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Complex nonlinear models are typically ill conditioned or sloppy; their predictions are significantly
affected by only a small subset of parameter combinations, and parameters are difficult to reconstruct from
model behavior. Despite forming an important universality class and arising frequently in practice when
performing a nonlinear fit to data, formal and systematic explanations of sloppiness are lacking. By
unifying geometric interpretations of sloppiness with Chebyshev approximation theory, we rigorously
explain sloppiness as a consequence of model smoothness. Our approach results in universal bounds on
model predictions for classes of smooth models, capturing global geometric features that are intrinsic to
their model manifolds, and characterizing a universality class of models. We illustrate this universality
using three models from disparate fields (physics, chemistry, biology): exponential curves, reaction rates
from an enzyme-catalyzed chemical reaction, and an epidemiology model of an infected population.
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Complex nonlinear models used to simulate and predict
experimentally observed phenomena often exhibit a struc-
tural hierarchy: perturbing a few model parameter combi-
nations drastically impacts predictions, whereas most
others can vary widely without effect. Such ill-conditioned
models are called sloppy. Sloppy models appear to be
common, arising in many areas of physics. In critical
phenomena, this hierarchy of importance explains the
parameter scaling with coarsening for diffusion and the
Ising model of magnetism [1]. In accelerator physics, linear
combinations of the multitude of tunable beam-line param-
eters exhibit a geometric hierarchy of importance [2].
Exponential curve fitting, a notoriously ill-conditioned
problem, poses a significant challenge, e.g., finding corre-
lators in lattice QCD [3,4]. Sloppy models are not confined
to physics, and in fact appear in systems biology [5–7],
insect flight [8], power systems [9,10], machine learning
[11], and many other areas [12]. Understanding why
sloppiness occurs can therefore connect models used across
disparate fields.
There are many well-studied cases for insensitivity of

model predictions to particular combinations of parameters.
Structural identifiability describes systems for which
parameters can be analytically exchanged for one another
[13,14]. Separation of scales, singular perturbations, and
continuum limits can make the behavior at a particular time
or distance region depend only on a subset of the under-
lying parameters [15–17]. Universal critical behavior can
yield effective parameter compression on long length scales
near continuous transitions [1]. However, these compre-
hensible sources of sloppiness do not explain the generality
of the phenomenon, nor do they offer a rigorous framework

by which to quantify the hierarchy of parameter impor-
tance. In this Letter, we address the generic sloppiness of
multiparameter nonlinear models in the absence of par-
ticular mechanisms or small parameters. We unify recently
developed geometric descriptions of sloppiness [12] with
classical ideas from polynomial approximation theory [18].
We posit that, in many cases, sloppiness is fundamentally
linked to the smoothness of the underlying model, and
provide a rigorous description of this connection.
The hierarchy of parameter importance that characterizes

sloppy models manifests geometrically. Given some model,
the space of all possible predictions for all input parameters
forms a geometric object known as the model manifold
[Fig. 1(a)], whose metric is given by the Fisher information
(a measure of the distinguishability between predictions
([19], Ch. 2) which sets a lower bound on the possible
variance of parameter estimates for an unbiased prior
through the Cramér-Rao bound). Studying the geometry
of model manifolds yields fruitful information for several
reasons: (1) the dominant components reflect emergent
behavior of the models (how the microscopic interactions
do or do not produce macroscopic behavior [1]), (2) the
boundaries represent reduced-model approximations [20],
and (3) knowledge of the manifold geometry leads to more
efficient data fitting methods [21]. Model manifolds typ-
ically form striking hyperribbons [22], so-called because,
like ribbons, successive widths follow a geometric decay:
they are much longer than they are wide, much wider than
they are thick, etc., yielding effective low-dimensional
representations. Because directions along the model mani-
fold correspond to specific parameter combinations, there is
a direct connection between the hyperribbon nature of
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model manifolds and the structural hierarchy of model
parameters. Understanding why model manifolds form
hyperribbons therefore leads to an understanding of why
this structural hierarchy in parameter importance exists.
Consider a nonlinear model that depends continuously

on K input parameters θ ¼ ðθ1;…; θKÞ to generate pre-
dictions yθðtÞ. If we consider the model predictions at N
fixed points, ft0;…; tN−1g, then our predictions for param-
eters θ form an N-dimensional vector YðθÞ ¼(yθðt0Þ;…;
yθðtN−1Þ) ¼ ðY0;…; YN−1Þ. We use Y to represent
the model manifold, defined as the space of all possible
predictions for all possible parameter combinations
[so all allowed YðθÞ]. Specifically, model manifold Y is
a K-dimensional surface embedded in an N-dimensional
prediction space.
To bound the model manifold Y and study its geometry,

we consider polynomial approximations of model yθ.
Without loss of generality, we shift and rescale the points
so that ftkgN−1

k¼0 ⊂ ½−1; 1�. Let fϕjg∞j¼0 be a complete
polynomial basis, and suppose that model yθðtÞ is decom-
posed into this basis: yθðtÞ ¼

P∞
j¼0 bjðθÞϕjðtÞ. Let

pN−1ðt; θÞ be the truncated series representing the poly-
nomial approximation to model yθðtÞ. Note that the
truncation is set by the number of sampled points, N.
We can view the coefficients (b0ðθÞ;…; bN−1ðθÞ) as a

set of N parameters. Now, let PðθÞ ¼ (pN−1ðt0Þ;…;
pN−1ðtN−1Þ) ¼ ðP0;…; PN−1Þ define the polynomial mani-
fold P. Thus, we have model manifold Y and a polynomial
manifold P.
By definition, PðθÞ ¼ Xb, where Xij ¼ ϕj−1ðti−1Þ and

b ¼ ðb0;…; bN−1ÞT . Here, X forms a linear map from the
space of polynomial coefficients to the space of possible
predictions, and is determined by the chosen polynomial
basis and fixed points ti. The singular values of X can be
used to understand the hyperribbon structure of the poly-
nomial manifold P. Suppose, for example, that kbk2 < r,
so that the coefficient space is bounded in S, an n sphere of
radius r. The action of X on S distorts it into a hyper-
ellipsoid HP. If ljðHPÞ is the diameter of the jth cross
section of hyperellipsoid HP, then

ljðHPÞ ¼ 2rσjðXÞ; ð1Þ

where σjðXÞ are the ordered singular values of X. When X
has rapidly decaying singular values,HP has a hyperribbon
structure because there is a strict hierarchy in successive
widths. Accounting for the polynomial approximation error
kyθ − pN−1k∞, where k · k∞ is the L∞ norm on ½−1; 1�, we
can define a hyperellipsoid HY that must enclose model
manifold Y, where the cross-sectional widths are given by

FIG. 1. Model manifold of three disparate models: (1) exponential curves, (2) reaction velocities of an enzyme-catalyzed reaction, and
(3) the infected population in an SIR model. The models are evaluated at 11 equally spaced points on [0, 1], and obey the smoothness
condition in Eq. (10), with C ¼ 1 and R ¼ 2. (a) An illustration of each model, where each line represents the respective model
predictions with a different set of parameters. (b) The model manifolds are all bounded by the same hyperellipsoid, and so the two axes
represent the first and second longest hyperellipsoid axes. Note that, in all three models, only values greater than 0 are physically
significant. This constraint manifests itself geometrically through their location in the hyperellipsoid. (c) The lengths of each model
manifold along the eleven axes of the hyperellipsoidHP in Eq. (11). Black points are the numerically computed lengths ofHP, given by
2C

ffiffiffiffi
N

p
σjðVDÞ in Eq. (11), and include the error term from Eq. (2) (note the kink at the second to last point), forming an upper bound on

possible lengths of the manifolds. The explicit decay rate of the Chebyshev-based bound (black dotted line) is based on the fact that
models obeying Eq. (10) are analytic in the ellipse EρðζÞ. [Here, ρðζÞ ≈ 3.81.] It captures the decay rate of σjðVDÞ for j < 11, and
closely follows the true decay rate in the successive widths of the various manifolds.
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ljðHYÞ ¼ 2rσjðXÞ þ 2ky − pN−1k∞: ð2Þ
In this way, we find that any model manifold Y is bounded
within a hyperribbon whenever σjðXÞ decays geometrically
and ky − pN−1k∞ is small enough. A fundamental question
is whether it matters which polynomial basis or which set of
time points are chosen to define HP and HY . The hyper-
ribbon structure of Y, of course, does not depend on our
representation of yθ, but rather on intrinsic properties of the
model, such as its smoothness. For example, if for every
t0 ∈ ½−1; 1�, the Taylor expansion of yθ at t0 has a large
enough radius of convergence, any sequence of polynomial
interpolantswithN distinct interpolating points converges to
yθ at a geometric rate with N [18]. This fact underpins the
qualitative observation in Refs. [12,22] that certain analytic
models have manifolds bounded within hyperribbons. Here
we make that observation rigorous. We consider two such
choices. First, we choose our basis functions fϕjg∞j¼0 as the
Chebyshev polynomials. Truncated Chebyshev expansions
converge to yθ at an asymptotically optimal rate for poly-
nomial approximation [18]. As we show below, this rate
controls the magnitude of σjðXÞ in Eq. (2), and can be used
to explicitly bound the cross sectional widths of HY . Our
bounds deliver an outright description of a hyperribbon that
must contain Y.
We also analyze the case where fϕjg∞j¼0 are the mono-

mials and pN−1 is the truncated Taylor series expansion of
yθ. In this case, we observe that the numerical computation
of σjðXÞ results in excellent practical and universal bounds
on the prediction space for large classes of models.
Chebyshev expansions.—Suppose that yθ has a conver-

gent Chebyshev expansion, so that it is given by
yθðtÞ ¼

P∞
j¼0 cjðθÞTjðtÞ, where TjðtÞ ¼ cosðj arccos tÞ is

the degree j Chebyshev polynomial ([18], Ch. 3). We can
approximate yθ with a degree ≤ N − 1 polynomial by
truncating the Chebyshev series after N terms:

pN−1ðt; θÞ ¼
XN−1

j¼0

cjðθÞTjðtÞ: ð3Þ

Truncated Chebyshev expansions have near-best global
approximation properties, and explicit bounds on kyθ −
pN−1k∞ are known when yθ is sufficiently smooth.
We first consider the case where yθ is analytic in an open

neighborhood of ½−1; 1�. Such a region contains a Bernstein
ellipse Eρ, defined as the image of the circle jzj ¼ ρ under
the Joukowsky mapping ðzþ z−1Þ=2. It has foci at �1, and
the lengths of its semimajor and semiminor axes sum to ρ.
The polynomial in Eq. (3) converges to yθ as N → ∞ at a
rate determined by ρ:
Theorem 1. Let M > 0 and ρ > 1 be constants and

suppose that yθðtÞ, t ∈ ½−1; 1�, is analytically continuable
to the region enclosed by the Bernstein ellipse Eρ, with
jyθj ≤ M in Eρ, uniformly in θ. Let pN−1ðt; θÞ be as in
Eq. (3). Then,

ðiÞ kyθ − pN−1k∞ ≤
2Mρ−Nþ1

ρ − 1
; ð4Þ

ðiiÞ jc0j ≤ M; jcjðθÞj ≤ 2Mρ−j; j ≥ 1: ð5Þ

Proof.—For a proof, see Theorem 8.2 in Ref. [18]. □

To exploit the decay of the coefficients in Eq. (5), we
define modified coefficients c̃j ¼ ρjcj. We then have that
polynomial predictions PðθÞ ¼ Xc̃, where X ¼ JD, Jij ¼
Tj−1ðti−1Þ, andD is diagonal with entriesDjj ¼ ρ−ðj−1Þ. By
Eq. (5), we have that kc̃k2 < 4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4N − 3

p
. This implies

that the polynomial manifoldP is bound in a hyperellipsoid
HP. By Eq. (1), we have that ljðHPÞ ¼ 8M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4N − 3

p
σjðXÞ.

To bound σjðXÞ explicitly, we first prove a conjecture
proposed in Ref. [23]:
Theorem 2. Let S ∈ RN×N be symmetric and positive

definite. Let E ∈ RN×N be diagonal with Eii ¼ ϵi−1 and
0 < ϵ < 1. If λ1 ≥ λ2 ≥ � � � ≥ λN are the ordered eigenval-
ues of ESE, then λmþ1 ¼ Oðϵ2mÞ. Specifically,

λmþ1 ≤
ϵ2m

1 − ϵ2
max

1≤j;k≤N
jSjkj; 1 ≤ m ≤ N − 1: ð6Þ

Proof.—[24] Consider the rank m matrix

Sm ¼ Sð∶; 1∶mÞSð1∶m; 1∶mÞ−1Sð1∶m; ∶Þ; ð7Þ

where 1 ≤ m ≤ N − 1, and the notationMð∶; 1∶mÞ denotes
the submatrix of M consisting of its first m columns.
Clearly, Sm is well defined because Sð1∶m; 1∶mÞ is a
principal minor of a positive definite matrix and is therefore
invertible. Moreover, it can be verified that ðS − SmÞjk ¼ 0

for 1 ≤ j; k ≤ m.
Since ESE is positive definite and rankðSmÞ ¼ m, we

know that λmþ1 ≤ kEðS − SmÞEk2, where k · k2 denotes the
spectral matrix norm [[25]]. Using k · kF to denote the
Frobenius norm, we have

λ2mþ1 ≤ kEðS − SmÞEk22 ≤ kEðS − SmÞEk2F

¼
XN

j¼mþ1

XN
k¼mþ1

ϵ2ðj−1Þþ2ðk−1ÞjSjk − ðSmÞjkj2

≤
ϵ4m

ð1 − ϵ2Þ2 max
1≤j;k≤N

jSjk − ðSmÞjkj2

≤
ϵ4m

ð1 − ϵ2Þ2 max
1≤j;k≤N

jSjkj2;

where the last inequality comes from the fact that the block
Sðmþ 1∶N;mþ 1∶NÞ − Smðmþ 1∶N;mþ 1∶NÞ is the
Schur complement of Sð1∶m; 1∶mÞ in S [25]. □

Applying Theorem 2 to XTX ¼ DJTJD, we have that for
j > 1, σjðXÞ ≤

ffiffiffiffi
N

p
ρ−jþ2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 1

p
, where we have used

the fact that jTkðtÞj ≤ 1 for k ≥ 0 and −1 ≤ t ≤ 1. It
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follows from Eqs. (2) and (4) that predictions for yθðtÞ are
bounded by a hyperellipsoid HY , with

ljðHYÞ ≤
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4N2 − 3N

p
ρ−jþ2ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 − 1
p þ 4Mρ−Nþ1

ρ − 1
; ð8Þ

for 2 ≤ j ≤ N, i.e.,

ljðHYÞ ¼ Oðρ−j þ ρ−NÞ: ð9Þ

These bounds indicate that the hyperribbon structure of HY
is controlled by ρ, a parameter characterizing the analyticity
of the model. As ρ becomes larger, bounds on the widths of
the successive cross sections of HY must decay more
rapidly: in principle, HY becomes successively thinner
and more ribbonlike.
When yθ is not analytic on an open neighborhood of

½−1; 1�, the decay rate of σjðJDÞ is instead controlled by
the smoothness of yθ on ½−1; 1�. Furthermore, when
we consider models with two experimental conditions
(for instance, time and temperature) these bounds can be
extended to the two-dimensional case. We provide more
discussion of nonanalytic and two-dimensional cases in the
Supplemental Material [26].
Taylor expansions.—The degree N − 1 truncated Taylor

polynomial of yθ is pN−1ðtÞ ¼
P

N−1
k¼0 akðθÞðt − t0Þj, where

akðθÞ ¼ yðkÞθ ðt0Þ=k!. We describe the analyticity of yθ using
the following condition: for all N ≥ 1,

XN−1

k¼0

�
Rk

k!
dkyθðtÞ
dtk

�
2

< C2N; ð10Þ

where C > 0,R > 1 are constants in θ. A straightforward
but tedious calculation outlined in the Supplemental
Material [26] shows that the lengths of the resulting
hyperellipsoid are given by

ljðHPÞ ≤
2CNffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 1

p R−jþ2: ð11Þ

To apply our results, we selected three models from quite
disparate fields (physics, chemistry, biology). This was
done deliberately, to illustrate the universal nature of our
results. In all three cases, the context for model construction
is different, and yet the underlying smoothness of each can
be used to relate them to a single universal bound.
(1) Exponential curves, such as for radioactive decay
[12,21] and calculating correlators in lattice QCD [3,4].
Here, we set yθðtÞ ¼

P
10
α¼0 Aα exp ð−λαtÞ, where model

parameters are the amplitudes Aα and decay rates λα, and t
represents time. (2) Reaction velocities of an enzyme-
catalyzed chemical reaction [31,32]. This model can be
expressed as yθðtÞ ¼ ðθ1t2 þ θ2tÞ=ðt2 þ θ3tþ θ4Þ [12],
where t represents the substrate concentration. This model
stands in for steady-state behavior of complex chemical

reaction networks in engineering and ecology [33]. A
visualization of such models is shown in the middle part
of Fig. 1(a). (3) The infected fraction of a population in an
SIR epidemiology model [34]. This model predicts the size
of a population that is susceptible to infection [SðtÞ],
infected [IðtÞ], and recovered from infection [RðtÞ].
These are expressed through three coupled differential
equations: _S¼−βIS=Ntot, _I¼βIS=Ntot−γI, and _R ¼ γI,
where model parameters β and γ represent the rates of
infection and recovery, and additional parameters include
the total population Ntot, and initial infected and recovered
population. At all times, SðtÞ, IðtÞ, and RðtÞ sum to Ntot,
and we set yθðtÞ ¼ IðtÞ. This model serves to represent
classes of models involving numerical ODEs, which occur
in power systems, e.g., for systems biology [5,6] and power
systems [9,10].
The model manifolds for these three models are shown in

Fig. 1. They are all contained within the same hyper-
ellipsoid, as shown in Fig. 1(b), and so share the same
universal bound. The hyperribbon structure of the mani-
folds is accurately captured by the numerical bound from
Eq. (11), and the decay in successive manifold widths are
clearly captured by the Chebyshev rate from Eq. (8). These
three models were derived in very different contexts and
exhibit what would appear to be fundamentally different
properties, yet they all share a fundamental property: in all
cases, there is a structural hierarchy in their model mani-
folds as determined by a universal bound. Because of the
geometric decay in successive manifold widths, low-
dimensional representations (as determined by the longest
directions) capture the large variance in model predictions.
This is because they are all part of the same universality
class, that of sloppy models.
Our results explain a fundamental feature of the global

geometry of sloppy models, and establish a rigorous
framework that explains the role of model smoothness in
the observation of sloppiness. An important implication of
our results is that any model that satisfies the smoothness
condition in Eq. (10) is guaranteed to be bounded in a
manifold that exhibits this hierarchical structure. As such, it
serves as a natural test of sloppiness. The implications of
sharper bounds that depend on time points are the focus of
future work, as they open up far-ranging applications in
optimizing the experimental design to focus data collection
at time points that maximize information extraction
by minimizing the decay rate in hyperribbon widths.
Furthermore, sloppy features appear in probabilistic models
(such as the Ising model of atomic spins in statistical
physics and the dark energy cold dark matter ΛCDM
cosmological predictions of the cosmic microwave back-
ground), and so an extension of this approach is currently
underway to explain all general, probabilistic models.
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