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Recent experiments suggest that membranes of living cells are tuned close to a miscibility critical point

in the two-dimensional Ising universality class. We propose that one role for this proximity to criticality in

live cells is to provide a conduit for relatively long-range critical Casimir forces. Using techniques from

conformal field theory we calculate potentials of mean force between membrane bound inclusions

mediated by their local interactions with the composition order parameter. We verify these calculations

using Monte Carlo simulations where we also compare critical and off-critical results. Our findings

suggest that membrane bound proteins experience weak yet long-range forces mediated by critical

composition fluctuations in the plasma membranes of living cells.
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Cellular membranes are two-dimensional (2D) liquids
composed of thousands of different lipids and membrane
bound proteins. Though once thought of as uniform sol-
vents for embedded proteins, a wide array of biochemical
and biophysical evidence suggests that cellular membranes
are quite heterogeneous (reviewed in Refs. [1,2]). Putative
membrane structures, often termed ‘rafts,’ are thought to
range in size from 10–100 nm, much larger than the
a� 1 nm size of the individual lipids and proteins of
which they are composed. This discrepancy in scale
presents a thermodynamic puzzle: naive estimates predict
enormous energetic costs associated with maintaining het-
erogeneity in a fluid membrane [3].

Parallel work in giant plasma membrane vesicles
(GPMVs) isolated from living mammalian cells presents
a compelling explanation for the physical basis of these
proposed structures. When cooled below a transition tem-
perature around 25 �C, GPMVs phase separate into two 2D
liquid phases [4] which can be observed by conventional
fluorescence microscopy. Quite surprisingly, they pass
very near to a critical point in the Ising universality class
at the transition temperature [5]. Near a miscibility critical
point, the small free energy differences between clustered
and unclustered states could allow the cell to more easily
control the spatial organization of the membrane, lending
energetic plausibility to the proposed structures. Although
analogous critical points can be found in synthetic mem-
branes [6–8] these systems require the careful experimen-
tal tuning of two thermodynamic parameters, as in the
Ising liquid-gas transition where pressure (equivalent to
the Ising magnetization) and temperature must both be
tuned. Although it has been suggested that biological
systems frequently tune themselves towards dynamical
and other statistical critical points [9], so far as we know
membranes are the clearest example of a biological system
which appears to be tuned to the proximity of a thermal
critical point.

Other plausible theoretical models have focused on 2D
microemulsions (stabilized by surfactants [10], coupling to
membrane curvature [11], or topological defects in orienta-
tional order [12]), but none has emerged from direct,
quantitative experiments on membranes from living cells.
It has been argued that Ising fluctuations should have
vanishing contrast between the two phases [11]. While
this is true of macroscopic regions, a region of radius
R of lipids of size a� 1 nm should have contrast

�ðR=aÞ��=� ¼ ðR=aÞ�1=8, leading to predicted composi-
tion differences of 0.7 at the physiologically relevant 20 nm
scale, and differences of 0.5 at the R ¼ 400 nm scale of
fluorescence imaging [5]; on the length scales of interest
there is plenty of contrast. Indeed, our calculations of
Ising-induced forces take place at and above the critical
point, where the macroscopic contrast is of course zero.
How might a cell benefit by tuning its membrane near to

criticality? Presuming that functional outcomes are carried
out by proteins embedded in the membrane, we focus on
the effects that criticality might have on them. For em-
bedded proteins, proximity to a critical point is distin-
guished by the presence of large, fluctuating entropic
forces known as critical Casimir forces. Three-dimensional
critical Casimir forces have a rich history of theoretical
study [13]. In more recent experimental work [14] colloi-
dal particles clustered and precipitated out of suspension
when the surrounding medium was brought to the vicinity
of the liquid-liquid miscibility critical point in their sur-
rounding medium. Two-dimensional Casimir forces like
the ones studied here have been investigated for the Ising
model using numerical transfer matrix techniques [15] for
a demixing transition using Monte Carlo simulations [16]
and for shape fluctuations using perturbative analytical
methods [17,18]. Here we estimate the magnitude of com-
position mediated Casimir forces arising from proximity to
a critical point, both in Monte Carlo simulations on a
lattice Ising model, and analytically, making use of recent
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developments in boundary conformal field theory (CFT)
[19–21]. Our motivation is biological: in a cellular mem-
brane, these long-range critical Casimir forces could have
profound implications. More familiar electrostatic interac-
tions are screened over around 1 nm in the cellular environ-
ment, whereas we find the composition mediated potential
can be large over tens of nanometers.

Critical Casimir forces are likely utilized by cells in the
early steps of signal transduction where lipid mediated
lateral heterogeneity has been shown to play vital roles.
Many membrane bound proteins segregate into one of two
membrane phases when biochemically extracted with de-
tergents at low temperatures [22], or when proteins are
localized in phase separated GPMVs [5]. Furthermore,
there is evidence that some receptors change their parti-
tioning behavior in response to ligand binding or down-
stream signaling events [23]. Modeling this as a change in
the coupling between the receptor protein and the Ising
order parameter predicts that these bound receptors will
see a change in their interaction partners. Supporting this
view, ligand binding to receptors is often accompanied by
spatial reorganization in which receptors and downstream
molecules move into close proximity of one another [1,24],
perhaps because they now share a preference for the same
Ising phase. Perturbations to the lipid composition of the
membrane, like cholesterol depletion [25], typically dis-
rupt this spatial reorganization [24] and have dramatic
effects on the final outcomes of signaling [26–28], in our
view by taking the membrane away from its critical point
and interfering with the resulting long-range forces.

We take three approaches to estimating the form of
these potentials. We first consider two point-like proteins
which interact with the local order parameter like local
insertions of magnetic fields h1 and h2 at x ¼ 0 and
x ¼ d. To calculate the resulting potential we write a
Hamiltonian for the combined system of the Ising
model with order parameter �ðxÞ plus proteins as
Hð½�ðxÞ�; dÞ ¼ HIsingð½�ðxÞ�Þ þ h1�ð0Þ þ h2�ðdÞ. We

then write a partition function for the combined system

ZðdÞ ¼ R
D½�ðxÞ�e��H½ð�ðxÞ;dÞ� and solve to lowest order

in h giving the potential UeffðdÞ ¼ � log½ZðdÞ� þ
log½Zð1Þ� ¼ �h1h2CðdÞ; with CðdÞ ¼ h�ð0Þ�ðdÞi the
correlation function. CðdÞ � d�� when d � � with � ¼
1
4 in the Ising model and CðdÞ � d�1=2 expð�d=�Þ for

d � �. The potential is attractive for like, and repulsive
for unlike, field insertions, in agreement with the scaling
of the CFT result as we will show below. A protein which
does not couple to the order parameter can still feel a
long-range force if it couples to the local energy density.
The energy density is also correlated with a d�2 depen-
dance. However, the magnitude of both of these poten-
tials, as well as their shape at distances d� r require the
Monte Carlo and CFT approaches described below.

Secondly, we numerically calculated potentials using
Monte Carlo simulations on the lattice Ising model for

like and unlike disk-shaped inclusions. Although absolute
free energies are difficult to obtain from Monte Carlo
techniques, differences between the free energies of two
ensembles, �F, conditioned on a subset of the degrees of
freedom, are readily available provided the degrees of
freedom in the two ‘macrostates’ can be mapped onto
each other and have substantial overlap. This information
is implicitly used in a Monte Carlo scheme where both
‘macrostates’ are treated as members of a larger ensemble
and are switched between so as to satisfy a detailed bal-
ance. The Bennett method [29,30] uses this information
more explicitly, noting that expð���FÞ ¼ he���Ei can be
estimated without bias from either distribution.
Our ‘macrostates’ are the location of two blocky ‘disks’

as shown in Fig. 1(c). All spins either contained in or
sharing a bond with these disks are constrained to be either
all up or all down. We map the degrees of freedom in one
macrostate to a neighboring one by moving all of the
spin values one lattice spacing to the right or left of the
fixed spin region onto fixed spins on the other side. By

FIG. 1 (color online). (A–B) Effective potentials between
bound inclusions are plotted on linear (A) and log-log (B)
graphs, for inclusions where r1 ¼ r2 ¼ r. We measure these
potentials using Bennet method simulations for like and unlike
BCs at Tc as described in the text for each of the blocky disks
shown in (C) [thin lines, colors as in (C)]. Each curve is plotted
collapsed by using r as the distance to the farthest point from its
center, with no free parameters, although the value of the
potential is fit at the farthest accessible simulation point, where
we add the CFT prediction. The full CFT predictions (thick
dashed lines) are in excellent agreement with simulation data
even for very small inclusions. The power law predictions (thin
dashed line) agree with the CFT predictions for large d=r.
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integrating our measured ��F ¼ � loghexpð���EÞi over
many sites outwards to infinity, we can in principle mea-
sure this potential to arbitrary distance. However, because
the potential is long-range at Tc, we integrate it out to 50
lattice spacings and add the CFT prediction for the poten-
tial at that distance as described below. We perform simu-
lations using the Wolff algorithm on 500� 500 lattices
under the constraint that any cluster which intersects a disk
is rejected, enforcing our fixed boundary conditions. We
supplement these with individual spin flips near the inclu-
sions where almost all Wolff moves are rejected. The
resulting potentials are plotted in Fig. 1(a). We collapse
the Monte Carlo curves by using the effective radius given
by the farthest point from the origin contained in the
blocky lattice inclusion as the effective radius.

Finally, we use conformal field theory to make an ana-
lytical prediction for the form of these potentials. Our cal-
culation makes extensive use of the conformal invariance of
the free energy which emerges at the critical point. An
element from the global conformal group can take us from
the configuration in Fig. 2(a) to that shown in Fig. 2(b) where
the two disks are concentric with spatial infinity in Fig. 2(a)
now lying between the two cylinders on the real axis. The
radius of the outer circle Rðd; r1; r2Þ is now given by

Rðd;r1;r2Þ¼ x�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�2Þ2�4

p
2 ; x¼ðdþ2r1Þðdþ2r2Þ

r1r2
: (1)

The much larger local conformal group, particular
to two dimensions, is the set of all analytic functions.

We use the transformation z0 ¼ logðzÞ
2� gluing together the

boundaries at x ¼ 1 and x ¼ 0 to give the cylinder shown
in Fig. 2(c) with a circumference of 1 and length

�ðd; r1; r2Þ ¼ i log½Rðd; r1; r2Þ�=2�: (2)

This transformation breaks global conformal invariance
and so increases the free energy by c logðRÞ=12 [20], where

c ¼ 1=2 in the Ising model. Defining a 1þ 1 dimensional
quantum theory on the cylinder (see Ref. [20]) with ‘time’ t
running down its length, our Hamiltonian for t translation
is H ¼ 2�ðL0 þ �L0 � c

12Þ, where L0 þ �L0 is the generator

of dilation in the plane.
Partition functions in this geometry are linear sums of

characters of the conformal group. The representations of
the conformal group particular to the Ising universality
class have characters given by [20,31]

	0ð�Þ¼1þq2þq3þ���
q1=48

¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
�ð�Þp ½

ffiffiffiffiffiffiffiffiffiffiffi

3ðqÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffi

4ðqÞ

q
�

	1=16ð�Þ¼1þqþq2þ2q3þ���
q1=48�1=16

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2�ð�Þp ½

ffiffiffiffiffiffiffiffiffiffiffi

2ðqÞ

q
�

	1=2ð�Þ¼1þqþq2þ���
q1=48�1=2

¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
�ð�Þp ½

ffiffiffiffiffiffiffiffiffiffiffi

3ðqÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffi

4ðqÞ

q
�; (3)

where q ¼ expði��Þ, with �ð�Þ the Dedekind � function
and with 
ð�Þ the Jacobi, or elliptic. theta functions.
Conformally invariant boundary conditions (BCs) can be

deduced by demanding consistency between two parametri-
zations of the cylinder [31]. In one, timemoves from one BC
to the other across the cylinder with the usual Ising
Hamiltonian. Alternatively, time can move around the cylin-
der with the BCs now entering into the Hamiltonian. There
are three allowed BCs [31], which by considering symmetry
can be associated with ‘up’, ‘down,’ and ‘free.’ These three
BCs have four nontrivial potentials between them: a repul-
sive ‘unlike’ interaction between ‘up’ and ‘down’ BCs, an
attractive ‘like’ interaction between ‘ups’ and ‘ups’ or
‘downs’ and ‘downs’, an attractive ‘free-free’ interaction
between two ‘free’ BCs, and a repulsive ‘free-fixed’ interac-
tion between a ‘free’ BC and either an ‘up’ or a ‘down.’
The free energy in the configuration shown in Fig. 2(a)

can be interpreted as a potential of mean force between the
bound inclusions. Choosing the convention that the poten-
tials go to 0 as d ! 1, the potential is given by UðdÞ ¼
FABð�Þ � FABð1Þ. After undoing the mapping which
changes the free energy by a central charge dependent
factor so that FABð�Þ ¼ � logZABð�Þ þ c��=6 (with
kBT ¼ 1) the potentials are given by

Ulikeðd; r1; r2Þ ¼ � log½	0ð2�Þ þ 	1=2ð2�Þ
þ ffiffiffi

2
p

	1=16ð2�Þ� � i��

12

Uunlikeðd; r1; r2Þ ¼ � log½	0ð2�Þ þ 	1=2ð2�Þ
� ffiffiffi

2
p

	1=16ð2�Þ� � i��

12

UFr�Frðd; r1; r2Þ ¼ � log½	0ð2�Þ þ 	1=2ð2�Þ� � i��

12

UFr�Fxðd; r1; r2Þ ¼ � log½	0ð2�Þ � 	1=2ð2�Þ� � i��

12
(4)

FIG. 2 (color online). We consider potentials of mean force in
configuration (A), with disks of radius r1 and r2 separated by a
distance d with boundary conditions A and B. We conformally
map this to configuration (B), where both disks are centered on
the origin, with the first at radius 1 and the second at radius
Rðd; r1; r2Þ. We then map this to a cylinder shown in (C) of
circumference 1 and length �i� ¼ logðRÞ=2� where we asso-
ciate restricted partition functions in an imaginary time 1þ 1
dimensional quantum model with potentials of mean force in the
original configuration.
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with 	h as defined in Eq. (3), and � as defined in
Eqs. (1) and (2). These potentials are plotted on regular
and log-log graphs in Fig. 1. Their form is in agreement
with the numerical results obtained using the transfer
matrix methods in Ref. [15].

At large d, we can examine the asymptotics of the
potentials using the form of each potential in Eq. (4) and
the series expansion of the characters as shown in Eq. (3).
For fixed BCs, the leading contribution to the potential of

mean force is equal to 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr1r2Þ1=4

q
d�ð1=4Þ, with a sign

which differs depending on whether the two BCs are like or
unlike, in agreement with the point like approximation. For
potentials that involve at least one ‘free’ BC, similar analy-
sis shows that the leading contribution is proportional to
d�2. All four potentials diverge at short distances like

	d�1=2 where in all cases the sign is positive unless both
BCs are identical. We note that the origins of the two
techniques leading to the curves shown in Fig. 1 are very
different, arguably as different from each other as each are
from a lipid bilayer. The very close agreement, even at
lengths comparable to the lattice spacing, speaks to the
power of universality.

We also compare the form of the potential with
Monte Carlo results obtained at temperatures away from
the critical point where the potential has a range given
roughly by �. In each case the resulting potential is a
one-dimensional cut through a four-dimensional scaling
function which could depend nontrivially on d=r1,
d=r2,d=� and the ‘polar’ coordinate h=t�� [32] describing
the proximity to criticality. The dashed lines show the CFT
prediction for T ¼ Tc, with numerical results at 1.05, 1.1
and 1:2Tc, all for the 2� 2 block sphere shown at the
right in Fig. 3. The repulsive potential is both deepest
and sharpest at Tc, while the attractive force is sharpest
slightly above Tc, with the final potential of very similar
magnitude.

We expect our results to apply, with a few caveats, to
proteins embedded in real cell membranes. Proteins couple
to their surrounding composition through the height of their
hydrophobic regions, through the interactions of their
membrane-proximal amino acids with their closest lipid
shell, and by the covalent attachment to certain lipids which
themselves strongly segregate into one of the two low tem-
perature phases. In simulation our proteins couple strongly to
their nearest neighbor lipids leading to potentials in excellent
agreement with CFT predictions that are very different in
origin. These are expected to describe any uniform boundary
condition in an Ising liquid, in the limit where all lengths are
large compared to the lattice spacing. When separated by
lengths on the order of a lipid spacing (1 nm)wemight expect
additional corrections to this form, and inparticular, aweakly
coupled proteinmay have a behavior intermediate between a
‘free’ and a ‘fixed’ BC. In addition, a protein that couples
nonuniformly around its boundary might have interesting
behavior not addressed here. We note that our boundary

conditions couple to two long-range scaling fields—the
magnetization field which falls off with the a power of
�1=4 and the energy density which falls off with a power
of �2, both of which must be present in membranes or any
other system near an Ising critical point.
It is interesting to compare this composition mediated

force to other forces that could act between membrane
bound proteins. Electrostatic interactions are screened
over around 1 nm in the cellular environment, making
them essentially a contact interaction from the perspective
of the cell. There is an analogous shape fluctuation medi-
ated Casimir force that falls off like d�6 [17,18], and that is
therefore also very short range. Membrane curvature can
also mediate forces with a leading attractive term that falls
off like d�2 and a leading repulsive term that falls off like
d�4. Although they decay with a much larger power than
the critical Casimir forces described above, curvature me-
diated potentials depend on elastic constants and are not
bound to be of order kBT, allowing them to become quite
large at shorter distances. Using typical values [33] the
potentials are comparable at lengths �5–10 nm to the
composition mediated potential we find here [34]. There
are numerous examples of biology using these relatively
short range but many kBT potentials for coordinating en-
ergetically expensive and highly irreversible events like
vesiculation [33]. We propose that critical Casimir forces
could mediate long-range and reversible interactions useful
for regulating a protein’s binding partners. More generally,
this work demonstrates that the hypothesis of criticality
enables a quantitative understanding of the broad range of
phenomena frequently associated with ‘raft’ heterogeneity
in cell membranes.
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FIG. 3 (color online). We compare our critical results with
potentials obtained from Monte Carlo simulations away from the
critical point along the temperature axis. As can be seen, the
potentials have the longest range at the critical point. The
repulsive interaction is also steepest at the critical point, though
the attractive one has a larger force at short distances slightly
away from the critical point.
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