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Scaling in plasticity-induced cell-boundary microstructure: Fragmentation and rotational
diffusion

James P. Sethna and Valerie R. Coffman
Laboratory of Atomic and Solid State Physics (LASSP), Clark Hall, Cornell University, Ithaca, New York 14853-2501, USA

Eugene Demler
Physics Department, Lyman Labs, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 3 October 2002; revised manuscript received 5 February 2003; published 27 May 2003

We develop a simple computational model for cell-boundary evolution in plastic deformation. We study the
cell-boundary size distribution and cell-boundary misorientation distribution that experimentally have been
found to have scaling forms that are largely material independent. The cell division acts as a source term in the
misorientation distribution which significantly alters the scaling form, giving it a linear slope at small misori-
entation angles as observed in the experiments. We compare the results of our simulation with two closely
related exactly solvable models that exhibit scaling behavior at late tifesagmentation theory andi) a
random walk in rotation space with a source term. We find that the scaling exponents in our simulation agree
with those of the theories, and that the scaling collapses obey the same equations, but that the shape of the
scaling functions depends upon the methods used to measure sizes and to weight averages and histograms.
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[. INTRODUCTION distinguished from geometrically unnecessary dislocations
whose Burgers vectors cancel out on long length scales. All
After significant plastic deformation, the dislocation cell walls are associated with small relative rotations be-
tangles in crystals often organize themselves into sharp wallsveen cells, and are hence composed of geometrically nec-
separating nearly dislocation-free cells; the crystallographiessary dislocations on scales comparable to the cell sizes. On
axes rotate slightly across each cell boundary. These cellsnger scales, far from building up large macroscopic rota-
undergo refinemenibecome smallerunder increased defor- tions, the rotations mediated by neighboring geometrically
mation, and recent experimehtsndicate that both the mis- necessanpoundariestend to cancet, leading to little or no
orientation angles and the cell sizes have power-law scalingpng-range rotation gradient. Hence, as cell boundaries, the
with material-independent scaling forms for the probability GNB’s are most akin to the geometrically unnecessary dis-
distributions. We introduce here a simple model of cell divi-locations)
sion and rotational diffusion which exhibits this type of scal- Hugheset all studied the distribution functions for these
ing, and which provides insights into the origins for the ex-two types of cell walls, and found a simple scaling behavior,
perimental scaling distributions. In particular, we argue thaiargely independent of material. In particular, for the GNB’s
cell division (driving the refinementis responsible for the 6,,~ €3 andL,,~ e %3, while for the IDB’s §,,~ €'? and
linear growth of the misorientation scaling distribution atL,,~e 2 where e is the magnitude of the net plastic
small angles. strain. Moreover, data for several materials and different
Cell boundaries are distinct from grain boundaries in thatstrain amplitudes all collapse onto apparently universal scal-
their misorientation angle across them is snf@imost a few  ing curvesps and ps,. when rescaled to the average angle:
degrees and they form in a nonequilibrium process, typi-
cally at temperatures where diffusion is not relevé, for p(0)= 03 pris 01 6,) (1)
example, the impurity segregation characteristic of many
grain boundaries is not observed at cell boundariés de- and

formation proceeds, the cell structure refin#ise average -1

. ! o L)=L i-d L/L,,). 2
cell sizeL,, becomes smallgrand the average cell misori- P(L)=Lay psdLila) @
entation angled,, grows. We will study the scaling of these probability distributions

The cell boundaries are separated into into two classeg(#) andp(L) using a simple model.
An early work called them “ordinary cell walls” and

“dense dislocation walls”; later authorshave called them Il. MODEL
GNB's (“geometrically necessary boundarigsand IDB’s
(“incidental dislocation boundarieg” The GNB’s typically How much of this apparently universal behavior can be

align roughly parallel to one another, have larger misoriencaptured in a simple model of cell rotation and refinement?
tation angles, and are longer, often forming the boundaries ofhe model we propose is one in which cells become smaller
two or more cells. by subdivision(leading to a fragmentation theory for the size
(The term “geometrically necessary” is unfortunate. Geo-distribution), and undergo random angular reorientations as
metrically necessarglislocationsare those required to medi- the strain increases. Our model does not incorporate the an-
ate macroscopic strain gradients and rotation gradients, asotropy in the external strain field, and so has nothing to say

0163-1829/2003/61.8)/1841079)/$20.00 67 184107-1 ©2003 The American Physical Society



SETHNA, COFFMAN, AND DEMLER PHYSICAL REVIEW B67, 184107 (2003

about how cell structure morphology might change, say, bemust choose an axis and a position along that axis to place
tween tensile and rolling deformation or as the crystallinethe new cell wall. To keep our aspect ratios reasonable, we
orientation changes. One should view our model as a caricdtave chosen the probability of splitting along a given axis
ture of the real system; our results suggest that the experproportional to the length of the cell along that axis. The
mentally observed scaling behavior may be generic to anposition of the new cell wall along the split axis is chosen
microscopic mechanism which fragments and randomly rerandomly in all cases. The two cells formed by splitting in-
orients cells. herit their parent’s orientation: the new cell walls thus start
Our computational model starts with one large cubicalout at zero misorientation angle, which will be important
cell. We assume a cubic crystal, with initial crystalline axeswhen we study the misorientation angle distribution.
aligned with the axes of our cube, so the initial orientation is Our model for cell splitting is closely related to a well-
described by a rotation matriR(0) equal to an identity ma- studied model of fragmentatidif. In fragmentation theory,
trix. The dynamics of our model incorporates two pieces;the splitting rate is assumed a function of the volume, so, for
rotational diffusion and cell splitting events. example, a cell of volum¥ could fracture with a rat&V~.
Rotational diffusionThe orientation of each cedt under-  In our problem,y=0 andy=1 correspond precisely to uni-
goes a simple random walk in rotation angle space, wittform and volume cell splitting rates, while=1/3 and y
strain increments playing the role of the time step. It is con-=2/3 approximately correspond to perimeter and area split-
venient to write the current orientatioR,(t) =exp(-J), ting. The evolution law in fragmentation theory correspond-
where the matrix; = € (with €, the totally antisymmetric  ing to our model is easily seen tobe
tensoj generates an infinitesimal rotation about it axis.
Since the cell-boundary misorientation angles experimentally

__ A1 VY
are small(around a degree or save may expand the expo- ~ 9C(V:€)/d€= AVYC(V'EHZJV AVY eV, e)dV,

nential in this expression, (5)
2,12
_ Moty Ns -n, wherec is the concentration of fragments with volundeTo
2 relate this to experimental measuremefs). (2)], which
n2+n2 produce probability distributions of lengths rather than con-
R=exp(n-J)= —Nn3 1— -3 n, ) centrations of volumes, we can change variables fkoho
2 L=V3 The probability distribution of lengths with all cells
n3+n3 weighted uniformly is
nz - 1-—
3L2c(L3€)
@ p(L)= e (©)
(Large-angle corrections are discussed in Refs. 5 anth6. J c(V,e)dVv
0

this approximation, diffusion in the manifold of crystalline
orientations can be written as an ordinary diffusion equation . . .
The histograms produced by our simulations are a result

in the three-dimensional coordinate If we assumes(t) is a fthr hoi First there i hoice in how we define th
monotonically increasing strain, then the three-dimensionat. ee choices. FIrst, tnere Is a choice owwe define the

probability distribution of grain orientationd (n) evolves size (lengthL) of the _ceII. ".] computing the_ averages and
according to the equation histograms from the simulation data, we typically define the

size of a cell to be its length along any one of the axes: all
dA(n)/de=—DV2A(n), (4  three lengths are incorporated into the averages and histo-
grams. This definition of size corresponds to that used in
where D is the “orientational diffusion constant” and the experiment. Alternatively, in order to compare the histo-
LaplacianV?= 9%/ gnZ+ a2/o7n§+ #%/on2, The random walk grams from the simulation to fragmentation thedwhich
described by this diffusion equation is implemented numerikeeps track only of the volumes, not the shapes, of the)cells
cally by adding a Gaussian random vectontwith compo-  we can define the size of the cell as the cube root of the
nents of root-mean-square lengtf2DAe, whenever the volume. Second, there is a choice in the splitting dynamics
strain for the cell is incremented hye. as discussed above: cells can divide at rates proportional to
Cell splitting eventsOur model, for simplicity, divides their volume, surface area, perimeter, or at a uniform rate. In
cells only along planes perpendicular to one of the crystallindragmentation theory, the rate of splitting is proportional to
axes. Thus, our cell structure is composed of rectangular pak¥” as discussed below: thus fragmentation theory is exact for
allelepipeds. The rate of cell division in our model dependsour simulation with volume splitting ¥=1) and uniform
only on the current size and shape of the cell, and not on itsplitting rates ¢=0), but does not directly apply to the
environment. There are several different physical mechaperimeter and surface simulations, whose splitting rates de-
nisms that might be responsible for cell division. Broadly pend upon the shapes of the cells as well as their volumes.
speaking, we classify them by dimensional analysis: theré&inally, one must address how to weigh the contributions of
are mechanisms that divide cells at a rate proportional talifferent cells in the probability distribution. For example, an
their current volumeV, their current surface are§ their  experiment that measures cell sizes by takingXafcross
current perimeteP, or at a uniform rate independent of the section and then weighting each observed cell equally in the
current size&J=1. Once a cell has been chosen to split, weaverage is effectively weighting the three-dimensional cells
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FIG. 1. (Color) Simulated cell morphologies: Diagonal cross section of the cell morphologies in two model simulations, in a central plane
perpendicular to the 111 axis. Left: Area splitting rate. Right: Uniform splitting rate. The area splitting yields rather uniform cell sizes, while
the uniform splitting yields an enormous range of cell sizes and a fractal morphology. The colors are chosen to represent the rotations of the
crystalline axes of the individual grains. The original orientationO is colored medium gray. In grayscale, darker and lighter grays
represent the magnitude of the deviation. In full cotgr, n,, andn, are mapped, respectively, onto deviations in red, green, and blue with
a scale-factor chosen to saturate at the largest rotations.

by their extent in theZ direction (roughly weighting each mentation theorythe “shattering” transitiod). Experimen-

cell by its perimeter or by.). We compute the averages and tally, there does not seem to be a consensus on whether the

histograms from the simulation data by weighting each celcell-size distribution is fractdlor whether it has a more tra-

uniformly or by its volume, surface area, or perimeter. Weditional scaling distribution with a characteristic size that

will soon see that the scaling exponents for the average sizshrinks with time?

depend on only the splitting dynamigsnot on the measure-

ment of size or the weight of the distribution. We will also

see that the shape of the scaled probability distributions

changes with different measurements of size or weights, but Figures 2 shows the mean cell size as it evolves with

the distributions scale nonetheless. increasing strain in our model, under area splitting and ran-
If we define the size of the cell as the cube root of thedom splitting. In the figure, we show a count average where

volume, simulations that split cells at a uniform rate or at aeach cell contributes equally, a perimeter average where cells

rate proportional to the volume of the cell produce histo-are weighted by their perimeter, and area and volume aver-

grams that agree well with those given by fragmentationage. Each of these has the size of the cell defined as the

theory[Eqg. (6)]. However, simulations that split cells at rates distance between parallel cell walls. The fourth average has

proportional to area and perimeter produce histograms thahe size defined as the cube root of the volume and is

are shifted from Eq(6). We focus here on the case where theweighted uniformly.

B. Cell-size scaling

rate is proportional to the surface ai®af the cell(area and The mean size for the cells in the area splitting model
the case where the rate is independent of the size and shapeales withe 2. Assuming fragmentation theof§q. (5)]
of the cell (uniform). and scalind Eq. (2), which can be derived from fragmenta-
tion theory for y>0], it is easy® to derive the power-law
IIl. RESULTS relation L,,~e *®". Thus, the experimentally observed
. scaling of the IDB sizes suggests a cell splitting rate propor-
A. Morphologies tional to the cell surface arggeft side of the figures while

Figures 1 show the cell morphologies from the two simu-the scalingL{$N®~ ¢~22 of the GNB dislocations would
lations. Area splitting shows a fairly uniform density of cell suggest a mechanism with a cell splitting rate scaling as the
sizes; this is characteristic also of the other size-dependertll volume to the 1/2 powe(See, however, Sec. IV A.
cell division rates. Uniform cell splitting rates produce a Figures 3 show the histograms of cell sizes at the end of
broad range of sizes: most cells are very small, so most cetiur simulation, with the five weights discussed above. Natu-
divisions subdivide very small cells. Indeed, as we shall distally, for example, if cells are weighted by their volume there
cuss below, the uniform model is at a critical point in frag- is more weight in the histogram at larger sizes.
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FIG. 2. Mean cell sizes versus strain: We measure the mean cell sizes, with each cell contributing to the average an amount given by
volume, area, perimeter, or uniformly independent of its size. As noted in the text, the perimeter scaling corresponds effectively to a common
experimental procedure of taking histograiti3o not confuse, say, area weighted mean sizes and area weighted splitting rates. The different
curves on each graph are differeneasurementshe different graphs are differedynamics) We also include the mean size with the length
measured as the cube root of the volume, with cells contributing uniformly, independent of their sizes. Left: Area splitting. The various
measures are equivalent up to an overall scale factor for the model where the cell division rate is proportional to the surface area of the cells,
and the cell size varies as Y2 This equivalence is because the distribution of sizes is peaked about a typical sizéRigal®s and can
be derived from the scaling form for the cell-size distribution. Right: Uniform splitting. The various measures are very different for the case
of random splitting, since the cell structures are fractal with cells of all sizes.

We first consider the left-hand panel, showing the simu- Fragmentation theofycalculates the scaling function ex-
lation results with dynamics which split cells proportional to plicitly that describes the distribution of sizes at late times. In
their surface area. The area splitting histograms, taken gtarticular, for area splittingy=2/3), the scaling function in
different e during our simulations, do indeed rapidly con- Eg. (2) for a uniformly weighted distribution is,
verge to those shown on the left panel of Figh&nce vali-
dating the scaling form equatiof2)]. No matter how one pizd X) = 32Cexpl — 4x?/m)| m?, @
defines the sizé&. or how one weights the contribution of shown as the black, dashed line on the left in Fig. 3. As
each cell, the histograms collapse onto scaling functions. expected, it does indeed agree well with the size distribution
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FIG. 3. Cell-size histogram: Histograms of cell sizes at the end of our simulation, rescaled to the average (Eéf.<2z@ccording to
Eq. (2). Again, there are different histograms depending upon how the cells are weighted in the average. Left: Area splitting. The black,
dashed curve is the fragmentation theory predictRef. 8 for the closely related problem where cells split at a rate proportional to volume
V23, Right: Uniform splitting. Notice that most of the cellsounted are very small.
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wherelL is defined as the cube root of the volume. The shift
between these two curves is due to the difference in dynam-

€
4_
ics: our simulation splits cells at a rate proportional to the
actual area of the cell, not By?. For volume splitting, with
L defined as the cube root of the volume, the histograms

from the simulation agree with those from fragmentation
theory as expected.

The histograms that measure the length, width, and height
of each cell are broader than those that measure the cube root AW
of the volume. Cells with large aspect ratios will contribute
one or two dimensions that are smaller than the cube root of
volume and one or two that are larger. Notice that in Fig. 3
the cell-size probability density does not vanish at zero size
L except for statistical weightings that involve the total vol-
ume. In our model, a subdivision occurs with equal probabil- —_—
ity at all thicknesses, so the probability density at zero thick- €
ness is finite. If the weights of the cells in the average is by
the total volume, of course, then the thin cells contribute
vanishing weight so the histogram goes to zero. DefineZ (n)d>n to be the area of cell-boundary with mis-

Consider now the right-hand panel of Fig. 3, with simu- orientation matrixR=exp(n-J). Since this distribution for
lation results for dynamics which split cells at a uniform rateour model is symmetric under rotationg,(n)=2(n) and
independent of their size. Notice first that the scales are logeeq. (8) implies that the probability distribution for the mis-
rithmic. There is an enormous range of cell sizes, with pealprientation angle
probabilities (by most measurgsat very small sizes. The .
uniform splitting model is at a critical point in the parameter p(0)=p(|In))=4mn*E(n)/A:, 9
y=0, theshattering transitiorl beyond which ¢<0) there  whereA,,,= [d®nE(n) is the total cell-boundary area. No-
an infinite dust of zero-size particles. At this critical point, tice that the(one-dimensionalprobability density for small
there are exact solutions for the cell-size distributiblack, angles 6 is 4w 6%/ A, times the (three-dimensionalcell-
dashed curve shown in Fig. 3, to be compared withlthe houndary area at one of the rotatiomsorresponding ta
=V simulation curveé This exact solution does not have :|n|. This is, of course, because the number of possible
the scaling form of Eq(2). We have not been able to find a rotations grows with misorientation angle, as the area of a
generalization of the scaling form which collapses the distrisphere in rotation space. This has the important consequence
bution at the critical point, but the scaling variatitgpical  of makingp(6) vanish atd=0; this reflects not some special
size) must shrink exponentially asgrows. One reason, why physics that avoids small misorientation angles, but a simple
finding the scaling function may be difficult is that the sys- geometrical fact that a small net misorientation angle de-
tem appears not to be self-averaging: the relatively goognands three independent rotation angles all being small. In-
agreement between the theory and simulation shown on thgeed, we will see that the experimental misorientation distri-
right of Fig. 3 is not as true with other random number seedspytion vanishes not ag®> as would seem natural from Eq.
with fluctuations of an order of magnitude away from the(g) but as6. We will explain this, and the corresponding
theory. (The average over many seeds does agree with th@sp in=(n), below where we incorporate the effects of cell

calculated form. While there is no scaling form solution to givision, which provides a source of new boundaries at zero
Eq. (5) for y=0, we have found a family of formal, non- mjsorientation angle.

FIG. 4. Geometry of a cell boundary.

normalizable solutions of the form(V,e)=e~(**ZRVA, Figure 5 shows the misorientations we measure for our
area splitting model. As for the cell sizes, the misorientations
C. Misorientation scaling across cell walls can be averaged weighting them uniformly,

o ) by the cell wall perimeter, or by its area.
To study the misorientation angles, we need a formula for * \ne see that the mean misorientation angle in our model

th_e misorientation anglé. lImagine a cell bou.ndary as in grows with €2, as does the experimental misorientations
Fig. 4. The rotationR Rz " takes the crystalline axes of across the IDB boundaries. We find similar scaling for vol-
right-hand cell to the orientation on th_e Ieft_-hand s_lde ofume splitting, and roughly similar for uniform splitting dy-

the boundary. As before, we can write this rotation aspamics; our derivation below suggests that this scaling is

exp(-J), and correspondingly writ®_andRg in terms of  generic for our rotational diffusion mechanism. Hence, our
n_andng. Because the rotation angles are small across cefjyodel will not provide an explanation for th@CNB) ~ 23

boundariesn=n; —ng. The misorientation angle is seen for the GNB's.
Since the GNB’s are, in practice, distinguished from the
Tr(R.RRH)=1+2 cosh=3— #?=3—n?, IDB’s by the number of perpendicular cell walls impinging

upon them(each GNB has typically a couple of IDB,swe
P tested whether separating our cell boundaries into previously
f=~ni+nz+n3=|n|. (8)  split GNB analogs and unsplit IDB analogs might lead the
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FIG. 5. Misorientation distributions: Area splitting. The misorientation angles between cell walls, weighting each eoifaiyn), or
weighting by perimeter or area of the cell boundary. Left: the mean misorientation angle gra#/3 iasour model, not only for area
splitting (shown but also for the other forms of the cell splitting rate. Right: the scaling form for the probability distribution is largely
independent of the way in which one weights the cells by their size, and agrees well with thgfgrof Eq. (14).

misorientations of the former to grow more quickly on an e

average with external strain. This did not occur in our model:=(n) = f duCu "%exq —n?/8D(e—u)]/[87D(e—u)]*?

both previously split and unsplit cell walls scale in mean 0

misorientation with the square root of the external strain. =C exp(—n2/8De)/(8wDnVe). (11)
We can derive a simple differential equation of the time ) ) _

evolution of the distribution of misorientation matrices [The cell boundaries which are formed at deformatidrave

across incidental boundari@(n, €). Since new cell bound- SPread out into a Gaussian of variariz¢e—u)]. The total

aries are created at zero angle, the equation will be a diffuboundary area\,=2C e, as desired. This leads to a pre-
sion equation with a source term: diction for the probability distribution of misorientation

angles that yields the scaling collapgg
d=(n)
Je

=2DV?E +Ce™~15(n), (10) p(0,€)= 02 prid 01 0,) = 0 eXp — 6%/8D €) /4D,
(12)
where the gradients on the right are with respecht@and

4(n) is a three-dimensional Dirag function (infinite at zero, where

zero elsewhere, integral equal to The misorientation ma- 0. =\27De 13
trices diffuse with coefficient R because the two cells on a 13
either side are each diffusing with diffusion coefficiéht and

The first term in Eq(10) represents the diffusion, or ran- )
dom walk, in rotation space. The second term in E) Pmis(X) = (TXI 2)eXp( — wX°/4). (14
represents the creation of new cell boundaries that divide thens we will discuss in the Appendix, this happens to be the
old ones. Because we choose to weight our misorientatiojstribution as derived by Pantledri?in a model without
angle density according to the boundary area, this divisiore|| refinemeny.As shown on the right in Fig. 5, this scaling
does not change the cell-boundary densftfn) except at  form describes the simulation well: the simple scaling argu-
n=0. ment for the source term of new boundariebove captured

The new boundary area shows up in our distribution akhe pehavior of the stochastic simulation.
zero misorientation anglé(n). To derive the amount of new One can see from Fig. 6 that the predicted form is also
boundary area that is created per unit strain, we use a simp{gjite a good description of the experimental data. This par-
scaling argument. Note that the cell sizes scalelas ticular functional form is derived using~e 2 but the
~ e V¥, The total boundary are&, will scale as the num-  particular exponent is not crucial to the analysis: the solution
ber of boundaries LP times the area per boundaly’,  for |~ 13 has this general formfwith linear slope aty
hence as®". The new boundary area needed per unit iN-=0 ando (e)~ \e] for other y as well.
crement ofe thus scales as'**" 1, giving the prefactor for v

the & function in Eq.(10). . . IV. CONCLUSION: MISSING PIECES

We now specialize toy=2/3 corresponding to area split-
ting. If we start with no cell-boundaries a&t=0, then the We believe our simple model is the explanation for the
solution to Eq.(10) is observed scaling seen in cell refinement during plastic flow,
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1F ‘ ] €1 would work. This begs the question of why the scaling
should begin to be observed even before the rotations are

¥ —— 2 dimensional D complete? N .

) S ) Pantleon® suggests that this might be an explanation for
™\ Isotropic D the observed 23 scaling of the separation between GNB's.
At short times, before the rotation is complete, the lengths
vary ase Y2, and at long timegwith the added effects of

_ compressionthey will vary faster, perhaps leading to a rea-
sonable fit with the larger exponent.

(3) Origins of the cell splitting, rotational diffusiorin our
model, the cell splitting and rotational diffusion are given as
part of the dynamics: we do not address the physical mecha-
nisms that produce them.

There are various proposed mechanisms for getting the
‘ E Y yum cell sizes to shrink. Obviously, the cell walls cannot just
0 1 2 3 4 5 move inward; the cell wall velocities would grow linearly in

6/6 the system size. One could imagine a crinkling of existing
cell walls (the inverse of the coarsening process seen in spin-

FIG. 6. Experiment vs Theories: Experimental data digitizedodal decomposition or nucleating new cells at junctions of
from Hugheset al. (Ref. 1. The thick curve ispys, the scaling  existing cell walls: neither picture is compatible with our
function of Eq.(14). The thin curve i anisoropic the solution of Eq.  analysis, and both involve cell wall motion that is resisted by
(A1) with a length-independent diffusion constant with one zeropinned sessile dislocation junctiotfs.Subdivision as we
eigenvalue, representing a highly anisotropic rotational diffusion. have used it could arise from collisions between dislocations
despite many missing features that are clearly relevant to th@S they traverse the cell, although simple calculations suggest
experimental behavior. In particular, we would claim thatthat the expected collision rates are too Sﬁ‘*éﬁaf‘d do not
any physical system that refines by subdivision, and that unsc@le correctly for our theory. Cell splitting due to inhomo-
dergoes random rotational distortions, is likely to enter aJeneous stresses induced by neighboring Tetem tous
scaling regime similar to that seen in our model. In this secth® most natural and likely mechanism. A corresponding mi-
tion, we discuss three of the missing features and why the§"0ScopIc picture would involve regions in the inhomoge-
must be relevant for a complete engineering description. Neously stressed cell where the dislocations slow down, or

a. IDB/GNB distinction.The experiments show two dis- Where they are more easily pinned by obstacles or other dis-
tinct types of cell boundaries, with different scaling expo-locations, leading to the formation of a new cell wall.
nents and scaling functions. Our model only includes one. Th€ mechanisms driving the rotations of the crystalline
While we get a plausible fit to the IDB scaling, the GNB 2X€S of the cells are !ess well understood. T_he crystalline
misorientation angles grow faster than our rotational diffu-8x€S can rotate both directly through the rotation of the ma-
sion model can reproduce. One must note that scaling behatgral in the cell, and indirectly because of the flux of dislo-
ior in other contexts is associated with a single characteristiéations mediated by the plastic deformation. This latter effect
length scale: our model asymptotes to a morphology that i well studied on Iarger scales in the field of texture evolu-
statistically unchanging at large strains except for a singldiOn, where the plastic deformation of a polycrystal often
rescaling of length. Because the experiments show twé)e"?‘d,S to a_gradual allgr_lment c_>f the!r crystalline orientations.
length scales, we expect that detailed measurements wiVithin a single crystalline grain, this texture evolution WI||.
show violations of scaling behavior, say, when the mearP" average rotate all t_he cells togeth(_ar: because the _relatlve
GNB separation length crosses the IDB separation lengtifngles between cells is small, they will largely rotate in the
Perhaps the fact that the two types of boundaries are roughAMe direction. One should note that the traditional explana-
evolving on perpendicular axes allows for the approximatd!on for the origin of the GNB's indicates that their misori-
scaling seen. entation angles could well have a overall mean drift in addi-

(2) Plastic deformationin our simple model, the overall tion to the random diffusion. It is said that GNB's are
plastic deformation was ignored. In a real material undebserved to have rotational misorientations that alternate in

compression the boundaries perpendicular to the strain ax@idn. because they separate regions with differing active slip
will grow closer to one another linearly in the strain even systgms“,t_he combination of the differing plastic strains and
without subdivision. Apparently under the external strain "Otations in neighboring pairs of cells can equal the net im-
the GNB'’s slowly rotate towards this axis, while the IDB’s posed plastic deformation. In this picture, the net rota_tlon
remain roughly aligned parallel to the axis of compression@ndles across the GNB[£q. (4)] should have a mean drift
The external strain, after this rotation is complete, will act tot€'™M in addition to the diffusion term.
separate the IDB’s roughly as the square root of the strain
€2, To get the observed refinemeat 2 the subdivisions
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tive orientation of the crystal and the strain tensor with re-

APPENDIX: CONNECTIONS WITH STOCHASTIC spect to the plane of the cell boundary. We will first consider
DISLOCATION THEORIES the anisotropy while ignoring the refinemdi2;;(L) inde-

pendent ofL], in analogy to previous work, and then incor-

The distribution for the misorientation angle for the porate the refinemerftD;;(L) proportional to W~ 2 as

simple rotational diffusion modep,i(X), happens to have argued abovk
the same form as one derived by PantfédAwithout con- Pantleof™12in most of his analysis ignores cell refine-

sidering cell refinement, and by assuming that the noise iR ont If we makeD . independent of. and setC=0 in Eq
. i .

the cell orientations was due to random, uncorrelated fluc(Al) we get an anisotropic diffusion equation whose solu-
anﬂons r']n the dlsllocayon ﬂlIJ(X' It bshqoves us,éh_erefore, Qion (assuming a narrow initial distribution of misorienta-

Iscuss how Pantleon’s work can be interpreted in our congq g is an anisotropic Gaussian with variances given by the
text. , inverse eigenvalues dd, with the experimentally observed
Pantleon’s theory, also suggested by Nabafamd Argon scaling 6., ~ €2, If we assumeD has one nonzero eigen-

5 . . . . .
and Haasen’ s that the stochastic noise in the flux of dis- ;e “\e get the Gaussian distribution derived by Pantleon

location from either side of the cell boundary leads to ran-,nd Hansen for one active slip system. If we assiDrieas

dpmnegs in the gvolution of the cell-boundary angles. Eacﬂ/\lo equal, nonzero eigenvalues, we get the Rayleigh distri-
d:slocat:con passilang tr:jr_oughd: (.:Tj‘]”’ say, may rs]h'fé the tofy ytion that they find for two perpendicular systems of edge
plane of atoms Dy a distandewith respect to the bottom ;g 4 cationg]which, coincidentally, is the same distribution
plane, whereb IS the Burgers vector 9f the d's"?C"?“O” that we found abovél4) with an isotropicD and a source
(roughly the lattice constantThe crystalline axes within a term. If we assumeD is isotropic, we get the Maxwell dis-

cell of characteristic height will rotate due to one disloca- i tion they find for three perpendicular systems of dislo-
tion an amount proportional t/L. Under a strain increment .o+ione

Ae, a cell of characteristic height must haveN=LAe/b What happens to the solution of E@1) when we incor-
dislocations impinging on the side cell boundary. A roughly o ate cell refinement? Pantld8motices that nonconstant
equal and opposite average flux will impinge on the cellyg) gize must change the scaling of average angle with
boundary from the cell on the other side. If the dislocationsstram. By settingD(L)~el’2 in accordance with Ref. 2. and
move independentlywhich we will argue does not occur changing variables to= 32 in Eq. (A1), we can map it ’into

theq one expects that there will be a net residue after thg problem quite similar to Eq(10) except that the source
strain increment of roughly/N=LAe/b. Hence, the pre- orm s of magnitude proportional to~?3. The solution to

dicted drift in angle after a strain increment fe is A6 hjs equation has a shape quite similar to that shown in Fig.
=Nb/L= \/sz e/L. The diffusion cpnstant_ is given by 6, but with an average angl, ~ J7~ €34 This yields a 3/4
D(L)~(A6)77Ae~b/L. Because a single dislocation pro- nower of the strain incompatible with the scaling observed

duces a larger net rotation for smaller cell, the stepsize in the, the incidental cell boundaries. Pantleon is aware of fhis:
random walk in rotation space becomes larger as our cellg, 5, analogous calculation he geig, ~ €72

get smaller. _ (If we abandon dislocation noise as the origin of the ro-
Pantleon and _Hansérconsmer three cases, where one, aiional diffusion, and take the crystalline lattice orientations
two, and three slip systems are activated. The geometry of g oy pasic variables, then there are no microscopic lengths
given cell—the direction and strength of the applied sheagemaining in the problem. The diffusion constant then natu-
with respect to the crystalline axes—will determine Whatrally depends only on the local geometry of the cell bound-
types of dislocations are allowed to pass through the cell. 'Ewy, and hence is independent of the length stale.
only one slip system is active, the rotation of the cell will be  “11,o key to the discrepancy is, of course, that the disloca-
confined to a single axis. In our formulation, the diffusion tj5ns motion is not uncorrelated: they must be moving in a
constant in rotation space will be anisotropic: in this case, it.g|lective manner. The interaction energy between disloca-

will be a rank 1 tensofa 3x 3 matrix with only one nonzero ions is large, and diverges logarithmically with distance, re-
eigenvalug Two slip systems will give a rank 2 tensor, with fecting the infinite stiffness of a crystal to gradients in the

one zero eigenvalue. Three slip systems will allow the cell o365 of rotation. In early stages of hardening, one might
diffuse in any direction, but even so the diffusion cons@nt  5sibly argue that the dislocations are sufficiently far apart
will, in general, be anisotropic. _ that their interaction forces do not dominate. But in the re-
To make contact with Pantleon, we consider a more gengime studied here, the fact that the dislocations organize into
eral evolution law for the misorientation in area splitting: boundariesavoiding rotational distortions within the cells

is a clear signal that it is no longer sensible to treat their

JE(n) evolution independently. If the top half of a cell boundary
=) —_ 12 received more dislocations from the right-hand cell than the
e Di(LIViViE+Ce™o(n). AD potiom half, this would produce an engrmous bending force
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- ning effects—our model so far has ignored the corresponding
crystalline and shear anisotropies in the evolution of cell

-
structure.
- -

_r We can incorporate some of this asymmetry by hand into
% - our model. Pantleon and Hanéepoint out that the indi-
- '(% vidual cell boundaries have rather low symmetries. The dif-
C%~ = fusion tensor in Eq(A1) describes the evolution of that sub-
O o *§~ set of cell boundaries with a particular cell-boundary
orientation andaverage crystal lattice orientation with re-
) , _spect to the external shear. There is no reason that for a
_FIG. 7. Correlated atomic rearrangements associated Wity symmetry geometry that the diffusion constant will be
simple dislocation motion. isotropic, geometry dependent, or material dependent: the
general evolution law is given in E¢AL) with Dj; indepen-
on the cell. Such an event could only happen for reasonablgent of L. One must solve for the distribution at fixed geom-
energy cost if this bending were screened by the division oétry and then average over geometries to predict the experi-
the cell by a new boundary. mental distribution(as also discussed in Sec. 5.2 of Ref. 5
The stochastic dislocation flux models will be generally If we assume a strongly anisotropic rotational diffusion ten-
applicable whenever the correlations between their motionsor with one zero eigenvalue and the other two egc@ire-
vanish at distances comparable to the cell sizes. Our model &ponding roughly to Pantleon’s analysis with two active slip
correct in the other limit: our cells only rotate as units. Thus,system$we can solve Eq(Al) to find a scaling collapsél)
our model is appropriate for systems where the dislocationvith scaling function
motions are strongly correlated on the scale of the cells—so 3 30 30
that their motion can always be described as mediating over-  Pzdim(X) = (7°x/64)exp( — m°x“/128)Ko( 7°x°/128),
all rotations of each cell. Both descriptions are only a starting (A2)
point for a complete theory. whereKj is the modified Bessel function of the second kind.
Consider an analogy: dislocation motion modeled as rearfhis scaling function is shown in Fig. 6.
rangements of atoms, versus as the evolution of a continuum It is important also to note that effects that seem clearly
curve. In the atomic descriptiaffrig. 7), one would identify  related to cell-boundary formation have been seen in finite-
characteristic atomic motionsay, kink diffusion events in element simulations of single-crystal plasticity by Mika and
the case of semiconductdrsat rare sites scattered through Dawsonet al® Their system consisted of several crystalline
the crystal. These sites would be strongly correlatgohg grains with differing orientations, subject to an external
along the dislocations their dynamics would produce un- shear. The inhomogeneous strains within the grains led to the
usual zipper motionékinks diffusing along dislocationsWe  formation of subgrain structures very similar to cells. The
expect similar correlations to arise in the dislocation motiondistribution of cell boundaries in their simulation was also
mediating cell-boundary evolution: the dislocations will found to scale, with strain dependence and functional form
form correlated dances to keep rotational gradients from ensimilar to that seen for geometrically necessary boundaries
tering the cells. On the other hand, treating the dislocatiorithat is, scaling with the 2/3 power of strain, and not with the
motion as the evolution of a continuous curve makes it dif-1/2 power seen for the IDBJs Hence, Dawsoret al. find
ficult to incorporate the anisotropic dynamics and lattice pincells in a simulation totally without dislocations.
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