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Scaling in plasticity-induced cell-boundary microstructure: Fragmentation and rotational
diffusion
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We develop a simple computational model for cell-boundary evolution in plastic deformation. We study the
cell-boundary size distribution and cell-boundary misorientation distribution that experimentally have been
found to have scaling forms that are largely material independent. The cell division acts as a source term in the
misorientation distribution which significantly alters the scaling form, giving it a linear slope at small misori-
entation angles as observed in the experiments. We compare the results of our simulation with two closely
related exactly solvable models that exhibit scaling behavior at late times:~i! fragmentation theory and~ii ! a
random walk in rotation space with a source term. We find that the scaling exponents in our simulation agree
with those of the theories, and that the scaling collapses obey the same equations, but that the shape of the
scaling functions depends upon the methods used to measure sizes and to weight averages and histograms.
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I. INTRODUCTION

After significant plastic deformation, the dislocatio
tangles in crystals often organize themselves into sharp w
separating nearly dislocation-free cells; the crystallograp
axes rotate slightly across each cell boundary. These c
undergo refinement~become smaller! under increased defor
mation, and recent experiments1,2 indicate that both the mis
orientation angles and the cell sizes have power-law sca
with material-independent scaling forms for the probabil
distributions. We introduce here a simple model of cell di
sion and rotational diffusion which exhibits this type of sc
ing, and which provides insights into the origins for the e
perimental scaling distributions. In particular, we argue t
cell division ~driving the refinement! is responsible for the
linear growth of the misorientation scaling distribution
small angles.

Cell boundaries are distinct from grain boundaries in t
their misorientation angle across them is small~at most a few
degrees! and they form in a nonequilibrium process, typ
cally at temperatures where diffusion is not relevant~so, for
example, the impurity segregation characteristic of ma
grain boundaries is not observed at cell boundaries!. As de-
formation proceeds, the cell structure refines~the average
cell sizeLav becomes smaller!, and the average cell misor
entation angleuav grows.

The cell boundaries are separated into into two clas
An early work3 called them ‘‘ordinary cell walls’’ and
‘‘dense dislocation walls’’; later authors1 have called them
GNB’s ~‘‘geometrically necessary boundaries’’! and IDB’s
~‘‘incidental dislocation boundaries’’!. The GNB’s typically
align roughly parallel to one another, have larger misori
tation angles, and are longer, often forming the boundarie
two or more cells.

~The term ‘‘geometrically necessary’’ is unfortunate. Ge
metrically necessarydislocationsare those required to med
ate macroscopic strain gradients and rotation gradients
0163-1829/2003/67~18!/184107~9!/$20.00 67 1841
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distinguished from geometrically unnecessary dislocati
whose Burgers vectors cancel out on long length scales.
cell walls are associated with small relative rotations b
tween cells, and are hence composed of geometrically n
essary dislocations on scales comparable to the cell sizes
longer scales, far from building up large macroscopic ro
tions, the rotations mediated by neighboring geometrica
necessaryboundariestend to cancel,4 leading to little or no
long-range rotation gradient. Hence, as cell boundaries,
GNB’s are most akin to the geometrically unnecessary d
locations.!

Hugheset al.1,2 studied the distribution functions for thes
two types of cell walls, and found a simple scaling behav
largely independent of material. In particular, for the GNB
uav;e2/3 andLav;e22/3, while for the IDB’suav;e1/2 and
Lav;e21/2, where e is the magnitude of the net plasti
strain. Moreover, data for several materials and differ
strain amplitudes all collapse onto apparently universal s
ing curvesrmis andrsize when rescaled to the average ang

r~u!5uav
21rmis~u/uav! ~1!

and

r~L !5Lav
21rsize~L/Lav!. ~2!

We will study the scaling of these probability distribution
r(u) andr(L) using a simple model.

II. MODEL

How much of this apparently universal behavior can
captured in a simple model of cell rotation and refineme
The model we propose is one in which cells become sma
by subdivision~leading to a fragmentation theory for the siz
distribution!, and undergo random angular reorientations
the strain increases. Our model does not incorporate the
isotropy in the external strain field, and so has nothing to
©2003 The American Physical Society07-1
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about how cell structure morphology might change, say,
tween tensile and rolling deformation or as the crystall
orientation changes. One should view our model as a car
ture of the real system; our results suggest that the exp
mentally observed scaling behavior may be generic to
microscopic mechanism which fragments and randomly
orients cells.

Our computational model starts with one large cubi
cell. We assume a cubic crystal, with initial crystalline ax
aligned with the axes of our cube, so the initial orientation
described by a rotation matrixR(0) equal to an identity ma
trix. The dynamics of our model incorporates two piec
rotational diffusion and cell splitting events.

Rotational diffusion.The orientation of each cella under-
goes a simple random walk in rotation angle space, w
strain increments playing the role of the time step. It is co
venient to write the current orientationRa(t)5exp(n•J),
where the matrixJi5e i jk ~with e i jk the totally antisymmetric
tensor! generates an infinitesimal rotation about thei th axis.
Since the cell-boundary misorientation angles experiment
are small~around a degree or so!, we may expand the expo
nential in this expression,

R5exp~n•J!.S 12
n2

21n3
2

2
n3 2n2

2n3 12
n1

21n3
2

2
n1

n2 2n1 12
n1

21n2
2

2

D .

~3!

~Large-angle corrections are discussed in Refs. 5 and 6! In
this approximation, diffusion in the manifold of crystallin
orientations can be written as an ordinary diffusion equat
in the three-dimensional coordinaten. If we assumee(t) is a
monotonically increasing strain, then the three-dimensio
probability distribution of grain orientationsL(n) evolves
according to the equation

]L~n!/]e52D¹2L~n!, ~4!

where D is the ‘‘orientational diffusion constant’’ and th
Laplacian¹25]2/]nx

21]2/]ny
21]2/]nz

2 , The random walk
described by this diffusion equation is implemented num
cally by adding a Gaussian random vector ton with compo-
nents of root-mean-square lengthA2DDe, whenever the
strain for the cell is incremented byDe.

Cell splitting events.Our model, for simplicity, divides
cells only along planes perpendicular to one of the crystal
axes. Thus, our cell structure is composed of rectangular
allelepipeds. The rate of cell division in our model depen
only on the current size and shape of the cell, and not on
environment. There are several different physical mec
nisms that might be responsible for cell division. Broad
speaking, we classify them by dimensional analysis: th
are mechanisms that divide cells at a rate proportiona
their current volumeV, their current surface areaS, their
current perimeterP, or at a uniform rate independent of th
current sizeU51. Once a cell has been chosen to split,
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must choose an axis and a position along that axis to p
the new cell wall. To keep our aspect ratios reasonable,
have chosen the probability of splitting along a given a
proportional to the length of the cell along that axis. T
position of the new cell wall along the split axis is chos
randomly in all cases. The two cells formed by splitting i
herit their parent’s orientation: the new cell walls thus st
out at zero misorientation angle, which will be importa
when we study the misorientation angle distribution.

Our model for cell splitting is closely related to a wel
studied model of fragmentation.7,8 In fragmentation theory,
the splitting rate is assumed a function of the volume, so,
example, a cell of volumeV could fracture with a rateAVg.
In our problem,g50 andg51 correspond precisely to uni
form and volume cell splitting rates, whileg51/3 andg
52/3 approximately correspond to perimeter and area s
ting. The evolution law in fragmentation theory correspon
ing to our model is easily seen to be8

]c~V,e!/]e52AVgc~V,e!12E
V

`

AṼg21c~Ṽ,e!dṼ,

~5!

wherec is the concentration of fragments with volumeV. To
relate this to experimental measurements@Eq. ~2!#, which
produce probability distributions of lengths rather than co
centrations of volumes, we can change variables fromV to
L5V1/3. The probability distribution of lengths with all cell
weighted uniformly is

r~L !5
3L2c~L3,e!

E
0

`

c~V,e!dV

. ~6!

The histograms produced by our simulations are a re
of three choices. First, there is a choice in how we define
size ~length L) of the cell. In computing the averages an
histograms from the simulation data, we typically define t
size of a cell to be its length along any one of the axes:
three lengths are incorporated into the averages and h
grams. This definition of size corresponds to that used
experiment. Alternatively, in order to compare the his
grams from the simulation to fragmentation theory~which
keeps track only of the volumes, not the shapes, of the ce!,
we can define the size of the cell as the cube root of
volume. Second, there is a choice in the splitting dynam
as discussed above: cells can divide at rates proportiona
their volume, surface area, perimeter, or at a uniform rate
fragmentation theory, the rate of splitting is proportional
Vg as discussed below: thus fragmentation theory is exac
our simulation with volume splitting (g51) and uniform
splitting rates (g50), but does not directly apply to th
perimeter and surface simulations, whose splitting rates
pend upon the shapes of the cells as well as their volum
Finally, one must address how to weigh the contributions
different cells in the probability distribution. For example, a
experiment that measures cell sizes by taking anXY cross
section and then weighting each observed cell equally in
average is effectively weighting the three-dimensional ce
7-2
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FIG. 1. ~Color! Simulated cell morphologies: Diagonal cross section of the cell morphologies in two model simulations, in a centra
perpendicular to the 111 axis. Left: Area splitting rate. Right: Uniform splitting rate. The area splitting yields rather uniform cell sizes
the uniform splitting yields an enormous range of cell sizes and a fractal morphology. The colors are chosen to represent the rotati
crystalline axes of the individual grains. The original orientationn50 is colored medium gray. In grayscale, darker and lighter gr
represent the magnitude of the deviation. In full color,nx , ny , andnz are mapped, respectively, onto deviations in red, green, and blue
a scale-factor chosen to saturate at the largest rotations.
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by their extent in theZ direction ~roughly weighting each
cell by its perimeter or byL). We compute the averages an
histograms from the simulation data by weighting each c
uniformly or by its volume, surface area, or perimeter. W
will soon see that the scaling exponents for the average
depend on only the splitting dynamicsg not on the measure
ment of size or the weight of the distribution. We will als
see that the shape of the scaled probability distributi
changes with different measurements of size or weights,
the distributions scale nonetheless.

If we define the size of the cell as the cube root of t
volume, simulations that split cells at a uniform rate or a
rate proportional to the volume of the cell produce his
grams that agree well with those given by fragmentat
theory@Eq. ~6!#. However, simulations that split cells at rat
proportional to area and perimeter produce histograms
are shifted from Eq.~6!. We focus here on the case where t
rate is proportional to the surface areaSof the cell~area! and
the case where the rate is independent of the size and s
of the cell ~uniform!.

III. RESULTS

A. Morphologies

Figures 1 show the cell morphologies from the two sim
lations. Area splitting shows a fairly uniform density of ce
sizes; this is characteristic also of the other size-depen
cell division rates. Uniform cell splitting rates produce
broad range of sizes: most cells are very small, so most
divisions subdivide very small cells. Indeed, as we shall d
cuss below, the uniform model is at a critical point in fra
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mentation theory~the ‘‘shattering’’ transition7!. Experimen-
tally, there does not seem to be a consensus on whethe
cell-size distribution is fractal9 or whether it has a more tra
ditional scaling distribution with a characteristic size th
shrinks with time.2

B. Cell-size scaling

Figures 2 shows the mean cell size as it evolves w
increasing strain in our model, under area splitting and r
dom splitting. In the figure, we show a count average wh
each cell contributes equally, a perimeter average where c
are weighted by their perimeter, and area and volume a
age. Each of these has the size of the cell defined as
distance between parallel cell walls. The fourth average
the size defined as the cube root of the volume and
weighted uniformly.

The mean size for the cells in the area splitting mo
scales withe21/2. Assuming fragmentation theory@Eq. ~5!#
and scaling@Eq. ~2!, which can be derived from fragmenta
tion theory8 for g.0], it is easy10 to derive the power-law
relation Lav;e21/3g. Thus, the experimentally observe
scaling of the IDB sizes suggests a cell splitting rate prop
tional to the cell surface area~left side of the figures!, while
the scalingLav

(GNB);e22/3 of the GNB dislocations would
suggest a mechanism with a cell splitting rate scaling as
cell volume to the 1/2 power.~See, however, Sec. IV A.!

Figures 3 show the histograms of cell sizes at the end
our simulation, with the five weights discussed above. Na
rally, for example, if cells are weighted by their volume the
is more weight in the histogram at larger sizes.
7-3



t given by
common
ifferent
th
various
f the cells,

he case

SETHNA, COFFMAN, AND DEMLER PHYSICAL REVIEW B67, 184107 ~2003!
FIG. 2. Mean cell sizes versus strain: We measure the mean cell sizes, with each cell contributing to the average an amoun
volume, area, perimeter, or uniformly independent of its size. As noted in the text, the perimeter scaling corresponds effectively to a
experimental procedure of taking histograms.~Do not confuse, say, area weighted mean sizes and area weighted splitting rates. The d
curves on each graph are differentmeasurements, the different graphs are differentdynamics.! We also include the mean size with the leng
measured as the cube root of the volume, with cells contributing uniformly, independent of their sizes. Left: Area splitting. The
measures are equivalent up to an overall scale factor for the model where the cell division rate is proportional to the surface area o
and the cell size varies ase21/2. This equivalence is because the distribution of sizes is peaked about a typical size scales~Fig. 3!, and can
be derived from the scaling form for the cell-size distribution. Right: Uniform splitting. The various measures are very different for t
of random splitting, since the cell structures are fractal with cells of all sizes.
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-
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We first consider the left-hand panel, showing the sim
lation results with dynamics which split cells proportional
their surface area. The area splitting histograms, take
different e during our simulations, do indeed rapidly co
verge to those shown on the left panel of Fig. 3@hence vali-
dating the scaling form equation~2!#. No matter how one
defines the sizeL or how one weights the contribution o
each cell, the histograms collapse onto scaling functions
18410
-

at

Fragmentation theory8 calculates the scaling function ex
plicitly that describes the distribution of sizes at late times.
particular, for area splitting (g52/3), the scaling function in
Eq. ~2! for a uniformly weighted distribution is,

rsize~x!532x2exp~24x2/p!/p2, ~7!

shown as the black, dashed line on the left in Fig. 3.
expected, it does indeed agree well with the size distribut
e black,
ume
FIG. 3. Cell-size histogram: Histograms of cell sizes at the end of our simulation, rescaled to the average cell size~Fig. 2! according to
Eq. ~2!. Again, there are different histograms depending upon how the cells are weighted in the average. Left: Area splitting. Th
dashed curve is the fragmentation theory prediction~Ref. 8! for the closely related problem where cells split at a rate proportional to vol
V2/3. Right: Uniform splitting. Notice that most of the cells~counted! are very small.
7-4
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SCALING IN PLASTICITY-INDUCED CELL-BOUNDARY . . . PHYSICAL REVIEW B67, 184107 ~2003!
whereL is defined as the cube root of the volume. The sh
between these two curves is due to the difference in dyn
ics: our simulation splits cells at a rate proportional to t
actual area of the cell, not byV2/3. For volume splitting, with
L defined as the cube root of the volume, the histogra
from the simulation agree with those from fragmentati
theory as expected.

The histograms that measure the length, width, and he
of each cell are broader than those that measure the cube
of the volume. Cells with large aspect ratios will contribu
one or two dimensions that are smaller than the cube roo
volume and one or two that are larger. Notice that in Fig
the cell-size probability density does not vanish at zero s
L except for statistical weightings that involve the total vo
ume. In our model, a subdivision occurs with equal proba
ity at all thicknesses, so the probability density at zero thi
ness is finite. If the weights of the cells in the average is
the total volume, of course, then the thin cells contrib
vanishing weight so the histogram goes to zero.

Consider now the right-hand panel of Fig. 3, with sim
lation results for dynamics which split cells at a uniform ra
independent of their size. Notice first that the scales are lo
rithmic. There is an enormous range of cell sizes, with p
probabilities ~by most measures! at very small sizes. The
uniform splitting model is at a critical point in the paramet
g50, theshattering transition,7 beyond which (g,0) there
an infinite dust of zero-size particles. At this critical poin
there are exact solutions for the cell-size distribution~black,
dashed curve shown in Fig. 3, to be compared with theL
5V1/3 simulation curve!. This exact solution does not hav
the scaling form of Eq.~2!. We have not been able to find
generalization of the scaling form which collapses the dis
bution at the critical point, but the scaling variable~typical
size! must shrink exponentially ase grows. One reason, wh
finding the scaling function may be difficult is that the sy
tem appears not to be self-averaging: the relatively g
agreement between the theory and simulation shown on
right of Fig. 3 is not as true with other random number see
with fluctuations of an order of magnitude away from t
theory. ~The average over many seeds does agree with
calculated form.! While there is no scaling form solution t
Eq. ~5! for g50, we have found a family of formal, non
normalizable solutions of the formc(V,e)5e2(112/b)eVb.

C. Misorientation scaling

To study the misorientation angles, we need a formula
the misorientation angleu. Imagine a cell boundary as i
Fig. 4. The rotationRLRR

21 takes the crystalline axes o
right-hand cell to the orientation on the left-hand side
the boundary. As before, we can write this rotation
exp(n•J), and correspondingly writeRL andRR in terms of
nL andnR . Because the rotation angles are small across
boundaries,n.nL2nR . The misorientation angle is

Tr~RLRR
21!5112 cosu.32u2532n2,

u.An1
21n2

21n3
25unu. ~8!
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DefineJ(n)d3n to be the area of cell-boundary with mis
orientation matrixR5exp(n•J). Since this distribution for
our model is symmetric under rotations,J(n)5J(n) and
Eq. ~8! implies that the probability distribution for the mis
orientation angle

r~u!5r~ unu!54pn2J~n!/Atot , ~9!

whereAtot5*d3nJ(n) is the total cell-boundary area. No
tice that the~one-dimensional! probability density for small
anglesu is 4pu2/Atot times the ~three-dimensional! cell-
boundary area at one of the rotationsn corresponding tou
5unu. This is, of course, because the number of poss
rotations grows with misorientation angle, as the area o
sphere in rotation space. This has the important consequ
of makingr(u) vanish atu50; this reflects not some specia
physics that avoids small misorientation angles, but a sim
geometrical fact that a small net misorientation angle
mands three independent rotation angles all being small.
deed, we will see that the experimental misorientation dis
bution vanishes not asu2 as would seem natural from Eq
~9!, but asu. We will explain this, and the correspondin
cusp inJ(n), below where we incorporate the effects of ce
division, which provides a source of new boundaries at z
misorientation angle.

Figure 5 shows the misorientations we measure for
area splitting model. As for the cell sizes, the misorientatio
across cell walls can be averaged weighting them uniform
by the cell wall perimeter, or by its area.

We see that the mean misorientation angle in our mo
grows with e1/2, as does the experimental misorientatio
across the IDB boundaries. We find similar scaling for v
ume splitting, and roughly similar for uniform splitting dy
namics; our derivation below suggests that this scaling
generic for our rotational diffusion mechanism. Hence, o
model will not provide an explanation for theuav

(GNB);e2/3

seen for the GNB’s.
Since the GNB’s are, in practice, distinguished from t

IDB’s by the number of perpendicular cell walls impingin
upon them~each GNB has typically a couple of IDB’s!, we
tested whether separating our cell boundaries into previo
split GNB analogs and unsplit IDB analogs might lead t

FIG. 4. Geometry of a cell boundary.
7-5
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FIG. 5. Misorientation distributions: Area splitting. The misorientation angles between cell walls, weighting each equally~uniform!, or
weighting by perimeter or area of the cell boundary. Left: the mean misorientation angle grows ase1/2 in our model, not only for area
splitting ~shown! but also for the other forms of the cell splitting rate. Right: the scaling form for the probability distribution is la
independent of the way in which one weights the cells by their size, and agrees well with the formrmis of Eq. ~14!.
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misorientations of the former to grow more quickly on
average with external strain. This did not occur in our mod
both previously split and unsplit cell walls scale in me
misorientation with the square root of the external strain.

We can derive a simple differential equation of the tim
evolution of the distribution of misorientation matrice
across incidental boundariesJ(n,e). Since new cell bound-
aries are created at zero angle, the equation will be a d
sion equation with a source term:

]J~n!

]e
52D¹2J1Ce (1/3g)21d~n!, ~10!

where the gradients on the right are with respect ton, and
d(n) is a three-dimensional Diracd function~infinite at zero,
zero elsewhere, integral equal to 1!. The misorientation ma-
trices diffuse with coefficient 2D because the two cells o
either side are each diffusing with diffusion coefficientD.

The first term in Eq.~10! represents the diffusion, or ran
dom walk, in rotation space. The second term in Eq.~10!
represents the creation of new cell boundaries that divide
old ones. Because we choose to weight our misorienta
angle density according to the boundary area, this divis
does not change the cell-boundary densityJ(n) except at
n50.

The new boundary area shows up in our distribution
zero misorientation angled(n). To derive the amount of new
boundary area that is created per unit strain, we use a sim
scaling argument. Note that the cell sizes scale asL
;e21/3g. The total boundary areaAtot will scale as the num-
ber of boundaries 1/L3 times the area per boundaryL2,
hence ase1/3g. The new boundary area needed per unit
crement ofe thus scales ase (1/3g)21, giving the prefactor for
the d function in Eq.~10!.

We now specialize tog52/3 corresponding to area spli
ting. If we start with no cell-boundaries ate50, then the
solution to Eq.~10! is
18410
l:

u-

e
n
n

t

le

-

J~n!5E
0

e

duCu21/2exp@2n2/8D~e2u!#/@8pD~e2u!#3/2

5C exp~2n2/8De!/~8pDnAe!. ~11!

@The cell boundaries which are formed at deformationu have
spread out into a Gaussian of varianceD(e2u)]. The total
boundary areaAtot52CAe, as desired. This leads to a pr
diction for the probability distribution of misorientatio
angles that yields the scaling collapse~1!

r~u,e!5uav
21rmis~u/uav!5u exp~2u2/8De!/4De,

~12!

where

uav5A2pDe ~13!

and

rmis~x!5~px/2!exp~2px2/4!. ~14!

~As we will discuss in the Appendix, this happens to be t
distribution as derived by Pantleon11,12 in a model without
cell refinement.! As shown on the right in Fig. 5, this scalin
form describes the simulation well: the simple scaling arg
ment for the source term of new boundaries~above! captured
the behavior of the stochastic simulation.

One can see from Fig. 6 that the predicted form is a
quite a good description of the experimental data. This p
ticular functional form is derived usingL;e21/2, but the
particular exponent is not crucial to the analysis: the solut
for L;e21/3g has this general form@with linear slope atu
50 anduav(e);Ae] for other g as well.

IV. CONCLUSION: MISSING PIECES

We believe our simple model is the explanation for t
observed scaling seen in cell refinement during plastic fl
7-6
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despite many missing features that are clearly relevant to
experimental behavior. In particular, we would claim th
any physical system that refines by subdivision, and that
dergoes random rotational distortions, is likely to ente
scaling regime similar to that seen in our model. In this s
tion, we discuss three of the missing features and why t
must be relevant for a complete engineering description.

a. IDB/GNB distinction.The experiments show two dis
tinct types of cell boundaries, with different scaling exp
nents and scaling functions. Our model only includes o
While we get a plausible fit to the IDB scaling, the GN
misorientation angles grow faster than our rotational dif
sion model can reproduce. One must note that scaling be
ior in other contexts is associated with a single character
length scale: our model asymptotes to a morphology tha
statistically unchanging at large strains except for a sin
rescaling of length. Because the experiments show
length scales, we expect that detailed measurements
show violations of scaling behavior, say, when the me
GNB separation length crosses the IDB separation len
Perhaps the fact that the two types of boundaries are rou
evolving on perpendicular axes allows for the approxim
scaling seen.

~2! Plastic deformation.In our simple model, the overal
plastic deformation was ignored. In a real material un
compression the boundaries perpendicular to the strain
will grow closer to one another linearly in the strain ev
without subdivision. Apparently13 under the external strain
the GNB’s slowly rotate towards this axis, while the IDB
remain roughly aligned parallel to the axis of compressi
The external strain, after this rotation is complete, will act
separate the IDB’s roughly as the square root of the st
e1/2. To get the observed refinemente21/2 the subdivisions
must happen even faster than described by the area spl
law we focused on in the text: perimeter splitting, which
the undeformed coordinates leads to a length that scale

FIG. 6. Experiment vs Theories: Experimental data digitiz
from Hugheset al. ~Ref. 1!. The thick curve isrmis, the scaling
function of Eq.~14!. The thin curve isranisotropic, the solution of Eq.
~A1! with a length-independent diffusion constant with one ze
eigenvalue, representing a highly anisotropic rotational diffusio
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e21 would work. This begs the question of why the scali
should begin to be observed even before the rotations
complete?

Pantleon13 suggests that this might be an explanation
the observede22/3 scaling of the separation between GNB
At short times, before the rotation is complete, the leng
vary ase21/2, and at long times~with the added effects o
compression! they will vary faster, perhaps leading to a re
sonable fit with the larger exponent.

~3! Origins of the cell splitting, rotational diffusion.In our
model, the cell splitting and rotational diffusion are given
part of the dynamics: we do not address the physical mec
nisms that produce them.

There are various proposed mechanisms for getting
cell sizes to shrink. Obviously, the cell walls cannot ju
move inward; the cell wall velocities would grow linearly i
the system size. One could imagine a crinkling of existi
cell walls~the inverse of the coarsening process seen in s
odal decomposition!, or nucleating new cells at junctions o
existing cell walls: neither picture is compatible with o
analysis, and both involve cell wall motion that is resisted
pinned sessile dislocation junctions.14 Subdivision as we
have used it could arise from collisions between dislocati
as they traverse the cell, although simple calculations sug
that the expected collision rates are too small14,15 and do not
scale correctly for our theory.16 Cell splitting due to inhomo-
geneous stresses induced by neighboring cells6 seem to us
the most natural and likely mechanism. A corresponding
croscopic picture would involve regions in the inhomog
neously stressed cell where the dislocations slow down
where they are more easily pinned by obstacles or other
locations, leading to the formation of a new cell wall.

The mechanisms driving the rotations of the crystalli
axes of the cells are less well understood. The crystal
axes can rotate both directly through the rotation of the m
terial in the cell, and indirectly because of the flux of disl
cations mediated by the plastic deformation. This latter eff
is well studied on larger scales in the field of texture evo
tion, where the plastic deformation of a polycrystal oft
leads to a gradual alignment of their crystalline orientatio
Within a single crystalline grain, this texture evolution w
on average rotate all the cells together: because the rela
angles between cells is small, they will largely rotate in t
same direction. One should note that the traditional expla
tion for the origin of the GNB’s indicates that their misor
entation angles could well have a overall mean drift in ad
tion to the random diffusion. It is said that GNB’s ar
observed to have rotational misorientations that alternat
sign, because they separate regions with differing active
systems;4 the combination of the differing plastic strains an
rotations in neighboring pairs of cells can equal the net
posed plastic deformation. In this picture, the net rotat
angles across the GNB’s@Eq. ~4!# should have a mean drif
term in addition to the diffusion term.
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APPENDIX: CONNECTIONS WITH STOCHASTIC
DISLOCATION THEORIES

The distribution for the misorientation angle for th
simple rotational diffusion model,rmis(x), happens to have
the same form as one derived by Pantleon11,12 without con-
sidering cell refinement, and by assuming that the noise
the cell orientations was due to random, uncorrelated fl
tuations in the dislocation flux. It behooves us, therefore
discuss how Pantleon’s work can be interpreted in our c
text.

Pantleon’s theory, also suggested by Nabarro,17 and Argon
and Haasen,15 is that the stochastic noise in the flux of di
location from either side of the cell boundary leads to ra
domness in the evolution of the cell-boundary angles. E
dislocation passing through a cell, say, may shift the
plane of atoms by a distanceb with respect to the bottom
plane, whereb is the Burgers vector of the dislocatio
~roughly the lattice constant!. The crystalline axes within a
cell of characteristic heightL will rotate due to one disloca
tion an amount proportional tob/L. Under a strain incremen
De, a cell of characteristic heightL must haveN5LDe/b
dislocations impinging on the side cell boundary. A rough
equal and opposite average flux will impinge on the c
boundary from the cell on the other side. If the dislocatio
move independently~which we will argue does not occur!,
then one expects that there will be a net residue after
strain increment of roughlyAN5ALDe/b. Hence, the pre-
dicted drift in angle after a strain increment ofDe is Du
5ANb/L5AbDe/L. The diffusion constant is given b
D(L);(Du)2/De;b/L. Because a single dislocation pro
duces a larger net rotation for smaller cell, the stepsize in
random walk in rotation space becomes larger as our c
get smaller.

Pantleon and Hansen5 consider three cases, where on
two, and three slip systems are activated. The geometry
given cell—the direction and strength of the applied sh
with respect to the crystalline axes—will determine wh
types of dislocations are allowed to pass through the cel
only one slip system is active, the rotation of the cell will
confined to a single axis. In our formulation, the diffusio
constant in rotation space will be anisotropic: in this case
will be a rank 1 tensor~a 333 matrix with only one nonzero
eigenvalue!. Two slip systems will give a rank 2 tensor, wit
one zero eigenvalue. Three slip systems will allow the cel
diffuse in any direction, but even so the diffusion constanD
will, in general, be anisotropic.

To make contact with Pantleon, we consider a more g
eral evolution law for the misorientation in area splitting:

]J~n!

]e
5Di j ~L !“ i“ jJ1Ce1/2d~n!. ~A1!
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Here, we have allowed for an anisotropic, cell-siz
dependent diffusion constant by introducing the symme
tensorDi j (L) depending on the current cell sizeL. The sym-
metric diffusion tensorDi j will vary with the geometry of
the particular cell boundary: it can depend both on the re
tive orientation of the crystal and the strain tensor with
spect to the plane of the cell boundary. We will first consid
the anisotropy while ignoring the refinement@Di j (L) inde-
pendent ofL], in analogy to previous work, and then inco
porate the refinement@Di j (L) proportional to 1/L;e1/2 as
argued above#.

Pantleon5,11,12 in most of his analysis ignores cell refine
ment. If we makeDi j independent ofL and setC50 in Eq.
~A1!, we get an anisotropic diffusion equation whose so
tion ~assuming a narrow initial distribution of misorienta
tions! is an anisotropic Gaussian with variances given by
inverse eigenvalues ofD, with the experimentally observe
scalinguav;e1/2. If we assumeD has one nonzero eigen
value, we get the Gaussian distribution derived by Pantl
and Hansen for one active slip system. If we assumeD has
two equal, nonzero eigenvalues, we get the Rayleigh dis
bution that they find for two perpendicular systems of ed
dislocations@which, coincidentally, is the same distributio
that we found above~14! with an isotropicD and a source
term#. If we assumeD is isotropic, we get the Maxwell dis
tribution they find for three perpendicular systems of dis
cations.

What happens to the solution of Eq.~A1! when we incor-
porate cell refinement? Pantleon12 notices that nonconstan
cell size must change the scaling of average angle w
strain. By settingD(L);e1/2 in accordance with Ref. 2, an
changing variables tot5e3/2 in Eq. ~A1!, we can map it into
a problem quite similar to Eq.~10! except that the source
term is of magnitude proportional tot22/3. The solution to
this equation has a shape quite similar to that shown in F
6, but with an average angleuav;At;e3/4. This yields a 3/4
power of the strain incompatible with the scaling observ
for the incidental cell boundaries. Pantleon is aware of thi12

in an analogous calculation he getsuav;e0.72.
~If we abandon dislocation noise as the origin of the

tational diffusion, and take the crystalline lattice orientatio
as our basic variables, then there are no microscopic len
remaining in the problem. The diffusion constant then na
rally depends only on the local geometry of the cell boun
ary, and hence is independent of the length scale.!

The key to the discrepancy is, of course, that the dislo
tions motion is not uncorrelated; they must be moving in
collective manner. The interaction energy between dislo
tions is large, and diverges logarithmically with distance,
flecting the infinite stiffness of a crystal to gradients in t
axes of rotation. In early stages of hardening, one mi
plausibly argue that the dislocations are sufficiently far ap
that their interaction forces do not dominate. But in the
gime studied here, the fact that the dislocations organize
boundaries~avoiding rotational distortions within the cells!
is a clear signal that it is no longer sensible to treat th
evolution independently. If the top half of a cell bounda
received more dislocations from the right-hand cell than
bottom half, this would produce an enormous bending fo
7-8
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on the cell. Such an event could only happen for reason
energy cost if this bending were screened by the division
the cell by a new boundary.

The stochastic dislocation flux models will be genera
applicable whenever the correlations between their moti
vanish at distances comparable to the cell sizes. Our mod
correct in the other limit: our cells only rotate as units. Th
our model is appropriate for systems where the disloca
motions are strongly correlated on the scale of the cells—
that their motion can always be described as mediating o
all rotations of each cell. Both descriptions are only a start
point for a complete theory.

Consider an analogy: dislocation motion modeled as re
rangements of atoms, versus as the evolution of a contin
curve. In the atomic description~Fig. 7!, one would identify
characteristic atomic motions~say, kink diffusion events in
the case of semiconductors!, at rare sites scattered throug
the crystal. These sites would be strongly correlated~lying
along the dislocations!; their dynamics would produce un
usual zipper motions~kinks diffusing along dislocations!. We
expect similar correlations to arise in the dislocation motio
mediating cell-boundary evolution: the dislocations w
form correlated dances to keep rotational gradients from
tering the cells. On the other hand, treating the disloca
motion as the evolution of a continuous curve makes it d
ficult to incorporate the anisotropic dynamics and lattice p

FIG. 7. Correlated atomic rearrangements associated
simple dislocation motion.
e
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ning effects—our model so far has ignored the correspond
crystalline and shear anisotropies in the evolution of c
structure.

We can incorporate some of this asymmetry by hand i
our model. Pantleon and Hansen5 point out that the indi-
vidual cell boundaries have rather low symmetries. The d
fusion tensor in Eq.~A1! describes the evolution of that sub
set of cell boundaries with a particular cell-bounda
orientation and~average! crystal lattice orientation with re-
spect to the external shear. There is no reason that f
low-symmetry geometry that the diffusion constant will b
isotropic, geometry dependent, or material dependent:
general evolution law is given in Eq.~A1! with Di j indepen-
dent ofL. One must solve for the distribution at fixed geom
etry and then average over geometries to predict the exp
mental distribution~as also discussed in Sec. 5.2 of Ref.!.
If we assume a strongly anisotropic rotational diffusion te
sor with one zero eigenvalue and the other two equal~corre-
sponding roughly to Pantleon’s analysis with two active s
systems! we can solve Eq.~A1! to find a scaling collapse~1!
with scaling function

r2dim~x!5~p3x/64!exp~2p3x2/128!K0~p3x2/128!,
~A2!

whereK0 is the modified Bessel function of the second kin
This scaling function is shown in Fig. 6.

It is important also to note that effects that seem clea
related to cell-boundary formation have been seen in fin
element simulations of single-crystal plasticity by Mika a
Dawsonet al.6 Their system consisted of several crystalli
grains with differing orientations, subject to an extern
shear. The inhomogeneous strains within the grains led to
formation of subgrain structures very similar to cells. T
distribution of cell boundaries in their simulation was al
found to scale, with strain dependence and functional fo
similar to that seen for geometrically necessary bounda
~that is, scaling with the 2/3 power of strain, and not with t
1/2 power seen for the IDB’s!. Hence, Dawsonet al. find
cells in a simulation totally without dislocations.

th
ent
ite
ne
ay

res
1D.A. Hughes, D.C. Chrzan, Q. Liu, and N. Hansen, Phys. R
Lett. 81, 4664~1998!.

2D.A. Hughes, Q. Liu, D.C. Chrzan, and N. Hansen, Acta Ma
45, 105 ~1997!; A. Godfrey and D.A. Hughes,ibid. 48, 1897
~2000!.

3B. Bay, N. Hansen, and D. Kuhlmann-Wilsdorf, Mater. Sci. En
A 113, 385 ~1989!.

4D. Hughes~private communication!.
5W. Pantleon and N. Hansen, Acta Mater.~to be published!.
6D.P. Mika and P.R. Dawson, Acta Mater.47, 1355~1999!; N. R.

Barton and P. R. Dawson~unpublished!.
7E.D. McGrady and R.M. Ziff, Phys. Rev. Lett.58, 892 ~1987!.
8Z. Cheng and S. Redner, Phys. Rev. Lett.60, 2450~1988!.
9P. Hähner, K. Bay, and M. Zaiser, Phys. Rev. Lett.81, 2470

~1998!; R. Thomson and L.E. Levine,ibid. 81, 3884 ~1998!; I.
Groma and B. Bako,ibid. 84, 1487~2000!.
v.

.

,

10Write V̄5*rvol(V)dV, use Eq.~2! to compute]V̄/]s, change
variables toy5V/V̄, and substitute in the scaling form Eq.~2!.

11W. Pantleon, Scr. Mater.35, 511 ~1996!.
12W. Pantleon, Acta Mater.46, 451 ~1998!.
13W. Pantleon~private communication!.
14F. Prinz and A.S. Argon, Phys. Status Solidi B57, 741 ~1980!.

They discuss not collisions between dislocations on differ
slip systems, but mutual trapping of dislocations with oppos
Burgers vector on one slip system: our analysis still applies. O
should note that Argon now believes that cell boundaries m
move during plastic deformation through avalanches of failu
of these sessile dislocation junctions.

15A.S. Argon and P. Haasen, Acta Metall. Mater.41, 3289~1993!,
Eq. ~21!.

16J.P. Sethna and E. Demler, cond-mat/0104552~unpublished!.
17F.R.N. Nabarro, Scr. Metall. Mater.30, 1085~1994!.
7-9


