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In Section I, we discuss how our bounds can be ex-
tended to models that are not analytically continuable,
but are k-times continuously differentiable on the interval
of approximation. In Section II, we give numerical results
for high-dimensional manifolds and discuss the behavior
of the singular values of the matrix V D associated with
truncated Taylor expansions. In Section III, we extend
the 1D models described in the main text to include two
experimental conditions, and show that their manifolds
exhibit a hyperribbon-like structure that is captured by
our bounds. Finally, in Section IV, we show how the vi-
sualizations of the model manifolds in the main text were
generated.

I. NON-ANALYTIC MODELS

In the main text, we considered models yθ(t),
t ∈ [−1, 1], that are continuously dependent on param-
eters θ = (θ1, . . . , θK) and analytic in an open neighbor-
hood of [−1, 1]. We bounded the model manifold Y of
model predictions by considering the truncated Cheby-
shev approximation

pN−1(t; θ) =

N−1∑
j=0

cj(θ)Tj(t), (1)

where Tj is the Chebyshev polynomial of degree j. When
yθ is not analytic on [−1, 1], the convergence of Eq. (1)
to yθ as N → ∞ is still controlled by the smoothness
of yθ. A standard result supplied in [1, Ch. 7] states
that if yθ has ν − 1 ≥ 0 derivatives that are absolutely
continuous on [−1, 1], with the νth derivative of total
bounded variation V <∞, then

(i) ‖yθ − pN−1‖∞ ≤
2V

πν
(N − 1− ν)−ν , N > ν + 1,

(ii) |cj | ≤
2V

π
(j − ν)−(ν+1), j ≥ ν + 1.

To bound P, the model manifold of pN−1(t), we
note that pN−1(t) = X c̃ for t = (t0, . . . , tN−1)T , where
X = JD, with Jij = Tj−1(ti−1), Djj = (j − 1− ν)−(ν+1)

for j ≥ ν + 2, with Djj = 1 otherwise. Likewise, we set

c̃ = (c̃0, . . . , c̃N−1)T , where c̃j = (j − ν)(ν+1)cj for j ≥
ν + 1, and c̃j = cj otherwise. The singular values of X
decay at, at least, an algebraic rate that increases with
ν (see Fig. 1). As in the analytic case, one can use X
as a linear map and construct a hyperellipsoid HY that
bounds the model manifold associated with yθ(t). Its
cross sections are controlled by the singular values of X
and typically shrink algebraically fast.

FIG. 1. The singular values σj(X), where X is described
in Section I, are plotted on a log scale against the index j
for three models of the form yθ(t) = f(θ)|t|ν : ν = 1 (orange),
ν = 3 (blue), and ν = 5 (purple). For simplicity, we assume
f is smooth and independent of t. In each case, the model
yθ is ν-times differentiable on [−1, 1]. The asymptotic decay
of the singular values (dotted black lines) is algebraic, with
stronger decay rates as ν becomes larger. This suggests that
continuously differentiable models have manifolds with (fat)
hyperribbon structures, since a ν-times differentiable model
yθ has a manifold enclosed in HY , with `j(HY ) ≈ 2rσj(X) for
some constant r > 0.

As a question of nomenclature, we suggest that an ob-
ject with an algebraic decay of widths should also be
described as a hyperribbon.
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II. NUMERICAL OBSERVATIONS FOR HIGH
DIMENSIONAL MANIFOLDS

In the main text, we bounded model predictions yθ(t)
evaluated at N points t = (t0, . . . , tN−1)T by approxi-
mating yθ with its degree ≤ N−1 truncated Taylor expan-
sion, which we denote by pN−1(t; θ). The manifold asso-
ciated with pN−1 is bounded within a hyperellipsoid HP .
The cross-sectional diameters of HP are defined in terms
of the singular values of the column-scaled Vandermonde
matrix X = V D, where (V D)ij = tj−1i−1R

−(j−1). Here, we
show how the bound on the hyperellipsoid was obtained,
and provide numerical observations for high dimensional
manifolds comparing the Chebyshev and monomial (Tay-
lor expansion) bases.

In deriving the bound for the monomial basis, we use
the bound on the derivatives from the main text,

N−1∑
k=0

(
Rk

k!

dkyθ(t)

dtk

)2

< C2N, (2)

where where C > 0, R > 1. It follows that
‖dkyθ/dtk/k!‖∞ < C

√
k + 1R−k for k ≥ 0. The Taylor

series for yθ expanded about any point t ∈ [−1, 1] has
a radius of convergence of at least R. One can use the
Cauchy integral formula to show that the assumptions in
Theorem 1 from the main text implies that the derivative
bound in Eq. (2) holds for some C and R dependent on
M and ρ. If t0 = 0 and R > 1, then we find by simple
estimates that

‖y − pN−1‖∞ ≤
C(NR−N +R)

(1−R)2
R−N+1. (3)

As with the Chebyshev coefficients, we define ãk = Rkak,
and express the polynomial predictions as P (θ) = V Dã,
where Vij = tj−1i−1 andD = diag(R0, . . . , R−(N−1)). While
explicit bounds on the singular values of V D can be
derived using its displacement structure [2], we require
bounds that are characterized by the analyticity of yθ.
For this reason, we instead apply Theorem 2 from the
main text to DV TV D, so that σj(V D) is bounded in
terms of R. By applying the constraint from Eq. (2)
to pN−1, we see that ‖ã‖2 < C

√
N . It follows that the

polynomial manifold P is bounded in a hyperellipsoid
HP , where for j ≥ 2,

`j(HP ) = 2C
√
Nσj(V D) ≤ CN√

R2 − 1
R−j+2, (4)

One can conclude the manifold associated with yθ(t),
is bounded in a hyperellipsoid HY with cross-sectional
widths obeying

`j(HY ) ≤ `j(HP ) + 2‖yθ − pN−1‖∞.

How do these bounds compare to the Chebyshev-based
results? The constraint in Eq. (2) implies that yθ is an-
alytic in the region R of the complex plane of distance
< R from [−1, 1]. It can be shown that yθ must also be

analytic and bounded by a function M(ζ) on any Bern-
stein ellipse Eρ(ζ) inR, with ρ(ζ) = ζ +

√
ζ2 + 1 [3]. The

largest such ellipse is given by ρmax = R+
√
R2 + 1, sug-

gesting that Chebyshev-based bounds can improve (4) by
nearly a factor of 2j . However, M(ζ) is unbounded as
ζ → R, so one must select 0 < ζ < R to minimize the
Chebyshev bound. Even when ζ is selected carefully, the
conversion from Eq. (2) to a constraint involving Eρ(ζ)
may introduce an unphysically large constant into the
bound.

One expects that the decay rate O(R−j) in Eq. (4) is
weak as an upper bound on the ordered widths of the
underlying hyperribbon Y. This is related to the fact
that unlike truncated Chebyshev expansions, truncated
Taylor polynomials do not converge to yθ at a rate that
is asymptotically optimal for polynomial approximants
(see [1, Ch. 12–16]).

However, we find that the singular values σj(V D) be-
have in a surprising way: For small to moderate j, the
magnitude of σj(V D) decays at a rate close to the limit
predicted by Chebyshev approximation: O(ρ−jmax), where
ρmax = R+

√
R2 + 1. It is only when j is sufficiently

large that σj(V D) appears to decay at the predicted rate
O(R−j). We do not yet fully understand why the singular
values of V D decay at two distinct rates, but speculate
that it may be related to the kink observed in error plots
for Clenshaw–Curtis quadrature on analytic functions [4].

Due to this phenomenon, we find that using σj(V D) di-
rectly results in good bounds on model prediction spaces
for low dimensions (the larger axes of the hyperellipsoid
HY ). At higher dimensions (shorter hyperellipsoid axes),
the Taylor-based bounds become suboptimal, and it is
beneficial to instead convert the constraint in (4) to one
involving Bernstein ellipses, and then use the Chebyshev-
based bounds from Eq. (8) in the main text. The conver-
sion of the constraint can result in bounds that are in-
flated by a large unphysical constant, but the decay rate
in the new bound, close to O(ρ−jmax), is nearly double the
rate O(R−j). When viewed together, the Chebyshev-
based bounds and numerical Taylor-based bounds de-
scribe the successive lengths of the model manifold across
two regimes (low vs. high dimension). We illustrate this
observation using a high-dimensional manifold (N = 100)
in Fig. 2.

III. TWO-DIMENSIONAL EXTENSION OF
MODEL PREDICTIONS

In this section, we extend the three models used in
the main text to the 2D setting. We do this by adding
an extra experimental condition, denoted by s, to each
model. In Fig. 3, we construct the model manifolds for
all three. Just as before, the model manifold is bounded
by a hyperellipsoid HY with a hierarchy of widths that
form a hyperribbon structure.

1. For exponentials, we consider temperature depen-
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FIG. 2. Bounds on the hyperellipsoid lengths `j(HP )
using truncated Taylor (dotted purple) and truncated Cheby-
shev (dotted blue) expansions are plotted on a log scale
against the dimension index j. These form a universal
bound on the ordered manifold widths of the prediction
space for models yθ that satisfy Eq. (4). In this exam-
ple, C = 1, R = 2, N = 100, and ρmax ≈ 4.2. The solid
lines show the actual computed hyperellipsoid cross-sectional
lengths (on a log scale) `j(HP ) = 2rσj(X), where X = V D
for the Taylor-based bounds, and Xij = Tj−1(ti−1)ρ

−(j−1)
max for

the Chebyshev-based bounds. The largest 40 Taylor-based
hyperellipsoid lengths decay at the rate predicted by the
Chebyshev-based bounds. Then, a kink occurs (indicated
by a black arrow) and the lengths decay at the rate pre-
dicted by the bound in Eq. (4). For the smaller dimensions,
the Chebyshev-based results produce tighter bounds. Model
manifold lengths outside of the shaded region cannot occur.

dent decay rates,

λα → λα exp (−Eαs) , (5)

y(t)→ y(t, s) =
∑
α

Aα exp (−λα exp(−Eαs)t) , (6)

where s = 1/T is inverse temperature.

2. For the model of reaction velocities, we consider
temperature dependent parameters,

θα → θα exp (−Eαs) , (7)

where again s = 1/T is inverse temperature.

3. Finally, for the infected population in an SIR model,
we introduce infection and recovery rates that vary
continuously with an infection parameter s by in-
troducing

β → β exp (−Eβs) , (8)

γ → γ exp (−Eγs) . (9)

In all cases, Eα, Eβ and Eγ represent activation ener-
gies in the respective models. Fig. 3 shows the model
manifolds of all three example models, illustrating their
hyperribbon structures. To generate these figures, we
consider models that obey an analyticity constraint anal-
ogous to Eq. (4). Specifically, we assume that for all
0 ≤ j+k ≤ N−1, the following condition holds uniformly
in θ for a given 2D model yθ(t, s):∑

j+k≤N−1

(
Rj+k

j!k!

dj+kyθ(t, s)

dtjdsk

)2

< C2n. (10)

where R > 1, C > 0 are constants, and n = N(N + 1)/2.
Under this constraint, it makes sense to bound the pre-
diction space using truncated Taylor expansions of total
degree ≤ N − 1 for small to moderate N (see the discus-
sion in Section II). This choice results in an n× n linear
system of the form yθ(t, s) ≈ Xã, where X is a column-
scaled 2D Vandermonde matrix, and ‖ã‖2 < C

√
n. The

structure of X can be exploited to bound its singular
values explicitly [5]. Alternatively, one can apply the 2D
analogue to Theorem 2 from the main text to find explicit
bounds in terms of R. In Fig. 3, we simply use the re-
lation `j(HY ) = `j(HP ) + 2‖yθ − pN−1‖∞, and compute
`j(HP ) = 2rσj(X) numerically.

We compare this with the Chebyshev-based bound (es-
tablished in the following section),

`j(HP ) ≤
√
N

3
√
C2

2
nρ
−
⌊√

8(j−1)+1/2−1/2
⌋
, (11)

where ρ is a characteristic length related to the ana-
lyticity of the model, C2 = (1 + ρ−2 + ρ−4)/(1− ρ−2)3,
and b · c represents the floor function. This bound cap-
tures the subgeometric decay rate of the model manifold
lengths for all three examples, illustrated through the
dashed line in Fig. 3.

A. Bounds on the 2D Extension

We can again use polynomial approximation to
constrain the geometry of the resulting model man-
ifold Y. In this case, we assume without loss
of generality that (t, s) ∈ [−1, 1]2, and we assume
yθ can be expressed as a 2D Chebyshev ex-
pansion: yθ(t, s) =

∑∞
j=0

∑∞
k=0 cjk(θ)Tjk(t, s), where

Tjk(t, s) = Tj(t)Tk(s). The following 2D polynomial of
total degree N−1 approximates yθ:

pN−1(t, s; θ) =
∑

0≤j+k≤N−1

cjk(θ)Tjk(t, s). (12)

Let ρ > 1 and M > 0 be constants. For all fixed choices
of s = s∗, suppose that the 1D function of t, yθ(t, s

∗), is
analytic in t and bounded ≤M uniformly with respect to
both s and θ, and that an analogous condition holds for
yθ(s, t

∗). A result similar to Theorem 1 from the main
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$\mathcal{O}\left(\rho^{-\left \lfloor  \sqrt{8(j-1)+1} /2  -1/2\right \rfloor}\right)$

(a)

(b)

FIG. 3. Model manifold of three models with two exper-
imental conditions: (1) exponential decay with temperature
dependent decay rates, (2) reaction velocities of an enzyme-
catalysed reaction with temperature dependent reaction rates,
and (3) the infected population in an SIR model with infection
and recovery rates that vary with parameter s. (a) The mod-
els are evaluated at 25 equally spaced points (ti, si) ∈ [0, 1]2

(shifted and rescaled from the interval [−1, 1]2) with different
model parameters. All models obey the analyticity condition
in Eq. (10) with C=1 and R = 2. (b) The explicit lengths of
the three models are shown along the twenty-five axes of the
hyperellipsoid HP . The upper bounds on the possible lengths
(black dots) are given by `j(HP ) = 2C

√
nσj(X), where X

is described in Section III. They exhibit subgeometric decay,
with a rate that is captured by the bound in Eq. (15) (dashed
line) with ρ ≈ 4.1. The hierarchy of widths coming from the
explicit bounds suggests that the manifolds are hyperribbons.

text can be proven by adapting the ideas in [1, Ch. 8] to
the 2D setting. Specifically, we have that

(i) ‖y − pN−1‖∞ ≤ 4MNC1ρ
−N+1, (13)

(ii) |cjk(θ)| ≤ 4Mρ−(j+k), (14)

where C1 = (2ρ− 1)/(1− ρ)2.
As in the 1D case, we study the model mani-

fold P associated with pN−1 as an approximation to
Y, the manifold for yθ. We parameterize P us-
ing a vector of blocks, P (θ) = (B0, . . . , BN−1)T , where
Bj = (P0j , P1(j−1), . . . , Pj0) and Pjk = pN−1(tj , sk; θ).
Since each block Bj has j+1 entries, P (θ) is of length

n = N(N+1)/2. Corresponding vectors of sample loca-
tions t and s are defined so that P (θ) = pN−1(t, s; θ).

As before, we exploit the decay of the bounds in
Eq. (14) to show that P lies in the range of a matrix
with strongly decaying singular values. To see this, define
c̃ as an appropriately ordered n × 1 vector of the scaled
coefficients c̃jk = ρ−(j+k)cjk, and form the linear map
P (θ) = X c̃. Here, X = [XB0 | · · · |XBN−1 ], where XBj

is a block of j+1 columns scaled by ρ−j . Specifically,
XBj = ρ−j [T0(t)Tj(s) |T1(t)Tj−1(s) | · · · |Tj(t)T0(s)].
Since c̃ is constrained to lie in an n-sphere of radius
4M
√
n, the manifold P is contained in a hyperellipsoid

HP with cross-sectional widths characterized by the
singular values of X. One can show that the singular
values of X must decay at, at least, a subgeometric rate.
An argument similar to the one used in Theorem 2 from
the main text shows that for 2 ≤ j ≤ n,

σj(X) ≤ 3
√
C2

2
nρ
−
⌊√

8(j−1)+1/2−1/2
⌋
, (15)

where C2 = (1 + ρ−2 + ρ−4)/(1− ρ−2)3 and b · c repre-
sents the floor function. One can use HP and Eq. (13) to
explicitly construct a hyperellipsoid HY that must con-
tain Y. We expand our three previous models to the 2D
setting in the supplementary materials to illustrate our
bounds. While our results are stated in terms of Cheby-
shev expansions, a similar argument can be made using
2D Taylor expansions, and all of these ideas extend nat-
urally to the multidimensional case.

IV. GENERATING MODEL MANIFOLDS

Here, we provide a detailed description of how data
for the 1D models used in the main text were generated.
Data for the 2D models in Section III were computed in
a similar way. In order to generate the model manifolds,
a Monte Carlo sampling was performed on the parameter
space of all three models. The model predictions for the
randomly selected parameters were accepted or rejected
based on whether or not they satisfied the constraint
on the derivative from Eq. (4), where we set C = 1 and
R = 2. Since we consider eleven equally spaced points in
the main manuscript, in all example models the deriva-
tive constraint was applied up to the eleventh derivative.

1. For exponentials, the model is of the form

yθ(t) =

10∑
α=0

Aα exp (−λαt) , (16)

and the derivative constraint from Eq. (4) can be
expressed as

N−1∑
k=0

(
10∑
α=0

RkAα
k!

(−λα)k exp (−λαt)

)2

< C2N (17)
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for all −1 ≤ t ≤ 1. From a Monte Carlo sampling,
42,000 valid samples were randomly generated. A
histogram of parameters used to generate the model
manifold is shown in Fig. 4(a).

2. The model of reaction velocities is given by

yθ(t) =
θ1t

2 + θ2t

t2 + θ3t+ θ4
, (18)

where t is the substrate concentration. The deriva-
tive constraint can be expressed as

N∑
k=1

(
Rk

k!

dk

dtk

(
θ1t

2 + θ2t

t2 + θ3t+ θ4

))2

< C2N, (19)

for all −1 < t < 1. We generated 24,000 valid
parameter combinations, and a histogram of the
different parameter values is shown in Fig. 4(b).

3. Finally, for the infected population in an SIR model,
the number of people susceptible (S), infected (I),
and recovered (R) are determined through three
coupled differential equations:

(i) Ṡ = −β IS

Ntot
,

(ii) İ = β
IS

Ntot
− γI,

(iii) Ṙ = γI,

where β is the infection rate, γ is the recovery
rate, and Ntot is the total size of the popula-
tion. If we let the model predictions be the in-
fected population, then we have yθ(t) = I(t). To
find the kth derivative of such a model, we note
that Ṡ = f1(S, I) and İ = g1(S, I). The subsequent
derivatives can therefore be found recursively, by
ÿθ = Ï = dg1

dS Ṡ + dg1
dI İ = g2(S, I) and so on. From

a Monte Carlo sampling, we obtained 20,000 valid
parameter combinations. A histogram of parame-
ter values used to generate the model manifold is
shown in Fig. 4(c).

In all three models, the smallest physically meaning-
ful prediction is yθ(t) = 0. For exponentials and the
SIR model, the largest physically meaningful prediction
allowed by Eq. (4) is yθ(t) = C

√
N , and so the longest

manifold distance possible is CN . With this sampling
method, we obtained manifold lengths that are within
1.5% of this maximally allowed distance, and so while
more refined sampling methods could be used to resolve
the manifold boundaries, they are unnecessary for our
purposes.

Once a sampling of the possible parameter combina-
tions is obtained for a model, we visualize it. Each
parameter combination is evaluated at eleven equally
spaced points. The space spanned by the model pre-
dictions at these points forms the model manifold Y.

(a)

(b)

(c)

FIG. 4. Histograms of valid parameter values used to
generate the model manifolds. In all the models, a Monte
Carlo sampling was performed, with parameters accepted or
rejected based on whether or not they satisfied the derivative
condition from Eq. (4). (a) Parameter values for exponen-
tials, showing the distributions for the amplitudes Aα and
decay rates λα. (b) Parameter values for the reaction veloci-
ties, for each θ1, θ2, θ3 and θ4. (c) Parameter values for the
SIR epidemiology model, showing the distribution of infection
rates β/Ntot, recovery rates γ and initial infected population.

To visualize Y, it is rotated into the basis given by
the hyperellpsoid axes constructed from the space of al-
lowed polynomials predictions, P. Let {φj}∞j=0 be a com-
plete polynomial basis, and let P (b) = (P0, . . . , PN−1)
define the model manifold P of pN−1(t) =

∑N−1
j=0 bjφj(t).

Polynomial predictions are given by Pk = pN−1(tk).
By definition, P (b) = Xb, where Xij = φj−1(ti−1) and
b = (b0, . . . , bN−1)T . To find the rotation matrix used to
visualize the model manifold Y, we perform a singular
value decomposition on X,

X = UΣV T , (20)

to extract the rotation matrix U . The data points on
the model manifold are then rotated using this matrix,
and visualized in Fig. I(b) in the main text where we set
X = V D to be the column-scaled Vandermonde matrix.
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