image the sample. For a bit depth b, values less than

2−b are not unique, corresponding to a change in signal value of 1/255 ≈ 0.004

for an 8-bit camera. For confocal microscope PSFs, the distance scale associated

with this signal change is only several pixels. Therefore, we employ a technique

common applied to inter-atomic potentials in molecular dynamic simulation – we

simply cutoff the PSF at this distance scale allowing for exact partial updates.

By cutting off the PSF, we are able to incrementally apply image updates in an
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exact procedure (up to floating point errors). For example, when moving a single

particle from x0 to x1, we must simply calculate the local image change given by

∆M(x) =

∫
d3ycP (x− y; y)(Π(x1)− Π(x0)) (2.17)

then calculate M + ∆M only in a small local region around the particle being

updated. We are able to use similar update rules for all variables except for those

effecting the entire image such as the PSF, offset, zscale, and estimate of the SNR.

Additionally, in our code, we generously employ the principle of “space-time

trade-off” in which we cache intermediate results of all model components and

reuse them later in the computation. In particular, we maintain a full platonic

image and illumination field, which we update along with the model image. We

also cache all calculated PSF values so that we may utilize previous results until

the PSF is sampled. In doing so, we limited in our current implementation by the

speed of the FFT, which takes 70% of the total runtime.

Optimization of parameters and sampling for error

Once an approximate initial guess is obtained by more traditional featuring meth-

ods [63], we optimize the parameters by fitting using a modified Levenberg-

Marquardt routine. Our Levenberg-Marquardt algorithm uses previously-reported

optimization strategies designed for large parameter spaces [248]. However, a

Levenberg-Marquardt minimization requires the matrix Jiα ≡ ∂m(xi)/∂θα, which

is the gradient of each pixel in the model with respect to all the parameters. For

the ≈ 105 parameters and 107 pixels in our image, this matrix would be many

thousand times too large to store in memory. Instead, we construct a random

approximation to Jiα by using a random sub-section of pixels xi in the image to
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compute J . This approach works well for the global parameters (PSF, ILM, etc)

but fails for the particles, which appear in a relatively small number of pixels. For

the particles, we instead fit small groups of adjacent particles using the full Jiα for

the affected pixels. As the global parameters and particle parameters are coupled,

we iterate by optimizing first the globals, then the particles, and repeating until

the optimization has converged.

Once the model is optimized, we use Monte Carlo sampling to estimate param-

eter errors. Our Monte Carlo sampler sweeps over each parameter and updates the

particle position, accepting or rejecting based on the change in the log-likelihood

of the model. We use slice sampling to produce highly uncorrelated samples, al-

lowing an excellent error estimate from only a few sweeps. Our error sampling

doubles as a check for convergence. If, after sampling, the log-likelihood increases

by a significant amount, then the optimization has not converged and either more

Monte Carlo sampling or better optimization is needed. In practice, we check with

≈ 5−10 Monte Carlo sweeps, and check if the log-likelihood has changed by a few

times
√
N , where N is the number of parameters in the model.

2.5.6 Benchmarks of featuring algorithms

We check our algorithm by benchmarking it against physically realistic image mod-

els, as shown in Fig. 2.18. To generate these images, we employ the exact PSF

calculation as described in Sec. 2.5.3, the ILM extracted from real confocal data, as

well as complex correlated noise created in line-scanning confocal microscopes. We

create particle distributions using hard-sphere Brownian dynamics to ensure that

the configurations tested are statistically similar to those found in experiments. For

comparison, we also show the relative performance of the well established method
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Figure 2.18: Accuracy benchmark – We compare the performance of PERI with
traditional featuring methods as well as the calculated Cramér-Rao
bound. In the upper left panel, we plot the CRB for x, y, and z
positions of a single particle as a function of radius for a constant
ILM and exact PSF. For 1.3 µm particles, the CRB crosses 1 nm. In
circles we plot the featuring results from Crocker-Grier (CG) which
are mostly independent of radius. In triangles, we see that PERI
errors follow the CRB for all particles sizes. In the upper right panel,
we plot the same quantities but for a particle of radius a = 5 px as a
function of PSF scale. In the lower left we plot the same quantities
for an image containing 2 particles as a function of the separation ∆z.
While PERI closely follows the CRB independently of separation, CG
becomes biased as the particle PSFs overlap.
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of Crocker-Grier [63], the standard in sphere extraction algorithms in the colloidal

community.

First, we compare the methods’ ability to locate a single, isolated particle as a

function of radius as in Fig. 2.18(a). In thick lines we can see that the CRB for

the x position of an isolated particle scales as 1/a. Overlaid, we see the average

error of positions over many different positions and noise instantiations so as to

remove effects of pixel bias and the peculiarities of a single noise instance. We see

that PERI closely follows the expected error of 0.6− 3 nm, following the CRB for

all radii. Both centroid methods are affected by pixel bias leading to an average

error of roughly 0.3 px or 40 nm regardless of particle size.

Next, we check the dependence on PSF size, as determined by the effects of

spherical aberrations when imaging deeply into an index-mismatched sample. As

a function of the PSF size in z (directly related to the distance from the interface),

we find once again that PERI lies along the CRB while the others have an error of

at least 0.3 px, increasing with zint. We next study the effect of a second, nearby

particle on the fits, by measuring the average error as a function of separation

between two identical particles. When the particles are close enough, delocalization

from the PSF causes the centroid methods to incorrectly place the particles too

close together. In contrast, PERI is not affected by the interparticle separation.

Finally, we check how the complexity of our synthetic data affects the accuracy

of standard featuring methods. In Table 2.2 we see, surprisingly, that there is a non-

monotonic relationship between positional error and image complexity, becoming

optimal when there is significant striping in the image but little variation in depth.

However, the rate of missing particles decreases significantly with simpler models

and rising to as much as 40% for our most complex model images. The effective
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resolution of CG is never much smaller than a single pixel in these synthetic tests,

most likely due to pixel edge biases.

2.5.7 Experimental Details

The microscope is a Zeiss LSM 5 Live inverted confocal microscope, used

in conjunction with an infinity-corrected 100x immersion oil lens (Zeiss Plan-

Apochromat, 1.4 NA, immersion oil with index n = 1.518). The LSM 5 Live

confocals operate by line-scanning. Rather than rastering a single point at a time

to form the image, a line-scanning confocal images an entire line at once. An image

of a line is focused onto the sample, and the sample fluorescence is detected on a

line CCD. Rastering this line allows images to be collected much faster. However,

the different line-scanning optics worsen the point-spread function compared to a

point-scanning confocal and cause illumination imperfections such as dirt to be

smeared out over one direction in the image. Importantly, our confocal is outfitted

with a hyper-fine piezo scanner which gives precise z-positioning of the lens. This

precise z-positioning is important for accurate reconstruction of images – with the

less-precise standard positioning our image reconstruction and results suffer con-

siderably. The data shown in Fig. blah were taken at 108.1 in-plane frames per

second, with a time between successive image stacks of either 10 or 1.25 seconds.

Our experimental images consist of ≈ 1.3 µm silica particles (MicroPearl) sus-

pended in a mixture of glycerol and water. The glycerol/water mixture is tuned
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to match the refractive index of the particles by minimizing the sample scattering.

For these particles we find the optimal refractive index is n ≈ 1.437 correspond-

ing to ≈ 80% glycerol and 20% water. We match the index of refraction of the

spheres and the suspending fluid to within a few parts per thousand, resulting

in practically zero scattering by the spheres of the laser or fluorescent light. The

glycerol has the additional advantage of creating a very viscous suspension, slowing

down the Brownian motion of the particles. We add fluorescein sodium salt to dye

the suspending fluid. The fluorescein diffuses rapidly compared to the particles,

and is effectively uniformly distributed throughout the regions occupied by the

fluid. By using a considerable amount of dye and a low laser power, we minimize

photobleaching during our experiments.
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CHAPTER 3

SCALING THEORY OF CONTINUUM DISLOCATION

DYNAMICS IN THREE DIMENSIONS: SELF-ORGANIZED

FRACTAL PATTERN FORMATION 1

3.1 Introduction

Dislocations in plastically deformed crystals, driven by their long-range interac-

tions, collectively evolve into complex heterogeneous structures where dislocation-

rich cell walls or boundaries surround dislocation-depleted cell interiors. These

have been observed both in single crystals [128, 174, 224] and polycrystals [252]

using transmission electron microscopy (TEM). The mesoscopic cellular structures

have been recognized as scale-free patterns through fractal analysis of TEM micro-

graphs [88, 87, 99, 270]. The complex collective behavior of dislocations has been

a challenge for understanding the underlying physical mechanisms responsible for

the development of emergent dislocation morphologies.

Complex dislocation microstructures, as an emergent mesoscale phenomenon,

have been previously modeled using various theoretical and numerical approaches.

Discrete dislocation dynamics (DDD) models have provided insights into the dislo-

cation pattern formations: parallel edge dislocations in a two-dimensional system

evolve into ‘matrix structures’ during single slip [21], and ‘fractal and cell struc-

tures’ during multiple slip [22, 23]; random dislocations in a three-dimensional

system self-organize themselves into microstructures through junction formation,

1Chen, Y. S., Choi, W., Papanikolaou, S., Bierbaum, M., & Sethna, J. P. (20ll). Scaling theory
of continuum dislocation dynamics in three dimensions: Self-organized fractal pattern formation.
International Journal of Plasticity, 46, 94-129. MKB primarily contributed to simulations and
correlation function analysis in 3D and new glide-only dynamics.
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cross-slip, and short-range interactions [163, 92]. However, DDD simulations are

limited by the computational challenges on the relevant scales of length and strain.

Beyond these micro-scale descriptions, CDD has also been used to study complex

dislocation structures. Simplified reaction-diffusion models have described persis-

tent slip bands [259], dislocation cellular structures during multiple slip [98], and

dislocation vein structures [217]. Stochasticity in CDD models [21, 95, 99] or in the

splittings and rotations of the macroscopic cells [191, 192, 229] have been suggested

as an explanation for the formation of organized dislocation structures. The source

of the noise in these stochastic theories is derived from either extrinsic disorder or

short-length-scale fluctuations.

In a recent manuscript [52], we analyzed the behavior of a grossly simpli-

fied continuum dislocation model for plasticity [8, 212, 155, 52] – a physicist’s

‘spherical cow’ approximation designed to explore the minimal ingredients nec-

essary to explain key features of the dynamics of deformation. Our simplified

model ignores many features known to be important for cell boundary morphol-

ogy and evolution, including slip systems and crystalline anisotropy, dislocation

nucleation, lock formation and entanglement, line tension, geometrically unnec-

essary forest dislocations, etc. However, our model does encompass a realistic

order parameter field (the Nye dislocation density tensor [187] embodying the

GNDs), which allows detailed comparisons of local rotations and deformations,

stress, and strain. It is not a realistic model of a real material, but it is a model

material with a physically sensible evolution law. Given these simplifications,

our model exhibited a surprisingly realistic evolution of cellular structures. We

analyzed these structures in two-dimensional simulations (full three-dimensional

rotations and deformations, but uniform along the z-axis) using both the fractal

box counting method [88, 87, 99, 270] and the single-length-scale scaling meth-
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ods [122, 119, 121, 168] used in previous theoretical analyses of experimental data.

Our model qualitatively reproduced the self-similar, fractal patterns found in the

former, and the scaling behavior of the cell sizes and misorientations under strain

found in the latter (power-law refinement of the cell sizes, power-law increases in

misorientations, and scaling collapses of the distributions).

There are many features of real materials which are not explained by our model.

We do not observe distinctions between ‘geometrically necessary’ and ‘incidental’

boundaries, which appear experimentally to scale in different ways. The fractal

scaling observed in our model may well be cut off or modified by entanglement,

slip-system physics, quantization of Burger’s vector [135] or anisotropy – we cannot

predict that real materials should have fractal cellular structures; we only observe

that our model material does so naturally. Our spherically symmetric model ob-

viously cannot reproduce the dependence of morphological evolution on the axis

of applied strain (and hence the number of activated slip systems); indeed, the

fractal patterns observed in some experiments [99, 270] could be associated with

the high-symmetry geometry they studied [101, 261]. While many realistic fea-

tures of materials that we ignore may be important for cell-structure formation

and evolution, our model gives clear evidence that these features are not essential

to the formation of cellular structures when crystals undergo plastic deformation.

In this longer manuscript, we provide an in-depth analysis of three plasticity

models. We show how they (and more traditional models) can be derived from the

structures of the broken symmetries and order parameters. We extend our sim-

ulations to 3D, where the behavior is qualitatively similar with a few important

changes. Here we focus our attention on relaxation (rather than strain), and on

correlation functions (rather than fractal box counting or cell sizes and misorien-

66



tations).

Our model exhibits fractal cell structures directly upon relaxation from ran-

domly deformed initial conditions (Sec. 3.3.2). This is not the case for realistic

materials, where the dislocation evolution cannot be postponed to start after the

plastic deformation is imposed. Indeed, cellular structures in real materials emerge

only after significant deformation; presumably this feature is missing in our model

because our model has no impediment to cross-slip or multiple slip, and no entan-

glement of dislocations. This initial relaxation should not be viewed as annealing

or dislocation creep. A proper description of annealing must include dislocation

line tension effects, since the driving force for annealing is the reduction in total

dislocation density – our dislocations annihilate when their Nye Burger’s vector

density cancels under evolution, not because of the dislocation core energies. Creep

involves dislocation climb, which (for two of our three models) is forbidden. In-

stead, we view this initial relaxation as the evolution under an instantaneous ex-

ternal plastic deformation – the dislocations produced by random, rapid hammer

blows (Sec. 3.3.2). The resulting cellular structures are qualitatively very similar

to those we observe under external strain [52, 51], except that they are statistically

isotropic. Indeed, we believe that the relaxation evolution we study here mimics

almost precisely what we would observe under an imposed time-increasing random

plastic deformation from an initially uniform state – slow hammer blows producing

similar patterns to relaxation after rapid ones (see Sec. 3.3.2).

We focus here on correlation functions, rather than the methods used in pre-

vious analyses of experiments. Correlation functions have a long, dignified history

in the study of systems exhibiting emergent scale invariance – materials at contin-

uous thermodynamic phase transitions [46], fully developed turbulence [161, 55],
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and crackling noise and self-organized criticality [226]. We study not only nu-

merical simulations of these correlations, but provide also extensive analysis of

the relations between the correlation functions for different physical quantities

and their (possibly universal) power-law exponents. The decomposition of the

system into cells (needed for the cell-size and misorientation distribution analy-

ses [122, 119, 121, 168]) demands the introduction of an artificial cutoff misori-

entation angle, and demands either laborious human work or rather sophisticated

numerical algorithms [1]. These sections of the current manuscript may be viewed

both as a full characterization of the behavior of our simple model, and as an

illustration of how one can use correlation functions to analyze the complex mor-

phologies in more realistic models and in experiments providing 2D or 3D real-

space data. We believe that analyses that explicitly decompose structures into

cells remain important for systems with single changing length-scale: grain bound-

ary coarsening should be studied both with correlation functions and with explicit

studies of grain shape and geometry evolution, and the same should apply to cell-

structure models and experiments that are not fractal. But our model, without

such an intermediate length-scale, is best analyzed using correlation functions.

Our earlier work [52] focused on 2D. How different are our predictions in 3D? In

this paper, we explore three different CDDs that display similar dislocation fractal

formation in 3D and confirm analytically that correlation functions of the GND

density, the plastic distortion, and the crystalline orientation, all share a single

underlying critical exponent, up to exponent relations, dependent only on the type

of dynamics. Unlike our 2D simulations, where forbidding climb led to rather

distinct critical exponents, all three dynamics in 3D share quite similar scaling

behaviors.
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We begin our discussion in Sec. 3.2.1 by defining the various dislocation, dis-

tortion, and orientation fields. In Sec. 3.2.2, we derive standard local dynamical

evolution laws using traditional condensed matter approaches, starting from both

the non-conserved plastic distortion and the conserved GND densities as order

parameters. Here, we also explain why these resulting dynamical laws are inap-

propriate at the mesoscale. In Sec. 3.2.3, we show how to extend this approach

by defining appropriate constitutive laws for the dislocation flow velocity to build

novel dynamics [140]. There are three different dynamics we study: i) isotropic

climb-and-glide dynamics (CGD) [8, 9, 10, 212, 155], ii) isotropic glide-only dy-

namics, where we define the part of the local dislocation density that participates

in the local mobile dislocation population, keeping the local volume conserved at all

times (GOD-MDP) [52], iii) isotropic glide-only dynamics, where glide is enforced

by a local vacancy pressure due to a co-existing background of vacancies that have

an infinite energy cost (GOD-LVP) [11]. All three types of dynamics present phys-

ically valid alternative approaches for deriving a coarse-grained continuum model

for GNDs. In Sec. 3.3, we discuss the details of numerical simulations in both two

and three dimensions, and characterize the self-organized critical complex patterns

in terms of correlation functions of the order parameter fields. In Sec. 3.4, we pro-

vide a scaling theory, and derive relations among the critical exponents of these

related correlation functions, and conclude in Sec. 3.5.
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3.2 Continuum models

3.2.1 Order parameter fields

Conserved order parameter field

A dislocation is the topological defect of a crystal lattice. In a continuum theory,

it can be described by a coarse-grained variable, the GND density [2], (also called

the net dislocation density or the Nye dislocation density), which can be defined

by the GND density tensor

ρ(x) =
∑
α

(t̂
α· n̂)n̂⊗ bαδ(x− ξα), (3.1)

so

ρkm(x) =
∑
α

t̂
α

k b
α
mδ(x− ξα), (3.2)

measuring the sum of the net flux of dislocations α located at ξ, tangent to t̂,

with Burgers vector b, in the neighborhood of x, through an infinitesimal plane

with the normal direction along n̂, seen in Fig. 3.1. In the continuum, the discrete

sum of line singularities in Eqs. (3.1) and (3.2) is smeared into a continuous (nine-

component) field, just as the continuum density of a liquid is at root a sum of

point contributions from atomic nuclei.

Since the normal unit pseudo-vector n̂ is equivalent to an antisymmetric unit

bivetor Ê, Êij = εijkn̂k, we can reformulate the GND density as a three-index

tensor

%(x) =
∑
α

(t̂
α· n̂)Ê⊗ bαδ(x− ξα), (3.3)

so

%ijm(x) =
∑
α

(t̂
α· n̂)Êijb

α
mδ(x− ξα), (3.4)
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measuring the same sum of the net flux of dislocations in the neighborhood

of x, through the infinitesimal plane indicated by the unit bivetor Ê. This

three-index variant will be useful in Sec. 3.2.3, where we adapt the equations

of Refs. 212 and 155 to forbid dislocation climb (GOD-MDP).

According to the definition of Ê, we can find the relation between ρ and %

%ijm(x) =
∑
α

(t̂
α

l n̂l)εijkn̂kb
α
mδ(x− ξα) = εijkρkm(x). (3.5)

It should be noted here that dislocations cannot terminate within the crystal,

implying that

∂iρij(x) = 0, (3.6)

or

εijk∂k%ijl(x) = 0. (3.7)

Within plastic theories, the gradient of the total displacement field u represents

the compatible total distortion field [134] βij = ∂iuj, which is the sum of the

elastic and the plastic distortion fields [134], β = βp + βe. Due to the presence

of dislocation lines, both βp and βe are incompatible, characterized by the GND

density ρ

ρij = εilm∂lβ
e
mj, (3.8)

= −εilm∂lβp
mj. (3.9)

The elastic distortion field βe is the sum of its symmetric strain and antisym-

metric rotation fields,

βe = εe + ωe, (3.10)

where we assume linear elasticity, ignoring the ‘geometric nonlinearity’ in these

tensors. Substituting the sum of two tensor fields into the incompatibility relation
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Figure 3.1: Representation of the crystalline line defect — dislocation.
Each curved line represents a dislocation line with the tangent direction
t̂, and the Burgers vector b which characterizes the magnitude and
direction of the distortion to the lattice. The two-index GND density
ρkm (Eqs. 3.1 and 3.2) is the net flux of the Burgers vector density
b along ê(m) through an infinitesimal piece of a plane with normal
direction n̂ along ê(k). The three-index version %ijm (Eqs. 3.3 and 3.4)

is the flux density through the plane along the axes ê(i) and ê(j), with
the unit bivetor Ê = ê(i) ∧ ê(j).

Eq. (3.8) gives

ρij = εikl∂kω
e
lj + εikl∂kε

e
lj. (3.11)

The elastic rotation tensor ωe can be rewritten as an axial vector, the crystalline

orientation vector Λ

Λk =
1

2
εijkω

e
ij, (3.12)

or

ωe
ij = εijkΛk. (3.13)

Thus we can substitute Eq. (3.13) into Eq. (3.11)

ρij = (δij∂kΛk − ∂jΛi) + εikl∂kε
e
lj. (3.14)
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For a system without residual elastic stress, the GND density thus depends only

on the varying crystalline orientation [156].

Dynamically, the time evolution law of the GND density emerges from the

conservation of the Burgers vector

∂

∂t
ρik = −εijq∂jJqk, (3.15)

or

∂

∂t
%ijk = −εijmεmpq∂pJqk = −gijpq∂pJqk, (3.16)

where J represents the Burgers vector flux, and the symbol gijpq indicates

εijmεmpq = δipδjq − δiqδjp.

Non-conserved order parameter field

The natural physicist’s order parameter field %, characterizing the incompatibility,

can be written in terms of the plastic distortion field βp

%ijk = εijmρmk = −gijls∂lβp
sk. (3.17)

In the linear approximation, the alternative order parameter field βp fully specifies

the local deformation u of the material, the elastic distortion βe, the internal long-

range stress field σint and the crystalline orientation (the Rodrigues vector Λ giving

the axis and angle of rotation).

According to Eq. (3.9) and Eq. (3.15), the flux J of the Burgers vector can be

expressed in terms of the dynamics of the plastic distortion tensor βp

∂βp
ij

∂t
= Jij. (3.18)
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The plastic distortion βp can be specified by the GND density ρ and a strain-

history deformation field ψ in Fourier space [3],

β̃p
ij(k) = −iεilm

kl
k2
ρ̃mj(k) + ikiψ̃j(k)

≡ β̃p,I
ij (k) + β̃p,H

ij (k), (3.19)

hence decomposing β̃p into two parts. βp,I is the intrinsic field specified by the GND

density. Similar to ρ, βp,I is also divergence free: ∂iβ
p,I
ij = 0, i.e., kiβ̃

p,I
ij = 0. βp,H

is a (curl-free) gradient of ψ, depending upon the strain history and contributing

nothing to the GND density. This decomposition will become important to us in

Sec. 3.3.3, where the correlation functions of βp,I and βp,H will scale differently

with distance.

In the presence of external loading, we can express the appropriate free energy

F as the sum of two terms: the elastic interaction energy of GNDs, and the energy

of interaction with the applied stress field. The free energy functional is

F =

∫
d3x

(
1

2
σint
ij ε

e
ij − σext

ij ε
p
ij

)
. (3.20)

Alternatively, it can be rewritten in Fourier space

F = −
∫

d3k

(2π)3

(
1

2
Mijmn(k)β̃p

ij(k)β̃p
mn(−k)

+σ̃ext
ij (k)β̃p

ij(−k)

)
. (3.21)

3.2.2 Traditional dissipative continuum dynamics

There are well known approaches for deriving continuum equations of motion for

dissipative systems, which in this case produce a traditional von Mises-style the-

ory [208], useful at longer scales. We begin by reproducing these standard equa-

tions.
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For the sake of simplicity, we ignore external stress (σij simplified to σint
ij ) in

the following three subsections. We start by using the standard methods applied

to the non-conserved order parameter βp, and then turn to the conserved order

parameter %.

Dissipative dynamics built from the non-conserved order parameter field

βp

The plastic distortion βp is a non-conserved order parameter field, which is uti-

lized by the engineering community to study texture evolution and plasticity of

mechanically deformed structural materials. The simplest dissipative dynamics in

terms of βp minimizes the free energy by steepest descents

∂

∂t
βp
ij = −Γ

δF
δβp

ij

, (3.22)

where Γ is a positive material-dependent constant. We may rewrite it in Fourier

space, giving

∂

∂t
β̃p
ij(k) = −Γ

δF
δβ̃p

ij(−k)
. (3.23)

The functional derivative δF/δβ̃p
ij(−k) is the negative of the long-range stress

δF
δβ̃p

ij(−k)
= −Mijmn(k)β̃p

mn(k) ≡ −σ̃ij(k). (3.24)

This dynamics implies a simplified version of von Mises plasticity

∂

∂t
β̃p
ij(k) = Γσ̃ij(k). (3.25)

Dissipative dynamics built from the conserved order parameter field %

We can also derive an equation of motion starting from the GND density %, as was

done by Rickman and Viñals [208]. For this dissipative dynamics Eq. (3.16), the
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simplest expression for J is

Jqk = −Γ′ablq∂l
δF
δ%abk

, (3.26)

where the material-dependent constant tensor Γ′ must be chosen to guarantee a

decrease of the free energy with time.

The infinitesimal change of F with respect to the GND density % is

δF [%] =

∫
d3x

δF
δ%ijk

δ%ijk. (3.27)

The free energy dissipation rate is thus δF/δt for δ% = ∂%
∂t
δt, hence

∂

∂t
F [%] =

∫
d3x

δF
δ%ijk

∂%ijk
∂t

. (3.28)

Substituting Eq. (3.16) into Eq. (3.28) and integrating by parts gives

∂

∂t
F [%] =

∫
d3x

(
gijpq∂p

δF
δ%ijk

)
Jqk. (3.29)

Substituting Eq. (3.26) into Eq. (3.29) gives

∂

∂t
F [%] = −

∫
d3x

(
gijpq∂p

δF
δ%ijk

)(
Γ′ablq∂l

δF
δ%abk

)
. (3.30)

Now, to guarantee that energy never increases, we choose Γ′ablq = Γgablq, (Γ is a

positive material-dependent constant), which yields the rate of change of energy

as a negative of a perfect square

∂

∂t
F [%] = −

∫
d3x Γ

∑
q,k

(
gablq∂l

δF
δ%abk

)2

. (3.31)

Using Eqs. (3.16) and (3.26), we can write the dynamics in terms of %

∂

∂t
%ijk = Γgijpqgablq∂p∂l

δF
δ%abk

. (3.32)

Substituting the functional derivative δF/δ%abk, Eq. (3.102), into Eq. (3.32) and

comparing to Eq. (3.16) tells us

∂

∂t
%ijk(x) = −Γgijpq∂pσqk(x) = −gijpq∂pJqk(x), (3.33)
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where

Jqk = Γσqk (3.34)

duplicating the von Mises law (Eq. 3.25) of the previous subsection. The simplest

dissipative dynamics of either non-conserved or conserved order parameter fields

thus turns out to be the traditional linear dynamics, a simplified von Mises law.

The problem with this law for us is that it allows for plastic deformation in the

absence of dislocations, i.e., the Burgers vector flux can be induced through the

elastic loading on the boundaries, even in a defect-free medium. This is appropriate

on engineering length scales above or around a micron, where statistically stored

dislocation (SSD) dominates the plastic deformation. (Methods to incorporate

their effects into a theory like ours have been provided by Acharya et al. [11, 213]

and Varadhan et al. [254])

By ignoring the SSDs, our theory assumes that there is an intermediate coarse-

graining length scale, large compared to the distance between dislocations and

small compared to the distance where the cancelling of dislocations with different

Burger’s vectors dominates the dynamics. We believe this latter length scale is

given by the distance between cell walls (as discussed in Sec. 3.3.2). The cell wall

misorientations are geometrically necessary. On the one hand, it is known [137, 120]

that neighboring cell walls often have misorientations of alternating signs, so that

on coarse-grained length scales just above the cell wall separation one would expect

explicit treatment of the SSDs would be necessary. On the other hand, the density

of dislocations in cell walls is high, so that a coarse-graining length much smaller

than the interesting structures (and hence where we believe SSDs are unimportant)

should be possible. (Our cell structures are fractal, with no characteristic ‘cell

size’; this coarse-graining length sets the minimum cutoff scale of the fractal, and
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the grain size or inhomogeneity length will set the maximum scale.) With this

assumption, to treat the formation of cellular structures, we turn to theories of the

form given in Eq. (3.15), defined in terms of dislocation currents J that depend

directly on the local GND density.

3.2.3 Our CDD model

The microscopic motion of a dislocation under external strain depends upon tem-

perature. In general, it moves quickly along the glide direction, and slowly (or

not at all) along the climb direction where vacancy diffusion must carry away the

atoms. The glide speed can be limited by phonon drag at higher temperatures, or

can accelerate to nearly the speed of sound at low temperatures [113]. It is tradi-

tional to assume that the dislocation velocity is over-damped, and proportional to

the component of the force per unit dislocation length in the glide plane.

To coarse-grain this microscopics, for reasons described above, we choose a

CDD model whose dislocation currents vanish when the GND density vanishes.

Limkumnerd and Sethna [155] derived a dislocation current J for this case using a

closure approximation of the underlying microscopics. Their work reproduced (in

the case of both glide and climb) an earlier dynamical model proposed by Acharya

and collaborators [8, 212] assuming a single velocity field for the dislocations.

In our CGD and GOD-LVP dynamics (Sections 3.2.3 and 3.2.3 below), we

also assume that all dislocations in the infinitesimal volume at x are moving with

a common velocity v(x). This common velocity ansatz was first mentioned by

Mura [176], but as a warning that it is an incorrect assumption. Microscopically,

different dislocations in a region experience Peach-Koehler forces in different di-
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rections, and will not move in tandem. (In real materials the dislocation dynamics

is intermittent, as dislocations bow out or depin from junctions and disorder, and

engage in complex dislocation avalanches. Our model has no pinning and hence

no metastability: the single velocity approximation is an additional assumption.)

Indeed, it is the difference in velocities for dislocations on different slip systems

that leads to entanglement. It is also not justified in a coarse-grained theory (un-

like fluid mechanics, where momentum conservation and Galilean invariance leads

to an emergent collective local velocity for systems in local equilibrium). How-

ever, we shall see that variants of the local velocity ansatz allow one to construct

physically sensible ‘model materials’ – perhaps not the correct theory for a partic-

ular material, but a sensible framework to generate theories of plastic deformation.

This ansatz has been supplemented by constitutive laws for the velocity field by

Acharya [8] and collaborators [9, 10, 212, 11, 254] to generate CDD theories. We

follow their argument in Sec. 3.2.3 to derive the dynamics allowing both glide and

climb, and then modify it to remove climb in Sec. 3.2.3. We also derive a sec-

ond variant version of glide-only dynamics in Sec. 3.2.3 by approaching the limit

of infinite vacancy energy, which reproduces a model proposed by Acharya and

Roy [11].

Climb-glide dynamics (CGD)

We start with a model presuming (perhaps unphysically) that vacancy diffusion is

so fast that dislocations climb and glide with equal mobility. The elastic Peach-

Koehler force due to the stress σ(x) on the local GND density is given by fPKu =

σmk%umk. We assume that the velocity v ∝ fPK , giving a local constitutive relation

vu ∝ σmk%umk. (3.35)
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Figure 3.2: Relaxation of various CDD models. The blue dot represents the
initial random plastically-deformed state; the red dots indicate the
equilibrated stress-free states driven by different dynamics. Curve A:
steepest decent dynamics leads to the trivial homogeneous equilibrated
state, discussed in Sec. 3.2.2. Curve B: our CDD models settle the
system into non-trivial stress-free states with wall-like singularities of
the GND density, discussed in Sec. 3.2.3.

How should we determine the proportionality constant between velocity and

force? In experimental systems, this is complicated by dislocation entanglement

and short-range forces between dislocations. Ignoring these features, the velocity of

each dislocation should depend only on the stress induced by the other dislocations,

not the local density of dislocations [4]. We can incorporate this in an approximate

way by making the proportionality factor in Eq. (3.35) inversely proportional to

the GND density. We measure the latter by summing the square of all components

of %, hence |%| =
√
%ijk%ijk/2 and vu = D

|%|σmk%umk, where D is a positive material-

dependent constant. This choice has the additional important feature that the

evolution of a sharp domain wall whose width is limited by the lattice cutoff is

unchanged when the lattice cutoff is reduced.
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The flux J of the Burgers vector is thus

Jij = vu%uij =
D

|%|
σmk%umk%uij. (3.36)

Notice that this dynamics satisfies our criterion that J = 0 when there are no

GNDs (i.e., % = 0).

Substituting this flux J (Eq. 3.36) into the free energy dissipation rate

(Eq. 3.108) gives

∂F
∂t

= −
∫
d3x σijJij = −

∫
d3x
|%|
D
v2 ≤ 0. (3.37)

Glide-only dynamics: mobile dislocation population (GOD-MDP)

When the temperature is low enough, dislocation climb is negligible, i.e., disloca-

tions can only move in their glide planes. Fundamentally, dislocation glide con-

serves the total number of atoms, which leads to an unchanged local volume. Since

the local volume change in time is represented by the trace Jii of the flux of the

Burgers vector, conservative motion of GNDs demands Jii = 0. Limkumnerd and

Sethna [155] derived the equation of motion for dislocation glide only, by removing

the trace of J from Eq. (3.36). However, their dynamics fails to guarantee that

the free energy monotonically decreases. Here we present an alternative approach.

We can remove the trace of J by modifying the first equality in Eq. (3.36),

J ′ij = v′u

(
%uij −

1

3
δij%ukk

)
, (3.38)

where %′uij = %uij − 1
3
δij%ukk can be viewed as a subset of ‘mobile’ dislocations

moving with velocity v′.

Substituting the current (Eq. 3.38) into the free energy dissipation rate
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(Eq. 3.108) gives

∂F
∂t

= −
∫
d3x σij

(
v′u%

′
uij

)
. (3.39)

If we choose the velocity v′u ∝ σij%
′
uij, the appropriate free energy monotonically

decreases in time. We thus express v′u = D
|%|%
′
uijσij, where D is a positive material-

dependent constant, and the prefactor 1/|%| is added for the same reasons, as

discussed in the second paragraph of Sec. 3.2.3.

The current J ′ of the Burgers vector is thus written [52]

J ′ij = v′u%
′
uij

=
D

|%|
σmn

(
%umn −

1

3
δmn%ull

)(
%uij −

1

3
δij%ukk

)
.

(3.40)

This natural evolution law becomes much less self-evident when expressed in terms

of the traditional two-index version ρ (Eqs. 3.1&3.2)

J ′ij =
D

|%|

(
σinρmnρmj − σmnρinρmj −

1

3
σmmρniρnj

+
1

3
σmmρinρnj −

δij
3

(
σknρmnρmk − σmnρknρmk

−1

3
σmmρnkρnk +

1

3
σmmρknρnk

))
, (3.41)

(which is why we introduce the three-index variant %).

This current J ′ makes the free energy dissipation rate the negative of a perfect

square in Eq. (3.110).

Glide-only dynamics: local vacancy-induced pressure (GOD-LVP)

At high temperature, the fast vacancy diffusion leads to dislocation climb out of

the glide direction. As the temperature decreases, vacancies are frozen out so that
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dislocations only slip in the glide planes. In Sec. 3.8.1, we present a dynamical

model coupling the vacancy diffusion to our CDD model. Here we consider the

limit of frozen-out vacancies with infinite energy costs, which leads to another

version of glide-only dynamics.

According to the coupling dynamics Eq. (3.118), we write down the general

form of dislocation current

J ′′ij =
D

|%|

(
σmn − δmnp

)
%umn%uij, (3.42)

where p is the local pressure due to vacancies.

The limit of infinitely costly vacancies (α → ∞ in Sec. 3.8.1) leads to the

traceless current, J ′′ii = 0. Solving this equation gives a critical local pressure pc

pc =
σpq%spq%skk
%uaa%ubb

. (3.43)

The corresponding current J ′′ of the Burgers vector in this limit is thus written

J ′′ij =
D

|%|

(
σmn −

σpq%spq%skk
%uaa%ubb

δmn

)
%umn%uij, (3.44)

reproducing the glide-only dynamics proposed by Acharya and Roy [11].

Substituting the current (Eq. 3.44) into the free energy dissipation rate

(Eq. 3.108) gives

∂F
∂t

= −
∫
d3x

D

|%|

[
fPKi fPKi −

(
dif

PK
i

|d|

)2]
≤ 0, (3.45)

where fPKi = σmn%imn and di = %ikk. The equality emerges when the force fPK is

along the same direction as d.

Unlike the traditional linear dissipative models, our CDD model, coarse grained

from microscopic interactions, drives the random plastic distortion to non-trivial
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stress-free states with dislocation wall singularities, as schematically illustrated in

Fig. 3.2.

Our minimal CDD model, consisting of GNDs evolving under the long-range

interaction, provides a framework for understanding dislocation morphologies at

the mesoscale. Eventually, it can be extended to include vacancies by coupling

them to the dislocation current (as discussed in Sec. 3.8.1, or extended to include

disorder, dislocation pinning, and entanglement by adding appropriate interac-

tions to the free energy functional and refining the effective stress field. It has

already been extended to include SSDs incorporating traditional crystal plasticity

theories [11, 213, 254].

3.3 Results

3.3.1 Two and three dimensional simulations

We perform simulations in 2D and 3D for the dislocation dynamics of Eq. (3.15)

and Eq. (3.18), with dynamical currents defined by CGD (Eq. 3.36), GOD-

MDP (Eq. 3.40), and GOD-LVP (Eq. 3.44). We numerically observe that sim-

ulations of Eqs. (3.15), (3.18) lead to the same results statistically (i.e., the nu-

merical time step approximations leave the physics invariant). We therefore focus

our presentation on the results of Eq. (3.18), where the evolving field variable

βp is unconstrained. Our CGD and GOD-MDP models have been quite exten-

sively simulated in one and two dimensions and relevant results can be found in

Refs. 52, 155, and 154. In this paper, we concentrate on periodic grids of spa-

tial extent L in both two [52] and three dimensions. The numerical approach we
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use is a second-order central upwind scheme designed for Hamilton-Jacobi equa-

tions [138] using finite differences. This method is quite efficient in capturing

δ−shock singular structures [55], even though it is flexible enough to allow for the

use of approximate solvers near the singularities.

Our numerical simulations show a close analogy to those of turbulent flows [55].

As in three-dimensional turbulence, defect structures lead to intermittent trans-

fer of morphology to short length scales. As conjectured [203, 202] for the Euler

equations or the inviscid limit of Navier-Stokes equations, our simulations develop

singularities in finite time [52, 155]. Here these singularities are δ-shocks rep-

resenting grain-boundary-like structures emerging from the mutual interactions

among mobile dislocations [56]. In analogy with turbulence, where the viscosity

serves to smooth out the vortex-stretching singularities of the Euler equations, we

have explored the effects of adding an artificial viscosity term to our equations

of motion [55]. In the presence of artificial viscosity, our simulations exhibit nice

numerical convergence in all dimensions [56]. However, in the limit of vanishing

viscosity, the solutions of our dynamics continue to depend on the lattice cutoff in

higher dimensions, (our simulations only exhibit numerical convergence in one di-

mension). Actually, the fact that the physical system is cut off by the atomic scale

leads to the conjecture that our equations are in some sense non-renormalizable in

the ultraviolet. These issues are discussed in detail in Refs. 55 and 56.

In the vanishing viscosity limit, our simulations exhibit fractal structure down

to the smallest scales. When varying the system size continuously, the solutions of

our dynamics exhibit a convergent set of correlation functions of the various order

parameter fields, which are used to characterize the emergent self-similarity.

In both two and three dimensional simulations, we relax the deformed sys-
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Figure 3.3: Complex dislocation structures in two dimensions (10242) for
the relaxed states of an initially random distortion. Top: Dislocation
climb is allowed; Middle: Glide only using a mobile dislocation popu-
lation; Bottom: Glide only using a local vacancy pressure. Left: Net
GND density |%| plotted linearly in density with dark regions a factor
∼ 104 more dense than the lightest visible regions. (a) When climb is
allowed, the resulting morphologies are sharp, regular, and close to the
system scale. (c) When climb is forbidden using a mobile dislocation
population, there is a hierarchy of walls on a variety of length scales,
getting weaker on finer length scales. (e) When climb is removed using
a local vacancy pressure, the resulting morphologies are as sharp as
those (a) allowing climb. Right: Corresponding local crystalline ori-
entation maps, with the three components of the orientation vector Λ
linearly mapped onto a vector of RGB values. Notice the fuzzier cell
walls (c) and (d) suggests a larger fractal dimension.
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Figure 3.4: Complex dislocation structures in three dimensions (1283) for
the relaxed states of an initially random distortion. Notice these tex-
tured views on the surface of simulation cubes. Top: Dislocation climb
is allowed; Middle: Glide only using a mobile dislocation population;
Bottom: Glide only using a local vacancy pressure. Left: Net GND
density |%| plotted linearly in density with dark regions a factor ∼ 103

more dense than the lightest visible regions. The cellular structures
in (a), (c), and (e) seem similarly fuzzy; our theory in three dimen-
sions generates fractal cell walls. Right: Corresponding local crystalline
maps, with the three components of the orientation vector Λ linearly
mapped onto a vector of RGB values.
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Figure 3.5: The elastic free energy decreases to zero as a power law in
time in both two and three dimensions. In both (a) and (b), we
show that the free energy F decays monotonically in time, and goes to
zero as a power law for CGD, GOD-MDP, and GOD-LVP simulations,
as the system relaxes in the absence of external strain.

tem with and without dislocation climb in the absence of external loading. Here,

the initial plastic distortion field βp is still a Gaussian random field with corre-

lation length scale
√

2L/5 ∼ 0.28L and initial amplitude β0 = 1. (In our earlier

work [52], we described this length as L/5, using a non-standard definition of

correlation length scale.) In 2D, Figure 3.3 shows that CGD and GOD-LVP sim-

ulations (top and bottom) exhibit much sharper, flatter boundaries than GOD-

MDP (middle). This difference is quantitatively described by the large shift in

the static critical exponent η in 2D for both CGD and GOD-LVP. In our earlier

work [52], we announced this difference as providing a sharp distinction between

high-temperature, non-fractal grain boundaries (for CGD), and low-temperature,

fractal cell wall structures (for GOD-MDP). This appealing message did not sur-

vive the transition to 3D; Figure 3.4 shows basically indistinguishable complex

cellular structures, for all three types of dynamics. Indeed, Table 3.1 shows only

a small change in critical exponents, among CGD, GOD-MDP, and GOD-LVP.

During both two and three dimensional relaxations, their appropriate free energies

monotonically decay to zero as shown in Fig. 3.5.
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Figure 3.6: Relaxation with various initial length scales in two dimen-
sions. GNDs are not allowed to climb due to the constraint of a mobile
dislocation population in these simulations. (a), (b), and (c) are the
net GND density map |%|, the net plastic distortion |βp| (the warmer
color indicating the larger distortion), and the crystalline orientation
map in a fully-relaxed state evolved from an initial random plastic
distortion with correlated length scale 0.07L. They are compared to
the same sequence of plots, (d), (e), and (f), which are in the relaxed
state with the initial length scale 0.21L three times as long. Notice
the features with the longest wave length reflecting the initial distor-
tion length scales. (g), (h), and (i) are the scalar forms (discussed in
Sec. 3.3.3) of correlation functions of the GND density ρ, the intrinsic
plastic distortion βp,I, and the crystalline orientation Λ for well-relaxed
states with initial length scales varying from 0.07L to 0.28L. They ex-
hibit power laws independent of the initial length scales, with cutoffs
set by the initial lengths. (The scaling relation among their critical
exponents will be discussed in Sec. 3.4.)
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Figure 3.7: Correlation functions of Λ in both two and three dimensions.
In (a) and (b), red, blue, and green lines indicate CGD, GOD-MDP,
and GOD-LVP simulations, respectively. Left: Correlation functions
of Λ are measured in relaxed, unstrained 10242 systems; Right: These
correlation functions are measured in relaxed, unstrained 1283 systems.
All dashed lines show estimated power laws quoted in Table 3.1.

Figure 3.8: Correlation functions of % in both two and three dimensions.
Left: (a) is measured in relaxed, unstrained 10242 systems; Right: (b)
is measured in relaxed, unstrained 1283 systems. All dashed lines show
estimated power laws quoted in Table 3.1. Notice all three scalar forms
of the correlation functions of GND density share the same power law.

3.3.2 Self-similarity and initial conditions

Self-similar structures, as emergent collective phenomena, have been studied in

mesoscale crystals [52], human-scale social network [239], and the astronomical-

scale universe [255]. In some models [255], the self-similarity comes from scale-free

initial conditions with a power-law spectrum [194, 60]. In our CDD model, our

simulations start from a random plastic distortion with a Gaussian distribution
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characterized by a single length scale. The scale-free dislocation structure sponta-

neously emerges as a result of the deterministic dynamics.

Our Gaussian random initial condition is analogous to hitting a bulk material

randomly with a hammer. The hammer head (the dent size scale) corresponds to

the correlated length. We need to generate inhomogeneous deformations like ran-

dom dents, because our theory is deterministic and hence uniform initial conditions

under uniform loading will not develop patterns.

We have considered alternatives to our imposition of Gaussian random defor-

mation fields as initial conditions. (a) As an alternative to random initial defor-

mations, we could have imposed a more regular (albeit nonuniform) deformation –

starting with our material bent into a sinusoidal arc, and then letting it relax. Such

simulations produce more symmetric versions of the fractal patterns we see; indeed,

our Gaussian random initial deformations have correlation lengths ‘hammer size’

comparable to the system size, so our starting deformations are almost sinusoidal

(although different components have different phases). (b) To explore the effects

of multiple uncorrelated random domains (multiple small dents), we reduce the

Gaussian correlation length as shown in Fig. 3.6. We find that the initial-scale de-

formation determines the maximal cutoff for the fractal correlations in our model.

In other systems (such as two-dimensional turbulence) one can observe an ‘inverse

cascade’ with fractal structures propagating to long length scales; we observe no

evidence of these here. (c) As an alternative to imposing an initial plastic defor-

mation field and then relaxing, we have explored deforming the material slowly

and continuously in time. Our preliminary ‘slow hammering’ explorations turn

the Gaussian initial conditions βp0 into a source term, modifying Eq. 3.18 with an

additional term to give ∂tβ
p
ij = Jij + βp0

ij/τ . Our early explorations suggest that
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slow hammering simulations will be qualitatively compatible with the relaxation

of an initial rapid hammering. In this paper, to avoid the introduction of the

hammering time scale τ , we focus on the (admittedly less physically motivated)

relaxation behavior.

In real materials, initial grain boundaries, impurities, or sample sizes, can be

viewed as analogies to our initial dents — explaining the observation of dislocation

cellular structures both in single crystals and polycrystalline materials.

Figure 3.6 shows relaxation without dislocation climb (due to the constraint

of a mobile dislocation population) at various initial length scales in 2D. From

Fig. 3.6(a) to (f), the net GND density, the net plastic distortion, and the crys-

talline orientation map, measured at two well-relaxed states evolved from differ-

ent random distortions, all show fuzzy fractal structures, distinguished only by

their longest-length-scale features that originate from the initial conditions. In

Fig. 3.6(g), (h), and (i), the correlation functions of the GND density ρ, the in-

trinsic plastic distortion βp,I, and the crystalline orientation Λ are applied to char-

acterize the emergent self-similarity, as discussed in the following section 3.3.3.

They all exhibit the same power law, albeit with different cutoffs due to the initial

conditions.

3.3.3 Correlation functions

Hierarchical dislocation structures have been observed both experimentally [128,

174, 224, 252] and in our simulations [52]. Early work analyzed experimental

cellular structures using the fractal box counting method [99] or by separating

the systems into cells and analyzing their sizes and misorientations [122, 119, 121,
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168]. In our previous publication, we analyzed our simulated dislocation patterns

using these two methods, and showed broad agreement with these experimental

analyses [52]. In fact, lack of the measurements of physical order parameters leads

to incomplete characterization of the emergent self-similarity [5]. We will not

pursue these methods here.

In our view, the emergent self-similarity should best be exhibited by the cor-

relation functions of the order parameter fields, such as the GND density ρ, the

plastic distortion βp, and the crystalline orientation vector Λ. Here we focus on

scalar invariants of the various tensor correlation functions.

For the vector correlation function CΛ
ij (x) (Eq. 3.46), only the sum CΛ

ii (x) is

a scalar invariant under three dimensional rotations. For the tensor fields ρ and

βp, their two-point correlation functions are measured in terms of a complete set

of three independent scalar invariants, which are indicated by ‘tot’ (total), ‘per’

(permutation), and ‘tr’ (trace). In searching for the explanation of the lack of

scaling [52] for βp (see Sec. 3.3.3), we checked whether these independent invariants

might scale independently. In fact, most of them share a single underlying critical

exponent, except for the trace-type scalar invariant of the correlation function of

βp,I, which go to a constant in well-relaxed states, as discussed in Sec. 3.4.1.

Correlation function of crystalline orientation field

As dislocations self-organize themselves into complex structures, the relative dif-

ferences of the crystalline orientations are correlated over a long length scale.

For a vector field, like the crystalline orientation Λ, the natural two-point
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correlation function is

CΛ
ij (x) = 〈(Λi(x)− Λi(0))(Λj(x)− Λj(0))〉

= 2〈ΛiΛj〉 − 2〈Λi(x)Λj(0)〉. (3.46)

Note that we correlate changes in Λ between two points. Just as for the height-

height correlation function in surface growth [46], adding a constant to Λ(x) (rotat-

ing the sample) leads to an equivalent configuration, so only differences in rotations

can be meaningfully correlated.

It can be also described in Fourier space

C̃Λ
ij (k) = 2〈ΛiΛj〉(2π)3δ(k)− 2

V
Λ̃i(k)Λ̃j(−k). (3.47)

In an isotropic medium, we study the scalar invariant formed from CΛ
ij

CΛ(x) = CΛ
ii (x) = 2〈Λ2〉 − 2〈Λi(x)Λi(0)〉. (3.48)

Figure 3.7 shows the correlation functions of crystalline orientations in both

10242 and 1283 simulations. The large shift in critical exponents seen in 2D

(Fig. 3.7(a)) for both CGD and GOD-LVP is not observed in the fully three di-

mensional simulations (Fig. 3.7(b)).

Correlation function of GND density field

As GNDs evolve into δ-shock singularities, the critical fluctuations of the GND

density can be measured by the two-point correlation function Cρ(x) of the GND

density, which decays as the separating distance between two sites increases. The

complete set of rotational invariants of the correlation function of ρ includes three
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scalar forms

Cρtot(x) = 〈ρij(x)ρij(0)〉, (3.49)

Cρper(x) = 〈ρij(x)ρji(0)〉, (3.50)

Cρtr(x) = 〈ρii(x)ρjj(0)〉. (3.51)

Figure 3.8 shows all the correlation functions of GND density in both 10242 and

1283 simulations. These three scalar forms of the correlation functions of ρ exhibit

the same critical exponent η, as listed in Table 3.1. Similar to the measurements of

CΛ, the large shift in critical exponents seen in 2D (Fig. 3.8(a)) for both CGD and

GOD-LVP is not observed in the fully three dimensional simulations (Fig. 3.8(b)).

Figure 3.9: Correlation functions of βp in two dimensions. Red, blue, and
green lines indicate CGD, GOD-MDP, and GOD-LVP simulations, re-
spectively. None of these curves shows a convincing power law.
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Figure 3.10: Correlation functions of βp,I in both two and three dimen-
sions. In (a) and (b), the correlation functions of the intrinsic part
of plastic distortion field are shown. Left: (a) is measured in relaxed,
unstrained 10242 systems; Right: (b) is measured in in relaxed, un-
strained 1283 systems. All dashed lines show estimated power laws
quoted in Table 3.1. Notice that we omit the correlation functions of

Cβ
p,I

tr , which are independent of distance, and unrelated to the emer-
gent self-similarity, as shown in Sec. 3.4.1.

Correlation function of plastic distortion field

The plastic distortion βp is a mixture of both the divergence-free βp,I and the

curl-free βp,H. Figure 3.9 shows that βp does not appear to be scale invariant, as

observed in our earlier work [52]. It is crucial to study the correlations of the two

physical fields, βp,I and βp,H, separately.

Similarly to the crystalline orientation Λ, we correlate the differences between

βp,I at neighboring points. The complete set of scalar invariants of correlation
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functions of βp,I thus includes the three scalar forms

Cβ
p,I

tot (x) = 〈(βp,I
ij (x)− βp,I

ij (0))(βp,I
ij (x)− βp,I

ij (0))〉

= 2〈βp,I
ij β

p,I
ij 〉 − 2〈βp,I

ij (x)βp,I
ij (0)〉; (3.52)

Cβp,I

per (x) = −〈(βp,I
ij (x)− βp,I

ij (0))(βp,I
ji (x)− βp,I

ji (0))〉

= −2〈βp,I
ij β

p,I
ji 〉+ 2〈βp,I

ij (x)βp,I
ji (0)〉; (3.53)

Cβ
p,I

tr (x) = 〈(βp,I
ii (x)− βp,I

ii (0))(βp,I
jj (x)− βp,I

jj (0))〉

= 2〈βp,I
ii β

p,I
jj 〉 − 2〈βp,I

ii (x)βp,I
jj (0)〉; (3.54)

where an overall minus sign is added to Cβp,I

per so as to yield a positive measure.

In Fig. 3.10, the correlation functions of the intrinsic plastic distortion βp,I in

both 10242 and 1283 simulations exhibit a critical exponent σ′. These measured

critical exponents are shown in Table 3.1.

3.4 Scaling theory

The emergent self-similar dislocation morphologies are characterized by the rota-

tional invariants of correlation functions of physical observables, such as the GND

density ρ, the crystalline orientation Λ, and the intrinsic plastic distortion βp,I.

Here we derive the relations expected between these correlation functions, and

show that their critical exponents collapse into a single underlying one through a

generic scaling theory.

In our model, the initial elastic stresses are relaxed via dislocation motion,

leading to the formation of cellular structures. In the limit of slow imposed defor-

mations, the elastic stress goes to zero in our model. We will use the absence of

external stress to simplify our correlation function relations. (Some relations can
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be valid regardless of the existence of residual stress.) Those relations that hold

only in stress-free states will be labeled ‘sf’; they will be applicable in analyzing

experiments only insofar as residual stresses are small.

3.4.1 Relations between correlation functions

Cρ and CΛ

For a stress-free state, we thus ignore the elastic strain term in Eq. (3.14) and

write in Fourier space

ρ̃ij(k)
sf
= −ikjΛ̃i(k) + iδijkkΛ̃k(k). (3.55)

First, we can substitute Eq. (3.55) into the Fourier-transformed form of the

correlation function Eq. (3.49)

C̃ρtot(k)
sf
=

1

V

(
−ikjΛ̃i(k) + iδijkkΛ̃k(k)

)
×
(
ikjΛ̃i(−k)− iδijkmΛ̃m(−k)

)
sf
=

1

V
(δijk

2 + kikj)Λ̃i(k)Λ̃j(−k). (3.56)

Multiplying both sides of Eq. (3.47) by (δijk
2 + kikj) gives

(δijk
2 + kikj)C̃Λ

ij (k)
sf
= − 2

V
(δijk

2 + kikj)Λ̃i(k)Λ̃j(−k). (3.57)

Comparing Eq. (3.57) and Eq. (3.56), we may write C̃ρtot in terms of C̃Λ
ij as

C̃ρtot(k)
sf
= −1

2
(δijk

2 + kikj)C̃Λ
ij (k). (3.58)

Second, we can substitute Eq. (3.55) into the Fourier-transformed form of the

correlation function Eq. (3.50)

C̃ρper(k)
sf
=

2

V
kikjΛ̃i(k)Λ̃j(−k). (3.59)
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Multiplying both sides of Eq. (3.47) by kikj and comparing with Eq. (3.59) gives

C̃ρper(k)
sf
= −kikj C̃Λ

ij (k). (3.60)

Finally, we substitute Eq. (3.55) into the Fourier-transformed form of the cor-

relation function Eq. (3.51)

C̃ρtr(k)
sf
=

4

V
kikjΛ̃i(k)Λ̃j(−k). (3.61)

Repeating the same procedure of deriving C̃ρper, we write C̃ρtr in terms of C̃Λ
ij as

C̃ρtr(k)
sf
= −2kikj C̃Λ

ij (k). (3.62)

Through an inverse Fourier transform, we convert Eq. (3.58), Eq. (3.60), and

Eq. (3.62) back to real space to find

Cρtot(x)
sf
=

1

2
∂2CΛ(x) +

1

2
∂i∂jCΛ

ij (x), (3.63)

Cρper(x)
sf
= ∂i∂jCΛ

ij (x), (3.64)

Cρtr(x)
sf
= 2∂i∂jCΛ

ij (x). (3.65)

Cβp,I
and CΛ

The intrinsic part of the plastic distortion field is directly related to the GND den-

sity field. In stress-free states, the crystalline orientation vector can fully describe

the GND density. We thus can connect Cβp,I
to CΛ.

First, substituting β̃p,I
ij = −iεilmklρ̃mj/k2 into the Fourier-transformed form of

99



Eq. (3.52) gives

C̃β
p,I

tot (k) = 2〈βp,I
ij β

p,I
ij 〉(2π)3δ(k)− 2

V

(
−iεilm

kl
k2
ρ̃mj(k)

)
×
(
iεist

ks
k2
ρ̃tj(−k)

)
= 2〈βp,I

ij β
p,I
ij 〉(2π)3δ(k)− 2

k2

(
1

V
ρ̃mj(k)ρ̃mj(−k)

)
.

(3.66)

During this derivation, some terms vanish due to the geometrical constraint on

ρ, Eq. (3.6). Multiplying −k2/2 on both sides of Eq. (3.66) and applying the

Fourier-transformed form of Eq. (3.49) gives

− k2

2
C̃β

p,I

tot (k) = C̃ρtot(k). (3.67)

In stress-free states, we can substitute Eq. (3.58) into Eq. (3.67)

− k2

2
C̃β

p,I

tot (k)
sf
= C̃ρ,sftot (k) = −1

2

(
δijk

2 + kikj

)
C̃Λ
ij (k), (3.68)

which is rewritten after multiplying −2/k2 on both sides

C̃β
p,I

tot (k)
sf
= C̃Λ(k) +

kikj
k2
C̃Λ
ij (k). (3.69)

Second, substituting β̃p,I
ij = −iεilmklρ̃mj/k2 into the Fourier-transformed form

of Eq. (3.53) gives

C̃βp,I

per(k) = −2〈βp,I
ij β

p,I
ji 〉(2π)3δ(k) +

2

V

(
−iεilm

kl
k2
ρ̃mj(k)

)
×
(
iεjst

ks
k2
ρ̃ti(−k)

)
= −2〈βp,I

ij β
p,I
ji 〉(2π)3δ(k) +

2

k2
C̃ρtot(k)

− 2

k2
C̃ρtr(k)− 2

V k4
kikj ρ̃mj(k)ρ̃mi(−k), (3.70)

where we skip straightforward but tedious expansions and the geometrical con-

straint on ρ, Eq. (3.6). Notice that this relation is correct even in the presence of

stress.
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In stress-free states, we substitute Eqs. (3.55), (3.58), (3.62) into Eq. (3.70),

and ignore the constant zero wavelength term

C̃βp,I

per(k)
sf
= − 1

k2
(k2δij + kikj)C̃Λ

ij (k) +
4

k2
kikj C̃Λ

ij (k)

−2kikj
V k4

(
−ikjΛ̃m(k) + iδmjkkΛ̃k(k)

)
×
(
ikiΛ̃m(−k)− iδmiknΛ̃n(−k)

)
sf
= 2

kikj
k2
C̃Λ
ij (k). (3.71)

Finally, substituting β̃p,I
ij = −iεilmklρ̃mj/k2 into the Fourier-transformed form

of Eq. (3.54) gives

C̃β
p,I

tr (k) = 2〈βp,I
ii β

p,I
jj 〉(2π)3δ(k)− 2

V

(
−iεilm

kl
k2
ρ̃mi(k)

)
×
(
iεjst

ks
k2
ρ̃tj(−k)

)
= 2〈βp,I

ii β
p,I
jj 〉(2π)3δ(k)− 2

k2
C̃ρtot(k) +

2

k2
C̃ρper(k)

+
2

V k4
kikj ρ̃mi(k)ρ̃mj(−k), (3.72)

valid in the presence of stress. Here we repeat a similar procedure as was used to

derive in Eq. (3.70).

In stress-free states, we substitute Eqs. (3.55), (3.58), (3.60) into Eq. (3.72)

C̃β
p,I

tr (k)
sf
= 2〈βp,I

ii β
p,I
jj 〉(2π)3δ(k)

+
1

k2
(k2δij + kikj)C̃Λ

ij (k)− 2

k2
kikj C̃Λ

ij (k)

+
2kikj
V k4

(
−ikiΛ̃m(k) + iδmikkΛ̃k(k)

)
×
(
ikjΛ̃m(−k)− iδmjknΛ̃n(−k)

)
sf
= 2〈βp,I

ii β
p,I
jj 〉(2π)3δ(k), (3.73)

which is a trivial constant in space.
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Through an inverse Fourier transform, Eqs. (3.69), (3.71), and (3.73) can be

converted back to real space, giving

Cβ
p,I

tot (x)
sf
= CΛ(x)+

1

4π

∫
d3x′
(
δij
R3
−3

RiRj

R5

)
CΛ
ij (x

′), (3.74)

Cβp,I

per (x)
sf
=

1

2π

∫
d3x′

(
δij
R3
− 3

RiRj

R5

)
CΛ
ij (x

′), (3.75)

Cβ
p,I

tr (x)
sf
= 2

∫
d3x′βp,I

ii (x′)βp,I
jj (x′)=2〈βp,I

ii β
p,I
jj 〉, (3.76)

where R = x′ − x. According to Eqs. (3.69) and (3.71), we can extract a relation

Cβp,I

per (x)− 2Cβ
p,I

tot (x) + 2CΛ(x)
sf
= const. (3.77)

We can convert Eq. (3.67) through an inverse Fourier transform

Cρtot(x) =
1

2
∂2Cβ

p,I

tot (x), (3.78)

or

Cβ
p,I

tot (x) = − 1

2π

∫
d3x′
Cρtot(x′)
R

, (3.79)

valid in the presence of residual stress.

3.4.2 Critical exponent relations

When the self-similar dislocation structures emerge, the correlation functions of

all physical quantities are expected to exhibit scale-free power laws. We consider

the simplest possible scenario, where single variable scaling is present to reveal the

minimal number of underlying critical exponents.

First, we define the critical exponent η as the power law describing the asymp-

totic decay of Cρtot(x) ∼ |x|−η, one of the correlation functions for the GND density
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tensor (summed over components). If we rescale the spatial variable x by a factor

b, the correlation function Cρ is rescaled by the power law as

Cρtot(bx) = b−ηCρtot(x). (3.80)

Similarly, the correlation function of the crystalline orientation field Λ is de-

scribed by a power law, CΛ(x) ∼ |x|σ, where σ is its critical exponent. We repeat

the rescaling by the same factor b

CΛ(bx) = bσCΛ(x). (3.81)

Since Cρtot can be written in terms of CΛ, Eq. (3.63), we rescale this relation by

the same factor b

Cρtot(bx)
sf
=

1

2

[
∂

b

]2

CΛ(bx) +
1

2

[
∂i
b

][
∂j
b

]
CΛ
ij (bx). (3.82)

Substituting Eq. (3.81) into Eq. (3.82) gives

Cρtot(bx)
sf
= bσ−2

[
1

2
∂2CΛ(x) +

1

2
∂i∂jCΛ

ij (x)

]
sf
= bσ−2Cρtot(x). (3.83)

Comparing with Eq. (3.80) gives a relation between σ and η

σ = 2− η. (3.84)

We can repeat the same renormalization group procedure to analyze the critical

exponents of the other two scalar forms of the correlation functions of the GND

density field. Clearly, Cρper and Cρtr share the same critical exponent η with Cρtot.

Also, we can define the critical exponent σ′ as the power law describing the

asymptotic growth of Cβ
p,I

tot (x) ∼ |x|σ′ , one of the correlation functions for the
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intrinsic part of the plastic distortion field. We can rescale the correlation function

Cβp,I

Cβ
p,I

tot (bx) = bσ
′Cβ

p,I

tot (x). (3.85)

We rescale the relation Eq. (3.78) by the same factor b, and substitute Eq. (3.85)

into it

Cρtot(bx) =
1

2

[
∂

b

]2

Cβ
p,I

tot (bx) = bσ
′−2

[
1

2
∂2Cβ

p,I

tot (x)

]
= bσ

′−2Cρtot(x). (3.86)

Comparing with Eq. (3.80) also gives a relation between σ′ and η

σ′ = 2− η. (3.87)

Since both Cβ
p,I

tot and CΛ share the same critical exponent 2 − η, it is clear

that Cβp,I

per , the other scalar form of the correlation functions of the intrinsic plastic

distortion field, also shares this critical exponent, according to Eq. (3.77).

Thus the correlation functions of three physical quantities (the GND density ρ,

the crystalline orientation Λ, and the intrinsic plastic distortion βp,I) all share the

same underlying universal critical exponent η for self-similar morphologies, in the

case of zero residual stress, and still hold in the limit of slow imposed deformation.

Table 3.1 verifies the existence of single underlying critical exponent in both two

and three dimensional simulations for each type of dynamics. Imposed strain,

studied in Ref. 52, could in principle change η, but the scaling relations derived

here should still apply. The strain, of course, breaks the isotropic symmetry,

allowing even more allowed correlation functions to be measured.
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3.5 Conclusion

In our earlier works [155, 52, 55], we have proposed a flexible framework of CDD

to study complex mesoscale phenomena of collective dislocation motion. Tradi-

tionally, deterministic CDDs have missed the experimentally ubiquitous feature of

cellular pattern formation. Our CDD models have made progress in that respect.

In the beginning, we focused our efforts on describing coarse-grained dislocations

that naturally develop dislocation cellular structures in ways that are consistent

with experimental observations of scale invariance and fractality, a target achieved

in Ref. 52. However, that paper studied only 2D, instead of the more realistic 3D.

In this manuscript, we go further in many aspects of the theory extending the

results of our previous work:

We provide a derivation of our theory that explains the differences with

traditional theories of plasticity. In addition to our previously studied climb-

glide (CGD) and glide-only (GOD-MDP) models, we extend our construction in

order to incorporate vacancies, and re-derive [11] a different glide-only dynam-

ics (GOD-LVP) which we show exhibits very similar behavior in 2D to our CGD

model. It is worth mentioning that in this way, the GOD-LVP and the CGD

dynamics become statistically similar in 2D, while the previously studied, less

physical, GOD-MDP model provides rather different behavior in 2D [52].

We present 3D simulation results here for the first time, showing qualitatively

different behavior from that of 2D. In 3D, all three types of dynamics – CGD,

GOD-MDP and GOD-LVP – show similar non-trivial fractal patterns and scaling

dimensions. Thus our 3D analysis shows that the flatter ‘grain boundaries’ we

observe in the 2D simulations are not intrinsic to our dynamics, but are an artifact
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of the artificial z-independent initial conditions. Experimentally, grain boundaries

are indeed flatter and cleaner than cell walls, and our theory no longer provides a

new explanation for this distinction. We expect that the dislocation core energies

left out of our model would flatten the walls, and that adding disorder or entan-

glement would prevent the low-temperature glide-only dynamics from flattening

as much.

We also fully describe, in a statistical sense, multiple correlation functions –

the local orientation, the plastic distortion, the GND density – their symmetries

and their mutual scaling relations. Correlation functions of important physical

quantities are categorized and analytically shown to share one stress-free exponent.

The anomaly in the correlation functions of βp, which was left as a question in our

previous publication [52], has been discussed and explained. All of these correlation

functions and properties are verified with the numerical results of the dynamics

that we extensively discussed.

As discussed in Sec. 3.1, our model is an immensely simplified caricature of the

deformation of real materials. How does it connect to reality?

First, we show that a model for which elastic strain energy minimization deter-

mines the dynamics produces realistic cell wall structures even while ignoring slip

systems, crystalline anisotropy [119], pinning, junction formation, and statistically

stored dislocations. The fact that low-energy dislocation structures (LEDS) pro-

vides natural explanations for many properties of these structures has long been

emphasized by Kuhlmann-Wilsdorf [136]. Intermittent flow, forest interactions,

and pinning will in general impede access to low energy states. These real-world

features, our model suggests, can be important for the morphology of the cell wall

structures but are not the root cause of their formation nor of their evolution under
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stress (discussed in previous work [52]).

One must note, however, that strain energy minimization does not provide the

explanation for wall structures in our model material. Indeed, there is an immense

space of dislocation densities which make the strain energy zero [156], including

many continuous densities. Our dynamics relaxes into a small subset of these

allowed structures – it is the dynamics that leads to cell structure formation here,

not purely the energy. In discrete dislocation simulations and real materials, the

quantization of the Burger’s vector leads to a weak logarithmic energetic preference

for sharp walls. This −µb/(4π(1− ν))θ log θ energy of low-angle grain boundaries

yields a log 2 preference for one wall of angle θ rather than two walls of angle θ/2.

This leads to a ‘zipping’ together of low angle grain boundaries. Since b → 0 in

a continuum theory, this preference is missing from our model. Yet, we still find

cell wall formation suggesting that such mechanisms are not central to cell wall

formation.

Second, how should we connect our fractal cell wall structures with those (frac-

tal or non-fractal) seen in experiments? Many qualitatively different kinds of

cellular structures are seen in experiments – variously termed cell block structures,

mosaic structures, ordinary cellular structures, . . . . Hansen et al. [101] recently

categorized these structures into three types, and argue that the orientation of

the stress with respect to the crystalline axes largely determines which morphol-

ogy is exhibited. The cellular structures in our model, which ignores crystalline

anisotropy, likely are the theoretical progenitors of all of these morphologies. In

particular, Hansen’s type 1 and type 3 structures incorporate both ‘geometrically

necessary’ and ‘incidental dislocation’ boundaries (GNBs and IDBs), while type 2

structures incorporate only the latter. Our simulations cannot distinguish between
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these two types, and indeed qualitatively look similar to Hansen’s type 2 struc-

tures. One should note that the names of these boundaries are misleading – the

‘incidental’ boundaries do mediate geometrical rotations, with the type 2 bound-

aries at a given strain having similar average misorientations to the geometrically

necessary boundaries of type 1 structures (Ref. 31, Fig. 8). It is commonly asserted

that the IDBs are formed by statistical trapping of stored dislocations; our model

suggests that stochasticity is not necessary for their formation.

Third, how is our model compatible with traditional plasticity, which focuses

on the total density of dislocation lines? Our model evolves the net dislocation

density, ignoring the geometrically unnecessary or statistically stored dislocations

with canceling Burger’s vectors. These latter dislocations are important for yield

stress and work hardening on macroscales, but are invisible to our theory (since

they do not generate stress). Insofar as the cancellation of Burger’s vectors on

the macroscale is due to cell walls of opposing misorientations on the mesoscale,

there needs to be no conflict here. Also our model remains agnostic about whether

cell boundaries include significant components of geometrically unnecessary dislo-

cations. However, our model does assume that the driving force for cell boundary

formation is the motion of geometrically necessary dislocations, as opposed to (for

example) inhomogeneous flows of statistically stored dislocations.

There still remain many fascinating mesoscale experiments, such as dislocation

avalanches [167, 71], size-dependent hardness (smaller is stronger) [251], and com-

plex anisotropic loading [223, 160], that we hope to emulate. We intend in the

future to include several relevant additional ingredients to our dynamics, such as

vacancies (Sec. 3.8.1), impurities (Sec. 3.8.2), immobile dislocations/SSDs and slip

systems, to reflect real materials.
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3.6 Physical quantities in terms of the plastic distortion

tensor

In an isotropic infinitely large medium, the local deformation u, the elastic distor-

tion βe and the internal long-range stress σint can be expressed [177, 155] in terms

of the plastic distortion field βp in Fourier space:

ũi(k) = Nikl(k)β̃p
kl(k),

Nikl(k) = − i

k2
(kkδil + klδik)− i

νkiδkl
(1− ν)k2

+i
kikkkl

(1− ν)k4
; (3.88)

β̃e
ij(k) = Tijkl(k)β̃p

kl(k),

Tijkl(k) =
1

k2
(kikkδjl + kiklδjk − k2δikδjl)

+
kikj

(1− ν)k4
(νk2δkl − kkkl); (3.89)

σ̃int
ij (k) = Mijmn(k)β̃p

mn(k),

Mijmn(k) =
2uν

1− ν

(kmknδij + kikjδmn
k2

− δijδmn
)

+u
(kikm
k2

δjn +
kjkn
k2

δim − δimδjn
)

+u
(kikn
k2

δjm +
kjkm
k2

δin − δinδjm
)

− 2u

1− ν
kikjkmkn

k4
. (3.90)

All these expressions are valid for systems with periodic boundary conditions.

According to the definition Eq. (3.12) of the crystalline orientation Λ, we can

replace ωe with βe and εe by using the elastic distortion tensor decomposition

Eq. (3.10)

Λi =
1

2
εijk(β

e
jk − εejk). (3.91)

Here the permutation factor acting on the symmetric elastic strain tensor gives
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zero. Hence we can express the crystalline orientation vector Λ in terms of βp by

using Eq. (3.89)

Λ̃i(k) =
1

2
εijk

{
1

k2
(kjksδkt + kjktδks − k2δjsδkt)

+
kjkk

(1− ν)k4
(νk2δst − kskt)

}
β̃p
st(k)

=
1

2k2
(εijtkjks + εijskjkt − k2εist)β̃

p
st(k).

(3.92)

3.7 Energy dissipation rate

3.7.1 Free energy in Fourier space

In the absence of external stress, the free energy F is the elastic energy caused by

the internal long-range stress

F =

∫
d3x

1

2
σint
ij ε

e
ij =

∫
d3x

1

2
Cijmnε

e
ijε

e
mn, (3.93)

where the stress is σint
ij = Cijmnε

e
mn, with Cijmn the stiffness tensor.

Using the symmetry of Cijmn and ignoring large rotations, εeij = (βe
ij + βe

ji)/2,

we can rewrite the elastic energy F in terms of βe

F =

∫
d3x

1

2
Cijmnβ

e
ijβ

e
mn. (3.94)

Performing a Fourier transform on both βp
ij and βp

mn simultaneously gives

F =

∫
d3x

∫
d3k

(2π)3

∫
d3k′

(2π)3
ei(k+k′)x

×
(

1

2
Cijmnβ̃

e
ij(k)β̃e

mn(k′)

)
. (3.95)
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Integrating out the spatial variable x leaves a δ−function δ(k + k′) in Eq. (3.95).

We hence integrate out the k-space variable k′

F =

∫
d3k

(2π)3

1

2
Cijmnβ̃

e
ij(k)β̃e

mn(−k). (3.96)

Substituting Eq. (3.89) into Eq. (3.96) gives

F =

∫
d3k

(2π)3

1

2

(
CijmnTijpq(k)Tmnst(−k)

)
β̃p
pq(k)β̃p

st(−k)

= −
∫

d3k

(2π)3

1

2
Mpqst(k)β̃p

pq(k)β̃p
st(−k), (3.97)

where we skip straightforward but tedious simplifications.

When turning on the external stress, we repeat the same procedure used in

Eq. (3.95), yielding

F ext = −
∫
d3x σext

ij β
p
ij = −

∫
d3k

(2π)3
σ̃ext
ij (k)β̃p

ij(−k). (3.98)

3.7.2 Calculation of energy functional derivative with re-

spect to the GND density %

According to Eq. (3.17), the infinitesimal change of the variable δ% is given in

terms of δβp

δ%ijk = −gijls∂l
(
δβp

sk

)
. (3.99)

Substituting Eq. (3.99) into Eq. (3.27) and applying integration by parts, the

infinitesimal change of F is hence rewritten in terms of βp

δF [βp] =

∫
d3x gijls∂l

(
δF
δ%ijk

)
δβp

sk. (3.100)
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According to Eq. (3.24), it suggests

δF [βp] =

∫
d3x

δF
δβp

sk

δβp
sk =

∫
d3x (−σsk)δβp

sk. (3.101)

Comparing Eq. (3.100) and Eq. (3.101) implies

gijls∂l

(
δF
δ%ijk

)
= −σsk, (3.102)

up to a total derivative which we ignore due to the use of periodic boundary

conditions.

3.7.3 Derivation of energy dissipation rate

We can apply variational methods to calculate the dissipation rate of the free

energy. As is well known, the general elastic energy E in a crystal can be expressed

as E = 1
2

∫
d3x σijε

e
ij, with εeij the elastic strain. An infinitesimal change of E is:

δE =
1

2

∫
d3x σijδε

e
ij +

1

2

∫
d3x δσijε

e
ij =

∫
d3x σijδε

e
ij, (3.103)

where we use σijδε
e
ij = Cijklε

e
klδε

e
ij = δσijε

e
ij.

So the infinitesimal change of the free energy Eq. (3.20) is

δF =

∫
d3x

(
σint
ij δε

e
ij − σext

ij δε
p
ij

)
. (3.104)

We apply the relation εe = ε− εp, where εp is the plastic strain and ε is the total

strain:

δF =

∫
d3x

(
σint
ij δεij − σint

ij δε
p
ij − σext

ij δε
p

)
. (3.105)

Using the symmetry of σij and ignoring large rotations, εij = 1
2
(∂iuj + ∂jui), we

can rewrite the first term of Eq. (3.105) as
∫
d3x σint

ij δ(∂iuj). Integrating by parts
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yields
∫
d3x

(
∂i(δujσ

int
ij ) − δuj∂iσint

ij

)
. We can convert the first volume integral to

a surface integral, which vanishes for an infinitely large system. Hence

δF =

∫
d3x

(
∂iσ

int
ij δuj − (σint

ij + σext
ij )δεpij

)
. (3.106)

The first term of Eq. (3.106) is zero assuming instantaneous elastic relaxation due

to the local force equilibrium condition,

δF = −
∫
d3x (σint

ij + σext
ij )δβp

ij, (3.107)

using the symmetry of σij and εpij = 1
2
(βp

ij + βp
ji).

The free energy dissipation rate is thus δF/δt for δβp
ij = ∂βp

∂t
δt, hence

∂F
∂t

= −
∫
d3x (σint

ij + σext
ij )

∂βp
ij

∂t

= −
∫
d3x (σint

ij + σext
ij )Jij. (3.108)

When dislocations are allowed to climb, substituting the CGD current

Eq. (3.36) into Eq. (3.108) implies that the free energy dissipation rate is strictly

negative

∂F
∂t

= −
∫
d3x (σint

ij + σext
ij )
[
vl%lij

]
= −

∫
d3x
|%|
D
v2 ≤ 0. (3.109)

When removing dislocation climb by considering the mobile dislocation popu-

lation, we substitute Eq. (3.40) into Eq. (3.108) to guarantee that the rate of the

change of the free energy density is also the negative of a perfect square

∂F
∂t

= −
∫
d3x(σint

ij + σext
ij )

[
v′l
(
%lij −

1

3
δij%lkk

)]

= −
∫
d3x
|%|
D
v′2 ≤ 0. (3.110)
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3.8 Model Extensions: Adding vacancies and disorder to

CDD

3.8.1 Coupling vacancy diffusion to CDD

In plastically deformed crystals at low temperature, dislocations usually move only

in the glide plane because vacancy diffusion is almost frozen out. When tempera-

ture increases, vacancy diffusion leads to dislocation climb out of the glide plane.

At intermediate temperatures, slow vacancy diffusion can enable local creep. The

resulting dynamics should couple the vacancy and dislocation fields in non-trivial

ways. Here we couple the vacancy diffusion to the dislocation motion in our CDD

model.

We introduce an order parameter field c(x), indicating the vacancy concentra-

tion density at the point x. The free energy F is thus expressed

F = FDis + FV ac =

∫
d3x

(
1

2
σijε

e
ij +

1

2
α(c− c0)2

)
, (3.111)

where α is a positive material parameter related to the vacancy creation energy,

and c0 is the overall equilibrium vacancy concentration density.

Assuming that GNDs share the velocity v in an infinitesimal volume, we write

the current J for GNDs

Jij = vu%uij. (3.112)

The current trace Jii describes the rate of volume change, which acts as a source

and sink of vacancies. The coupling dynamics for vacancies is thus given as

∂tc = γ∇2c+ Jii, (3.113)
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where γ is a positive vacancy diffusion constant.

The infinitesimal change of the free energy F (Eq. 3.111) is

δF =

∫
d3x

(
δFDis

δβp
ij

δβp
ij +

δFV ac

δc
δc

)
. (3.114)

We apply Eq. (3.107) and δFV ac/δc = α(c− c0)

δF =

∫
d3x

(
−σijδβp

ij + α(c− c0)δc

)
. (3.115)

The free energy dissipation rate is thus δF/δt for δβp
ij = ∂βp

∂t
δt and δc = ∂c

∂t
δc,

hence

∂F
∂t

= −
∫
d3x

(
σij
∂βp

ij

∂t
− α(c− c0)

∂c

∂t

)
. (3.116)

Substituting the current J (Eq. 3.112) and Eq. (3.113) into Eq. (3.116) gives

∂F
∂t

= −
∫
d3x
(
σij(vu%uij)− α(c− c0)(γ∇2c+ vu%uii)

)
= −

∫
d3x
(
(σij − α(c− c0)δij)%uij

)
vu

−
∫
d3xαγ(∇c)2, (3.117)

where we integrate by parts by assuming an infinitely large system.

If we choose the velocity vu = D
|%|

(
σij − α(c − c0)δij

)
%uij, (D is a positive

material dependent constant and 1/|%| is added for the same reasons as discussed in

Sec. 3.2.3), the free energy is guaranteed to decrease monotonically. The coupling

dynamics for both GNDs and vacancies is thus ∂tβ
p
ij = D

|%|

(
σmn − α(c− c0)δmn

)
%umn%uij,

∂tc = γ∇2c+ D
|%|

(
σmn − α(c− c0)δmn

)
%umn%ukk.

(3.118)

This dynamics gives us a clear picture of the underlying physical mechanism: the

vacancies contribute an extra hydrostatic pressure p = −α(c− c0).
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3.8.2 Coupling disorder to CDD

In real crystals, the presence of precipitates or impurities results in a force pinning

nearby dislocations. We can mimic this effect by incorporating a spatially varying

random potential field V (x).

In our CDD model, we can add the interaction energy between GNDs and

random disorder into the free energy F (Eq. 3.20)

F = FE + FI =

∫
d3x

(
1

2
σint
ij ε

e
ij − σext

ij ε
p
ij + V (x)|%|

)
, (3.119)

where FE indicates the elastic free energy corresponding to the integral of the first

two terms, and FI indicates the interaction energy, the integral of the last term.

An infinitesimal change of the free energy is written

δF = δFE + δFI =

∫
d3x

(
δFE
δβp

ij

δβp
ij +

δFI
δβp

sk

δβp
sk

)
. (3.120)

In an infinitely large system, Eq. (3.107) gives

δFE
δβp

ij

= −(σint
ij + σext

ij ), (3.121)

and Eq. (3.100) implies

δFI =

∫
d3xgijls∂l

( δFI
δ%ijk

)
δβp

sk

=

∫
d3xgijls∂l

(
V (x)

%ijk
|%|

)
δβp

sk. (3.122)

Substituting Eq. (3.121) and Eq. (3.122) into Eq. (3.120) gives

δF = −
∫
d3x

(
σint
ij + σext

ij − gmnli∂l
(
V (x)

%mnj
|%|

))
δβp

ij

= −
∫
d3xσeff

ij δβ
p
ij. (3.123)
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where the effective stress field is σeff
ij = σint

ij + σext
ij − gmnli∂l

(
V (x)

%mnj
|%|

)
.

By replacing σij with σeff
ij in the equation of motion of either allowing climb

(Eq. 3.36) or removing climb (Eqs. 3.40 and 3.44), we achieve the new CDD model

that models GNDs interacting with disorder.
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CHAPTER 4

VISUALIZATION, COARSENING AND FLOW DYNAMICS OF

FOCAL CONIC DOMAINS IN SIMULATED SMECTIC-A LIQUID

CRYSTALS 1

4.1 Introduction

Translational order is frail. Most broken symmetry states respond elastically un-

til deformations are large. In contrast, crystals fracture or plastically yield at

strains of a few parts per thousand. In equilibrium, they form grain boundaries

– expelling rotation gradients into walls – when subject to atomic-scale boundary

displacements. An analogous expulsion occurs in smectics, which expel deviations

from equal-layer spacing in a manner that can be mapped onto the Meissner/Higgs

effect [67]. Instead of grain boundaries, this expulsion of strain in smectics results

in a remarkable patterns of singular ellipses, hyperbolas, and parabolas known as

focal conic domains (FCDs, Fig. 4.1), which are the signature of the smectic one-

dimensional layered structure. Smectics provide a window into deep properties of

translational order, lending insight into crystalline behavior.

FCDs have appealed to theorists and experimentalists since the early days [81],

partially because of their unique geometric origin. In its minimum energy state, a

smectic has lamellar layers spaced at equal distances. Equal layer spacing implies

a singularity at the centers of curvature of the surfaces. This constraint of equal

layer spacing, surprisingly, determines the allowed shapes of the smectic’s lamella.

The lamella choose surfaces whose centers of curvature trace out curves rather than

1Liarte, D. B., Bierbaum, M., Zhang, M., Leahy, B. D., Cohen, I., & Sethna, J. P. (2015).
Visualization, coarsening, and flow dynamics of focal conic domains in simulated smectic-A liquid
crystals. Physical Review E, 92(6), 062511.
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costly two-dimensional internal boundaries. These surfaces are called cyclides of

Dupin [112]; their centers of curvature trace out one-dimensional conic sections,

typically confocal ellipses and hyperbolas. The resulting structures in smectics are

known as FCDs.

(a) (b)

(c) (d)

Figure 4.1: Example experimental and simulation images of smectic-A.
Experimental (a and c) and simulation (b and d) results for polarizer
microscopy images of a section of smectic-A slab for planar (a and b)
and homeotropic anchoring (c and d).

On a practical level, an understanding of focal conic dynamics is necessary

for the description of a variety of liquid-crystalline states, such as smectic-A

[68, 132], smectic-C and C∗ [36, 180], lyotropic lamellar [34, 35], twist-bend [164],

and even metallotropic liquid crystals [165]. We focus our attention on smectic-

A’s, which are the simplest case. Our current understanding of focal conic struc-

tures in smectics at rest includes the study of geometrical and energetic properties

[228, 240, 130], the effects of anchoring for several substrates [233, 115, 116], the

role played by dislocations [166, 133], and beautiful insights extracted from a hid-

den symmetry of the Poincaré group [14]. When a smectic is driven by external

dilatative stresses, experiments on initially planar-aligned samples show a sequence
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of elastic and plastic strain patterns that ultimately lead to a polygonal array of

parabolic focal conic lines [211]. More recently, experiments on smectic samples

with antagonistic anchoring conditions subjected to shear flow report on the emer-

gence of satellite defects [47]. Further recent developments on the smectic rheology

have been reported in [84, 85]. However, progress in simulating smectic dynamics

has been slow, perhaps because of the challenge of incorporating defect dynam-

ics into Ericksen-Leslie-Parodi theory. Simulations of smectics are often based on

atomistic and molecular dynamics approaches [90, 15, 238]. Numerical solutions

of the Ericksen-Leslie equations and Monte Carlo methods using the Frank free

energy have been reported for nematics (see e.g. [64, 97]). As far as the authors

know, there has been no report of the observation of focal conic domains in smectic

simulations.

In this paper we present results of our simulations of an effective theory of

smectic-A liquid crystals. Our dynamics is an extension of Ericksen-Leslie-Parodi

dynamics and the Oseen-Frank free energy [190, 272], in that we allow focal conic

singularites by allowing the order parameter to change magnitude, but we continue

to forbid dislocations. The use of modern GPU computing makes these simulations

feasible. Our simulations naturally form FCDs upon relaxation of random initial

conditions and allow us to study these fascinating defects both during formation

and under mechanical loading. We find good comparisons with experiments per-

formed under similar situations. Our approach allows us to investigate focal conic

structures in great detail through simulations, and provides us with an invaluable

tool to understand their several aspects, ranging from energetics, topology and ge-

ometry to anchoring and mechanical strain effects, nicely complementing current

experimental approaches [235].
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4.2 Equations of Motion

Our description of the smectic starts from its elastic free energy

Ψ =

∫
dr [F (Nµ, ∂µNν) + λ · ∇ ×N ] , (4.1)

which is a functional of the layer-normal field and its derivatives. The layer normal

field N can be written in terms of the scalar displacement field u as N = N0−∇u

[68, 45], where N0 is the undeformed layer normal. The free-energy density F is

given by:

F =
B

4
(1−N4)2 +KN2 (∇ ·N )2

+
1

2
K24N

2∇ · [(N · ∇)N −N (∇ ·N )] .

(4.2)

Here, the first term penalizes compression or extension of the layers away from N =

1. The second and third terms are related to splay and saddle-splay distortions,

which are inherited from the Oseen-Frank elastic free energy [190, 272, 79]. Notice

that the order parameterN plays a dual role, and is very close to a unit vector field

away from the focal singularities because of the small de Gennes’ length (we will

elaborate on this choice of dynamics in the next few paragraphs). The Lagrange

multiplier λ forbids dislocations by ensuring that the layer-normal field is curl-

free, since the vector ∇ ×N is the density of dislocations (the Burger’s vector

in units of the average layer spacing is given by the contour and area integrals∮
N · d` =

∫
Γ
∇×N · ds). We will treat the effects and dynamics of dislocations

in a separate paper 2. Note that there is no term in the free energy to account for

anchoring at the boundaries. We instead enforce strict anchoring, by doubling the

simulation volume and using suitably symmetrized initial conditions, to enforce

the homeotropic or planar boundary conditions (see section 4.3 for more details).

Note that a more general smectic free energy should depend on two order

2D. B. Liarte, A. Acharya, M. Bierbaum, and J. P. Sethna, in preparation.
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parameters, such as the displacement field and the tensorial liquid-crystalline order

parameter. For uniaxial order, it is possible to write the elastic free energy as a

functional of the Frank director n and layer normal N vector fields. Assuming

these vectors are parallel (they should be in smectics-A), and that their sizes are

nearly constant (they will be constant except near singularities), it is possible to

minimize the free energy with respect to one of the fields, yielding a relationship

between N2 and n2, and derive a (complicated) effective free energy in terms of a

single field. For the sake of simplicity, we bypassed this analysis, and started with

a single order parameter. The unusual amplitude dependence (∼ N2) multiplying

the K and K24 elastic terms is motivated by gradient distortions of the form

(∇Q)2, which are proportional to N2 for nematic uniaxial ordering [264], where

Q = ((Qi j)) is the Maier-Saupe tensorial order parameter. Since n and N are

parallel, we use N4 in the first term of Eq. (4.2) because the lowest order invariant

in a Landau-de Gennes theory (trQ2) is proportional to N4. Strictly speaking,

neglecting an effective coupling between n and N , the compression term should

be proportional to (1−N2)2, as in the first term of the r.h.s. of Eq. (4.4). Later

on we will get back to this choice for the smectic dynamics (see Eqs. (4.4) and

(4.5)).

To arrive at the smectic’s dynamical equations of motion, we evolve the layer

normal field in the simplest possible form, assuming N relaxes directly towards

equilibrium. These dynamics give a partial differential equation for the gradient-

descent evolution of N :

γ Ṅ = −
(
δΨ

δN
−
〈
δΨ

δN

〉)
, (4.3)

where the angle brackets denote a spatial average and γ is a viscosity constant; γ

can be written in terms of Leslie coefficients as γ = α3−α2 [68]. The second term

of (4.3) ensures that the net number of layers in the cell given by N0 does not
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change during the gradient descent step. Equations (4.1-4.3) differ from Ericksen-

Leslie-Parodi (ELP) dynamics in a few aspects. We relax the constraint of equal

layer spacing |N | = 1, which is ensured in ELP theory by means of a Lagrange

multiplier, and we consider amplitude-dependent elastic constants. Apart from the

dependence on N , our dynamics is a particular case of ELP theory in the limit

of infinite fluid viscosity. As a result, our centers of mass move affinely with the

external shear and only the orientation of the molecules change.

We have also considered two other choices for the energy-gradient dynamics,

which are not completely described by Eqs. (4.1-4.3). For future reference, we

label the dynamics described in the last paragraph as dynamics I. For our second

choice (dynamics II ), we keep equations (4.1) and (4.3), but replace the free energy

density by:

FII =
B

4

(
1−N2

)2
+K (∇ ·N )2 . (4.4)

Note that this choice of dynamics does not make contact with the tensorial order

parameter Q. Since there is no amplitude dependence, the saddle-splay term is a

surface term that vanishes in a system with periodic boundary conditions. On the

one hand, the absence of a saddle-splay term limits the morphology of the allowed

focal conic domains, since this term is associated with the Gaussian curvature

energy of the layers [132] (the splay term is associated with the mean curvature).

On the other hand, the equations of motion are simpler for dynamics II, so that

we can implement simulations in a more efficient way, and study the numerical

effects of varying grid sizes and de Genne’s lengths (see Appendix 4.8.1). Finally,

for our third choice (dynamics III ) we consider the free energy as a functional of

the displacement field and its derivatives, and replace Eq. (4.2) by:

FIII =
B

4

[
1− (∇u)2

]2
+K (∇ · ∇u)2 , (4.5)
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which is equivalent to (4.4), and Eq. (4.3) by

γ

λ2
u̇ = −δΨ

δu
, (4.6)

where γ is a viscosity constant, and λ is a length scale that we take to be the grid

spacing a for convenience. This roughly corresponds to a smectic where the motion

of layers is the dynamical bottleneck, rather than the reorientation of molecules

(and hence the layer normals). The numerical evolution is slower for this choice of

dynamics, probably due to derivatives of higher order in the equations of motion.

Fig. 4.2 shows polarizer microscopy images of a simulated smectic-A planar section,

starting from the same initial condition (which has been used in Fig. 4.1(b)) and

evolved using dynamics I (a), II (b) and III (c). For (a) and (b), we evolved the

initial configuration for a period of about t = 2000τ , where τ ≡ γ/B. (c) was

obtained using dynamics III for a longer time (∼ 10000τ). The morphology in

(c) resembles the FCD pattern shown in Fig. 2d of [165] for metallotropic liquid

crystals.

(a) (b) (c)

Figure 4.2: Simulation results for a planar section of smectic-A as viewed
through polarizer microscopy images, simulated using dynamics I (a),
II (b), and III (c).

To impose the external shear and extensional flows, we assume the layers are

dragged with a displacement field determined by the flow. For simple shear, the

layers are dragged in the x direction according to the displacement field

us
x(x, y, z; t) =

A

lz
(z − lz) sin (ωt) , (4.7)
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where lz is the system size in the z direction, A is the amplitude, and ω is the

frequency of oscillation; our simulations are done at a fixed Ericksen number

γωl2z/K ≈ 129. Extensional dynamics are implemented by stretching the smec-

tic in the z direction while it contracts in the orthogonal x and y directions, as

described by the set of equations

lz(t) = lz(0)f(t), lx,y(t) =
lx,y(0)√
f(t)

f(0) = 1, f(t) > 0, ∀ t ∈ [0,∞) ,

(4.8)

where lx, ly, and lz are the grid sizes along the x, y, and z directions. To incorpo-

rate shear and dilatational dynamics simultaneously with the director relaxation,

we employ an operator splitting method, alternatively applying gradient-descent

motion from Eq. 4.3 and one of the loading dynamics from Eqs. (4.7) & (4.8).

4.3 Experimental and simulation setup

We perform analogous experiments on 8CB in the SmA phase, using a custom-

built shear cell that allows precise control of the plate separation for gaps as small

as 2-5 µm while keeping the plates parallel to < 1 part in 103 [157], allowing us to

explore a large range of strain amplitudes and Ericksen numbers. The shear cell

is outfitted with two parallel glass plates, which we use as the sample boundaries,

and imaged with cross-polarized microscopy. We treat the glass slides with cetyl-

trimethylammonium bromide for homeotropic anchoring and with a poly-imide

treating for planar anchoring.

At the beginning of our simulations, we generate normally distributed random

grids for each spatial component of the layer-normal field. We then enforce anchor-

ing constraints, and use a Gaussian filter to smooth the field on short length scales.
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To implement boundary conditions, we double the grid size in the z direction, and

require that

Nx(lz + z) = Nx(lz − z), Ny(lz + z) = Ny(lz − z),

Nz(lz + z) = −Nz(lz − z), (4.9)

for planar anchoring, and

Nx(lz + z) = −Nx(lz − z), Ny(lz + z) = −Ny(lz − z),

Nz(lz + z) = Nz(lz − z), (4.10)

for homeotropic anchoring, with 0 ≤ z ≤ lz − 1. Mixed homeotropic and planar

boundary conditions can be enforced in a similar way by quadrupling the thickness

of the simulation grid. In order to remove the curl component of the field, we use a

Helmholtz decomposition in Fourier space. The resulting components are divided

by the mean length of the director field so that the field has average unit norm. We

use an Euler integrator with adaptive step size [200] in order to integrate our partial

differential equations. The driving code is written in Python. Each step of the

integration is evaluated using parallel computing on a GPU using CUDA. Spatial

derivatives are evaluated with Fourier methods (FFTs). In this letter we present

results for fixed values for the ratio K24/K = −1.5, and for deGenne’s length

scale ξ =
√
K/B = 0.2a, where a is the finite-difference grid spacing. (Larger ξ

produces similar results with blurred features; see Appendix 4.8.1). Except in the

study of dilatational flow, we have presented results for fixed values of lz = 320 ξ. A

systematic study of the dependence of the dynamical behavior on sample thickness

is beyond the scope of the present work.
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4.4 Visualization

From these random initial conditions, our gradient-descent dynamics forms FCDs

which closely resemble those seen in experiments as shown in Fig. 4.1. We visualize

the focal conics domains in our simulations through several techniques we have

developed. We render polarizer microscopy images, as shown in Fig. 4.1, by ray-

tracing light using the Fresnel equations for anisotropic dielectrics [132]. Figure 4.3

shows a plot of the free energy density F , overlaid with cross-sections of the layer

surfaces (contours of constant N0 · r − u). The free energy is high at the focal

lines, where the layer contours form cusps.

Figure 4.3: Simulated energy density (white-blue density plot) and some sec-
tions of the layer surfaces (black lines) at the top section z = lz of the
system with planar anchoring (Fig 4.1b).

Three visualizations of the three-dimensional smectic structure are shown in
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figure 4.4. Figure 4.4a is a volume rendering visualization of the free energy den-

sity where each voxel is given a color and degree of transparency that is associated

with its free energy density. The high energy regions (red) have organized into the

characteristic focal conic structure of smectics, forming multiple ellipses, each with

a hyperbola coming out of its focus. The focal conic character of the smectic struc-

tures is reinforced by the loci of the principal centers of curvature of the smectic

layers, shown in Fig. 4.4b, which coincide with the regions of high energy density

in 4.4a [132]. To calculate the radii of curvature, we project each layer’s second

fundamental form tensor Mµν = ∂µ∂νu into the layer-surface tangent plane. The

principal radii of curvature are equal to the inverse of the principal curvatures,

which are the eigenvalues of the projected Mµν . The shared surface normals in-

tersect at the centers of curvature for the layers, which form the confocal conics

[228]. Finally, Fig. 4.4c shows three-dimensional level surfaces of the mass-density

field.

(a) (b)

(c)

Figure 4.4: 3D visualizers of a simulation of smectic-A liquid crystals with
planar anchoring. (a) Volume rendering visualization of the energy
density; (b) loci of the centers of curvature of the layer surfaces; (c)
layer surfaces.

129



4.5 Coarsening

To study the coarsening dynamics of focal conics we simulate with no anchoring

at the boundary, since the boundary constraint introduces a length scale for the

distribution of the layer-surface radii of curvature. As the system evolves, our

dynamics seem to energetically favor ellipses with large linear eccentricity c. The

layers around singular ellipses become flatter with increasing c, and converge to

planes when c → ∞. This is the dominant coarsening mechanism in our simula-

tions. The coarsening of focal conics becomes slower with increasing time, but it

does not stop until a uniform flat configuration is reached. (Our computational de-

fect structures can be stabilized with simulated ‘dust’ particles on the glass slides,

by introducing spatially-dependendent energetic anchoring on the boundaries.) To

quantify the coarsening, we investigate the probability distribution of the principal

radii of curvature R, which define a characteristic distance to the focal conics, and

are distributed according to a function P (R, t) which also depends on time. The

scaling assumption states that the morphology at late times statistically scales with

a single length scale R∗, so in particular P (R, t) ∝ Π(R/R∗(t)) for some (possibly

universal) function Π(X). In Appendix 4.8.2, we propose two possible arguments

yielding the cutoff radius of curvature R∗ ∼ t1/4, and R∗ ∼ [t ln(t/τc)]
1/4. Fig 4.5

shows scaling collapse plots that are consistent with both of these possibilities,

(see Appendix 4.8.2 for more details, and for a discussion of the decay in the en-

ergy density with time). Using the first scaling form (∼ tα), we observe that the

exponent α = 0.5 gives a better numerical collapse of the data. We do not show

the collapse plot for this exponent because it does not have theoretical motivation.

Incidentally, the inclusion of logarithmic corrections (due to the singularities near

the conic sections) makes the collapse worse for α = 0.5, but improves the collapse
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using α = 0.25. These results do not change if we use dynamics II 3. The approach

to equilibrium by increasing eccentricity to minimize bending energy is an inter-

esting contrast to the typical approach to equilibrium of decreasing eccentricity to

minimize a surface energy.

4.6 Flow dynamics

Our simulations and experiments also provide a window to understand dynamics

of focal conic domains under shear. From our simulations, simple shear oscillations

parallel to the glass slides primarily act to accelerate the focal conics’ coarsening.

When we shear stabilized focal conic structures, our simulations show that the fo-

cal conics are not significantly altered by the planar shear, in qualitative agreement

with our experiments with strong homeotropic anchoring. In addition, our simu-

lations allow us to tune the smectic’s anchoring at the boundary. As a result, our

simulations promise to discern the effects of anchoring imperfections, such as weak

or spatially-modulated anchoring, on the rich structures that can be produced in

experiments (see supplemental animations [151]).

Under dilative strain (stretching the layer spacing), homeotropic smectic-A

liquid crystals are known to release free energy by forming undulations [69, 59, 58],

and focal conic domains [211, 48]. In Fig. 4.6a we show simulation results for

the total free energy as a function of time for a dilative dynamics with f(t) =

1 + A(1 − cosωt), where A = 0.25, and ω = 2π/1000 (τ−1). The first sharp peak

at about t1 = 100 τ marks the onset of an undulation pattern, which is depicted

3Previously, using a different amplitude dependence of the elastic constants (∼ N4), we were
motivated by an apparent self-similar structure to propose a third scaling form (∼ tα, with
α ≈ 0.29). The interested reader should refer to the second version of this manuscript in the
arXiv repository [152].
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in the layers contour plot in the inset of Fig. 4.6a. Linear stability analysis using

the methods of [69, 59, 58] leads to a critical strain threshold εc that is given by

the solution of the equation (see Appendix 4.8.3):

εc =
πξ

lz

√
1− 6εc + 6εc2

(1− 3εc + 2εc2)2 ≈
πξ

lz
, (4.11)

since εc is small. This analysis results in a buckling wavelength of ≈ 9a ≈ 0.04lx,

which is consistent with our simulations (see inset of Fig. 4.6a), as is the onset

strain of the instability (the first peak in Fig. 4.6a) is later than the instability onset

by approximately a factor of two, because of the growth time of the undulation

pattern). The second peak of the free energy signals the onset of a configuration

which evolves towards a complex pattern of focal conic domains. Fig. 4.6b and

4.6c show crossed-polarizer images obtained from simulations and experiments at

maximum strain, respectively. We found compatible results using dynamics II.

Note the fascinating fact that the critical change in length εlz ≈ πξ is a mi-

croscopic length. Except near a critical point, one expects ξ to be of the order

of a molecular size; the instability threshold 4 for a bulk material happens when

one stretches it by one molecular length [143]! A simple calculation for crystals

shows an analogous result for grain boundaries: a bent crystal’s ground state has

dislocations once the net displacements become of the order of the lattice constant

(up to a logarithm of the crystal size over the atomic size). Unlike crystals which

are metastable, smectics are unstable under long-wavelength deformations with

atomic-scale displacements – the lower-energy defective state has no associated

nucleation barrier. Thus the equilibrium continuum elastic theory of materials

with broken translation invariance is frail [40, 41]– it is only valid in general for

microscale net displacement differences over macroscale distances.

4This instability to defect structures is not true for two-dimensional smectics with undulat-
ing [74, 59] boundary conditions [117, Ch. 4].
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4.7 Conclusions

To conclude, we have presented results from numerical simulations and experiments

of smectic-A liquid crystals. In our simulations, focal conic domains spontaneously

emerge out of random initial configurations. The numerical reproduction of the

experimental morphologies is striking, for both planar and homeotropic boundary

conditions. Our several visualization tools comprise the description of the most

important structural features of FCDs. We have also characterized the coarsening

of FCDs, by studying the scaling behaviour associated with the distribution of the

layer surface radii of curvature, which is the length scale related to the size of the

focal conics. Finally, we have studied the system response to strain, which includes

a numerical and experimental investigation of the classical dilatational instability,

correctly predicting the instability threshold, and the onset of a state populated

with parabolic focal conic domains.

4.8 Appendix

4.8.1 Convergence tests

In this section we present some results of a test to analyze the effects of small grid

sizes and small de Genne’s length (ξ = 0.2a) in our simulations. We start with a

smoothened random initial field of linear size 16a, and evolve it for a very short time

(≈ 0.5τ), using dynamics II with ξ = 0.2a 5 and no anchoring at the boundaries.

We then duplicate the resulting configuration into larger lattices, with linear size

5We do not use dynamics I in these calculations because it is harder to control numerical
instabilities for larger de Genne’s length.
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32, 64 and 128. To generate a smooth interpolation between lattice points of the

larger lattices, we copy the Fourier components of small wave number, and leave

the coefficients associated with short wavelengths equal zero. To be consistent with

the periodic boundary conditions, we divide the smaller cubic grid into eight equal

pieces, and copy the configuration of each piece into the corresponding corner of

the larger grid in Fourier space. To estimate the finite-size error, we evaluate

σb = max
µ∈{x,y,z}

max
i,j,k

∣∣Nµ(b i, b j, b k)−N ′µ(i, j, k))
∣∣ (4.12)

where N and N ′ are the large and small lattices, with linear sizes l and l′ = b l,

respectively. The indices i, j, and k are grid coordinates of N ′. The second row

of Table 4.1 shows the error comparison for this initial configuration. Since the

configuration is copied (with a smooth interpolation) from the smaller to the larger

lattices, this error is of order 10−15. We then evolve this initial state for each grid

for a period of time of about 200τ , keeping ξ = 0.2a for l = 16, and using dynamics

II. In order to have comparable simulations, we multiply K and K24 by four (thus

increasing ξ by a factor of two) each time we double the grid size, since the wave

vectors are divided by two, and the splay and saddle-splay terms contribute with

two gradient terms. The results for ξL=16 = 0.2a and t = 200τ are shown in the

third row of Table 4.1. Note that the difference between the 323 lattice (with

ξ = 0.4a) and the 1283 lattice (with ξ = 1.6a) is of just about two percent. For

the sake of completeness, we started with the same initial state, and evolved each

lattice using dynamics II with ξL=16 = 0.4a (so that ξ = 0.8a, 1.6a, and 3.2a for

L = 32, 64 and 128, respectively). The results for this case are shown in the fourth

row. Notice that σ2(64, 128) for ξL=16 = 0.2a is comparable to σ4(32, 128) for

ξL=16 = 0.4a, because the 643 lattice in the third row and the 323 lattice in the

fourth row are simulated using the same de Genne’s length. The same comparison

holds between σ2(32, 128) for ξL=16 = 0.2a and σ4(16, 128) for ξL=16 = 0.4a. Note
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that this test analyzes convergence upon increasing both resolution and de Genne’s

length, and that ξ = 0.4a gives sensible results even for small lattices. We recall

that most of the results that have been presented in this paper were obtained

using dynamics I with ξ = 0.2a for large grids (2562 × 64). We keep the results

for dynamics I, even though it is harder to control numerical instabilities in this

case, because that is our only choice with a Gaussian curvature energy, which is

associated with the saddle-splay term. We emphasize that we do not observe a

significant change for our results for coarsening and dilative dynamics when we use

dynamics II with ξ = 0.4.

σ8 (16, 128) σ4 (32, 128) σ2 (64, 128)
Initial state 10−15 10−15 10−15

ξL=16 = 0.2a at t = 200τ 0.55 0.03 0.0007
ξL=16 = 0.4a at t = 200τ 0.02 0.0009 0.0007

Table 4.1: Convergence of simulation results with grid size. Comparison of
the errors of evolved simulation configurations for grids with increasing
resolution and de Genne’s length.

4.8.2 Scaling exponent for the coarsening of focal conics

The principal radii of curvature R define a characteristic distance to the fo-

cal conics: equally spaced layers develop singularities at their centers of curva-

ture. These radii have a time-dependent probability distribution P (R|t). Scal-

ing suggests that all correlation functions should scale with a single length scale

R∗(t) that diverges at late times, hence P (R|t) ≈ Π(R/R∗)/R∗ for some per-

haps universal function Π(X). (Here the last factor preserves normalization:∫
P (R)dR =

∫
Π(X)dX = 1.) In coarsening problems, it is often possible to

use simple energetic arguments to derive the power law divergence R∗(t) ∝ tα; for

example, phase separation in systems without hydrodynamic flow has α = 1/3 for
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conserved order parameters and α = 1/2 for non-conserved order parameters. Here

we give two possible scaling forms, of increasing sophistication. The first mimics

the standard energetic arguments and the second provides a refined argument in-

cluding a logarithmic correction due to defect cores (Fig. 4.5).

Away from the defect cores, where |N | ≈ 1, the free energy density scales as

R−2. So the average energy density is

E(R∗) =

∫
P (R)/R2dR. (4.13)

In traditional coarsening, one assumes that the integral for E(R∗) converges at

zero, so E(R∗) ∼ 1/(R∗)2. This leads to a force (tension) T = δE/δR∗ ∼ 1/(R∗)3.

Since the order parameter is non-conserved 6,

Ṙ = −γ T, (4.14)

where γ is an effective inverse viscosity (see section 11.4 of [225]). This can be

solved giving R∗ ∼ t1/4 (Fig. 4.5a), and hence E(R∗(t)) ∼ 1/t1/2 (Fig. 4.7).

How does this change if we consider the defect cores, where |N | < 1? The

energy in the cones, near the focal conic line singularities, scales as the length

of the conics times ln(R/ξ), where ξ is de Gennes’ length scale. Within a focal

domain of size R∗, near the singular ellipse and hyperbola R → 0, the volume

fraction P (R) ∼ R, so that Π(X) ∼ X for small X. This leads to a divergence in

the integrated energy near the focal conic singularities, which is cut off by ξ,

E(R∗) =

∫ ∞
ξ

(1/R2)Π(R/R∗)/R∗dR

=

∫ ∞
ξ/R∗

Π(X)/(XR∗)2)dX

∼ (1/R∗)2

∫ 1

ξ/R∗
X/X2dX

= log(ξ/R∗)/(R∗)2, (4.15)

6Dynamics III could perhaps correspond to conserved dynamics.
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(see section 10.5 of [132]). After some calculation, Eq. (4.14) implies

R∗ ∼ [t ln(t/τc)]
1/4 , (4.16)

in the limit of large R or t. So if the focal domains are all of the same length

scale R∗, and the relaxation of the core singularites dominates the coarsening, we

expect a t1/4 scaling with a logarithmic correction, as in Fig. 4.5(b). There is a

large range of values for τc which collapse our data. Fig. 4.5b shows a scaling

collapse plot with the logarithmic corrections for τc = 100τ . Note that Eq. (4.16)

only applies for times times t larger than τc, hence the range of times used in the

collapse plot of Fig. 4.5(b). Our data for t < 200τ do not fit well in the collapse

plot, even when we consider lower τc so that t is still greater than τc; we surmise

that τc is associated with the time needed to form line singularities. Unfortunately,

we have not been able to verify this hypothesis, since there is no surface anchoring

in this case and the three-dimensional visualizers are not useful at early stages of

the dynamic evolution.

Both of these scaling forms are compatible with the data, given the limited

scaling regime (less than a decade in length, corresponding to less than three

decades in ‘size’); P (R, t) is clearly still evolving in shape from its non-universal

initial form.

4.8.3 Linear stability analysis for SmA under dilative

strain

We consider a situation where a thin slab of homeotropic smectic-A is subject to

dilative stress [69, 59, 58, 68, 45, 132]. In this case, the smectic layers are parallel
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to the glass slides, so that the stretching of the gap promotes an increase of the

interlayer spacing. Planar-layer configurations store a considerable amount of bulk

energy as strain is increased, which is released with the formation of an undulation

pattern after a critical strain is reached. Here we use the methods of [69, 59, 58]

to study the formation of undulation instabilities on smectic-A liquid crystals.

The displacement field associated with an undulation pattern of a smectic-A

can be written as:

u(r) = εz + u0 cos(qx) sin(kz), (4.17)

where we take k = π/lz to enforce strict homeotropic anchoring. Our elastic free

energy density is given by:

f =
B

4
(1−N4)2 +K (∇ ·N )2 . (4.18)

Notice that we have not included a saddle-splay term, nor have we considered

amplitude dependence of the elastic constant K, since their effects are negligible.

Roughly speaking, the amplitude dependence of K24 gives rise to higher-order

terms for the undulating solution. Hence we can approximate N2 multiplying K

and K24 by one, and the saddle-splay term becomes a surface term that vanishes for

periodic boundary conditions. Also, we do not need include a Lagrange multiplier,

since N = z −∇u is curl-less if u is given by Eq. (4.17). The free energy density

(4.18) can be written in terms of the displacement field as

f =
B

4

1−

[
1 +

(
∂u

∂x

)2

− 2
∂u

∂z

]2


2

+K

(
∂2u

∂x2

)2

. (4.19)

138



We can combine Eqs. (4.19) and (4.17) in order to write

f

B
= ξ2q4u0

2 sin2(kz) cos2(qx)

+
1

4

{[
q2u0

2 sin2(kz) sin2(qx)

−2(ku0 cos(kz) cos(qx) + ε) + 1]2 − 1
}2
, (4.20)

where ξ =
√
K/B is de Gennes’ length scale. To find the stability threshold we

integrate out the free energy density over one period in the x-direction, and from

0 to lz in the z-direction:

F =

∫ 2π
q

0

dx

∫ lz

0

dz f(x, z). (4.21)

The stability threshold is given by the solution of the equation:

∂2F

∂u0
2

= 0, (4.22)

or,

4k2
(
6ε2 − 6ε+ 1

)
+q2

(
ξ2q2 − 8ε3 + 12ε2 − 4ε

)
= 0. (4.23)

For given ξ and lz, this equation defines a curve in the ε× q plane. Fig 4.8 shows

the critical strain as a function of q for ξ = 0.2a and lz = 64a, corresponding to

our simulation parameters, where a is the finite-difference grid spacing. The strain

is minimal for

q =

√
4ε3 − 6ε2 + 2ε

ξ
. (4.24)

Eq. (4.24) can be plugged back into Eq. (4.23), so that,

εc =
πξ

lz

√
1− 6εc + 6εc2

(1− 3εc + 2εc2)2 ≈
πξ

lz
, (4.25)

where the approximate solution on the r.h.s. of (4.25) is valid since ε is small.

Notice that our approximate critical strain (πξ/lz) corresponds to half of the value
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obtained in [69, 59, 58], because we use a slightly different form for the free energy

density. Also, it is interesting to point out that the critical change in length

εclz ≈ πξ is a microscopic length (see main text).

Fig 4.6 shows simulation results for smectic-A liquid crystals under dilative

stress with ξ = 0.2a and lz = 64a. We simulate f(t) = 1 + A(1 − cos(ωt)) (see

Eq. (6) of main text), with A = 0.25, and ω = 2π/1000 τ−1. Eq (4.25) predicts a

strain threshold of εc ≈ 0.01, and a critical wavelength of q ≈ 9a ≈ 0.04lx, which

is consistent with our simulations (Fig 4.6b). However, since ε = 1− f−1, we can

rearrange f(t) in order to write

tc =
1

ω
cos−1

(
1− εc

A(1− εc)

)
≈ 45 τ, (4.26)

which is about half of the time threshold associated with the first peak of Fig

4.6a. We suggest that the time scale associated with the growth of the undulation

pattern accounts for the discrepancy between the simulation threshold and the

analytical estimate. We tested our stability analysis directly by adding a small

perturbation δN to N0. Under a gradient descent infinitesimal evolution of N ,

we expect that F [δNz(t + δt)] = exp(λkδt)F [δNz(t)], where F denotes a Fourier

transform operator. An exponent λk is less than zero for stable planar configu-

rations, and reaches zero at the critical strain for some wavenumber q. Careful

numerical calculations for λk lead to tc ≈ 45τ , and q ≈ 9a, in agreement with our

analytical estimate. There is no significant change (apart from shifts of numerical

values) in the analysis and numerical results using dynamics II.
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(a)

(b)

Figure 4.5: Scaling collapses of the distribution layer-surface radii of
curvature on a logarithmic scale. (a) Naive power-law scaling,
R∗(t) ∼ t1/4. (b) Incorporation of logarithmic corrections to scaling,
R∗(t) ∼ [t log(t/τc)]

1/4, with τc = 100τ .
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(a)

(b) (c)

Figure 4.6: Simulation and experimental results for SmA under dilative
stress. (a) Total free energy as a function of time. In the inset we show
layers in the x-z plane showing undulation pattern at t = 120τ . (b)
Simulation and (c) experimental results for crossed-polarizer images
showing a pattern of focal conic domains, at strain amplitudes of 0.33
and 0.13, respectively.
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Figure 4.7: Energy minimization through gradient descent. Total free en-
ergy ψ (symbols) as a function of time in log-log scale. The blue
dashed line correspond to the behavior predicted from the naive argu-
ment R∗ ∼ t1/4. The black dashed line is a best fit (∼ t−0.55).
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Figure 4.8: Critical strain at which undulations form. Critical strain as a
function of q for ξ = 0.2a and lz = 64a.
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CHAPTER 5

MEASURING NONLINEAR STRESSES GENERATED BY

DEFECTS IN 3D COLLOIDAL CRYSTALS 1

5.1 Local stress measurements

Bulk measurements of the nonlinear materials response have shown that fasci-

nating mechanical behaviors emerge when crystals are plastically deformed [123].

Such measurements however, average over the rich spatial heterogeneity in struc-

ture and stress distributions. This averaging makes it difficult to determine how

microscopic mechanisms collude to determine a crystal’s bulk behavior. Pioneering

measurements of local crystalline strains have done much to elucidate the hetero-

geneity in the linear stress response of crystals [118, 219, 25, 125, 131, 150]. Despite

these advances however, applying such techniques to measure the nonlinear stress

distributions in crystals with defects has remained prohibitive since it is impossible

to a priori determine how the nonlinear modulus varies with strain or even define

a strain when the structure is highly distorted. Consequently, it has been difficult

to experimentally determine even the qualitative interactions between defects that

give rise to these fascinating mechanical behaviors under large deformations.

Here, building on the technological advances offered by high-speed confocal

microscopy, we use Stress Assessment from Local Structural Anisotropy (SALSA)

to directly measure the complete stress tensor down to the single particle-scale in

a 3D colloidal crystal. Hard-sphere colloidal crystals have been widely employed

as a model system to investigate many fundamental and important processes in-

cluding defect nucleation [219], crystal melting [16, 195], and crystal growth [253].

1Neil Y.C. Lin, Matthew Bierbaum, James P. Sethna, & Itai Cohen
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Selected particles

Not colliding

(b)

Symmetric collision
Zero shear stress

(c)

Asymmetric collision
Non-zero shear stress

(a) Colliding

Collision shell

Figure 5.1: Particle-level stress measurements (SALSA). (a) Particles ex-
hibit Brownian motions (trajectories segments) and exert stresses on
the selected particle (red sphere) when the neighboring particles col-
lide with it. The energy density (stress) per collision is kBT/Ω

α. (b)
Schematic illustrating the SALSA algorithm for hard spheres. A thin
shell (∆=106 nm) is constructed to identify colliding particles (yellow
spheres), which lie within distance 2a + ∆ from the selected particle.
The shear stress is zero when the colliding particles’ configuration is
symmetric. When the collisions are asymmetric, the shear stress is
non-zero. The schematics here are two dimensional, but all presented
calculations are fully three dimensional.

In Brownian hard-sphere systems, the force with which particles collide can be

related to the thermal energy kBT . Therefore, using a time series of featured par-

ticle positions [72, 63], we determine the thermal collision probability, and directly

report the stress arising from these Brownian collisions. Our derivation (see Sup-

plemental Information) shows the stress tensor σαij = σij(x
α) at particle α can be

approximated by

σαij =
kBT

Ωα

( a
∆

)
〈ψαij(∆)〉 (5.1)

where kBT is the thermal energy, Ωα is the volume occupied by the particle, a is

the particle radius, and ∆ is the cutoff distance from contact (SI and SI video).

Here 〈ψαij(∆)〉 is the time-averaged local structural anisotropy or fabric tensor for

the particle, 〈ψαij(∆)〉 = 〈
∑

β∈nn r̂αβi r̂αβj 〉, where nn is the set of particles that lie

within a distance 2a + ∆ from particle α, ij are spatial indices, and r̂αβ is the
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unit vector between particle α and particle β. In the local structural anisotropy

calculation, the trace r̂αβi r̂αβi is the total number of neighbors while the remaining

components captures the anisotropy of the collisions [32]. The time averaged fabric

tensor of each particle accurately captures the probability of thermally induced

collisions arising from the spatial distribution of its neighbors (Fig. 5.1). Scaling

the probability by the energy density per collision kBT/Ω
α, we then determine

the Cauchy stress at the selected particle’s position. This capability enables us

to measure the local stress distributions surrounding crystalline defects such as

vacancies (0D), dislocations (1D), and grain boundaries (2D).

5.1.1 Vacancy

Vacancies dominate mass transport in crystals by playing key roles in electromi-

gration growth of voids in integrated circuit interconnects, impurity diffusion, and

dislocation creep and climb. These processes are governed by the vacancy interac-

tion arising from the stress field. Whether the stress field surrounding the core is

linear or nonlinear directly determines the qualitative interaction between vacan-

cies and influences our understandings of those processes. To measure the stress

field using SALSA, we create a crystal of 2a =1.3 µm diameter silica particles

via sedimentation in an index matched water-glycerol mixture. We image the 3D

microstructure of isolated vacancies (Fig. 5.2 (a)) and determine their stress fields.

The mean pressure of our crystal sample is ∼ 24 mPa (green line in

Fig 5.2((b))), which is consistent with previous numerical predictions (orange

curve) [13] and our Brownian dynamics simulations (blue dots) for hard-sphere

crystals at φ ∼ 0.59 (purple line). The top row of images in Fig 5.2(c) show the

vacancy 3D stress isosurfaces predicted by linear elasticity. The six independent
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stress components determined by SALSA are shown in the next row of Fig 5.2(c).

For simplicity we show 2D cuts of each stress component along the (111) or x–y

plane (green planes) centered at the vacancy core in the upper images. We also

conduct Brownian dynamics simulations (see SI) and directly calculate particle

stresses (second to last row of Fig 5.2(c)). The simulation results give quantita-

tively similar features for all stress components. For example, as shown in the first

column of Fig 5.2(c), σxy exhibits a quadrupole distribution, which arises from the

asymmetric collisions due to the absence of a particle at the vacancy core (blue

and red arrows in Fig 5.2(a)).

The vacancy stresses also show non-trivial trends in the radial pressure distri-

bution as shown in Fig 5.2(d) that are not captured by isotropic linear elasticity. In

particular, while linear elasticity predicts a constant pressure outside the vacancy

core, here we observe a pressure bump at r ∼ 3a that results from a ≈ 50% reduc-

tion in particle surface separation near the core (double arrows in Fig 5.2(e)). In

hard sphere systems this reduced separation, hence increased local collision rate,

leads to an enhancement of the local modulus.

To account for this changing modulus, we develop an isotropic elastic model

including all terms up to third-order with finite strain. Using the volume change

(∆V = 8.4%) estimated in experiments and literature values of the bulk (K =

93 mPa) and shear (µ = 92 mPa) moduli for our system’s volume fraction [201],

we fit the pressure distribution by adjusting the three third-order isotropic elastic

constants. We find the predicted stress distributions quantitatively reproduce all

stress components (last row of Fig 5.2(c)) as well as the radial pressure distribution

(red line Fig. 5.2(e)). Furthermore, the local modulus at the pressure ring region

can be determined from the fitting. We find that the bulk modulus at that region
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more than doubles to 213 mPa. This drastically increased modulus is consistent

with the value from numerical studies of bulk hard spheres [201, 13] at the local

interparticle spacing of the pressure ring region. Overall, the strongly enhanced

local modulus indicates a significant hardening near the defect core.

While linear isotropic theory predicts no interaction between vacancies, our

findings indicate vacancies attract within the length scale associated with the pres-

sure bump, as was predicted by numerical studies [28, 66, 145]. This attraction

can be understood by noting that the volume change ∆V due to one vacancy is

negative and so the P∆V term in the elastic energy leads to a force that attracts

that vacancy to the pressure ring of the other (see SI). Therefore, we estimate

the elastic energy of the attraction ∼ 2.6 kBT at r ∼ 4a. Since this attraction

is several times larger than the thermal energy, it will significantly accelerate the

aggregation of vacancies. In an atomic crystal, this large vacancy aggregate will

form a void. For hard sphere crystals without attractive interactions, void forma-

tion is inhibited by large configurational entropies found at very low equilibrium

defect density. At the vacancy densities in many experimental systems, however,

voids form in equilibrium [28] and neighboring particles surrounding a void will

‘evaporate’ into the void, filling it with liquid-state particles in local equilibrium

with the surrounding crystal.

5.1.2 Dislocation

Dislocations are one-dimensional topological defects whose collective interactions

determine macroscale plasticity including work hardening, yield stress, and fa-

tigue. At the high defect densities involved in such processes however, interactions

are significantly altered by nonlinear stress fields surrounding these defects. One
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critical conjecture that has been widely employed in the dislocation simulation lit-

erature is that the modulus softens at the dislocation core [42, 93]. This conjecture

however, has never been validated.

To study the dislocation stress field using SALSA, we grow a crystal on a pat-

terned template with a lattice spacing 1.5% larger than the equilibrium crystal

lattice. A 3D reconstruction of the particle configuration is shown in Fig. 5.3(a).

The dislocation (red) delineates the lower bound of a stacking fault (green) em-

bedded in a crystalline region (blue) which has been clipped for visual clarity. The

dislocation is slightly curved (variation∼ 2a) and aligned along the y-axis corre-

sponding to the (110) direction of the fcc lattice. The dislocation core is highlighted

with a (⊥) and has a Burgers vector 1/6(112), which corresponds to a Shockley

partial, the most prominent dislocation in fcc metals.

Using SALSA we measure the stresses near the dislocation and show the pres-

sure (upper row) and shear stress, σxz (lower row) in Fig. 5.3. The stress field is

averaged along the dislocation line to eliminate the effects of polydispersity. To

confirm SALSA accurately extracts the stress features in this more complicated

defect structure, we compare to stresses calculated by direct Brownian dynamics

simulations that are seeded by the experiment data (middle column Fig. 5.3) (SI).

Both experimental and simulation results show comparable features. Overall, we

observe a pressure gradient across the stacking fault, and a shear stress dipole

centered at the defect core. These general trends are consistent with predictions

of linear isotropic elastic theory (right column Fig. 5.3) indicating that disloca-

tion curvature does not qualitatively alter the stress distribution. However, both

SALSA (blue) and the simulation (orange) results show a non-linear strain soften-

ing in highly strained regions near the defect core (Fig. 5.3 (c)). This local modulus
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drop allows us to visualize the precise location and size of the dislocation core. To

do so, we focus on the cross-section region denoted by the dashed line in Fig. 5.3(b),

and plot nonlinear shear modulus (dσxz/dγxz) versus position (r/2a) in Fig. 5.3(d)

(SI). The modulus decreases by ∼ 50% on both sides of the dislocation core, which

is about four particles in width. Overall, our measured modulus profile clearly

shows the softening and provides the first experimental evidence supporting the

non-singular continuum assumption widely employed in dislocation theories and

simulations [42, 93], in which the divergence in the stress at the dislocation core

is cut off. Moreover, this modulus softening regularizes the interactions between

dislocations and dramatically influences the dislocation creep behavior in crystals.

5.1.3 Grain boundaries

Grain boundaries are 2D structures important for crystal growth [82], melting ki-

netics [16, 195], transport properties [91], and can substantially harden materials

through internal stress variation [209, 131, 150]. While X-ray microbeam exper-

iments have been used to reveal strain fluctuations at the scale of 100 nm [150],

measuring stress remains challenging at these scales, especially at the grain bound-

aries where particles are highly disordered.

To visualize such stresses using SALSA, we grow polycrystals using the same

method described in the vacancy section (see Fig. 5.4 (a) for a confocal image). We

plot the measured pressure and shear stress σxy in the left column of Fig. 5.4(b).

Just as for the dislocation simulation, we employ the featured particle positions

as initial configurations, and simulate stresses in the polycrystal. The simulation

results (right column in Fig. 5.4(b)) show similar features to the SALSA stress

distributions in both pressure and shear components.
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Figure 5.4: Stress near grain boundaries. (a) One confocal image slice of a
time series consisting of fifty 3D stacks. (b) Pressure (upper) and σxy
(lower) fields of the polycrystal. Both experimental (left) and simu-
lation (right) results show qualitatively similar stress distribution fea-
tures. The grain boundaries are indicated with dashed lines.
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The spatial fluctuations in both pressure and shear stress seen in Fig. 5.4 (b) are

significant compared to relevant stress scales. The standard deviation in pressure

(≈ 6 mPa) is about 15% of the mean pressure whereas the shear stress fluctuation

(≈ 0.7 mPa). To provide intuition, this stress level is about 30% of the stress

magnitude one lattice constant from a dislocation core, the principle component

of a tilt grain boundary. Moreover, we find that both pressure and shear stresses

fluctuate between and within grains. For example, the mean pressure difference

between grain 1 and 2 is 5 mPa (25%) whereas grain 3 shows an intragrain fluctu-

ation of ≈10% the mean pressure. Similar trends can be seen in the shear stress

difference between grains 1 and 4, and the fluctuations within grain 3.

Overall, our observation of the stress fluctuations in the polycrystal is consistent

with previous simulations [222], and X-ray microbeam measurements [131, 150],

where neighboring grains consisting of millions of atoms were found to have sub-

stantially different strains. The SALSA measurements indicate such stress fluctu-

ations also arise within grains consisting of only hundreds of particles. These small

crystallites are reminiscent of the nano-scale grains in atomic crystals. Previous

atomistic simulations have predicted the stress fluctuations in a strained nanocrys-

tal are predominately localized to the grain boundaries [222]. In our colloidal crys-

tal grains however, the stress fluctuations are spread roughly evenly throughout

the grains (See SI for direct comparison). Our sample however has not been sub-

ject to shear. We conjecture that condensation of stress under plastic strain arises

from trapping of dislocations at grain boundaries, grain boundary slip [222], or an

as of yet unidentified mechanism.

In conclusion, we measure, for the first time, the microscale stress fields of

crystalline defect cores that determine fundamental mechanisms governing pro-
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cesses ranging from local defect interactions to macroscale yielding. We illustrate

the specific significance of this microscale measurement in three canonical defects.

The measured pressure enhancement around the vacancy core settles the contro-

versy between theory and simulations, and provides critical insights into the origin

of attraction between vacancies. The observed softening at the dislocation core

validates the decades-long conjecture of the non-singular stresses in numerous dis-

location simulations. Finally, the evenly-spread stress fluctuation in the polycrystal

predicts hardening of grains when the crystal undergoes plastic deformation. Such

stress measurements will be even more valuable when applied to systems driven

further out of equilibrium by applied strains since it will directly measure the stress

precursors that generate material failure.

5.2 Supplemental information

5.2.1 Derivation of the SALSA method

Derivation

For a hard-sphere colloidal system, its bulk pairwise Brownian stress can be

calculated by an integral over the three-dimensional pair correlation function

g(r) [37, 100, 142, 78].

σBij = nkBTa

∫
S2

r̂ir̂jng(r)dS2 + nkBTδij (5.2)

Here, n is the number density of particles, kBT is the thermal energy, a is the

particle radius, and i, j are the indices of the stress tensor. The second term is

the ideal gas stress contribution arising from the kinetic energy. The off-diagonal
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components of the first term, which usually dominate at high volume fractions,

simply capture the anisotropy of g(r) at contact surface S2. To determine the

stresses at the particle-level, we write the pair correlation function, g(r), as an

ensemble average of delta functions.

σBij =

〈
kBTa

Ω

∫
S2

r̂ir̂j
N

V

V

N2

∑
α

∑
β 6=α

δ(r− rαβ)dS2

〉
+ nkBTδij

=

〈
1

N

∑
α

kBTa

Ω

∫
S2

r̂ir̂j
∑
β 6=α

δ(r− rαβ)dS2

〉
+ nkBTδij (5.3)

where V , N , Ω are system volume, particle number, and particle volume, respec-

tively. The bracket 〈...〉 denotes an average over configurations and can be replaced

with a time average in our system. In Eq. 5.3 we identify the outer sum as being

an average over the particles in the sample, so we obtain an individual stress tensor

for each,

σαij =
kBTa

Ωα

〈∫
S2

r̂ir̂j
∑
β 6=α

δ(r− rαβ)dS2

〉
+ nkBTδij

=
kBTa

Ωα
Ψ̄α
ij + nkBTδij (5.4)

The elements of the sum Ψ̄α
ij can be identified as the fabric tensor linear density

of particle α as the units work out to be [1/L]. This fabric tensor density directly

reports the angular distribution of neighbors in contact with a particle while the

magnitude of its trace is related to the total number of neighbors. To calculate Ψ̄α
ij

in simulation and experiment, it is necessary to perform an average over a narrow

interval ∆� 1

Ψ̄α
ij =

〈∫
S2

∑
β 6=α

r̂ir̂jδ(r− rαβ)dS2

〉

≈

〈
1

∆

∫
S2

∫ a+∆

a

∑
β 6=α

r̂ir̂jδ(r− rαβ)dS2dr

〉

=
1

∆

〈∑
β∈∆

r̂αβi r̂αβj

〉
(5.5)
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where ∆ is the thickness of the measurement shell and r̂αβ is the unit vector

connecting the centers of particles α and β. Using this particular form, the SALSA

formula reads

σαij =
kBT

Ωα

( a
∆

)〈∑
β∈∆

r̂αβi r̂αβj

〉
+ nkBTδij

=
kBT

Ωα

( a
∆

)
Ψα
ij(∆) + nkBTδij (5.6)

where Ψα
ij can now be identified as the fabric tensor of particle α. In general,

the shell thickness ∆ � 1 should be small enough that the measurement result

σαij becomes independent of the particular choice of ∆. In the calibration section,

we perform experiments and simulations to confirm this independence. The de-

tails concerning the particle volume Ωα and converting the pointwise stresses to

continuum fields are discussed in later sections.

Finally, it is possible to extend our particle-level stress calculations to other

finite potentials including the depletion force [198, 210, 249], paramagnetic [269]

and electrostatic [265] interactions, and soft particles [184, 50]. While similar

calculations have been performed at the bulk scale [269], extending our method

to these systems would allow us to further investigate their heterogeneous elastic

properties.

Local structural anisotropy tensor

The local structural anisotropy tensor reports the instantaneous arrangement of

colliding neighbors. The trace of this tensor, r̂ir̂i, is the total number of neighbors

while the remaining terms capture the anisotropy of the collisions. As an illustra-

tion, we consider a two-dimensional case. Assuming one particle is at the origin

and in contact with one other particle at an angle θ with respect to the x-axis then
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the fabric tensor can be written as

rirj =

r̂xr̂x r̂xr̂y

r̂yr̂x r̂yr̂y

 =

 cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

 .
Here, the trace sin2 θ + cos2 θ is always 1 and a maximum shear is achieved

at four locations, θ = ± 45◦ and ± 135◦. These directions correspond to the

maximal compression and extension axes. For instance, if θ is 30◦, then the

trace is (sin2 30◦) + (cos2 30◦) = 1, and the shear component is x̂ŷ = ŷx̂ =

(sin 30◦)(cos 30◦) =
√

3/4. Similarly, if θ is 90◦, while the trace remains unity,

the shear component becomes x̂ŷ = ŷx̂ = (sin 90◦)(cos 90◦) = 0.

From pointwise functions to continuum fields

In the literature of molecular dynamics simulation, the virial

sαij =
1

2

∑
β 6=α

∂V (r)

∂r

rirj
r

+mvivj (5.7)

has been widely used to report stresses at the atomic level [70, 148, 222]. In

particular, this quantity has been used to measure many interesting phenomena

including the stress correlation length in liquid metals [148] and stress fluctuations

near grain boundaries [222]. While the sum of the virials sij divided by system

volume V yields the bulk stress of the system, there are multiple choices that can

be made as to how to incorporate local volume variation and how to smooth the

pointwise stress into a continuum field. Similar to the Irving-Kirkwood-Noll proce-

dure, which constructs continuum fields from the underlying discrete distribution

with phase averaging, we perform a spatial average to obtain a macroscopic mea-

surement at the particle-level [243]. The final continuum stress field σcontij (x; t) is

159



(b) (c) (d)(b) (c)(a)

Figure 5.5: Spatially smoothed stress fields of a simulated polycrystal.
We plot the smoothed stressed field of a polycrystal as a function
of filter size rw/2a at (a) 0.2 (b) 0.3 and (c) 1. For small rw/2a,
only the points containing particle centers with assigned stresses have
nonzero values. As the value of rw/2a increases, the stress field becomes
smoother and more continuous. Note that since the weighting Gaussian
function is normalized, the overall stress of the system is the same for
all different rw/2a. The color scale is adjusted for each sub figure
to emphasize the stress variation features. In all calculations, we use
the value rw/2a = 1, where the features of individual particles are no
longer distinguishable.

given by

σcontij (x; t) =

∫
w(y − x)σptij (x; t)dy (5.8)

where w(r) is a weighting kernel function, and σptij (x; t) is the pointwise function.

Here, the weighting function w must be normalized so that the total energy is

conserved during spatial averaging. We use a normalized Gaussian function that

weights values closer to x more strongly than other points that are further away:

w(r) = π−3/2r−3
w e

− r2

2r2w (5.9)

where r = ‖r‖, and the filter size rw is chosen to emphasize the length scale of

the continuum fields of interest [243]. Similar smoothing algorithms have been

implemented in previous literature [179, 178, 102, 27].
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In our experiments and simulations, we set rw/2a = 1 so that we remove stress

features on length scales smaller than a particle. The pointwise stress is constructed

by first assigning calculated particle virial, σαijΩ
α to their corresponding grid boxes,

then dividing their values by the box volume. This pointwise function shows

singularities at particle centers and zero elsewhere. Finally, we smooth the field

using the Gaussian kernel, Eq. 5.9. We show the spatial averaged continuum fields

of a simulated polycrystal for three different filter sizes rw in Fig. 5.5.

In this spatial averaging procedure, the influence of local volume variation on

the stress distribution is already incorporated. In particular, as the occupied vol-

ume of a particle increases, the stress is proportionally reduced due to the increased

effective averaging volume. Furthermore, the final fields are nearly independent of

the grid size and the mean stresses are constant at all values of rw.

To explore how the filter size rw affects our final SALSA stress fields, we

show the experimental vacancy stress field, σxy for five different values of rw in

Fig. 5.6(a). We find that the feature of the stress quadrupole2 remains discernible

up to rw = 2.7(2a). Note in Fig. 5.6(a), while the quadrupole distribution theoret-

ically diverges as 1/r3, it is cut off by the lattice and smoothed over the distance

rw, squelching the stress features near the vacancy core. Similarly in Fig. 5.6(b),

2There is a nomenclature problem when describing the stress and strain around a point de-
fect. Some describe them as quadrupolar fields, reflecting the similar cos 2θ angular dependence
with electrical quadrupoles. This angular dependence is special, however, to isotropic elastic
theory; also, the displacement field has a ‘monopolar’ isotropic component ∆V/(4πr2) with no
angular dependence. (However, as noted in Fig. 5.7, the off-diagonal stresses for an isotropic
vacancy still look like quadrupoles.) Some describe them as elastic dipoles, reflecting both the
common 1/r3 force law with electric dipoles and their origins as ‘force dipoles’ (two opposite
forces acting on nearby points in the elastic medium.) Finally, others (particularly studying elas-
ticity in amorphous systems) name the field after Eshelby – thus bypassing the choice by using
an uninformative label. Here, we use the term quadrupole, mostly because the ‘strength’ of a
point defect is quantified by a 3x3 symmetric matrix (either the strain quadrupole Qij described
here, or the corresponding stress quadrupole / force dipole.) We must note, however, that in the
present case of vacancies in a cubic environment, Qij = ∆V δij has no correspondence to electric
quadrupoles, which are traceless.
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Figure 5.6: Spatially smoothed stress fields of a vacancy. (a)The values
of smoothing length scale rw from left to right are 1.0×2a, 1.3×2a,
2.0×2a, 2.7×2a and 4.0×2a, respectively. (b) The radial distribution
of pressure for different rw.

we find that the near field of the pressure is strongly affected by the filter, but the

long-range nonlinear pressure ring at rw = 1(2a) and 1.3(2a) match each other.

Indeed, the long-range stresses from all defects have correspondingly slow varia-

tions, and hence will be invariant to the choice of rw. The filter size choice is a

balance – hiding noise at lengths r < rw to enhance features of size r > rw.

In terms of elastic theory, the filter size can be thought of a regularization for

the theory, renormalizing higher order terms in the elastic free energy. To see how

smoothing affects these terms, consider how smoothing changes a linear elastic free

energy

F0 =

∫
d3r Sijkl σij σkl (5.10)

where Sijkl is the elastic compliance tensor and σij is the stress tensor. If we smooth

the stress tensor using a Gaussian kernel of size rw this linear elastic theory changes
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to

F ′ =
∫
d3r d3k d3k′ Sijkl[σij(k)e−k

2r2w/2eik·r][σkl(k
′)e−k

′2r2w/2eik
′·r]

=

∫
d3k Sijkl σij(k)σkl(−k) e−k

2r2w

≈ Sijkl

∫
d3k (1− k2r2

w)σij(k)σkl(−k)

=

∫
d3k Sijkl σij(k)σkl(−k)−

∫
d3k Sijkl k

2r2
wσij(k)σkl(−k)

= F0 − r2
w

∫
d3k Sijkl(kmσij(k))(kmσkl(−k))

What new terms must we add to F ′ to cancel the second term? Since each factor

of k introduces a gradient, we can check that a stress gradient term Sijkl∂m∂mσijσkl

has the correct form.

Sijkl

∫
d3r ∂m∂m(σij σkl) = Sijkl ∂m∂m

∫
d3r d3k d3k′ e−ik·rσij(k) e−ik

′·rσkl(k
′)

= −2Sijkl

∫
d3r d3k d3k′ kmk

′
me
−ik·rσij(k) e−ik

′·rσkl(k
′)

= −2Sijkl

∫
d3k kmkmσij(k)σkl(−k)

Indeed, the energy regularized by smoothing by rw is the original free energy plus

a filter size-dependent term times a stress gradient energy:

F ′ ≈ F0 +
r2
w

2
Sijkl

∫
d3r ∂m∂m(σij σkl) (5.11)

Similarly, nonlinear and other terms in the energy will produce regularization-

dependent counter terms. We will now demonstrate that these gradient terms

contribute less to the free energy than other nonlinear terms in the case of hard

sphere crystals.

Let us consider the long and short wavelength behavior of the first nonlinear

and gradient terms of the elastic free energy to see which dominates the behavior
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both close and far from a defect. For isotropic elasticity, the allowed terms that

arise in the free energy density are

F = Cijklεijεkl +Dijklmnεijεklεmn + Eijklmn∂i∂jεklεmn (5.12)

where the allowed elements of the elastic constant tensors C, D, and E are de-

termined by the symmetries of the system being studied. In the case of isotropic

materials, these tensors must be built using terms that are formed by δij and ∆ijkl

and Dijklmn, the Kronecker delta and the four and six index equivalents of the

Kronecker delta. That is, the parts of the free energy may be written

FC = c0 εiiεjj + c1 εijεij

FD = d0 εiiεjjεkk + d1 εijεijεkk + d2 εijεjkεki

FE = e0 ∂i∂iεjjεkk + e1 ∂i∂jεijεkk + · · ·

Which terms should we keep to describe the elastic fields? We consider their

contributions in the case of the elastic field of a vacancy defect – since the dis-

placement field for linear theory goes as u(r) ∼ ∆V/r2, the strain field goes

as ε ∼ ∆V/r3. The quadratic term then has energy density which scales as

r−6, while the nonlinear cubic term (ε3) scales as r−9 and the gradient term as

r−1r−1r−3r−3 = r−8. For short range behavior, the nonlinear contributions are

nearly equal, with the cubic term contributing more for r � 1. However, we also

need to consider the magnitude and scaling of the coefficients for each term. In

the case of the cubic elastic constants, we know from the equation of state that

the pressure diverges at maximal packing as P ∼ (φc − φ)−1, implying that e.g.

the bulk modulus diverges as K = φ∂P
∂φ
∼ (φc − φ)−2 [196]. If we write the scaling

in terms of the two length scales in the problem, the lattice constant a and the

surface to surface distance ∆, we find that the cubic term in the free energy goes
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as (a/∆)−2r−9 and the first gradient term as a2r−8. In the case (a/∆)� 1, we find

that the cubic terms dominates the gradient contributions. It is for this reason as

well as the fact that gradient terms are not unique in our smoothing scheme that

we only consider nonlinear elasticity without gradient terms.

5.2.2 Calibration of the SALSA method

To validate our SALSA measurements, it is crucial to calibrate the method and

evaluate its performance and dependence on input parameters. We divide the

calibration section into three parts: A) comparison with simulation stresses, B)

contact criteria dependence, and C) force balance in a smoothed field. We show

that the SALSA method accurately captures the stress fields as calculated by

Brownian dynamics very well. The stress field determined by using SALSA is

not significantly sensitive to the particle contact criteria e.g. the shell thickness

∆. Finally, we discuss a systematic residual force within the vacancy core in the

continuum stress field due to the smoothing process and compare the elastic fields

to similarly smoothed continuum calculations.

Calibration: SALSA versus actual stress

To evaluate how well SALSA is able to report the correct stress field of a complex

system, we use Brownian dynamics (BD) to generate a vacancy in a simulated

crystal, whose orientation is matched to that found in our experiments. We use

SALSA to determine all six independent stress components and compare their

values with the BD stress calculation using the same set of position data (see

Fig. 5.7). The continuum stress field from BD is constructed by spatially averaging
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pointwise virials Fixj. We see that the BD and SALSA stresses exhibit a good

match. We also find that SALSA stresses become more quantitatively similar to

the actual stress fields as a longer time-average is performed (not shown).
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Figure 5.7: SALSA and actual stresses comparison in simulation. Stresses
determined through the SALSA method (top row) are compared with
the stresses directly calculated in simulation (bottom row) using the
same dataset.

Calibration: Contact criteria dependence

There is another parameter in the SALSA method, which is the shell thickness ∆

used to identify particles in contact. This shell thickness directly determines the

number of particles that are included in the stress calculation, larger ∆ allowing

for shorter time averages. However, at large ∆, the radial distribution of parti-

cles g(r) will vary through out the thickness of the shell, leading to systematic

errors in stress. We test for the optimum by calculating the pressure of a system

versus ∆/2a. Fig. 5.8 shows the SALSA pressure P (∆)/P (∆g) versus ∆/2a for

both experimental and simulation data. Here, ∆g/2a (gray line in Fig. 5.8) is the

cutoff thickness used throughout our analysis of the experiments, where 2a + ∆g

roughly coincides with the first peak of g(r). We find that the measured pres-

sure has negligible dependence on ∆/2a for ∆/2a ≤ 0.12. In the experiment the
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Figure 5.8: SALSA pressure versus ∆ in experiment and simulation. Pres-
sure measured using different shell thickness ∆ is plotted as a func-
tion of ∆. The pressures values P(∆) are normalized by P(∆g) where
∆g + 2a is the position of the g(r) first peak, which is denoted by
the gray line. The vacancy experimental data (red curve) shows that
SALSA method generates quantitatively consistent results in a wide
range of shell thickness 0.03(2a) ≤ ∆ ≤ 0.15(2a) (shaded area). The
corresponding length scale of this thickness range is 40 nm ≤ ∆ ≤ 230
nm. The simulation data (blue curve) demonstrate an even wider pres-
sure plateau that extends beyond ∆ ∼ 10−4(2a). The diverging trend
of the experimental pressure at small ∆ occurs due to slight particle
overlaps arising from featuring uncertainties.

normalized pressure deviates from 1 when ∆ is smaller than ∼ 3% of the particle

size, corresponding to ≈ 1/4 of a pixel (∼ 35 nm). This trend arises due to parti-

cle overlaps from featuring uncertainties. Overall, as shown in Fig. 5.8, both the

experimental and simulation results indicate an insignificant correlation between

the SALSA pressure and shell thickness ∆ in the range of 35 nm ≤ ∆ ≤ 230 nm

(yellow shaded area).

Finally, we also investigate how the shell thickness ∆ affects the spatial distribu-

tion of stresses. We show the experimental pressure and σxy fields near a vacancy

for four different ∆ in Fig. 5.9. Again, we find that the stress fields for all ∆

demonstrate qualitatively similar trends, where the pressure exhibits an enhance-

ment surrounding the defect core and σxy shows a quadrupole distribution. This
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Figure 5.9: Pressure and σxy fields for different ∆. Pressure (middle row) and
shear stress σxy (right row) distributions for four different values of shell
thicknesses. (c) The contact criteria used throughout our experiments.
The pair correlation functions g(r) (left row) are plotted to illustrate
the differences between the shell thickness ∆ choices (orange lines).

weak ∆ dependence is consistent with the previous experimental studies [53, 158]

where the authors have found that different contact criterion consistently generate

similar bulk Brownian stresses. Here, we provide a similar calibration but at the

particle level. As shown in Fig. 5.9, it is remarkable that SALSA is able to pro-

duce consistent results with a wide range of shell thickness 35 nm ≤ ∆ ≤ 150 nm.

This wide window of ∆ choice promises robust stress measurements in the typical

colloidal experiments with 3D imaging, where the particle positions can be pre-

cisely determined with a sub-pixel resolution (≤ 50 nm) using standard featuring

algorithms.
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Figure 5.10: Force balance of vacancy. The right-most frames show the diver-
gence of the stress fields from simulation (a) and continuum theory
(b). In the group of nine panels in each of these subfigures, we show
the components of the divergence of the stress. Summing along each
row, we find the total force as the sum of the gradients. Both the BD
simulation and continuum elastic fields show systematic force dipoles
in their center indicating that the small residual forces are produced
not from the SALSA method but from the choices made in creating
a continuum field.

Calibration: Mechanical equilibrium of a smoothed field

In principal, it is possible to further determine the continuous force field by cal-

culating the divergence of the smoothed stress distribution. In our experiments,

where all the studied regions are stationary, the calculated force field should be

zero implying a mechanical equilibrium. It has recently been shown that this me-
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chanical equilibrium of the microscopic stress closely depends on the details of the

stress definition at particle-level [247]; it is important to check it for SALSA. To

investigate this issue, we calculate the divergences of the vacancy SALSA stresses

in simulation (Fig. 5.10 (a)). We find that the force fields are consistent with zero

everywhere except the region of the defect core, where the force shows a dipole

distribution in all components. Since there is no particle in the region that violates

mechanical equilibrium, it is unclear whether this force imbalance leads to a parti-

cle drift or not. Nevertheless, to confirm that this is only a result of the smoothing

procedure, we perform a similar analysis on calculated continuum elastic fields. In

doing so, we mimic the SALSA measurements by introducing a pressure hole in the

center, and smooth the stress fields with the same kernel used in the simulation.

As shown in Fig. 5.10 (b), the force fields from continuum theory also display force

dipoles consistent with SALSA and BD stress fields. This consistency clearly indi-

cates that the force imbalance mostly arises from the pressure drop and smoothing

algorithm rather than the SALSA calculation.

To further characterize the magnitude of the force imbalance, we perform a sim-

ilar mechanical equilibrium calibration in a simulated polycrystal. In particular,

we construct a three dimensional box enclosing a grain boundary. Then we deter-

mine the net force acting on this box by calculating the tractions from stresses. We

find that the forces correspond to the shear and normal tractions approximately

cancel each other, indicating a good mechanical equilibrium. The residual force

can then be related to a drift arising from this force imbalance given that the sys-

tem is over-damped. Finally, we find that the drift, which is independent of the

box size, is less than 5% of the particle diameter over the entire simulation.
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5.2.3 Vacancy Stress Fields

Experimental details

We create a colloidal crystal consisting of 1.3 µm diameter silica particles via

sedimentation in a sealed sample cell. The particles are suspended in a water-

glycerol mixture with a refractive index matching the silica particles. This matched

refractive index allows us to acquire confocal images of the sample. Vacancy defects

form spontaneously during sedimentation (along with stacking faults and grain

boundaries), and are imaged directly using a high-speed confocal microscope. In

the measurements, we select isolated vacancies that contain no other defects within

five lattice spacings in the plane or in either of the adjacent layers perpendicular

to the plane.

Since the system is thermal, it is important to perform a time average to

correctly determine the equilibrium stress field. Therefore, we record, analyze,

and average the stress fields over 60 snapshots (20 seconds). We further average

the stress field over 20 vacancies to reduce the effects of polydispersity and the local

vacancy environment. In Fig. 5.11, we show the confocal images of all measured

vacancies in the experiment (the horizontal slices of full 3D confocal image stacks)

to illustrate the vacancy morphology. As shown in Fig. 5.11, the independent

vacancies have random orientations with respect to the microscope and must be

aligned before averaging. With all images aligned in the same orientation, we

then calculate the stress field of each sample and average over 20 seconds. This

time interval is sufficiently long for the colloids to explore the local phase space

as the time required to diffuse one particle separation (100 nm) in the absence of

obstructing neighbors is about 0.35 s. Finally, we average the per-vacancy stress

171



field over all 20 samples.

Figure 5.11: Confocal images of 20 isolated vacancies. We display the raw
confocal data before rotation and alignment.

Since SALSA solely relies on the particle positions to determine the stress

field, the correctness of final measurements directly depends on the accuracy of

particle featuring and noise in the experiment. We employ both time and sample

averages to remove noise and improve such measurement accuracies. Uncorre-

lated noise such as the current noise in the electronics, can be effectively reduced

by using a time average. On the other hand, there is correlated noise that re-

sult in a persistent featuring bias in time, including spherical aberration in the

optics [232, 231, 246], the microscope point-spread-function [30, 159, 230], and

particle polydispersity [199]. In the vacancy experiment, we minimize the effects

of spherical aberration and point-spread-function by index-matching the sample

within 0.1% and confining the imaging field to a few particles away from the cov-

erslip. Polydispersity also affects our ability to determine which particles are in

contact. For instance, when two larger particles are touching, the SALSA method

may identify them as not in contact because their center-to-center distance is larger
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than 2〈a〉 + ∆, the mean distance between particles plus the shell thickness. The

polydispersity (≈ 35 nm for our silica colloids) is about 30% of the shell thickness

∆ = 106 nm used in our experiment. In the vacancy experiment, by averaging the

stress field over 20 different samples, the collision uncertainty due to polydispersity

is further reduced by a factor of
√

20 = 4.5.

Figure 5.12: Effects of sample average in addition to time average. Com-
parison of time average and sample average on a normal component
σxx (a,c) and shear component σxy (b,d). We see that sample average
improves the measurement of the normal component more than the
shear components due to the effects of polydispersity.

Furthermore, we find that the polydispersity has different effects on the pressure

and shear stress measurements. We show two representative stress components σxx

and σxy, first time averaged, Fig. 5.12 (a) and (b), and then with an additional

sample average, Fig. 5.12 (c) and (d). We find that the pressure does not fully

capture the enhanced stress ring around the vacancy defect if only a time average

is applied. However, the shear component of the same time-averaged data already

shows a clear quadrupole structure that is very similar to the one with additional

sample averaging. This finding implies that while the pressure measurement may
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rely on a more precise identification of touching particles, the shear measurement

is relatively robust and insensitive to the noise. In contrast to the normal stresses

that are strongly associated with the collision (touching) probability of surrounding

particles, the shear components are more related to the angular anisotropy of the

neighboring particle configurations. Finally, it is also possible to avoid the effects

of polydispersity by determining the individual particle size and taking the size

variation into account [139].

Simulated vacancy stresses

We confirm the experimental findings by simulating the stress of a vacancy in a

colloidal crystal using nearly hard-sphere Brownian dynamics. Here, we numer-

ically simulate the Langevin dynamics of N particles interacting through a very

sharp radial potential V (r). We do so using cell neighbor lists calculated on an

NVIDIA GPU integrating with the velocity Verlet algorithm. The virials of each

particle, calculated through Eq. 5.7, are used to compare directly to the stresses

calculated with the SALSA method.

Based on previous literature [158], we have tried several interparticle potentials

including the Yukawa potential, pure power law, and smoothed power law. Here

we use the smoothed power law to ensure continuity in derivatives:

V (r) = E
(
r

r0

− 1

)2 (r0

r

)24

(5.13)

To simulate the vacancy, we begin with a periodic cell of a fcc crystal with

the same physical parameters as the experimental setup. We create a periodic cell

containing 214 = 16384 particles at a packing fraction of φ = 0.59, temperature

T = 300 kBT and viscosity η = 103. We remove the center particle and simulate for
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2500 snapshots where each snapshot is separated by t = 10τ diffusion times. The

stress of these particle configurations is calculated using both the simulation virial

and SALSA and averaged over the entire simulation time. A direct comparison

of these stress fields can be found in Fig. 5.7. We do find some quantitative

differences between the experiment and simulation. For example, the pressure of

the simulated vacancy is plotted as a function of distance from the defect core in

Fig. 5.13. While the morphology in each individual stress component is very close

to that seen in experiments, we do not find as strong of a pressure enhancement

around the simulated vacancy. This softening is most likely due to the softened

core of the potential we use. Overall, however, all the qualitative features are

reproduced in each of experiment, simulation, and theory.
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Figure 5.13: Vacancy pressure distribution. Comparison of experimental (blue
dots in (a)), theoretical (red line in (a)), and simulation (green line
in (b)) pressure. Despite its relatively insignificant feature, the sim-
ulated vacancy pressure also exhibits a pressure enhancement at r ∼
4a. All individual stress components in experiment, theory, and sim-
ulation show qualitatively similar results.
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Continuum elastic theory

Linear elasticity To further measure the performance of SALSA, we also com-

pare the stress fields calculated in simulation and experiment to the corresponding

continuum elastic theory. In linear isotropic elastic theory, a vacancy’s displace-

ment field can be described by a radial function determined entirely by the local

volume change ui(r) = ∆V/r2 r̂i. This can be seen by looking at the elastic free

energy which can be written

Flinear =
1

2
Kε2ii + µ(εij − 1/3 δijεll)

2 (5.14)

where K is the bulk modulus, µ is the shear modulus and εij the strain tensor, the

symmetrized Jacobian of the displacement field u, εij = 1/2(∂iuj + ∂jui). Since

the material is isotropic, we make u a radial function such that ui(r) = u(r)r̂i. We

then minimize the free energy with respect to this displacement field through the

Euler-Langrange equations ∂F
∂ui
− ∂

∂xi

∂F
∂∂ui

= 0, giving a differential equation for the

displacement r2u′′ + 2ru′ − 2u = 0 whose solution is given by

u(r) =
∆V

4πr2
+
P∞
3K

r (5.15)

Here, ∆V is the local volume change, P∞ is the pressure at long length scales due

to boundary conditions and K is again the bulk modulus. This displacement field

leads to a strain and stress field in linear elasticity that has the form

εij =
1

2
(∂iuj + ∂jui)

=
u

r

(
δij −

rirj
r2

)
+ u′

rirj
r2

σij = Kεllδij + 2µ(εij − 1/3δijεkk)

= K
(

2
u

r
+ u′

)
δij + 2µ

(u
r
− u′

)(1

3
δij −

rirj
r2

)
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Using this stress field, we find the pressure field is a constant

P = σii/3 = K
(

2
u

r
+ u′

)
= P∞ (5.16)

Geometric nonlinearity However, both the simulation and experimental data

show a pressure ring that suggests we need to move to higher order elasticity to

accurately describe the stress field of the colloidal vacancy. The first natural at-

tempt to capture this ring can be done by including the geometric nonlinearity (also

known as finite strain), an extra term in the strain field that makes it rotationally

invariant but is higher order in displacement. Doing so, we find that

εij =
1

2
(∂iuj + ∂jui + ∂iuk∂juk)

=
u

r

(
δij −

rirj
r2

)
+ u′

rirj
r2

+
1

2

[(u
r

)2 (
δij −

rirj
r2

)
+ u′2

rirj
r2

]
= Ū

(
δij −

rirj
r2

)
+ Ū ′

rirj
r2

where we can define Ū = u/r+ 1/2(u/r)2 and Ū ′ = u′+ 1/2u′2. We then calculate

the stress which is linear in the strain, arriving at the same answer as previously,

except with these variables substituted. Lastly, we find the differential equation

for the radial displacement field via the Euler-Lagrange equations, yielding a long

nonlinear ODE, which we omit for brevity. Fitting the experimental data using this

form yields a small pressure enhancement which cannot be tuned to quantitatively

match the experimental data without resorting to unphysical values for the bulk

and shear modulus.

Nonlinear elasticity Motivated by arguments made in Section II, we next cal-

culate the stress field incorporating the leading terms in nonlinear isotropic elastic

theory. In particular, we modify the free energy such that

F ′ = Flinear +
α

3
εiiεjjεkk +

β

6
εijεjkεki +

γ

4
εiiεjkεjk (5.17)
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We insert the definition of finite strain into the new free energy to arrive at

another differential equation for the displacement field as a function u(r).

r5(24r(λ+ 2µ)u′′(r) + 6(α + β + γ)u′(r)5

+ 4u′(r)3(2(8α + 3(4β + 2γ + λ+ 2µ)) + 15r(α + β + γ)u′′(r))

+ 4u′(r)2(8α + 6(2β + γ + 4λ+ 6µ) + 9ru′′(r)(2α + 2β + 2γ + λ+ 2µ))

+ 24u′(r)(2(λ+ 2µ) + ru′′(r)(α + β + γ + 3λ+ 6µ))

+ 3u′(r)4(2(6α + 8β + 5γ) + 5r(α + β + γ)u′′(r))) + 2r4u(r)(8(r(α + 3(β + λ))u′′(r)

− 3(λ+ 2µ)) + 3(α + 3β)u′(r)4 + 12(α + 3β)u′(r)3 + 4u′(r)2(5α + 3(6β + λ) + 3r(α + 3β)u′′(r))

+ 8u′(r)(α + 3(β + λ) + 3r(α + 3β)u′′(r))) + 4r3u(r)2(2(r(2α + 9β + 3λ)u′′(r)

− 3(2α + 4β + γ + 6λ+ 6µ)) + 3u′(r)2(α + 6β + r(α + 3β)u′′(r)) + 6r(α + 3β)u′(r)u′′(r))

+ 4r2u(r)3(2(−13α− 6(5β + γ + λ+ µ) + r(α + 6β)u′′(r)) + (α + 6β)u′(r)2 − 2(α + 6β)u′(r))

+ 2ru(r)4(−32α− 72β − 15γ + r(α + 6β)u′′(r)− 2(α + 6β)u′(r))− 6u(r)5(2α + 4β + γ) = 0

We use this nonlinear ODE to fit the pressure profile found in the experimental

data using only the purely compressional third-order elastic constant α = 3.6 Pa,

leaving β = γ = 0. In this same fit, we set the other elastic constants K = 0.093 Pa

and µ = 0.092 Pa based on studies of hard sphere elastic constants [201]. We also

set the volume change ∆V = −0.083 to be the same as the experimental value. In

this fit, we are able to reproduce the experimental pressure ring with one third-

order elastic constant and one initial condition (u′ far from the vacancy).

The value of α we find from our fit of the pressure ring is consistent with

the variation of bulk modulus with packing fraction as calculated by hard sphere

simulations. We can directly compare these values using the equation of state.

Given the pressure of a hard sphere system as a function of packing fraction, P (φ),

we can expand the elastic constants as K(φ0) + K ′(φ0)(φ − φ0) + 1
2
K ′′(φ0)(φ −
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φ0)2 + · · · giving α = K ′(φ0) = ∂φ(φ∂φP )|φ0 . Using the functional form for P (φ)

we get that α(0.59) ≈ 3.0 Pa in agreement with our fit α = 3.6 to experimental

stresses using nonlinear elasticity.

Vacancy interaction The overall sign of the interaction between vacancies must

be negative as vacancies are in general attracted to areas of higher pressure just

as interstitials are attracted to areas of lower relative pressure. In the case of two

vacancies, the local increase in pressure around one vacancy acts as a higher pres-

sure region for the second, causing them to mutually attract. Physically speaking,

the collapse of particles towards the core of one vacancy causes particles to col-

lide more frequently which is relieved by the negative volume change given by the

second vacancy.

The above argument gives the dominant nonlinear term (the linear field of

one vacancy coupling to the nonlinear pressure around another). Higher order

effects can be repulsive but are smaller than this leading order term. Specifically,

to calculate the attraction or repulsion of vacancies, we look at the elastic free

energy, which strictly speaking is entirely entropic. In this treatment, we will

be calling all entropic contributions aside from the configurational entropy the

elastic energy Eelastic, giving us a free energy density F = Eelastic − TSconf . To

first order, the elastic energy density is Eelastic = σijεij where σ is stress and

ε is strain. We consider the perturbative view of the elastic free energy in the

case of the interaction of two vacancies A and B, which can be expanded into

three primary terms, Eelastic = σA,Lij εB,Lij + 2σA,Nij εB,Lij + σA,Nij εB,Nij where L indicates

a linear contribution and N indications a nonlinear one. In isotropic linear elastic

theory, vacancies do not interact making the first term independent of vacancy

separation and leaving us with the second and third terms of the expansion. The
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second term is the linear part vacancy B’s quadrupole strain field sitting in the

nonlinear (pressure bump) stress field of vacancy A. In this simple case, we know

that the energy can be given by the vacancy quadrupole E = σext
ij Q

B
ij, where the

strain quadrupole for a vacancy is diagonal QB
ij = ∆V Bδij and σext = σA,N is

an external stress field given by vacancy A. Therefore, the energy can be written

E = σext
ii ∆V B = σA,Nii ∆V B = PA,N∆V B. Since ∆V ≤ 0 for vacancy defects,

this term is negative, leading to an overall attraction, consistent with previous

literature [145, 146, 57, 28]. This calculation will have higher-order corrections

due to the nonlinear elastic overlap of the nonlinear pressure rings ∝ PA,NPB,N as

well as nonlinear corrections to the pressure bump itself due to the presence of a

second vacancy, but the qualitative behavior remains unchanged.

5.2.4 Dislocation Stress and Strain Fields

Experimental details

The dislocation is produced by templating the [100] axis on a glass coverslip at

a registry 1.5% larger than the equilibrium lattice constant [218]. Particles are

sedimented onto the substrate forming a single face-centered cubic crystal. As the

crystal thickness reaches about 31 µm, a significant number of dislocations sponta-

neously nucleate and grow. We then image the three dimensional microstructure

of an isolated dislocation using a confocal microscope. A schematic of these dislo-

cations is found in the main text.
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Simulated dislocation stresses

To closely simulate the particular dislocation studied in the experiment, we im-

port the experimentally measured particle positions into the Brownian dynamics

simulation. Prior to recording the stress, we relax the system to remove overlaps

using a soft Hertzian potential and a large damping factor to ensure very little

rearrangement. We then freeze the border particles as labeled in red in Fig. 5.14

to ensure that the topologically constrained dislocation does not migrate. After

performing a time average, we find that the calculated stress field, both through

virial calculation and SALSA method, are in excellent agreement with the exper-

iment, providing a confirmation to the SALSA measurements. Importantly, since

this simulation procedure only requires a single snapshot of data for the initial

condition, this technique can be particularly useful in determining stresses in the

experimental cases where time average is challenging. For instance, it is difficult

to perform a time average in a system where the fluorescent dye photobleaches sig-

nificantly or the dynamic time-scale is comparable to the time between acquisition

of successive image stacks.

Continuum elastic theory

To compare against isotropic linear elasticity, we again calculate the stress field of

the dislocation. The stress field of a dislocation in coordinates where z is along
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Figure 5.14: Frozen particle border (dislocation). A screen-shot of our Brow-
nian dynamics simulation of the experimental fcc crystal. In shades
of gray are active hard sphere particles while in red are the frozen
boundary particles. Luminance in this picture roughly indicates the
position in the z direction with only a thin slice of the entire simula-
tion shown and darker colors indicating being deeper into the page.
The dislocation line is visible 1/3 from the bottom of the image run-
ning left to right as indicated by the discontinuity in particle shade
between adjacent rows.

the dislocation line, is given by [124]

σxx = −y 3x2 + y2

(x2 + y2)2

σyy = y
x2 − y2

(x2 + y2)2

σxy = x
x2 − y2

(x2 + y2)2

σzz = ν(σxx + σyy)

Using the method known as Dislocation Extraction Algorithm (DXA), we ex-

tract the line dislocation for our partial dislocation [241]. We rotate and translate
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Figure 5.15: Strain fields of a dislocation. Experimental measurements of
strain using the technique of Falk et al. [76] showing both compres-
sive (left) and shear (right) strain distributions near a dislocation
defect. The approximate location of the dislocation core is labeled
with a (⊥). Notice that while the trend is very similar to that of
the dislocation stress field (as in linear elasticity), there is a stronger
divergence towards the core which is highlighted in the main text in
Fig. 3.

the theoretical stress field for a single dislocation, integrating along the length of

the dislocation as done in the experiment and simulation. Doing so, we find an

excellent agreement with the other methods as shown in the main text Fig 3.

Strain fields

To investigate the relation between stress and strain, we determine the strain field

near the dislocation. Following a previously developed algorithm [76], we measure

the particle-level strain by quantifying the local affine deformation of individual

particles. The compressive and shear strain (γxz) fields are shown in Fig. 5.15. We

find that the strain fields show qualitatively similar features found in the stress

distributions. However, as illustrated in Fig. 3(c) of the main paper, the stress-

strain curve deviates from linearity near defects where strains are large.
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Elastic moduli

Using the strain measurement, we analyze other experimentally accessible cubic

moduli as done in the main manuscript. To that end, we compute the compressive

C33 and shear C13 modulus profiles and discuss their behaviors below. We focus

on the moduli associated with the strain component γzz, which shows a larger

response than γxx and γyy in our experiment. For this analysis we rotate our stress

and strain tensors so that the x and y axes align with the (100) and (010) axes of

the cubic system. In this frame, the moduli for an cubic crystal have the following

symmetries: C33 = C22 = C11, and C23 = C13 = C12.

To compute the compressive modulus near the dislocation core, we first deter-

mine the compressive stress σzz and strain γzz. Here, we determine the uniform

background strain (due to the overall pressure arising from confinement and grav-

ity) by matching the measured modulus to the corresponding theoretical value [80].

We then perform the same analysis used in the shear modulus calculation, and plot

the compressive modulus C33 as a function of position r/2a in Fig. 5.16(a). The

region of the dislocation core is at r/2a ≈ 5.5 (gray shade). We find that C33 is

higher on the side with an additional half plane of particles. Similarly, we also ob-

serve a reduction in C33 on the other side due to the missing half plane of particles.

We also find that the trend of the shear modulus C23 is similar to the compressive

modulus C33 (Fig. 5.16(b)), which shows an enhancement on the left side and a

reduction on the right.

The moduli we report are only calculated along a line perpendicular to the

glide plane of the dislocation. The other two natural directions along the glide

plane are excluded due to experimental limitations. Along the burgers vector we

are limited by the noise in the stress and strain fields. Since the modulus is the
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Figure 5.16: Profile of the cubic moduli C33 and C23 for the dislocation.
(a) Compressive modulus C33 versus position perpendicular to the
glide plane of the dislocation. (b) Shear modulus C23 measured along
the same direction. Both moduli are calculated using the protocol
described in the main manuscript.

ratio of the two, zeros remain problematic, similar to issues in deconvolution, and

a new method of inference must be applied to the moduli in these regions. Along

the dislocation line, we have already collapsed the data by averaging the stress

and strain fields in this direction in order to reduce noise in the x-z plane. This

averaging makes it infeasible to calculate the modulus variation in this direction.

Due to symmetry, this direction should display a constant modulus. In the future,

with a full time series of dislocation images, we can begin to look at the modulus

variation near kinks and jogs along the dislocation line.
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5.2.5 Polycrystal Stress Fields

Experimental details

We show a confocal image of the polycrystal we use in our experimental analysis

in Fig. 5.17(a). The shown field of view is the same as the one of the stress field

reported in the main manuscript. We show only a slice in the x-y plane of a

complete 3D image stack. The z-interval between adjacent scan slices is 0.135 µm

∼ 0.1 times the particle diameter. By matching the refractive indices of the water-

glycerol mixture and silica particles, we minimize effects from the point spread

function and z-axis spherical aberration, thus optimizing the image quality. We

show the featured particle position with green circles in Fig. 5.17 (a). The data

are visually overlaid to ensure there are no missing or repeated features.

To investigate the featuring accuracy, we plot the 1D g(r) of the suspension in

Fig. 5.17(b). As indicated by the sharpness of the first peak of g(r), limiting our

field of view to the first ten layers from the coverslip (in the optical z direction)

enables us to accurately feature the particle positions. The spread of this peak

arises from three contributions: featuring errors, polydispersity, and the thermal

fluctuation of the equilibrium separation between particles. The location of the

peak is primarily influenced by particle featuring errors and the packing fraction of

the sample. While the polydispersity of this sample is σ2
a ∼ 5%〈a〉 = 50 nm, this

variation in size will not shift the peak of g(r) from the mean particle diameter

(Fig. 5.17) unless there are spatial correlations of particle size. Therefore, at most,

the averaging featuring errors should correspond to this peak shift of 50 nm.

Furthermore, we show a SEM micrograph to illustrate the roundness of the

colloidal particles and the smoothness of their surfaces, see Fig. 5.17(c). As shown
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Figure 5.17: Colloidal polycrystal sample. (a) A representative slice of a 3D
confocal image stack. Green circles illustrate the featured particle
positions. This overlaid image shows that all particle positions are
correctly identified without any missing particles. (b) The pair cor-
relation function g(r) calculated using featured particle positions. In
the inset we show that the amount of particle overlap (yellow region)
is negligible. (c) A SEM micrograph of two particles showing how the
true particle size was determined in the sample.

in the SEM image, the surface roughness is less than the SEM resolution ∼ 5 nm.

We also use the SEM image to measure the polydispersity of the silica colloids.

We find that the polydispersity of the sample is less than 3% of the particle size,

consistent with the specification provided by the manufacturer.

In the stress measurement of the polycrystal, we average the calculated stress

field over 50 stacks of images. The structure of the polycrystal remains unchanged

within the acquisition time (∼ 30 s). While we expect to observe short-time stress

fluctuations arising from particle Brownian motion within the acquisition time, we

do not find any significant stress fluctuations on longer time scales.

Simulated polycrystal stresses

As with the dislocation stresses, we verified that the experimental stresses are ac-

curate using a simulation-experiment hybrid. Again we use the experimentally
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Figure 5.18: Frozen particle border (polycrystal). A screen-shot of our Brow-
nian dynamics simulation of the experimental polycrystal. In shades
of gray are active hard sphere particles while in red are the frozen
boundary particles. Luminance in this picture roughly indicates the
position in the z direction with only a thin slice of the entire simula-
tion shown.

featured particle positions as initial conditions for our hard sphere Brownian dy-

namics simulation. For each experimental snapshot, we remove overlaps and freeze

boundary particles as before, then evolve the system, measuring stresses using both

the true virial measurements as well as SALSA. By averaging over the various snap-

shots, we arrive at a stress field very similar to that found by the experimental

SALSA calculation.
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Figure 5.19: Per-particle virials for polycrystal. The experimental polycrys-
tal with particles colored by the magnitude of the fabric tensor (di-
rectly proportional to particle virial). While we see large scale cor-
relations of fabric tensor trace with grain interiors and variation of
off-diagonal components between grains, the magnitude of variation is
much smaller than that found in previous numerical studies of stress
distributions in strained polycrystals [222]

Virial stresses

In simulation literature, the atomic-level stress has been referred to as the virial

of an individual atom either normalized or un-normalized by the system vol-

ume [222, 149, 171, 267]. Here, the virial Fixj can be considered to be a stress that

does not account for the local variation of atomic (particle) free volume. To com-

pare our experimental results with the previous simulation findings (which do not

correct for local particle density fluctuations), we plot (Fig. 5.19) the un-smoothed

fabric tensor (local structural anisotropy) that is calculated using SALSA. For

detailed information of the fabric tensor calculation, see the section of SALSA

derivation. As shown in Fig. 5.19, we find that both the pressure and shear stress

fluctuations are evenly distributed throughout the polycrystal. This is in sharp

189



contrast to simulation results of sheared atomic polycrystals [222], which showed

much stronger virial fluctuations at grain boundaries than in grain interiors.
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CHAPTER 6

COLLECTIVE MOTION OF HUMANS IN MOSH AND CIRCLE

PITS AT HEAVY METAL CONCERTS 1

6.1 Heavy metal concerts

Human collective behaviors vary considerably with social context. For example,

lane formation in pedestrian traffic [173], jamming during escape panic [104], and

Mexican waves at sporting events [77] are emergent phenomena that have been

observed in specific social settings. Here, we study large crowds (102 − 105 at-

tendees) of people under the extreme conditions typically found at heavy metal

concerts [260]. Often resulting in injuries [127], the collective mood is influenced

by the combination of loud (130 dB [73]), fast (blast beats exceeding 300 beats

per minute) music, synchronized with bright flashing lights, and frequent intoxi-

cation [153]. This variety and magnitude of stimuli are atypical of more moderate

settings, and contribute to the collective behaviors studied here (Fig. 6.1).

Thousands of videos filmed by attendees at heavy metal concerts [6] highlight

a collective phenomenon consisting of 101− 102 participants commonly referred to

as a mosh pit. In traditional mosh pits, the participants (moshers) move randomly,

colliding with one another in an undirected fashion (Fig. 6.2(A); see SI for video

metadata). Mosh pits can form spontaneously or at the suggestion of the perform-

ing band, but in both cases, no micromanagement of individual actions is generally

involved. Qualitatively, this phenomenon resembles the kinetics of gaseous parti-

cles, even though moshers are self-propelled agents that experience dissipative

1Silverberg, J. L., Bierbaum, M., Sethna, J. P., & Cohen, I. (2013). Collective motion of
humans in mosh and circle pits at heavy metal concerts. Physical review letters, 110(22), 228701.
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Figure 6.1: Typical collective behavior found in a mosh pit at heavy metal
concerts. Notice that some attendees are participating (foreground),
while others are not (background). Image courtesy of Ulrike Biets.

collisions and exist at a much higher density then most gaseous systems. To ex-

plore this analogy quantitatively, we watched over 102 videos containing footage

of mosh pits on YouTube.com, obtained six that were filmed from a suitably high

position to provide a clear view of the crowd, corrected for perspective distor-

tions [204] as well as camera instability, and used PIV analysis [96] to measure the

two-dimensional (2D) velocity field on an interpolated grid (Fig. 6.2(B)).

Video data of mosh pits was used to calculate the velocity-velocity correla-

tion function cvv, where we noted an absence of the spatial oscillations typically
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found in liquid-like systems (Fig. 6.2(B) inset) [19]. Generally, cvv was well fit

by a pure exponential, and for the video used in Fig. (6.2), the decay length was

0.39 ± 0.03 m, which is approximately human shoulder width. Taken together,

these findings offer strong support for the analogy between mosh pits and gases.

As a further check, we examined the 2D speed distribution. Previous observations

of human pedestrian traffic and escape panic led us to expect a broad distribution

not well described by simple analytic expressions [110, 104]. However, the mea-

sured speed distribution in mosh pits was well fit by the 2D Maxwell-Boltzmann

(MB) distribution, which is characterized by the probability distribution function

PDF(v) = (2v/T )e−v
2/T and temperature T (Fig. 6.2(C) and inset). These obser-

vations present an interesting question: why does an inherently non-equilibrium

system exhibit equilibrium characteristics?

6.2 Flocking model

Studies of collective motion in living and complex systems have found notable

success within the framework of flocking simulations [61, 65, 220, 147, 105, 257, 33,

207, 256]. Thus, we use a Vicsek-like model [256] to simplify the complex behavioral

dynamics of each human mosher to that of a simple soft-bodied particle we dub a

Mobile Active Simulated Humanoid, or MASHer. Our model includes two species

of MASHers to reflect the typical crowd at heavy metal concerts where we find both

active and passive participants (Fig. 6.1, foreground and background, respectively)

[268]. Active MASHers repel during collisions, exhibit self-propulsion, experience

flocking interactions, and are subject to random fluctuations due to environmental
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Figure 6.2: Experimental analysis of videos of mosh pits. (A) Single video
frame illustrating a characteristic mosh pit [6]. (B) The same video
image with overlaid velocity field. To facilitate comparisons with (A),
this image is not corrected for perspective distortions. Inset shows the
measured velocity-velocity correlation cvv (solid black circles) as a func-
tion of distance r, as well as the best-fit to a pure exponential (black
line, R2 = 0.97). (C) The measured PDF for speed from the same
video (solid black circles), the best fit to a 2D MB distribution (black
line), and the speed distribution found in simulations (yellow squares).
Inset shows the best-fit temperature as a function of time illustrating
that an initially “hot” mosh pit “cools down”. Error estimates are in
red for all plots.
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stimuli. These effects are modeled as forces on the ith MASHer by:

Frepulsion
i =

 ε
(

1− rij
2r0

)3/2

r̂ij, rij < 2r0

0, otherwise
(6.1)

Fpropulsion
i = µ(v0 − vi)v̂i, (6.2)

Fflocking
i = α

Ni∑
j=0

vj

/∣∣∣∣∣
Ni∑
j=1

vj

∣∣∣∣∣ , (6.3)

Fnoise
i = ηi. (6.4)

The Hertzian repulsion force [141] has a strength ε, and is determined by the

MASHer radius r0, as well as the distance rij and direction r̂ij between MASHers

i and j. A variant of this expression with a 5/2 power-law was tested and found

to produce quantitatively similar results. The self-propulsion force has a strength

µ, is aligned with the MASHer heading v̂i, and is proportional to the difference

between the current speed vi and the preferred speed v0. The flocking force has

a strength α, and is in the direction found by vectorially averaging the headings

of the Ni MASHers within a distance rflock = 4r0 of MASHer i. Consistent with

previous work [65, 257, 256], this distance was fixed in our model so that r0 <

rflock < L, where L is the system size. This choice minimizes the influence of

finite-size effects on the flocking force [61]. Finally, the random force ηi is a vector

whose components ηi,λ are drawn from a Gaussian distribution with zero mean

and standard deviation σ defined by the correlation function 〈ηi,λ(t)ηi,κ(t′)〉 =

2µσ2δλκδ(t − t′); the noise is spatially and temporally decorrelated. Based on

observational evidence, the second species in our model, passive MASHers, prefer

to remain stationary and are not subject to flocking interactions or random forces.

Thus, in the appropriate units, we set v0 = 0, α = 0, and ηi = 0 for passive

MASHers. Active MASHers have v0 = 1, while α and σ were varied to explore

the phase space of the model. The remaining parameters are the same for all

MASHers, and were set to ε = 25, µ = 0.05, and r0 = 1.
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We simulated concerts with N = 500 MASHers at a packing fraction of ρ =

0.94. 30% of the population was active, while the remaining was passive. Periodic

boundary conditions were used to avoid edge effects, and numerical integration

of r̈i = Frepulsion
i + Fpropulsion

i + Fflocking
i + Fnoise

i was performed with the Newton-

Stomer-Verlet algorithm with cell based neighbor lists to expedite computation.

Initializing the simulation with uniformly mixed populations, we found that they

spontaneously phase separated with a dense region of active MASHers confined by

passive MASHers. This occurs generally across parameter space, and appears to

be a product of the difference in preferred speeds between populations (SI). For

the parameter values studied here, this occurs in about ∼ 103× (r0/v0) time units

and once formed, remains stable for greater than 105 × (r0/v0) time units.

6.3 Phase diagram

We explored the model’s phase space by varying α and σ for the active MASHers

over the intervals [0, 1] and [0, 3], respectively (Fig. 6.3(A)). This led to 4.8 ×

105 individual simulations sampled on 4.8 × 103 grid points. For each run, we

measured the active MASHer RMS angular momentum about their center of mass

xcm = (L/2π)arctan(Im(A)/Re(A)), where L = 1.03
√
πr2

0N is the simulation box

size, A =
∑Na

i=1 exp (−2πixi/L), Na is the number of active MASHers, xi is the x

position of the ith MASHer, and a similar expression holds for ycm. In the low-

flocking, high-noise limit, we found the angular momentum was near zero, and

upon closer inspection, discovered a gas-like region (Fig. 6.3(B)) where MASHers

quantitatively reproduced the statistics found in experimentally observed mosh

pits (Fig. 6.2(C)).
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Figure 6.3: Simulation phase diagram and example behaviors in mosh
and circle pit. (A) The RMS angular momentum of active MASHers
exhibits a disordered gas-like state in the high-noise low-flocking limit.
The model also predicts an ordered vortex-like state in the low-noise
moderate-flocking limit. Dashed white lines correspond to the bounds
of the flocking-dominated regime. (B) Active MASHers (black) are
confined by passive MASHers (white), and the velocity field (red ar-
rows) resembles that found in actual mosh pits. (C) Active MASHers
spontaneously self-organize into an ordered vortex-like state. (Supple-
mental Movie 1 and 2.)

197



To interpret these results, we note that our model has three time scales: (i)

the flocking time τflock = v0/α, which can be found by dimensional analysis of

Eq.(6.3); (ii) the noise time τnoise = v2
0/2µσ

2, which can be found by calcu-

lating the amount of time required for noise to change the correlation function

〈[vi(τnoise) − vi(0)]2〉 = 2µσ2τnoise by an amount equal to the characteristic speed

squared; and (iii) the collision time τcoll = 1/(2r0v0ρ), which is the mean-free-path

(2r0ρ)−1 divided by the speed v0. Both noise and collisions tend to randomize

motion, whereas flocking tends to homogenize motion. Thus, when τnoise � τflock,

the statistical motion of the system is dominated by random forces. The bound-

ary given by this condition occurs when τnoise ∼ τflock, or rather, σ ∼
√
α/µ

(Fig. 6.3(A)). Similarly, when the τcoll � τflock, collisions cause disordered motion.

This regime is bounded by α � 2r0v
2
0ρ, which is independent of σ, and for our

choice of parameters is ∼ 1; empirically, we find α ∼ 10−2 in agreement with this

condition. This demonstrates how a non-equilibrium system of moshers can have

equilibrium characteristics: random motions induced by collisions or noise of self-

propelled agents over a sufficient time reproduce the statistics of classical gases via

the Central Limit Theorem.

Conversely, when τflock � τnoise and τcoll, the flocking term dominates active

MASHer motion. With sufficiently low noise, this limit of the model predicts a

highly ordered vortex-like state [26, 245] where MASHers again phase separate,

but the confined active MASHers move with a large non-zero angular momentum

(Fig. 6.3(C)). Remarkably, this spontaneous phase separation and vortex formation

is also observed at heavy metal concerts where they are conventionally called circle

pits (Fig. 6.4; see SI for video metadata) [6]. In simulations, we found an even

distribution between clockwise (CW) and counter-clockwise (CCW) motion (when

viewed from above) that switches directions at random intervals [49]. However,
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observations from concerts show 5% flow CW with the remaining 95% flowing

CCW (p < 0.001). This asymmetry is independent of regional conventions in motor

vehicle traffic, as video data was collected from a variety of countries including

the United State of America, the United Kingdom, and Australia. Though the

origin of this effect is unknown, we speculate it may be related to the dominant

handedness/footedness found in humans, as it is known to bias turning behaviors

[169].

6.4 Conclusions

The collective behavior described here has not been predicted on the basis of staged

experiments with humans [126, 172], making heavy metal concerts a unique model

system for reliably, consistently, and ethically studying human collective motion.

Currently, the most significant obstacle to further progress is the limited availabil-

ity of publicly available high-quality video footage, and a general reluctance among

concert organizers to allow filming at their events. Nevertheless, further studies in

this unique environment may enhance our understanding of collective motion in

riots, protests, and panicked crowds, as it sheds light on what collective behaviors

become possible when traditional social rules are abandoned. Such studies may

lead to new architectural safety design principles and crowd management strate-

gies that limit the risk of injury at mass social gatherings [103]. For example,

many heavy metal bands routinely announce during live performances “If you see

someone fall down in the mosh pit, pick them back up.” This simple rule is known

to reduce the risk of injury by trampling, and if employed in other extreme social

gatherings, would be expected to have similar social benefits. Similarly, within the

MASHer model, we found that by setting the preferred speed v0 = 0, all mosh and

199



Figure 6.4: Experimental characterization of a circle pit. The vortex-like
state predicted in simulations is also observed at heavy metal con-
certs, where it is called a circle pit. (A) Single video frame illustrating
two side-by-side circle pits [6]. (B) The same video image with over-
laid velocity field. To facilitate comparisons with (A), this image is
not corrected for perspective distortions. Inset shows the measured
velocity-velocity correlation cvv as a function of distance r (solid black
circles, error estimates in red). Note that cvv is maximally negative at
r ≈ 6 m, corresponding to the approximate diameter of the left-most
circle pit. Weak oscillations for r > 6 m are evident due to long-range
correlations between the two circle pits.
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circle pit behaviors ceased, suggesting an alternative approach to real-world crowd

safety management.

Heavy metal concerts have the further advantage of exhibiting a rich variety of

collective behaviors such as: (i) the wall of death (moshers split into two groups

separated by an open space and, when signaled, simultaneously run at the opposing

group leading to a deliberate mass collision), (ii) pogoing (a locally correlated but

globally decorrelated collective jumping), and (iii) propagating waves in jammed

attendees [234]. In addition to these broadly defined types of collective motion,

there are further variations that arise when concert organizers focus on specific

musical subgenres that appeal to niché audiences. For example, hardcore pits,

ninja pits, and push pits are all variants of the traditional mosh pit with their own

unique characteristics that may not, when studied in detail, be well described by

Eqs.(6.1-6.4). Thus, heavy metal concerts offer many new opportunities to study

the collective behaviors arising from large groups of humans in extreme social

conditions.

6.5 Additional analysis

6.5.1 Video Metadata

A search on YouTube.com for the phrase “mosh pit” returns over 105 results.

We watched over 102 videos that exhibited mosh pits and circle pits indicating

that these collective behaviors are robust, reproducible, and largely independent

of factors such as the musical subgenre, timing of performance, crowd size, arena

size, suggestions from the band, time of year, and socioeconomic status of the
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moshers.

For the video shown in Fig. 2 of the manuscript, the following additional data

was available:

• Band: 36 Crazyfists

• Recorded on Dec. 4, 2008

• First of three bands performing

• Audience size ∼ 102 attendees

• Venue: The NorVa, Norfolk, VA

• Venue capacity: 1,500

• Band encouraged moshing

For the video shown in Fig. 4 of the manuscript, the following additional data

was available:

• Band: Hatebreed

• Recorded on June 11, 2006

• Second of ten bands performing

• Audience size ∼ 105 attendees

• Venue: Donington Park, Leicestershire, England

• Band encouraged moshing
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6.5.2 PIV Analysis

To quantify the motion of moshers in videos filmed at heavy metal concerts, we

used PIV analysis to measure the 2D velocity field on an interpolated grid. In our

analysis, we first correct for perspective distortions due to the camera position.

This amounts to a linear transformation with two free parameters that define the

skew angle and stretching factor. In turn, these parameters are set by the camera

height and tilt, and can be estimated by looking at stationary objects in the field

of view. The PIV algorithm then breaks up each video frame of width w and

height h into a square grid spaced by an amount ∆, which is described more

below. Each square tile has area ∆2 and is centered on a position 〈xi, yj〉 where

i = 1 . . . bw/∆c, and j = 1 . . . bh/∆c. To determine the velocity associated with a

given tile at position 〈xi, yj〉 in frame fn, the region given by xi−2∆ . . . xi+2∆, yj−

2∆ . . . yj + 2∆ in frame fn+1 is examined. Within this larger region, all positions

of overlap are examined and a local correlation function is calculated. The region

of maximum correlation is generally offset from 〈xi, yj〉 to 〈xi + χi, yj + υj〉, which

in turn defines the displacement vector 〈χi, υj〉 associated with a given tile. This

process is iterated for all tiles in a given frame, and all consecutive pairs of frames.

Various values for ∆ were tested ranging from approximately `/5 to 2`, where

` is the characteristic feature size in a given video, i.e., the approximate width of

a human. Grid sizes between to `/3 and 1.5` were found to have no substantial

effect on the measured velocity field: in this range, we found consistent statistical

results independent of `. Outside this interval, the algorithm failed to track the

motion of tiles more than 35% of the time.

The algorithm was further tested with calibration videos wherein spherical

objects were translated across the field of view with small random fluctuations in
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the orthogonal direction. In these tests, the motion was tracked and a series of

digital “tracer particles” were placed in the measured flow field. The tracer particle

positions were updated frame-by-frame according to the locally measured velocity

field. The algorithm was thus validated when we found that the tracer particles

followed the test objects throughout the video.

6.5.3 Phase Separation

In the main text, we note that an initially uniform mixture of active and passive

MASHers spontaneously phase separate. In our observations, we see that both

mosh pits and circle pits can form spontaneously, which lead us to simplify our

computations by beginning with initial conditions where a circular group of active

MASHers are surrounded by passive MASHers. However, we find this phase sepa-

ration behavior much more general and striking. Even after removing the flocking

and noise forces, self-propulsion alone is able to drive the separation of active

and passive MASHers. Also, depending on our parameters, different morphologies

arise with time. As shown in Supplemental Fig. 6.5, we can arrive at well-defined

vortices, stringing colonies of coherent active populations, winding pathways of

gas-like states, and well-defined circular gas-like states. Note that MASHer color

coding is identical to that of Fig. 3 of the main text.

This patterning is reminiscent of that seen in driven granular materials. For

example, clustering of grains has been reported in experiments [216] in which grains

of a single type are excited by vertical vibrations. These clusters are thought

to form due to the effect of high densities on dissipation of kinetic energy. We

hypothesize a similar situation arises in our MASHer model due to the difference

in velocities between the active and passive populations.
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Figure 6.5: Coarsening of mosh and circle pits in large-scale simulations.
Simulations of 105 MASHers randomly assigned an active or passive
status such that 30% were active reveal phase separation behaviors that
vary with the model parameters. (A) and (B) have zero flocking and
noise (α = σ = 0), while (C) and (D) have finite flocking and noise
(α = 0.25, σ = 1). At zero flocking, we find more homogeneously
distributed active MASHers within confined regions, whereas at finite
flocking, we find larger density fluctuations due to flocking, which acts
like a long-range attraction. (A) and (C) have a packing fraction of
ρ = 0.83, while (B) and (D) have a packing fraction of ρ = 0.69. At
higher packing fractions we see well confined groups of active MASHers,
whereas at lower packing fractions, the active MASHers form a more
network-like structure. All images represent the system after ≈ 104

time steps, which is sufficient time for clusters of mosh/circle pits to
coarsen and grow.
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6.5.4 Expanded MASHer Phase Diagram

The phase diagram shown in Fig. 3 of the main text illustrates a region of gas-

like and vortex-like collective motions by plotting the RMS angular momentum

over a range of parameter values. Here, we expand on this plot (reproduced in

Fig. 6.6(A)), by showing the standard deviation of the active MASHer angular mo-

mentum (Fig. 6.6(B)). We note that the largest fluctuations arise at high values

of the flocking coefficient α relative to the values associated with vortex forma-

tion. Interestingly, this region in parameter space coincides with a region where

the RMS linear momentum is also large (Fig. 6.6(C)). Simulations at high flock-

ing and low noise demonstrate the formation of active MASHer lanes that push

through the passive MASHers (Supplemental Movie 3). Indeed, fluctuations in

the magnitude of the linear momeuntum (Fig. 6.6(D)) increase with the linear

momentum illustrating that the lane mean free path shortens at higher flocking.

In the MASHer model, we found that setting the preferred speed of the active

MASHers v0 equal to zero suppressed both mosh and circle pits. While this region

of parameter space appears to reflect a calm crowd, we must be careful when ex-

trapolating a minimal flocking model, designed to explore the physics of collective

motion, to real-world circumstances. For example, the model presented here does

not account for (i) individual changes in moshing preferences, (ii) that people can

fall down, or (iii) groups of people can be spatially coupled by social connections.

While the MASHer model appears sufficient to predict large scale collective behav-

ior, these additional features may be important for real-world applications such as

crowd safety management.
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Figure 6.6: Phase diagram of additional order parameters. We show here
additional features of the MASHer model in the region of phase space
described in the main text. (A) Reproduction of the phase diagram
in Fig. 6.3 showing the RMS angular momentum. (B) Standard devi-
ation of the angular momentum with the identical contours from (A)
superimposed. (C) Magnitude of active MASHer linear momentum
illustrating a region of lane formation at high flocking and low noise.
(D) Standard deviation of the linear momentum magnitude illustrat-
ing that fluctuations increase with the linear momentum. All order
parameters have been normalized to their maximum value.
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CHAPTER 7

YOU CAN RUN, YOU CAN HIDE: THE EPIDEMIOLOGY AND

STATISTICAL MECHANICS OF ZOMBIES 1

7.1 Introduction

Zombies captivate the imagination. The idea of a deadly disease that not only

kills its hosts, but turns those hosts into deadly vectors for the disease is scary

enough to fuel an entire genre of horror stories and films. But at its root, zombism

is just that – a (fictional) disease – and so should be amenable to the same kind

of analysis and study that we use to combat more traditional diseases.

Much scholarly attention has focused on more traditional human diseases [129],

but recently, academic attention has turned a bit of thought onto zombies as a

unique and interesting modification of classic disease models. One of the first aca-

demic accounts of zombies was the 2009 article by Munz et al. [175], in which

an early form of a compartmental model of zombism was introduced. Since then,

there have been several interesting papers published including works that perform

Bayesian estimations of the zombie disease parameters [263], look at how emo-

tional factors impact the spread of zombies [186], using zombies to gain insight

into models of politics [114], or into the interaction of a zombie epidemic and so-

cial dynamics [215, 170]. Additional essays can be found in two books collecting

academic essays centered around zombism [44, 237]

Besides the academic papers, zombies have seen a resurgence in fiction. Of

particular note are the works of Max Brooks, including a detailed Zombie Survival

1Alemi, A. A., Bierbaum, M., Myers, C. R., & Sethna, J. P. (2015). You can run, you can
hide: The epidemiology and statistical mechanics of zombies. Physical Review E, 92(5), 052801.
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Guide [38], as well as an oral history of the first zombie war [39] in a hypothesized

post outbreak world. In both these works Brooks provides a rich source of informa-

tion about zombies and their behavior. In particular, he makes the connection to

disease explicit, describing zombies as the result of a hypothetical virus, Solanum.

Zombies form a wonderful model system to illustrate modern epidemiological

tools drawn from statistical mechanics, computational chemistry, and mathemati-

cal modeling. They also form an ideal vehicle for public outreach: the Center for

Disease Control uses preparation for a zombie apocalypse [188, 189] to promote

emergency preparedness. In this work, we will build up to a full-scale simulation

of a zombie outbreak in the continental United States, with realistic values drawn

from the literature and popular culture (section 7.5, simulation accessible online

2). Before that, we shall use statistical mechanics to scrutinize the threshold of

zombie virulence that determines whether humanity survives (section 7.4). Pre-

ceding that, we shall show how methods from computational chemistry can be

used to simulate every individual heroic encounter between a human and a zombie

(section 7.3). But we begin by describing and analyzing a simple model of zombies

(the SZR model) – the simplest and most natural generalization to the classic SIR

(Susceptible-Infected-Recovered) model used to describe infectious disease spread

in epidemiology.

7.2 SZR Model

We start with a simple model of zombies, the SZR model. There are three com-

partments in the model: S represents the susceptible population, the uninfected

2http://mattbierbaum.github.io/zombies-usa/
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humans; Z represents the infected state, zombies; and R represents our removed

state, in this case zombies that have been terminated by humans (canonically by

destroying their brain so as to render them inoperable). There are two transi-

tions possible: a human can become infected if they are bitten by a zombie, and a

zombie can be destroyed by direct action by a human. There are two parameters

governing these transitions: β, the bite parameter determines the rate at which

a zombie will bite a human if they are in contact, and κ the kill parameter that

gives the rate that a human kills the zombie. Rendered as a system of coupled

differential equations, we obtain, for a particular interaction site:

Ṡ = −βSZ (7.1)

Ż = (β − κ)SZ (7.2)

Ṙ = κSZ (7.3)

Notice that these interactions are density dependent, in the sense that the rate

at which we convert humans to zombies and kill zombies is dependent on the

total count of zombies and humans in this site. This is in contrast with most

models of human diseases, which frequently adopt frequency dependent interactions

wherein S,Z,R would have been interpreted as the fraction of the population in

the corresponding state.

This distinction will become stark once we consider large simulations with very

inhomogeneous populations. By claiming that zombies can be modeled by a single

bite parameter β that itself is a rate per person per unit time, we are claiming that

a zombie in a block with 5,000 people would be one hundred times as effective at

infecting new zombies as a zombie in a block with fifty people; similarly the zombie

in question would be killed one hundred times faster. This would seem false for

an ordinary disease like the flu, but in the case of zombies, we argue that it is

210



appropriate. Zombies directly seek out hosts to infect, at which point the human

and zombie engage in a duel to the (un)death.

To facilitate analysis we can nondimensionalize the equations by choosing a

relevant population size N , and recasting in terms of the dimensionless time pa-

rameter τ = tβN and dimensionless virulence α = κ/β

dS

dτ
= −SZ

N
dZ

dτ
= (1− α)

SZ

N
(7.4)

dR

dτ
= α

SZ

N

Unlike a traditional disease (e.g., as modeled by SIR), for the zombie model,

we have a stable configuration when either the human or the zombie population is

defeated (S = 0 or Z = 0). Furthermore, unlike SIR, SZR admits an analytical

solution, assuming R(0) = 0, and with Z0 ≡ Z(0), S0 ≡ S(0):

P ≡ Z0 + (1− α)S0 (7.5)

µ ≡ S0

Z0

(1− α) =
P

Z0

− 1 (7.6)

f(τ) ≡ Pµ

eτP/N + µ
(7.7)

Z(τ) = P − f(τ) (7.8)

S(τ) =
f(τ)

1− α
(7.9)

Given the analytical solution, it is clear to see that the sign of P governs whether

there will eventually be humans or zombies in the final state. If α < 1, P > 0, so

lim
τ→∞

f(τ) = 0 (7.10)

lim
τ→∞

Z(τ) = P = Z0 + (1− α)S0 (7.11)

lim
τ→∞

S(τ) = 0 (7.12)
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and the system will always flow to a final state composed of entirely zombies and

no humans, where P denotes the number of zombies that survive.

If however, α > 1, humans are more effective at killing zombies than zombies

are at biting humans. With enough zombies in the initial state, we can still convert

all of the humans before they have time to kill all of the zombies.

We can recast the dynamics in terms of the variables P ≡ Z + (1 − α)S and

χ = S/Z to gain further insights. First note that:

dP

dτ
= P ′ = Z ′ + (1− α)S ′ (7.13)

= (1− α)
SZ

N
− (1− α)

SZ

N
= 0 (7.14)

so P is a constant of the dynamics. As for χ:

χ′ =
S ′

Z
− SZ ′

Z2
(7.15)

= − S
N
− (1− α)

S

N

S

Z
(7.16)

= − S
N

(1 + (1− α))χ (7.17)

= −P
N
χ (7.18)

Hence if we choose N = |P |, we end up with the very simple dynamics:

P ′(τ) = 0 (7.19)

P (τ) = P0 = Z(τ) + (1− α)S(τ) = Z0 + (1− α)S0 (7.20)

χ′(τ) =


−χ P > 0

+χ P < 0

(7.21)

χ(τ) =
S(τ)

Z(τ)
= χ0


e−τ P > 0

e+τ P < 0

(7.22)

χ0 ≡
S0

Z0

(7.23)
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Here we see that the dynamics is simply an exponential decay or increase in the

ratio of humans to zombies χ = S/Z. The final populations in either case are easy

to see due to the conservation of P . If zombies win we have

Z∞ = Z0 + (1− α)S0 (7.24)

And if humans win

S∞ = S0 −
Z0

α− 1
(7.25)

SIR model

This dynamics should be compared to the similarly nondimensionlized density-

dependent SIR model:

dS

dτ
= −SI

N
(7.26)

dI

dτ
=

(
S

N
− µ

)
I (7.27)

dR

dτ
= µI (7.28)

Here τ = tβN as above, but µ = ν/(βN) = R−1
0 , because in the SIR model our

infected population recovers on its own. This is contrasted with SZR, where the

process of infection and recovery have the same functional form, depending on the

product SZ. This µ is the inverse of the usual R0 parameter used to denote the

infectivity of the SIR model, here used to make a closer analogy to the SZR model.

It is this parameter that principally governs whether we have an outbreak or not.

Unlike the α parameter for SZR which depends only on our disease constants β, κ,

the relevant virulence for the density dependent SIR model (µ) has a population

dependence.

Notice again that while the only stable configuration for the SIR model is when
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there is no infected population (I = 0), the SZR model is stable when either the

humans or zombies are depleted (S = 0 or Z = 0).

The SIR model does not admit a closed form analytical solution, but we can

find a parametric solution by dividing the first equation by the third, revealing.

S(τ) = S0e
− (R(τ)−R0)

µN (7.29)

Using the observation that in the limit of infinite time, no infected population can

persist, we can choose N to be the total population

S0 + I0 +R0 = N = S∞ +R∞ (7.30)

and so obtain a transcendental equation for the recovered population at long times.

R∞ = N − S0e
− (R∞−R0)

µN (7.31)

Unlike the SZR model, here we see that no matter how virulent the disease is,

the epidemic will be self-limiting, and there will always have some susceptibles left

at the end of the outbreak. This is a sharp qualitative difference between zombies

and more traditional SIR models, arising from the fact that the “recovery” of

zombies is itself dependent on the presence of susceptibles.

To visually compare the difference, in Figure 7.1 we have shown deterministic

trajectories for both SIR and SZR for selected parameter values.

7.3 Stochastic simulation

While most previous studies modeling zombie population dynamics have been de-

terministic, things get more interesting when we try to model discrete populations.
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Figure 7.1: Deterministic trajectories for the SIR and SZR models with
an initial population of 200 people, 199 uninfected and 1 infected. The
(susceptible, infected, removed) population is shown in (thick blue,
thin red, dashed black). The SZR results are darker lines while the
SIR results are lighter lines. For both models τ = tβN where N was
taken to be the total population. For the SZR model α was chosen to
be 0.6, while for the SIR model µ was chosen to be 0.6 to show similar
dynamics. Notice that in this case, in SZR the human population
disappears and only zombies remain in the end, while the SIR model
is self-limiting, and only a fraction of the population ever becomes
infected.

By treating the number of zombies and humans as continuous variables in the last

section, we are ignoring the random fluctuations that arise in small populations:

even a ferociously virulent zombie infestation might fortuitously be killed early on

by happy accident. Similar problems arise in chemical reactions: reactions involv-

ing two types of proteins in a cell can be described by chemical reaction kinetics

evolving their concentrations (like our SZR equations 7.4), but if the number of
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Figure 7.2: Example Gillespie dynamics for the SIR and SZR models with
the same parameter settings as Figure 7.1. The (susceptible, infected,
removed) population is shown in (thick blue, thin red, dashed black).
The SZR results are dark lines while the SIR results are lighter lines.
The two simulations were run with the same seed so as to match their
dynamics at early times.

such proteins is small, accurate predictions must simulate the individual binary

reactions (each zombie battling each human). Interpreting our SZR transitions

as reaction rates, gives us a system akin to a chemical reaction with two possible

transitions:

(S,Z)
βSZ−−→ (Z,Z)

(S,Z)
κSZ−−→ (S,R)

When a human and zombie are in contact, the probability of a bite in a small

period of time is given by the bite rate and the size of the populations of the two
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species (βSZ dt), and similarly for the probability of a kill. In order to efficiently

simulate this dynamics, we use the Gillespie algorithm [89], which efficiently uses

the computer to sequentially calculate the result of each one-on-one battle.

The stochasticity gives more character to the simulation. The fully connected

continuous dynamics modeled by the differential equation is straightforward: either

the humans win and kill all of the zombies, or the zombies win and bite all of the

humans. While the continuous approximation may be appropriate at intermediate

stages of the infection where the total population is large and there are a non-trivial

number of infected individuals, we will eventually be interested in simulating an

actual outbreak on an inhomogeneous population lattice, where every new site will

start with a single infected individual. But even though we may be interested in

modeling the outbreak case (α < 1), we would like to allow the possibility that the

humans manage to defeat the outbreak before it really takes off. The stochastic

Gillespie dynamics allows for this possibility.

In Figure 7.2 we have shown an example of a single stochastic simulation using

the same parameter settings as those used in Figure 7.1. The stochastic trajectory

overall tracks the analytic result, but at points in the simulation there may be

more or fewer zombies than anticipated if the dice fall that way.

Another implication of stochastic dynamics is that it is not always guaranteed

that a supercritical (α < 1) outbreak will take over the entire susceptible pop-

ulation. For the parameter settings used in Figure 7.1 and 7.2, namely α = 0.6

with a population of 200 and one infected individual to start, the zombies win only

40% of the time. Additionally, the number of zombies we end with is not fixed, as

shown in Figure 7.3.
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Figure 7.3: Distribution of final states for Gillespie dynamics. The distri-
bution for final zombies over 100,000 stochastic trajectories with the
same parameters as Figure 7.2. Not pictured are the 60% of runs that
end with no zombies in the final state. Compare these to the analytical
result, in which the final population of zombies would be 81 with no
possibility of surviving humans.

In fact, we can solve exactly for the probability Pext that an α < 1 simulation

will go extinct in the limit of large populations, using an argument drawn from

the theory of branching processes [262]. At the very beginning of the simulation,

there is only one zombie, who will be killed with probability κ/(β + κ). If the

first zombie is killed before it bites anyone, we guarantee extinction. Otherwise,

the zombie will bite another human, at which point there will be two independent

zombie lines that need to be extinguished, which will occur with probability P 2
ext.
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Figure 7.4: Extinction rate of infections. The observed fraction of simulations
that end in an extinction for the zombie outbreak, for 1,000 runs of 104

individuals at various values of α (eqn. 7.33). The observed extinction
probabilities agree with the expectation that they should go as α, here
shown as the dashed line. This is the same behavior as the SIR model.

This allows us to solve:

Pext =
κ

β + κ
1 +

β

β + κ
P 2

ext (7.32)

Pext =
κ

β
= α . (7.33)

The probability of extinction is just given by our dimensionless inverse virulence

α. In Figure 7.4 we have shown the observed extinction probabilities for 1,000

Gillespie runs of a population of 104 individuals at various values of α, and overlaid

our expected dependence of α.

This same extinction probability (Pext = µ = R−1
0 ) is observed for the SIR

model [129]. This is not a coincidence. In precisely the limit that is important for
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studying the probability of an extinction event, namely at early times with very

large populations, the SZR model and SIR are effectively the same, since the

population of susceptibles (S) is nearly constant. Writing S as S0 − δS, we have:

dZ

dτ
= (1− α)

S0Z

N
− (1− α)

(δS)Z

N
(7.34)

dI

dτ
=

(
1− µN

S0

)
S0I

N
− (µN + δS)

I

N
. (7.35)

Here as δS → 0, the two models are the same with α = µN/S0, another indication

that the density dependent SIR model’s virulence is dependent on population size.

To get a better sense of the effect of the stochasticity, we can look at the mean

fractional population in each state for various settings of α and choices for initial

population size. The results are shown in Figure 7.5.

Plotted are the fractional populations in the final state left for both the SZR

model (top row) and SIRmodel (bottom row) for different parameter combinations

of α and the initial population. In all cases, the N parameter was chosen to

be 100. For each box, 1,000 independently seeded stochastic trajectories were

calculated until completion. Looking at the SZR results in the top row, we can

see that the dynamics is fairly independent of population size once the population

size gets above around 100 individuals. The population dependence for lower

population sizes is an effect of the stochasticity. We can clearly see a transition

in the susceptible population near α = 1 corresponding to where our continuous

dynamics would show a sharp boundary. Here the boundary is blurred, again due

to the stochasticity. The final dead zombie population R remains small for all

values of α; for extremely virulent zombies α � 1, very few will be killed by the

humans before all of the humans are converted, while in the other extreme few

zombies are created so there are few to be killed.
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Figure 7.5: Mean final states as a function of model parameters. One thou-
sand different simulations are run for each cell. Each simulation starts
with a single zombie or infected individual. The runs are run until
they naturally terminate, either because the susceptible population is
deleted, the zombie population is gone, or there are no more infected
individuals. Each cell is colored according to the mean fraction of the
population occurring in each state. The top row is for SZR simula-
tions and the bottom row is for SIR simulations. In both cases N is
chosen to be 100. Here the sharp contrast between density-dependent
SZR and SIR is made apparent. Notice that density-dependent SIR
is very strongly population dependent.
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Contrast these results with the density dependent SIR dynamics shown in

the second row. There can be no infected individuals left in the end, so only

the fraction of S and R in the final state are shown. The two transitions in

SIR couple differently to the population of infected and susceptible. While our

nondimensionalized SZR model has Z ′ = (1 − α)SZ/N , our nondimensionlized

SIR has I ′ = (S/N − µ)I. This creates a very strong population dependence.

The transition observed in the S population is largely independent of µ, except

on the very small end. When we move to inhomogeneous population lattices this

means that for the density dependent SIR model, the most important parameter

governing whether a particular site has a break-out infection is the population of

that site on the lattice.

7.4 Critical Behavior of Lattice Model

Until now, we have considered fully connected, well-mixed populations, where any

infected individual can infect any susceptible individual with equal probability. But

surely, a zombie in New York cannot bite someone in Los Angeles. Investigation

of the spatial spread of infectious diseases is an important application of network

science; social diseases spread among intimate contacts, Ebola spreads by personal

contact in a network of care-givers, influenza can be spread by direct contact,

through the air or by hand-to-mouth, hand-to-eye or hand-to-nose contact after

exposure to a contaminated surface. For most diseases, ‘long bonds’ dominate the

propagation to distant sites [183]; airplane flights take Ebola to new continents.

Zombies do not fly airplanes, so our model is closer in spirit to the spread of

certain agricultural infestations, where the disease spreads across a lattice of sites

along the two-dimensional surface of the Earth (although not in those cases where
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pathogens are transported long distances by atmospheric currents).

To begin, we will consider a two-dimensional square lattice, where each site

contains a single individual. Each individual is allowed to be in one of three

states: S,Z, or R. The infection spreads through nearest neighbor bonds only.

That is, a zombie can bite or be killed by any susceptible individuals in each of

the four neighboring sites.

To make direct contact with our zombie model, the rate at which an susceptible

cell is bitten is given by βZ where Z is the number of zombie neighbors (since S

is one), and the rate at which a zombie site is killed is κS where S is the number

of susceptible neighbors.

Because all state transitions in the SZR model depend only on Z–S contacts,

for computational efficiency, we need only maintain a queue of all Z–S bonds, that

is connections along which a human and zombie can interact. At each step of the

simulation, one of these Z–S bonds is chosen at random, and with probability

β/(β + κ) = 1/(1 + α), the human is bitten, marking it as a zombie. We can then

query its neighbors, and for all of them that are human, we can add a Z–S link to

our queue. With probability κ/(β + κ) = α/(1 +α) the zombie is killed, removing

any of its links to neighboring humans from the queue. This process matches the

stochastic dynamics of our zombie model operating on the lattice.

Simulating zombie outbreaks on fixed lattices, there is qualitatively different

behavior for small α and large α. When α is large, the zombies do not spread very

far, always being defeated by their neighboring humans. When α is very small, the

zombies seem to grow until they infect the entire lattice. This suggests evidence of

a phase transition. Technically, the presence of a phase transition would mean that
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if we could simulate our model on an infinite lattice, there should be some critical

α (αc), above which any outbreak will necessarily terminate. Below the critical

value, there is the possibility (assuming the infection does not die out) of having

the infection grow without bound, infecting a finite fraction of individuals in the

limit that the lattice size becomes infinite. The SIR model has been demonstrated

to undergo such a phase transition, and we expect the zombie model does as well.

The study of critical phenomena includes a series of techniques and analyses

that enable us to study the properties of phase transitions even on finite lattices.

A major theme of critical phase transitions is the importance of critical points –

where a system is tuned (here by varying α) to a value separating qualitatively

different behaviors (here separating low-infectivity transient zombie infestations

from a potentially world-spanning epidemic). At critical points, the system can

show scale free behavior; there is no natural length scale to the dynamics, and

various physical parameters will usually be governed by power laws (see below).

With α chosen to be precisely at the critical value, we indeed see a giant

component with fractal structure (Fig. 7.6). Note that there are holes (surviving

pockets of humans) of all sizes in the figure. This reflects the proximity to the

threshold: the battle between zombies and humans is so evenly matched, that

one gets an emergent scale invariance in the survival patterns. This is in keeping

with studies of the SIR model, which shows a similar critical behavior and phase

transition [94].

Systems near critical points with this kind of scale invariance fall into uni-

versality classes. Different systems (say, a real disease outbreak and a simple

computational model) can in many ways act precisely the same on large scales

near their transitions (allowing us to predict behavior without knowing the details
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Figure 7.6: Zombie fractal cluster at the critical point. Example clus-
ter resulting from the single population per site square lattice zom-
bie model with periodic boundary conditions near the critical point
αc = 0.43734613(57) on a lattice of size 2048 × 2048. Susceptible,
infected (zombie), and removed are shown in white, red, and black
respectively.
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of zombie-human (anti)social interactions). The SIR model on a two-dimensional

lattice with a single person per site falls into the percolation universality class [43],

though details of its cluster growth can differ [244]. Given that the SZR model

has two second order couplings, it is of interest whether it falls into the same

percolation universality class.

To extract the scaling behavior of our zombie infestation, we study the distri-

bution P (s, α), the probability that a single zombie will generate an outbreak of

size s at inverse virulence α. (An outbreak will be a fractal cluster in two dimen-

sions, with ragged boundaries if it dies out before reaching the entire world.) At

α = αc where the zombies and humans are equally matched, we have an emergent

scale invariance. A large outbreak will appear to almost stop several times – it can

be viewed as a sequence of medium-sized outbreaks triggering one another just

before they die out. Medium-sized outbreaks are composed of small outbreaks,

which are in turn composed of tiny outbreaks. At threshold, each of these scales

(large, medium, small) is related to the lower scale (medium, small, tiny) in the

same fashion. Let us oversimplify to say that at criticality an outbreak of size Bs

is formed by what would have been B smaller outbreaks of size s which happened

to trigger one another, and these in turn are formed by what would have been

B outbreaks of size s/B. If the probabilities and form of this mutual triggering

is the same at each scale, then it would not surprise us that many properties of

the outbreaks would be the same, after rescaling the sizes by a factor of B. In

particular, we expect at the critical point to find the probabilities of outbreaks of

size s to be related to the probabilities at size s/B by some factor f :

P (s, αc) = fP (s/B, αc). (7.36)

This formula quantifies an emergent scale invariance at αc: the properties of epi-

demics of size s (here the probability) are rescaled versions of the properties at
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a smaller scale s/B. [227] – the system is self-similar to itself at different scales.

Eqn 7.36 is solved by P (s, αc) ∝ s−τ , with τ = log(1/f)/ log(B). The distribution

of epidemic infection rates is a power law.

Figure 7.7 shows a thorough test of this dependence for our zombie model,

following a procedure akin to that of reference [244]. We simulated a zombie

outbreak on a two-dimensional lattice with periodic boundary conditions starting

with a single zombie. With the outbreak sizes following a power law distribution,

the probability that a site belongs to a cluster of size ns is Ps = sns, so that

at the critical point Ps ∼ s1−τ . Integrating from s to ∞, the probability that a

point belongs to a cluster of at least s in size (P≥s) should at the critical point

itself follow a powerlaw: P≥s ∼ s2−τ . To find our critical point αc, we ran many

simulations until our integrated cluster size distribution followed a power law, using

the interpolation methods of reference [244] to get a precise estimate of the critical

point.

For zombies on a two dimensional lattice, this critical point occurs at αc =

0.43734613(57), the resulting integrated cluster size distribution is shown at the

top of Fig. 7.7. Percolation theory predicts τ = 187/91 in two dimensions, and we

test that prediction in the bottom part of Fig. 7.7. Here, if we were precisely at

the critical point and the SZR model is in the percolation universality class, with

infinite statistics we would have asymptotically a perfectly straight line. Notice

the small vertical scale: our fractional fluctuations are less than 0.1%, while our

experimental results vary over several order of magnitude. The clear agreement

convincingly shows that the zombie model on the two dimensional lattice is in the

percolation university class.

As an additional check, we computed the fractal dimension of our clusters near

227



Figure 7.7: Determination of the critical point using epidemic size distri-
butions. The cumulative distribution of epidemic sizes for the two di-
mensional zombie model near the critical virulence. The critical point
found was αc = 0.43734613(57). (a) The probability of a site being
in a cluster of at least s in size (P≥s) is shown in blue circles. The
fact that it forms a straight line on a log-log plot indicates that P≥s
is a power law, and the slope is 2 − τ . For comparison, the red line
shows the powerlaw corresponding to the percolation critical exponent:
τ = 187/91. (b) Data for three different values of α near αc, each times
sτ−2 using the exponent from percolation theory that should make the
critical point into a flat line. We plot these against sσ, the size taken
to the power law σ = 36/91, as in Ref. [244]. Notice that for α > αc
(when the zombies lose) the large outbreaks are suppressed below the
power law, and for α < αc (when the zombies often win) the largest
outbreaks bend up. We follow Ref. [244] in estimating αc by interpo-
lating these slopes; the inset shows a bootstrap estimate of our error
in αc. Notice that the three curves are for very similar α – leading to
excellent precision in identifying the critical point.
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the critical point using box counting, a distribution for which is shown in Figure 7.8.

We find a fractal dimension df = 1.89(4), compared to the exact percolation value

of df = 91/48 = 1.895833.

Figure 7.8: Finite size scaling of the distribution of fractal dimensions.
Histograms of P (df |L), the observed fractal dimensions of the zombie
epidemic clusters as measured by box counting, measured in L × L
systems sizes L varying from 64 to 2048. These extrapolate to give
a measured value consistent with the exact percolation value 91/48,
with an error of ±0.04). The inset shows a finite-size scaling collapse
of these same curves. Using scale invariance arguments similar to those
in the text, one can argue that properties like our measured df should
take the form P (df |L) ∼ LxP((d∞f − df )/Lx). Hence by multiplying
P (df |L) by L−x and plotting it versus (d∞f −df )/Lx, the scaling theory
predicts the curves at large system sizes should all lie atop one another.
Here we estimate the critical exponent x ∼ 0.30 ± 0.05; we also used
the scaling collapse to extrapolate and measure df .

Why did we need such an exhaustive test (many decades of scaling, many digits

in our estimate of αc)? On the one hand, a much smaller simulation could have

told us that there was emergent scale invariance and fractal behavior near the

transition; one or two decades of scaling should be convincing. However, it is often

the case that there are several universality classes with critical exponents close to
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one another as in the case of percolation [18]. A small error in αc can produce

large shifts in the resulting fits for τ and df , demanding efficient programming and

fast computers to achieve a definitive answer.

We conclude that the single person per site zombie infestation, near the critical

virulence, will on long length scales develop spatial infestation patterns that are

well described by two-dimensional percolation theory.

7.5 US Scale Simulation of Zombie Outbreak

Having explored the general behavior of the zombie model analytically, stochas-

tically and on homogeneous single person lattices, we are prepared to simulate a

full scale zombie outbreak.

7.5.1 Inhomogeneous Population Lattice

We will attempt to simulate a zombie outbreak occurring in the United States.

This will be similar to our lattice simulation, but with an inhomogeneous popu-

lation lattice. We based our lattice on code available for creating a “dot map”

based on the 2010 US Census data 3. The 2010 Census released census block level

data, detailing the location and population of 11,155,486 different blocks in the

United States. To cast these blocks down to a square grid, we assigned each of

the 306,675,005 reported individuals a random location inside their corresponding

census block, then gridded the population into a 1500 × 900 grid based on lati-

tude and longitude coordinates. The resulting population lattice can be seen in

3https://github.com/meetar/dotmap
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the top half of Figure 7.9. You will see the presence of many empty grids, espe-

cially throughout the western United States. This disconnects the east and west

coasts in a clearly artificial pattern – our zombies in practice will gradually wander

through the empty grid points. To add in lattice connectivity, we did six iterations

of binary closing (an image processing technique) on the population lattice and

added it to the original. The effect was to add a single person to many vacant

sites, taking our total population up to 307,407,336. The resulting population map

is shown in the bottom half of Figure 7.9. This grid size corresponds to roughly 3

km square boxes. The most populated grid site is downtown New York City, with

299,616 individuals. The mean population of the occupied grid sites is 420, the

median population of an occupied site is 13.

7.5.2 Augmented Model

In order to more ‘realistically’ simulate a zombie outbreak, we made two additions

to our simplified SZR model. The first was to add a latent state E (Exposed).

The second was to introduce motion for the zombies. Considered as a system of

differential equations, we now have:

Ṡi = −βSiZi (7.37)

Ėi = −νEi (7.38)

Żi = νEi − κSiZi (7.39)

Ṙi = κSiZi (7.40)

Żi = µ
∑
〈j〉

Zj − µZi (7.41)

231



Figure 7.9: Population density of the US. (a) A 1500×900 grid of the 2010 US
Census Data showing raw data. Notice the multitude of squares with
no people in them in the Western United States. (b) The resulting
map after 6 steps of binary closing added to the original population.
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or as a set of reactions:

(Si, Ei)
βSiZi−−−−→ (Si − 1, Ei + 1) (7.42)

(Zi, Ei)
νEi−−−−→ (Zi + 1, Ei − 1) (7.43)

(Zi, Ri)
κSiZi−−−−→ (Zi − 1, Ri + 1) (7.44)

〈i j〉 : (Zi, Zj)
µZi−−−−→ (Zi − 1, Zj + 1) . (7.45)

Here i denotes a particular site on our lattice. 〈j〉 denotes a sum over nearest

neighbor sites, 〈i j〉 denotes that i and j are nearest neighbors. In this model,

zombies and humans only interact if they are at the same site, but the zombies

diffuse on the lattice, being allowed to move to a neighboring site with probability

proportional to their population and some diffusion constant (µ). We assume that

the humans do not move, not only for computational efficiency, but because, as we

will see, the zombie outbreaks tend to happen rather quickly, and we expect large

transportation networks to shut down in the first days, pinning most people to

their homes. The addition of a latent state coincides with the common depiction

that once a human has been bitten, it typically takes some amount of time before

they die and reanimate as a zombie. If a human is bitten, they transition to the

E state, where at some constant rate (ν) they convert into the zombie state.

To choose our parameters we tried to reflect common depictions of zombies in

movies. The work of Witkowski and Blais [263] performed a Bayesian fit of a very

similar SZR model to two films, Night of the Living Dead, and Shawn of the Dead.

In both cases, the observed α was very close to 0.8. This means that the zombies

in the films are 1.25 times more effective at biting humans than the humans are

at killing the zombies. We will adopt this value for our simulation. For our latent

state, we adopt a value close to that reported for Shawn of the Dead, namely a

half-life of 30 minutes. To set our movement parameter, we estimate that zombies
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move at around 1 ft/sec. (Note that metric units are uniformly used in science.

We use the parochial US units of feet in homage to the popular culture from which

we draw our data.) To estimate the rate at which the zombies will transition from

one cell to the next, we assume that the zombies behave like a random gas inside

the cell, so that the probability that a zombie will cross a cell boundary is roughly

1
4
Z
L2Lv∆t, that is, one-fourth of the zombies within v∆t of the edge will move across

that edge in a small amount of time. This suggests a value of µ of 0.0914 /hr. This

corresponds to an average time between transitions of around 11 hours, which for

a zombie stumbling around a 3 km block agrees with our intuitions. Finally, to set

a rate for our bite parameter, we similarly assume that the zombies are undergoing

random motion inside the cell at 1 ft/sec, and they interact with a human anytime

they come within 100 feet. We can then estimate the rate at which humans and

zombies will interact as SZ Rv∆t
L2 , which corresponds to a choice of β of around

3.6 × 10−3 /hr. Another way to make sense of these parameter choices is to ask

how many susceptible individuals must be in a cell before a single zombie has a

higher rate for biting a human than transitioning to a neighboring cell. For our

choice of parameters, this gives

Nβ = 4µ =⇒ N ∼ 102 . (7.46)

This corresponds to a low population density of ∼ 11 people/km2, again agreeing

with our intuition. All of our parameter choices are summarized in Table 7.1.

7.5.3 Simulation Details

To effectively simulate an outbreak at this scale, we employed the Next Reaction

Method of [86]. We maintained a priority queue of all possible reactions, assigning
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β 3.6× 10−3 /hr/person
α 0.8
κ αβ
η 2 /hr
µ 0.0914 /hr

Table 7.1: The parameters chosen for our US-scale simulations of a zom-
bie outbreak. These parameters were chosen to correspond with stan-
dard depictions of zombies and simple physical estimations explained
in the main text.

each the time at which the reaction would take place, an exponentially distributed

random number with scale set by the rate for the reaction. At each time step of

the simulation, we popped the next reaction off of the queue, and updated the

state of the relevant squares on our grid. Whenever population counts changed,

we of course needed to update the times for the reactions that depend on those

population counts. This method remained efficient for simulating the entire US.

However, at late times a large amount of simulation time was spent simulating the

diffusion of the zombies back and forth between highly populated states. We could

have achieved additional computational efficiency by adopting the time dependent

propensity function approach of Fu et al. [83].

7.5.4 Results

With the simulation in place, we are now in a position to simulate a full scale

zombie outbreak. We first consider an outbreak that began with one in every

million individuals starting in the Exposed (E) state in the United States. For a

single instance the overall populations are shown in Figure 7.10. This looks similar

to the analytical outbreaks we saw in Figure 7.1, but with a steeper rate of initial

infection and some slight perturbations to the curves. The total population curves
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however hide most of the interesting features. In Figure 7.11 we attempt to give

a sense of how this outbreak evolves, showing the state of the United States at

various times after the outbreak begins.

Figure 7.10: Sample trace of an epidemic across the U.S. The S (thick solid
blue), Z (solid red), R (dashed black), and E (light thin green) pop-
ulations as a function of time for a full scale zombie outbreak in the
continental United States starting with one in every million people
infected. The exposed population (E) has been magnified by a factor
of 100.

As you can see, for the parameters we chose, most of the United States popu-

lation has been turned into zombies by the first week, while the geographic map

does not necessarily seem all that compelling. In the early stages of the outbreak,

while the population is roughly homogeneous, the zombie plague spreads out in

roughly uniform circles, where the speed of the infection is tied to the local pop-

ulation density. Infestations on the coasts, with their higher population density,

have spread farther than those near the center of the country. After several weeks,

the map exhibits stronger anisotropy, as we spread over larger geographical areas

and the zombie front is influenced by large inhomogeneities in population density.
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(a) 1 Day (b) 2 Days

(c) 1 Week (d) 2 Weeks

(e) 3 Weeks (f) 4 Weeks

(g) 2 Months (h) 4 Months

Figure 7.11: Simulation of a zombie outbreak in the continental United
States. Initially one in every million individuals was infected at
random. Results are shown above at (a) one day, (b) two days, (c)
one week, (d) two weeks, (e) three weeks, (f) four weeks, and (g) two
months after the outbreak begins. Shown here are the population
of susceptible individuals (S) in blue, scaled logarithmically, zombies
in red and removed in green. All three channels are superimposed.
A movie version of this outbreak is available in the supplemental
materials online [7].
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After four weeks, much of the United States has fallen, but it takes a very long

time for the zombies to diffuse and capture the remaining portions of the United

States. Even four months in, remote areas of Montana and Nevada remain zombie

free.

To investigate the geographical characteristics of the outbreak, we must move

beyond a single instance of an outbreak and study how different regions are affected

in an ensemble of outbreaks. If it takes a month to develop and distribute an

effective vaccine (or an effective strategy for zombie decapitation), what regions

should one locate the zombie-fighting headquarters? We ran 7,000 different 28-day

zombie outbreaks in the continental United States starting with a single individual.

A single instance of one of these outbreaks originating in New York City is shown

in Figure 7.12.

Figure 7.12: Status of the United States 28 days after an outbreak that
started in New York City. Here blue represents humans, red repre-
sents zombies and green represents dead zombies. The three color
channels have been laid on top of one another.
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Figure 7.13: Average infection rate from US scale runs. In both cases, the
plot shows the probability of being infected in that square after an
epidemic that originates from a single infected individual chosen at
random from the total population. The top figure (a) is the probabil-
ity of being infected after 7 days, while the bottom plot (b) is after
28 days. In total, this represents 7,000 simulated runs starting from
a single individual. The top plot represents the 1,467 outbreaks that
lasted at least 7 days, the bottom plot represents 1,458 outbreaks that
lasted at least 28 days.
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By averaging over all of these runs, we can start to build a zombie danger map,

as shown in Figure 7.13. In the top plot, we show the probability that the given

cell is overrun by zombies after seven days. Here you can clearly see that there

are certain regions – those surrounding populous metropolitan areas – that are at

a greater risk. This is partly because those regions have lots of individuals who

could potential serve as patient zero, and partly due to the rapid spread of zombies

in those areas. In the bottom plot, we plot the probability that the cell is overrun,

but at the 28 day mark.

After 28 days, it is not the largest metropolitan areas that suffer the greatest

risk, but the regions located between large metropolitan areas. For instance, in

California it is the region near Bakersfield in the San Joaquin Valley that is at the

greatest risk as this area will be overrun by zombies whether they originate in the

San Francisco area or the Los Angeles / San Diego area. The area with the greatest

one month zombie risk is north eastern Pennsylvania, itself being susceptible to

outbreaks originating in any of the large metropolitan areas on the east coast.

7.6 Conclusion

Zombies offer a fun framework for introducing many modern concepts from epi-

demiology and critical phenomena. We have described and analyzed various zombie

models, from one describing deterministic dynamics in a well-mixed system to a

full scale US epidemic. We have given a closed form analytical solution to the well-

mixed dynamic differential equation model. We compared the stochastic dynamics

to a comparable density-dependent SIR model. We investigated the critical be-

havior of the single person per site two-dimensional square lattice zombie model
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and demonstrated it is in the percolation universality class. We ran full scale sim-

ulations of a zombie epidemic, incorporating each human in the continental United

States, and discussed the geographical implications for survival.

While this work is predicated on a fictional infestation, one might ask whether

there are any phenomena in the real world that behave in a manner similar to

our modeled zombie outbreaks. As noted, the SZR model requires that suscep-

tible hosts directly participate in the removal of zombie hosts from the infectious

population, leading to runaway outbreaks as susceptible hosts are depleted. One

might imagine a similar phenomenon for infectious diseases that require medical

intervention to be suppressed; as medical personnel themselves become infected

(as has sadly happened to a considerable degree during the recent Ebola outbreak

in West Africa), they become less able to stem the spread of infection. (Medical

personnel, however, represent only a small fraction of all susceptible hosts, so a

refinement to an SZR-type model would be required to account for this.) One

might also imagine SZR-like dynamics in the spread of ideas and opinions: a per-

son spreading a controversial opinion in a population, for example, might be able

to sway some converts, but is also likely to meet resistance and counter-arguments,

which act to reduce infectivity and perhaps ultimately stop the spread.

We hope our systematic treatment of an imaginary disease will provide a useful

and inspiring teaser for the exciting fields of statistical mechanics, network science,

and epidemiology.
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CHAPTER 8

OPENKIM PROCESSING PIPELINE: A VIRTUAL MACHINE

CLOUD-BASED AUTOMATIC MATERIALS PROPERTY

COMPUTATION ENGINE 1

8.1 Introduction

We introduce the OpenKIM Pipeline as a computational infrastructure for studying

material properties as predicted by interatomic potentials. In this project we

develop a set of tools built on top of Open Source Software packages that run

simulation codes against interatomic potentials. The results of these couplings

ultimately allow researchers to decide which material properties a given model is

able to predict accurately (to transfer to new problems) and why.

As computational resources become more powerful, cheaper, and more preva-

lent, the use of numerical simulations is becoming increasingly popular and impor-

tant in the understanding and prediction of material properties. Often, in order to

reduce computational complexity, interatomic potentials are developed and used

as a coarse-grained description of how atomic species interact. However, the pre-

dictive power of these simulations hinges delicately on a number of factors: the

form of the model, specific model parameters, physical properties under scrutiny,

and the simulation method to name a few. For example, when calculating the

mechanical properties of crystals, a researcher would want to find a model which

is able to accurately reproduce experimental values for the lattice constant, elastic

constants, and defect properties. However, when performing simulations of liquids,

1Matthew Bierbaum, Alexander A. Alemi, James P. Sethna, Ryan S. Elliott, Ellad Tadmor,
Trevor Wennblom, & Daniel Karls
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the viscosity, surface tension, and pair correlation are more relevant and must be

matched to reference data. A researcher must then determine these properties

for many models (from literature or calculations) and decide which model best

for their application. Additionally, the development of an interatomic model or

even a parametrization for a single material is a daunting task, requiring months

of work to create and verify, and warranting at least one publication afterward.

Many times, the code used to create the results presented in the publication is not

archived along with the paper making it difficult for others to acquire, having to

correspond directly with the authors. Aside from communication, the code may

not even be archived and set aside by the author at all so that the results can-

not ever be reproduced. This leaves other researchers to independently implement

and test interatomic potentials based on the description found in research papers,

adding greatly to the barrier to adoption.

OpenKIM aims to solve these scientific and practical issues of material sim-

ulations that use interatomic models by means of an all-encompassing frame-

work [242]. KIM is a secure, stable repository to store simulation codes (Tests)

and interatomic potentials (Models), a programming API to mediate their interac-

tion, and a set of resources to study the results of their coupling, including a user

interface to download all information associated with the project. Together, these

services provide a method to reliably store, share, and study interatomic models.

Therefore, along with the actual Tests and Models, a major responsibility of the

project is to create the Test Results which come from running each Test with each

Model, as applicable. Making these results available for systematic study is central

to the goals of the OpenKIM project. The calculation of these Test Results is the

responsibility of the OpenKIM processing Pipeline.
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8.2 The Pipeline

The processing Pipeline is a set of distributed computers that constitute the com-

putational resources of the OpenKIM project. The main responsibility of the

Pipeline is to calculate the results of Test-Model couplings and return the results

to the central repository for archival storage. The form of its implementation is

guided by three main design goals which are based on the goals of the project and

the resources available to complete it:

• Provenance - ability to track the origin of and perfectly recreate every

Test Result. This includes not only the source for the Test and Model, but

the entire software suite including all shared libraries, compiler version, and

input data.

• Flexibility - run on most hardware in many different physical locations with

varying network constraints.

• Ease of development - utilize standard software packages and protocols to

minimize the development and maintenance time.

To this end, the Pipeline is a set of computers separated into specific roles that

run a simple suite of custom software on a standardized set of Virtual Machines

(VM). To maintain separation of responsibilities between the Pipeline and the

rest of the project, there is a Gateway machine which interacts with the outside

world as well as the main KIM resources. The Gateway maintains a job queue, a

database of results and KIM objects, stores a Pipeline-local copy of the repository,

and runs a website that allows both users and the Web Application to interact

with the Pipeline. Additionally, the Gateway hosts a MongoDB [54] database of
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Test Results and Reference Data that is made available publicly to query through

a query API hosted on the OpenKIM resources 2. Overall, the Gateway receives

job submission requests and handles the results generated from those requests.

Connected to the Gateway is a set of Directors and Workers, the two machines

interior to the Pipeline. The Director connects to the Gateway’s queue and repos-

itory to decide which Test-Model pairs are jobs that need to be completed. The

Director’s main task is to fill the work queue with Test-Model couplings that need

to be run. The Workers consume these jobs from the Gateway’s queue and send

back the results to the Gateway. The Gateway, as intermediary, sends these results

back to the main KIM repository.

A graphical web user interface is hosted on the Gateway machine, allowing

external monitoring of the queue, as well as submission and deletion of jobs as

shown in Fig. 8.2.

8.3 Software and Virtual machine

The Director and Worker machines are based on a set of virtual machine (VM)

images maintained as a part of the KIM project. The VM is built on top of an in-

stallation of modern Linux configured with standard scientific computing packages.

On top of this base VM, a custom package manager installs other software pack-

ages including the OpenKIM API [242], LAMMPS [197], ASE [20], BLAS [144],

and more, whose snapshots are stored by the OpenKIM project. Each software

package stores a set of dependencies that it requires to work and is kept under

version control so that older versions may be used at any time to reproduce old

2query.openkim.org
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Figure 8.1: The architecture of the OpenKIM Pipeline. The Pipeline con-
sists of a central Gateway machine which connects to a set of Directors
and Workers, as well as a web interface. When a new KIM object is
uploaded to the OpenKIM portal website, the Pipeline is notified in
order to update any Test Results that might have changed. (1) First,
an API request is sent to the web interface for the Pipeline which is
directly (2) passed on to the Gateway machine. The Gateway (3) syncs
its local repository with the official repository and (4) passes on the
update to a Director through the queue. The Director (5) syncs its
local repository as well and finds all relevant jobs that need to be sent
to the queue, including those dependencies which have become stale.
(6) The Director places all of these jobs onto the queue after which (7)
Workers grab individual jobs and start their execution. (8) A Worker
grabs only the files needed to complete a job from the Gateway, com-
piles, templates, and runs the job. (10) Results or errors are sent back
to the Gateway. (11) The Gateway passes along these results to the
shared section of the official repository. Once they are accepted as
official Test Results, (12) they are moved into the official repository.

results. When a Worker receives a request to compute a Test-Model coupling, it

first downloads and activates all dependencies associated with the Test and Model,

as listed in the configuration files of those KIM items. These configuration files

list both static and dynamic dependencies. Static dependencies include other KIM

items (drivers, tests, etc) or software packages and dynamic dependencies are lim-

ited to the results of other Test-Model couplings and Reference data. In this way, a

Test Result can be completely specified by the Test, Model, VM, software packages

(with versions), and Test Result and Reference Data ids.
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The use of a VM addresses all three of the goals of the KIM project. Since the

software on the VM is held fixed, the runtime environment for every Test Result is

uniform. When updates to the base machine must be made, the VM is versioned

and the old one archived, meaning that old Test Results can always be reproduced.

For flexibility, these standard machines make it easy to run on most hardware,

given that virtualization technologies are supported. Finally, these same VMs can

be used as development machines when creating tests and models, providing a

lower startup cost when trying to join the project.

The final layer of software is a set of custom Python scripts which allow these

various machines to coordinate with one another to launch jobs and record the

output of the Test-Model couplings over a network architecture.

8.4 Network architecture

The virtual machines that comprise Workers and Directors talk to each other as

mediated by the Gateway through several different protocols. However, every

communication channel is ultimately tunneled through SSH [266] via port forward-

ing. While this decreases the speed of communication due to encryption, we gain

several advantages: (1) security through standard open source software SSH (2)

connections are always possible since the SSH connection is outgoing to the Gate-

way machine (this is not an issue for firewalls, etc) (3) if new ports are introduced,

networks and firewalls do not need to be updated.

As of version 1.0 of the Pipeline, three protocols are used to communicate be-

tween every VM in the project. Files are synced between local repositories and the

Gateway using rsync [250], the remote sync utility. The list of jobs, results, and er-
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rors are kept and communicated through Beanstalk [206], a lightweight networked

priority queue. A third transmission / reception line is opened through ZeroMQ [12],

allowing direct polling requests in the publisher / subscriber paradigm. Each con-

nection is made to the localhost and forwarded to the Gateway box through SSH.

Therefore, each VM does not directly communicate with each other, rather only

through indirect communication with the Gateway. Security issues can be ad-

dressed simply through breaking one connection rather than all-to-all.

8.5 Job workflow

Here we track a job from initial submission to results appearing on the frontend

website. A shorter version of this account can be tracked in Fig 8.1 by following

the descriptions and flow arrows.

A job submission starts at the Pipeline website. An authenticated API is

exposed which allows for job submission through a RESTful [273] URL that is

formatted as

https : // p i p e l i n e . openkim . org / jobs /update/KIM CODE

For this workflow, let’s assume that a PUT request is sent indicating that

there was an update in the official repository for the KIM object Exam-

ple TE 000000000000 000. Immediately, the website sends this update to the

Gateway, indicating that an external update was initiated. The Gateway syncs its

local repository using the official repository and forwards the update notification

to a Director machine via the Beanstalk queue.

A Director (randomly picked due to queue assignment) picks up the notification
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Figure 8.2: Screen capture of the Pipeline’s web interface. In the left panel
we see green, yellow, black, and red squares corresponding to different
jobs in the queue which are running, waiting to run, completed, and
completed with errors, respectively. In the right panel we show sample
output from a Test Model coupling that has produced an error. The
stdout, stderr, stdin, and kim.log files are provided through this
interface to investigate runtime problems with Tests that have been
submitted.

and syncs its local repository with the one that the Gateway recently updated. The

Director then proceeds to find all relevant Test Results that should be brought up

to date due to this change by resolving dependencies. To do so, it first finds all

relevant couplings by utilizing the matching logic in the OpenKIM API, asking

which of the Test-Model pairs can run together (see further discussion in Sec. 8.6.

The Director inserts each of these jobs onto the Beanstalk queue run by the

Gateway and waits for more updates.

For each job on the queue, a Worker selects the job and begins the execution

process. First, it syncs both the Test and Model as well as their dependencies

including Test Driver and Model Driver from the Gateway’s repository. It then

executes the Test, keeping track of errors as returned by exit codes. If there were

no errors, the result is transfered to the Gateway’s repository via rsync and a
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message placed on the Beanstalk queue that a Test Result is waiting. In the case

of an error, the stdout and stderr files are synced to the Gateway and an error

message is placed in the queue.

The Gateway then receives the message that a new result or error is present and

syncs the result to the shared region of the OpenKIM repository. The OpenKIM

editor then decides whether the result is accepted, and if so, moves it into the

official repository. A message of an accepted result is placed on the Gateway’s

queue. Upon reception of the new result message, the result is placed into the

database and made available to the public.

There are several subtleties in the story that is presented here. For example, the

Gateway receives many types of messages at once. How is the order of execution

determined and are all jobs successfully included in the queue? For each message,

only the relevant files are synced from the official repository. In this way, the order

does not matter, though they will be addressed in the order that they are received.

What if a Model is updated while a Test that it couples to is in the middle of being

updated? An update to a Test in fact gets versioned at the official repository and

the version number is incremented creating a new KIM ID. Therefore, the older

version of the Test will be coupled along with the new one to the updated Model.

In this way, these types of race conditions should not occur.

We show an instantaneous view of the Pipeline queue as displayed by the

Gateway’s website 3 in Fig. 8.2. In the left panel of the figure we see green, yellow,

black, and red squares each denoting a job that is currently running, waiting to

run, completed, and completed with errors. In the right panel we show the error

logs associated with a particular Test Model coupling highlighted by the inset. We

3http://pipeline.openkim.org/activity accessed on May 4, 2016
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can see by contents of output/pipeline.stderr that the LAMMPS simulator

did not produce a valid dump file. Along with this graphical view, the entire job

history is stored in the MongoDB database for provenance.

8.6 Dependency resolution

While the previous section outlines how a single job is resolved in the Pipeline, we

must also consider how jobs are related to one another and how dependencies are

automatically resolved. In particular, in this section we describe how the Directors,

in concert, traverse the (perhaps circular) dependency tree of jobs.

There are two stages of dependency resolution depending on the type of update

that the Director receives. If the update received is a Test, Model, Test Driver, or

Model Driver then the Director first determines all possible matches as given by

the OpenKIM API. For each of these pairs, the Director verifies that all dynamic

dependencies are resolved by checking that all necessary Test Results are present

in the database. If these dependencies are not finished then the current pair is

postponed and the dependency pair analyzed by the same method. This process

proceeds recursively until the current Test-Model pair’s dependencies are resolved

and the pair is submitted as a job. The jobs that were passed over in this process

are handled in the next stage of the dependency resolution. The other stage of

dependency resolution is when the Director receives a notification that a Test

Result has been completed. In this stage, only one layer of the job network is

analyzed as the Director finds Test-Model pairs that require this Test Result as a

dynamic dependency and submit them if they have not yet been completed. This

step resolves the dependencies that were skipped during the first stage. In this
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way, we are able to resolve dependencies using queries local in the dependency

network and iteratively calculate all Test Results without supervision.

This dependency search introduces a large computational overhead to job sub-

mission. Therefore, as new KIM objects are submitted to the Pipeline, the Di-

rectors create a cache of links in the job dependency network which is stored in a

local database. Using this cache, we are able to speed up dependency resolution

by a factor of 1000.

8.7 Status and conclusions

As of the writing of this manuscript, the Pipeline contains 6287 Tests, 35 Test

Drivers, 355 Models, and 37 Model Drivers which are been used by the Pipeline to

calculate 47784 Test Results. As a highly parallelized infrastructure we are able

to calculate these results in only a few hours of wall time. To demonstrate the

amount of information in the Pipeline’s database and the ease of access, we show

three different Python scripts which directly download and plot various views of the

Test Results calculated by the Pipeline. In Fig. 8.3 we plot 3620 lattice constants as

measured by energy minimization for all species and models present in OpenKIM.

When plotted by atomic number the trends of the periodic table can clearly be

seen. In Fig. 8.4 we show the density of states of an fcc Al crystal as measured for

26 different Models. Finally, in Fig. 8.5 we show the cohesive energy versus lattice

constant curve for these same Models. The code used to create these figures can

be found in the listings following the figures.

Overall, we have developed a distributed infrastructure to support the calcu-

lation of Test Results for the OpenKIM project. To do so, we have created a
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Figure 8.3: Example OpenKIM figure – lattice constants. Here we query
the OpenKIM public MongoDB database to retrieve all lattice con-
stant results associated with the Test Driver prefixed by LatticeCon-
stantCubicEnergy. We plot the lattice constants of both the stable
as well as the unstable cubic structures for all potentials available in
the repository. Trends in size with atomic number are clearly seen
in all lattice types. The code that produced this graphic is found in
Listing 8.1.

networked queueing and communication system built on standard software pack-

ages and network protocols on top of a modern Linux Virtual Machine. This

network consists of a interface Gateway as well as a set of Directors and Workers,

which calculate jobs to complete and as well as the result of these jobs, respectively.

The design choices we have made support the project wide goals of provenance,

flexibility, and ease of development.
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Listing 8.1: Code listing that produces Fig. 8.3

1 import pylab
2 import requests
3 from json import dumps
4
5 from ase.data import atomic_numbers , chemical_symbols
6
7 results = requests.post(
8 "https :// query.openkim.org/api",
9 data={

10 "project": dumps ([
11 "a.si -value",
12 "species.source -value",
13 "short -name.source -value"
14 ]),
15 "query": dumps ({
16 "meta.runner.kimcode": {
17 "$regex":"^LatticeConstantCubicEnergy"
18 }
19 }),
20 "database": "data"
21 }
22 ).json()
23
24 lattices = ["fcc", "bcc", "sc", "diamond"]
25 colors = ["#850113", "#9 BDA42", "#2 A6DC2", "#E57BAA"]
26
27 for color , lattice in zip(colors , lattices ):
28 for i, symbol in enumerate(chemical_symbols ):
29 lbl = lattice.upper() if i == 0 else None
30 x = atomic_numbers[symbol]
31 y = []
32 for r in results:
33 if r[1][0] == symbol and r[2][0] == lattice:
34 y.append(r[0]/1e-9)
35 pylab.plot([x]*len(y), y, "o", c=color , alpha =0.5, label=lbl)
36
37 pylab.xlim(0, 103)
38 pylab.ylim(0, 1.3)
39 pylab.xlabel("Atomic number")
40 pylab.ylabel("Lattice constant (nm)")
41 pylab.legend(loc="best", prop={"size": 16})
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Figure 8.4: Example OpenKIM figure – density of states. Here we plot
the density of states versus energy as measured by the PhononDis-
persionCurve Test for an fcc lattice of Aluminum for each Model
in the OpenKIM repository. This information was retreived from
the Pipeline Mongo database through the query API available at
query.openkim.org as shown in Listing 8.2.
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Listing 8.2: Code listing that produces Fig. 8.4

1 import pylab
2 import requests
3 from json import dumps
4
5 results = requests.post(
6 "https :// query.openkim.org/api",
7 data={
8 "project": dumps ([
9 "meta.subject.kimcode",

10 "energy.source -value",
11 "density -of-states.source -value"
12 ]),
13 "query": dumps ({
14 "property -id": {
15 "$regex": "/phonon -dispersion -dos -cubic -crystal -npt"
16 },
17 "meta.runner.kimcode": {
18 "$regex": "^PhononDispersionCurve"
19 },
20 "short -name.source -value": "fcc",
21 "species.source -value": "Al"
22 }),
23 "database": "data"
24 }
25 ).json()
26
27 for result in results:
28 name , energy , dos = result
29 pylab.plot(energy , dos , "k-", lw=1.7, label=name , alpha =0.5)
30
31 pylab.xlabel("Energy (eV)")
32 pylab.ylabel("Density of states")
33 pylab.xlim(0, 60)
34 pylab.ylim(0, 300)
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Figure 8.5: Example OpenKIM figure – cohesive energy. Here we plot the
cohesive energy versus lattice constant for fcc Al as measured for by
every Model in the repository in a method similar to that in Fig. 8.4.
The code to produce this figure can be found in Listing 8.3.
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Listing 8.3: Code listing that produces Fig. 8.5

1 import pylab
2 import requests
3 import numpy as np
4 from json import dumps
5
6 results = requests.post(
7 "https :// query.openkim.org/api",
8 data={
9 "project": dumps ([

10 "meta.subject.kimcode",
11 "a.source -value",
12 "cohesive -potential -energy.source -value"
13 ]),
14 "query": dumps ({
15 "property -id": {
16 "$regex": "cohesive -energy -relation -cubic -crystal"
17 },
18 "meta.runner.kimcode": {
19 "$regex": "^CohesiveEnergyVsLatticeConstant"
20 },
21 "short -name.source -value": "fcc",
22 "species.source -value": "Al"
23 }),
24 "database": "data"
25 }
26 ).json()
27
28 for result in results:
29 name , a, energy = result
30 pylab.plot(
31 a, -np.array(energy), "k-", lw=1.7,
32 label=name , alpha =0.5
33 )
34
35 pylab.xlabel("Lattice constant (A)")
36 pylab.ylabel("Cohesive energy (eV)")
37 pylab.xlim (3.14 , 6.11)
38 pylab.ylim(-3.6, 1.19)
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[21] B Bakó and I Groma. Computer simulations of a three-dimensional ising

ferromagnet with quenched disorder. Phys. Rev. B, 60(13):9228–9231, Oct

1999.
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[173] Mehdi Moussäıd, Dirk Helbing, and Guy Theraulaz. How simple rules deter-

mine pedestrian behavior and crowd disasters. Proceedings of the National

Academy of Sciences, 108(17):6884–6888, 2011.

[174] H Mughrabi, T Ungar, W Kienle, and M Wilkens. Long-range internal-

stresses and asymmetric x-ray line-broadening in tensile-deformed [001]-

orientated copper single-crystals. Philos. Mag. A, 53(6):793–813, 1986.

[175] Philip Munz, Ioan Hudea, Joe Imad, and Robert J Smith? When zombies at-

tack!: mathematical modelling of an outbreak of zombie infection. Infectious

Disease Modelling Research Progress, 4:133–150, 2009.

[176] I. Mura. On dynamic problems of continuous distribution of dislocations.

Int. J. Eng. Sci., 1(3):371–381, 1963.

[177] T Mura. Micromechanics of Defects in Solids. Kluwer Academic Publishers,

Dordrecht, 2nd ed. edition, 1991.

[178] A Ian Murdoch. A critique of atomistic definitions of the stress tensor.

Journal of Elasticity, 88(2):113–140, 2007.

278



[179] AI Murdoch and D Bedeaux. Continuum equations of balance via weighted

averages of microscopic quantities. Proceedings of the Royal Society of Lon-

don A: Mathematical, Physical and Engineering Sciences, 445(1923):157–

179, 1994.

[180] K. Nakamura and T. Akahane. Jpn. J. Appl. Phys., 29:L1157, 1990.

[181] M. J. Nasse and J. C. Woehl. Realistic modeling of the illumination point

spread function in confocal scanning optical microscopy. J. Opt. Soc. Am.

A, 27:295–302, 2010.

[182] R. M. Neal. Slice sampling. Ann. Stat., 31:705–767, 2003.

[183] Mark EJ Newman, I Jensen, and RM Ziff. Percolation and epidemics in a

two-dimensional small world. Physical Review E, 65(2):021904, 2002.

[184] Kerstin N Nordstrom, E Verneuil, PE Arratia, Anindita Basu, Zheng Zhang,

Arjun G Yodh, Jerry P Gollub, and Douglas J Durian. Microfluidic rhe-

ology of soft colloids above and below jamming. Physical review letters,

105(17):175701, 2010.

[185] Katja C Nowack, Eric M Spanton, Matthias Baenninger, Markus König,

John R Kirtley, Beena Kalisky, Christopher Ames, Philipp Leubner,

Christoph Brüne, Hartmut Buhmann, et al. Imaging currents in hgte quan-

tum wells in the quantum spin hall regime. Nature materials, 12(9):787–791,

2013.

[186] Felipe Nunez, Cesar Ravello, Hector Urbina, and Tomas Perez-Acle. A rule-

based model of a hypothetical zombie outbreak: Insights on the role of emo-

tional factors during behavioral adaptation of an artificial population. arXiv

preprint arXiv:1210.4469, 2012.

279



[187] J F Nye. Some geometrical relations in dislocated crystals. Act. Metall.,

1(2):153–162, 1953.

[188] U.S. Department of Health, Human Services Centers for Disease Control,

and Prevention. Preparedness 101: Zombie pandemic. http://www.cdc.

gov/phpr/zombies/.

[189] U.S. Department of Health, Human Services Centers for Dis-

ease Control, and Prevention. Preparedness 101: Zombie apoc-

alypse. http://blogs.cdc.gov/publichealthmatters/2011/05/

preparedness-101-zombie-apocalypse/, 2011.

[190] C. W. Oseen. Trans. Faraday Soc., 29:883, 1933.

[191] W Pantleon. On the distribution function of disorientations in dislocation

cell structures. Scr. Metall., 35:511–516, 1996.

[192] W Pantleon. On the statistical origin of disorientations in dislocation struc-

tures. Acta Mater., 46:451–456, 1998.

[193] R. Pathasarathy. Rapid, accurate particle tracking by calculation of radial

symmetry centers. Nat. Methods, 9:724–726, 2012.

[194] P J E Peebles. Principles of Physical Cosmology. Princeton University Press,

Princeton, 1993.

[195] Yi Peng, Ziren Wang, Ahmed M Alsayed, Arjun G Yodh, and Yilong Han.

Melting of colloidal crystal films. Physical review letters, 104(20):205703,

2010.

[196] See-Eng Phan, William B Russel, Zhengdong Cheng, Jixiang Zhu, Paul M

Chaikin, John H Dunsmuir, and Ronald H Ottewill. Phase transition, equa-

280

http://www.cdc.gov/phpr/zombies/
http://www.cdc.gov/phpr/zombies/
http://blogs.cdc.gov/publichealthmatters/2011/05/preparedness-101-zombie-apocalypse/
http://blogs.cdc.gov/publichealthmatters/2011/05/preparedness-101-zombie-apocalypse/


tion of state, and limiting shear viscosities of hard sphere dispersions. Phys-

ical Review E, 54(6):6633, 1996.

[197] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics.

Journal of computational physics, 117(1):1–19, 1995.

[198] WCK Poon. The physics of a model colloid–polymer mixture. Journal of

Physics: Condensed Matter, 14(33):R859, 2002.

[199] Wilson CK Poon, Eric R Weeks, and C Patrick Royall. On measuring col-

loidal volume fractions. Soft Matter, 8(1):21–30, 2012.

[200] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numer-

ical Recipes: The Art of Scientific Computing. Cambridge University Press,

Cambridge, third edition, 2007.

[201] Sander Pronk and Daan Frenkel. Large difference in the elastic properties

of fcc and hcp hard-sphere crystals. Physical review letters, 90(25):255501,

2003.

[202] A Pumir and E D Siggia. Finite-time singularities in the axisymmetrical

3-dimension Euler equations. Phys. Rev. Lett., 68(10):1511–1514, 1992.

[203] Alain Pumir and Eric D. Siggia. Development of singular solutions to the

axisymmetric Euler equations. Phys. Fluids A, 4(7):1472–1491, 1992.

[204] Charlotte Py, Emmanuel De Langre, Bruno Moulia, and Pascal Hémon. Mea-

surement of wind-induced motion of crop canopies from digital video images.

Agricultural and forest meteorology, 130(3):223–236, 2005.

[205] S. Ram, E. S. Ward, and R. J. Ober. Beyond rayleigh’s criterion: A resolution

281



measure with application to single-molecule microscopy. Proc. Natl. Acad.

Sci. U.S.A., 103:4457–4462, 2006.

[206] Keith Rarick. Beanstalk. http://kr.github.io/beanstalkd/, 2007-2016.

[207] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral

model. In ACM SIGGRAPH computer graphics, volume 21, pages 25–34.

ACM, 1987.
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