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Dislocations play an important role in the deformation behaviors of metals.

They not only interact via long-range elastic stress, but also interact with short-

range interactions; they annihilate, tangle, get stuck, and unstuck. These inter-

action between dislocations lead to interesting dislocation wall formation at the

mesoscales. A recently developed continuum dislocation dynamics model that

shows dislocation wall structures, is presented and explored in two and three

dimensions. We discuss both mathematical and numerical aspects of simulat-

ing the model; the validity of our methods are explored and we show that the

model has physical analogies to turbulence. We explain why and how the walls

are formed in our continuum dislocation dynamics model. We propose modifi-

cations for more traditional slip dynamical laws, which lead them to form dislo-

cation wall structures. Furthermore, we argue that defect physics may generate

more singular structures than the density jumps that have traditionally been ob-

served within fluid dynamics, and that development and enhancement of math-

ematical and numerical schemes will be necessary to incorporate the microscale

defect physics that ought to determine the evolution of the singularity (replac-

ing traditional entropy conditions).
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CHAPTER 1

INTRODUCTION

1.1 Overview of the thesis

The prehistory of mankind experienced distinct “age” transitions from the stone

age to the bronze age when Homo sapiens began mastering the art of manipulat-

ing copper and bronze. Subsequent transition took place from the bronze age

to the iron age, and from then until the late 20th century the ability to obtain,

forge, and utilize metal was the most important part of technology. It has be-

come an overwhelmingly essential possession of the modern society; now we

can not live or survive without all the metal tools, machines, and vehicles that

form the infrastructure, structures, and machinery we rely on.

The history of metallurgy is not short – one could argue that it is one of

the oldest engineering discipline – and tremendous amount of knowledge has

been accumulated on how metals behave when they are cast, forged, rolled, and

mixed(or alloyed). But our fundamental understanding of the whys and hows

of material characteristics has remained primitive due to the limitations of our

experimental and numerical tools. During the last century, however, techno-

logical advances in all fronts has led to exhilarating discoveries in the field of

metallurgy.

New experimental tools provide eyes into smaller scales, reaching microme-

ters and nanometers. X-ray diffraction analysis in various forms led to studies of

texture (crystal orientation distributions) and internal stresses, while the trans-

mission electron microscope (TEM) allowed a microscopic view of a variety of
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defects in crystalline structures.

Defects of several different forms are of great interest because of their effects

on hardness and yield strength. Effects of solute atoms (precipitates) and va-

cancies are studied extensively in the field, but of primary importance are the

dislocations. A dislocation is a line-like defect in a crystal; the mismatch in crys-

talline order at the “end of an extra inserted plane”. Dislocations are crucial for

plasticity. Crystalline metals have very strong bonds and deforming a perfect

crystal far enough to break bonds would require an enormous stress. Not so

when dislocations are present: crystals use their dislocation defects to deform

plastically, by moving the dislocations.

Through the use of experimental techniques (TEM and EBSD) and theoret-

ical and computational studies (elasticity, first principles and atomistic simula-

tions), the properties of a single dislocation and the interactions of several dislo-

cations have been understood in detail. For examples, the barriers for a disloca-

tion to move (the Peierls barrier), how dislocation junctions behave, the speed of

dislocation motion, and so forth. However, traditional macroscopic crystal plas-

ticity, and augmented gradient theories developed to apply at smaller length

scales, are yet far from the atomic and few-dislocation scales that are under-

stood microscopically using these experiments and theoretical studies. Various

attempts have been made to bridge the scales, but neither theory nor experi-

ment has been able to convincingly provide a solid bridge across the micron

scale, which is the focus of this thesis.

One of the most interesting physics that happen in the intermediate (meso)

scales is the formation and evolution of dislocation structures. Dislocations are

known to not only nucleate and glide, but also annihilate, form junctions (tan-
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gle), cross-slip, climb, and get stuck (and unstuck) for various other reasons.

These complex short-range interactions, in addition to the long range interac-

tion between dislocations through stress, conspire to produce dislocation pat-

terning and dislocation wall structures.

Dislocation wall structures have also been an area with many enlightening

discoveries, with models using phase field [40, 87, 52, 41], Potts models [15, 83],

level-set methods [66], and front-tracking methods. However, these mod-

els are focused on studying the behaviors of dislocation walls whose existence

and properties are presumed known from extensive experimental and numeri-

cal studies. These methods can not answer the questions of why and how the

dislocations structures form and evolve. On the other hand, coarse grained con-

tinuum theories of the microscopics have yet to be fully successful, with many

remaining difficulties.

In this thesis, we focus on a particular continuum model of dislocation dy-

namics that exhibits dislocation wall formation [49, 16]. The model has its own

share of subtle issues, however, and we will focus our discussion on justifying

our methods for numerically solving and understanding the model. We explore

and illustrate the physics behind wall formation observed in our model; we

provide a generic mechanism which could be responsible for dislocation wall

formation; and we argue that existing numerical methods need to expand their

horizons, allowing for singularity evolution laws to be incorporated based on

the physical properties.
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1.2 Chapters of the thesis

We start in chapter 2 by introducing our continuum dislocation dynamics

model. We find that dislocation wall structures are formed in 2D simulations,

and with glide-only dynamics they exhibit fractal self-similar patterns. We com-

pare our results to various TEM measurements analyzed with different models

and methods, and propose that self-similar correlated dislocation patterns ana-

lyzed with fractal analysis and scaling need not disagree.

Chapter 3 focuses on explaining how the simulations of our continuum dis-

location dynamics are analogous to those of turbulence. Analogies are drawn

based on their numerical behaviors in the limit of infinitely fine mesh and low

viscosity. We propose that, as in the case of turbulence, the limit of vanishing

viscosity leads naturally to spatio-temporal nonconvergence. Nevertheless, also

as in turbulence, we argue that successful numerical methods should provide

statistical behaviors that are consistent and convergent.

In chapter 4 we explore in detail how we perform simulations of the con-

tinuum dislocation dynamics model. The applicability of existing methods is

already a concern for this problem, exhibiting several issues: nonlocality, ques-

tionable hyperbolicity, the appearance of δ-shock, and spatio-temporal noncon-

vergence. We discuss each of these concerns and argue that the simulations

represent the physical behavior of the equation faithfully. Detailed analysis that

were performed in the process of studying the equation are presented in this

chapter; sometimes forming the basis of more speculative work described in

later chapters. Particularly, questions we addressed in checking the validity of

the numerical methods – self-skepticism prompted by the turbulent and singu-
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lar behaviors – are addressed here in detail.

In chapters 5 and 6 we discuss the generic ways δ-shocks walls can appear

in systems of conservation laws. We show in chapter 5 that existing plastic-

ity models can be modified in natural ways to exhibit wall formation. We ar-

gue in chapter 6 that the physics of the singularities may not be derivable as

a ’weak limit’ of the continuum equations, and that prescribing the singular-

ities’ dynamics from microscopic considerations demands departure from the

traditional notion of solutions for hyperbolic conservation laws.

Lastly, we will describe how the simulations performed in this thesis have

been accelerated greatly by the use of massively-parallel GPU computing tech-

nology in appendix A.

1.3 Choosing a method, choosing a model

This thesis focuses mainly on implementation and validation of the numerical

methods, and while it is argued that the numerical methods works well and

gives consistent and physically meaningful solutions, we are still left with ques-

tions. Particularly, we show that solving the equations in different form leads

to different solutions (Chapter 6 and Appendix B), although qualitatively they

might be the same. We also argue that depending on the microphysics of the

singularities, new numerical methods may be necessary to cope with the fact

that the “viscosity solutions” are not the physical solutions in chapter 6. Lastly,

while our continuum dislocation dynamics simulations do provide a theoretical

view of cell wall formation and evolution, it remains to be seen whether it is the

only explanation (mechanism) of the behavior, or if it is physically relevant at
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all.

How do we choose a method? How do we determine whether the method

and/or the model is suitable and physical? This question is pertinent to any

theoretical and numerical methods applied to any model intended to describe a

physical phenomenon; traditionally, the answer to this is to confirm the predic-

tions of the model and the method with experiments. This, however, is only in

theory a good answer, as it still remains to question what experiments does one

compare to, and what predictions do indeed provide validations.

For example, many continuum theories of dislocations are augmented with

constitutive relations; these additional constraints in essence provide coarse-

grained effective terms to the dynamics so as to exhibit “correct” physical be-

havior, such as the stress-train curves and yield strength. It must be asked,

obviously, whether the model and the method is indeed capable of replicating

targeted physical property; it would simply be a bad model (or method) if it did

not do so. However, it must be noted that the model (or method) must then be

validated for other physical properties, for applications with different targets.

What physical properties are we interested in? Are the models and the meth-

ods we used faithfully reproducing the physics of interest?

As we have asserted throughout, dislocations exhibit complex collective be-

haviors such as dislocation cell walls. The sequence of our contribution in con-

tinuum dislocation dynamics (Refs. [50, 51, 17] and Chapters 2, 3, 4, and 5) have

focused on the behaviors of dislocation wall structures.

Unfortunately, what dislocation cell walls do and how they form have not

been experimentally observed. Comparison of our 2D simulations to TEM mi-
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crographs (as studied in Chapter 2) hints that the model may indeed be moving

in the correct direction, but there are yet too many properties to be explained.

Rome was not built in a day, however, and a roadmap of models could guide us

through the steps as we build on previous work.

As physicists, we are more intrigued by universal fundamental behaviors.

Also, models and theories based on microscopic physics, rather than phe-

nomenology, are preferred since we are interested in the phenomena them-

selves. However, it is also clear that real materials and real systems ought to

be explained by the models, and some higher-order theories that correct for the

real world deviations from the minimalistic theory are exceedingly valuable as

well. This flexibility in the complexity of the model allows for generic appli-

cability and usability of the models, as it could be used from understanding

generic behaviors to predicting material specific properties.
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CHAPTER 2

BENDING CRYSTALS: EMERGENCE OF FRACTAL DISLOCATION

STRUCTURES1

2.1 Introduction

Structural engineering materials have a bewildering variety of microstructures,

which are often controlled by deformation and annealing during the formation

process. An imposed distortion generates a complex morphology even for a

single crystal of a pure material – polycrystalline grains form at high tempera-

ture where dislocation climb allows for polygonization, cell structures form at

low temperatures when climb is forbidden. Cell walls (Fig. 2.1c,d) are distinct

from grain boundaries in that they have smaller misorientations, different ori-

gins, are morphologically fuzzier, and the cells refine (get smaller) under shear.

Experiments differ in characterizing the cell structures; some show convincing

evidence of fractality [61, 77, 29] with structure on all length scales (Fig. 2.1c),

while others show structures with a single characteristic scale setting their cell

size and cell wall misorientation distributions [36, 34, 35] (Fig. 2.1d).

Dislocation avalanches [58], size-dependent hardness (smaller is stronger) [84]

and cellular structures [61, 34] all emerge from collective dislocation interactions

on the micron scale. We expect that these mesoscale phenomena should be cap-

tured by an appropriate continuum theory of dislocation dynamics. Computa-

tionally, such a theory is crucial for multiscale modeling, as atomistic and dis-

crete dislocation simulations are challenging on these scales of length and strain.

1This chapter has been published in Physical Review Letters [16]. The content of this chapter
has also been incorporated in Yong Chen’s thesis.
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Here we present a minimal model for cellular structures, which eventually can

be extended to include the pinning and entanglement needed for avalanches

and hardness, and the slip systems and statistically stored dislocations needed

for realistic descriptions of texture evolution and cross-slip [53]. Our model

gives the elegant, continuum explanation for the formation and evolution of cel-

lular dislocation structures. It exhibits both the experimentally observed fractal

structures and scaling collapses hitherto thought incompatible. Finally, it pro-

vides the fundamental distinction between cell walls and grain boundaries; cell

walls are intrinsically branched in a fractal fashion.

Within a continuum theory of dislocation dynamics [74, 49], incorporating

only elastic self-interactions with a minimally modified gradient dynamics, we

study the relaxation of a smoothly deformed crystal and its subsequent evolu-

tion under external strain (Fig. 2.1a and b). When climb is allowed, we find the

distortion neatly evolves into a stress-free collection of grain boundaries. When

climb is forbidden, cell wall structures evolve with power-law correlations and

self-similarity – providing a clear morphological distinction between cell walls

and grain boundaries, a tangible model for the experimentally observed fractal

structures [61, 77, 29], and an alternative to those that predict microstructure

without a wide range of scales [65]. The resulting morphology, however, is

self-similar only after rescaling both space and amplitude. Performing the exper-

imentalist’s analysis of the misorientations and cell size distributions [36, 34, 35]

yields good agreement with the observed scaling form (albeit with significantly

different scaling functions and exponents). By directly exhibiting key features of

the emergent experimental behavior in a continuum, deterministic dislocation

density theory, our simulations pose a challenge to theories based on stochas-

ticity in the continuum laws [29, 27] or in the splittings and rotations of the

9



a b

c d

Figure 2.1: Theoretical and experimental dislocation fractal morphologies.
Top: Simulated fractal cell wall pattern after uniaxial strain of
ǫzz = 4β0. (a) Dislocation density plot; (b) Local orientation map.
Bottom: TEM micrographs taken from: (c) a Cu single crystal [61]
after [100] tensile deformation to a stress of 75.6 MPa and (d) an Al
single crystal following compression to ǫ = 0.6 [34], respectively.
Gray scales have been adjusted to facilitate visual comparisons.
Note the striking morphological similarity between theory and
experiment.

macroscopic cells [68, 50]. Can these stochastic theories describe our chaotic

dynamics after coarse graining?

10



2.2 Minimalistic isotropic continuum dislocation dynamics

Our order parameter is the plastic distortion tensor βP. Together with the re-

sulting elastic distortion βE derivable from βP via the long-range fields of the

dislocations [49], βP both gives the deformation u of the material (through

∂iu j = β
E
i j + β

P
i j) and gives a three-index variant of the Nye dislocation density

tensor [64] ρi jk(x) = ∂ jβ
P
ik − ∂iβ

P
jk (defining the flux of dislocations with Burgers

vector along the coordinate axis êk through the infinitesimal surface element

along êi and ê j). β
P thus fully specifies the dislocation wall morphologies, the

crystal rotation (the Rodrigues vector Λ giving the axis and angle of rotation),

and the stress field σ (the external load plus the long-range stresses from the

dislocations, given by a kernel [49, 62] σi j(r) = σext
i j +

∫
Ki jkl(r − r′)ρkl(r′) dr′).

Following Roy and Acharya [74], we assume the flow of ρi jk(x) is character-

ized by a single velocity v(x). Allowing both climb and glide, we can take the

velocity v to be proportional to the Peach-Kohler force F on the entire popu-

lation of dislocations times a mobility D(|ρ|) va = D(|ρ|)Fa = D(|ρ|)ρastσst, where

σ is the stress; we then define ∂βP
i j/∂t = Ji j = vaρai j. (This provides the same

equation of motion derived later by Limkumnerd and Sethna [49].) To remove

dislocation climb (mass transport via frozen-out vacancy diffusion), we must

set the trace of the volume change Jii = 0, suggesting a dynamics which moves

only the traceless portion of the dislocation density:

∂βP
i j

∂t
= Ji j = vaρai j −

1
3
δi jvaρakk. (2.1)

In this case, to guarantee that energy monotonically decreases we are led to

choose the velocity based on the Peach-Kohler force on this traceless part

va = D(|ρ|)(ρast − δstρabb/3)σst, making the rate of change of the energy density

the negative of a perfect square [17]. (This differs from our earlier glide-only

11
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Figure 2.2: Scaling of the correlation function (10242 simulations). The trace of
the orientation-orientation correlation function
CΛi j(R) = 〈(Λi(x) − Λi(x + r))(Λ j(x) − Λ j(x + r))〉 is averaged over all
pairs of points at distance |r| = R. Notice that the simulation
allowing climb has CΛii (R) ∼ R as expected for non-fractal grain
boundaries. Notice that the glide-only simulations show
CΛii (R) ∼ R2−η with η ≈ 0.5, indicating a fractal, self-similar cell
structure, albeit cut off by lattice and system size effects.

formulation [49].) To ensure that the velocity is proportional to the force per

dislocation, we choose D(|ρ|) = 1/|ρ| = 1/
√
ρi jkρi jk/2. Our theory does not in-

corporate effects of disorder, dislocation pinning, entanglement, glide planes,

crystalline anisotropy, or geometrically unnecessary dislocations. It is designed

to provide the simplest framework for understanding dislocation morphologies

on this mesoscale.
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a

d

b

c

Figure 2.3: Self-similarity in real space. Each frame represents the lower
left-hand quarter of the previous frame. Frame (a) is a 1024× 1024
simulation; (b), (c), and (d) are thus of length L = 512, 256, and 128.
All are rescaled in amplitude by (L/L0)−η/2 with η = 0.5 (see Fig. 2.2
and Table 2.1). The scale is logarithmic with a range of almost 107.
Notice the statistical self-similarity. Other regions, when expanded,
can show larger differences between scales, reflecting the
macroscopic inhomogeneity of the dislocation density.

2.3 Numerical method and turbulent behavior

Our simulations show a close analogy to those of turbulent flows. As in three-

dimensional turbulence, defect structures mediate intermittent transfer of mor-

13



Table 2.1: Critical exponents measured for different correlation functions. GO:
Glide Only; CG: Climb&Glide; ST Scaling Theory [17].

Correlation functions GO CG ST
CΛii (r) = 〈∑i[Λi(r) − Λi(0)]2〉 1.5± 0.1 1.1± 0.1 2− η
Cρ(r) = 〈[ρi j(0)ρi j(r)]〉 0.4± 0.1 0.9± 0.3 η

phology to short length scales. (Unlike two-dimensional turbulence, we find

no evidence of an inverse cascade – our simulations develop structure only

at scales less than or equal to the initial correlation length of the deformation

field.) As conjectured [70] for the infinite-Reynolds number Euler equations,

our simulations develop singularities in finite time [49]. It is unclear whether

our physically motivated equations have weak solutions; our simulations ex-

hibit statistical convergence, but the solutions continue to depend on the lattice

cutoff (or on the magnitude of the artificial diffusion added to remove lattice

effects) in the continuum limit (See chapters 4 and 3). Since our simulations ex-

hibit structure down to the smallest scales, we conjecture that this is a kind of

sensitive dependence on initial conditions – but here amplified not by passage

of time, but by passage through length scales. Since the physical system is cut

off by the atomic scale, we may proceed even though our equations are in some

sense unrenormalizable in the ultraviolet.

We simulate systems of spatial extent L in two dimensions with periodic

boundary conditions; our deformations, rotations, strains, and dislocations are

fully three-dimensional. The initial plastic distortion field βP is a Gaussian ran-

dom field with decay length L/5 and initial amplitude β0 = 1. We apply a second

order central upwind scheme designed for Hamilton-Jacobi equations [43] on a

finite difference grid. The unstrained simulations presented are at late time,

where the elastic energy density is small and smoothly decreasing to zero, (see

14



Supplementary Movies 1 and 2 2). The strained simulations in Fig. 2.4, (see Sup-

plementary Movie 3 2), have uniaxial strain in the out-of-plane direction, which

is increased by adjusting the external stress σzz(t) to hold ǫ(t) fixed. The strain

rate is ǫ̇ = 0.05β2
0.

2.4 Correlation functions and self-similarity

Figure 2.2 shows the orientation-orientation correlation function. Here we see

that the cellular (climb-free) structures have non-trivial power-law scaling, but

we see non-fractal behavior in the grain boundary morphology allowing climb.

In Supplementary Movie 2 2, the complex structure of cell walls (climb-free)

shows a few primary large-angle boundaries with high dislocation density and

many low-angle sub-boundaries, leading to fuzzy cell walls that are qualita-

tively different from the grain boundaries (climb & glide, seen in Supplemen-

tary Movie 1 2). Table 2.1 includes also the correlation function of the total

dislocation density; one can show [17], if the elastic strain is zero [50], that

Cρ(r) = −∂2CΛii (r) − ∂i∂kCΛik(r), so CΛi j(r) ∼ |r|α tells us that Cρ(r) ∼ |r|α−2, implying

the exponent relation α = 2−η in the last column of Table 2.1. The scaling for the

correlation function for the total plastic distortion βP is not as convincing [17].

Both are consistent with a renormalization-group transformation that rescales

the dislocation density by a factor of b−η/2 when it rescales the length scale by

a factor of b. Figure 2.3 gives a real-space renormalization-group illustration of

this self-similarity; the cell walls form a self-similar, hierarchical structure.

2http://link.aps.org/supplemental/10.1103/PhysRevLett.105.105501.
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2.5 Comparison to experiments

Can we reproduce the experimental fractal characterization of cell boundaries?

Box-counting applied to the dislocation density (as in Fig. 2.1a) gives dimen-

sions that depend strongly on the amplitude cutoff (the dislocation density is

self-similar, not a simple fractal). If we first decompose our simulation into cells

as in Fig. 2.4b, and apply box-counting to the resulting cell boundaries, we ob-

tain a fractal dimension of around 1.5 over about a decade [17], compared to the

experimental values of 1.64− 1.79 [29]. Such a measurement, however, ignores

the important variation of wall misorientations with scale (capturing the spatial

scaling but missing the amplitude scaling).

Can we reconcile our self-similar cell morphologies with the experimental

analyses of Hughes and collaborators [36, 34, 35]? Using our boundary-pruning

algorithm to identify cell walls, Fig. 2.4c and d show the cell size and misorien-

tation distributions extracted from an ensemble of initial conditions. The mis-

orientation distribution we find is clearly more scale free (power-law) than that

seen experimentally. Under external strain, we do observe the experimental cell

structure refinement (Fig. 2.4b), and we find the experimental scaling collapse of

the cell-size and misorientation distributions (Fig. 2.4c and d) and the observed

power-law scaling of the mean size and angle with external strain (Fig. 2.4e

and f), albeit with different scaling functions and power-laws than those seen in

experiments [36, 34, 35].

Because we ignore slip systems, spatial anisotropy, and immobile and geo-

metrically unnecessary dislocations, we cannot pretend to reflect real materials.

But by distilling these features out of the analysis, we have perhaps elucidated
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the fundamental differences between cell walls and grain boundaries, and pro-

vided a new example of non-equilibrium scale invariance.
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Figure 2.4: Cellular structures under strain: size and misorientation
distributions. (a) An unstrained state formed by relaxing a random
deformation, decomposed into cells determined by our boundary
pruning method: we systematically remove boundaries in order of
their average misorientation angle, and then prune cells based on
their perimeter/area ratio and misorientation angle (see
Supplementary Movie 4 a). Boundaries below a threshold
root-mean-square misorientation θc = 0.015β0 are removed. (b) The
final state after a strain of ǫzz = 4β0 is applied; notice the cell
refinement to shorter length scales. (c) The cell size distribution
(square root of area), scaled by the mean cell size and weighted by
the area, at various external strains. (d) The misorientation angle
distribution, weighted by cell boundary length, scaled by the mean.
For each curve, data starts at θc. This distribution appears to be
closer to a power-law (inset) than the experimental distributions
(solid curves [36, 34, 35]). (e,f) Mean cell size Dav and misorientation
angle θav as functions of external strain. We find these same
power-laws Dav ∼ ǫ−0.26±0.14 and θav ∼ ǫ0.26±0.04, with errors reflecting
over a range of θc and for a variety of pruning algorithms and
weighting functions. Notice that the product Davθav is
approximately constant, as observed experimentally [36]. The
power-law dependence ǫ0.3 is weaker than the powers ǫ1/2 and ǫ2/3

observed experimentally for incidental dislocation boundaries and
geometrically necessary boundaries, respectively.

ahttp://link.aps.org/supplemental/10.1103/PhysRevLett.105.105501.
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CHAPTER 3

CONTINUUM DISLOCATION DYNAMICS ANALOGIES TO

TURBULENCE1

3.1 Introduction

From horseshoes and knives to bridges and aircrafts, mankind has spent five

millennia studying how the structural properties of metals depend not only on

their constituents, but also how the atoms are arranged and rearranged as met-

als are cast, hammered, rolled, and bent into place. A key part of the physics

of this plastic distortion is played by the motion of intrinsic line defects called

dislocations, and how they move and rearrange to allow the crystal to change

shape.

Here, we describe the intriguing analogies we found between our model of

plastic deformation in crystals and turbulence in fluids. Studying this model led

us to remarkable explanations of existing experiments and let us predict fractal

dislocation pattern formation. The challenges we encountered resemble those

in turbulence, which we describe here with a comparison to the Rayleigh-Taylor

instability.

For brevity, we offer a minimal problem description that ignores many

important features of plastic deformation of crystals, including yield stress,

work hardening, dislocation entanglement, and dependence on material prop-

erties [62]. We focus on the complex cellular structures that develop in deformed

crystals, which appear to be fractal in some experiments [29]. These fractal

1This chapter has been published in Computing in Science and Engineering [18].
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(a) Continuum Dislocation Dynamics (b) Turbulence

Figure 3.1: Comparison of our continuum dislocation dynamics (CDD) with
turbulence. (a) Dislocation density profile as it evolves from a
smooth random initial condition. The structures form fractal cell
wall patterns. Dark regions represent high dislocation density. (b)
Rayleigh-Taylor instability at a late time. The fluid (air) with two
layers of different densities mix under the effect of gravity. The
emerging flows exhibit complex swirling turbulent patterns. The
color represents density (red for high, blue for low).

structures are reproduced by our continuum dislocation dynamics (CDD) [16]

theory (see Figure 3.1a).

Not only do the resulting patterns match the experimental ones, but the the-

ory also has rich dynamics, akin to turbulence. This raises a question: Is the

dislocation flow turbulent? Here, we focus on exploring this question by build-

ing analogies to an explicit turbulence example: the Rayleigh-Taylor instability.

As we describe, our theory displays similar conceptual and computational chal-

lenges as does this example, which reassures us that we’re on firm ground.
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3.2 Model

3.2.1 Continuum Dislocation Dynamics

This CDD model [49, 1, 16] provides a deterministic explanation for the emer-

gence of fractal wall patterns [49, 16] in mesoscale plasticity. The crystal’s state

is described by the deformation-mediating dislocation density ̺i j – where i de-

notes the direction of the dislocation lines and j their Burgers vectors [62] – and

our dynamical evolution moves this density with a local velocity Vℓ, yielding a

partial differential equation (PDE):

∂t̺i j − εimn∂m(εnℓkVℓ̺k j) = ν∂
4̺i j (3.1)

Here Vℓ is proportional to the net force on it (overdamped motion), coming from

the other dislocations and the external stress. That is,

Vℓ =
D
|̺|σmnǫℓmk̺kn

where σ is the local stress tensor, the sum of an external stress σext
i j and the long-

range interactions between dislocations. σint
i j =

∫
Ki jmn(r − r′)̺mn(r′)dr′, with Ki jmn

the function representing the stress at r generated by ̺ at r′ [62]. The term pro-

portional to ν is the regularizing quartic diffusion term for the dislocation den-

sity (an artificial viscosity), which we’ll focus on here. (In fact, the equation we

simulate here is further complicated to constrain the motion of the dislocations

to the glide plane while minimizing the elastic energy [49, 16].) The details of

our equations aren’t crucial: dislocations move around with velocity ~V , pushed

by external loads and internal stresses to lower their energies. Our equation is

nonlinear, and it’s exactly this non-linearity that makes our theory different from

more traditional theories of continuum plasticity.
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3.2.2 Turbulence

Turbulence is an emergent chaotic flow, typically described by the evolution of

the Navier-Stokes equations at high Reynolds numbers:

ρ
(
∂t~v + ~v · ∇~v

)
= µ∇2~v + ~f

∂tρ + ∇ · (ρ~v) = 0
(3.2)

where ρ is the local density of the fluid with velocity ~v under the application of

local external force density ~f . The term proportional to µ is the fluid viscosity,

and µ is inversely proportional to the Reynolds number.

Despite this Navier-Stokes equation’s enormous success in describing vari-

ous experiments, there are many mathematical and numerical open questions

associated with its behavior as µ → 0. In this regime, complex scale-invariant

patterns of eddies and swirls develop in a way that isn’t fully understood: tur-

bulence remains one of the classic unsolved problems of science.

How is ν related to µ? Eq. (3.2) can be written differently by dividing the

whole equation by ρ, in this equation µ/ρ (in the incompressible case) is called

the kinematic viscosity (usually denoted as ν). Our artificial viscosity ν in Eq. (3.1)

is analogous to this kinematic viscosity. For turbulence, µ in Eq. (3.2) is given by

nature. In contrast, our ν in Eq. (3.1) is added for numerical stability; it smears

singular walls to give regularized solutions. This is physically justified because

the atomic lattice always provides a cutoff scale. How do we know that this

artificial term gives the ‘correct’ answer (given that there can be many different

solutions to the same PDE)? Numerical methods for shock-admitting PDEs are

validated by showing that the vanishing grid spacing limit h→ 0 gives the same

solution as the ν→ 0 limit (that is, the viscosity solution). We will argue that both

our model of plasticity and the Navier-Stokes equations do not have convergent
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solutions as µ or ν → 0. We’re reassured from the turbulence analogy and are

satisfied with extracting physically sensible results from our plasticity theory –

viewing it not as the theory of plasticity, but as an acceptable theory.

3.3 Methods

To solve Eq. (3.1), we implemented a second order central upwind

method [43] especially developed and tested for conservation laws, such as

Eqs. (3.1) and (3.2). The method uses a generalized approximate Riemann solver

which doesn’t demand the full knowledge of characteristics [43]. For the sim-

ulations of Navier-Stokes dynamics (Eq. (3.2)) we use PLUTO [57], a software

package built to run hydrodynamics and magnetohydrodynamics simulations,

using the Roe approximate Riemann solver.

Accurately capturing singular flows is a challenge in computational fluid dy-

namics. A classic example of such singularities is the sonic boom that happens

when an object passes through a compressible fluid (described by a version of

Navier-Stokes) faster than its speed of sound. The sonic boom is a sharp jump

in density and pressure, which causes the continuum equations to become ill-

defined. Our PDEs, depending on gradients of ̺, become ill-defined when ̺

develops an infinite gradient at a dislocation density jump.

The numerical methods we use are designed to appropriately solve the so-

called Riemann problem: the evolution of a simple initial condition with a single

step in the conserved physical quantities. For hyperbolic conservation laws,

exact solutions of the Riemann problem can be obtained by decomposing the

step into characteristic waves. However, in most non linear problems, finding
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(a) Non-convergence in dislocation dynamics (see Eq. (3.1))
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(b) Non-convergence in turbulence dynamics (Rayleigh-Taylor instability)

Figure 3.2: Non-convergence exhibited in both plasticity and turbulence. As
time progresses, the curves, which are initially monotonically
decreasing, flip order and become non-convergent (where the lines
cross each other). Red arrows show where the convergence is lost.
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(a) h = 1/128 (b) h = 1/256 (c) h = 1/512

Figure 3.3: Continuum dislocation dynamics. Simulation results at t = 1.0 of
our CDD Eq. (3.1) at different grid sizes (h), starting from a smooth
initial condition. We use periodic boundaries in both horizontal and
vertical directions, and all physical quantities are constant along the
perpendicular direction.

exact Riemann solutions involves iterative processes th at are either slow or

(practically) impossible, and thus approximate solutions are employed instead.

Both methods we use are approximate in different ways, but are qualitatively

similar.

These sophisticated methods are designed to handle the kind of density

jumps seen in sonic booms. In our dislocation dynamics, though, we have a

more severe singularity that forms – a sharp wall of dislocations that becomes

a δ-function singularity in the dislocation density (as ν → 0). These δ-shocks

are naturally present in crystals – they describe, for example, the grain bound-

aries found in polycrystalline metals, which (in the continuum limit) form sharp

walls of dislocations separating dislocation-free crystallites. Unfortunately, the

mathematical and computational understanding of PDEs forming δ-shocks is

relatively primitive; there are only a few analytic and numerical studies in one

dimension (for an example, see [81]). Currently, to our knowledge, there’s no

numerical method especially designed for δ-shock solutions. Moreover, in a
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(a) h = 1/128 (b) h = 1/256 (c) h = 1/512

Figure 3.4: The Rayleigh-Taylor instability of the Navier-Stokes equation.
The Rayleigh-Taylor instability is a fluid mixing phenomenon that
occurs when an interface between two different fluid densities is
pulled by gravity. These simulation results here are the
Rayleigh-Taylor instability at t = 4.0, for µ→ 0, at different grid
spacings (h) with periodic boundaries in the horizontal direction
and fixed boundaries along the vertical. The initial condition has
density interface with a single mode perturbation in the vertical
velocity. The system size is (Lx, Ly) = (1.0,2.0).

strict mathematical sense, several properties of Eq. (3.1) – nonlocality and mixed

hyperbolic and parabolic features – haven’t been proven to permit a successful

application of shock-resolving numerical methods.

In the simulations presented here, we won’t add an explicit viscosity (so

µ = ν = 0); instead, we have an effective numerical dissipation [43] that de-

pends on the grid spacing h as hn, where n depends on the numerical method

used. (Eq. (3.2) with µ = 0 is the compressible Euler equation. Although we

present our simulations as small numerical viscosity limits of Navier-Stokes,
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they could be viewed as particular approximate solutions of these Euler equa-

tions.)

3.4 Results

Figure 3.1 shows typical emerging structures in simulations of both the CDD

Eq. (3.1) and the Navier-Stokes dynamics Eq. (3.2): both are complex, display-

ing structures at many different length scales; sharp, irregular walls in the CDD

and vortices in Navier-Stokes. Although it might not be surprising to profes-

sionals in fluid mechanics that nonlinear PDEs have complex, self-similar so-

lutions, it’s quite startling to those studying plasticity that their theories can

contain such complexity (even though this complexity has been observed in ex-

periments [29]): traditional plasticity simulations do not lead to such structures.

3.4.1 Validity of solutions

These rich and exotic solutions demand scrutiny. How do we confirm the va-

lidity of our solutions? For continuum PDEs solved on a grid, an important

problem that needs to be addressed is the effect of the imposed grid. Tradition-

ally, it’s expected that as the grid becomes finer, the solution is likely to be closer

to the real continuum solution. For differential equations that generate singu-

larities, one cannot expect simple convergence at the singular point! How do

we define convergence when singularities are expected? For ordinary density-

jump shocks like sonic booms, mathematicians have defined the concept of a

weak solution: it’s a solution to the integrated version of the original equation,
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bypassing singular derivatives.

For many problems, researchers have shown that adding an artificial viscos-

ity and taking the limit to zero yields a weak solution to the problem. For some

problems, the weak solution is unique, while for others there can be several: dif-

ferent numerical methods or types of regularizing viscosities can yield different

dynamics of the singularities. This makes physical sense: if a singular defect

(a dislocation or a grain boundary) is defined on an atomic scale, shouldn’t the

details of how the atoms move (ignored in the continuum theory) be impor-

tant for the defect’s motion? In the particular case of sonic booms, the micro-

scopic physics picks out the viscosity solution (given by an appropriate µ → 0

limit), leading mathematicians to largely ignore the question of how micro-scale

physics determines the singularities’ motion.

However, our problems here are more severe than picking out a particular

weak solution. Neither our dislocation dynamics nor the Navier-Stokes equa-

tion (with very high Reynolds number) converge in the continuum limit even

for gross features, whether we take the grid size to zero in the upwind schemes

or we take ν→ 0 (or µ→ 0) as a mathematical limit.

3.4.2 Spatio-temporal non-convergence

Figure 3.2a shows a quantitative measure of the our simulation’s convergence

as a function of time, as the grid spacing h = 1/N becomes smaller. We measure

convergence using the L2 norm

|| ̺̂2N − ̺N ||2 ≡
(∫
‖ ̺̂2N − ̺N‖2 dx

)1/2
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where ̺̂2N has been suitably smeared to the resolution of ̺N . (Normally we’d

check the difference between the current solution and the true answer, but here

we don’t know the true answer.) Here, We study the relaxation of a smooth but

randomly chosen initial condition – that is, a perfect single crystal beaten with

mesoscale hammers with round heads – as a function of time. We see that for

short times these distances converge rapidly to zero, implying convergence of

our solution in the L2 norm. However, at around t = 0.02 to 0.2, the solutions

begin to become increasingly different as the grid spacing h→ 0.

This worried us at the beginning because it suggests that the numerical re-

sults might be dependent somehow on the artificial finite-difference grid we use

to discretize the problem, and therefore might not reflect the correct continuum

physical solution. We checked this by adding the aforementioned artificial vis-

cosity ν in Eq. (3.1). We found that it converges nicely when ν is fixed as the

grid spacing goes to zero. However, this converged solution is not unique: it

keeps changing as ν→ 0. So, it’s our fundamental equation of motion (Eq. (3.1))

and not our numerical method that fails to have a continuum solution. This

would seem even more worrisome: How do we understand a continuum the-

ory whose predictions seem to depend on the smallest studied length scale (the

atomic size)?

3.4.3 Spatio-temporal non-convergence in Turbulence

It’s here that the analogy to turbulence has been crucial for understanding the

physics. It’s certainly not obvious that the limit of strong turbulence µ → 0 in

Navier-Stokes (Eq. (3.2)) should converge to a limiting flow. Actually, our short
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experience suggests that there is no viscosity solution for Eq. (3.2). Turbulence

has a hierarchy of eddies and swirls on all length scales, and as the viscosity

decreases (for fixed initial conditions and loading) not only do the small-scale

eddies get smaller, but also the position of the large-scale eddies at fixed time

change as the viscosity or grid size is reduced.

Figure 3.2b depicts the convergence behavior of a simulation of the Rayleigh-

Taylor instability (as in Fig. 3.2a). The instability triggers turbulent flow, and like

our dislocation simulations, convergence is lost after t ∼ 2.0 as the grid spacing

h gets smaller. Our choice of the Rayleigh-Taylor instability for comparison is

motivated by the presence of robust self-similar features (such as the “bubbles”

and “spikes” in Fig. 3.4 [78]), and by the spatio-temporally non-converging fea-

tures of the initially well-defined interface.

The interface between two fluid densities is analogous to our dislocation cell

walls. Even though the Rayleigh-Taylor instability is different from homoge-

neous turbulence in important ways, we also verified that the latter shows simi-

lar spatio-temporal non-convergence but statistical convergence (simulating the

Kelvin-Helmholtz instability for compressible flow in 2D). The Rayleigh-Taylor

instability provides the best visualization of the analogy between the two phe-

nomena, but this non-convergence appears to be more general. Fig. 3.4 shows

density profiles at intermediate times for the Rayleigh-Taylor instability. The

figure shows the formation of vortices (swirling patterns), and the simulations

look significantly different as the grid spacing decreases. Again, this is analo-

gous to the corresponding simulations of our dislocation dynamics shown in

Fig. 3.3, where larger cells continue to distort and shift as the grid spacing de-

creases.
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Figure 3.5: Statistical properties and convergence Although the continuum
dislocation dynamics (CDD) simulations with different grid sizes
are non-convergent (Fig. 3.2a), the statistical properties are the
same. The dislocation density correlation function is plotted here
for different simulation sizes at the same time, exhibiting consistent
power laws.

3.4.4 Validation through Statistical properties

If the simulations aren’t convergent, how can we decide if the theory is phys-

ically relevant and can be trusted to interpret experiments? In turbulence, it

has long been known that, as vortices develop, self-similar patterns arise in the

flow and exhibit power laws in the energy spectrum and in the velocities’ cor-

relation functions [25]. A successful simulation of fully developed turbulence

isn’t judged by whether the flow duplicates an exact solution of Navier-Stokes!

Turbulence simulations study these power laws, comparing them to analytical
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(a) h = 1/256 (b) h = 1/512 (c) h = 1/256 (d) h = 1/512

t = 0.04 t = 1.00

Figure 3.6: Non-convergence and singularity for CDD For (a) and (b), t = 0.04;
for (c) and (d), t = 1.00. The two-norm difference between h and h/2
are plotted. At short time, t = 0.04, the differences are small: (a) is
empty and (b) nearly so. At later times, t = 1.00, the two-norm
difference becomes significant esepcially where the walls are
forming (see Fig. 3.3 for wall locations).

predictions and experimental measurements.

Our primary theoretical focus in our plasticity study [16] has been to analyze

power-law correlation functions for the dislocation density, plastic distortion

tensor, and local crystalline orientation. As Fig. 3.5 shows, like turbulence sim-

ulations, these statistical properties seem to converge nicely in the continuum

limit.

It’s worth noting that, in both cases, non-convergence emerges when small

scale features appear on the wall (see Fig. 3.6) or the interface (see Fig. 3.7):

3.4.5 Singularity and convergence

In the case of our simulations of plastic flow (Eq. 3.1), starting from smooth ini-

tial density profiles, finite time singularities develop in the form of δ-shocks.

The existence of finite-time singularities was shown in a 1D variant of these
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(a) h = 1/64 (b) h = 1/128 (c) h = 1/256 (d) h = 1/64 (e) h = 1/128 (f) h = 1/256

t = 2.0 t = 3.0

Figure 3.7: Non-convergence and vortices for Navier-Stokes For (a), (b), and
(c) t = 2.0; for (d), (e), and (f) t = 3.0, corresponding to the two red
arrows in Figure 3.2b. The two-norm difference between h and h/2
is plotted. At t = 2.0, small structures start to become strong, as in
(c), and the same is true at t = 3.0 for h = 1/128, as in (e).

equations, which is associated with the Burgers equation [51]. Figure 3.6 shows

how this effect occurs by considering the two-norm differences (the integrand

in space of the L2 norm discussed earlier). At t = 0.04 (see Fig. 3.2a) when the

N = 512 curve starts to cross all the other curves, singular features start to ap-

pear around a wall (Fig. 3.6b). Although the boundaries are non-convergent

when specific locations and times are considered (Fig. 3.2a), the statistical prop-

erties and associated self-similarity (Fig. 3.5) are convergent.

In the case of Navier-Stokes simulations (see Fig. 3.7), the existence of finite-

time singularities is a topic of active research: even though local-in-time ana-

lytic solutions are easily shown to exist, global-in-time analytic solutions can

be proven to exist only for special cases, such as in the 2D incompressible gen-

uine Euler equation [8]. In 3D, the mechanism of vortex stretching is conjec-

tured to lead to finite-time singularities [71], even though there are still crucial

open questions. Despite its complexity, turbulence can be concretely studied in

special cases. For our example of the Rayleigh-Taylor instability, the two-fluid
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interface gets distorted and “bubbles” form (Fig. 3.4); over time, the bubbles

exhibit emergent self-similar characteristics [78], showing statistical convergence.

However, there is no spatio-temporal convergence, because the interface devel-

ops complex, turbulent features as the grid becomes finer (see Figs. 3.2b and

3.7).

3.5 Conclusion

Sometimes science seems to be fragmented, with independent fields whose vo-

cabularies, toolkits, and even philosophies almost completely separate. But

many valuable insights and advances arise when ideas from one field are linked

to another. Computational science is providing a new source of these links, by

tying together fields that can fruitfully share numerical methods.

Our use of well-established numerical methods from the fluids community

made it both natural and easy to utilize their analytical methods for judging the

validity of our simulations and interpreting their results.
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CHAPTER 4

NUMERICAL METHODS FOR CONTINUUM DISLOCATION

DYNAMICS

4.1 Introduction

At meso and atomistic scales, it is an undisputed fact that dislocations form

complicated structures that make coarse-grained modeling challenging. Dislo-

cations are known to tangle and interact in subtle ways at atomistic scales, and

collectively forming cell structures under deformation. These cell structures

vary in structure and patterns, strongly dependent on the material properties

and processing history.

Nevertheless, most continuum models to date are simplified – or complexi-

fied – to be unaffected by these issues. However, to bridge the scale from atom-

istics to phenomenological models properly, it is imperative that we develop

a simple coarse grained description that can naturally connect the shorter and

longer length-scale models. Particularly, because both single dislocations and

the emergent dislocation walls are singular line-like or surface-like entities, it is

necessary to use a numerical method that can capture and evolve these sharp

features properly.

Phase field models, level-set methods, and front tracking methods [87, 15, 60,

83, 52] are standard approaches used to study dislocation wall structures (espe-

cially grain boundaries); these models are not well suited for studying the dy-

namics of dislocation pattern formation and evolution. Simulating the emergent

walls with these methods requires positing both the existence and the dynam-
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ics of these structures. Simulating individual dislocations (as in other ’discrete

dislocation’ simulations [76, 24, 12]) poses challenges of scale in simulating the

massively collective behaviors of interest here.

The other approach is to use partial differential equations representing the

dynamics of the density of dislocations. This still requires physical knowledge

of the dynamics of dislocations, but these are much better understood than the

collective behaviors of dislocation structures. To name a few, Groma et al. [26],

Zaiser et al. [89], Rickman et al. [73], Parks and Arsenlis [5], Acharya et al. [1],

and Limkumnerd et al. [49] and Chen et al. (Chapter 2) have worked on different

variety of continuum dislocation dynamics models.

In this chapter, we explore how best to numerically simulate a system of

continuum dislocation dynamics, discussing issues that arise and resolutions

we have found.

In sections 4.2 and 4.3, we introduce the formalism of hyperbolic conserva-

tion laws and explore the mathematical aspects of our continuum dislocation

dynamics model as a hyperbolic conservation law. In section 4.4, we explain

the numerical methods that we implement and apply to solve our continuum

dislocation dynamics (CDD) models [49, 17] (also Chapter 2) and justify the

approximations made in the process. Section 4.5 illustrates the results and in-

terpretations of the simulations, particularly with focus on validating that our

method(s) provides physically sensible results. Lastly, we discuss conclusions

in section 4.6.
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4.2 Hyperbolic Conservation Laws

Continuum dislocation dynamics models are often written as partial differential

equations that prescribe the evolution of the dislocation densities over time. In

general it could include three different types of terms: a transport (flux) term, a

source and sink term, and a regularization term. Some or all of these appear in

different forms for each physical model, but to study the dislocation patterning,

transport of dislocations should be the dominant term1.

Hyperbolic partial differential equations (or hyperbolic conservation laws)

are commonly used to describe transport behavior of many physical systems.

For example, the wave equation, Euler equation for fluid flow, magnetohydro-

dynamics (MHD), shallow water equations are hyperbolic partial differential

equations. Navier-Stokes equations include a parabolic viscosity term, but is

dominated by the hyperbolic term in high Reynolds number cases.

Note that dislocation line density is not conserved per se, even with only

transport. A single dislocation loop can expand or shrink, increasing or de-

creasing in length and hence changing the dislocation line density. It is the

“net charge” (Burgers vector density) that is conserved, rather than the total

line density. Similar behavior is exhibited with magnetic field lines in magneto-

hydrodyamics, where the lines can lengthen while each component of the line

density vector is conserved.

1The source term dominates common phenomenological plasticity models, which however
do not exhibit dislocation patterning.
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4.2.1 Burgers Equation

The simplest example of a nonlinear conservation law is the Burgers equation.

It also is a simplification of the Euler equations for fluid flow – guaranteeing it

to be an interesting and worthy toy problem for us to start with:

∂tu + ∂x(
1/2u2) = 0 (4.1)

The key issue in these models is that shocks develop in a finite amount of

time where the derivatives become ill-defined. One can address subsequent sin-

gularity evolution by multiplying the equation of motion by a smooth function

and integrating over t and x. Integrating by parts, one eliminates the ill-defined

derivatives and therefore now define an integrated version of the problem. This

integrated version of the equations does not fully define a unique solution; fam-

ilies of weak solutions exist. For many problems including the Burgers equation

and Euler equations, adding an explicit numerical viscosity term ν∂2
xxu and tak-

ing ν → 0 is deemed to give the correct physical and unique weak solution to

the problem, and most – if not all – methods are designed to (at the very least

try to) converge to the vanishing viscosity solution. The vanishing viscosity so-

lution is likely not physically appropriate for the dislocation dynamics models

discussed here, but we defer that discussion to another place (see chapter 6).

4.2.2 Shocks and δ-shocks

Shocks, i.e. spatial jumps in conserved quantities, appear as a singularity in

many explicit models, such as the Euler equation for fluid flow, shallow wa-

ter equations, traffic jam equations, etc. The simplest PDE that forms shocks is
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Figure 4.1: Numerical simulation of Burgers equation. A smooth profile
evolves into a discontinuous one at later times, with a moving and
decaying discontinuity. Evolved from an initial condition
u(x, t = 0) = sin(2πx) + 0.3 with a periodic domain x ∈ [0,1).

the (inviscid) Burgers equation (4.1).

The Burgers equation has been studied extensively, leading to the develop-

ment of suitable mathematical methods which have been applied to realistic

problems.

How do shocks develop in the Burgers equation (4.1)? In Eq. (4.1), u is a

conserved quantity similar to momentum density. Let’s consider that for z < 0

there is a right-moving blob (hence with positive u), and for z > 0 there is a

left-moving blob (with negative u). In finite time the clouds collide, and unless

they pass through each other, they form an interface. Across this sharp interface

there is a finite positive density on the left and negative density on the right,

forming a moving jump in density. Figure 4.1 shows a numerical solution of the

Burgers equation, forming a moving shock as described.
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The problem with solving equation (4.1) is that a jump in u renders the

derivatives ill-defined: the motion of the shock is not determined by the con-

tinuum equations, because they were derived assuming gradients were small.

Shocks naturally arise from the continuum equations however, and the equation

needs additional care once a shock is formed and the derivatives are ill-defined.

The usual method to attack this problem is to integrate the equations over

a small window in space and time to get rid of the dangerous derivatives. By

multiplying the whole equation with an arbitrary smooth test function φ(z, t)

and integrating the equation, we get a problem that we can now tackle.

0 =
∫

dzdtφ(z, t)
[
∂tu + ∂z(

1/2u2)
]

= −
∫

dzdt
[
u∂tφ(z, t) +

1/2u2∂zφ(z, t)
]
+

∫
dt

[
φ(z, t)1/2u2

]
∂Z
+

∫
dz

[
φ(z, t)u

]
∂T

(4.2)

where ∂Z and ∂T refers to the boundaries (the limits of integrations) in z and

t. By choosing a test function φ(z, t) that vanishes at the boundaries, we find an

integrated equation:

∫
dzdt

[
u(z, t)∂tφ(z, t) +

1/2u(z, t)2∂zφ(z, t)
]
= 0 (4.3)

The solutions to the integrated Eq. (4.3) are called the “weak solutions” to

Eq. (4.1). It must be noted that weak solutions must satisfy Eq. (4.3) for any

smooth function φ(z, t). Weak solutions are in general not unique; a shock, once

formed, can evolve into (or stay as) either a shock, a rarefaction, or a mixture

of both [46]. For many problems (including Burgers equation), however, a par-

ticular subset of weak solutions are most commonly studied. This so-called

“vanishing viscosity solution” is achieved by adding a small regularizing diffu-

sion term to the problem to smooth the shock, and then taking the limit of this
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diffusion going to zero,

∂tu + ∂z(
1/2u2) = ν∂2

z u (4.4)

with ν→ 0. In the case of fluid dynamics (i.e. sonic booms) the vanishing viscos-

ity solution is the correct physical solution, satisfying the “entropy condition”

that information is not created at the shock.

In addition to shocks in conserved quantities, there can appear higher-order

singularities, such as δ-shocks (point masses in space) of the conserved quantity.

They are less common in well studied problems (not appearing in most fluid-

dynamics models), but they are mathematically well-defined [81, 48, 21] and

represent physical solutions in some cases.

A simple example is exhibited in a straightforward extension of the Burgers

equation,

∂tu + ∂z(
1/2u2) =0

∂tv + ∂z(
1/2uv) =0

(4.5)

where we added an equation for component v that is driven by u. v represents

a passive scalar density that is convected with the flow of u. Let’s consider the

initial condition for u as before, but also consider additional tracer particles, or

dust, of uniform density v(t = 0). Then, the particles are dragged toward the

shock in u and accumulate at the interface, forming a δ-shock (Figure 4.2) We

will later (in section 4.3.3, and also chapter 5) show that this kind of entrainment

exists in our continuum dislocation dynamics hence leading to dislocation wall

structures. For the system of equations (4.5), wherever a shock appears in u, a δ-

shock forms in v. Similar numerical or analytical techniques to those developed
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for ordinary shocks can be used to treat these shocks, but it is more challenging,

especially in higher dimensions [48].

4.3 Continuum Dislocation Dynamics

Our interest is of course not with Burgers equation dragging dust, but with

a model of continuum dislocation dynamics with remarkable analogies to the

simpler problem. Continuum theories of dislocations are of great interest, as

it may fill the gap of the “missing length scales” between macroscopic crys-

tal plasticity (used to design airplanes) and microscopic dislocation dynam-

ics (now based on atomic-scale microphysics). As mentioned earlier, there exist

many theories that attempt to bridge the gap: we study one particular construc-

tion [1, 49] (also see Chapter 2) which for simplicity and generality neglects

many material specific properties and does not incorporate known phenomeno-

logical evolution laws.

In general, the nine-component dislocation density tensor ̺i j must satisfy

∂t̺i j = ǫilm∂lJm j (4.6)

where the dislocation current Jm j is also Jm j = ∂tβ
P
m j since

̺i j = ǫilm∂lβ
P
m j (4.7)

(βP
m j is the plastic distortion tensor [49]). The model we study depends on the

constraints that are chosen; with only a constraint on the elastic energy that it

must not increase, Ji j can be defined as

Ji j = ∂tβ
P
i j = Vℓ̺ℓi j = D(ρ)̺ℓmnσmn̺ℓi j (4.8)
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Figure 4.2: δ-shock formation in pressureless gas equation. Equations as
presented in [48], representing pressure-less gas dynamics. (Top)
Dust density r. (Bottom) Momentum density. f
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(as implemented for grain boundary formation) where Vℓ is the local velocity

of dislocations proportional to the Peach-Koehler force (see chapter 2); at low

temperature where climb is forbidden, one may write

Ji j = ∂tβ
P
i j = Vℓ̺′ℓi j = D(ρ)̺′ℓmnσmn̺

′
ℓi j (4.9)

where ̺′ℓi j = ̺ℓi j− 1/3δi j̺ℓkk, also satisfying the glide-only (i.e. local material volume

preserving) constraint. σmn represents the local stress field from both dislocation

induced strain and external stress (or boundary conditions) and D(ρ) prescribes

dislocation mobility. We most commonly use

D(ρ) ∝ 1/|ρ| (4.10)

for thickness-independent wall behavior (Chapter 2): other choices, such as

D(ρ) = Const., (4.11)

will be used and discussed later however (see Chapter 5). There are also other

variants that modify the climb behavior by introducing pressure due to vacan-

cies [17], and modifications to include other energy terms, we leave the discus-

sion on the other variants for a later publication.

Unfortunately, both equations (4.8) and (4.9) pose various challenges to the

application of well-known methods for hyperbolic conservation laws. First, due

to the long range interaction between dislocations, σ is a non-local function of ρ

and therefore the equations (4.8) and (4.9) are not local equations of ρ. We dis-

cuss and justify the applicability of the methods to nonlocal problems in section

4.3.1. In section 4.3.2, we show that the equations are likely hyperbolic but not

strictly hyperbolic based on numerical and approximate analytical evidences.

Lastly, dislocations in experiments are known to form δ-function like singular-

ities in the form of dislocation walls, and earlier studies [49, 51] observed that
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δ-function dislocation walls were exhibited by these equations; such δ-shocks

form a far less understood area within the field of hyperbolic conservation laws.

In section 4.3.3 we explain that the studies of δ-shocks indeed are directly rel-

evant to our equations. In the present section (4.3), we discuss these potential

issues in applying a numerical method to our CDD equations, and (after some

scrutiny) conclude that while mathematical proofs do not exist, it is reasonable

to expect the methods to work.

4.3.1 Nonlocality

The first of the potential issues is that our continuum dislocation dynamics has

nonlocal interaction between dislocations. Dislocations interact via (local) elas-

tic deformation; but we leave elastic degrees of freedom out of the dynamics,

justified by the relatively fast elastic relaxation. Were we to include all elastic

degrees of freedom into our equations, nonlocality will disappear. The separa-

tion of time scales, however, would then pose challenges; most of the simulation

time will be spent in relaxing elastic degrees of freedom, dissipating phonon en-

ergies from dislocation movements, etc. Thus, integrating out the elastic degrees

of freedom and replacing them with an instantaneously updating stress field is

a crucial step.

Dislocation density conservation is local. Long-range interactions make

mathematical proofs much more complicated. Rigorously showing that elas-

tically mediated interactions are harmless, for applying conventional mathe-

matical and numerical methods, is not easy. However, the long distance elas-

tic interaction usually dominates the stress field in our continuum model; the
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strain field is thus quite smooth and slowly varying within a finite difference

element. Theorems applicable to constant external stresses are thus physically

likely to be applicable to our slowly varying stress. Fortunately, also, there are

some analysis on non-local Eikonal equations (sometimes used indeed for dis-

location dynamics) proving that the behaviors of non-local Eikonal equations

are not different from that of the local Eikonal equations [4].

4.3.2 Hyperbolicity

The evolution laws of conserved densities are often formulated as (strictly)

hyperbolic PDEs, which have a rich mathematical and numerical literature

to guide simulations. When the conservation equation mixes hyperbolic and

parabolic features, it becomes mathematically, and sometimes numerically chal-

lenging [39]. Is equation (4.6) strictly hyperbolic?

One can determine the nature of the system of equations by taking the Jaco-

bian of the flux function and diagonalizing it. If it contains distinct real eigenval-

ues only, then it is strictly hyperbolic, if it contains degenerate real eigenvalues,

it is not-strictly hyperbolic. Unfortunately, the Jacobian of Eq. (4.6) is nonlocal

and hence very large and messy - albeit there being a very symmetric pattern -

and is not feasible to analytically diagonalize.

There are several approximations we can take. First and foremost is to as-

sume that σmn is independent of the local (and nonlocal) values of ρi j. This is

motivated by our discussion above about the smoothness of σmn, presuming

that long-range interaction dominates the stress field.
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Once we make this first approximation, we can numerically diagonalize the

Jacobian J(α)
i j,mn (where α denotes the direction of the flux, i.e. α = x, y, z for three

dimensions) within a simulation. The diagonalization consistently yields eigen-

values consisting of three zeros and six Vαs. This implies that the equation

might be non-strictly hyperbolic, i.e. have degenerate real eigenvalues.

Analytical diagonalization of the flux Jacobian J(α)
i j,mn is not feasible; however,

we can make a second approximation assuming that the velocity part Vℓ is al-

together independent of local ρ, i.e. ignoring local variations in ρ. Under this

(somewhat) crude approximation

∂tβ
P
i j = Vℓ̺ℓi j (4.12)

the Jacobian to Eq. (4.12), a 9× 9 matrix, can be analytically diagonalized, and it

leads to three 0s and sixVz for the 1D problem. For two and three dimensions,

each of the flux Jacobians yields three 0s and six Vα respectively; when ̺i j is

expanded into βP
m j,

∂tβ
P
i j = Vℓǫℓikǫkmn∂mβ

Pm j (4.13)

it is easy to see that different js are decoupled from each other, except through

Vℓ – which is assumed independent of βP for this calculation. Hence, we can

fix j and reduce it into a three-component problem (i.e. Jacobian is block-

diagonalized into three blocks of 3× 3 matrices). Using ǫℓikǫkmn = δℓmδin − δℓnδim,

we can find the ( j-block) Jacobian matrix in the z direction:

J(z)
u j,v j =

∂(∂tβ
P
u j)

∂(∂zβ
P
v j)
=



Vz 0 0

0 Vz 0

−Vx −Vy 0


(4.14)

Eigenvalues of this matrix are easy to find: 0 and twoVz. Repeating this for all

j leads to the exact same results and therefore yields three 0s and sixVz. Flux in
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x and y directions can be treated the same way to yieldVx andVy.

Another simplification we can make is to take single and few component

versions of equation (4.8) and see what the eigenvalues turn out to be. For

example, taking a single component the equation becomes

∂tγ = σsign(ρ)ρ (4.15)

where γ is the slip parameter (a component of βP) and ρ is the dislocation density

on that slip system (i.e. derivatives of the component).

In this version of the equation, the “Jacobian” – the only eigenvalue – is

σsign(ρ) where σ is the shear stress resolved to the particular slip direction for

γ.

In summary, although it is not possible to directly prove hyperbolicity, there

is enough evidence to believe that our continuum dislocation dynamics is hy-

perbolic, but not strictly hyperbolic. The characteristic velocities(eigenvalues)

likely consist of zeros and Vℓs and we will make use of this observation later

for numerical methods.

4.3.3 Mapping to δ-shock Formation

Where and when derivatives are well defined, finding a solution to a partial

differential equation is relatively straightforward. Therefore, the difficulty in

finding solutions to a hyperbolic conservation law come from where the singu-

larities occur. In one dimension, our singularities remain separated by smoothly

varying regions except during collisions, so we can focus on the behavior of a

single singularity, i.e. a discontinuity in conserved quantities, and try to un-
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derstand its evolution. This so called Riemann problem provides the basis of

understanding and solving hyperbolic conservation laws.

Traditionally studied conservation laws – such as Burgers Eq., Euler Eqs.,

traffic jam models, etc. – have relatively simple solutions to the Riemann

problem. The “Riemann solutions” to these problems consist of (moving)

shocks (contact discontinuities being subset of shocks) and rarefaction waves.

However, this is not always the case, even for strictly hyperbolic problems, and

multi-component systems have been shown to exhibit singular shocks such as

δ, δ′, . . . shocks [21].

We apply second order central upwind methods for Hamilton-Jacobi equa-

tions (for βP) and conservation laws (for ρ) as proposed by Kurganov et al. [44]

and we get very sharp dislocation walls forming in the simulations (shown in

Figure 4.3). Both equations (4.8) and (4.9)2 have been numerically shown to

form jumps in βP [49].

It is important to note though, that βP is not a conserved quantity. In terms of

the conserved quantity ρ which is a derivative of βP, our evolution law is form-

ing δ-shocks rather than Riemann shocks. It has been shown in Ref. [51] that in

1D, equation (4.8) maps onto the Burgers equation (4.1), assuming dislocation

mobility D(ρ) = const., where the local dislocation velocityVz is equivalent to u

of the Burgers equation:

∂tVz = −∂z(V2
z ) (4.16)

Note this equation (4.16) is not the same as the Burgers equation (4.1); there

is a factor 2 difference. However, this discrepancy disappears under a simple

2The original work by Limkumnerd[49] uses a slightly different construction, which does
not make the elastic energy always go downhill. This however does not change the fact that it
forms shocks.

50



(a) Dislocation density black representing high
dislocation density

(b) Orientation map different colors represent
different orientation

Figure 4.3: Dislocation density and local orientation after relaxation Smooth
random initial condition relaxed into dislocation wall structures,
forming δ functions in dislocation density. These dislocations
mediate change in local orientation and thus coincide with the
boundaries of the orientation map where the orientation jumps.
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rescaling of t′ = t/2.

It can be further shown in 1D that ρxz,ρyz, and ρxx+ρyy do not affect the velocity

and hence are passive: these passively advect (see Chapter 5), i.e.

∂tρ̃ = −∂z(Vzρ̃) (4.17)

for ρ̃ = ρxz, ρyz, or ρxx + ρyy.

Combining these two equations (4.16) and (4.17), you get a set of equations

that are precisely the same as the Burgers dust equations (4.5) we discussed

in the previous section. Figure 4.4 shows the δ-shocks formed in ρ for a 1D

simulation, corresponding to jumps in βP and cusps in E (In 1D, ∂zE = Vz, [51]

therefore these cusps represent shocks inVz.)

It is worth noting that although this mapping is precise only under special

circumstances and in 1D, the qualitative behavior of δ-shock formation is very

robust and generic. The form of Eq. (4.16) will depend on the model details

greatly, but generically one expects shocks, and while most components of ρ

will not be completely passive, all components of ρ will still follow Eq. (4.17)

while also contributing part of the velocity in Eq. (4.16). Detailed discussion of

why the δ-shocks are (or should be) generic is given in chapters 5 and 6.

4.4 Numerical Methods

Understanding the solutions to a partial differential equation with only analyt-

ical tools is not an easy task. Indeed, the solutions to the Navier-Stokes equa-

tions (and the Euler equations for fluid flow for that matter) still remains an
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(a) Shocks in deformation gradient βP

(b) δ-shocks in dislocation density ρ

(c) Cusps in energy density E

Figure 4.4: Singularities in continuum dislocation dynamics. Continuum
dislocation dynamics exhibit several types of singularities, (a)
shocks in plastic distortion tensor βP which corresponds to (b)
δ-shocks in dislocation density ρ, and (c) cusps that form in the
elastic energy density E. All of these singularities are coupled. It is
interesting to know that, in terms of the conserved quantities, (a)
and (b) both corresponds to a δ-shock in ρ, whereas (c) represents a
shock in F , the force density.
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unsolved problem3. While the analytical solutions to these problems are not

possible to extract, many of the equations have great practical use and funda-

mental importance, motivating careful numerical investigations.

Because of the ill-defined (or diverging) derivatives at the shocks, however,

numerical integration of the equations is subject to instabilities without intelli-

gent algorithms. In this section, we discuss the algorithms that we use to solve

our continuum dislocation dynamics. We start with the de facto standard arti-

ficial viscosity method which has its root connected to the vanishing viscosity

solutions. This method was used for the first stages of our exploration [49], but

unfortunately it suffers from unnecessarily excessive diffusion (or viscosity)4.

We then discuss the less-dissipative algorithms that are more sophisticated but

provide much higher resolution by using interpolations and limiting the diffu-

sion (or viscosity) to as little as possible.

Although the high resolution numerical methods are well established for

standard strictly hyperbolic conservation laws, we should question carefully

the applicability of the methods to a problem in higher dimensions (three di-

mensions in particular) and with the subtle properties discussed in section 4.2.

4.4.1 Artificial viscosity method

The most straightforward – and mathematically relevant – way of solving a PDE

with shock discontinuities – is to add a regularizing term that smooths, either

3This is one of the “Millennium Problems”.
4Depending on the simulation resolution and local values of the field, diffusion (or viscosity)

must be in a range so that it is big enough to not cause numerical instabilities globally. Practi-
cally, this inevitably leads to more dissipation than necessary at a large fraction of the simulation
volume in both space and time.
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by diffusion or viscosity, the order parameter field and therefore avoids the nu-

merical and mathematical issues associated with the ill-defined derivatives. In

the case of our continuum dislocation dynamics, we can apply a quadratic or a

quartic diffusion term as follows:

∂tβ
P
i j = Ji j + η∇nβP

i j (4.18)

where n = 2 or 4. This is analogous to solving Navier-Stokes equations with

finite viscosity instead of solving inviscid Euler equations. Earlier investigation

of our CDD using this method is presented in Refs. [49, 51]. However, there is

a crucial problem with this method: physical magnitude of η is expected to be

at the atomic scale, while the value needed for numerical stability must be at

the (much larger) grid spacing scale. With the value of η needed for numerical

stability, the wall structures are blurred over many grid spacings, making the

emergent fractal patterns difficult to resolve.

For these reasons, it is imperative that we adopt, develop, and use mini-

mally diffusive methods developed by mathematicians and scientists for many

conservation laws to deal with the shock-forming nature of the inviscid versions

of our equations.

4.4.2 Godunov-type schemes: Central upwind method

An alternative to the artificial viscosity method is to use a scheme that has built-

in diffusion terms. The Lax-Friedrichs method is the first and the simplest of

such methods, where a grid of u j
i evolve as

u j+1
i =

1
2

(u j
i+1 + u j

i−1) −
∆t

2∆x
( f (u j

i+1) − f (u j
i−1)) (4.19)
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to solve ut + f (u)x = 0 where i and j represent spatial and temporal coordinates.

This method is stable only if the maximum characteristic velocity5 cmax satisfies

the condition6 ∆x
∆t ≥ cmax; that is, within a single time step all physical charac-

teristic waves must not affect any grid point other than the immediate nearest

neighbors for this method to be stable. In general, this method is still overly dif-

fusive. When cmax is constant and independent of the local field values (the case

of simple advection with velocity a), this method can do a reasonable job. But

when it is not the case (i.e. for most nonlinear problems) there will be regions

where the effective diffusion is unnecessarily large.

Local and higher order methods have been developed to minimize diffusion

and gain maximum resolution without causing instabilities (Refs. [63, 78, 43] to

list a few). We will discuss the central ideas involved in these schemes, and how

they apply to our implementation for our CDD equations.

For solving hyperbolic conservation laws, it is crucial to understand the

“characteristics” of the equations. When full knowledge of characteristics and

the Riemann solutions are acquired, good numerical methods exist to yield gen-

eral solutions. Even with partial knowledge of characteristics, approximate

Riemann solvers can retrieve approximate solutions to some hyperbolic prob-

lems[46, 43], but without some understanding of the hyperbolic characters of

the equations one cannot expect to obtain a solution.

Our continuum dislocation dynamics model – as discussed in Section 4.3.2

– can not be fully diagonalized, and very likely is not strictly hyperbolic. Fur-

thermore, Riemann solution to the problem (likely) contain δ-shocks that are

5For a strictly hyperbolic system, characteristic velocity c is a velocity that a certain “wave”
propagates with: for example, the sound wave.

6This condition, the CFL (Courant-Friedrichs-Lewy) condition, is thus used to determine the
time step ∆t so that it is stable for a grid spacing ∆x.
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not very well explored. However, it can be argued that the only quantity that

is transported – and carries information – is the components of the dislocation

density tensor, and their physical velocity is given by the net Peach-Koehler

force which is essentially a projection of the stress onto the characteristic glide

directions of the dislocation, and therefore can not exceed a “norm” of the stress

field. We utilize the characteristic velocity analysis presented in section 4.3.2,

and assume that the maximum characteristic velocities are given byVℓ.

Central upwind methods are very well suited for this case, because the

method demands knowledge of a maximum characteristic velocity but not

much more. Essentially, it works by solving for the evolution of the smooth

region and diffuses the “Riemann jump” with the widest Riemann fan7 dictated

by the maximum characteristic velocity.

4.4.3 Conservation Laws and Hamilton-Jacobi equations

Despite the fact that we have discussed conservation laws and dislocation den-

sity, there is another way to describe the system, which is to prescribe the in-

stantaneous state by the use of the plastic distortion tensor βP
i j. The dislocation

density ρi j is related to βP
k j by ρi j = ǫilk∂lβ

P
k j. Thus, the dynamics of βP

k j defines that

of ρi j, and βP
k j can be chosen as an order parameter instead of ρi j.

What are the pros and cons of choosing βP
i j over the ρi j as the order parame-

ter? There is a close analogy in electromagnetism, with ρi j like the magnetic field

~B and βP
i j like the magnetic vector potential ~A (see Eq. 4.7). Because the magnetic

field must satisfy the condition ∇ · ~B = 0, it is often convenient to use the vector

7The Riemann fan is the fan spanned by the shocks and rarefaction waves propagating out-
ward from the Riemann shock.
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potential ~A for designing initial conditions and for performing simulations [22];

~B is written in terms of ~A as

~B = ∇ × ~A. (4.20)

If we write the dynamics of ~A as

∂t ~A = ~J, (4.21)

then it naturally follows from the relation (eqn 4.20) that

∂t~B = ∂t∇ × ~A = ∇ × ~J. (4.22)

This equation (eq. 4.22), because the “flux” term has a derivative in front (al-

though it is a curl, fiddling with the indices allows the equation to be trans-

formed to look like a divergence8), is a conservation law, whereas Eq. (4.21) is

not. This type of equations (often Hamilton-Jacobi equations) are commonly

studied in relation to conservation laws [43].

As with the case of simulating ~B vs ~A, we encounter the same pros and cons

in simulating ρi j vs βP
i j. We have implemented both approaches and the simu-

lation results are nearly identical. However, due to the appearance of δ-shocks

in ρ (challenging to represent on a grid) and due to the complexities associated

with correcting the ∂iρi j = 0 condition, we opt to use the βP
i j as our basic degree

of freedom. All simulation results reported in this work are from simulating the

βP
i j equation.

It is interesting to note that one of the most interesting things about the vec-

tor potentials is that there is a gauge freedom in defining the vector potential

for a given magnetic field. A similar gauge freedom exists in defining a βP
i j field

8∂tBi = ǫi jk∂ j∂tAk = ∂ j(ǫ jki∂tAk) = ∂ jF j where F j = ǫ jki∂tAk is the “current flux” of the magnetic
field.
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for a given ρi j field, which corresponds to freedom of adding the derivatives of

an arbitrary spatial functions φ j to βP
i j, i.e. βP

i j → βP
i j + ∂iφ j. This “gauge freedom”

amounts to adding a component βP
i j that does not generate any dislocations; it is

initial condition and history dependent, but dislocation-free (see Ref. [17]).

4.5 Convergence and validation of the numerical method

In this section, we will examine the validity of the numerical method we employ

to solve our continuum dislocation dynamics, and discuss the implications and

outcomes of the results. This section previews the discussion of the results re-

ported in chapter 3, with more numerical details that were not included in the

previously published report.

Numerically, differential equations are often solved on a grid in space, or

sometimes on a “grid” in time, or sometimes both. When doing so, it becomes

essential to make sure that the “imposed” grid does not affect the solution, i.e.

that the solution is independent of the (unphysical numerical) grid.

A common method of validating the correctness of a numerical scheme is to

use a well-known – preferably analytically solved – problem as a test problem,

comparing the simulation results to the analytical solution and confirming that

it converges as the grid size (grid spacing) is taken to infinity (zero). Different

metrics can be used to compare the solutions, but a standard convention is to

look at the Ln norm between the solutions:

Ln = 〈(uN − u∞)n〉1/n (4.23)

When the solutions to the equations are smooth and continuous in space and
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time, most methods do in fact converge as the grid spacing is taken to zero; the

error terms can be shown to decay quickly due to the smoothness, for any n.

However, whenever singularities appear, this convergence is not as natural.

For our CDD equations, unfortunately, the only analytically known solu-

tions are trivial. Therefore, it is necessary to have a different measure of evaluat-

ing convergence. Because there is no u∞ we can compare to, we examine the rel-

ative distance between terms 〈(u2mN −u2m+1N)n〉1/n; if these vanish quickly, then we

can use the Schwarz’s inequality
∑

m=1···〈(u2mN − u2m+1N)n〉1/n ≥ 〈(uN − u∞)n〉1/n (true

for n ≥ 1) to argue for Ln norm convergence.

4.5.1 Spatio-temporal convergence in 1D

Using the central upwind method described in Section 4.4, we can implement

the equations (4.8)) and (4.9). As has been discussed in previous work [49] (also

Chapter 2), these models form sharp dislocation wall structures in all dimen-

sions. Figure 4.5 shows the L2 norm convergence as a function of time. In Ref.

[18], in the interest of simplifying the discussion, instead of looking at the L2

norms of βP we looked at a variant smoothed version for ρ. With βP the smooth-

ing is actually unnecessary, as long as the solutions are properly interpolated.

As also can be verified in figure 4.6, in 1D, taking the limit to N → ∞, the

Ln norm sequence is a converging sequence at all times. Therefore the method

is likely leading to a convergent real solution, as the grid spacing gets finer. In

analogy with turbulence9, we thus turn to statistical properties of the numerical

solutions.

9See chapter 3 for the analogy.
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Figure 4.5: Convergence of solutions in 1D. L2 norm differences between
simulation results of grid sizes N = 128, · · · ,4096and
2N = 256, · · · ,8192are plotted. Although at around t = 0.1 – when
dislocation walls are formed the convergence becomes much worse,
at later times the solutions again appear to converge.

4.5.2 Spatio-temporal non-convergence in 2D

However, this trend does not extend to higher dimensions. Figure 4.7 illustrates

the L2 norm non-convergence that arises as the dislocation wall structures are

formed. A detailed discussion is available in chapter 3 and we will not delve

into it deeply here; in essence, similar spatio-temporal non-convergence can be

seen in simulations of Euler equations as well, we suggest it is a natural conse-

quence of having fractal and chaotic solutions, as opposed to smooth “laminar”

solutions.

The issue here is that this “turbulent” behavior is plausibly physically cor-
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Figure 4.6: Convergence of solutions in 1D, actual solutions. βP
xy at t = 1.0 for

different simulation grid sizes N = 128,512,2048,8192. Note that
solutions appear to be converging as figure 4.5 implies at t = 1.0.

rect, but sabotages any possibility of naive numerical “convergence”!

4.5.3 Statistical properties and convergence

Despite the spatio-temporal non-convergence seen in the last subsection, dislo-

cation cell walls form fractal patterns (Chapter 2) that are statistically identical

and convergent as a function of the simulation grid size. Figure 4.8 shows the

convergent (and robust) behavior of the dislocation density correlation function.

This, in fact is consistently analogous with simulations of turbulence where sta-

tistical properties such as velocity correlations are expected to be meaningful

even though the actual flow pattern is not realizing a limiting value. We dis-

cuss this analogy in detail in chapter 3. Various correlation functions and the
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Figure 4.7: Non-convergence of solutions in 2D. At earlier times, e.g. t = 0.01
for the sizes being plotted, the L2 norm differences are convergent.
However, around t = 0.1, the differences become larger as the mesh
refines, leading to spatio-temporal non-convergence. Figure
reproduced from chapter 3 for detailed discussion.

relations between them are analyzed extensively in Ref. [17].

4.5.4 Convergence with finite viscosity

In the turbulence literature, although many simulations focus on looking at sta-

tistical properties and comparing them to that of experiments, it is rarely ar-

gued that the numerics might be causing problems. Perhaps a long history of

experimental confirmation of theoretical prediction has led to confidence that

the simulations are realistic. Another reason, though, is that fluids have viscos-
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Figure 4.8: Statistical Convergence. While spatio-temporal convergence is lost
in 2D, correlation functions of the relaxed dislocation structures
exhibit convergent behavior. Figure reproduced from chapter 3 for
detailed discussion.

ity (albeit small) which limits the short-length scale fractal fluctuations. Indeed,

chaos limits the naive convergence of turbulence simulations at least as severely

as does the fractal substructure.

Even for very high Reynolds number flows (small viscosity), while it may

not be practically possible to fully resolve the resolution, it is commonly be-

lieved that if one could do a full-scale simulation that resolves the Kolmogorov

length scale, it would lead to legitimate convergent solutions.

For our CDD, the situation is very similar. It is certainly argued that the dis-

location cores should provide some sort of regularization [3], and the walls will

not be mathematical singularities. On the other hand, for continuum dislocation
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dynamics to be useful, we would like the core length scale to be much smaller

than the numerical grid, as we hope to model the scale at which much more

than 106 dislocations are evolving; when these dislocations are segmented into

small pieces for simulation, the number of segments would defeat all current

discrete dislocation dynamics simulations.

The convergence properties of turbulence simulations provides us a way of

direct comparison, that could serve as a sanity check (or a similarity confirma-

tion check). Instead of trying to solve the dislocation dynamics equation (4.6),

we solve the equation (4.18) with η , 0, fixing η and checking the convergence

as we increase the grid size.

Figure 4.9 shows the L2 norm of the differences in 2D simulations of succes-

sive grid sizes, with a fixed viscosity η = 10−3 and quartic viscosity η̃ = 10−7.

It is immediately clear that once the grid spacing reaches the “viscosity length

scale”, the sequence becomes convergent and therefore is converging to a solu-

tion. This illustrates the fact that the behavior of our equations are indeed the

same as most expect from the Navier-Stokes equations, and further reinforce the

similarity between continuum dislocation dynamics and high Reynolds number

turbulent fluid flow.

4.6 Conclusion

We have illustrated how the methods used for hyperbolic conservation laws can

justifiably be applied to simulating our continuum theory of dislocations. The

results still exhibit spatio-temporal nonconvergence in two and higher dimen-

sions. However, we find that the behavior is consistent with that of turbulent
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(b) With quartic viscosity η̃ = 10−7

Figure 4.9: Convergence of solutions with fixed viscosity η = 10−3 and quartic
viscosity η̃ = 10−7. Compare to figure 4.7. Same initial conditions in
2D with fixed viscosity η = 10−3 (and quartic viscosity η̃ = 10−7)
show convergent L2 norms at all times.
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Figure 4.10: Nonconvergence in the limit of η→ 0. With the quartic viscosity,
L2 norm differences between the solutions with η̃ and η̃/10 are
plotted for size N = 10242. Note that as seen in figure 4.9, N = 10242

appears convergent for all η̃ used for this plot. However, the
solutions become nonconvergent in the limit of vanishing viscosity.

flow, and the fact that we get fractal dislocation wall patterns and the mapping

to the passive-dust δ-shock equations complement the analogy.

This way of building a continuum dislocation dynamics is relatively new,

and as shown in this chapter it is difficult to properly simulate the systems

that exhibit δ-shocks that form fractals. Nevertheless, as both are experimen-

tally readily observed, it will be necessary for theories to adopt and apply such

methods to study the behaviors of dislocation walls.
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Appendix

Relation to Turbulence

Although we have made direct comparison of our continuum dislocation dy-

namics model to turbulence (comparing the plastic relaxation to the Rayleigh-

Taylor instability, in chapter 3), there are obvious differences that exist between

them. Turbulence is sustained only by constant supply of energy, and turbu-

lent properties, such as velocity correlations, only hold while there is shear flow

and dies away when relaxed. In contrast, our dislocation dynamics relax into

fractal structures, and stay that way forever. So how is it directly analogous to

turbulence?

The answer lies with passive scalar advection in turbulence. When there

are dust particles advected with a turbulent fluid flow, the scalar dust parti-

cles also show turbulent behavior [33, 79]. Turbulent mixing of passive scalar

dust is observed in many systems, such as astrophysical systems [38] and sedi-

mentation [82]. Now recall the argument for δ-shocks presented above. In our

dislocation dynamics, dislocation walls – that become fractal – are formed as a
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result of the flow of the force density field dragging the dislocation density to

segregate at the jumps of the force density. They are passively dragged there and

stay there without diffusing. This makes a nice analogy to passive scalar advec-

tion in turbulent flows, except for the complication that dislocation walls are in

general not completely passive and as they deform they can interact with itself

and others as well.
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CHAPTER 5

δ-SHOCKS IN CONTINUUM DISLOCATION DYNAMICS

5.1 Introduction

When metals are deformed, dislocations are known to nucleate, glide, entangle,

and eventually form various patterns often comprised of wall-like structures.

For decades it has been observed that the dislocation wall structures exhibit

diverse features depending on the material property, loading conditions and

history. Just as the yield stress is known to relate to the grain sizes (the Hall-

Petch [30, 69] and reverse Hall-Petch [75] relations), the scaling of dislocation

structures within cells are known to affect the yield stress and hardening [28]. It

has also been observed that dislocation cell structures refine under strain [36].

However, theoretical and numerical understanding of the behaviors are yet in-

complete as to why and how these dislocation wall structures are formed and

how they affect the material properties.

Particularly, because of the collective nature of the dislocation wall and cell

structure formation, it is deemed necessary to have a coarse-grained continuum

description of the behavior. Traditionally, continuum theories of dislocations

include features designed to capture macroscopic plasticity properties such as

work hardening (statistically stored dislocations, yield stress, dislocation “for-

est” interactions) and anisotropic response (slip systems, yield surface). So far,

these continuum models have not been observed to form walls. To form walls

or other related dislocation structures, either stochasticity [27, 7] or direct simu-

lations of the individual discrete dislocations [55] seemed necessary.
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Recently, a class of fully deterministic continuum dislocation dynamics mod-

els (without discreteness or stochasticity), originally proposed by Acharya [1],

have been shown to spontaneously develop dislocation wall structures and cel-

lular patterns [49, 17] (see also Chapter 2 and Figure 5.1). Why do we form walls,

where other more realistic theories do not? Does incorporating work hardening

or other realistic features impede the formation of these wall structures some-

how? Are the walls an artifact of our numerical methods? We shall show in

section 5.2 that identical numerical methods applied to the traditional models,

simplified to remove work hardening and other realism, do form jumps in dislo-

cation density but do not exhibit wall formation. In section 5.3 we will introduce

recent continuum dislocation dynamics theories that do exhibit wall formation;

and we shall argue in section 5.4 that these walls are generally expected for

multicomponent conserved systems that form jumps in the conserved density,

whenever the velocities of the different components are directly coupled. How-

ever we observe that the dynamics of the different slip systems in the traditional

theories are coupled only through the stress (a nonlocal function of the densities

on the various slip systems) – hence no walls. In section 5.5 we propose various

mechanisms that could couple these velocities, and we show that these pro-

posed modifications of the traditional theories do indeed form wall-like struc-

tures, although the numerical methods we use smear these walls somewhat dur-

ing their formation. In section 5.6, we show in detail why our isotropic model

and the modified traditional models form wall structures.
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(a) Dislocation wall structures in 2D

(b) Dislocation wall structures in 3D

Figure 5.1: Dislocation wall structures formed in continuum dislocation
dynamics. Our continuum dislocation dynamics simulation
exhibits complex dislocation wall structures evolved from a smooth
random initial condition. Net local dislocation densities are plotted
with black representing high dislocation density.
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5.2 Continuum dislocation dynamics and dislocation pattern-

ing

The accurate prediction of macroscopic loading behaviors in stress-strain curves

and their history dependence is the essence of the study of plasticity, the engi-

neering theory underpinning the deformation of crystals and polycrystalline

materials. For that reason, continuum theories of plasticity often incorporate

many details of the particular targeted material1. The crystalline model is

anisotropic, with specified active slip systems, contains (locally) canceling dislo-

cations called statistically stored dislocations (SSDs)2, whose velocities are given

by complicated functions of local stresses and the local total dislocation density

(mainly composed of SSDs).

These traditional theories [5, 6, 41, 37, 73] end up evolving a family of slip

parameters γ(α):

∂tγ
(α)
= V(σ(α))ρ(α) (5.1)

where α denotes different slip systems3, γ(α) denotes the local amount of slip

on that system, σ(α) denotes the resolved shear stress on that system, ρ(α) is the

dislocation density in the system, and γ(α), σ(α), and ρ(α) are all functions of po-

sition. The velocity V(σ(α)) is often a nonlinear function of the resolved shear

stress, with the yield stress represented as a threshold [85], or as a high power

1This type of modeling is designed to bridge the gap between crystal plasticity, where a
crystal is modeled with volume elements of different orientations, and microscopics effects of
SSDs and their resulting hardening behaviors.

2Statistically stored dislocations are dislocations within the volume element of the contin-
uum dislocation simulation whose Burgers vector densities cancel one another.

3Each slip system (α) is defined by a plane normal n̂(α) and the Burgers vector b̂(α). Most
well-studied materials have fcc or bcc slip systems. For the simulations presented here, we use
a cubic slip systems where both the slip plane normals and Burgers vectors are parallel to x̂, ŷ, ẑ
directions for simplicity.
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law in the stress [59], which may depend on the total densities of dislocations

on other slip systems.

The simplest version of these theories, without yield surfaces or work hard-

ening, would have the slip velocity proportional to the resolved shear stress:

∂tγ
(α)
= σ(α)ρ(α) (5.2)

Ignoring all short range interactions – since they are tricky4 to deal with –

we get a simple PDE:

∂tγ
(α)
= σ(α)‖∇γ(α)‖ (5.3)

where we assume ρ(α)
= ‖∇γ(α)‖. Here dislocation density ρ(α) computed from

the slip parameter γ(α), i.e. ρ(α)
= ‖∇γ(α)‖ could be either

‖∇γ(α)‖ =
√

(∇γ(α)) · (∇γ(α)) (5.4)

or

‖∇γ(α)‖ = |b̂(α)∇̇γ(α)| + |(n̂ × b̂)(α) · ∇γ(α)|, (5.5)

depending on how one models the dislocation density5. Choosing the dislo-

cation density based on the derivatives of the slip parameter results in SSDs

becoming irrelevant; sub-grid scale local fluctuations in slip, which is related

to SSDs, is neglected and only geometrically necessary dislocations (GNDs) re-

solved by the gradients in γ remain important. Finally, using Eq. (5.5), we can

write equation (5.3) as:

∂tγ
(α)
= b̂ · ~V(α)

edge
(b̂ · ∇γ(α)) + p̂ · ~V(α)

screw(p̂ · ∇γ(α)) (5.6)

where b̂ is the Burgers unit vector for (α) and p̂ = b̂ × n̂ where n̂ is the slip

plane normal unit vector for (α). ~V(α) are the velocity of the edge and screw

4See Refs. [31, 23] for some approximate attempts at dealing with short-range interactions.
5Different ways of writing this density qualitatively do not change the behavior.
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dislocations, which in the simplest form would be

~V(α)
edge
=b̂σ(α)sign(b̂ · ∇γ(α))

~V(α)
screw = p̂σ(α)sign(p̂ · ∇γ(α)).

(5.7)

Figure (5.2) shows the resulting evolution. The traditional slip-system mod-

els, simplified to Eq. (5.2), do not form dislocation wall structures. Starting from

a smooth random distribution of dislocation density, the dislocation density

forms jumps – shocks – in various places, but no sharp dislocation walls are

observed (see Figure 5.3a for a one dimensional cut).

Why do the dislocation densities even form jumps in these traditional meth-

ods? Note that Fig. 5.2 depicts the net dislocation density. Consider the case of

dislocations with Burgers vector along x̂ with density ρ(x) varying only along

x. The long-range stresses between these dislocations cancel out (they form a

continuous family of low-angle tilt boundaries along yz planes), but under an

external resolved shear stress σ the positive densities will move to +x̂ direction

and the negative densities will move to −x̂ direction, each with speed |V(σ)|.

Since models that evolve slip densities γ will automatically annihilate the pos-

itive and negative densities when they meet, such models will form a step dis-

continuity in density starting at every place where the density changes sign and

the external stress pushes them together.

5.3 Cell wall structures in Continuum Dislocation Dynamics

Since the constitutive laws of these materials already include phenomenological

models of work hardening, these traditional models are not designed to explain
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(a) t = 0

(b) t = 20

Figure 5.2: Dislocation density evolved with slip dynamics. The simplified
slip dynamics forms jumps in the dislocation density, but no
apparent walls are formed. The net dislocation densities are plotted
with black representing high dislocation density. Note that the
sharp white interfaces in (b) are not walls; the dislocation density
jumps and goes through zero (see Figure 5.3).
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(a) t = 20, f = 0

(b) Comparison of dynamics

Figure 5.3: 1D cross-sections of dislocation density components. (a)
Traditional model forms jumps, not walls. One-dimensional
cross-sections along the z-axis showing all components of the Nye
dislocation density tensor. See 5.2b and 5.4b for the full 3D plot.
Note the jump in density of ρxz (large symbols); none of the
components show wall formation. (b) Adding coupling forms
walls. Total squared dislocation density along the same line, with (i)
no coupling of velocity (ii) f = 0.5 (iii) f = 0.2 after loading to strain
ǫ = 0.25, (iv) f = 0.5 after loading to strain ǫ = 0.1, (v) f = 0.8, and
(vi) our isotropic continuum dislocation dynamics (CDD). The
squared dislocation density ρi jρi j show no obvious hint of walls
without the velocity coupling, but f = 0.5 and f = 0.2 after straining
display wall formation (albeit smeared and wide). f = 0.8, f = 0.5
after straining, and our isotropic CDD show sharp walls.
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the origins and evolution of the yield stress as it emerges from the collective

physics of hardening at more microscopic length scales. But this regime of col-

lective dynamics is without question interesting, as it harbors the explanations

of the whys and hows of the macroscopic behavior. To address these questions,

one can move towards directly coarse graining the microscopic physical be-

havior without incorporating phenomenological macroscopic relations. There

are several approximate schemes that have been pursued: Groma et al. [27]

started by assuming that only one (or a few) slip system(s) is(are) activated

and relevant, but did not neglect the effect of statistically stored dislocations

that arise in the process of coarse graining. Acharya [1] and later6 Limkumn-

erd and Sethna [49] developed models of isotropic plasticity; they neglected the

statistically stored dislocations under the assumption that at mesoscopic scales

geometrically necessary dislocations dominate the dynamics.

These last recent theories are based on the dynamic evolution of the Nye

dislocation density tensor ρi j
7 as [1, 49] (also Chapter 2):

∂tρi j = fiuv∂uJv j (5.8)

Here the conserved current Jv j = ∂tβ
P
v j is given by:

∂tβ
P
i j = fℓikVℓρk j = Vℓρℓi j (5.9)

where ρi j = fimn∂mβ
P
n j and ρℓi j = fℓikρk j. The overdamped velocity assumption

gives Vℓ = D(ρ)Fℓ, where F is the net Peach-Koehler force on the local disloca-

tion density.

Chapter 2 and Ref. [17] discuss howVl can be defined in terms of ρ in detail.

6Acharya [1] had previously written the same isotropic theory, but most of their early work
focused on GNDs in a single slip system, and they did not notice that their theories formed
walls.

7Also often denoted α ji.
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In one of the two glide-only versions, we force the local material volume to be

conserved and also ensure that the dynamics guarantees that the energy goes

strictly downhill. These constraints lead to the dynamics (see Chapter 2)

∂tβ
P
i j = V′ℓρ′ℓi j = D(ρ)ρ′ℓmnσmnρ

′
ℓi j (5.10)

where ρ′ℓi j = ρℓi j− 1
3δi jρℓkk and where D(ρ) is a mobility function8. (The glide-only

condition can be imposed also in a different way, as a vacancy pressure induced

by the vacancy generation/absorption associated with the climb process, in the

limit of infinitely expensive vacancies [2, 17]. The differences between these

two dynamics are not important within the scope of this paper as both share the

same qualitative behaviors. We will focus here on the first glide-only dynamics.)

How do the traditional methods (Eq. 5.2) and the new methods (Eq. 5.9) com-

pare? They are not all that different: βP
i j is the same physical quantity as γ(α), and

the currents in both cases are given by a force: the shear-resolved stress on the

dislocations times the dislocation density. How are they different? For Eq. (5.2),

all types of dislocations – edge and screw in various slip systems – each have

their own velocity and move independently, except by interacting through the

stress. For Eq. (5.9), in contrast, there is a single velocity for all components of

the dislocation density tensor: the net stress is not separated into stresses on the

different slip systems, but applied to the local dislocation density, which moves

‘as a unit’. But, the most central distinction is in the resulting behavior. As noted

above, the traditional models form steps in the dislocation density but no walls

(Fig. 5.2), whereas Eq. (5.9) – isotropic continuum dislocation dynamics (CDD)

8We use D(ρ) = 1/|ρ| where |ρ| = √ρi jρi j for the dislocation wall velocity to be physical, i.e.
independent of the wall thickness. Variants such as D(ρ) = 1 are used as well for mapping the
equation into the Burgers equation [51]. Note that D(ρ) = 1 and D(ρ) = 1/|ρ| are dimensionally
incompatible. All PDEs discussed in this manuscript must have a constant factor that can be
attributed to rescaling of time that gives the terms proper dimensionality. For simplicity, and
consistency with preceding work, we neglect such constants in our discussion here.
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– forms striking wall structures (Fig. 5.1).

5.4 Physics behind wall formation

How do we explain why walls form in the new theories? Let us presume that

steps in dislocation density form naturally (as for the traditional theories, de-

picted in Fig. 5.2). Each of the components of the dislocation density tensor

is conserved. Let us restrict our attention to the problem in one-dimension;

in higher dimensions, the jumps form with co-dimension one and similar argu-

ment can be made 9. Generally it is presumed that, at steps in the density of con-

served quantities, the velocity s at the step must satisfy the Rankine-Hugoniot

condition:

s =
V+ρ+ −V−ρ−
ρ+ − ρ−

(5.11)

balancing the volume s(ρ− − ρ+)∆t of the rectangle filled in by the moving step

with the net fluxV+ρ+−V−ρ− of conserved material impinging on the step. This

is not a physical necessity: indeed, violation of the Rankine-Hugoniot condition

would precisely imply the deposition of a finite density of new material at the

step – forming a wall.

Now, in a multicomponent system there is a separate Rankine-Hugoniot

front velocity condition sℓi j for each of the nine independent component of the

conserved dislocation density tensor ρℓi j, where Vℓi j depends in general on all

components ρmno. Since these velocities ordinarily do not agree, wall formation

is natural. (In the particular case of the new theories exemplified by Eq. (5.10),

all dislocations share the same dislocation velocity V, but will have different

9Rigorous mathematical proofs in higher dimensions are typically difficult or impossible,
however.
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Rankine-Hugoniot step velocity criteria.) Multicomponent systems do not gen-

erally have simple evolving step solutions; although other solutions are possible

(e.g., breakup into multiple steps [46]), developments of walls in the conserved

quantity must be considered generic when physically reasonable.

How do we explain that the traditional (multicomponent) systems do not

form walls? First, the stress tensor (and hence the shear-resolved stress) is a

nonlocal function of the dislocation density – basically an integral. A step dis-

continuity in the dislocation density generates only a cusp (derivative disconti-

nuity) in the stress. For models (like Eq. (5.2)) where the dislocation velocity is a

function of the local stress, the velocitiesV+ = V− at the two sides of the jump;

hence all components share the same Rankine-Hugoniot velocity s = V+ = V−.

Second, for models where the dislocation velocity depends directly on the local

dislocation density, the models usually do not incorporate annihilation; the pos-

itive and negative components of the dislocation density evolve independently,

and steps may not arise. Whether the lack of wall formation in these theories is

an asset or a handicap depends upon whether the new theories have the correct

mechanism underlying the physical process.

5.5 Modification to traditional continuum models

In section 5.4, we have discussed the essence of why and how dislocation walls

are being formed in the models presented in section 5.3. These models [49] (also

Chapter 2) exhibit intriguing fractal morphology akin to those seen in exper-

iments, yet are very minimalistic and missing most material dependent fea-

tures. Conversely, the traditional continuum models are missing the dynami-
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(a) With f = 0.2, relaxed

(b) With f = 0.5, relaxed

Figure 5.4: Relaxed dislocation wall structures formed in modified slip
dynamics. Traditional slip dynamics with the dislocation velocity
modified to add velocity coupling between slip systems, which
leads to sharp dislocation wall structures driven by jumps in some
components. Compare (a) and (b) to Fig. 5.2: although f = 0.2 does
not make a big difference, f = 0.5 clearly leads to sharp dislocation
wall structures.
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(a) Without coupling ( f = 0), strained to ǫ = 0.5

(b) With f = 0.2, strained to ǫ = 0.5

Figure 5.5: Strained dislocation wall structure formed with small velocity
coupling under load. Compare to figure 5.4 where f = 0.2 does not
seem to have significant wall formation. Under load, it becomes
much more clear that even small couplings can still lead to
dislocation wall structures.

cally formed dislocation wall structures.

The discussion of the previous section hints at what they maybe missing;
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when velocities of different slip systems are directly coupled, jumps in one slip

system may lead to dislocation walls in other slip systems. Many physical (mi-

croscopic) mechanisms may lead to this effect: e.g. cross slip (velocities coupled

through cross-slipped segments), mobile double junctions, . . . . Here we propose

a simple model of mobile double junctions leading to cross-coupled velocities.

Consider the case when two dislocations intersect and form a double junc-

tion as they cross each other. One can easily envision that this junction will act

as a binding force that will effectively “mix” the velocities of the two disloca-

tions. Physically, this interaction will be rather complicated, depending on the

anisotropy of the crystal and the geometry of the intersection, the junctions will

have sophisticated physics [42, 54, 13, 14]. We will choose a zeroth-order mini-

malistic description where the interaction drags each dislocation to partly move

with the other, depending only on whether the lines are close enough and share

glide directions. The equations prescribing this added term can be written as:

∂tγ
(α)
=(1− f )σ(α)‖∇γ(α)‖

+ f
[
(b̂ · ~V)(b̂ · ∇) + (p̂ · ~V)(p̂ · ∇)

]
γ(α)

(5.12)

where

~V =
∑
β
~V(β)

edge
|ρ(β)

screw| + ~V(β)
screw|ρ(β)

screw|
∑
β |ρ(β)

screw| + |ρ(β)
edge
|

.

V(β)
edge

and V(β)
screw are defined in Eq. (5.7). Velocity coupling coefficient f (0 ≤

f ≤ 1) represents the strength of velocity coupling, and for f = 0 Eq. (5.12) is

equivalent to Eq. (5.3).

Simulation results solving Eq. (5.12) are shown in figure 5.4. With f = 0.2

the dislocation density shows jumps (valleys) as in figure 5.2b, however with

f = 0.5, dislocation wall structures are formed. Because the velocity coupling

term is very similar in this case to Eq. (5.10), this may not be so striking as
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half ( f = 0.5) of the dynamics can be attributed to the velocity coupling term

which, considering the resemblance to Eq. (5.10), likely leads to walls by itself.

However, upon loading the relaxed specimen to strain ǫ = 0.25, smaller values

of f that does not exhibit walls under only relaxation, e.g. f = 0.2 is enough to

display wall formation while the absence of this term leads to no walls (Figure

5.5).

Figure 5.3 illustrates the behavior in 1D cross-sections of the 3D simulations

comparing several f values, some relaxed and some strained states. It is clearly

observed that the absence of velocity coupling yields smoothly varying disloca-

tion density whereas increasing velocity coupling term and also straining after-

wards in the presence of coupling leads to sharper wall structures.

5.6 Description of wall formation

The wall formation mechanism explained through sections 5.3 and 5.5 appears

to be both simple and general; but how do we ascertain that the mechanism is

indeed mathematically correct for the models, apart from the evidence provided

by the simulations (see Chapters 3 and 4)? In this section, we will elaborate

on the details of the wall formation mechanism in Eqs. (5.9) and (5.10); we will

show that the equations are directly related to equations that are mathematically

proven to form δ-shocks [81].

In Ref. [51] it was shown that our CDD equation in 1D with free boundary

condition and the choice of D(ρ) = 1 can be transformed to the Burgers equa-

tion. The Burgers order parameter is the velocity Vz (or equivalently the force

density). Burgers equation is the prototypical model equation for conservation
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laws that form shocks:

∂tVz + ∂z(V2
z ) = 0 (5.13)

We start with a nine component set of equations for the Nye dislocation den-

sity tensor and this is only one particular combination of them; what happens

to the other 8 (independent) components? This turns out to have a simple an-

swer. Because the dislocation density has a single velocity field shared among

the components in this model, given by the net Peach-Koehler force, each com-

ponent ρi j evolves as:

∂tρi j + ∂z(Vzρi j) = 0 (5.14)

Equations (5.13) and (5.14) turn out to be a rather well-studied set of equa-

tions (in the two-component case) for a simplified pressureless gas dynam-

ics [81, 48], which is known to form δ-shocks (i.e., our dislocation walls). We

defer the detailed discussion of the solutions to the references [81, 48, 21]; but

in essence, when V develops an ordinary jump, ρi j is passively dragged by V

toward the jump and is forced there to form a δ-shock. This type of singular-

shocks has not been commonly observed in fluid dynamics. But when micro-

scopic physics – such as short range interactions between microscopic entities –

governs the behaviors of singularities, singular-shocks may appear quite gener-

ically in physical systems (see chapter 6).

Note that this mapping is only achievable in a particular setting, where

D(ρ) = 1 with free boundary condition and in 1D. However, the passive advec-

tion of ρi j seen in Eqs. (5.14) generalizes much more broadly to the new theories,

leading to δ-shock walls robustly, independently of how exactly the equation is

written.
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We have shown that (slightly smeared) walls naturally form within the tra-

ditional slip-system dynamics models when the velocities are coupled. We have

pointed out that these models naturally form jumps in some components of the

order parameter, and that these jumps (when the velocities are coupled in any

way) will naturally build up walls of the other order parameters at the jump. In

the new theories, we showed that these multiple components all are swept into

the shock with the same velocity field – as passive scalars, they form a δ-shock

at the moving jump.

But a final question arises: why are the walls smeared in the traditional slip-

system models (Figs. 5.2, 5.3, and 5.4), rather than forming the elaborate, fractal

structures exhibited by the new theories (Fig. 5.1)? The wall components them-

selves have dynamics: they move according to their (now coupled) resolved

shear stresses, and will in general move in different directions and velocities

than the jump that formed them. The smeared walls may be an artifact of

the simulational method, that imposes the continuum evolution laws (as ’weak

solutions’) onto regions whose densities and gradients are too high for those

laws to be valid (we discuss this further in Chapter 6). Physical grain bound-

aries and cell walls would presumably maintain their integrity once formed –

evolving according to their mobility and the applied traction. But even within

the current dynamical evolution algorithms, we see clear indication that wall-

formation physics is generic for multicomponent dislocation dynamics models,

except when the velocities for different slip systems are entirely free of local

coupling.
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5.7 Conclusion

We have illustrated the inner workings behind the dislocation wall structure

formation as given by a minimalistic isotropic continuum dislocation dynam-

ics theory [49, 1] (also Chapter 2). In essence, all dislocation dynamics mod-

els have Burgers equation-like behavior through which the dislocation velocity

evolves and form shocks where there is “annihilation” of dislocation compo-

nents. In models where dislocations of different flavors interact and can drag

other types to some extent, it will lead to pile-up of dislocations where the jump

is formed. This is a completely different, novel physical mechanism for wall

formation, that does not rely on the energetic preference of dislocations to form

stress-free walls. We do not claim to have proven that this mechanism is op-

erative in real systems; experiments are needed to distinguish our mechanism

from (say) stochastic and discreteness driven mechanisms [55, 27, 7].
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CHAPTER 6

REGULARIZATION AND SINGULAR SHOCKS IN CONSERVATION

LAWS

6.1 Introduction

The existence and uniqueness theorems of ordinary differential equations are

not applicable to many partial differential equations: indeed, the latter often

form singularities in finite time. Continuum theories in materials physics also

form singularities. Vacancies, dislocations, cracks, and grain boundaries in

crystals, steps and facets on surfaces, disclinations and focal conic structures

in liquid crystals all form and evolve as systems minimize their free energies

and/or respond to external stresses, fields, and boundary conditions. How do

we evolve our equations after these singularities arise?

In physics, it is understood that the continuum equations must be supple-

mented by separate evolution laws for the defects. Vacancies have diffusion

constants and effective electromigration charges, dislocations have glide and

climb mobilities, cracks have critical stress intensities and growth laws [32] – all

dependent upon geometry and temperature through their atomic-scale struc-

tures. In the mathematical study of shock-forming partial differential equations

(PDEs), this indeterminacy is partially manifested through a multiplicity of weak

solutions, although the primary focus has historically been on a particular class,

satisfying entropy conditions or defined by the vanishing of a regularizing dif-

fusive viscosity.

Here we argue for a broader approach to singularity evolution than these
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vanishing viscosity solutions; we propose a new class of problems and solutions

that require different methods and treatments to find the physical solutions. The

historical focus on vanishing viscosity solutions is justified by the fact that the

leading ignored microscopic corrections to many continuum laws are indeed

diffusive. This is commonly true of fluid systems, where the Navier-Stokes

equations1 simplify(or complexify) to shock-forming systems describing (e.g.)

sonic booms, tidal waves [46], and galactic matter [22]. Indeed, in fluid systems

one may derive an entropy condition from the microphysics, which in turn can

be shown to imply the vanishing viscosity limit as the appropriate weak so-

lution. But these vanishing viscosity solutions are not the obvious choice in

other physical systems, such as traffic models [47], continuum theories of dislo-

cation dynamics [49, 16] and facet growth on grown or etched surfaces [72, 88],

where viscosity, entropy, and weak solutions are not relevant to the microscopic

behavior. Here we bring ideas from materials physics to inspire new applied

mathematics approaches for singularity evolution.

Indeed, we shall argue that the appropriate weak-limits that define the phys-

ically reasonable solutions of these physical systems are not typically weak so-

lutions as commonly defined. The singularities in weak solutions must obey

the continuum laws in integral form; we argue that the continuum equations

are simply inapplicable in singular regions where high densities and gradi-

ents violate the continuum assumptions. In particular, for dislocation dynamics

the physical systems develop sharp walls of dislocations (grain boundaries and

cell walls), corresponding to δ-shocks in the continuum partial differential equa-

tion [81, 16].

1It is not known whether the Navier-Stokes equations have finite-time singularities for
smooth initial conditions. There are conjectures that the Euler equations (Navier-Stokes without
viscosity) do have such singularities [71, 80].
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We begin in section 6.2 by discussing the solutions of the Burgers equation

in conservation-law form. We also note the known fact [81] that δ-shocks arise

even in the viscosity solutions for some multicomponent systems. We note that

in multicomponent systems the Rankine-Hugoniot conditions for general jump

discontinuities are not soluble, and that some other mechanism like δ-shocks

must arise. In subsection 6.2.3, generalizing the Rankine-Hugoniot condition

on the jump discontinuities to allow for δ-shocks will be seen to decouple the

jump velocity from the continuum equations, allowing for a family of physi-

cal solutions that could be tuned to reflect the microphysics. And we discuss

other known families of solutions in subsection 6.2.4, explaining the distinction

between these and the proposed singular solutions. In section 6.3 we discuss

these shock-forming systems more broadly in the context of numerical methods

for evolving defects and defect structures.

6.2 Burgers equation and δ-shocks

Hyperbolic conservation laws and the entropy solutions are the traditional fo-

cus of hyperbolic partial differential equations community. We will first intro-

duce the basic ideas of hyperbolic conservation laws and their (entropy) solu-

tions. Then, we will propose and argue that when the singularities’ dynamics

are not determined by the continuum equations, the physical solutions are dif-

ferent from the traditional weak solutions and therefore need a new class of

mathematical and numerical methods to probe the solutions corresponding to

the correct microscopic physics of singularities.
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Figure 6.1: Solutions to the Burgers equation. At t = 0, initial condition is
chosen to be a smooth profile as u(x, t = 0) = sin(2πx) + 0.3 with
x ∈ [0,1) and periodic boundaries. At around t = 1/2π ∼ 0.159, sharp
jump(or shock) is formed.

6.2.1 Solutions to the Burgers equation

We begin with the conservation-law form of Burgers equation, the classic shock-

forming partial differential equation

∂tu + ∂x f (u) = ∂tu +
1/2∂x(u

2) = 0, (6.1)

where f (u) = 1/2u2 is the flux of the conserved quantity u (It can also be thought

of as a 1-D simplified version of the Euler equation for fluid dynamics [46].). It

is straightforward to see that the Burgers equation can develop shocks in finite

time: a linear region of negative slope u = α(0)x will evolve α̇ = α2 yielding

α = 1/(tc − t) with a divergence at t = tc.

Once there is a shock, there is no straightforward solution to the equation
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(6.1) because of the diverging derivatives. Indeed, it is clear that we cannot con-

verge pointwise to the traditional jump-singularity solution expected for the

Burgers equation (Fig. 6.1); any error in the jump position x0(t) leads to a large

discrepancy (albeit in a small region). Instead, it is physically and mathemati-

cally sensible to insist on what is known as weak limits. Loosely, a sequence of

smooth functions un(x, t) converges weakly to the singular solution u(x, t) if

lim
n→∞

∫
φ(x, t)un(x, t)dxdt →

∫
φ(x, t)u(x, t)dxdt (6.2)

for all smooth functions φ(x, t) vanishing at infinite time and space (similar to

how a δ function is defined as a generalized function and a sequence of smooth

regular functions is a “solution in the sense of distribution.”) This solution should

of course obey the equations of motion (Eq. 6.1) everywhere away from the

shock at x0(t). It is also important to insist upon satisfying the conservation law

in the vicinity of the singularity: for any ǫ > 0 the flow f into the singularity

region minus the flow out must be reflected in the amount near the singularity

∂

∂t

∫ x0+ǫ

x0−ǫ
u(x, t)dx = f (x − ǫ) − f (x + ǫ)

=
1/2u2(x − ǫ) − 1/2u2(x + ǫ).

(6.3)

These conditions are combined in the PDE community into a single seemingly

equivalent criterion: a weak solution to a differential equation is one which solves

the equation of motion in a weak sense. Consider multiplying the equation of

motion by a smooth function φ(x, t) which vanishes as x, t → ±∞, and integrating

over time and space,
∫
φ∂tu =

∫
φ1/2∂x(u

2),

−
∫

u∂tφ = −
∫

1/2u2∂xφ, (6.4)

where the second equation is formed by integrating by parts. A function u(x, t)

which satisfies Eq. (6.4) is said to be a weak solution. The definition of the weak
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solution elegantly avoids the specification of the location of the singularity x0(t).

However, we shall see that it does not allow for many physically reasonable so-

lutions that both form weak limits (eqn 6.2) and satisfy the conservation laws

(eqn 6.3). The weak solution demands that the continuum equations apply also

to the singularity (during the limiting procedure) – whereas physically the evo-

lution of the singularity should be governed by different microphysics.

Even within this restricted class of solutions (the “weak solutions” as defined

above, which is much more restricted than the “weak limits” discussed ahead

in that the singularities in the weak solutions obey the continuum equations

through a limit), there can be many weak solutions of the same initial value

problem. The one most commonly studied is the vanishing viscosity solution,

found by adding a ‘viscous’ diffusive term to the equations of motion (eqn 6.1),

∂tu +
1/2∂x(u

2) = ν∂xxu (6.5)

and then taking the viscosity ν to zero. As long as the viscosity is non-zero, it

smoothens the sharp interfaces and allows for a mathematically well-defined

and numerically tractable differential equation.

The properties of the vanishing viscosity solutions for the Burgers equation

can be understood by studying the associated Riemann problem. Consider an

initial value problem with a single jump at x = 0 from u− to u+. To the left

(x < 0) the flux into the jump is f (u−) = 1/2u2
−; to the right the flux away from the

jump is f (u+) = 1/2u2
+
. If we presume that the solution remains a jump moving

with velocity s, then after a small time ∆t there is a hole of size s∆t(u− − u+) of

new conserved u that needs to be filled behind the moving front. Matching the

net flux in to the growth rate, we find the Rankine-Hugoniot condition for the
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velocity

sRH =
f (u−) − f (u+)

u− − u+
. (6.6)

The presumption that the singularity remains a single jump, plus the Rankine-

Hugoniot condition, provides a complete specification of a weak solution for the

Burgers equation for smooth initial conditions. Is it the same as the vanishing

viscosity solution? One can show that for negative jumps u− > u+ the vanishing

viscosity solution does indeed remain jump-like, but for positive jumps an ini-

tial step will smoothen into a rarefaction wave. Smooth initial conditions evolving

under Burgers equations never develop positive jumps, though, so the Riemann

solution is completely equivalent to the vanishing viscosity solution for smooth

initial conditions. Indeed, many numerical methods are based on the correct

implementation of the corresponding Riemann problems [46].

The fact that the vanishing viscosity solution in Burgers equation basically

agrees with the Rankine-Hugoniot condition, and can be justified for fluid prob-

lems based on the ‘entropy condition’ (not discussed here), has led the numeri-

cal analysis community to focus on developing efficient algorithms for extract-

ing the limit of small viscosity in an efficient manner.

6.2.2 Multi-component nonlinear problems with genuine δ-

shocks

In many physically interesting problems, however, the problem is often not

described by a single component equation; the models are generically multi-

component and nonlinear. What happens with multi-component nonlinear

problems? Let us generate a two-component equation from Burgers equation
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Figure 6.2: Solutions to pt + (1/2(p + n)p)x = 0 and nt + (1/2(p + n)n)x = 0, equations
(6.7) and (6.8). Note that both p and n develop δ-shocks as they
evolve, starting from a smooth initial condition.

by writing u = p + n, with p and n two separately conserved quantities. Sup-

pose that overall the dynamics is still the same, i.e. each component flows with
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velocity u = p + n. This leads to a set of equations:

∂t p +
1/2∂x

[
(p + n)p

]
= ν∂2

x p (6.7)

∂tn +
1/2∂x

[
(p + n)n

]
= ν∂2

xn (6.8)

Adding and subtracting equation (6.8) to equation (6.7) respectively can also be

written as

∂tu +
1/2∂x(u

2) = ν∂2
xu

∂tv +
1/2∂x(uv) = ν∂2

xv
(6.9)

where u = p + n and v = p − n.

We immediately see a serious problem: the Rankine-Hugoniot velocity for u

does not agree with that for v

su =
1/2(u

2
− − u2

+
)/(u− − u+) =

1/2(u− + u+)

sv =
1/2(u−v− − u+v+)/(v− − v+)

(6.10)

except when the additional jump condition v+/v− = u+/u− happens to be satis-

fied (not true in general). Since u satisfies the original Burgers equation and v is

slave to u, v will remain smooth until u forms cusps, at which point something

must happen.

How does the vanishing viscosity solution deal with this conundrum? It

turns out that variants on the set of equations (6.9) have been rather well stud-

ied, and that they form δ-shocks [81, 21, 48]. That is, the vanishing viscosity

solutions to this problem contain δ-functions in v and conventional shocks in u.

However, if one looks at the components p and n, both would contain δ-shocks.

Figure 6.2 illustrates what happens with the equations (6.7) and (6.8). No-

tice that both p and n develop δ-shocks. Figure 6.3 instead simulates the equa-

tions (6.9), where it is seen that only v develops a δ-shock where u forms a
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Figure 6.3: Solutions to ut + (1/2u2)x = 0 and vt + (1/2uv)x = 0, equations (6.9). These
are the same set of equations discussed in Ref. [81] albeit simulated
with central upwind method [43] rather than an explicit vanishing
viscosity solution. Note that on the one hand the central upwind
method is not proven to yield the vanishing viscosity solution for
this problem, and also that (as discussed in Ref. [18]) the vanishing
viscosity solution may not exist.
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jump(shock). Note that this is (likely) a vanishing viscosity solution, and also

(likely) a weak solution, although we have not proven either fact.

Some of the theorems and algorithms demand strict hyperbolicity [46]. Note

that eqn (6.9) is not strictly hyperbolic: the two eigenvalues u and 2u become

degenerate when u = 0, the umbilic point of the equations. However, this is

not the root cause of the δ-shocks, as they arise even for initial conditions which

avoid these umbilical points. Indeed, there are other strictly-hyperbolic PDEs

which are known to form δ-shocks in their vanishing viscosity solutions [81].

Note also that our argument is generic. In some systems, such as magne-

tohydrodynamics, such a jump is known [22] to split up into multiple “wave”

components which each obey the relevant extra conditions. (Such a decompo-

sition is not possible for eqns. (6.10); partial jumps in u have velocities which

cause them to merge so long as u− > u+.) Only when this happens, and the

waves conspire to each satisfy its Rankine-Hugoniot condition, will the system

not form δ-shocks. In general, however, conforming to all R-K conditions at the

same time everywhere may not be possible. Hence, we see that δ-shocks likely

will arise, even as weak solutions for many multi-component systems.

6.2.3 Physically sensible singular solutions

But physically, even for a single component model, the vanishing viscosity solu-

tions with shocks are not the only physically sensible solutions; in some cases a

mismatch of the flow of the conserved quantity at a boundary can lead not only

to boundary motion, but also to a pile-up of the conserved order parameter at

the boundary. (This is a sensible model to the physical problem of the accumu-
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lation of dislocations into moving grain boundaries during polygonization in

crystals at high temperature [9, 51], and is the proposed mechanism for the for-

mation of the typical ‘cell boundary’ dislocation patterns in crystals deformed at

low temperatures [16].) In such a case, the solution to the Riemann initial value

problem u− for x < 0 and u+ for x > 0 would at short times be approximately

u(x, t) =



u−(x, t) x < st

u+(x, t) x > st

∆s(t)δ(x − st) x = st.

(6.11)

where δ(x − st) is a Dirac δ-function2 at the moving interface. The amplitude of

the δ-shock evolves as

d∆s

dt
= (flow in) − (hole filled)

= f (u−) − f (u+) − s(u− − u+).
(6.12)

This is called the generalized Rankine-Hugoniot condition (originally derived

for multi-component equations developing δ-shocks as vanishing viscosity so-

lutions [81, 48]), incorporating the δ-shock pile-up at the boundary. A physicist

must then turn to a more microscopic theory to determine the evolution law for

the defect velocity s:

s = s(u−, u+,∆s). (6.13)

(Insofar as s depends on ∆s, eqn (6.11) is an approximation; the true equation

should have the shock not at st moving linearly with time, but at position x̂(t)

with dx̂/dt = s(u−, u+,∆s).) For the Burgers equation, we only need an equation

for u− > u+ (since these are the only shocks that spontaneously arise), and we

probably expect that 0 ≤ s ≤ sRH, but otherwise the jump velocity is undeter-

mined.

2A δ-function can be viewed as a point mass at the origin:
∫ B

A
f (x)δ(x)dx = f (0) if A < 0 < B.
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However, we argue that δ-shocks should be not just tolerated when neces-

sary. Rather, they should be considered as legitimate solutions whenever phys-

ically indicated, even when viscosity or other regularizations can avoid them.

Figure 6.4: Burgers equation with modified singularity dynamics. Simulated
with N = 4096and ǫ = 5/N2. Equation (6.14) is the same as the
Burgers equation in the limit of ǫ → 0; smooth parts evolve
according to the Burgers equation. However, as the shock forms and
progresses, shock velocity (zero) differs from Rankine-Hugoniot
condition and δ functions pieces grow at the shock as ǫ → 0. (The
net strength of the δ-shock is the difference between the positive
and negative spikes, which remains fixed as ǫ → 0.)

As an explicit example of a PDE wth ‘microphysics’ that leads, as ǫ → 0, to a

version of the Burgers equation which violates the Rankine-Hugoniot condition,

consider

∂tu + ∂x

(
1/2u2 exp(−ǫ(∂xu)2)

)
= 0 (6.14)

In the limit, it is clear that the solution obeys the Burgers equation where it

is smooth, away from the singularity. However, where there are shocks, the flux

is suppressed to zero and the shocks, once formed, do not move (s = 0). Figure

6.4 illustrates the solutions to equation (6.14); because the shock does not obey
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its Rankine-Hugoniot condition, it develops a δ function at the position of the

shock.

6.2.4 Previous variants on shock dynamics

There are two well known ways that seemingly benign alterations of a PDE can

generate different solutions; we will show that our weak limits do not belong to

these categories. In this subsection, we will discuss and explain that our weak

limit solutions described in subsection 6.2.3 (prescribed with Eqns. 6.11, 6.12,

and 6.13) do not belong to these categories. The category of solutions we pro-

pose are neither a solution conserving a different physical quantity, nor another

weak solution.

Solutions conserving different quantities

First, our solution (eqns. 6.11, 6.12, 6.13) obeys the conservation law. It is known

that harmless-seeming rewritings of the continuum equations can lead to dis-

tinct front velocities, but these change the conserved quantity. Multiplying

eqn (6.1) by u and rearranging, we produce the classic example of this:

1/2∂tu
2
+

1/3∂xu
3
= 0 (6.15)

for which the Rankine-Hugoniot condition yields a front velocity of s = 2/3(u2
− +

u2
+
− u−u+)/(u− + u+) rather than the Burger’s velocity of sRH =

1/2(u− + u+). This

change in the velocity is due to the fact that eqn (6.15) locally conserves not the

density u, but rather the density u2.

Our proposed δ-shock solution by construction conserves the same density
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as the standard Burgers equation: it is a different, physically sensible solution

to the same continuum evolution law for the same conserved quantity.

(a) Solutions to Burgers Equation

(b) Solutions to Modified Burgers Equation

Figure 6.5: Weak solutions of the Burgers Equation and its modified form.
Note that the vanishing viscosity solutions of the Burgers equation
conserves

∫
|u|whereas the vanishing viscosity solutions of the

modified form does not.
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Other weak solutions

Second, our solution is not another weak solution. For many problems, the

entropy solution (or the vanishing viscosity solution) is not the unique weak

solution and the supplementary entropy condition decides between multiple

allowed weak solutions. However, the “entropy condition” does not give phys-

ical solutions to all problems (see Ref. [47] for an example in traffic flow). The

solution discussed in 6.2.3 is not a weak solution; in eqn (6.4), our δ-shock makes

the integral of 1/2u2∂xφ badly defined. This reflects the fact that the velocity of the

pile-up at the interface is completely unrelated to the velocity at normal den-

sities, and does not need to be described in a limiting sense by the continuum

equations valid for the latter. Thus our proposed solution is not a weak so-

lution as commonly defined. To encompass the variety of physically allowed

solutions, we need a broader category of weak limits which solve the differen-

tial equation (everywhere it is defined), but which are not weak solutions of the

differential equation.

We argued that there can be physically sensible δ-shock solutions to shock-

forming equations, that invalidate the traditional Rankine-Hugoniot condition

determining the shock velocities – demanding that microscopically determined

defect evolution laws enter into the continuum physics. We note that these

Rankine-Hugoniot conditions do not naturally generalize to multi-component

systems, and indeed that the traditional vanishing viscosity solution can gen-

erate δ-shock solutions violating them when two different components are cou-

pled.

104



6.3 Conclusion: Shocks, singularities, and numerical methods

There are several approaches in the broad field of numerical simulations of sin-

gularity dynamics, especially in the field of condensed-matter physics. When

the interstitial medium between the defects is linear, one can remove it in favor

of effective long-range interactions between defects. Such simulations are most

useful for point defects and line defects, where the complexities of topology

change during the evolution are limited. For surface and interface evolution

(crystalline grain growth, evolution of magnetic domain walls, and martensitic

morphologies, surface growth and surface etching ), there are two approaches.

First, specialized tools have been developed [11] to cope with these topologi-

cal complexities. Alternative formulations such as phase-field [87] and level-

set methods [67] re-introduce fields between singularities and reformulate the

problem again as a PDE. These interpolating fields typically have no physical

significance. Finally, there are hybrid methods [56, 10] which track both defect

and continuum. In all of these cases, the methods are flexibly designed to im-

plement the defect equations of motion suited for the material system at hand.

The shock-forming features of hyperbolic and related PDEs pose unusual

challenges which make these explicit defect-tracking methods less attractive.

The continuum separating the defects is itself nonlinear in an essential way, and

new defects arise from the continuum evolution3, we want methods like the

upwind schemes that evolve nonlinear continuum and defects simultaneously.

However, we have seen that existing formulations are too rigid to encom-

pass sensible weak-limiting physical solutions to these differential equations,

3New defects often arise in other physical systems through thermal or even quantum nucle-
ation, but these represent stochastic deviations from the continuum laws. Shock-forming PDEs
develop new defects through their intrinsic evolution laws.
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allowing for the defect evolution laws to evolve according to rules determined

by the microphysics. Existing numerical methods for solving these partial dif-

ferential equations relies on the properties of the vanishing viscosity solutions,

essentially demanding that the dynamics of the singularities be governed by the

continuum equation. This, however, is prohibiting the possibility of incorporat-

ing separate defect dynamics whose rules are determined by the microphysics

at the shock not extrapolating from the continuum laws. We thus call for new

mathematical and numerical approaches for these systems.
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APPENDIX A

CUDA MASSIVELY PARALLEL IMPLEMENTATION OF PDE

SIMULATIONS

A.1 Introduction

The most amazing advancement in technology during the last several decades,

undoubtedly, is the invention of computer technologies. Since the development

of semiconductor devices started following the Moore’s law, it has penetrated

virtually all parts of mankind’s lives, including physics. Physics and materials

science greatly benefited from the appearance and evolution of computer tech-

nologies, as it has allowed scientists to view nature in unprecedented ways in

both experimental and numerical fronts.

Along the frontier of this development is the new paradigm of computing

that utilizes many simple (and cheap) cores instead of using smaller number of

more complex (and expensive) cores that was at the height of the technology

until last decade. In scientific computing, two main avenues have been pur-

sued in many-core programming. In the first, many individual computers are

networked to form a cooperative group of processors with a high memory la-

tency due to network bandwidth. The second, a more recent development, has

been the use of graphics processing units (GPUs). These peripheral cards are

designed to rotate, project, and render millions of vertices of three dimensional

objects as quickly as possible for the gaming industry. Due to the parallel na-

ture of the operations performed on each data element, they have been since

adopted as a generalized parallel platform called general purpose graphics pro-

cessing units (GPGPU).

107



After some years of developers’ interest, several graphics chipset manufac-

turers grew interest in this potentially new business area, and nVidia came

up with a computing hardware and software architecture (CUDA) framework

that enables numerical computation on their new generations of graphics cards.

With roughly 100× pure floating point operation capacity compared to a single

core on a CPU, many algorithms have been shown to achieve 20 ∼ 100 times

speed-up relative to their single CPU counterparts. With the cost of a GPU

roughly similar to 8 conventional CPU cores, GPUs cost much less per FLOP

taking into account the workstation box, peripherals, real estate, and operating

costs, making them an extremely useful hardware for numerical simulations.

Figure A.1: Schematic comparison of CPU and GPU. a GPU has many more
simpler arithmetic units for computation allowing fast
computation on data. Current generation GPU commonly employ
SIMT(Single Instruction Multiple Thread) to maximize arithmetic
performance while limiting the types of computation for which the
architecture is effective.

aFigure reproduced from NVIDIA CUDA C Programming Guide [20].

Nevertheless, the technology has its limitations. GPUs have more restric-

tions as to what individual threads can do, how they can be synchronized, and

how the full hierarchy of memories should be handled. Much of these tradition-

ally have been automatically taken care of the (sophisticated) hardware without
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the necessity of the programmer stepping into the swamp1, but with the current

generation hardwares, to get best performance, fiddling with the algorithm is

unavoidable.

In this chapter we describe a CUDA implementation of yet another simula-

tion that achieves significant speedup compared to the single thread implemen-

tation run on a CPU.

A.2 Continuum Dislocation Dynamics

The model that we try to simulate is explained and motivated in detail in

Ref. [49] and Chapters 2 and 4. We implement a second-order central upwind

method as developed by Kurganov et al.[44] for the partial differential equation:

∂tβi j = ǫlmsρsnσmnǫlikρk j (A.1)

where ρk j = ǫkuv∂uβv j, and σmn(r) =
∫

Kmnuv(r − r′)ρ(r′)dr with a kernel function

Kmnuv(r− r′) representing the stress field generated by dislocations. Einstein con-

vention is used for summation of repeated indices.

In general, computing the stress field is likely the most computationally ex-

pensive part of the calculation as it involves a spatial convolution, whereas

the rest of the calculation is relatively local. For discrete dislocation simula-

tions (where each dislocation line segment is tracked individually like molec-

ular dynamics), fast multi-pole expansion [45] is used to achieve fast compu-

tation of the stress field [86]. For continuum simulations (where a partial dif-

1This is for the most part true, although a good number of programmers spent their lives
optimizing codes that could have orders of magnitudes difference in performance, if one did
not think carefully about the hardware architecture.
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ferential simulation is solved on a grid), similar multi-pole expansion on the

density could be applicable, but are rendered less crucial on a regular grid with

fast Fourier transforms. Since a spatial convolution is a simple multiplication

in Fourier space, we have σ̃mn = K̃mnuvρ̃uv where tilde denotes spatial Fourier

transforms.

Time evolution of the PDE is dealt with by applying a second order cen-

tral upwind method with total-variance diminishing (TVD) integrators, as de-

scribed in chapter 4. For the purpose of this chapter, it is only important to note

that combinations of right and left derivatives are used in each dimension for

evaluating the correct right hand side leading to 2d combinations of right/left

derivatives that are evaluated and mixed to get the final value. This can be re-

peated multiple times to yield a higher-order TVD integration, but all steps are

analogous to each other.

A.3 CUDA algorithm

In this section, we will describe the design decisions made to implement an ef-

fective simulation of the continuum dislocation dynamics PDE presented in the

previous section. There are three main issues in designing a CUDA algorithm:

effectively using hierarchal memory, aligning memory accesses to consolidate

memory read and write, and avoiding divergence (branching of different cases).

Figure A.2 illustrates the different types of memory that can be utilized in

CUDA architecture. Constant, texture, global, local, shared memories and reg-

isters all have different properties pertaining to the types of tasks they are de-

signed for. Global, texture, and constant cache all reside in the global memory
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Figure A.2: Hierarchy of Memory in CUDA architecture a. Global, texture,
and constant memory reside outside each multiprocessor, while
registers, local memory and shared memory live inside. Each type
of memory has different properties, in general on-chip memory are
faster but limited in size. Registers, local, and shared memory are
allocated from within the same block in current generation
hardware.

aFigure reproduced from NVIDIA CUDA Programming Guide 0.8.2

and in general are relatively slow, whereas registers, local and shared memo-

ries are located within the microprocessors and are faster, but are smaller and

volatile – not persistent between kernel executions.
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Likewise, accessing these different types of memory in a multi-thread setting

is also complicated; when accessing global or shared memory, threads must read

from or write to a contiguous aligned block of memory (for global memory) or

without bank conflicts (for shared memory). This sometimes necessitates coun-

terintuitive design, such as using oddly sized arrays (see [19] for examples), to

achieve maximum performance.

This is much more complicated than the counterparts of a CPU architecture:

typically there are the registers, memory, and several levels of cache, but the

caches are completely hardware controlled and automatic for the most part, and

compilers take care of the registers. Although there are circumstances where one

needs to worry about the cache structure, and manually manipulate how the

registers are used, for most cases modern sophisticated compilers have made

it much less necessary to delve into the complicated affair of performance tun-

ing on this hardware level forceps. However, when programming for CUDA

architecture, utilizing the correct memory hierarchy can lead to orders of mag-

nitudes difference in performance providing strong incentive for programmers

to understand the details of the architecture and the hardware.

A.3.1 Algorithm overview

The main persistent object in our computation is the order parameter field, βP.

During each time step, we calculate intermediates such as the stress, σ, and

derivatives of the distortion field, u that are used to determine the right hand

side. Then a central upwinding scheme is used to determine the final RHS and

it is added to our order parameter field.

112



A.3.2 Thread block design issues

As explained in section A.2, the stress field is calculated with spatial convolu-

tions performed in Fourier space. Because this part of the computation takes

place in Fourier space (Fourier transform, multiply by K̃, an inverse Fourier

transform) it is computed as a preparation step for the main algorithm. The

Fourier transforms are performed component-by-component using CUFFT, and

the computation of the stress is relatively straight forward.

Implementing the central upwind method it is a little more tricky. There are

9 components of βP on the right hand side, and 6 components of σ to be read in

and eventually written to the global memory. There are also 3 components of the

local velocity field V, maximum speeds in each direction for the Riemann fan,

and the total dislocation density ‖ρ‖ = √ρi jρi j to be computed as intermediate

fields used in the method. These are (mostly) not written to the global memory,

but each involve all components of the derivatives of βP.

It is also important to note that these steps should preferably done within

a single kernel, not as separate steps. Because shared memory is not persis-

tent over separate kernel executions, splitting the kernel demands intermediate

values to be stored, and therefore is costly and should be avoided if possible.

A.3.3 Memory usage design issues

It is often tempting to encapsulate a vector or a tensor quantity into a struct that

contains the components of the field at a spatial location. For CPU implemen-

tations, this helps the design in many ways, and because the components are
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consecutive in memory it also is beneficial for maximized cache performance in

many cases, especially if there are many local Einstein summation style compo-

nent contractions. However, on the GPU, this is not necessarily the case. If each

thread performs an Einstein summation with data stored in this struct data type

they become non-coalesced when reading form global memory, and when the

field size is a multiple of the warp size(or for this matter the number of banks)

shared memory accesses have bank conflicts. Both of these can result in severe

performance loss for applications which are memory access bound.

Thus, the arrays are stored with spatially consecutive values of the same

component (along the fastest running index) residing contiguously in the mem-

ory. This makes local component access much more effective.

A.3.4 Description of the code

As explained earlier, computing the stress field from the βP field is straight

forward, albeit only on a finite difference grid. Once the Fast Fourier Trans-

forms (FFTs) are performed, it then becomes a local multiplication with a tensor

prescribed by its k-space “position”. The inverse Fourier transform then returns

the stress field to be used in the computation of the dynamics.

The most expensive – and important – part of the problem is to perform the

central upwind method and integrating the equations with it. The code consists

mainly of three blocks:

1. (Component-wise) Load the order parameter βP and other local fields,

such as σ, into the shared memory.
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2. (Component-wise) Compute the derivatives of βP in 2d directions where d

is the number of dimensions.

3. (Quadrant-wise) Compute the velocity V and other quantities that mix

multiple components, such as |ρ|.

4. (Component-wise) Based on the velocity and other values computed, com-

pute the right hand side(= −h).

where (Component-wise) refers to kernel operations where different threads

work on different components of u and (Quadrant-wise) refers to kernel op-

erations where different threads work on different Cartesian “quadrants”.

A.4 Benchmark results

Figure A.3 illustrates the relative speed-up of the CUDA implementation, com-

pared to a single-core python implementation using numpy. Python implemen-

tation is without question not the most efficient CPU implementation, and can

be further tuned to gain 2 ∼ 3× performance 2, but for convenience is used here

as the reference implementation.

It is without a doubt very efficient as it achieves 100× speed-up compared to

the python implementation: it translates to 30+ × speed-up even comparing to

an efficient CPU implementation written in C. Theoretical maximum between

the compared platform tells it can be 200× faster if the computation is purely

instruction bound, but practically lower for most purposes.

2This has been tried and implemented, compared to an optimized C implementation and
confirmed that this is close to the maximum performance that can be achieved.

115



Figure A.3: Relative speed-up of the CUDA code. Compared to a single core
implementations in python, executed with a Xeon E5520 CPU and
a Tesla C2070 CUDA compute unit. The python implementation is
obviously not the most efficient implementation on CPU and is
2 ∼ 3× slow compared to an optimized CPU code. Theoretically,
Tesla C2070 has 515.2 GFLOPS double precision peak processing
power while Xeon E5520 can perform 1.9 GFLOPS double
precision per core. CUDA benchmark runs contain constant time
offset spent in initializing and setting up the system, shown in red
is the estimate speed-up correcting for this offset a.

aObviously, python implementation also has such offset, but because the main routine is so
much slower it becomes negligible.

A.5 Remarks

As science and technology advanced at tremendous rates, computer simula-

tions and scientific computing have become an integral part of research in ev-

ery field of science and engineering. Due to the current limitations of the tradi-

tional hardware and CPU architectures, it is becoming increasingly important to
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utilize many-core parallel platforms. Many-core massively parallel computing

platforms have been in the domain of extremely expensive super computing un-

til very recently, but during the last decade we have seen fast growth of smaller

scale and personal computing clusters, and now with the appearance of GPU

and many-core processor computing these methods are becoming more acces-

sible and mainstream. In this chapter we have illustrated how such platform

could be utilized very efficiently to simulate partial differential equations mod-

eling dynamics of dislocations. Widespread usage of this technology will bring

the cost of large-scale simulations down by orders of magnitudes – as the top

notch GPUs with similar costs to CPUs have potentially orders of magnitudes

better performance – this will surely help advance our understanding of the

physics.
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APPENDIX B

THE MAPPING TO THE BURGERS EQUATION AND DEVIATING

SOLUTIONS

One of the early fascinating results found with this theory was that under

certain conditions – 1D and D(ρ) = 1 – our continuum dislocation dynamics

equations has a direct mapping to the Burgers equation [51], which is the sim-

plest and most studied conservation law. However, as described in chapter 6,

the “physical” solutions to a partial differential equations may greatly depend

on how the equations are presented1 and how the singularities are regularized2.

Clearly the mapping applies for times before the formation of the first singu-

larity so the analytic argument justifies the numerical observation of wall forma-

tion. But it remains an interesting question, then, as to whether this mapping

does in fact lead to different solutions or the same set of solutions for the dy-

namics after shock formation.

By calculating the force density Fx from the initial condition, we set up an

initial value problem with the Burgers equation on the one hand, and on the

other side we simulate the 1D, D(ρ) = 1 version of the equation explicitly, and

plot the evolution of Fx. The results as a function of time are plotted in figure

B.1.

As shown in the figure, it becomes clear that the solutions – as soon as they

develop shocks – do not agree; shocks move with different velocities than for

the Burgers equation. Because it looks fuzzy near the shock when we solve

1As seen in the comparison of the solutions of the Burgers equations and the modified 1/2(u2)t+
1/3(u3)x = 0

2As argued in chapter 6.
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the βP equation, it’s tempting to say that the resolution is causing the shocks to

move at different velocities. However, it must be noted that 1D simulations are

convergent (as shown in Figure 4.5) and the results presented in figure B.1 are

obtained with N = 4096where the solutions should become quite converged.

These results are reminiscent of solving the Burgers equation and the modified

form 1/2(u2)t +
2/3(u3)x = 0 (see chapter 6), although F is conserved for both solu-

tions in our case. A closer examination of the two forms of the equations reveal

that the effective artificial viscosity term for Burgers equation differs from that

for F derived from the equations for βP, and thus the equations must be differ-

ently regularized.
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(a) At t = 0.30

(b) At t = 1.00

Figure B.1: Burgers equation solutions compared to a mapped results from
the CDD equations. Force density F plotted at times t = 0.30 and
t = 1.00, comparing three different forms of the equations. Labels
indicate the order parameter for the solved equation. Note that
while it is almost identical when it is smooth, after it forms a jump,
the multi-component simulation differs in kink velocity from
Burgers equation. Note that the density of each component is
conserved: these are legitimate weak solutions of a
multicomponent ’microphysics’ simulation which yields Burgers
equation as its emergent continuum limit – but with a velocity that
does not satisfy the Rankine-Hugoniot conditions.
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