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PACS. 46.35.+z – Viscoelasticity, plasticity, viscoplasticity.
PACS. 62.20.Fe – Deformation and plasticity (including yield, ductility, and superplasticity).
PACS. 83.60.La – Viscoplasticity; yield stress.

Abstract. – We present a simple mesoscale field theory inspired by rate-independent plas-
ticity that reflects the symmetry of the deformation process. We parameterize the plastic
deformation by a scalar field which evolves with loading. The evolution equation for that
field has the form of a Hamilton-Jacobi equation which gives rise to cusp-singularity forma-
tion. These cusps introduce irreversibilities analogous to those seen in plastic deformation of
real materials: we observe a yield stress, work hardening, reversibility under unloading, and
cell boundary formation.

We call it plasticity when materials yield irreversibly at large external stresses. Macroscop-
ically, plasticity is associated with three qualitative phenomena. To a good approximation,
there is a threshold called the yield stress below which the deformation is reversible (see
fig. 1). A material pushed beyond its yield stress exhibits work hardening, through which the
yield stress increases to match the maximum applied stress. Finally, the deformed crystal
develops patterns, such as the cell structures observed in fcc metals [1–3]. While much is
known about all three phenomena, a quantitative understanding based on mesoscopic con-
tinuum theory would be welcome —especially if it connects to microscopic properties of the
atomic interactions in the material. In this paper, we will discuss a simple scalar field theory
which naturally exhibits these three key features of plasticity. We do not have a connection
to microscopic properties, and do not claim to model in detail plasticity in real materials.
However, we believe that a continuum description of plasticity should share the key feature of
our model equation: a transition between reversible and irreversible deformation is generated
by singularities which occur at finite stress.
There are a vast number of approaches to modeling plastic flow in metals —quantum,

atomistic, motion of single dislocations, motion of many dislocations, continuum theories of
dislocation densities, slip system theories, work hardening theories. . . . Reviewing even only
the basic ideas of these models is beyond the scope of this paper. Three of them, however,
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Fig. 1 – Generic stress-strain relation. For stress σ below the critical yield stress σy0 the deformation
is elastic and reversible. Further deformation results in plastic deformation and work hardening,
i.e. the yield point (bullet) moves to higher stress. The strain ε is partly due to reversible elastic
deformation εe and partly due to irreversible plastic deformation εp.

directly inspired our approach. 1) Theories based on the differential geometry of the Burgers
vector density torsion tensor [4, 5]. These elegant mathematical descriptions of the state of
the material need to be supplemented by a similarly sophisticated dynamical evolution law
—especially for the non-equilibrium problem of plastic flow. The torsion tensor theories are
typically dismissed by the engineering community because they ignore the large majority of
geometrically unnecessary dislocations which cancel out in the macroscopic Burgers vector
density. It is not clear that this cancellation arises on the sub-grain mesoscale we study, but
in this work we use a simpler scalar order parameter. 2) Macroscale engineering theories of
plasticity, and, in particular, the recent strain gradient theories [6]. Their use of symmetry
to constrain the form of the evolution laws is echoed in our approach. Their explicit in-
corporation of a yield surface is clearly appropriate on the macroscale, but is unsatisfactory
for a condensed-matter physicist. In our model, the yield surface emerges naturally from
the evolution laws through the development of cell structures on the mesoscale. 3) Theories
which attempt to coarse-grain the complex rearrangement dynamics of atoms [7,8] or disloca-
tions [9] to develop continuum plasticity theories. Any such description will introduce a field
which describes the local state of the material as it evolves during deformation. Even though
the microscopic dynamics of dislocations is understood to a large extent, coarse-graining the
microscopic dynamics has not been successful up to now.
We are going to study the following evolution equation for a scalar field which parameterizes

rate-independent plastic deformation:

∂Ψ
∂t
=

∂Sij

∂t
∇iΨ∇jΨ. (1)

We use Einstein’s convention, summing over repeated indices. The plastic deformation is
assumed not to depend on volume changes and the evolution depends only on the deviatoric
stress Sij = σij − 1

3σkkδij , with σij the full stress tensor. There are two motivations to study
this equation in the context of plasticity theory.
First, we can derive this evolution equation as one of the leading terms in a long-wavelength

expansion of a general local evolution equation for Ψ which respects the symmetries and the
rate invariance of the loading process. However, there is a priori a term of the same order
∂Sij

∂t ∇i∇jΨ which turns out to be highly singular since it leads to finite-time divergences of the
field Ψ. Although rate-independent (creep) terms such as ∇2Ψ (and higher-order derivatives)
should regularize these divergences, we prefer to discard these singular terms altogether in
the present discussion and focus on eq. (1) which, as we now show, already contains a rich
phenomenology. We will indeed show later that eq. (1) can be transformed into a Hamilton-
Jacobi equation which is known to form finite-time singularities. These singularities are the
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second reason to study this equation, since they can be related to the onset of irreversibility
and to dislocation structure formation. Second, Hamilton-Jacobi equations are also related to
conservation laws as studied in the context of traffic jams and at least on a naive level there
is a similarity between traffic jams and dislocation entanglement [10,11].
We will focus on so-called proportional loading paths (such as those used in shear and

tension tests, where the loading direction does not change), where the stress Sij(t) = σ(t)Ŝij .
Thus in eq. (1) we change variables from time t to stress amplitude σ:

∂Ψ
∂σ
= Ŝij∇iΨ∇jΨ. (2)

In the form of eq. (2), we see the key challenge in formulating laws of rate-independent
plasticity: the equations appear to be manifestly reversible. Increasing and then reducing σ
will naively leave the material in the original state. The engineers bypass this problem by
formulating their theories not in terms of order parameter fields, but directly in terms of a
yield surface (corresponding to step functions Θ(σ−σy) in the equations of motion). However,
eq. (2) is a Hamilton-Jacobi equation (closely related to the multidimensional anisotropic
Burgers equation, see [12]) which develops cusp-shaped singularities at finite σ even for smooth
initial conditions. At these singularities, as numerically illustrated below, information and thus
reversibility is lost. The stress at which the first singularities form has many features of a
yield surface, as we will show later.
After the formation of singularities, the solution of eq. (2) is not unique and one has to find

a weak solution which regularizes the singularities. As mentioned above, the assumption of
a rate-independent behavior discards creep relaxation effects which enter eq. (1) in form of a
diffusion term ∇k∇kΨ with a rate-independent coefficient. Such a term with an infinitesimally
small prefactor is enough to regularize the singularities and one gets the so-called viscosity
solution, which we will consider in the following.
We solve eq. (2) numerically on a finite-difference grid using the problem-solving environ-

ment cactus 4.0 [13]. The initial condition was a Gaussian random field with amplitude and
correlation length one. The convolution was performed in Fourier space using the fast Fourier
transform package fftw 2.1.3 [14]. We use an essentially non-oscillatory (ENO) scheme in
combination with Godunov’s method to minimize numerical damping [15]. The algorithm
is proven to converge to the viscosity solution. The numerical grid has periodic boundary
conditions; in one dimension (1D) the length of the system is 100 and the system had 4084
points; in two dimensions (2D) the size of the system is 252 and the grid was 10162. The
three-dimensional (3D) simulation cell was 12.53 and the grid size 2643. The ENO stencil
width was 4 in one and 5 in 2D and 3D, respectively, and the time stepping scheme is a
simple explicit Euler scheme with a time step δσ = 10−3. The system is cycled by unloading
beginning at various points σn and reloading at somewhat above zero stress (to reduce the
effect of numerical damping).
Figure 2 shows the evolution of the Burgers equation in 1D, corresponding to eq. (2) with

Sij = 1. The cusps develop in the valleys at σ ≈ 0.3, and the unloading and reloading paths
are both shown. Since the cusps disappear immediately upon unloading, the order parameter
evolution is reversible until the stress grows to match the previous maximum, so our model
exhibits work hardening.
Finally, fig. 3 shows the cusp locations in two cross-sections of a 3D simulation with

Ŝxx = 2/3, Ŝyy = Ŝzz = −1/3, and Ŝij zero otherwise, appropriate to a tension test. We
see that the cusps form nearly flat 1D interfaces separating cell-like volumes. While the cut
parallel to the loading direction (a) shows the expected asymmetry, the cut perpendicular to
the loading direction (b) shows an isotropic hexagonal cell structure. Simulations under shear
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Fig. 2 – Blow-up of the region 18 < x < 20 from our 1D simulation. The solid lines represent Ψ(x)
for σ values 0.1 apart starting at σ = 0, with curves further up having larger σ. The dashed lines are
Ψ(x) while unloading and the dotted ones while reloading. The dotted lines are hardly visible because
in the reversible region they lie on top of the dashed ones. At the cusps, the spatial discretization is
visible. The inset shows the initial (solid) and final (dashed) configuration of the whole system, i.e.
for σ = 0 and 6.

in 2D (Ŝxx = 1/2, Ŝyy = −1/2, and zero otherwise) show similar cusps to fig. 3(a). These
morphologies are reminiscent of cell structures formed in hardened fcc metals [3].
The size distribution of the cells depends on the initial conditions and the cells coarsen

in contrast to the cell refinement observed in experiments. Moreover, the cell walls in our
model blur upon unloading, (see fig. 2), much more than is seen experimentally. It is clear
that these effects call for a more realistic extension of the present model, but we believe
that the emergence of spatial structures, coupled with finite-stress singularities which lead to
irreversibility, is a generic feature which will be shared by a more elaborated non-linear field
description of plasticity.
We now wish to calculate a scalar, e.g., the total plastic strain, from the Ψ field which

x

(a)

y

y

(b)

z

Fig. 3 – Location of the singularities for tension test at σ = 1 in (a) the xy-plane and (b) yz-plane,
that is parallel and perpendicular to the loading direction, respectively. The lines are contour
lines Ŝij∇i∇jΨ = 1.5, 3, 6, 9, . . .. Our symmetry analysis does not provide us with a physical
interpretation for Ψ.
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Fig. 4 – Stress-strain relation according to eq. (3) for our 1D (solid line) and 2D (dashed line) model,
and for our 2D model with a stress-dependent prefactor 1 + 0.25Smn Smn (inset).

illustrates the transition from reversible to irreversible behavior in a similar way as the stress-
strain relation in fig. 1. The term we are going to calculate and which we will call strain is

∂ε

∂σ
= σŜk�

〈
(∇kΨ)(∇�Ψ)∇2Ψ

〉
. (3)

The angle brackets are spatial averages. There are two reasons for focusing on this term.
First it is sensitive to the formation of cusp singularities. At the cusp, the second derivative

gives a delta-function. Hence, the appearance of singularities will greatly affect the strain.
Second, the term in eq. (3) is part of a gradient expansion. We assume (as common among

engineers) that the deformation is in the direction of the applied stress Sij . If we expand the
strain rate ∂ε/∂t to second order in Sij and fourth order in gradients, the term in eq. (3) is
one of the terms. Other terms are either insensitive to the singularities or they are surface
terms (which would give zero average strain since we use periodic boundary conditions).
There is, however, one extra term in such an expansion, which is highly singular, namely
Sij

∂Sk�

∂t (∇k∇�Ψ)∇2Ψ. This term would lead to a delta-function squared at a cusp, which we
again neglect.
Figure 4 shows the resulting stress-strain curves for our plasticity theory. In 1D and 2D

the term in angle brackets in eq. (3) is a total divergence: it is proportional to ∇x(∇xΨ)3 and
∇x[(∇xΨ)3/3− (∇xΨ)(∇yΨ)2]−∇y[(∇yΨ)3/3− (∇yΨ)(∇xΨ)2] in 1D and 2D, respectively.
This implies that 〈∂εij/∂t〉 = 0, explaining why the unloading curves are vertical in fig. 4.
Plastic deformation occurs on the main loading curve because the cusps act as sources for the
total divergence term. (We do not show stress-strain curves for the 3D simulations. Because
of numerical limitations the results would be governed by finite-size effects, i.e., too few cells
in the sample volume. Qualitatively the stress-strain curves look similar.)
In the inset of fig. 4 we added a stress-dependent prefactor to eq. (3) in order to change

the curvature of the stress-strain curve and make it look more similar to fig. 1. This is
to demonstrate that the upward bending of the stress-strain curve is more related to the
interpretation of the field Ψ rather than to the evolution equation (1). The form of the initial
conditions could also influence the shape of the stress-strain curve considerably, in particular
the onset of instabilities.
Note that the point where the unloading curves meet the main stress-strain curve moves

to higher stresses for increasing plastic deformation, i.e., the yield surface moves to higher
stresses for higher deformation. In other words, our model equation shows work hardening.
The work hardening is generic to the evolution equation and independent of the formula for
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the plastic strain, since the yield surface (i.e., the formation of singularities) moves to higher
and higher stresses in eq. (1).
The simple Hamilton-Jacobi equation (or anisotropic Burgers equation) (1) together with

the plastic strain as calculated from eq. (3) forms a theory which generically has all three mys-
terious features of plasticity, namely an evolving yield surfaces, cell structure formation (with
the proper cell morphology for the given loading), and work hardening. However, as already
mentioned, there are significant differences between our model and real plasticity. The cell
structure in our model coarsens while it refines in real systems; also, the cell walls blur upon un-
loading in our model. Some of these shortcomings might be related to the choice of the viscosity
solution as weak solution, to the absence of noise in our evolution equation, or the choice of ini-
tial conditions. They may also be due to our choice of a scalar order parameter: we are explor-
ing theories more closely tied to the microscopics, based on the dislocation density tensor [16].
The main point we want to make here is that an evolving yield surface and work hardening-

like behavior is generated generically by the formation of cusp-singularities in Hamilton-Jacobi
equations (and probably other types of singularities in different evolution equations). The
analogy of the singularities in our model with the cell walls is only qualitative, but it suggests
that a mesoscale continuum theory will have cell walls as singular structures, that will be
central to work hardening and an evolving yield surface. We hope that the ideas presented in
this paper will motivate further research in that direction.
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