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ABSTRACT

Respect Your Data:

Topics in Inference and Modeling in Physics

Colin Clement, Ph.D.

Cornell University 2019

We discuss five topics related to inference and modeling in physics: image registration,

magnetic image deconvolution, effective models of spin glasses, the two-dimensional Ising

model, and a benchmark dataset of the arXiv pre-print service. First, we solve outstanding

problems with image registration (which aims to infer the rigid shift relating two or more

noisy shifted images), obtaining the information-theoretic limit in the precision of image

shift estimation. Then, we use Bayesian inference and develop new physically-motivated

priors in order to solve the ill-posed deconvolution problem of reconstructing electric

currents from a magnetic images. After that, we apply machine learning and information

geometry to study a spin glass model, finding that this model of canonical complexity

is sloppy and thus allows for lower-dimensional effective descriptions. Next, we address

outstanding questions regarding the corrections to scaling of the two dimensional Ising
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model by applying Normal Form Theory of dynamical systems to the Renormalization

Group (RG) flows and raise important questions about the RG in various statistical

ensembles. Finally, we develop tools and practices to cast the entire arXiv pre-print service

into a benchmark dataset for studying models on graphs with multi-modal features.
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Chapter 1

Introduction

The title of this dissertation—respect your data—is both a succinct summary of what

I learned while performing this research and the first advice I would offer to anyone

attempting to optimally extract information from data. What I mean by ‘respect’ is that

data should be sacrosanct: never modified, only compared to. Generative models should

be built to produce synthetic data as convincingly as possible, including the experimental

noise. Since noise is modeled probabilistically, we must use inference to extract the

latent information from data and, while Bayesian inference is the best tool I know for

extracting information from data, we essentially never have the correct model for real

data, so Bayesian inference is not a perfect machine. Therefore, ‘respect your data’ also

means that the human researcher building a model should intelligently interrogate its

predictions and compare them directly to the data.

In Physics, modeling serves (at least) two essential purposes. First, interpretable ‘toy’

models—which are simple but contain the essence of some physical phenomenon—allow

physicists to obtain the intuition they are so famed to possess. Second, generative

models—some theory capable of producing convincing data— are essential for extracting
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1.1. What is inference?

information from an experiment. In this dissertation, I will explore two toy models: the

two-dimensional (2D) Ising model (a model of a sheet of ferromagnetic material), and the

2D Ising spin glass (a model for a sheet of a disordered or glassy material). I will also

study two generative models used to infer physical quantities from experiments: inferring

the rigid shift relating noisy images for combining and de-noising them and inferring

electric surface currents from a magnetic field image. Finally in this dissertation, I lay the

groundwork necessary for reproducible machine-learning modeling of the arXiv pre-print

service.

1.1 What is inference?

The equations of probability theory are perhaps the only logically consistent set of rules

for qualitative reasoning with some degree of common sense. If Bayes’ theorem updates

probabilites in the face of prior information, we have Bayesian inference. If we add the

principal of maximum entropy, we can even obtain thermodynamics and communications

theory as special cases [Jaynes, 1988].

What is qualitative reasoning? What does it mean to adhere to common sense? These

questions are attempting to develop a model for a process the human brain performs

regularly with ease. To model reasoning, we must define the state of a human mind,

which the act of reasoning will modify. The state is a description of all the knowledge and

experience of a person, and therefore has many dimensions. Consider for a moment all

the conditions you pondered (perhaps unconsciously) when choosing the clothes you are

wearing: the temperature outside, at home, at work, precipitation, social expectations,

or even morality of materials!

Since we are only beginning to build a model, we will follow Laplace and Jaynes, and
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Introduction

consider a one-dimensional state of mind: call it the degree of belief or plausibility (A) of

some fact or outcome A, e.g. ‘it will rain today.’ We can define some elementary relations

combining dimensions of degrees of belief of (A) and (B):

• (AB): “The plausibility that both A and B are true",

• (A+B): “The plausibility that at least one of A, B are true",

• (A|B): “The plausibility of A conditioned on B being true".

The plausibilities have a kind of ordering, so that (A) > (B) is understood to mean ‘A

is more plausible than B’. We can also denote more complex relations like (A|C) > (B)

which reads ‘Assuming C is true, then A is more plausible than B.’

How may we calculate (AB), the plausibility of both A and B, using (A) and (B)?

We must first recognize that there will always be tertiary propositions C, upon which the

plausibilities of A and B may depend. Therefore we should seek to calculate (AB|C),

the plausibility of both A and B assuming C is true. Jaynes shows us that the only way

to relate this plausibility to plausibilities of A and B is

(AB|C) = (A|BC)(B|C), (1.1)

which is read as ‘the plausibility of A and B (assuming C is true), is equal to the

plausibility of A (assuming B and C are true), times the plausibility of B (assuming C

is true).’ This expression contains some common sense, as the plausibility of A and B

increases as either of them become more plausible and vice-versa.

There is a symmetry in this expression, as A and B are merely labels which can be
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1.1. What is inference?

swapped, and so in order that this expression be consistent,

(AB|C) = (BA|C),

(A|BC)(B|C) = (B|AC)(A|C) (1.2)

must be true. Hiding C for clarity, we can rewrite eqn. 1.2 as

(A|B) = (B|A)(A)
(B) . (1.3)

If we make a leap to associate these plausibilities with probabilities, and interpret B as

a precipitating event or information known prior to A, this is none other than Bayes’

Theorem.

Bayes’ Theorem may be applied as follows. Say (B) = 0.5 (50%) is the probabability

that it will be cloudy today at any time in, for example, Ithaca, NY, and (A) = 0.05

(5%) is the probability that it will rain at any time today regardless of cloudiness. If

(B|A) = .95 (95%) is the probability that it is cloudy given that it is raining, then

Bayes’ theorem tells us (A|B) = 0.95× .05/0.5 = 0.095 (9.5%) is the updated probability

that it is raining, given that it is cloudy. Bayesian inference is the basis for much of

machine learning [MacKay, 2003, Murphy, 2012], as it is allows us to quantitatively define

‘learning’ as an updated state of beliefs in reaction to obtaining new information.

There is a common criticism of Bayesian inference—also a criticism of the theory of

subjective probability—that the prior probabilities have arbitrariness associated with

choices made or not made by the modeler. Mackay argues that, as one descends into

deeper layers of conditional probabilities (wherein the priors have priors), the choice of

these ‘hyperparameters’ is less important [MacKay, 1996]. Jaynes suggests that ‘it is only

a subjective probability which could possibly be relevant to applications,’ recognizing that

this inference machinery is merely a tool for us to form reasonable judgements when faced
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Introduction

with incomplete information [Jaynes, 1988]. Quantum Mechanics is, in some ways the

most precise theory of nature, yet is difficult to interpret without invoking the observer.

Therefore, it may not be so difficult for us to reconcile the essential role of the researcher

in applying Bayesian inference.

1.2 Generative Modeling

We now write p(A) the probability of proposition A being true, where p(A) = 0 means

there is no possibility that A is true, and p(A) = 1 means A is certainly true. The

inference tasks in this dissertation assume that some data d is given, and that there is

some latent (to be discovered) experimental conditions or parameters θ which we wish to

learn. We wish to infer these latent experimental conditions given the observation of

data: p(θ|d). However, usually in an experiment we only have a model for p(d|θ), the

probability of observing data d given parameters θ.

In our experiments, we assume random and uncorrelated noise is added by the

measurement process, which we interpret as a probability of a specific data instance. Our

generative model for data can be expressed as d = f(θ) + η, where f is our model of the

experiment and η is noise (often normally distributed in the shape of a ‘bell curve’). If

the probability of a particular noise sample is p(η), then we see that p(d− f(θ)) ≈ p(η).

A generative modeling perspective includes not only the model of the experiment, but

the model for the noise as well.

Given this complete description of data generation p(d|θ), Bayes’ Theorem Tells us

how to infer the experimental conditions via the posterior distribution

p(θ|d) = p(d|θ)p(θ)
p(d) . (1.4)
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1.3. Applications of Inference

p(θ) is called the prior distribution, and it reflects our preference of experimental conditions

before the experiment, or a priori. p(d) is called the evidence. Ignored in most inference

tasks, it is essential for learning models [MacKay, 2003] as discussed in chapter 2. The

prior information p(θ) will play an essential role in chapter 3, where we appeal to symmetry

in order to encode a preference for physically plausible currents. Finally, in chapter 4 we

learn the best model and likelihood p(d|θ) for spin glasses using information geometry.

From the perspective of a Bayesian, p(θ|d) contains all the information to be discovered

from the experiment. The peak of the ‘bell curve’ of p(θ|d) is the ‘maximum likelihood’

solution. The probability also predicts a range of likely possibilities for θ, allowing us to

obtain a range of predictions.

Another subtlety of priors is a lack of a strict boundary between the prior probability

p(θ) and the likelihood p(d|θ). For example, it is common in physics for theories to be

translation invariant so that only relative distances matter. In such cases, it is prudent

to use a translation invariant model in the likelihood. This is not any different from

choosing p(θ) = 0 for any condition which is not translation invariant, though this is

usually much less convenient. In deep learning, this idea is so common and important

that it has a name: inductive bias.

1.3 Applications of Inference

In chapter 2, our data d are two or more noisy pictures which have been shifted with

respect to each other. We wish to learn the true underlying image and the shifts. This

fundamental problem is important for state-of-the-art electron microscopy of very sensitive

samples, which often requires combining multiple shifted noisy images. Part of the novelty

of this chapter is our treatment of the problem as a statistical field theory in which
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the images fluctuate around the model. We applied perturbation theory to predict the

errors in shift inference, explaining a longstanding problem with the large errors of these

predictions. Considering the evidence p(d), we followed Bayesian model selection to learn

the proper amount of course-graining or image complexity.

In chapter 3, our data d are the scan of a magnetic field taken above some material

with electric currents. We wish to infer the latent electric currents. This technique has

been used to take pictures of topological insulators, complex oxide domains, and even

obtain local critical temperatures in superconductors. The relationship between electric

current and magnetic fields is similar to taking a picture out of focus. This problem is

difficult because there is not enough information remaining in the data, so careful choice

of prior information p(θ) is essential. This chapter derives and compares new priors which

consider sample geometry, respect natural symmetries, and can accomodate the lack of

current conservation at image boundaries.

In chapter 4, our data d are samples of states of spin glasses. We wish to infer

a coarse-grained effective model which has superior interpretability. The challenge in

this work is in proposing a good effective model, which we develop using sloppiness and

information geometry. The spin glass is a toy model for complex systems with many

nearly identical low-energy states. This method for finding effective models could be

applied to infer more interpretable summaries of maximum entropy models of protein

folding.

1.4 The Renormalization Group Idea

The Renormalization Group (RG) is a theory with impressive philosophical implications

in Physics. It is the formalization of the idea that many details do not matter to the
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1.4. The Renormalization Group Idea

essential aspects of some physical phenomenon. For example, theories of fluid dynamics

do not need specific details of the exact molecules that make up the fluid to make good

predictions. RG was developed to explain the striking fact that, for example, no matter

what fluid you choose—water, ethanol, liquid Helium—near the boiling point of all liquids,

the heat capacities traced an identical universal curve. RG motivates the selection of the

simplest models for explaining a given physical phenomenon.

RG allows the classification of systems into universality classes, which all collapse onto

identical curves. The beauty of this fact means that one need only study one member

of that class in order to understand the essential elements of all the other members.

Therefore, in order to understand the universal properties of boiling liquids, one need

only to study the simplest model for a ferromagnet.

Chapter 5 studies the RG of the two-dimensional Ising model, which is a model for a

thin sheet of ferromagnetic material. Using normal form theory from dynamical systems,

we predict details of the corrections to the universal scaling particular to a solvable 2D

Ising model. We study finite size effects, and the behavior of the RG flow equations under

the Legendre transform.
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Chapter 2

Image Registration and Super

Resolution from First Principles

2.1 Introduction

Image registration is the problem of inferring the coordinate transformation between

two (or more) noisy and shifted (or distorted) signals or images. This deceptively simple

process is fundamental for stereo vision [Lucas et al., 1981], autonomous vehicles [Wolcott

and Eustice, 2014], gravitational astronomy [Nicholson and Vecchio, 1998], remote sens-

ing [Inglada et al., 2007, Debella-Gilo and Kääb, 2011], medical imaging [Zöllei et al., 2003,

Leventon and Grimson, 1998], microscopy [Savitzky et al., 2018], and nondestructive

strain measurement [Kammers and Daly, 2013]. At the cutting edge of microscopy,

imaging sensitive biological materials [Bartesaghi et al., 2015, 2014] and metal organic

The work constituting this chapter was done in collaboration with Matthew Bierbaum and James P.
Sethna. This chapter is published at arXiv:1809.05583 and has been submitted to IEEE TIP.
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2.1. Introduction

frameworks [Zhang et al., 2018, Zhu et al., 2017] with Transmission Electron Microscopy,

requires combining multiple low-dose high-noise images, to obtain a viable signal without

destroying the sample. While most techniques for registering and combining images are

accurate for low noise, errors significantly larger than theoretical bounds can occur for

a signal-to-noise ratio as low as 20 (noise 5% of the signal amplitude); so far a general

explanation of this error has been elusive.

Much has been written about the uncertainty of shift estimations by analyzing the

information theoretic limit known as the Cramer-Rao bound (CRB) [Robinson and

Milanfar, 2004, Yetik and Nehorai, 2006, Pham et al., 2005]. These works observed

that no known estimators achieve the CRB for image registration. This sub-optimal

performance has been blamed on biased estimators: some claim interpolation errors

explain the bias [Rohde et al., 2009, Schreier et al., 2000, Inglada et al., 2007, Bailey et al.,

2005] and others claim that the problem is inherently biased [Robinson and Milanfar,

2004]. More works have explored non-perturbative estimations of the uncertainty, which

yield larger estimates more consistent with measured error, but also rely on assumptions

about the latent image [Uss et al., 2014, Ziv and Zakai, 1969, Xu et al., 2009].

Here we solve these problems by studying the naïve maximum likelihood formulation

of image registration. We explore a new derivation of the standard method (comparing

one image to match the other) by integrating out the underlying true image. We treat

the standard method as a statistical field theory in which two images fluctuate around

each other, showing that the shift uncertainty should scale quadratically with image

noise (σ∆ ∝ σ2), while the naïve CRB is linear (σ∆ ∝ σ). We also show that bias in

image registration is due to the image edges. Our theory makes the novel prediction

that coarse-graining images can dramatically improve shift precision, which we confirm

numerically. While coarse-graining helps, it requires oversampled images and knowledge
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Image Registration and Super Resolution from First Principles

∆

(a)

Standard Fourier Shift

∆

(b)

Super Registration

Figure 2.1: Illustrations of image registration techniques. (a) A schematic of the standard
method of image registration which measures the shift ∆ between noisy data (grayscale
images) by shifting one to match the other. (b) A schematic of our proposed method,
Super Registration, which infers the shift ∆ instead by learning the underlying image I
(green contours), and shifting the coordinates until the model image best fits the data
(grayscale images).

of the highest frequencies of the underlying image. We overcome this limitation, and

reach the true CRB, by shifting a learned model for the underlying image to match

the data. We use Bayesian model selection to find the model most supported by the

data, effectively learning the amount of necessary coarse-graining. We demonstrate the

optimality of our new method—called Super Registration (SR)—with periodic images. We

also demonstrate clear improvements in error and removal of bias for general non-periodic

images with Chebyshev image models. Finally, we show that particle tracking is 10-20×

more precise when performed on images combined with SR. We conclude by discussing

the implications of our theory on more general nonlinear registration, and registration of

images captured with different imaging modes.
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2.2. Theory of image formation

2.2 Theory of image formation

In this work, image registration will be restricted to the task of inferring a rigid shift

relating two (or more) discretely sampled noisy images with sub-pixel precision. More

general transformations are accommodated by our subsequent arguments through appli-

cation of the chain rule. Defining some true image (latent, to be discovered) intensity

function I(x) with x ∈ R2, we measure at least two images by sampling discretely:

φi = I(xi) + ξi

ψi = I(xi + ∆) + ηi, (2.1)

where φi is the ith pixel of image φ and ξi ηi are white noise distributed with zero mean

and variance σ2, and ∆ is the shift between the images which we intend to infer.

Equation 2.1 is our model, which we can express as the likelihood p(φ, ψ|∆, I) of

measuring φ and ψ given ∆ and I:

p(φ, ψ|∆, I) ∝ exp
(
− 1

2σ2

(
||φ− I||2 + ||ψ − T∆I||2

))
, (2.2)

where ||x||2 =
∑
i x

2
i . T∆ represents the operator which translates its argument by ∆,

for a continuous image T∆I(x) = I(x−∆). We interpret this distribution as our image

model fluctuating around data. Note that Eq. 2.2 accommodates multi-image registration

by multiplying more products of terms comparing images to the shifted latent image I.

In order to infer ∆ after measuring the images φ and ψ we must reverse the condi-

tional probability in Eqn. 2.2 using Bayes’ theorem. The posterior (post-measurement)

probability p(∆, I|φ, ψ) of ∆ and I is

p(∆, I|φ, ψ) = p(φ, ψ|∆, I)p(∆, I)
p(φ, ψ) . (2.3)

12



Image Registration and Super Resolution from First Principles

p(∆, I) is called the prior probability and p(φ, ψ) is called the evidence because, as we

later show, it can be interpreted as the probability of our data given our choice of model.

The task of inferring ∆ is achieved by maximizing this posterior probability. We define

the maximum likelihood estimator of ∆ to be

∆? = max∆,I p(∆, I|φ, ψ),

= max∆,I p(φ, ψ|∆, I)p(∆, I), (2.4)

where the second line is possible because the evidence is independent of ∆ and I.

How accurately should we be able to measure ∆? If we assume we know the underlying

image I, the answer is given by the Cramer-Rao bound (CRB) [Cover and Thomas, 2012].

For any parameter vector θ, the CRB of θ is σ2
θ ≥ θT g−1θ, where the Information matrix

(FIM)

gµν =
〈
∂2 log p
∂θµ∂θν

〉
. (2.5)

The posterior p = p(∆, I|φ, ψ) is given by Eqn. 2.3 and θµ are the parameters, i.e. ∆

and I. We can calculate the naïve CRB for image registration, assuming we know the

underlying image I, and that ∂I/∂x and ∂I/∂y are uncorrelated, the smallest possible

variance on the estimation of the x-direction shift ∆x is

σ2
∆x
≥ σ2

/∫
d2x

(
∂I

∂x

)2
. (2.6)

In other words, if the data are very noisy or if the underlying image has no features, it

will be difficult to measure the shifts. Note that the CRB predicts that the shift error

will scale linearly with noise (σ∆ ∝ σ). We reiterate that this is the CRB of the shifts

assuming knowledge of the true image I. Since this is an unrealistic assumption for real

data, we call Eq. 2.6 and its discrete analog the naïve CRB. For previous derivations and

discussions of the naïve CRB for image registration, see [Robinson and Milanfar, 2004,

13



2.2. Theory of image formation

Yetik and Nehorai, 2006]. When discussing the CRB below we use the definition related

to Eq. 2.5 and not the intuitive result of Eq. 2.6.

2.2.1 Deriving the standard method of image registration

In an experiment we have no access to the latent image I. We offer a new derivation of

the standard method for overcoming this by marginalizing, or integrating out I:

p(∆|φ, ψ) ∝
∫

dI p(φ, ψ|∆, I)p(I). (2.7)

If we assume that p(I) ∝ 1, i.e. all images are equally likely, we can perform the integral

by first recognizing that ||ψ − T∆I||2 = ||T−∆ψ − I||2 if T∆ is a unitary transformation

(preserves the L2 norm). Transforming discrete data will require interpolation. Linear,

quadratic, cubic, bi-cubic, and other local interpolation schemes previously studied for

this problem [Rohde et al., 2009, Schreier et al., 2000, Inglada et al., 2007, Bailey et al.,

2005] are not unitary—neatly explaining some of their observed bias. In this work we

will consider only unitary interpolation by using Fourier shifting, however our ultimate

solution will obviate this discussion by directly employing Eq. 2.2. Now the posterior

p(∆|φ, ψ) is a product of integrals of the form

∫
dxe−

1
2σ2 ((x−a)2+(x−b)2) ∝ exp

(
−(a− b)2

4σ2

)
. (2.8)

Applying this to each pixel in the data we arrive at the marginal likelihood

p(∆|φ, ψ) ∝ exp
(
− 1

4σ2 ||ψ − T−∆φ||2
)
. (2.9)

We have derived the standard least-squares similarity measure (it is usually written

down intuitively), in which one simply shifts one image until it most closely matches

the other. This process is illustrated by Fig.2.1(a), which shows a pair of synthetic data
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Image Registration and Super Resolution from First Principles

which will serve as I in our numerical studies of periodic registration. It was calculated

by sampling a 64×64 image from a power law in Fourier space

P (|I(k)|) ∼ k−1.8e−
1
2

(
k
kc

)2
, (2.10)

damped by a Gaussian with scale kc = kNyquist/3 to ensure a smooth cutoff approaching

the Nyquist limit, preventing aliasing.

Notice that if T∆ is not unitary that this objective is different depending on whether

you shift one measured image or the other. Note also that in general image registration

this inverse transformation may not exist; in such cases this method will fail. The

literature features multiple implementations of Eq. 2.9 using Fourier interpolation by

either shifting the data [Jacovitti and Scarano, 1993] or upsampling by padding in Fourier

space and finding the maximum cross-correlation [Guizar-Sicairos et al., 2008]. The latter

method can only be as accurate as the factor of upsampling, e.g. quadrupling (in 2D)

the number of Fourier modes allows evaluating shifts of half a pixel. While sophisticated

extrapolations have been used to overcome the arbitrary choice of how much to upscale,

we will exactly shift the data and optimize Eqn. 2.12 directly. Writing the 2D Fourier

transform operator as F , we implement T∆φ as:

T∆φ = F−1e−ik·∆Fφ (2.11)

Another important result of our theory is the 4σ2 = (2σ)2 in the denominator of

Eq. 2.9: this likelihood function is for data with twice the variance of our original problem,

which is consistent with taking the difference of two noisy signals. Some of the reported

discrepancy (
√

2 ∼ 40%) between the CRB and observed error [Robinson and Milanfar,

2004, Aguerrebere et al., 2016, Yetik and Nehorai, 2006] can be explained by the absence of

this factor. Those studying multi-image registration have also neglected this modification
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2.3. Statistical properties of the standard method

of the noise fluctuations in their estimating of shift precision [Aguerrebere et al., 2016].

We have obtained by integrating out the latent image I a distribution which depends only

on our data φ and ψ and the unknown shift ∆. We can now define ∆?
m, the marginal

maximum likelihood (ML) solution, which we will now refer to as the standard Fourier

shift (FS) method:

∆?
m = max∆p(∆|φ, ψ) = min∆||ψ − T−∆φ||2. (2.12)

This new derivation of the standard method of image registration highlights and

clarifies some important limitations. Only unitary (L2-preserving) interpolation for

shifting images will lead to unbiased shift estimation, otherwise we are simply optimizing

a corrupted likelihood. Second, comparing the squared error between shifted images is

only correct if the noise in the images is Gaussian. If we were studying images with

Poisson-distributed noise, for instance, the likelihood in Eqn. 2.2 should be a Poisson

distribution. The standard method is often successfully employed for non-Gaussian noise.

We do not doubt its efficacy, but instead claim that the standard method cannot be

optimal in this case because it violates the implicit assumptions of Gaussian noise.

2.3 Statistical properties of the standard method

It is well documented in the literature that the errors in shift inference via FS are much

larger than the naïve CRB. Figure 2.2 shows the noise-averaged error (pink dots) of

inferring the shifts as measured using the standard Fourier shift method in Eq. 2.12. The

measured error grows quadratically with the Gaussian additive noise σ, dwarfing The

naïve CRB (shaded pink region). The follow section will derive a theory (black dotted)

to predict this quadratic error growth.

16



Image Registration and Super Resolution from First Principles

Say we measure the fields ψi and φi, then the log-marginal posterior is (up to a

constant) proportional to

L = 1
2
∑
i

(ψi − T−∆φi)2 = 1
2
∑
k

|ψ̃k − eik∆φ̃k|2, (2.13)

where φ̃k and ψ̃k are the Fourier transforms of our data. Our measurements fluctuate

around the true latent image I according to

p(ψ) ∝ exp
(
− 1

2σ2 ||ψ − I(x)||2
)
,

p(φ) ∝ exp
(
− 1

2σ2 ||φ− I(x−∆0)||2
)
, (2.14)

where ∆0 is the latent shift and σ2 is the variance of the noise. Near the true shift ∆0

we can expand the marginal likelihood as

L(∆) = L(∆0) + (∆−∆0) ∂L
∂∆ + 1

2(∆−∆0)2 ∂
2L

∂∆2 + . . . , (2.15)

which is approximately minimized by

∆−∆0 = − ∂L
∂∆

/
∂2L
∂∆2 = −i

∑
k k ψ̃ke

−ik∆0 φ̃−k∑
k k

2 ψ̃ke−ik∆0 φ̃−k
. (2.16)

We can calculate the error of the standard method by averaging Eqn. 2.16 and its square

over the distributions in Eqn. 2.14.

2.3.1 Bias of the standard method (1D)

Writing Eqn. 2.16 as A/B we can Taylor expand about A = 〈A〉 and B = 〈B〉, then

average over the noise to find

〈
A

B

〉
= 〈A〉
〈B〉

(
1 + var(B)

〈B〉2
)
− cov(A,B)

〈B〉2
+ . . . , (2.17)
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Figure 2.2: Comparing the noise-averaged errors of the inferred shift ∆ measured by the
standard Fourier Shift method and Super Registration in the case of aligning synthetic
periodic images. For each noise level, we generate an ensemble of 1000 64× 64 images
statistically similar to Fig. 2.1 (I(k) ∼ k−1.8), measuring the average error for both
methods, along with the minimum expected error, CRB. The error of the standard method
(pink dots) grows quadratically with noise, whereas the naive CRB (pink shaded region)
predicts a linear relationship. Our theory (black dashed line) accurately describes the
quadratic dependence in the error, matching numerical experiments. Super Registration
(green pluses) demonstrates much lower error, recovers the linear relationship between
error and noise, and reaches its CRB (green shaded region).
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where 〈·〉 denotes integration over the distributions of Eqn. 2.14. Notice that

〈A〉 =
〈∑

k

kφ̃ke
−ik∆0ψ̃−k

〉
=
��

�
��
�*0∑

k

kIkI−k, (2.18)

which is zero because the summand is odd in k. Therefore the average bias for periodic

images is to lowest order 〈
A

B

〉
= −〈AB〉

〈B〉2
. (2.19)

In general for non-periodic images 〈A〉 6= 0. Examining the continuum limit of 〈A〉 in

real space, we find

〈A〉 =
∫

dx I ∂I
∂x

= 1
2

∫
dx ∂
∂x
I2 = 1

2
(
I(xN )2 − I(x0)2

)
, (2.20)

where xN and x0 are the endpoints of the domain; 〈A〉 is a total derivative depending

only on the edges of the image. Therefore we hypothesize that the bias of the standard

FS method of image registration shown in Fig. 2.5 will be dominated by the edges of the

data. Ziv and Zakai in 1969 [Ziv and Zakai, 1969] and others [Robinson and Milanfar,

2004, Nicholson and Vecchio, 1998], share this speculation, however, whereas they argued

that impingement of shift fluctuations onto the limits of the domain caused bias, our

theory suggests that structures of the edges of images themselves cause bias.

Evaluating the remaining moments of Eq. 2.19 we find

〈B〉 =
∑
k

k2IkI−k, (2.21)

which is the roughness of the latent image I, found in the denominator of the naïve CRB

in Eqn. 2.6. The last correlation for the average bias is

〈AB〉 =
∑
kk′

kk′
2
e−i(k+k′)∆0〈ψ̃kψ̃k′〉〈φ̃−kφ̃−k′〉, (2.22)
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2.3. Statistical properties of the standard method

which can be evaluated using the moments

〈ψ̃k〉 = Ik, 〈φ̃k〉 = e−ik∆0Ik, (2.23)

〈ψ̃kψ̃k〉 = IkIk, 〈φ̃kφ̃k〉 = e−ik2∆0IkIk, (2.24)

〈ψ̃kψ̃−k〉 = IkI−k + σ2, 〈φ̃kφ̃−k〉 = IkI−k + σ2. (2.25)

Considering the sum in Eqn. 2.22 in three cases k′ = −k, k′ = k and k′ 6= ±k we can

apply the moments to find

〈AB〉 =
∑
k

(
k3
(
(IkI−k + σ2)2 + (IkI−k)2

)
+

k
∑
k′ 6=±k

k′
2(IkI−k)2

)
= 0, (2.26)

from which we conclude the entire correlation function vanishes due to each term of the

summand being odd in k. Further, numerical evidence and inspection of higher order

terms in the expansion of Eq. 2.17 support the conclusion that for periodic images the

standard Fourier shift method of image registration is unbiased.

2.3.2 Variance of the standard method (1D)

Turning our attention to the variance or expected error of the bias given by Eq. 2.16; an

expansion and average of (A/B)2 (simplifying for 〈A〉 = 0) yields to lowest order

var
(
A

B

)
= 〈A

2〉
〈B〉2

. (2.27)
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Equation 2.21 gives us 〈B〉, so we need only to compute the correlation function 〈A2〉:

〈A2〉 = −
∑
k

∑
k′

kk′e−i(k+k′)∆0〈ψ̃kψ̃k′〉〈φ̃−kφ̃−k′〉

= −
��

���
���

���:0∑
k

∑
k′ 6=k

kk′|Ik|2|Ik′ |2

+
∑
k

k2
(
(IkI−k + σ2)2 − (IkI−k)2

)
, (2.28)

where as before we have decomposed the sum into terms for which k′ 6= k, k′ = −k and

k′ = k. We find that the variance of the bias (which is also the variance of the estimated

shifts since we have shown 〈∆〉 = ∆0) is approximately

σ2
∆ =

〈
(∆−∆0)2

〉
= 2 σ

2

D2 + Lπ2

3
σ4

D4 , (2.29)

where D2 =
∑
k k

2IkI−k is the roughness of the image. We used the fact that
∑
k k

2 =

(2 + L2)π2/3L ≈ Lπ2/3 for a one-dimensional signal with L points. The lowest order

term in Eq. 2.29 is twice the naïve CRB shown in Eq. 2.6, consistent with the fact

that the marginal posterior in Eq. 2.9 has twice the variance of the noise. We have

shown that the standard Fourier shift method cannot achieve the naïve CRB. Notice

that the variance grows beyond the CRB at a rate proportional to σ4 and the image size

L, so that error grows quadratically with noise. This extra factor of the image volume

means that sampling a band-limited (sampled below the Nyquist limit) image at a higher

rate—increasing the resolution without increasing information content—can actually

decrease the registration precision for the standard Fourier shift method. We discuss and

verify this observation following an extension of this theory to two-dimensions.
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2.3. Statistical properties of the standard method

2.3.3 Variance of the standard method in two dimensions

Generalizing our expansion of the marginal likelihood we find

L(∆) =L(∆0) + (∆−∆0)T∇L

+ 1
2(∆−∆0)T ∇2L (∆−∆0) + . . . , (2.30)

from which we conclude that the two-dimensional analogue of Eq. 2.16 is

∆−∆0 = −
(
∇2L

)−1
∇L. (2.31)

If the off-diagonal terms of the Hessian ∇2L are small compared to the diagonal terms

(the image is approximately isotropic), the two dimensions decouple into an application

of Eq. 2.29 for each dimension. This is generally a good approximation except for

contrived data. In this case we find the precision of two-dimensional image registration is

approximately

〈
(∆−∆0)2

〉
=

2 σ2

D2
x

+ Nπ2

3
σ4

D4
x

2 σ2

D2
y

+ Nπ2

3
σ4

D4
y

 , (2.32)

where N is the number of pixels in the one of the measured images, and Dx =
∑

k k
2
xIkI−k

and Dy =
∑

k k
2
yIkI−k are the horizontal and vertical image roughness. Eq. 2.32 is used

in Fig. 2.2 (black dotted) where we see excellent agreement with the numerically measured

error (pink dots). The excellent agreement—in spite of ignoring the cross terms—can be

explained by expanding Eq. 2.31 for small values of the off-diagonal terms: the lowest

order correction averages to zero.

Our analysis has shown that the error of shift estimates of the standard Fourier shift

method grow much faster than the CRB. Why do the errors scale quadratically with noise?

Mackay found that in general and especially for ill-posed problems (like distinguishing noise
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from signal), integrating over parameters can yield distributions with stretched and skewed

peaks, biasing the maximum and leading to large errors [MacKay, 1996]. We integrated

over all possible images in order to derive the standard FS registration method. Did this

choice sabotage our effort to achieve the ultimate precision? For exponential functions (like

a Gaussian or our likelihoods above), there is a deep relationship between optimization

and integration through Laplace’s method or the method of steepest descent [De Bruijn,

1970]. By integrating over all possible images, we essentially maximized log p(φ, ψ|I,∆)

over I—estimating the latent image—and used that estimate for predicting the shift.

This estimate is, however, unreliable as it makes no distinction between the signal and

the noise. The high frequency modes of the data, dominated by noise and ironically most

discriminating for shift localization, cause the fluctuation of our inferred shifts to be

much larger than the CRB. This is illuminated by the following section which considers

the process of coarse-graining or binning image data.

2.3.4 Coarse Graining Data can Improve Precision

Our theory for the variance of the shift predicts that σ2
∆ = 2 σ2

D2

(
1 + Nπ

6
σ2

D2

)
. The factor

of the image volume N in the correction term inspired us to consider reducing N without

changing σ or D2. Coarse-graining the data by some linear factor a—shown schematically

in Fig 2.3(a)—should not change the CRB assuming the latent image I is smooth on

that length scale (or, equivalently, assuming that the data is sampled at least a-times

the Nyquist frequency). Assuming that each pixel of the data has noise of variance σ2,

the variance of noise for each a× a block should be a2σ2 (variances of uncorrelated noise

add). The denominator of the naïve CRB D2 =
∑
k k

2|Ik|2 is subtler: the amplitude

of each pixel increases by a factor of a2 (Ik → a2Ik), and the block sum only removed

Fourier modes with zero amplitude by our assumption above, so D2 → a4D2. Finally
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2.3. Statistical properties of the standard method

the coarse-grained image will have its coordinates expanded by a, so that the variance

should be rescaled by a2. Therefore coarsening should modify our variance prediction of

the Fourier shift method accordingly:

σ2
∆ = a2 · 2 a

2σ2

a4D2

(
1 + πN/a2

6
a2σ2

a4D2

)

= 2 σ
2

D2

(
1 + πN

6a4
σ2

D2

)
. (2.33)

Our theory predicts that coarse-graining over-sampled images can improve shift

inference by reducing the correction term, but that the method can at best yield a variance

equal to twice the naive CRB. This result may explain improvements in registration

precision from re-binning image intensities observed in other works [Hutton and Braun,

2003, Pekin et al., 2017]. Figure 2.3(b) confirms the predicted relationship, where the

black dots indicate the variance of a N = 10242 image which was oversampled by a factor

of 20. Each lighter colored dot series is the variance after coarsening by some factor a,

and the solid lines are given by Eq. 2.33. We see excellent agreement with our theory, and

a convergence of the variances onto the 2σ2/D2 line. Note that the original image (a = 1)

variances differ from our theory for large noise: perhaps the limits of large images and

large noise are where our approximations in truncating the Taylor expansion in Eq. 2.27

breaks down.

Coarsening smooth images only throws away information which is dominated by noise.

When we use the coarsened images in the standard FS method, we implicitly estimate

the underlying image but with less noisy modes, and will get a more reliable estimate.

In a real experiment without knowledge of the true length scale of the image, we will

not know the optimal coarsening length scale. In the following section we propose our

generative model which will use Bayesian model selection to infer the image complexity

supported by the data.
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Figure 2.3: (a) An oversampled 10242 image (the image varies on a scale 20× smaller than
the Nyquist frequency limit) with 5% additive white Gaussian noise then coarse-grained
by summing over a×a blocks. Shown are a = 1, a = 4, and a = 16, representing a drastic
reduction in image size while not removing any information which localizes the shifts
between images. (b) The error in inferred shifts (dots) for the standard Fourier shift
method applied to the image after coarsening by 1, 2, 4, 8, and 16 blocks. The original
image was chosen to be smooth enough so that coarsening by a factor of 16 would not
violate the Nyquist sampling theorem. The solid lines are the prediction of our theory,
and the dotted line is

√
2 times the naïve CRB,

√
2σ/Dy.

25



2.4. Super registration

2.4 Super registration

How can we achieve the ultimate precision for image registration as predicted by the CRB?

We have seen that the standard FS method of image registration which directly compares

two images has a variance in its shift prediction of the form σ2
∆ = 2σ2

CRB(1 +Nπσ2
CRB/6),

where the CRB is σ2
CRB = σ2/

∑
k k

2IkI−k. We are still studying periodic images, so it

is natural to consider removing noise with a filter like the optimal Wiener filter. This

manifests by modifying our log-marginal likelihood in Eq.2.13 with the rule ψ̃k → Akψ̃k

and φ̃k → Akφ̃k, for some filter function Ak. This modification simply changes σ2
CRB →

σ2/
∑
k k

2AkIkA−kI−k, and since AkA−k ≤ 1 (a filter only reduces power), this can only

increase σ2
CRB and thus reduce our precision.

Faced with this fact we abandon the standard method of image registration and

return to first principles by studying the likelihood defined by the image formation model

in Eq. 2.2. Instead of shifting the data, we will model the image and shift that, as shown

schematically in Fig. 2.1. This method will result in a de-noised and, depending on

the data, a super-resolution estimate of the latent image. Inspired by the inextricable

relationship between registration and super-resolution that we have discovered, we call

our new method Super Registration (SR). Our success depends on using all that Bayesian

inference has to offer, and so we proceed with a discussion of evidence-based model

selection.

2.4.1 Bayesian inference and model selection

Following Mackay’s discussion on integration versus optimization in inference with

hyperparameters we will choose a model space and from this select the best model

by comparing the model evidence, p(φ, ψ). The evidence is simply the normalization
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constant of the posterior Eq. 2.3; its utility for selecting the best model can be exposed

by a seemingly erudite increase in notational complexity which makes manifest more

of the assumptions in our model. Consider a model of image formation for the case

of periodic image registration, expressed as the likelihood of measuring two images

p(φ, ψ|∆, I). Now that we are optimizing over I instead of integrating, we must choose

some parameterization I ∈ H where H is some space of image models, e.g. a Fourier

series or sums of polynomials. This choice must be reflected in the conditionals of

our probabilities, so that the likelihood of measuring φ and ψ must now be written

p(φ, ψ|∆, I,Hλ), where Hλ represents a specific choice of image model.

Proceeding with the inference task at hand by writing again (with our new notation)

the result of Bayes’ theorem shown in Eq. 2.3 we see that the posterior now reads

p(∆, I|φ, ψ,Hλ) = p(φ, ψ|∆, I,Hλ)p(∆, I|Hλ)
p(φ, ψ|Hλ) . (2.34)

The solution to our problem still lies in studying this posterior distribution, but we

now must also infer the best model Hλ. We again apply Bayes’ theorem, finding the

probability that our model is true given our measured images

p(Hλ|φ, ψ) ∝ p(φ, ψ|Hλ)p(Hλ). (2.35)

We have explicitly ignored the normalization constant p(φ, ψ) 1. Assuming we have no

prior preference for some models over others, p(Hλ) ∼ 1, so inferring which model is most

likely given the data is equivalent to maximizing p(φ, ψ|Hλ), which is the normalization

of Eq. 2.34.

Therefore Bayesian inference for image registration consists of the following steps

given some data φ and ψ.
1 p(φ, ψ) =

∑
i
p(φ, ψ|Hi)p(Hi). This constant changes when we consider more models, which

naturally must happen when we obtain more data, but does not influence the preference of one model
over another.
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2.4. Super registration

1. Choose some model Hλ and evaluate Eqn. 2.34, the posterior p(∆, I|φ, ψ,Hλ).

2. Summarize the posterior by calculating the position and widths of the maximum

likelihood ∆ and I.

3. Evaluate Eqn. 2.35, the model evidence p(φ, ψ|Hλ), by estimating the normalization

of the posterior.

4. Repeat steps 1-3 with some subset of the model space H.

5. Choose the model Hλ with the largest evidence and examine its concomitant

posterior distribution.

The final (unlisted) step is to examine and decide whether the residuals and the maximum

likelihood image and shifts are reasonable.

This recursive process of acknowledging all the context and condition of our model

and inverting them with Bayes’ theorem can go on forever. We could for instance consider

a probability over the parameters θ of our model Hλ(θ), adding another integration or

optimization to the steps above. Fortunately, the deeper these model assumptions go,

the less these decisions affect the outcome of our inference [MacKay, 1996]. Bayesian

inference does not exclude the experience of the researcher; we will terminate the inference

recursion with our own judgement.

2.4.2 Super Registration for periodic images

Returning to our periodic image registration problem, let us pursue the inference steps

above in a concrete example. The natural model space for periodic images consists of

Fourier series, indexed by the maximum frequency allowed. Given two images φ and ψ,
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the probability of measuring these images given some latent image I and shift ∆ is

log p(φ, ψ|∆, I,Hλ) = − 1
2σ2

λ∑
k=0
|φk − Ik|2+

|ψk − e−ik·∆Ik|2

− logZL, (2.36)

where λ indexes the complexity of the model and φk, ψk, Ik are the components of the

Fourier transforms of our image model, and ZL is the normalization. Assuming a constant

prior on shifts and images, the maximum likelihood of the shifts and image is the solution

of

∆ML, IML = min∆,I

λ∑
k=0
|φk − Ik|2 + |ψk − e−ik·∆Ik|2. (2.37)

Equation 2.37 is in the standard form of a nonlinear least square problem which we

solve by alternating linear least squares for Ik and using Levenberg-Marquardt for ∆.

For a given image model Hλ we can find the most likely shift and image by evaluating

Eq. 2.37, calculate the covariance, and compute the evidence. Assuming flat priors on ∆,

Ik and Hλ the evidence is the integral of our likelihood over ∆ and I:

ZL =
∫

dIkd∆ p(φ, ψ|∆, I,Hλ). (2.38)

ZL can be computed by applying Laplace’s method of integration using the Jacobian of

the least squares problem.

Figure 2.4 shows the result of step 4 of our algorithm for the periodic data used in all

numerical experiments so far (shown in Fig. 2.1), where have used every possible Fourier

cutoff. We have inverted the evidence to guide the eye, so that the minimum of the black

curve is the most likely model. For this true image and noise level the most likely model

is λ = 15 (15×15 sinusoids). The smallest observed error (green crosses) in shift inference
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Figure 2.4: Using 1000 pairs of 64×64 images with additive Gaussian noise and I(k) ∼
k−1.8, we computed the model evidence p(Hλ|φ, ψ) (black curve) for all Fourier cutoffs
indexed by λ, showing that when the evidence is maximized the actual shift error (green
crosses) is minimized. Further, this error is nearly indistinguishable from the CRB (green
dashed). Finally, the naïve estimate of the CRB (solid green) is computed from the
curvature of the posterior using Eqn 2.5 the Fisher Information. During a real experiment
only the evidence (black curve) and the naïve curvature estimate of the CRB (solid green)
are available, but when the evidence is maximized all estimate of the error match.

is also precisely at λ = 15, and is consistent with the CRB (green dashed). The most

likely model provides the most precise inference of the shifts. The maximum evidence

solution has been interpreted to embody Occam’s Razor that the simplest explanation

is most likely [Balasubramanian, 1997]. Therefore evidence-based model selection can

systematically infer the number of degrees of freedom as supported by the data, avoiding

over-fitting and larger errors than the CRB.

The solid green line of Fig. 2.4 is the CRB estimated by evaluating the second

derivative of the log-likelihood; notice that this erroneously continues to decrease with
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increasing complexity. In a real experiment we only have access to the evidence (solid

black line) and this curvature estimate of the CRB (solid green line). The maximum

evidence model is also where all of our estimates of the shift error, motivating further

the utility of the evidence-based choice of model complexity. Finally note that when the

complexity is chosen to be 64 (or all Fourier modes are used) the measured error σ∆ ≈ 0.1.

In Fig. 2.1, when the noise is σ = 0.075, the same as in the evidence experiment above, the

observed error of the standard FS method is also σ∆ ≈ 0.1. Therefore we see numerical

correspondence between integration over the underlying image and optimization without

selecting model complexity by considering the evidence.

2.4.3 General non-periodic Super Registration

Following the clarity of studying image registration in the periodic case, we turn our

attention to general non-periodic images. Here there is no clearly natural model; images

are extremely complicated. While there are exciting candidates in the form of deep

convolutional neural networks, these objects cannot (currently) be evaluated at arbitrary

points in space; they have no notion of continuous locality [Ulyanov et al., 2017]. In

general the researcher’s knowledge about the physical objects being imaged should inspire

the model space. A very specific and successful example is the Parameter Extraction by

Modeling Images (PERI), which modeled almost every aspect of a confocal microscope,

extracting enough information from a light microscope to infer the parameters of the van

der Waals interaction [Bierbaum et al., 2017]. Lacking such specific inspiration therefore

we chose sums of Chebyshev polynomials, in part because of their excellent approximation

properties [Press et al., 2007].

We generated non-periodic data from the same distribution in Eq. 2.10, sampled twice

as large (128×128), shifted one by ∆0, cropped out a 64×64 region, and added noise.
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Figure 2.5: Comparing the error and bias of the standard Fourier shift (FS) method and
Super Registration (SR) for non-periodic data. The synthetic data were generated by
the model I(k) ∼ k−1.8, twice as large as necessary, Fourier shifted and then cropped to
produce non-periodic images. Errors and biases were measured from 1500 64×64 noise
samples. (a) The ∆y biases, errors, and CRBs for the standard FS (pink) and SR (green)
are shown as a function of the true real shift ∆0. The standard method suffers from errors
(pink dots) and bias (pink line) that are periodic in ∆0. Super Registration shows almost
zero bias (green line) and no periodic structure in the error (green crosses). Similarly to
the periodic case, SR is much closer to its CRB (green shaded) than the standard FS
method is to its CRB (pink shaded). (b) The biases, errors and CRBs for FS and SR
methods as a function of noise for a fixed random shift ∆0 = (0.94,−1.42). The standard
FS method has super-linear error (pink dots) growth with noise, and a monotonic bias
(pink line) large than its CRB (pink shaded). Super Registration has linear error (green
cross) growth about twice its CRB (green shaded), and a bias (green line) consistent
with zero.

Figure 2.5 show results for the error (pink dots and green crosses) and bias (pink and

green lines) using these synthetic data, as a function of both noise σ (Fig. 2.5(a)) and

true shift ∆0 (Fig. 2.5(b)). Pink denotes the standard FS method and green denotes

Super Registration. Figure 2.5(a) shows that the standard FS method has an oscillating

bias which is zero at whole and half-pixels, and has an oscillating error which is largest at

whole pixel shifts and smallest at half pixel shifts. The pink shaded region is the CRB of

the FS method. Figure 2.5(b) shows super-linear error (pink) growth for FS, compared

with our theory from Eq. 2.32 (black dotted), and a bias (pink line) deviating slowly but
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consistently from zero.

Figure 2.5(a) shows that Super Registration has nearly a constant bias (green line)

and error (green crosses) as a function of true shift ∆0, and bias smaller its CRB (green

shaded). The error is much smaller than the standard FS method, and is one-third the

error of the FS method when σ = 0.1 (10% noise). Finally we see in Fig. 2.5(b) that the

error of SR grows linearly with noise. While SR here does not reach the CRB, it scales

the same as the CRB. A better image model should result in errors more consistent with

the CRB. Because we generated data by randomly sampling in Fourier space, shifting,

then cropping, our Chebyshev polynomials cannot perfectly represent that signal. This is

an important reminder that the CRB depends on the chosen model. Since the CRB is

defined as the inverse of the Fisher Information in Eq. 2.5, the CRB is model-dependent,

and thus the standard FS method and SR have different bounds.

How would Super Registration perform on data which has non-Gaussian noise? We

cannot guarantee optimal precision in this case, because our model assumes the noise

is Gaussian. SR would provide reliable results, however, in the same way that the

FS standard method provides reliable results in this case. We can claim this because

optimization (SR) and integration (FS) are the same—following the method of steepest

descent or Laplace’s method of integration—so that a fully complex image model (one

degree of freedom for each pixel) would be statistically the same as shifting one image to

match the other. The evidence maximization procedure, however, is not guaranteed to

be effective, as we know the model assumes the incorrect noise distribution.

For many experimental images, Super Registration offers only a marginal improvement

in the image quality as measured by eye. For a small shift error ∆ −∆0 the image

intensity reconstruction error is ∆I ≈ (∆−∆0) · ~∇I. For smooth, highly sampled images

visual changes will be small. Most experiments do not operate in the regime where they
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are not sampling at a high enough rate to see the structure of their sample. Although

the reconstructions for many experiments will not vary dramatically visually, we show

that the shift errors can dramatically interfere with the information extracted from the

reconstructions. When inferring parameters from data such as object sizes, positions, and

orientations, correlation functions, and local contrast, the precision of these quantities

will be limited by the quality of the registration. To emphasize the scale of these errors,

in the next section we demonstrate a dramatic improvement in particle position inference

from correctly registered images.

2.5 Particle tracking errors

A very common task in image processing is tracking particle positions. High precision,

especially in atomic-scale TEM and STEM, is important for understanding real-space

structure. For example, charge density waves cause atoms to deviate from their lattice

by tiny amounts, and can be studied by carefully measuring the positions of the atoms

in real space [El Baggari et al., 2018]. For High-angle Annular Dark Field (HAADF)

STEM, the image of an atom is well-approximated by a 2D Gaussian [Yankovich et al.,

2014]. In TEM and STEM, noise is often Poisson-distributed. Both SR and the standard

method assume image noise is Gaussian, and achieving optimalty for Poisson noise will

require modeling the noise correctly by modifying the likelihood in Eqn. 2.2. Assuming

Gaussian noise, then, we created synthetic data of a pair of Gaussian particles, shown in

Fig. 2.6(a) with 10% additive noise. Simulating drift in a realistic STEM experiment, we

created 8 copies of the two particle images, randomly shifted. For each noise level we

sampled 1000 noise instances, with each reconstructing the underlying with both FS and

our Chebyshev-polynomial based Super Registration.
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Figure. 2.6(b) shows the error of inferring the position of the larger particle using both

the FS reconstruction (pink line) and SR reconstructions (green line). For σ = 0.3 or

30% noise we see that the precisions of particle position are 10x better using SR than FS.

Further, the SR method, not even using the correct model (a sum of Gaussian particles),

is only about twice the CRB for particle position inference (black dotted). Finally, we

show the result when using shifts inferred by the same data coarsened by a = 3, which

was chosen to have the lowest error without being biased. In summary we see that even

though small shift errors do not have a dramatic effect on the reconstructed image as

measured by eye, there are drastic effects on the precision of extractable information

from the reconstructions.

2.5.1 Computational complexity

The standard Fourier shift method requires a Fourier transform of one of the images for

each iteration of the optimization, ultimately scaling in time as O(N logN), where N is

the number of pixels in one image. Super registration requires estimating the underlying

image, and thus requires O(NM) whereM is the number of polynomials used in the image

model. SR requires trying multiple values of M , and multiple models, to find the greatest

evidence. For two 128× 128 images, FS takes less than a second on a modern computer.

SR requires an hour or more to try multiple values of M , but only a few minutes to find

the shifts and image for a given M . For multi-image registration, optimal FS requires

comparing all pairs of images, and so scales as O(L2N logN) for L images, whereas SR

scales as O(LNM), as it compares the data only to the model. Memory requirements

depend on the algorithm used. In this work we used Levenberg-Marquardt nonlinear

least-squares optimization, which requires O(LNM) memory to store the Jacobian, and

so images larger than 128× 128 are impractical.
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Figure 2.6: (a) A model image of two Gaussian particles with 10% Gaussian additive noise.
Eight of these images with random sub-pixel relative shifts were generated, and 1000
noise samples were drawn. For each noise sample, the underlying image was reconstructed
either by the standard Fourier shift (FS) reconstruction or with Super Registration. With
each reconstruction we fit the Gaussian models which generated the data, inferring the
most likely particle position and width. (b) The average error of inferring the y-position
of the larger particle from images reconstructed with the standard FS method (pink line),
a coarse-grained image (pink dotted), and Super Registration (green line).

There are several open opportunities for improving the performance of Super Registra-

tion. Memory consumption and computational time can be improved by using Variational

Inference and Stochastic Gradient Descent, which scales with O(LN) in memory, and

will be the subject of future work. A local image model (where each image parameter

only modifies a small area of the image), such as radial basis functions, would scale even

better than the Fast Fourier Transform, as O(N). Finally, GPUs are designed to perform

optimal image calculations, and SR could achieve at least 10× (by naïve FLOP counts)

the performance as compared to a CPU.
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2.6 Conclusion

Through a statistical theory of image formation, we have derived the standard method of

image registration, which shifts one image to match another. Our theory predicts that

shift errors for the standard FS method grow quadratically with noise, much faster than

the linear relationship of the CRB. Our explanation for the deviation between the naïve

CRB and the standard method comes from a deep relationship between integration and

optimization. The resulting formula is useful for designing experiments which require

image registration and must be performed using the standard method. Our analysis leads

to the surprising fact that coarse-graining the data can improve the shift errors.

We develop a new method of image registration, which models the underlying image,

shifts that to match the data, and follows Bayesian inference to select the image model for

which there is the most evidence. Our theory reveals an inextricable relationship between

image registration and super-resolution—that ultimate shift precision is predicated on

selecting a probable model. Therefore we named our new method Super Registration. We

showed for periodic images that a Fourier series image model achieves errors consistent

with the CRB. We demonstrated superior bias and expected error performance for general

non-periodic images, and discussed the shortcomings of our general model. Finally,

we showed that, despite marginal improvements in image quality as measured by eye,

particle tracking experiments can be 10× more precise when using Super Registration

reconstructions.

Our results can be extended to more general transformations: by application of the

chain rule each term in our calculation of the average bias and variance will be modified

by partial derivatives. It is reasonable to assume that the same problems—nonzero bias

and errors which are much larger than the CRB—will persist for transformations like
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affine skews, rotations, and non-rigid registrations. Super Registration can accommodate

all of these problems by constructing the forward transformation instead of reconstructing

the inverse transformation.

Finally, medical imaging consists of lining up images of the same tissue from different

modes like X-ray and Magnetic Resonance Imaging (MRI) [Zöllei et al., 2003, Leventon

and Grimson, 1998]. The Super Registration method involves constructing a generative

model for the data, and this perspective reminds us that contrast and features in X-ray and

MRI will be different because they respond to different underlying tissue structures. Bias

and large errors for this problem have been observed and attributed to this fact [Tyler,

2018]. Therefore some underlying model of tissue component densities and a model

of image formation (Super Registration) will be critical for accurately and precisely

registering these images.

Image registration is a very important and fundamental problem in medical imaging,

remote sensing, self-driving automobiles, non-destructive stress measurement, microscopy,

and more. Our theoretical study of the fundamental problem of rigid shift registration in

the presence of noise answers long-standing questions on the precision and accuracy of

shift inference, elucidates an inextricable link between registration and super-resolution,

and inspires a solution to these problems with wide applicability.
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Chapter 3

Reconstruction of current densities

from magnetic images by Bayesian

Inference

3.1 Introduction

Two-dimensional (2D) materials host a variety of electronic transport phenomena, many

of which are associated with a non-trivial spatial structure of the current density in

the material. A non-invasive, local way to image a two-dimensional current density is

to image the magnetic field produced by the current and infer the current density. To

date, numerous magnetic imaging techniques have been used to image current densities

including scanning SQUID [Kalisky et al., 2013, Nowack et al., 2013, Vasyukov et al.,

The work constituting this chapter was done in collaboration with Katja C. Nowack and James P.
Sethna
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2013], scanning Hall probe [Dinner et al., 2007], magneto-optics [Pashitski et al., 1997],

and nitrogen-vacancy (NV) centers in diamond [Chang et al., 2017, Tetienne et al., 2017,

Ku et al., 2019].

Most magnetic imaging techniques probe a single magnetic field component in a plane

at a constant height above the sample. The relation between the current density and the

measured magnetic image is defined through two convolutions: (1) the Biot-Savart law

relates the magnetic field to the current density and (2) a convolution of the magnetic

field with the point spread function of the magnetic sensor. The current reconstruction

problem is therefore a linear deconvolution problem. To obtain the local current density

from a magnetic image, the two convolutions have to be inverted. If the current density

only varies in two dimensions, this inversion is in principle possible because current

conservation relates the two in-plane components. In practice, the inversion is a non-

trivial task because the problem is ill-posed: (1) experimental images contain noise

and (2) the finite scan height and point spread function lead to a loss of information.

Noise with high spatial frequencies dominates the reconstructed image. There are many

solutions that predict the data including noise perfectly. Most of these solutions are not

physical, And so, a criterion for what constitutes a physically sensible solution—often

called regularization—is required.

A detailed overview of existing methods for current reconstruction are given by Meltzer

et al. [Meltzer et al., 2017]. The most intuitive method is to invert the convolutions

directly in Fourier space [Roth et al., 1989], filtering high spatial frequencies that other-

wise cause instability. However, the shape and cutoff frequencies of the applied filters

limit the resolution of the reconstructed image in a sub-optimal and uncontrolled way.

Iterative conjugate gradient methods have also been employed [Wijngaarden et al., 1998],

but—though they are more stable to noise—the regularization is not well controlled.
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Feldmann [Feldmann, 2004] and Meltzer et al. [Meltzer et al., 2017] have reported recon-

struction procedures using Tikhonov regularization penalizing the Laplacian of the current

dipole field, combined with a cross-validation-based choice of the regularization strength.

Tikhonov regularization is an attractive method because it is analytically tractable in

Fourier space, allowing for computationally efficient solutions and theoretically motivated

methods of choosing the regularization strength.

In the wider image reconstruction literature, a variety of regularization penalties have

been developed that are not analytically tractable. For example, total variation penalizes

oscillations in a solution, but does not penalize sharpness like Gaussian or Tikhonov

regularization. An additional complication when reconstructing current densities is that

typically some current leaves and enters the imaged field of view. At the points along the

image boundary where this happens, the current density is not conserved. This violates

the assumption of conserved current, without which the problem is under constrained.

Meltzer et al. [Meltzer et al., 2017] have implemented mirror boundary conditions (similar

to image charges) for accommodating currents which enter or leave the image. While the

mirror boundary conditions suppress ringing at the edges—which otherwise results in an

artifact—it is not faithful to the sample geometry unless the sample is mirror-symmetric.

Here we describe a new procedure to reconstruct current density from magnetic images

that is amenable to a wider class of priors than previous work, and can accommodate

currents crossing the image boundaries. Formulating the reconstruction problem in a

probabilistic framework suitable for Bayesian inference offers unprecedented flexibility to

make use of prior information about the current density, including the sample geometry.

This knowledge is imposed through different so-called priors, which assure physically

sensible current densities and which, are equivalent to choosing a regularization. Previous

methods have penalized the Laplacian of the current dipole field, from which the current
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density is computed, or the components of the currents themselves. We discuss a set

of requirements which any sensible prior should obey. From this we show that a prior

based on the Frobenius of the Hessian is better motivated than the commonly used

Laplacian prior. This new prior improves existing Tikhonov regularization, and supports

our new methods. This generative approach could be extended to any imaging problems

in Physics, where a detailed theory of image formation is known.

The priors we explicitly discuss include (1) a Gaussian prior (Tikhonov regularization)

penalizing the Laplacian and the Frobenius of the Hessian, (2) a total variation prior,

which penalizes strong fluctuations in the current density, but does not necessarily smooth

sharp edges, and (3) a finite support prior (which allows the user to specify areas in the

field of view where no current flows). In addition, taking advantage of the generative

approach, we show that we can accommodate currents crossing the image boundary

through modeling current densities flowing outside the field of view based on the sample

geometry. This reconstruction problem ultimately leads to a convex optimization problem

which we solve using the Alternating Difference Method of Multipliers (ADMM)[Boyd

et al., 2011].

The paper is organized as follows. In Sec. 3.2, we define the forward problem,

describe how we use Bayesian inference, and explain a generative approach for current

reconstruction. In Sec. 3.3 we propose a set of requirements any prior should obey, derive

a new prior which satisfies them, and compare it to a previously studied prior. We

explore the Gaussian priors and develop new total variation and finite support priors.

In Sec. 3.3.3, we discuss how to optimize the strength of each prior. In Sec. 3.4, we

describe how we account for currents flowing outside the field of view, and benchmark

our method using numerical results throughout. Details of the inversion algorithm, the

implementation of finite support priors, and the external current models are presented in
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Sec. 3.6.2 and Sec. 3.6.3. The code is in an open-source python module called pysquid,

publicly available in a github repository1.

3.2 Bayesian inference formulation of the current

reconstruction problem

3.2.1 Forward problem

First, we describe the forward problem: calculating the magnetic image resulting from

a given two-dimensional current density, assuming the magnetic sensor probes only the

perpendicular component of the magnetic field at a fixed height above the current. We

also assume the sensitive area is small compared to the scan height so that the point

spread function can be ignored, but all the methods we present here can be generalized

to include a PSF. Experimental determination of the PSF for a SQUID imaging system

will be presented in future work. It is also straightforward to extend our reconstruction

procedure to different magnetic field components, and allow for a finite thickness of the

current carrying sheet, uniform in the perpendicular direction.

The perpendicular or z−component of the magnetic field produced by the two-

dimensional current at a position r = (x, y, z) above the sample is given by the Biot-Savart

law: Bz(r) = K(r) ∗ j(r) where K(r) = µ0
4π

3z2−r2

r5 with r = |r|, µ0 the vacuum permeabil-

ity. The symbol ∗ denotes a convolution f(r)∗h(r) =
∫∞
−∞

∫∞
−∞K(r−s)j(s)dx′dy′ where

s = (x′, y′, 0) because the current density is constrained to the x− y plane. Assuming no

current sources and drains are present in the field of view, the x− and y− components

of the current density jx,y obey current conservation: ∂xjx + ∂yjy = 0. We explicitly

1https://github.com/colinclement/pysquid
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enforce current conservation through introducing a single scalar field g(s) which only

depends on two dimensions. From the scalar field, we calculate the current density as

j(s) = ∇ × g(s)ẑ. After employing a number of vector identities, we can write the

Biot-Savart law as a function of g [Wijngaarden et al., 1996]:

Bz(r) = µ0
4π

∫ ∫
g(s)3(ẑ · n̂)2 − 1

|r − s|3
dx′dy′, (3.1)

where n̂ = (r − s)/|r − s|. The kernel convoluted with g in Eqn. 3.1 is recognizable as

the magnetic field of a point dipole oriented along the z− direction. g can be therefore

viewed as a decomposition of a 2D current density into circulations of current, which

is why we call g the current dipole field. Our model then takes the form of a magnetic

image vector φ with pixel values φ(ri) = Bz(ri) sampled in a discrete rectangular grid

{ri}, given some current dipole field g, which we will also assume is discretely sampled

on the same coordinates, but separated from the imaging plane by some distance.

3.2.2 Inverse Problem and Bayesian Inference

The Biot-Savart law is linear, so that the relationship between a discretely sampled

magnetic image φ ∈ RN and a discrete current dipole field g ∈ RM can be written

φ = Mg for some suitable linear operator M ∈ RN×M . Assuming that the current is

thin and circulates in a rectangle around the pixels, the matrix elements are calculated as

a function of height above the sample in the appendix (see eqn. 3.23). While the matrix

representation of M is impractical to store for any reasonable image sizes, the matrix-

vector products Mg can be efficiently computed using a Fast Fourier Transform (FFT).

In general, magnetic sensors are sensitive to magnetic fields integrated or averaged over an

area and characterized by a point spread function (PSF). The PSF can be incorporated

into M and will be the subject of future work for SQUID imaging in particular.
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We assume that the experimental noise is independent and identically distributed for

each pixel, so that our model for a measured magnetic image is

φ = Mg + η (3.2)

where for each pixel p(ηi) ∼ N (0, σ2) is Gaussian noise with variance σ2. Written this

way, we interpret the noise as causing the data to fluctuate around the model with

characteristic distance σ. We can therefore define the likelihood p(φ|g) of measuring φ

given g:

p(φ|g) = 1
(2πσ2)N/2

exp
(
− 1

2σ2 ||Mg − φ||
2
)
, (3.3)

where N is the number of pixels in the image φ, and || · ||2 is the Euclidean L2 norm. This

likelihood p(φ|g) is our model of the data. The model allows us to infer the current dipole

field from the experimental data with better inference possible for lower experimental

noise.

Our goal is to learn g after having measured φ. We therefore need p(g|φ) (called the

posterior (post-measurement) probability). Bayes’ Theorem tells us how to reverse the

conditional probability:

p(g|φ) = p(φ|g)p(g)
p(φ) , (3.4)

where p(g) is the prior probability, encoding a criterion for preferable and physically

sensible solutions. p(φ) is called the evidence—which is the normalization of the posterior—

and is useful for quantitatively justifying the selection of one model over another [MacKay,

1992]. The maximum likelihood solution to the reconstruction problem is then the most

likely g given φ:

g? = maxg p(g|φ) = maxg p(φ|g)p(g). (3.5)

At this stage of inference the evidence p(φ) can be left out as it does not change the

peak of the distribution (it is independent of g, being the integral over all g). Full
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3.2. Bayesian inference formulation of the current reconstruction problem

treatment of Bayesian inference, including optimal model selection is described in detail

by Mackay [MacKay, 1992].

We can now define the maximum-likelihood solution for current inference by combining

eqns. 3.5 and 3.3 to find

gλ = ming
1
2 ||Mg − φ||

2 + (λσ)2 `(g), (3.6)

where we assume that the prior can be written p(g) ∝ exp
(
−λ2`(g)

)
for some non-

negative penalty function ` and real number λ. Inference of currents is now cast as

minimizing the negative log-posterior, or minimizing the distance between our model Mg

and the data φ, constrained by a regularization l(g).

It is instructive to demonstrate the necessity of some nontrivial prior l(g). If p(g) ∼ 1

(all solutions are considered equally preferable), then the maximum likelihood solution of

eqn. 3.6 is

g = (MTM)−1MTφ, (3.7)

which is the pseudoinverse (the ‘closest’ inverse to the singular M), which is calculated

only from the eigenvectors of M with non-zero eigenvalue. M has at least one zero

eigenvalue, as adding any constant to g does not change φ. The pseudoinverse can

gracefully ignore this symmetry, but since the Biot-Savart law is a long-range (power law)

blurring kernel, M has exponentially small eigenvalues corresponding to high frequencies.

Additive Gaussian noise has support in all frequencies; deconvolution is highly unstable

as the pseudoinverse amplifies any amount of noise.

The pseudoinverse can yield solutions which fits the data perfectly, however, it will

fit the noise (over-fitting) as well as the data. There is a huge space of solutions g that

can overfit the data like this, and most of them oscillate rapidly throughout the image.
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Reconstruction of current densities from magnetic images by Bayesian Inference

The role of a non-trivial prior p(g) is to restrict this space by using physical principles to

specify which current solutions are more likely.

3.3 Understanding Priors

A natural starting place for understanding priors is by assigning a Gaussian penalty of a

linearly transformed part of g:

p(g) ∝ e−λ2`(g) = exp
(
−λ2||Γg||2

)
, (3.8)

where Γ is a linear operator. The maximum likelihood solution to eqn. 3.6 is equivalent

to Tikhonov regularization discussed in the context of current reconstruction in refs.

[Feldmann, 2004, Meltzer et al., 2017] and the optimal Wiener filter for some choice of

Γ [Press et al., 1989]. Gaussian priors are the conjugate prior to a Gaussian likelihood,

with the explicit solution given by:

gλ = (MTM + (σλ)2ΓTΓ)−1MTφ. (3.9)

In this form, we can see that the role of Γ is to override the exponentially small eigenvalues

of MTM , regularizing the instability of the pseudoinverse in eqn. 3.7. Written in this

form, we see that σ sets the scale for the regularization strength λ. We will discuss in

detail how to choose λ in section 3.3.3.

What should determine the operator Γ? The simplest choice is the identity Γ = I.

In this case, the prior favors a small-magnitude solution, which is not often physically

motivated. If Γ corresponds to derivatives, the prior prefers smooth solutions. The

Laplacian Γ = D2
x +D2

y—with second derivative operators D2
x in the x-direction and D2

y

in the y-direction—is a common choice for image reconstruction problems and has been

discussed in the context of current reconstruction [Feldmann, 2004, Meltzer et al., 2017].

47



3.3. Understanding Priors

The Laplacian is translation invariant, prefers small accumulated curvature, and allows

eqn. 3.9 to be solved directly in Fourier space [Feldmann, 2004, Meltzer et al., 2017].

We can physically interpret the Gaussian Laplacian (GL) prior by (1) recognizing

that j = ∇ × gẑ = ∂ygx̂ − ∂xgŷ and (2) writing the log of eqn. 3.8 in the continuum

limit for clarity of notation as:

`GL(g) = −λ2
∫

d2r (∂2
xg + ∂2

yg)2

= −λ2
∫

d2r |∇ × j|2, (3.10)

where the second line assumes that current only varies in the x − y plane. Therefore

the Laplacian prior prefers solutions with small accumulated circulation of current. The

Laplacian prior is certainly more physical than Γ = I, but it is not clear why we should

penalize only the circulation of current.

This leads us to seek other choices for the Gaussian prior in the context of current

reconstruction. In general, we would prefer that a prior obeys physically-motivated

symmetries and that the prior be a functional, that is, an integral of some scalar quantity

defined locally in the plane of currents. Such a scalar quantity should have the following

properties:

1. invariance under current inversions g → −g,

2. invariance under rotations and reflections,

3. penalize all variations in currents, i.e. first derivatives of j and thus second

derivatives of g.

The Laplacian prior Γ = ∇2 satisfies almost all of these; it is the integral of (∇2g)2; (1)

the quadratic makes it invariant to g → −g, (2) the Laplacian is rotation and reflection
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(a) Ground truth
uniform |j|
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Figure 3.1: Ground truth 100×100 current density |j|, with uniform profile (a) and
parabolic profile (e). Synthetic φ was computed with a height above the plane of 4 pixel
widths and 5% noise was added. Reconstructions for the uniform annulus in (b-d) and
the parabolic annulus in (f-h) with Gaussian prior penalizing the Laplacian, the Gaussian
prior penalizing the Frobenius Hessian, and the total variation of the Frobenius Hessian.
The regularization strength for each was chosen by our Bayesian discrepancy principle.
The data φ was re-scaled to have unit peak-to-peak range, and λ = 1.4 was used for the
TVF prior reconstruction, and λ = 2. was used for the GL and GF priors.49



3.3. Understanding Priors

invariant (as we will soon show), (3) following eqn. 3.10 we see that not all the possible

variations of the current are penalized.

The combination of the inversion symmetry and only allowing second derivative of g

implies that all physically motivated functionals must contain two powers of elements of

the second derivative matrix. Our prior must depend on the Hessian Hαβ = ∂α∂βg, where

α = x, y and β = x, y. To construct a functional that is in addition rotation invariant,

we must contract the indices (following Einstein summation conventions), and there are

only two ways to do this [Cvitanović, 2008] with two powers of g: HααHββ = (TrH)2

and HαβHαβ = TrHTH. The former is the Laplacian we have studied above; the latter

is the square of Frobenius norm of the Hessian. This new Gaussian Frobenius (GF)

prior satisfies our first two criterion by construction. Following a similar calculation to

eqn. 3.10,

`GF(g) = −λ2
∫

d2r HαβHαβ

= −λ2
∫

d2r (∂xjy)2 + (∂yjx)2 +

(∂xjx)2 + (∂yjy)2, (3.11)

we find that `GF(g) penalizes all variations in currents and satisfies our third and final

criteria.

The superiority of this new prior is demonstrated in fig. 3.1. First, for comparison,

it explores simple synthetic data examples in the form of two annuli: one with currents

with uniform current density (a) and one with parabolic current density going to zero at

the edges (e). Synthetic data was produced by creating a kernel M from a height about

the plane of 4 pixel-widths, and noise of σ = 0.05 was added.

The second column of fig. 3.1 shows reconstructions using the Gaussian Laplacian

prior in eqn. 3.10 on the uniform annulus data (b) and the parabolic annulus data (f).
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Reconstruction of current densities from magnetic images by Bayesian Inference

Both reconstructions show large magnitudes of spurious currents at the edges of the

image–likely due to the Laplacian not penalizing all current components from varying

too much. The third column (c) and (g) show reconstructions using the new Frobenius

prior in eqn. 3.11, with improved edge reconstructions. The regularization strength λ

was set using our Bayesian discrepancy principle (described in section 3.3.3); the priors

were computed using centered finite difference derivatives (described in section 3.6.2).

The fourth column of 3.1 (d) and (h) shows reconstructions with our new total variation

of the Frobenius norm prior: with more even reconstructions where current is zero and

errors largely concentrated at the edges of the annuli.

We solved the maximum likelihood problem of eqn. 3.5 with the Gaussian Laplace

prior in eqn. 3.10 and the Gaussian Frobenius prior in eqn. 3.11 by iteratively solving the

appropriate regularization psuedoinverse in eqn. 3.9. The construction of appropriate Γ

operators is discussed in sec. 3.6.2 of the Appendix. The computational complexity of

one iteration of the solution of eqn. 3.9 is O(N logN) for N pixels in the data φ via an

FFT. The iterative method scales the same way, but will take a number of steps which

depends on the condition number of the operator (which depends on Γ, σ, and λ).

3.3.1 Total Variation Priors

As we discussed in the introduction, the current reconstruction literature has so far

only considered analytically tractable, Gaussian priors. These are attractive because

the resulting reconstruction problem can be solved with a couple FFTs and there exists

calculations for motivating the choice of regularization strength λ. Unfortunately, Gaus-

sian priors in particular suffer from ringing, especially at sharp boundaries due to the

Gibbs phenomenon [Gottlieb and Shu, 1997]. For example, in figure 3.1(b) and (c), the

Gaussian prior always allows unnecessary variations of current inside the uniform annulus.
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Figure 3.2: (a) Three possible current j profiles, all of which are equally probable under
a total variation prior. (b) Illustration comparing Gaussian and total variation priors.
Gaussian tolerates very small variations in current, while total variation much more heavily
penalizes any non-zero amount. The result is total variation prefers reconstructions with
regions of constant current, and suppresses ringing more effectively than Gaussian priors.

Therefore a prior which penalizes oscillations without penalizing real sharp changes in

the solution is desirable. In image reconstruction, this is achieved via the total variation

(TV) prior, summing over the absolute values of the derivative [Vogel and Oman, 1998,

Osher et al., 2005]. Since we want to penalize derivatives of j, we again penalize second

derivatives of g:

`TV(g) = −λ2
∫

d2r |∂2
xg|+ |∂2

yg|

= −λ2
∫

d2r |∂xjy|+ |∂yjx|. (3.12)

In order to obtain some intuition about the original total variation `TV (in eqn 3.12),

we must ignore (for a moment) its manifest failure to be rotation invariant. Considering

a one dimensional image, perhaps a slice of our two dimensional image, fig. 3.2(a) shows

three hypothetical variations in currents. The TV prior considers all three of these—

regardless of their smoothness—equally probable. Therefore, the TV prior will suppress

oscillations in the solution and, unlike Gaussian priors, remain agnostic to the sharpness
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Reconstruction of current densities from magnetic images by Bayesian Inference

of the transition. Figure 3.2(b) shows the value of both the Gaussian and TV priors

as functions of the second derivatives of g. However, the Gaussian prior is much more

permissive of small variations of j. On the other hand, the absolute value of the TV

causes any finite amount of variations j to be penalized, thus preferring solutions of g

with regions of constant j and avoiding penalization of sharp edges.

Section 3.3 shows that any good prior for current reconstruction must satisfy principles,

thus any prior must be a function of the Frobenius norm of the Hessian of g: TrHTH. We

consider Gaussian priors of quantity integrated over the image. Inspired by the properties

of the TV prior, we introduce our TV Frobenius (TVF) prior:

`TVF(g) = −λ2
∫

d2r
√
HαβHαβ

= −λ2
∫

d2r
√

(∂2
xg)2 + (∂yg)2 + 2(∂x∂yg)2, (3.13)

where the square root of a sum of squares gives us a rotation invariant absolute value

(like in the original TV prior).

Figure 3.1(d) and (h) show the result of the TV Frobenius prior on the reconstructions

of the uniform and parabolic current annuli respectively. Notice how, in both recon-

structions, the background which should be empty of currents is uniformly empty. Since

TV penalizes any variation—no matter how small—the optimization problem prioritizes

flat (zero) current when zero current is as effective at explaining the data. In fig. 3.1(d)

ringing is more penalized, allowing for a more uniform interior of the annulus. Whereas

the interior of the uniform annulus is more faithfully reconstructed with a TVF prior (d)

than with the Gaussian prior (c), in the case of a parabolic annulus, a TVF prior (g) and

Gaussian prior (h) are comparable.
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3.3.2 Finite support

The total variation prior prefers current solutions which have contiguous regions of

constant current with minimal ‘total variation.’ Another natural prior—which can

accommodate sample geometry—is the finite support prior which uses knowledge of the

sample to impose zero current in regions of the image plane. Since many devices are

lithographically defined, it is often known where the sample should have current and

where it should not. Recall that we are solving for the current dipole field g, such that

j =∇× g. To impose zero current we must also impose that regions with no internal

current correspond to regions of constant current dipole field.

In order to impose that certain regions of g be constant, we must assume that we are

given an image mask m of the same shape as g (which is 0 where current is unrestricted

and 1 where currents are not allowed). Note that since current is imagined to flow ‘around’

our pixels, current can flow only around the periphery of contiguous regions pixels in

the mask with value 1: there is only one current loop for each contiguous region of 1’s.

From m, we then identify each of the regions of contiguous of 0’s with their own free

parameter. Therefore we optimize g̃–which is the vector of all free current dipole field

parameters, equal in number to the number of 1’s in m plus the number of contiguous

regions of 0’s in m.

There is a linear operator F such that g = F g̃, where F ∈ RN×P for N pixels in the

image plane and P free current dipole field parameters. Concretely,

Fjk =


1 if free parameter g̃k sets gj

0 else.
(3.14)

In the case N = P , all pixels are free parameters, and F is (up to permutations) the

identity matrix. With this formulation, g = F g̃. We can impose that regions of the image
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Reconstruction of current densities from magnetic images by Bayesian Inference

have zero internal circulating currents by simply replacing g → F g̃ in the log-posterior of

eqn. 3.5. The finite support prior is quite powerful because it directly reduces the number

of degrees of freedom and highly constrains the solution space. Since the imposition can

be implemented with yet another linear operator, it is straightforward to include it with

both Gaussian priors and our TVF prior (see sec. 3.6.3 for details).

Figure 3.3 shows the result of adding the finite support prior to the uniform and

parabolic annuli models studied in fig. 3.1. By setting values outside and inside of the

annulus to 1 and inside the annulus to 0, we form the mask before following up with

one step of binary erosion in order to make it slightly imperfect. Figure 3.3(b) shows

the reconstruction of the uniform annulus using finite support added to the Gaussian

Frobenius prior: we see smooth edges and some remaining ringing inside the annulus.

Figure 3.3(c) shows another reconstruction of the uniform annulus using finite support

added to the TV Frobenius prior: we see a very uniform interior current density and

slightly sharper edges than in fig. 3.1(d). As for the parabolic annulus with finite support

priors, fig. 3.3 shows that Gaussian (e) and TVF (f) yield very similar results. Figure. 3.3

demonstrates again that the best priors really depend on the data at hand. For a uniform

annulus of current, the TVF prior is clearly more effective than GF, whereas for smoother

parabolic currents, GF and TVF perform similarly.

3.3.3 Choosing the strength of the prior

There are many interesting and effective methods for choosing the strength of the prior,

including Bayesian evidence maximization [MacKay, 1992], the l-curve method [Hansen,

1992], cross-validation [Golub et al., 1979], and the discrepancy principle [Galatsanos and

Katsaggelos, 1992]. None of the existing methods works well for every chosen of prior. In

fact, most methods require analytically tractable (Gaussian) priors. Since the TVF and
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Figure 3.3: Ground truth current density |j|, with uniform profile (a) and parabolic
profile (d). Synthetic φ was computed with a height above the plane of 4 pixel widths and
5% noise was added. Reconstructions for the uniform annulus in (b,c) and the parabolic
annulus in (e,f) with Gaussian prior penalizing the Frobenius Hessian, and the total
variation of the Frobenius Hessian. The regularization strength for each was chosen by
our Bayesian discrepancy principle. The data φ was re-scaled to have unit peak-to-peak
range, and λ = 1.4 was used for the TVF prior reconstruction, and λ = 2. was used for
the GF prior.
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finite support priors preclude analytic tractability, a more general method for setting the

prior strength is needed. Here, we describe a Bayesian modification of the discrepancy

principle.

Assuming that the model or likelihood is determined by φ = Mg+η such that p(η) ∼

N (0, σ2), the inferred gλ for some λ should have the property that the reconstruction

error std(||Mgλ − φ||2) = σ. Since the deconvolution problem is ill-posed, and the

reconstruction error without regularization can be made arbitrarily small, the discrepancy

principle suggests that the strength of the prior should be increased until the reconstruction

error has the same spectrum as the noise (set by σ). Figure 3.4 (top) shows the standard

deviation of this error using the GF prior as a function of λ for the uniform annulus data

of fig. 3.1(a), where a black cross marks the point that satisfies the discrepancy principle.

Since convolution smears together finite regions of current to produce a magnetic image,

there are actually fewer degrees of freedom than the number of pixels. Thus many have

found that following the discrepancy principle leads to over-smoothed data [Galatsanos

and Katsaggelos, 1992]; the image of residuals (in fig. 3.4 marked by a black cross) shows

a faint ring in real space. This spatial structure in the residuals (easier to see in Fourier

space, above) is a violating of our modeling assumptions: the difference between the model

and data should be identically and independently distributed noise. The black hexagon

shows this effect exaggerated with a much larger regularization than is necessary. The

discrepancy principle can be modified by finding γ < 1 such that std(||Mgλ−φ||2) = γσ,

where γN is the effective number of degrees of freedom. For Gaussian priors the effective

number of parameters γN can be estimated, but for general priors, we follow Bayesian

inference and assign less posterior probability to g-fields resulting in residuals which are

not independent and identically distributed.

In practice, we simply find the regularization that satisfies the discrepancy principle,
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Figure 3.4: Illustrating our Bayesian discrepancy principle, choosing the largest regular-
ization strength of the GF prior for which the residuals are spatially invariant, as shown
in the upper-left inset image. The four inset images are the Fourier amplitudes of the
residuals superimposed above the real-space residuals, for the regularization strength
indicated by each arrow. The model error std(||Mgλ− φ||2 is plotted as a function of the
strength of the prior, using synthetic data from the uniform-profiled annulus with height
above the plane of 4 pixels and noise level σ = 0.05, indicated by the horizontal line.
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then reduce it until the residuals have minimal spatial structure in either real or Fourier

space (as indicated by the blue star in fig. 3.4). The Fourier space residuals should ideally

be uniform noise, but we see some degree of fitting the noise (shown by the light spot in

the center). This is likely because we used the GF prior; we have shown that the TVF

prior is better suited to data with sharp edges. The near-zero λ case (indicated by the

black triangle of fig. 3.4) shows an exaggeration of this over-fitting of noise.

3.4 Currents outside the field of view

Of the key model assumptions we have followed so far, many current distributions of

experimental interest violate one in particular: current conservation. We have been

working exclusively with the current dipole field g for which j = ∇× g, so our model

exclusively requires currents to circulate in the field of view. One way of accommodating

data in which current crosses the field of view is to solve the problem assuming mirror

boundary conditions [Meltzer et al., 2017]. While mirror-symmetry is analytically

attractive, few (if any) real-world samples can be expected to be mirror-symmetric,

and assuming so without reason goes against our generative modeling principal.

We approach a solution by building a model of leads feeding the sample. For most

experiments the lithographic design of the imaged device is known, and so just as finite

support can be useful, we can assume our leads have uniform resistivity, and build a

loop which enters and leaves the field of view, canceling as much as possible the currents

incident on the edges. Figure 3.5 shows a van der Pauw geometry, useful for measuring

transport properties of samples (see the zoomed inset). The gray region corresponds to

the sample—with current flowing from left to right with some current dipole field g—and

a resulting image φ. We then build an external model (pink), with a corresponding
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I

I

Field of view

External model gext

Sample and leads

Figure 3.5: The Montgomery or van der Pauw geometry, a common experimental
lithographic pattern for measuring transport properties of a sample. In this case, voltage
is applied between the top two corners, producing a current through a material with
uniform resistivity. The sample is the gray region examined in the zoomed inset. In order
to remove currents crossing the image field of view boundary, we model the leads (pink),
and subtract the resulting field φext from the data φ. The linearity of electromagnetism
ensures that we are then also subtracting the current in the pink region. The pink
external model currents are then accounted for in the reconstruction.
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(a) Ground truth
sample |j|

(b) Gaussian
with mirror

(c) TV
with mirror

(d) TV with
external model

Reconstruction
error

0

2

4

6

−0.4

−0.2

0.0

0.2

0.4

Figure 3.6: (a) Ground truth current density from Montgomery or van der Pauw geometry
of a sample of uniform resistivity, with current entering and leaving through the top of the
image. Synthetic data was computed with a kernel assuming 4 pixel widths separated the
measurement and sample planes, and i.i.d. noise of σ = 0.05 was added. Reconstructions
of the current density using (b) a Gaussian Frobenius prior with mirror-symmetric
boundary conditions, (c) a total variation (TV) prior with mirror boundary conditions
and (c) a total variation prior using an external model; below each reconstruction is
its deviation from the ground truth in (a). The data φ was re-scaled to have unit
peak-to-peak range, and λ = 0.9 was used for both TVF prior reconstructions and λ = 0.8
was used for the GF prior.

current dipole field gext, and subtract the resulting magnetic field of the external model

φext from φ. The linearity of electromagnetism guarantees that we will be only trying to

recover the difference g − gext, which should have conserved current in the field of view.

Our prescription for external modeling is almost complete, except for the fact that

subtracting the external model creates extra variations in the currents which will then be

unfairly penalized the prior. Therefore the prior needs to be a function of g + gext. And

so, we modify the maximum likelihood inference of eqn. 3.5 as follows:

gλ = gext+

ming
1
2 ||Mg − (φ− φext)||2 + (λσ)2 `(g + gext), (3.15)
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where ` is any log-prior. Appendix sec. 3.6.3 explains how we accommodate these

modifications for the TVF priors.

Given a model of a van der Pauw geometry (in fig. 3.5), we now have a generative

scheme for building external current leads into our model via eqn. 3.15. Figure 3.6(a)

shows the ground truth current density that results from solving for the currents with

voltage applied to the top two contact pads of the van der Pauw geometry in fig. 3.5 (using

a tool built into our pysquid package). We then produce synthetic data φ (assuming a

height above the plane of 4 pixel widths) and add noise of magnitude σ = 0.05.

Figure. 3.6(b) shows a reconstruction using the Gaussian Frobenius prior of eqn. 3.11,

with mirror boundary conditions to account for currents crossing the image boundary.

The reconstruction suffers from excessive variations in current as we saw in fig. 3.1.

Figure 3.6(c) shows the reconstruction using the TVF prior of eqn. 3.13 with mirror

boundary conditions. The error image directly below displays a haze of pink, indicating

excessive current density outside the sample. The mirror boundary conditions were not

used to produce the data so the reconstruction inserted some current in order to make it

fit. Finally, fig. 3.6(d) shows the reconstruction using the external model of eqn. 3.15

with the TVF prior, and the pink haze in the error (directly below) has been cured. With

a generative model, the reconstruction does not need to place current outside the sample

to fit the data.

3.5 Discussion and conclusion

Current reconstruction from magnetic images is an important problem: as magnetic

imaging methods are approaching fundamental size limits, improving the resolution of

current reconstructions will come from improved inference. An ill-posed deconvolution
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blurred by electromagnetism itself, current reconstruction requires strong regularization

for stability. We followed the methods of the literature [Wijngaarden et al., 1998,

Feldmann, 2004], and defined the current dipole field g such that j = ∇× g, and defined

the Biot-Savart kernel M such that φ = Mg. Using Bayesian inference, we defined the

negative log-posterior in eqn. 3.6, the maximization of which provides a solution.

We justified the importance of prior information p(g), also called regularization, and

derived a new, principled prior—the Frobenius of the Hessian—which improved the

standard Gaussian prior. In many experimental situations regions edges of the imaged

devices are captured in the field of view. Therefore the field of view necessarily contains

sharp edges at which the current drops to zero (corresponding to the device edges) and

areas of zero current (corresponding to areas where the device is absent). To improve the

reconstruction of regions of constant current, we investigated a total variation prior and

contrasted it with Gaussian priors which permits unnecessary oscillation. To be able to

use information about the device geometry we developed a finite support prior which can

include information about where currents are and are not allowed to flow. Finally, we

extended our generative picture by building an external current model to accommodate

the assumption of conserved currents in the current dipole field.

In addition to Bayesian inference, our approach used the principle of generative

modeling: if we can make convincing data, we can use those models to make better

inferences from data. Moving beyond tractable priors to TV, finite support, and using

external models, we advocated for setting the regularization γ using a Bayesian discrepancy

principle. This method explicitly involves human input, so we call it Bayesian because

looking at the reconstructions, we as intelligent agents can tell if the model is effective or

not, and respond accordingly.

In future work, we will develop methods to infer the point spread function of a given
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imaging device (SQUIDs in particular). If we image a known source of magnetic field,

e.g. a magnetic dipole or a superconducting vortex, finding the PSF is a reconstruction

problem in itself. The open-source code is already capable to take a finite PSF into

account. The generative model approach combined with Bayesian inference presented

here can be readily adapted to evaluate additional new priors for solving the current

reconstruction problem. New priors of interest can be found e.g. in recent developments

of machine learning. Deep priors [Ulyanov et al., 2018] use the restrictive structure of an

untrained convolution neural network as an inductive bias, or implicit prior, and random

projectors [Gupta et al., 2018] learn a lower dimensional subspace trained on latent and

data-space pairs.

3.6 Appendix

3.6.1 Defining the Flux Model

Recall that our model for a measured magnetic flux is φ = Mg + η, for flux image φ,

current dipole field g, and circulant matrix M representing the convolution of the Biot-

Savart law and the PSF. This section derives the Biot-Savart component of M , following

the analysis performed by Wijngaarden [Wijngaarden et al., 1996]. The Biot-Savart law

is written

B(r) = 1
4π

∫
V

j(s)× r− s
|r− s|3ds, (3.16)

where j is the current density in some volume V .

When inferring j we will have to optimize over all currents, but because currents are

conserved (∇ · j = 0), this would have to be constrained optimization (which is more

difficult than unconstrained). If j only varies in 2D, i.e. if j(r) = j(x, y), we can enforce
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conservation by writing

j(x, y) = ∇× g(x, y)ẑ, (3.17)

then we can perform unconstrained optimization on g. After employing a number of

vector identities, we can write the Biot-Savart law as a function of g:

B(r) = 1
4π

∫
V
g(s)3n̂(ẑ · n̂)− ẑ

|r− s|3 ds, (3.18)

where g(s) only depends on two-dimensions and n̂ = (r− s)/|r− s|. The kernel convolved

with g in Eqn. 3.18 is then recognizable as the magnetic field of a point dipole, which is

why we call g the current dipole field; g is a decomposition of a 2D current sheet into

circulations of current.

The data we take is discrete, pixelated, and so to proceed we express our current

density as rectangular pixels centered below the point at which we measure flux. Squares

of constant g are a square loop of constant current present only at the edges. Let us

evaluate the field due to a square of constant g. We will only calculated the z-component,

that is the component orthogonal to the plane of current as that is the component our

probe measures. The field due to a g with a constant value of 1 in a rectangle is

B1
z (x) = 1

4π

∫ x0+a
2

x0−a2

∫ y0+ b
2

y0− b2

∫ t

0

3s · ẑ− s
|s|5/2

dx′, (3.19)

where s = x− x′, a and b are the x and y-widths of the rectangle respectively, and t is

the thickness of the current.

We can evaluate Eqn. 3.19 using the following indefinite integral:∫ 2z2 − x2 − y2

(x2 + y2 + x2)5/2dx = − tan−1 xy

z|x| . (3.20)

For this work we assume the thickness of the current is much smaller than the distance

between the sample and measurement planes (z � t). Taking the limit t→ 0, we find
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that the magnetic field due to a rectangle of constant g is

B1
z (x,x0) = 1

4π
(
I(x0 − x+ a

2 , y0 − y + a
2 , z)

− I(x0 − x+ a
2 , y0 − y − a

2 , z)

− I(x0 − x− a
2 , y0 − y + a

2 , z)

+ I(x0 − x− a
2 , y0 − y − a

2 , z)
)
, (3.21)

where x0 and y0 are the center of the rectangle, a and b are the widths, and

I(x, y, z) = xy(2z2 + x2 + y2)
(z2 + x2)(z2 + y2)|x| . (3.22)

We can now build up the entire magnetic field due to a current distribution by

summing over the discrete current dipole field. Say gij = g(xi, yi) for some set of pixel

centers {xi, yj}. Using the linearity of electromagnetism we can write the magnetic field

of this current distribution as a sum of the magnetic field due to each individual rectangle

of constant g:

B(xk, yl, z) =
∑
i

∑
j

B1
z (xk, yl, z, x′i, y′j)g(x′i, y′j). (3.23)

Since Eqn. 3.21 only depends on the differences between, for instance xk and x′i, we

observe than Eqn. 3.23 is a discrete convolution. This means that we can write our

model more succinctly as b = Mg, where b is the unraveled magnetic field image, M is a

circulant matrix representing the discrete convolution, and g is our unraveled current

dipole density image.

Because M is circulant it is diagonalized by plane waves, and matrix-vector products

like Mg can be computed very efficiently with Fourier transforms. Once a model for the

PSF has been defined, we include this in the definition of M , as two discrete convolutions

are just a sequence of multiplications in Fourier space, and then our model is written
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φ = Mg, where φ is now a magnetic flux, as the addition of the PSF modifies the units

of M .

3.6.2 Defining Linear Operators for Priors

It may not be immediately clear how to implement the Gaussian Laplacian prior of

eqn. 3.10, the Gaussian Frobenius prior of eqn. 3.11, and the TV Frobenius prior of

eqn. 3.13, so I will present here a description of the pysquid implementation.

Firstly, all these operators are composed of the partial derivatives ∂2
x, ∂2

y , and ∂x∂y.

These operators need to be generalized to our discrete problem. The most correct way to

represent these operators is in Fourier space, where ∂x → −ikx for example is a perfect

representation of the derivative operator assuming the operand has been Nyquist sampled.

This representation is beautiful for its translation invariance, and it makes solving the

psuedoinverse eqn. 3.9 very efficient, but it assumes mirror boundary conditions. Since

we almost never come across mirror-symmetric data, we pad out data with zeros so that

the right cannot ‘see’ the left side, but then the Fourier derivatives lead to priors which

unfairly penalize variations at the edges of the image.

We overcome this by using finite-difference derivatives, encoded as a sparse matrix,

where the interior of the image is computed using centered finite differences [Press et al.,

1989], and the edges use forward or backward finite differences, moving away from the

edges. This way we can estimate the derivatives using only information that we have.

Writing the image g as a two-index matrix gx,y, and take D2
x for example. For a pixel

not at the edge, and assuming that the distance between adjacent pixels is ∆x,

(D2
x)x′,y′,x,y = δx′,x−1 − 2δx′,x + δx′,x+1

(2∆x)2 , (3.24)
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and at the left edge, for example,

(D2
x)0,y′,x,y = δ0,x−2 − 2δ0,x−1 + δ0,x

(2∆x)2 . (3.25)

Then generalizing appropriately, we have discrete linear operators D2
x, D2

y and the

cross-derivative D2
xy, and we write matrix vector products (D2

xg)i =
∑
i(D2

x)i,j gj , for

appropriate i = (x, y) and j = (x, y). For specific implementations, see the pysquid

source code.

With these linear operators defined, we can define the discrete representations of the

Gaussian Laplace priors of eqn. 3.10 as

log p(g) ∝ −λ2||Γg||2, (3.26)

where Γ = D2
x + D2

y, and || · ||2 =
∑
i ·2i . Throughout this work we will ignore the

dimensions of the differential in discretizing the integrals, as it is a uniform rescaling of all

terms of the log-posterior eqn. 3.5 which does not change the location of the maximum.

Next, we represent the Frobenius of the Hessian, TrHTH for Hαβ = ∂α∂βg. Where

as the Laplacian Gaussian integrand in eqn. 3.10 is a square of a sum, the Frobenius

prior is a sum of squares. In order to write this in terms of some operator Γ, we must

stack our operators thusly

Γ =


D2
x

D2
y

√
2D2

xy.

 (3.27)

Written this way, then one can see that the discrete generalization of the Gaussian
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Frobenius prior in eqn. 3.11 is

log p(g) ∝ −λ2||Γg||2 = −λ2(Γg)TΓg

= −λ2
(∑

i

(D2
xg)2

i +
∑
i

(D2
yg)2

i+

∑
i

(D2
xyg)2

i

)
. (3.28)

Finally, the Total Variation prior simply modifies eqn. 3.28 by taking a square root of

the summand to obtain

log p(g) ∝ −λ2
(∑

i

(D2
xg)2

i +
∑
i

(D2
yg)2

i+

∑
i

(D2
xyg)2

i

)1/2
. (3.29)

Note that following Vico et al.[Vico et al., 2016], it is possible to find truncated kernels,

which allow the computation of convolutions in a finite domain. This would allow us to

construct derivative translation-invariant operators which do not require zero-padding

around the domain. This would allow direct solution of the psuedo-inverse, and speed up

all of our calculations by a factor of 4×. Future work could explore this for improved

efficiency of pysquid, and perhaps even allow analytic results for the new Frobenius

Hessian prior.t

3.6.3 ADMM for Total Variation Deconvolution

Alternating Difference Method of Multipliers (ADMM)[Boyd et al., 2011] is a convex

optimization algorithm which solves

min
x,z

f(x) + g(z)

subject to Ax+Bz = c, (3.30)
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for some scalar functions f and g, appropriately-sized matrices A and B, and vector c.

In this section only, g refers to the scalar function of the ADMM algorith, and not the

scalar current dipole field g. The only requirement for ADMM to provably solve 3.30 is

that f and g be convex in their arguments.

For solving current reconstruction we must optimize Eqn. 3.6. We can cast our

problem into the standard form of Eqn. 3.30 by identifying x ≡ g, and by setting

f(g) = 1
2 ||Mg − φ||

2. (3.31)

Then the function g is the regularization term set by − log p(z). Our isotropic total

variation prior penalizes second derivatives of the g-field (penalizing changes in the

current j). Identifying A with the x- and y-derivative matrices D2
x and D2

y and D2
xy,

A =


D2
x

D2
y

D2
xy

 , (3.32)

setting B = −I, and c = 0, the stipulation that Ag +Bz = c is equivalent to


D2
x

D2
y

Dxy

 g = z =


zx

zy

zxy

 , (3.33)

where z is twice as long as g, containing both the horizontal and vertical second derivatives

of g. The final piece is then the total variation of the Frobenius norm of the Hessian:

g(z) = λ2∑
i

√
z2
x,i + z2

y,i + 2z2
xy,i. (3.34)
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We can modify ADMM to include finite support priors by replacing g → F g̃, and

optimizing g̃ instead of g:

min
g̃,z

f(F g̃) + (z)

subject to AF g̃ = z, (3.35)

where f is still Eqn. 3.31, g is Eqn. 3.34, and A is Eqn. 3.32. Equivalently, we can modify

the kernel matrix M →MF and the second-derivative matrix A→ AF , which is how we

actually implemented it.

We can also modify ADMM to use an external model as in eqn. 3.15, by simply

setting c = −Agext for the external model current dipole field in the field of view gext.
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Chapter 4

Information Geometry and Effective

Hamiltonians of Spin Glasses

4.1 Introduction

Originally developed to study dilute solutions of manganese in copper, spin glass models

have become the prototype for studying disordered complex systems, especially those

with rough energy landscapes. Over the last four decades, variants of spin glasses have

had important applications in computational complexity [Bachas, 1984, Fu and Anderson,

1986, Kirkpatrick, 1984, Mézard et al., 2002], neuroscience and machine learning [Amit

et al., 1985a, Hertz et al., 1991], HIV drug resistance [Shekhar et al., 2013b,a], memory

models [Amit et al., 1985b], the supreme court [Lee et al., 2015], and protein folding [Weigt

et al., 2009, Marks et al., 2012, Stein, 1985]. Here we focus on the two-dimensional

The work constituting this chapter was done in collaboration with Danilo B. Liarte and James P.
Sethna
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Ising spin glass model, which is not only used to model physical systems but also is

also applied to the study of deep neural network energy landscapes [Choromanska et al.,

2015], which are famously difficult to interpret. Unlike other models, such as the NP-

complete three-dimensional Ising spin glass [Barahona, 1982], the 2D model is amenable

to polynomial-time, numerically exact sampling methods [Thomas and Middleton, 2009]

and its behavior is relatively well understood [Hartmann, 2011, Arguin et al., 2010]. Thus

the 2D Ising spin glass can be used as a playground for building interpretable theories of

complex systems.

Here we apply recent general techniques for model reduction [Transtrum and Qiu, 2014]

inspired by information geometry [Transtrum et al., 2011] to develop a reduced coarse-

grained Hamiltonian for the two-dimensional Ising spin glass. First we demonstrate

the sloppiness of spin glasses at low temperatures, elucidating the model’s effective

low-dimensionality. We then introduce a scheme for exploiting this property to find

explicit coarse-grained lower-dimensional effective Hamiltonians. We employ information

theoretic clustering to assign the coarse-grained block ‘nuggets’ of spins and use the

inverse Ising algorithm to find effective couplings between the nuggets. We show that

these effective Hamiltonians retain some of the low-temperature information by cooling

them and comparing to the original Hamiltonian. Using ideas from machine learning and

variational mean field theory, we then propose an improved dimension-reduction learning

algorithm that has attractive connections to the Renormalization Group. We leave the

implementation and analysis of this method to future work.
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4.2 Sloppiness of Lattice Models

Sloppiness is the observation that multiparameter nonlinear models are usually sensitive

to the values of only a few linear combinations of parameters, with each successive ‘stiff’

combination roughly two to ten times less important to the collective behavior [Brown and

Sethna, 2003, Gutenkunst et al., 2007]. Information geometry and interpolation theory

tells us that these models have a space of possible predictions (the ‘model manifold’)

that is effectively low-dimensional [Transtrum et al., 2010, Sethna, 2015]. This manifold

is usually thin in data-space directions corresponding to sloppy directions in parameter

space, forming a hyperribbon with a geometrical hierarchy of widths corresponding to

the hierarchy of sensitivities of the behavior near a particular parameter set [Transtrum

et al., 2011].

Sloppiness is a ubiquitous feature of complicated models in science. It has been

identified in models of gene regulation and cell-signaling [Waterfall et al., 2006], radioactive

decay, particle accelerators, neural networks, and quantum wave functions [Transtrum

et al., 2015, Gutenkunst et al., 2007]. Sloppiness has been found in coarse-grained models

through a beautiful connection to renormalization group (RG) flows of the Ising model

and discrete diffusion [Machta et al., 2013]. Here we will show that Gaussian spin glasses

for D = 3 are sloppy at low temperature, due to the broad distribution of activation

energies which characterize the glass phase.

In what way are spin glasses illustrative of sloppiness? An Ising spin glass can

be viewed as a model that predicts the probability p(s) = exp(−βH(s)) of the 2N

configurations of N spins si = ±1, with

H = −
∑
〈ij〉

Jijsisj +
∑
i

hisi. (4.1)
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Here the bonds Jij are independent Gaussian random variables of zero mean and unit

variance P (J) = N (0, 1), connecting only nearest neighbor spins on the lattice. We shall

set the random fields hi = 0 (but later will consider the sensitivity of the predictions to

varying them).

We consider first a set of N = 4 spins along a straight line (Fig. 4.1a), but (for

illustrative purposes) fixing the outside bonds to be equal. There remain two parameters

(bond strengths) in this model θ = {J0, J1}, which act as coordinates for the model

manifold. The model manifold is a Riemannian manifold, with a natural metric which

can be understood as the relative entropy or local Kullback-Leibler divergence between

nearby parameter sets. In the bond-strength coordinates this metric tensor is given by the

Fisher information matrix (FIM) [Cover and Thomas, 2012]. The FIM can be understood

as the flat Euclidean metric on the unit sphere restricted to the positive quadrant, where

the restriction of lying on a sphere replaces the normalization condition. Therefore

changing coordinates to yi = √pi will result in a locally flat manifold. Figure 4.1b shows

a projection of this isometrically embedded two-dimensional model manifold onto its two

largest principle components.

We can understand some of the consequences of sloppiness by considering several

dozen samples from the spin chain, choosing J0 � J1, plotted as a black dot in fig. 4.1b.

We can infer the parameters θ which produced the data sample by maximizing the

likelihood. This problem is often called the inverse Ising problem, and is equivalent to

finding the point on the model manifold closest (as measured by the FIM) to the data.

The solution of this optimization is plotted as a red dot in fig. 4.1b. Figure 4.2 shows

contours of the log-likelihood (our ‘cost’ function) in parameter (θ) space, with the best-fit

denoted by the block dot. These same contours are the blue lines on the model manifold

in fig. 4.1b, explicitly showing how our spin chain maps bond-strengths to probabilities.
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J0 J1 J0

(a) Four-spin chain with outside bonds identified.
If J0 � J1 we can coarse-grain this model into a
two-spin chain where the red and orange spins,
coupled by J0, are grouped together into two
‘nuggets.’

(b) Cross-section of an isometric embedding of
the probabilities of the four-spin chain in fig. 4.1a,
parameterized by the bonds J0 and J1. The black
dot (slightly above the model manifold) is data
from a finite sample where J0 � J1, the contours
are lines of constant likelihood of this data point,
and the red dot (partially hidden by the black
dot) is the maximum likelihood point. The red
arrows indicate the stiff directions, the green
arrow indicates a sloppy direction, where both
correspond to parameter directions in fig. 4.2.

Figure 4.1: Visualizing the model manifold of a small Ising model. The Ising model can
be viewed as a mapping from bond strengths to state probabilities, where sloppiness
can be understood by ordering the parameter directions by how much they effect model
behavior. Information geometry [Transtrum and Qiu, 2014] suggests coarse-graining by
approximating models by their boundary, in this case achieved by taking J0 →∞.
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0 1 2 3 4 5

J0

−2

−1

0

1

2

3

J
1

Sloppy

Stiff

Log-likelihood of measured distribution

Best fit

Figure 4.2: Contours of constant probability for a finite sample of the four-spin chain
in fig. 4.1a. The black dot indicates the maximum likelihood point (best-fit), and the
labeled arrows indicate the stiff and sloppy parameter directions. Information geometry
and sloppiness suggests coarse-graining by approximating the model by its boundaries.
This occurs in the limit J0 →∞.

The nonlinearity of this mapping is important because it allows the model-manifold to

have edges as either bond strength is taken to ±∞.

We chose J0 � J1 so that the spins connected by J0 are almost always aligned. In

this case there is less information to restrict J0, so J0 will be a sloppy direction and J1

stiff. This is demonstrated in fig. 4.2, as the contours of constant likelihood are more
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closely packed in the J1 direction. Examining fig. 4.1b we see that changing J1 effects

the likelihood more than J0 because it moves farther along the model manifold. This

relationship is indicated by the red arrows in figs. 4.1b and 4.2. The green arrows show

the relationship between parameter and data space for the sloppy direction, except that

the +J0 arrow is invisible in fig. 4.1b as the best-fit is too close to the boundary.

Transtrum et al. [Transtrum and Qiu, 2014] suggest using proximity to the boundary

to coarse-grain the model by taking J0 → ∞. For our four-spin model this procedure

results in an effective two-spin model on the boundary of the model manifold which is

‘close’ to the original as measured by the FIM. This approximation is justified because

the sloppy parameter direction is less important for model predictions. In general the

sloppy and stiff parameter directions are linear combinations of parameters. In this

case Transtrum et al. follow geodesics of the model manifold from the best-fit, in the

sloppy direction. As the boundary is approached the components of the sloppy parameter

direction go to zero or infinity, resulting in simpler formulas for the model. For lattice-spin

models this parameter reduction is analogous to the Renormalization Group, where in

real space ‘block-spins’ are found which have the same statistics of the microscopic model.

Integrating the geodesic equations of a lattice model would require a Monte Carlo

sampling at each point along the geodesic, which would be prohibitively expensive for

coarse-graining spin glasses. We suggest an alternative to following geodesics, which we

argue will find a similarly near-optimal reduced model. In our four-spin example, instead

of taking the limit J0 →∞ to get a ‘nearby’ two-spin model, we notice that the spins

connected by J0 are highly correlated, identifying the two pairs of spins as ‘nuggets,’

indicated by the red and orange colors in fig. 4.1a. We then compute nugget ‘samples’ by

projecting each nugget configuration onto its most common state, and infer the bonds

connecting the nuggets by maximizing the likelihood of a two-spin chain. The resulting
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effective two-spin model will have the same statistics as the nuggets, and therefore be

statistically close to the original chain in the same way that the data in fig. 4.1b is close

to the boundary of the model manifold.

Our spin chain example is contrived, however it motivates our approach as spin

glasses also contain groups of highly correlated spins called droplets. Droplets are

complex, subsuming and overlapping at all length scales. With this in mind we define

non-overlapping ‘nuggets’ to be the intersection of the most ‘important’ low-energy

droplets of the spin glass. Like the droplets in the droplet theory of spin glasses [Fisher

and Huse, 1986, 1988, Huse and Fisher, 1987, Bray and Moore, 1984, 1987b] the nuggets

are well-approximated by two-state systems—individual spins—inspiring a nugget-spin

renormalization. We find effective nugget Hamiltonians with an inverse-Ising algorithm,

from which activation free energies and nugget interactions can be calculated. The

coarse-grained nugget Hamiltonian is another spin glass from which we can sample.

The nugget Hamiltonian can be viewed as the limit of the intra-nugget bonds going to

infinity, approximating the spin glass model-manifold by its boundaries on which the

nugget-Hamiltonian lives.

Among the development of exciting interdisciplinary work still lurks controversy over

the appropriate description of realistic, 3D spin-glasses. Two competing theories are

replica symmetry breaking (RSB) [Mézard et al., 1984] and the droplet theory [Bray and

Moore, 1984, 1987b, Fisher and Huse, 1986, Huse and Fisher, 1987, Fisher and Huse,

1988, Newman and Stein, 1992, 1996, 1998]. Droplet theory predicts two ground states

and physics dominated by compact regions of thermally excited spins. RSB—which is

exact for mean-field—predicts a fantastic hierarchy of infinitely-many ground states. We

will avoid the debate by discussing spin glasses in 2D where there is strong evidence that

droplet theory is a good description [Arguin et al., 2010]. Though all of the methods
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we develop can be applied in higher dimensions, we leave that for future work as even

obtaining samples of D = 3 spin glasses at low temperature is much more expensive.

The droplet theory is a scaling theory for low-energy, large scale excitations. These

excitations are thought to be regions of size L which flip coherently and have a typical

free energy asymmetry FL ∼ Lθ (also called the activation energy). This follows from

the central ansatz that the density of states of FL scales as P (F,L) = ρ(F/Lθ)/Lθ where

ρ(0) ∼ 1. θ is called the stiffness exponent, and is less than zero in 2D which means

that FL generally decreases with L and thus there can be no ordering for T > 0. Two

other exponents govern the behavior of droplets: the barrier height free energy exponent

ψ [Huse and Fisher, 1987] and the fractal dimension df .

In two dimensions the existence of efficient algorithms for finding ground states have

enabled precise studies of θ and df [Hartmann, 2011], while the NP-completeness of

determining barrier heights has limited our knowledge of ψ [Middleton, 1999]. Existing

methods find low-energy excitations at zero-temperature by computing the ground state

for some disorder configuration, perturbing some of the bonds, then finding the perturbed

ground state. θ is determined by associating the difference between these energies with the

scale set by the system size, and the domains of the perturbed ground state can be used to

measure df . These methods are considered a kind of real-space renormalization over the

scale of the system size [McMillan, 1984]. In contrast with these existing approaches, we

identify low-lying excitations by studying the correlation functions inspired by sloppiness

and information geometry.
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4.3 Spin Glasses are Sloppy!

4.3.1 Edwards-Anderson Model

We will study the model manifold of the 2D Edwards Anderson model with added random

field, for which configurations of N spins si ∈ {+1,−1}N on a square lattice have energy

prescribed by

H = −
∑
〈ij〉

Jijsisj +
∑
i

hisi (4.2)

where P (J) = N (0, 1) and 〈ij〉 denotes nearest-neighbor sites. Throughout this paper we

wil set hi = 0. It will be useful to write our Hamiltonian in another notation: H = −θµφµ

where θµ = Jij and φµ = sisj , where we have assumed Einstein’s summation convention.

4.3.2 Fisher Information

The fundamental object for understanding sloppiness is the Fisher Information Matrix

(FIM), which measures the sensitivity of a probability distribution to its parameters. We

will consider the sensitivity of our model to changes in bonds (bond-FIM) and fields

(field-FIM). The FIM of some probability distribution Pθ(x) parameterized by θµ is

defined by

gµν = −
∑
x

Pθ(x) ∂2

∂θµ∂θν
logPθ(x). (4.3)

The FIM tells us which parameter combinations are stiff and sloppy; which move along

the longest and shortest directions of the hyper-ribbon. Further, via the Cramer-Rao

bound the inverse of the FIM tells us the minimum achievable variance on estimating

parameters [Cover and Thomas, 2012]. In other words, g−1 tells us how well we could in

principle estimate θ. Diagnosing sloppiness consists of computing the eigenvalues of gµν

and checking that they span many decades and are roughly equally spaced in logarithm.
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Eigenvalues of the FIM equally spaced in log is equivalent to a hierarchy of widths of

the model-manifold [Transtrum et al., 2011]; stiff directions are eigenvectors associated

with large eigenvalues and thick directions of the model manifold, sloppy with small

eigenvalues and thin directions on the hyper-ribbon.

4.3.3 FIM of Spin Glasses

Naturally we are interested in the manifold swept out by the Boltzmann distribution

Pθ(s) = 1
Z e
−βHθ(s). We will consider for θ both nearest-neighbor bonds Jij (bond-FIM)

and local fields hi (field-FIM). We can use Eq. 4.3 and the definition of the free energy

F = −β−1 logZ to write

gµν = −β ∂2

∂θµ∂θν
F = β2 (〈φµφν〉 − 〈φµ〉〈φν〉) , (4.4)

where 〈·〉 denotes averaging over Pθ(s), φµ = sisj if θµ = Jij (bond-FIM) and φi = si if

θµ = hi (field-FIM). The field-FIM is β2cij , where cij is the two-point correlation function,

and the bond-FIM is a four-spin correlation function, the covariance of nearest-neighbor

bond orientations.

4.3.4 Signatures of Sloppiness

Using Eq. 4.4 we can compute the bond-FIM from samples of a spin glass with quenched

disorder. Figure 4.3 shows the eigenvalues (left) and eigenvectors (right) of the bond-

FIM of a L = 16 spin glass with Gaussian disorder. The bond-FIM in the figure

was computed from 20,000 exact samples obtained from the method of Thomas and

Middleton [Thomas and Middleton, 2009], which maps planar spin glasses onto dimer

matching which can be sampled without Monte Carlo. The first thing to notice is that

the eight stiffest eigenvectors trace out striking rings. We will argue that these rings are
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Figure 4.3: (left) FIM eigenvalues and eigenvectors for a periodic L =16 EA model
at T=0.1. The top-left panel is the eigenvector associated with the largest eigenvalue,
the lower-right panel is associated with the eighth-largest eigenvalue. The rings are the
boundary of the thermally active droplets.

the boundaries of the lowest energy excitations, which are associated with the droplets

of droplet theory1. The bond-FIM highlights the accidental degeneracies of the spin

glass as those most sensitive to perturbation; changing bonds in these rings traverses the

long and thick directions of the model manifold. The bonds inside the droplets are not

sensitive, pushing these bonds moves along the thin direction of the model manifold. Our

effective Hamiltonians will take these interior bonds to infinity, approximating the model

manifold by the boundaries of the long and thick directions. An important feature of the

eigenvectors is the ‘ghosts’ of adjacent droplets in multiple eigenvectors; the orthogonality

of eigenvectors causes unnecessary superpositions of the boundaries, so we will study the

droplets indirectly by clustering spins into nuggets.

The eigenvalue distribution is sloppy; the eigenvalues are spread uniformly in log

1We mean the rings in the eigenvectors are caused by droplet excitations, but the relationship between
the droplets and the eigenvectors is not simple.
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Figure 4.4: Normalized eigenvalues of the bond-FIM of a L = 16 EA model as a function
of temperature. As the temperature is lowered the eigenvalues spread out and become
sloppy.

scale across many decades and the model manifold of a spin glass is a hyper-ribbon. In

this disorder sample the eighth eigenvalue is about fifty times smaller than the largest

eigenvalue, so the excitations in the eighth eigenvector is fifty times ‘less important’ to

the behavior of the spin glass than the droplet in the first. Sloppiness tells us what we

already know, that the droplets dominate the physics at low temperature. Figure 4.4

shows how the eigenvalues of the bond-FIM change with temperature. The spectrum

develops clear signatures of sloppiness at low temperature. We will argue that sloppiness

in our model arises when the distribution of droplet activation energies is broad relative

to the temperature; the spin glass phase is sloppy.

4.4 Bond-FIM for Independent Droplets

We can analytically compute the eigendecomposition of the bond-FIM in the case of

non-interacting and non-overlapping droplets. We assume the only degrees of freedom
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are contiguous regions of spins (droplets) with only two states ci = ±1 differing by an

activation energy ∆i. This scenario is inspired by the low-temperature results of fig. 4.3,

and the seminal work describing glasses as collections of two-state systems [Anderson

et al., 1972, Phillips, 1987]. We assume the droplets are non-overlapping and do not

interact so that P ({ci}) =
∏
i P (ci). We also assume the ground-state gauge, i.e. given

the ground state s0
i we transform the spins as si → s0

i si and the bonds as Jij → s0
i s

0
jJij .

Perturbing all the bonds by θµ, droplet i has two states with energies Einactive =

E0 +
∑
µ θµ and Eactive = E0 +

∑
µ θµ(1−δiµ)−

∑
µ θµδ

i
µ. E0 is the ground state energy and

δiµ is 1 if bond µ is on the boundary of droplet i and zero otherwise. P (ci) = e−βE(ci)/Z i

with Z i = 1 + exp−β(∆i − 2
∑
ν θνδ

i
ν), from which we can directly calculate:

gµν =
∑
i

∂2 logZ i

∂θµ∂θν

=
∑
i

δiµδ
i
νβ

2sech2β∆i

2 (4.5)

≈ 4β2∑
i

δiµδ
i
νe
−β∆i for β >> ∆0, (4.6)

where in Eq. 4.5 we have taken the perturbation to zero and in Eq. 4.6 we have assumed

β is much larger than the smallest activation energy ∆0. The low-temperature bond-FIM

gµν is a block diagonal matrix:

gµν = 4β2



e−β∆0

e−β∆1

. . .



,
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where the ith block is proportional to a square matrix of ones with dimension of the

perimeter pi of droplet i. We assume an ordering where ∆i < ∆i+1. Each block has one

nonzero eigenvalue and pi − 1 zero eigenvalues. The nonzero eigenvalues and associated

eigenvectors of the entire matrix are

λi = 4β2pie−β∆i ; viµ =
δiµ√
pi
. (4.7)

Defining λ̃ = λ/4β2 we see that log λ̃i = −β∆i + log pi. In the glass phase the ∆i

are broadly distributed; we conclude that a spin glass model of independent droplets is

sloppy due to the broad distribution of activation energies relative to temperature. At

low enough temperature our spin glasses should be well-described by this theory, and

so we conclude that the onset of sloppiness shown in fig. 4.4 is due to the broadening of

the activation energies. The eigenvectors also uniformly highlight the boundaries of each

droplet, unlike fig. 4.3 which has ‘ghosts’ of droplets across eigenvectors. This difference

is clearly because we assumed independent droplets. The orthogonal basis of a correlation

matrix is formed by statistically independent combinations. When there are correlations

between droplets the statistically independent field combinations become a complicated

combination of the interacting droplets.

The largest eigenvalue λ0 of Eq. 4.7 likely corresponds to the droplet with the smallest

∆i. Since we are confining ourselves to two dimensions, θ < 0 and the droplet with

the smallest energy may span the finite size of the system. In this case l0 = L and

∆0 ∼ Lθ [Fisher and Huse, 1988], so

log λ̃0 ∼ −βLθ + log pi. (4.8)

The largest bond-FIM eigenvalue may therefore be a measure of droplet excitations on the

scale of the system size. At low temperature Eq. 4.8 is likely similar to other measurements
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of zero-temperature droplet excitations [Hartmann and Young, 2002, Hartmann and

Moore, 2004, Kawashima, 2000, Kawashima and Aoki, 1999]. Such measurements are

well-known to suffer from large corrections to scaling due to the relative independence of

droplets of different size [Middleton, 2001, Hartmann and Moore, 2003]; the lowest energy

excitation does not always span the system size. The extraction of the stiffness exponent

θ from the largest bond-FIM eigenvalues are likely corrupted by these corrections as well.

The same calculation can be performed for the field-FIM of independent droplets.

The dominant field-FIM eigenvalue will correspond to the breaking of the ground state

symmetry (which has zero activation energy). In this case the probability of droplet

configurations does not factor; the field-FIM is complicated for independent droplets,

just as complicated as the bond-FIM for interacting droplets.

In summary, at low temperature, sloppiness is equivalent to e−β∆i being equally

spaced in logarithm, which is caused by the independent low-energy excitations of the

spin-glass phase. The orthogonality of eigenvectors leads to droplets being mixed up, we

will avoid this problem by finding the droplets with a clustering method.

4.5 Finding the ‘Nuggets’ Within the Boundaries

Our results suggest the rings in the bond-FIM are the boundaries of the active droplets,

so naturally we want to study the volume of spins they contain. Unfortunately the

‘ghosts’ in the eigenvectors make it difficult to isolate the droplets, or even be sure what

exactly constitutes a droplet. Droplet theory allows the active droplets to overlap and

subsume each other; in order to proceed we will study ‘nuggets.’ We define nuggets to

be the volumes separated by the intersection of all the rings of the stiffest bond-FIM

eigenvectors. Nuggets are intersections of the subset of ‘important’ droplets as defined by
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Nuggets at T=0.15 Top Four Eigenvectors

Figure 4.5: Left: Nuggets (spins of constant color) from the information theoretic
clustering, with the stiffest eigenvector behind. Right: Top four bond-FIM eigenvectors
to show the relationship between nuggets and droplet boundaries.

the stiffest eigenvectors of both the FIMs. Some of the nuggets will be active droplets

and some will be chunks of an active droplet.

We will identify the nuggets by clustering spins according to the field-FIM β2cij .

More precisely we will cluster spins according to the similarity measure |cij |. The

spin-spin correlation function is the sufficient statistic for the bonds of our spin glass

model. Sufficient statistics are measures of samples of a probability distribution which are

maximally informative about the parameters of the distribution [Cover and Thomas, 2012].

In other words, given cij , no other correlation function will contain more information

about the bonds of our system, from which the droplets must emerge. Therefore it should

not be surprising that we only need the field-FIM β2cij , and not the bond-FIM to identify

the nuggets/droplets.
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Figure 4.5 (left) shows the nugget decomposition of the same sample of disorder as in

figs. 4.3 and 4.4, where circles of a constant color indicate nugget membership, shown

with the stiffest eigenvector in the background. The right side of fig. 4.5 shows the top

four eigenvectors, so that we can compare the droplet boundaries with nuggets. Notice

that the rings in the top two eigenvectors could be two correlated droplets or one large

droplet with a sub-droplet; there are precisely two nuggets in the same volume.

We obtain the nugget decomposition by clustering spins according to the spin-spin

similarity measure sij = |cij | using information-based clustering [Slonim et al., 2005].

This is a ‘soft’ clustering: it finds the probability that an item is assigned to a cluster

P (i|c) by optimizing 〈s〉P − λI[P ], the average similarity less the information cost I of

specifying the clusters. λ is a temperature-like variable, in analogy with free energies,

and weights the clustering complexity against the average similarity.

Similar nuggets can be obtained through more convential agglomerative clusterings,

but the information clustering has certain conveniences. We assign spin i to whichever

cluster has the highest probability in P (i|c), then divide the assigned clusters into simply

connected regions. In this way we remove sensitivity to the arbitrary choice of the

number of clusters. Figure 4.5 shows the result of this procedure for the same disorder

as in figs. 4.3 and 4.4. The clustering temperature is also not very sensitive, in the

sense that a wide range of values identifies the ‘important’ nuggets highlighted by the

stiffest bond-FIM eigenvectors. We used our own GPU implementation of the information

clustering algorithm for the analysis in this paper [Clement, 2016].

4.5.1 Properties of nuggets

Clustering is a form of compression, wherein individual spin labels are forfeited to the

label of the entire nugget, a more useful and expressive unit. How effectively can the
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states of our nuggets compress the states of our spin glasses? Given a spin configuration

of a spin glass si we can look at the magnetization of each nugget with respect to the

ground state, mt
c =

∑
i∈c s

0
i · sti/|c|, where sti are the spins in configuration t and |c| is the

number of spins in nugget c. We take the most common spin configuration as the ground

state because we are using exact sampling. If we make a histogram of mt
c for each nugget,

we see that almost every nugget state has mt
c = ±1; the nuggets are effectively two-state

systems.

We can see this more clearly for all nuggets at all temperatures if we examine the

entropy of each nugget. Let S[P (mc)] be the entropy of the probability of the nugget

magnetization. Figure 4.6 shows the number of nuggets with some entropy as a function

of entropy and temperature. For all temperatures we studied (even high temperatures

away from the glass phase) most nuggets have an entropy of 1-bit, and so are well

described by a two-state system. Further, the largest nugget entropy is about 1.5 bits,

equivalent to a 3-state system. More concretely, our original L = 16 system has 2256

possible states, whereas the nuggets have only about 29 states (there are 9 nuggets at

T=0.14), an exponential compression. We conclude that the nuggets are an effective

compression of the spin glass, even at high temperature.

4.6 Effective Nugget Hamiltonians

Early work on the renormalization group by Kadanoff studied the flows of the couplings

of an Ising model under coarse-graining by grouping spins in a block and compressing the

block state into a single summary of its members [Kadanoff, 1967]. So-called block-spin

renormalization, the procedure is intuitive and predicts the scaling laws observed near

critical phenomenon. As Wilson pointed out though, the exact region it is meant to
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Figure 4.6: The distribution of S[P (mc)], the entropy of the probability of nugget
magnetizations. The majority of nuggets lie on the 1 bit line, and 1 bit is two states.
Even at a high temperature of 1 the highest entropy a nugget achieves is 1.6, which is
about three states. Therefore the clustering is performing very effective compression.

study—near the phase transition—has zero magnetization and so treating a block of

spins as ‘up’ or ‘down’ is not a good approximation [Wilson, 1971]. We have shown that

our nuggets are well-approximated as two-state systems, so we propose a ‘nugget-spin

renormalization,’ shown schematically in fig. 4.7, where on the left, all spins of a constant

color are treated as a block-spin, and the graph on the right is the structure of the

effective Hamiltonian after tracing out the internal degrees of freedom. We are following

the results of information geometry by approximating the model manifold only by the

long and thick boundaries. Each m-nugget configuration is an m-dimensional ‘edge’ of

the model manifold.

The geometric irregularity of our nuggets means we cannot pursue any known analytic

renormalization schemes. Instead, we use a solution to the inverse Ising problem, which

is: given spin configurations {si} presumed to be sampled from a Hamiltonian of the

form −
∑
〈ij〉 Jijsisj , what are the most likely couplings Jij? We solve this problem using

an algorithm called Minimum Probability Flow learning [Sohl-Dickstein et al., 2011], and
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Nuggets by information-theoretic
clustering Nugget graph for Effective H

Figure 4.7: Effective nugget Hamiltonian schematic. (Left) Colors identifying nuggets.
(Right) Graph of effective Hamiltonian which treats each nugget as one spin and couples
adjacent nuggets.

our own efficient GPU implementation capable of solving a problem with thousands of

spins in a few minutes.

The inverse Ising problem is a parameter estimation problem, a model fitting problem,

exactly the problem in which sloppiness is originally framed. Sloppiness tells us that

only the stiff parameter combinations of a model may be accurately estimated, where

the limit on accuracy is determined by the inverse FIM. Therefore since the boundaries

of the active droplets are stiff—and by design all boundaries of nuggets are along these

stiff directions—the only parameters we have any hope of inferring are the interactions

between nuggets. The dual consequence of sloppiness is that only the stiff directions

matter to model behavior, so again sloppiness tells us that the droplets dominate the
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physics. For this reason we assume the bonds between nuggets which do not share a

boundary are zero. In other words, we assume the nugget interactions can be represented

by a planar graph.

We find the effective nugget Hamiltonian through the following procedure. Given

a spin configuration and nugget assignment, we define the nugget configuration to be

the sign of the magnetization of each nugget with respect to the ground state. The

ground state is assumed to be the most common observed configuration since we are

using exact sampling. In other words, the state of nugget c in sample i is defined to be

Sic = sign(s0
c · sc/|c|), where sc denotes the spins in nugget c. We then find the effective

nugget Hamiltonian H′ by solving the inverse Ising problem given the nugget ‘time series.’

It would be interesting to test the predictions of droplet theory with H′ in two

ways. The energy difference between the ground state energy and the effective energy

of activation of a nugget should be similar to the activation free energy of the original

nugget. The scaling of the nugget activations with their size should let us estimate θ.

The boundaries between nuggets are also domain walls, and so the energy of interaction

between nuggets should scale with the boundary length, similar to the Domain-Wall

Renormalization Group [McMillan, 1984].

4.6.1 Sampling Nugget Hamiltonians

The effective nugget Hamiltonian H′ can be sampled just like its parent Hamiltonian

H, and the resulting correlations of H′ can also yield nuggets and nugget Hamiltonians.

Of course H′ is a compressed version of H, so it is natural to ask what properties are

preserved. In order to understand this question, we took samples of the same L = 16

spin glass as in previous examples at T = 0.33 and found H′ as described above. We

then sampled both H and H′ at a cooler temperature of T = 0.14 and compared.
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Cooling H Cooling H′

H T=0.40

H T=0.15 H′ T=0.15

Figure 4.8: Studying the flows of the nugget Hamiltonian. Top: nuggets of H at T =0.4.
Bottom left: nuggets of H at T =0.14. Bottom right: nuggets of H′ at T =0.14. This
shows that the nugget Hamiltonian H′ retains most of the low-temperature correlations.
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Figure 4.8 shows that the nugget Hamiltonian retains most of the low-temperature

behavior of its parent model. This is because the nuggets of the nugget Hamiltonian

preserve the same ‘important’ nuggets as determined by the bond-FIM eigenvector in

Fig. 4.3. We can be more quantitative by comparing the explicit spin-spin correlation

matrices, where the spins inside a nugget are defined to be perfectly correlated. Figure 4.9

shows the mean absolute difference between the correlation matrix of the parent model

and nugget Hamiltonian. The red dashed line indicates the temperature at which the

nugget Hamiltonian was formed; the difference is primarily due to throwing away the

interior nugget degrees of freedom. As the temperature is lowered, the difference barely

increases, the nugget Hamiltonian encodes most of the low temperature physics of its

parent model.

Figure 4.9: Measuring the difference in the correlation functions of the nugget and parent
Hamiltonian as a function of temperature. The dotted line indicates the temperature at
which H′ was formed from H.

This inheritance of low temperature behavior in high temperature nuggets seems

inconsistent with temperature chaos. Temperature chaos is a prediction of droplet theory

which states that small changes in temperature will dramatically change the equilibrium

behavior, i.e. the active droplets should be changed [Bray and Moore, 1987a, Fisher and

Huse, 1988]. This prediction is due to the precarious sensitivity of the active droplets:
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their nearly accidental free energy degeneracy allows them to be ‘active,’ but since

F = E − TS is small, small changes in T quantity are likely to tip the balance. There

are small differences between the nuggets of H and H′, but the ‘important’ nuggets are

retained. Our nuggets are not precisely active droplets, so that nuggets might be quite

persistent, whereas the nuggets composing a droplet may change rapidly with temperature.

It is also possible that temperature chaos is associated with varying correlations between

nuggets.

4.7 Learning Rule for Effective Hamiltonians

Given the effectiveness of our approach, we now seek to simplify its conceptual complexity

and efficiency using a method that combines the steps of model reduction. Our current

algorithm is a two-step process, which first finds the nuggets and then the effective

Hamiltonian – an approach wherein the nugget assignment and effective Hamiltonian

influence each other would be prefereable. Additionally, relying on the inverse Ising model

is sub-optimal. Knowing the original Hamiltonian should inspire or inform a less general

effective Hamiltonian. What follows is a proposed attempt to improve the coarse-graining

algorithm used in this paper by searching for an algorithm which pursues these two

features.

Given a number of nuggets, we can define a cluster assignment matrix Uαi = ±δαp(i),

where i labels a spin in the original Hamiltonian, α labels the nuggets in the effective

Hamiltonian, and p(i) = α is an assignment or placement of spin i in nugget α. The

±1 is to accomodate spins which point in or against the direction of their neighbors,

and can be set to 1 by an appropriate gauge choice, including defining the ground state

to be all si = 1. We can thus expect that given a spin configuration sampled from the
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original Hamiltonian si, the resulting nugget spin will be s̃α(si) = σ(
∑
i Uαisi), where

σ(x) = sign(x). Now, we can write the probabillity of a given nugget spin configuration

p̃(sα(si)) in terms of its parent configuration as

p̃(si) = 1
Z̃
e−βH̃(si) ∝ exp

(
−β

∑
αγ

J̃αγ s̃α(si)s̃γ(si)
)
,

= exp
(
−β

∑
αγ

J̃αγ σ

(∑
i

Uαisi

)
σ

(∑
i

Uγisi

))
, (4.9)

for some inverse temperature β and appropriate nugget-coupling J̃αγ .

Assuming we have some nugget assignment operator U (we will discuss choosing

this later), what criterion should we use to choose the effective nugget couplings? Since

we know the original Hamiltonian we know that the probability of the original spin

configuration si is

p(si) = 1
Z
e−βH = exp

−β∑
ij

Jij sjsj

 , (4.10)

for some inverse temperature β, and Jij is the original system couplings which we assume

are known or given. Then, it seems sensible that we should choose the coupling J̃ such

that p̃ ∼ p. Framing the problem as an optimization problem then, we seek J̃ such that

the Kullback-Leibler (KL) divergence between p and p̃ is minimized, or formally,

J̃ = minJ̃ ′DKL(p||p̃(J̃ ′)). (4.11)

Writing the KL divergence as a sum over sampled spin configurations sn, we find

DKL(p||p̃) = −
∑
n

p(sn) log p̃(s
n)

p(sn) ,

= −
∑
n

p(sn) log Z
e−βH(sn)

e−βH̃(sn)

Z̃
,

= log Z̃
Z

+ β
〈
H̃ − H

〉
H
, (4.12)
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where 〈·〉H is the expectation value over states sampled from the original Hamiltonian. As

we will show, this quantity can in fact be estimated by taking expectations as sums over

states sampled from H, and the ratio of the partition functions can even be estimated by

importance sampling.

In order to optimize the KL divergence, we will need to compute its gradient

∂

∂J̃δγ
DKL(p||p̃) = β

(
〈s̃δ s̃γ〉H̃(J̃) − 〈s̃δ s̃γ〉H

)
, (4.13)

which has the nice physical interpretation that the optimal J̃ (which will set the gradient

to zero) will cause the correlation functions of the nugget spins under the original and

effective Hamiltonians to match.

How shall we evaluate the KL divergence and its gradient? It seems reasonable to

assume that given samples {s} of the original Hamiltonian, the set of nugget samples {s̃(s)}

computed from these should have frequencies similar to those that an effective Hamiltonian

would produce. Therefore we follow the procedure of importance sampling [Neal, 2001],

reweighting samples from H in order to use {s} to compute expectations with respect to

the Boltzmann distribution of H̃.

Say we have some distribution q(x) on x, from which samples can be efficiently drawn

x ∼ q(x), and for which some function g(x) ∝ q(x) can be evaluated efficiently. Say

that we really wish to compute expectations with respect to a different distribution p(x),

where we can efficiently evaluate some function f(x) ∝ p(x), but which we cannot directly

sample from. Importance sampling is the re-weighting of samples from q, so that as the

number of samples increases, expectations values can be computed with respect to p. In

particular, defining the weights w(x) = f(x)/g(x), and given samples xi ∼ q(x), as the

number of samples goes to infinity, we can compute

〈a(x)〉p =
∑
i

w(xi)a(xi)/
∑
j

w(xj), (4.14)
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the expectation value of some function a(x) over the desired distribution p(x). Further,

we can estimate the ratio of the partition functions

lim
N→∞

1
N

∑
i

w(xi) = Zf
Zg

, (4.15)

where for example Zf =
∫

dxf(x).

Inspired by importance sampling, and understanding that we can sample from p(s) ∝

exp(−βH(s)), but want to compute expecations with respect to p̃(s) ∝ exp(−βH̃(s)), we

can define weights

w(s) = exp
(
−β(H̃(s)−H(s))

)
(4.16)

such that given samples sn ∼ p(sn), we can compute expectations of functions of the spin

configuration C(s) over p̃ as

〈C(s)〉H̃ = 1∑
nw(sn)

∑
n

w(sn)C(sn) (4.17)

Further, we can compute the ratio of the partition functions as

Z̃
Z

= 〈w(sn)〉H = 〈e−β(H̃−H)〉H. (4.18)

Putting all this together, we can express the KL divergence in eqn. 4.12 in terms of some

set of N samples {sn} ∼ p(sn) drawn from the original Hamiltonian as

DKL(p||p̃(J̃)) = β

N

∑
n

∆H(sn) + log
(

1
N

∑
n

exp(−β∆H(sn))
)
, (4.19)

where ∆H(s) = H̃(s)−H(s). Finally, the gradient can be expressed as

∂

∂J̃δγ
DKL(p||p̃) = β

∑
n

s̃δ(sn)s̃γ(sn)
(

e−β∆H(sn)∑
m e
−β∆H(sm) −

1
N

)
. (4.20)

Note that if we we happen to choose the number of nuggets to match the number of spins

in H, the gradient of the KL divergence will be zero if the weights w(s) = 1/N , which is

true if and only if the Hamiltonians match.
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Therefore with eqn. 4.19 and eqn. 4.20 we have a well-defined learning rule for

obtaining an effective Hamiltonian H̃ given a starting Hamiltonian H. The problem

remaining is to set the nugget assignment operator Uαi.

4.7.1 Connection to the Real Space Renormalization Group

Before discussing how we might set the nugget spin operator U , let us consider the

implications of this learning algorithm on a simpler case: the N = L× L 2D Ising model.

In this case, we know a reasonable nugget assignment is that of block-spins in Kadanoff’s

Real-Space Renormalization scheme [Efrati et al., 2014]. In this case the spatial symmetry

suggests that we choose a number of nuggets Nc = N/b2 for some integer b > 1, assigning

squares of adjacent spins in b× b blocks to a single nugget or block spin. In the standard

block spin renormalization one defines a new hamiltonian H̃(s̃) on the block spins and

requires that the partition function of the new effective Hamiltonian matches the original

partition function:

Z̃ =
∑
{s̃}

e−βH̃(s̃) =
∑
{s}

e−βH(s) = Z. (4.21)

Does our learning objective seek a relationship between the partition functions at all

reminiscent of RG? The KL divergence DKL(p||p̃) ≥ 0, and after some manipulation we

can turn eqn. 4.12 into

Z ≥ Z̃(J̃)e−β〈H̃(J̃)−H〉H , (4.22)

which is the Gibbs-Feynman-Bogoliubov (GFB) inequality. If we chose H̃ to be the mean

field Hamilltonian coupling each spin to a field, optimizing this inequality would yield

the mean field solution to the Ising model [Nishimori, 2001]. As we optimize the effective

Hamiltonian, this tells us that Z̃ is bounded from above by Z, assuming 〈∆H〉 is small.
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Writing the GFB inequality another way we find

e−βF ≤ e−βF̃(J̃)+〈H̃(J̃)−H〉H , (4.23)

which is striking in its resemblance to the RG criterion relating the singular parts of the

free energy

e−βF = e−βF̃(J̃)+g(J̃), (4.24)

for some analytic function g of the effective couplings J̃ .

4.7.2 Choosing the Nugget Spin Operator

Emboldened by a plausible relationship to block-spin renormalization, but sobered by the

lack of spatial symmetry in spin glasses, we seek a method for assigning spins to blocks

or nuggets. Since the KL divergence is non-negative, a brute-force method would be to

perform Monte Carlo on the nugget spin operator Uαi, treating it as a kind of multi-spin.

We are guaranteed by this fact, explored in the previous section, that the lower the KL

divergence, the better the approximation.

We could also interpret the spin operator as a probability of assigning a spin to a

nugget Uαi = p(α|i), softening the spin assignment. Then we could simply optimize

eqn. 4.19 over J̃ and Uαi. Secure in the fact that the KL divergence is bounded below

by zero, a superior optimization is always better. We can even use stochastic gradient

descent to efficiently optimize this functional, as it is a sum of terms. Thorough numerical

study of this newly defined learning problem will be reserved for future work.
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4.8 Conclusion

Sloppiness is a geometric interpretation of high-dimensional model fitting, which leads to

a coherent description of the spin glass phase consistent with droplet theory in 2D. It

inspires a new method of analyzing spin glasses capable of probing many length scales at

finite temperature, and a method of coarse-graining disordered systems. Many systems

from neuroscience and biology have been modeled as spin glasses, and our method could

provide coarse-grained and more easily interpretable description of these results without

sacrificing the ability to make good predictions. Future work could apply these methods

to protein folding, binary voting systems like the supreme court, DNA mutation, or

be devoted to finding a method for unifying the clustering and effective Hamiltonian

procedure. Finally, this method could be applied to 3D spin glasses, where sloppiness

and information geometry might inspire a new perspective in an old debate.
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4.9 Appendix

4.9.1 Bond-FIM for two interacting droplets

We assume two adjacent droplets (still two-state systems) interact only through their

shared bonds. In the ground-state gauge their interaction energy is the sum of the
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bonds on their boundary, which we will denote J =
∑
µ θ

µ where µ are bond indices

on the boundaries of two droplets cA and cB. Each of these droplets has an activation

energy ∆A and ∆B respectively. With two droplets we have four states to consider:

We have assumed the sign of J is such that positive J makes activating one droplet

A/B state Energy −(E0 −
∑
µ θµ)

↓↓ 0

↑↓ ∆A − 2
∑
µ θµδ

A
µ

↓↑ ∆B − 2
∑
µ θµδ

B
µ

↑↑ ∆A + ∆B − J − 2
∑
µ θµ(δAµ − δBµ )

easier if the other is active. The probability of any one of these states is for instance

P (↑↑) = exp−βE(↑↑)/Z where Z =
∑
AB exp−βE(AB) is the sum over all four states of

A and B. The calculation is similar to the above independent case, except now the FIM

is not block diagonal. We can still compute the total bond-FIM from sums of independent

pairs of coupled droplets:

gABµν = 4β2

N

[
δAµ δ

A
ν e

βδA
(
1 + eβδB

) (
eβJ + eβδB

)
+ (δAµ δBν + δBµ δ

A
ν )eβ(∆A+∆B)

(
eβJ − 1

)
+ δBµ δ

B
ν e

βδA
(
1 + eβδB

) (
eβJ + eβδB

)]
(4.25)

Where N = eβJ+eβ∆A+eβ∆A+eβ(∆A+∆B). This matrix still has large blocks proportional

to a matrix of ones, except with off-diagonal blocks corresponding to the interactions.

It can be diagonalized by noting that it has only two linearly independent columns,

following the procedure outlined in appendix II. We won’t present the results of the exact

eigenvalues and vectors of gABµν as they are too complicated to be useful. Instead we will
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expand in the limit of small coupling J . To first order in J , the field-FIM can be written

gAB =


β2sech2 β∆A

2 0

0 β2sech2 β∆B
2



+ Jβ3


sech2 β∆A

2 tanhβ∆A
2

1+expβ∆B
sech2 β∆A

2 sech2 β∆B
2

sech2 β∆A
2 sech2 β∆B

2
sech2 β∆B

2 tanhβ∆B
2

1+expβ∆A

 (4.26)

where it should be understood that Eq. 4.26 contains block matrices with the number

of constant elements equal to the squared perimeters of droplets A and B. The block

diagonal matrix represents the bond-FIM of the uncoupled droplets. The first-order

correction in the eigenvalues of Eq. 4.26 are

λA = pAβ
2sech2β∆A

2

(
1 + βJ

sech2 β∆A
2 tanhβ∆A

2
1 + expβ∆B

)

λB = pBβ
2sech2β∆B

2

(
1 + βJ

sech2 β∆B
2 tanhβ∆B

2
1 + expβ∆A

)
(4.27)

Since gAB is singular, obtaining the eigenvectors through perturbation theory is not

straight-forward, however they can be obtained by solving Eq. 4.29 for the exact expression

and then expanding the two solutions in m. They are

mA = 2
βJ

(
(1 + coshβ∆B)− NA

NB
(1 + coshβ∆A)

)
mB = βJ

2

(
(1 + coshβ∆A)− NA

NB
(1 + coshβ∆B

)−1
(4.28)

The normalized eigenvectors are ~vA = 1√
NAm

2
A+NB

(mA~1NA ,~1NB )T , and similarly for the

eigenvector corresponding to the eigenvalue dominated by B. The numbers m tell us

how much the volumes of the droplets get smeared across eigenvectors, explaining the

shadows we observe in the numerical eigenvectors.
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4.9.2 Eigenvalues of block-constant matrix

We need to find the eigenvalues and eigenvectors of a block matrix with constant values in

each block, for example below is such a symmetric block-constant matrix. We propose an

ansatz eigenvector of the form ~v = (m~1NA ,~1NB ) where m is a constant to be determined,

~1NA is a vector of ones of length NA and likewise for NB.


cAA1A×A cAB1A×B

cAB1B×A cBB1B×B



m~1A

~1B

 =


(cAAAm+ cABB)~1A

(cABAm+ cBBB)~1N


Where 1n×n is an n× n matrix of all ones. If ~v is an eigenvector with eigenvalue λ the

following system of equations must be satisfied:

λm = cAAAm+ cABB

λ = cABAm+ cBBB (4.29)

We can solve for λ and m, and the two solutions of m give orthogonal eigenvectors. Since

this matrix is rank-2, we have found the only non-zero eigenvalues and eigenvectors.
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Chapter 5

Normal Form of the

Two-Dimensional Ising Model

Renormalization Group Flows

5.1 Introduction

We explore the scaling behavior of the two-dimensional Ising model with normal form

theory [Raju et al., 2019], applied to its renormalization group flows under coarse-graining.

The Ising model has a logarithmic singularity in the specific heat, which is well known to

arise from a nonlinear term in the renormalization group flow [Wegner, 1972]. Bifurcation

theory studies how coordinate transformations can be used to cast nonlinear differential

equations near fixed points into a simplest normal form. For the Ising model, this change of

The work constituting this chapter was done in collaboration with Archishman Raju and James P.
Sethna
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variables leads to a flow with positive linear eigenvalues correspond to the universal critical

exponents for temperature and field, negative eigenvalues for various irrelevant parameter

combinations, and a variety of allowed universal nonlinear resonant terms including the

known one leading to the specific heat singularity. We shall use the Ising model to

investigate several outstanding questions. Can we deduce the coordinate transformation

which takes the exact Onsager solution into the normal form? Are the corrections to

scaling in the Onsager solution due to irrelevant variables, or to analytic corrections to

scaling introduced by the coordinate transformation? (Or can these be distinguished?)

How do the renormalization-group flows behave under Legendre transformations – in

particular, changing from temperature and field as control variables to the microcanonical

energy and entropy variables? Although the exact results and extensive previous research

on the 2D Ising model provide a firm ground for these explorations, the 2D Ising model

is special in many ways that prevent us from developing definitive answers to many

of these questions. We provide several conjectures and predictions from our analysis,

however, which should have strong implications for corrections to scaling and Legendre

transformations for more general critical points.

The celebrated Renormalization Group (RG) casts studies of critical phenomena

into dynamical systems, flows of the free energy and control parameters under coarse-

graining, and predicts power laws, scaling relations, and universal scaling functions.

The RG allows the classification of many systems into universality classes which share

critical exponents, amplitudes, and scaling functions. The two-dimensional Ising model

is an important analytically tractable model which to this day has unresolved questions

regarding its corrections to scaling as predicted by the RG. For example, while the free

energy of the 2D lattice Ising model is known to be f(t) = a(t) log t + b(t), and the

magnetizationm(t) = t1/8c(t) for analytic functions a, b, and c of the reduced temperature
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t = (T −Tc)/Tc, it is still unclear, whether the susceptibility χ(t) has one or more powers

of log t [Boukraa et al., 2008].

Open questions remain regarding the role of irrelevant variables in the 2D Ising model.

The most dangerous irrelevant eigenvalues as predicted by Conformal Field Theory

(CFT) [Caselle et al., 2002] are associated with breaking rotational invariance: -2 and -4.

There is also evidence that an irrelevant variable with eigenvalue −3/4 exists [Nienhuis,

1982, Barma and Fisher, 1985], which could explain features of the zero-field magnetic

susceptibility [Orrick et al., 2001]. Calabrese et al. [Calabrese et al., 2000] suggest

that relaxing the unitarity or ‘reflection positivity’ constraint allows CFT to predict a

λu = −3/4 irrelevant variable. Caselle et al. [Caselle et al., 2002] support a conjecture—

originally proposed by Aharony and Fisher [Aharony and Fisher, 1983]—that the leading

irrelevant variables do not contribute to corrections to scaling. Here we discuss how this

may be so.

In recent work we have shown that non-linear RG flows can be systematically classified

by the application of normal form theory (NFT) [Raju et al., 2019]. Normal form theory

uses sequences of polynomial coordinate transformations to simplify systems of ordinary

differential equations, reducing them to a normal form. Using normal forms, flow

equations of critical systems can be classified into universality families characterized by

a small number of universal terms. For example, linearizable systems all fall under the

hyperbolic universality family (e.g. 3D Ising). In this way, one can predict the complete

form of the singularity near the fixed point by finding which nonlinear terms in the flows

are universal, leading to a systematic and general method for studying corrections to

scaling.

In sec. 5.2 we study the scaling behavior and corrections to scaling in the context of

the hyperbolic universality family (e.g. 3D Ising), where the normal form linearizes the
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RG flow. In sec. 5.3 we introduce the normal form of the 2D Ising model ignoring the

irrelevant variables, exhibiting the irremovable nonlinear term due to a resonance that

leads to the logarithmic singularity in the specific heat. We derive the scaling ansatz

commonly used, and argue that there should not be a scaling function multiplying the log

term in a scaling ansatz (agreeing with ref. [Wegner, 1972]). In sec. 5.3.1 we show that

the coordinate transformation leading to the normal form leads to a predicted Ising free

energy of the form f(t) = a(t) log t+b(t), where the analytic functions a(t) and b(t) reflect

analytic corrections to scaling. We use Onsager’s exact solution for the free energy on the

nearest-neighbor square lattice 2D Ising model to calculate the coordinate transformation,

showing that corrections to scaling from irrelevant variables are not needed to explain

the exact results, in agreement with previous researchers [Caselle et al., 2002, Calabrese

et al., 2000, Aharony and Fisher, 1983]. In sec. 5.4 we consider the question of irrelevant

variables. The known irrelevant eigenvalues [Nienhuis, 1982, Barma and Fisher, 1985,

Caselle et al., 2002] are integers and simple fractions. The corrections to scaling due to

these irrelevant variables would naively take the same form as the analytic corrections

to scaling discussed above, posing the question of whether these irrelevant variables

also represent invariance under coordinate tranformations (perhaps ‘gauge irrelevant’

variables [Raju and Sethna, 2018] representing ‘redundant’ operators [Wegner, 1974]

associated with changing the definition of the local order parameter). The universal

resonant terms associated with these irrelevant variables, if they are non-zero, would

lead to logarithmic contributions to the free energy which are inconsistent with the exact

solution. We shall conclude that either all the amplitudes of the irrelevant variables

happen to be zero for the exactly solvable Ising models (as they are for the non-conformal

-3/4 eigenvalue), or the universal values of their resonant terms must all be zero (as

expected for gauge-irrelevant eigenvalues, which could explain why Caselle et al. [Caselle
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et al., 2002] see no such corrections). In sec. 5.7 we investigate the normal form including

finite size, and see modest improvement in the scaling collapse of the specific heat using

the analytic corrections found in sec. 5.3.1. In sec. 5.8 we discover the surprising fact

that the flow equations in the microcanonical ensemble (entropy as a function of energy)

are generically non-analytic. We investigate the relationships between observables and

control variables using the Legendre transformation.

5.2 Linearized RG Flows: the Hyperbolic Family

The classic (pure power law) predictions of the RG are obtained by linearizing the

flow equations [Wilson, 1971]. (Simply linearizing the flows fails to capture logarithmic

singularity of the specific heat of the 2D Ising model, which we remedy in sec. 5.3.)

In general, the linearized RG predicts [Cardy, 1996] that the singular part of the free

energy f of any thermodynamic system in the vicinity of a critical point should obey the

following form

F(t, h, u) = |t̃|D/λt F±
(
h̃/|t̃|λh/λt , ũ/|t̃|λu/λt

)
, (5.1)

where t is the reduced temperature t = (T − Tc)/Tc in terms of the model control

temperature T and the critical temperature Tc, h is the ordering field, and u represents

one of many irrelevant control variables, like a second nearest neighor interaction.

The power-law contribution |t̃|D/λt is the most famous prediction of this linearized

RG, where the dimension-dependent critical exponent 2− α is the most salient number

which can define a universality class. For example, the 2D (D = 2) Ising university class

features λt = 1. The other critical exponents defining the universality class are λh > 0

and λu < 0. The function F±(x, y) is another universal prediction of the RG, where ±

denotes a different function above or below Tc or t = 0.
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The careful reader will note that the right-hand side of eqn. 5.5 is actually a function

of t̃, h̃ and ũ. These are called non-linear scaling variables [Wegner, 1972], for reasons

which are made clear below, and are in general analytic functions of the control variables

t, u, and h. They arise due to non-universal details of each physical system, like the

box containing the experiment, an imperfect thermometer, or some coupling between

parameters which do not change essential features of the critical point.

While the power law is the most famous and beautiful prediction of the RG, there are

many real and significant modifications to the pure power law |t̃|D/λt , even for hyperbolic

fixed points (that can be linearized). These corrections to scaling generally come from

two sources, and yield two types of corrections named for types of terms they cause:

analytic corrections and singular corrections. Imagining that we are close to the critical

point (and that h = 0 for clarity), and writing for example t̃ = t+ at2 + . . ., eqn. 5.5 can

be expanded around t = 0 and ũ = 0, yielding

F(t, 0, u) = |t|D/λt
(
A1 +A2t+A3t

2 + . . .+

B1ũt
λu
λt +B2ũt

1+λu
λt + . . .

)
, (5.2)

where the constants Ai and Bi are appropriate constants depending on λt, λu, F ′(0).

There are integral powers of t due to expanding t̃, the analytic corrections, and terms like

tλu/λt , which are non-analytic or singular, due the irrelevant variable u. Note that since

conformal field theory (CFT) predicts for the 2D Ising model that λu = −2n,−(2n+ 1/8)

for appropriate integers n, the singular corrections due to the negative integer irrelevant

variables will be indistinguishable from analytic corrections.
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5.3 2D Ising RG Flow Normal Form: Resonance

The most general form of the flow equations of the 2D Ising model can be written

df/d` = D f(1 + gf (t, h, u, . . .))

dt/d` = λt t(1 + gt(t, h, u, . . .))

dh/d` = λh h(1 + gh(t, h, u, . . .))

du/d` = −λu u(1 + gu(t, h, u, . . .)), (5.3)
...

where f is the free energy, t is the reduced temperature, u represents the many irrelevant

variables (with λu < 0), the dimension is D = 2, and λh = 15/8. The functions gf , gt

and gu are analytic function which vanish at the critical point. Normal form theory

of dynamical systems tells us we can find a coordinate change f(f̃ , t̃, ũ, . . .), t(t̃, ũ, . . .),

and so on which can lead to a set of differential equations which are simplest in the

sense that only a small number of terms (maybe even zero) in the power series of the

g-functions remain. According to NFT the terms that cannot be removed satisfy a

resonance condition, an integer linear relationship between eigenvalues.

Ignoring resonances due to irrelevant variables for now, the normal form of the 2D

Ising model is

df̃

d`
= Df̃ − t̃ 2,

dt̃

d`
= t̃,

dh̃

d`
= 15

8 h̃,

dũ

d`
= λuũ, (5.4)

where we have rescaled t̃ to set the coefficient of t̃ 2 to unity1. The t̃ 2 term in eqn. 5.4
1Rescaling cannot change the sign, which is negative in the exact solution
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cannot be removed by smooth coordinate changes because of a resonance 2 between f̃ and

t̃, which is well-known to cause logarithmic singularities [Wegner, 1972]. Coarse-graining

til t̃ = 1, the prediction for the free energy (the initial conditions of the flows) is found to

be

f̃0(t̃0) = t̃20F
(
h̃0t̃

1/yh
0 , ũ0t̃

1/yu
0

)
− t̃20 log t̃0. (5.5)

Some have speculated on the existence of another scaling function in eqn. 5.5 multiplying

the logarithm [Caselle et al., 2002], but our normal form calculation above argues that

none is needed. As we note elsewhere, since many integer eigenvalues λu exist for the 2D

Ising model, it is possible that singular and analytic corrections will be indistinguishable.

In sec. 5.4 we will show that resonances with irrelevant variables will modify the flows

of eqn. 5.4 by adding a number of terms due to resonances between f , t, h, and the

irrelevant variables with integer or simple fraction eigenvalues like λu = 2, 4, 3/4, . . ..

In sec. 5.5 we will show that these resonant terms will modify the scaling ansatz of

eqn. 5.5 by allowing terms of the form (log t)n and log log t. The exact solution of the 2D

Ising model is of the form f(t) = a(t) log t + b(t) for analytic functions a and b, so we

will conclude that these resonances cannot contribute to the corrections to scaling in the

exactly–solved lattice model. There are in fact two distinct ways that irrelevant variables

can be neglected: a zero value u0 = 0 of the irrelevant variable for the system being

studied, or the universal coefficients of its normal-form nonlinear terms are identically

zero. Caselle et al. [Caselle et al., 2002] support the former assertion that u0 = 0 at

the critical point in the case of the leading irrelevant operator in CFT; Barma and

Fisher [Barma and Fisher, 1985] conjecture that it is zero for the non-conformal operator

with eigenvalue −3/4.

2In this case the resonance condition is the integer relation 2 · λt = λf , with λt = 1 and λf = 2, for
which a change of variable calculation shows that the t̃ 2 term cannot be removed from the f̃ flow.
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5.3.1 Unique coordinate transformation

The exact free energy of the 2-D Ising model is of the form f(t) = a(t) log t+ b(t) where

a(t) and b(t) are analytic functions of t. This can be seen by carefully studying Osager’s

exact solution [McCoy and Wu, 2014], or by simply adding analytic corrections to the

normal form of eqn. 5.4. The normal form solution of the free energy in terms of a

coordinate transforms t̃(t) and f̃(f, t) is

f̃(t̃) = −t̃ 2 log t̃, (5.6)

where we have chosen to coarse-grain to a point which removes the lone t̃ 2 term. We now

show that one can explain the exact solution purely in terms of analytic corrections to

scaling (presuming that all irrelevant variables have unrenormalized initial values u0 = 0).

The most general transformation is t = t̃(1 + τ(t̃)), for arbitrary analytic function τ .

Transforming the exact free energy we find

f(t̃) = a(t̃) log t̃+ a(t̃) log(1 + τ(t̃)) + b(t̃), (5.7)

where a(t̃) = a(t(t̃)), and similarly for f , and b. The last two terms of f(t̃) are analytic;

we can see that our coordinate transformation for f must be

f̃(t̃) = f(t̃)− a(t̃) log(1 + τ(t̃))− b(t̃). (5.8)

In order for the transformation to match the normal form solution we then require that

t̃ 2 = −a(t̃(1 + τ(t̃)). Thus if we assume that the irrelevant variables do not contribute to

the free energy, this uniquely specifies the change of variables to the normal-form τ(t̃).

What if we first transform f by an analytic function in t? The most gen-

eral transformation we are allowed is f̃ (1) = f + c(t). Then applying t̃ as above,

f̃ (2) = f̃ (1)(t(t̃)) = a(t̃) log t̃+ a(t̃) log(1 + τ(t̃)) + b(t̃) + c(t̃). Then to obtain the normal
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form, f̃ (3) = f̃ (2)−a(t̃) log(1+τ(t̃))−b(t̃)−c(t̃), which if we simplify, cancels our original

transformation of c(t), yielding the same form for f̃ as above.

5.3.2 Nonlinear Scaling Fields

Using the results of the previous section and Onsager’s exact solution to the Ising model,

we can find the nonlinear scaling field t̃(t) which will account for analytic corrections in

the vicinity of t = 0. First, we find the singular part of the free energy from Onsager’s

solution, using an analytic formula for the energy or df/dt [McCoy and Wu, 2014]:

df

dt
= − Tc

T (t) coth
( 2
T (t)

)(
1 + 2

π
q(t)K(p(t))

)
, (5.9)

where K(m) =
∫ π/2
0 dθ/

√
1−m sin2 θ is the elliptic integral of the first kind,

q(t) = 2 tanh
( 2
T (t)

)2
− 1, (5.10)

and

p(t) = 2 sinh(2/T (t))
cosh(2/T (t))2 , (5.11)

and T (t) = Tc(t+ 1). K has a branch cut and a logarithmic singularity at K(1). Using

an asymptotic expansion for K(m) around m = 1, we can find an expansion for the

energy as
df

dt
= g(t) log(t) + h(t), (5.12)

in the form of Taylor series g(t) and h(t). We can then integrate eqn. 5.12 over t, obtaining

f(t) =
∫
df

dt
= a(b) log t+ b(t), (5.13)

the form of the free energy predicted in sec. 5.3.1 by normal form theory.
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Using the expansion of the free energy in eqn. 5.13, and following the prescription of

sec. 5.3.1, we can find the nonlinear scaling field t̃ to arbitrary order. The first 6 terms

are

t̃(t) = t+ t2
(
β√
2
− 1

)
+ t3

(
11β2

12 −
√

2β + 1
)

+

t4
(

25β3

12
√

2
− 11β2

4 + 3β√
2
− 1

)
+

t5
(

1289β4

480 − 25β3

3
√

2
+ 11β2

2 − 2
√

2β + 1
)

+

t6
(

10399β5

1440
√

2
− 1289β4

96 + 125β3

6
√

2
− 55β2

6 + 5β√
2
− 1

)

+O(t7), (5.14)

where β = log(1 +
√

2)/2 is the inverse critical temperature. Equation 5.14 agrees with

Caselle et al. [Caselle et al., 2002] to the order they report.

Note that technically the coefficients in eqn. 5.14 are functions of the value of all

irrelevant variables, and that singular corrections from irrelevant variables with integer

eigenvalues will also in general contribute to the coefficients. See Appendix sec. 5.11.1

for details. Further note that t̃(t) can be combined with the normal form of eqn. 5.4 to

find the flow equations of the 2D square-lattice Ising model in the original variables

5.4 Normal Form for Irrelevant Variables

Equation 5.4 is the normal form of the 2D Ising model, ignoring irrelevant variables. The

t2 term in the free energy flow, responsible for the famous logarithmic singularity, arises

due to the resonance 0 ·D + 2 · λt = D: The right-hand side indicates that the equation

with eigenvalue D (the free energy) will have a term t2 which cannot be removed by
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5.4. Normal Form for Irrelevant Variables

smooth coordinate transformations. Since all so far proposed irrelevant variables of the 2D

Ising model are negative integers or simple fractions like λu = −3/4,−2,−4, . . . [Caselle

et al., 2002, Calabrese et al., 2000], and since the relevant eigenvalues λf = D, λt = 1, and

λh = 15/8 are also simple fractions or integers, we must expect many more resonances in

the flows of eqn. 5.3, and thus more logarithmic corrections.

Consider a model resonance added to the flows of some variable y, caused by a

resonance between a relevant variable x, and an irrelevant variable u:

λy + n(pλx − qλu) = λy, (5.15)

If pλy+qλu = 0 for some non-negative integers p and q then the above resonance condition

is satisfied for any n. For example, if λu = −3/4, then there is a resonance between u

and t of the form 4λt − 3λu = 0. In this case, NFT tells us that the normal form flows of

any variable y will have terms y(t4u3)n which cannot be removed by analytic coordinate

transformations for all n > 0, or in general some analytic function gy(t4u3) is essential to

the singularity as

dỹ/d` = λyy(1 + gy(t̃4ũ3)). (5.16)

Our previous work [Raju et al., 2019] found that hyper-normal form theory or simplest

NFT [Yu and Leung, 2007]— using a sequence of low-order polynomial coordinate

transformations— can remove all but a couple of these resonant terms in the analytic

function gy(t4u3), as we now demonstrate.

Let w = xpuq, with some relevant x and irrelevant y, the eigenvalues of which satisfy

pλy + qλu = 0. We assume first that all analytic terms which are not resonances between
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x and u have been removed, writing our flows as

dx/d` =λx x(1 + gx(xpuq)),

dy/d` =λy y(1 + gy(xpuq)),

du/d` =λu u(1 + gu(xpuq)), (5.17)

where the infinite number of resonances are summarized in the analytic g-functions.

First consider the y-flows as they are uncoupled from x and u. We can start by

assuming the form dy/d` = λyy(1 + cw + dw2). Proposing a coordinate change y =

y1(1 + Aw), we find that no solution exists for A which can remove the wy resonance.

Mercifully though, there is a nontrivial A which can eliminate the dyw2 term. We can

then proceed perturbatively, removing all higher order terms in w, concluding that the

normal form for the flows of y is dỹ/d` = λyỹ(1 + cw).

We now proceed to analyze the coupled resonances of the x and u flows. Starting by

writing out a few terms of the g-functions perturbatively as

dx/d` = λx x(1 + a1w + a2w
2 + a3w

3),

du/d` =−λu u(1 + b1w + b2w
2 + b3w

3),

dw/d` = c2 w
2 + c3w

3, (5.18)

where we have used the fact that pλx = qλu, and c2 and c3 are functions of the ai and bi.

Since x and u are coupled we must propose a simultaneous coordinate change

x(x1, u1) = x1(1 +A1w1 +A2w
2
1),

u(x1, u1) = u1(1 +B1w1 +B2w
2
1),

w1 = xp1u
q
1. (5.19)
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Inserting these new coordinates into Eqn. 5.18 and collecting terms in powers of w1 yields

dx1/d` = λx x1(1 + a1w1+

(a2 + q(a1B1 +A1b1λu/λx))w2
1+

(a3 + f1)w3
1 +O(w4

1)), (5.20)

du1/d` = −λu u1(1 + b1w1+

(b2 + q(b1A1 +B1a1λx/λu))w2
1+

(b3 + g1)w3
1 +O(w4

1)), (5.21)

where f1 and g1 are some polynomials of all the parameters. The first fact to note

is that the terms linear in w1 do not depend on the new coordinates; the xw and uw

terms cannot be removed. Moving on to the quadratic terms, we see that we can choose

to remove either the xw2 or the uw2 terms, but not both. For instance, if we choose

B1 = −λu(b2 +A1b1p)/a1pλu we can remove the u1w
2
1 term, but inserting this choice into

the x1 flows yields a coefficient of x1w
2
1 equal to a2 − b2qλu/pλx; A1 has been cancelled

so we cannot remove that term. This limitation does not apply to the higher order terms

in w1 as A1, A2, and others are free parameters. Therefore we can find some sequence of

polynomial coordinate transformations which yields the normal form

dx̃/d` = λx x̃(1 + aw̃ + bw̃ 2),

dỹ/d` = λy ỹ(1 + cw̃),

dũ/d` =−λu ũ(1 + dw̃), (5.22)

where, since they cannot be changed by smooth coordinate transformations, there exist

ratios of a, b, c,and d which are universal.
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Note that this sequence of calculations leading to our normal form is not ad hoc — it

is a prescribed, systematic mathematical procedure developed by the dynamical systems

community [Yu and Leung, 2007] to study bifurcations.

5.5 Free energy solution including a resonance

We now explore the free energy singularities caused by resonances with irrelevant variables,

namely terms like tn(log t)m and tn log log t, for some integers n and m. Note that the

latter is not predicted to be a part of any known exact results, and the former is not a

part of the exact free energy (though some claim it appears in the susceptibility) [Orrick

et al., 2001]. We claim that if terms in the flows lead to singularities like these in the free

energy, the amplitude of those resonant terms in the flows must be zero.

Consider some irrelevant variable u such that pλt = qλu for positive integers p and

q, where, as before λt = 1 and λu is the absolute value of the eigenvalue of u. We have

shown that in this case the normal form of the flows must be

df/d` = 2 f − t2,

dt/d` = t(1 + aw),

dh/d` = λh h(1 + bw),

du/d` =−λu u(1 + a1w + a2w
2), (5.23)

where w = tpu. It will be more convenient to work directly with the flow of w, which is

dw/d` = cw2 + dw3, (5.24)

where c = ap and d = qλua1. Defining s(l) = c/dw(l) + 1, we find that s(l) =

W (s0 exp(s0) exp(−c2l/d)) where s0 = s(0) andW is the 0 or -1 branch of the Lambert-W

function depending on the sign of t0.
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5.5. Free energy solution including a resonance

We could solve for t(l) and then f(l) directly now that we have w(l), but since

coarse-graining till t = 1 is more complex now, we proceed a different way. Integrating f

directly and solving for the initial condition, our predicted free energy should be

f0 = e−2`?f(h(`?), u(`?))−
∫ `?

0
e−2`t(`)2d` (5.25)

where as usual t(`?) = 1. Let us first find `? = `(t = 1) by noticing that we can solve for

`(w) from eqn. 5.24 above, and then substituting in w(t) by solving dw/dt. It is again

easier to work with s as defined above, finding

s(t) = ãW

(
s0
ã
es0/ã(t/t0)−c2/ãd

)
, (5.26)

where ã = ac/d− 1. Now, `? = w(t = 1), and using the identity expW (x) = x/W (x) we

find the scaling term of the free energy to be

e−2l? = t20

[
ã

s0
W

(
s0
ã
es0/ãt

c2/ãd
0

)]2d(1−ã)/c2

,

= t20

(
s(1)
s0

)2ac−2d
c2

. (5.27)

To proceed we recall that since s = c/dw + 1, when w0 is small after coarse-graining s0

will be large. Therefore we can understand the nature of the singularities produced by

the resonance by expanding about s0 →∞:(
W (yxex)

x

)b
= 1 + b log y

x
+ b

(b− 1)(log y)2 − 2 log y
2x2

+O
(1
x

)3
, (5.28)

where y = t
c2/ãd
0 and x = s0/ã. Expanding to higher order will produce terms proportional

to t20 log(t0)n for all n > 0 in the scaling part of the free energy. We can thus write the

scaling part of the free energy which multiplies the scaling function as

e−2l? = t20

(∑
nm

ynmt
n
0 (log t0)m

)
, (5.29)
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where y00 = 1 and all other ynm are explicit functions of a, c, d, and s0, which vanish

as s0 →∞ (corresponding to a vanishing u0 = 0 of the amplitude of the corresponding

irrelevant perturbation).

This then modifies the prediction of the free energy to be (ignoring the integral term

in eqn. 5.25)

f0(t0, h0, u0) = t20

(∑
nm

ynmt
n
0 (log t0)m

)
f(h(`?), u(`?)). (5.30)

Let us compare this prediction to the exact free energy in zero field, which is f(t) =

a(t) log t+ b(t) with some analytic functions a and b. We see that ynm = 0 for n,m > 0

must hold for the amplitudes of the resonances in the flows of eqn. 5.23 to agree with

the exact solution. Examining the exponent of eqn. 5.27 we see that if ac = 2d, all of

the log corrections disappear, and exp (−2l?) = t20 as if there were no resonances. In the

variables of the flows in eqn. 5.23, ac = 2d if a1 = a2/2λt. Hence either the universal

terms ac = 2d or the amplitudes of the irrelevant perturbations (and hence ymn) must

vanish in the lattice models.

We can further constrain the possibilities by analyzing the integral term of eqn. 5.25.

We first change variables, inverting our previous solution s(l) to find l(s), and invert

eqn. 5.26. We find

−
∫ `?

0
e−2`t(`)2d` = −

∫ s(t=1)

s0
e2l(s)t(s)2 dl

ds
ds,

= t20

B1 + (B2 −B3 s(1))
(
s(1)
s0

) 2(2d−ac)
c2

 , (5.31)

where the constants Bi are functions of a, c, d, and s0, and s(1) = s(t = 1) as given by

eqn. 5.26. Curiously, whereas the condition ac = 2d was found to cancel all the powers of

logarithms in eqn. 5.27, the powers of logarithms persist in eqn. 5.31 in this limit. Since
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s(1) has essentially the same asymptotic behavior as the scaling part of the free energy

in eqn. 5.28, we see that the predicted free energy will thus have the form

f0(t0, h0, u0) =t20

(∑
nm

ynmt
n
0 (log t0)m

)
f(h(`?), u(`?))

+ t20

(∑
nm

xnmt
n
0 (log t0)m

)
. (5.32)

Therefore since even if ac = 2d the irrelevant variable resonances of the form of eqn. 5.23

produce logarithmic singularities which are inconsistent with Onsager’s exact solution,

we conclude that such resonances cannot contribute to the flow equations of the two

dimensional square lattice Ising model: either u0 = 0 (and hence the xmn = 0 for the

lattice model, or the universal terms in the flow equations a = b = d = c = 0.

5.6 Corrections to the Susceptibility

It has been hypothesized that these resonances we have been discussing could contribute

logarithmic singularities to the zero-field magnetic susceptibility χ = ∂2f/∂h2. To

understand the effect of resonances of the form of eqn. 5.23 on χ, we must study the

new scaling variable h(`?) in the scaling function of eqn. 5.25. The standard scaling

variable predicted by the linearized flows is h/tλh/λt , which is found by integrating

dh/dt = (dh/d`)/(dt/d`), which should be invariant under coarse-graining.

We proceed another way, starting with the ansatz h(l) = eλhlq(l) for some function

q(l), which, when combined with eqn. 5.23 suggests q′(l) = λhbq(l)w(l), which can be

solved by integration similar to eqn. 5.31. The result, upon coarse-graining till t = 1 is

h(l?) = h0

(
t20
s(1)
s0

)λh (ac−2d)(bc−d)
c2d

× e
λhb

c
(s0−s(1))

( 1− s0
1− s(1)

) 2λhb
c

, (5.33)
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where as before s(1) = s(t = 1) = s(`?) is given by eqn. 5.26. Therefore we can see that

the field scaling variable h(`?) will also give rise to powers of log t0. Will any of these

logarithms not found in the exact solution of the 2D Ising model persist along the critical

manifold h0 = 0? First, we must take two derivatives with respect to h0 of the free energy

in eqn. 5.25, and then take the limit of h0 → 0 to predict the zero field susceptibility.

It does not appear possible that any of these logarithms multiplied by h0 in h(`?) can

explain the powers of logs which have been observed in the susceptibility [Orrick et al.,

2001]. Further, it does not appear possible to produce such powers of logarithms in the

susceptibility via resonance terms in the flows without adding powers of logarithms to

the free energy, which we know lacks these corrections.

5.7 Finite Size Scaling

One way to perform finite size scaling is to make the system size a control variable,

adding it to the flow equations. Since the critical point can only occur at infinite system

size, we add a flow in dL−1/d` = L−1. This new equation has an eigenvalue of 1, and so

normal form theory leads us to suspect the presence of resonances. Are these resonances

physically meaningful, or artifacts of the analysis? We can compare the predictions of

NFT to the exact finite size heat capacity [McCoy and Wu, 2014] to learn more. There

will be a resonance between f and L−1 since 0 ·D + 2 · λL−1 = D for D = 2, and with

t. One choice of the normal form is (ignoring the irrelevant resonances and analytic
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corrections)

df̃/d` = 2f̃ + at̃2 + bL−2

dt̃/d` = t̃+ cL−1

dL−1/d` = L−1. (5.34)

Solving eqn. 5.34 and coarse-graining till ` = logL0 for system size L0, we predict the

finite size scaling form

f(t, L) =L−2(Φ(c logL+ tL)− b logL+ ac2

3 (logL)2)

+ t2 logL+ ac
t

L
(logL)2, (5.35)

where Φ(x) is a universal scaling function.

Taking two derivatives with respect to t we find the heat capacity as

c(t) = −2a logL+ Φ′′(Lt+ cL2 logL). (5.36)

We can proceed with a scaling collapse by solving for the scaling function, which is

universal, so that if we have the correct parameters a and c, all curves independent of L

should lie on top of each other. Note that a = log2(1 +
√

2)/π is known from asymptotic

analysis [Ferdinand and Fisher, 1969], and so we need only search for a collapse by varying

c.

Following Salas [Salas, 2001] and Ferdinand [Ferdinand and Fisher, 1969] we can

calculate the exact specific heat per spin for any finite system size, omitting the analytic

part of the calculation to focus on the singular behavior. The top of fig. 5.1 shows the

finite size scaling collapse using the scaling form of eqn. 5.36 as predicted by normal form

theory. Note that c ≈ 0 is necessary to get a decent collapse, so if the resonance term

with L−1 contributes to the t flows it does so with a rather small amplitude. The bottom
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Figure 5.1: Finite size scaling collapse of the 2D Ising exact specific heat. Top: with no
analytic corrections t̃. Bottom: with analytic corrections. The coefficient of the resonance
correction in the normal form in eqn. 5.34 is consistent with c = 0.
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of fig. 5.1 shows the same scaling collapse using the nonlinear scaling field we found in

eqn. 5.14, with a modest improvement as the peaks of each finite size curve are better

aligned. Note here that we did not incorporate the expected finite-size analytic corrections

to scaling given by expanding t̃(t, L−1) and f̃(f, t, L−1) which presumably would have

acted to remove the remaining finite-size effects; see Ferdinand and Fisher [Ferdinand

and Fisher, 1969].

5.8 Legendre Transform of the Flows

In our previous work on normal form theory [Raju et al., 2019] we noticed that the

t2 resonance term in the free energy flow equation of the 2D Ising model led to what

appeared to be a transcritical bifurcation in the flow equation of the specific heat. This

necessarily led us to deviate from the history of RG, which limited its calculation to the

canonical ensemble, which expresses the free energy as a function of temperature and field,

for example. There is no physical origin for the choice of using the canonical ensemble;

we could for example study the Ising model in the microcanonincal ensemble, where the

thermodynamic potential is entropy as a function of energy instead of temperature.

The RG has historically separated the control and observation variables. There is

no a priori reason to make this distinction in statistical mechanics: what would the flow

equations look like in a different ensemble? The relationship between different ensembles

can be understood as a Legendre transformation [Zia et al., 2009]. Here we will restrict

our attention to the Legendre transformation of free energy with respect to temperature,

which yields the entropy as a function of energy. Writing the free energy as F = − logZ,

with partition function Z, we know that

F(β) = tE − S, (5.37)
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where S is the entropy and E is the energy. This is just one of many thermodynamic

potentials, however, and we could just as well write

F(β(E)) = t(E)df
dt
− S(E), (5.38)

where E and t are related by the fact that df/dβ = E. Solving for the entropy,

S(E) = Et(E)−F(E), (5.39)

we see that S(E) is an equivalent expression to F(β) in that they are related by an

information-preserved invertible transformation called the Legendre transform.

So if thermodynamic potentials are really not physically significant, what does RG

look like as flows in S and E instead of f and t? Writing our f flows as

df

d`
= Df + Π, (5.40)

where Π is an analytic function of all the variables t, h, u, etc. Assuming the flows in all

other observables θγ are of the form dθγ/d` = βγ for some function βγ = λyy + gγ({θδ}),

then the total derivative with respect to l can be written (where repeated indices are

summed) d/d` = βγ∂γ . Therefore,

df

d`
= βγ∂γf = Df + Π, (5.41)

so that we can find flows of E = ∂tf for example by taking partial derivatives of the flow

to find

∂α(βγ∂γf) = D∂αf + ∂αΠ

∂αβ
γ∂γf + βγ∂α∂γf = D∂αf + ∂αΠ. (5.42)

We can then commute partial derivatives as βγ∂α∂γf = βγ∂γ∂αf = d(∂αf)/d` to find

d(∂αf)
d`

= D(∂αf − ∂αβγ∂γf) + ∂αΠ. (5.43)
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We can now find the flows of S by direct differentiation and simplification to be

dS

d`
= DS −Π + βtE

+ t (∂tΠ−D∂tβγ∂γf) , (5.44)

where t = t(E). If we assume that all the other flow equations are linear so that

βγ = λ(γ)θ
(γ) (no summing over indices), these flows simplify to

dS

d`
= DS + (t∂t − 1)Π

dE

d`
= (D − λt)E + ∂tΠ, (5.45)

which, if Π = 0, causes the flows in S and E to be hyperbolic and behave as expected

from standard RG theory. Since in the 2D Ising model, Π = −t2 due to a resonance,

however, we predict the normal form flows of S and E are

dS

d`
= DS − t(E)2 (5.46)

dE

d`
= (D − λt)E − 2t(E), (5.47)

which is problematic because E(t) = −2at log t near the critical point, and does not admit

a Taylor series, so that the inverse function t(E) cannot have a Taylor series. We conclude

that any nonlinear terms in the flows of f and t must in general produce non-analytic flow

equations in S and S. This is troubling because the universal behavior of RG depends

on the vicinity to the critical point being described by an analytic flow equation. Does

nature prefer one ensemble over another for universal behavior in coarse-graining?

Since we can calculate f and E analytically for the 2D Ising model, we can numerically

invert t(E) to find E, and then plot S(E) = t(E)E − f(t(E)) versus E. We can then

test two analytic predictions. We can solve the non-analytic flows of eqn. 5.47 to predict
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Figure 5.2: Testing the asymptotic behavior of two theories of the 2D Ising entropy
S(E). (left) SNA(E)/S(E) is plotted as a function of E, where E = 0 is the critical
point, and where SNA(E) of eqn. 5.48 is predicted by the Legendre transform of the
2D Ising normal form flows. (right) SNF(E)/S(E) is plotted as a function of E, where
SNF(E) = −E2 log(Ee−τ) is the prediction of the entropy assuming that the flows of S
and E should be analytic.

that near the critical point the non-analytic SNA is

SNA(E) = E2

W (e1−τ/2E)

(3
2 + 1

4W (e1−τ/2E)

)
, (5.48)

where e is the base of the natural logarithm and W is our old friend the Lambert product

log function in its −1 branch. τ ≈ 3.7476 comes from Onsager’s solution and is the ratio

of the coefficients of t2 and t2 log t in eqn. 5.13. The competing predictions are assuming

Normal Form Theory holds for the flows, and assuming that t(E) is analytic. In the

latter case, there is still a resonance between D = 2 and D − λt = 1, so that near the

critical point the normal form entropy SNF is

dS

d`
= DS − E2 (5.49)

dE

d`
= (D − λt)E, (5.50)

which then produces a familiar prediction SNF(E) = −E2 log(Ee−τ ).
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f, t f̃ , t̃ (nonlinear)

S,E S̃, Ẽ (non− analytic)

LT
CT

LT

Figure 5.3: Relationship between quantities under coordinate transforms (CT) and
Legendre transforms (LT). If one begins with hyperbolic (linear) flows in f , t, these will
gives rise to hyperbolic flows of S, E under LT. If one performs a CT to find f̃ , t̃, the
resulting flows after LT will generically be non-analytic.

Figure 5.2 shows the asymptotic behavior of these two predictions. On the left, is the

ratio of eqn. 5.48 over the true Ising entropy SNA(E)/S(E). We see that as the critical

point is approached (here we set E(t = 0) = 0), the ratio asymptotically approaches

unity. On the right, we see the ratio of SNF(E)/S(E), which assumed an analytic flow

equation for S and E of the form of eqn. 5.50. We see that this theory diverges from the

true entropy as E → 0. We must conclude that the flow equations of S and E, at least

in the case of the 2D Ising model are in fact non-analytic.

Our theory of the Legendre transformation of the flows seems to suggest that if one

wishes for analytic flow equations in S and E, for example, one must start with hyperbolic

or linear flows in f and t, etc. Therefore any system with resonances like the 2D and 4D

Ising models will inherently have non-analytic flows of the entropy. More disturbingly,

even if we begin with linear flows in f̃ and t̃, as we may do in the 3D Ising model which

has no resonances, analytic corrections of the form t̃ = t + ut(t) generically produce

non-analytic flows in S. This can be seen, as such a transformation leaves powers of

t in dS/d`, which when inverted to t(E) generically produces a non-analytic function

of E. This relationship is indicated schematically in fig. 5.3, where basically Legendre

transformation and coordinate transformation of RG flows do not commute. Therefore it
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would seem perhaps that nature prefers doing RG in the canonical ensemble over the

microcanonical ensemble.

5.9 Discussion

Conformal field theory predicts an infinite number of irrelevant variables for the 2D ising

model of the form λu = −2n,−(2n+ 1/8) for all integers n > 1. We know from the exact

solution of the 2D square lattice Ising model that singular corrections from irrelevant

operators with eigenvalues λu = −(2n+ 1/8) are constrained, as no fractional powers of

t are present in the free energy. This means that for many of the terms, either u0 = 0,

or the free energy scaling function happens to be independent of u. We have shown in

this work that resonances due to operators with eigenvalue λu = −2n also contribute no

corrections to scaling, concluding that either u0 = 0 for the square lattice Ising model,

or the coefficients of the resonances in the flows are zero. In this section, we explain a

conjecture that these integer irrelevant variables are identically zero for the square lattice

Ising model, by arguing that they are redundant [Cardy, 1996] or gauge irrelevant [Raju

and Sethna, 2018] variables.

Redundant operators are those that only change non-universal properties like the

position of the critical point, leading to a sub-manifold of universally-equivalent RG fixed

points [Fisher and Randeria, 1986]. The most famous example of a redundant operator

is the φ3 term in the Hamiltonian density of the Ising model. Writing a Landau-like

expansion for the Hamiltonian in terms of some order parameter field φ as

H =
∫

dx (∇φ)2 + tφ2 + bφ3 + uφ4 + . . . , (5.51)

we can see that invoking the transformation φ → φ + K, for some choice of K which

depends on u, the φ3 term can be eliminated. Dimensional analysis arguments will classify
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φ3 as relevant, but we know that a constant-offset of the field K should not change the

physics, and so we conclude that the φ3 term is redundant, playing no part in the RG

dynamics. Note that since we started with an arbitrary coefficient in front of φ3, there is

at least a whole line of equivalent RG fixed points for this Hamiltonian.

Previous work has shown that in the case of the period-doubling onset of chaos, there

are an infinite number of irrelevant operators which are redundant, playing no part in

the RG flows [Raju and Sethna, 2018]. This choice of gauge for the functional map of

the period doubling analysis led to the new name of gauge irrelevant variables, which are

both redunandant and irrelevant. We believe that a compelling and possible explanation

for the fact that none of the integer-irrelevant variables λu = −2n contribute to the

scaling of the 2D Ising model, is that they, too, are gauge-irrelevant.

Consider the transformation φ′ = φ+ a(∂4
xφ+ ∂4

yφ). This is the lowest-order modifica-

tion which will introduce anisotropy consistent with the square-lattice, which Caselle et

al. [Caselle et al., 2002] say is responsible for the most dangerous irrelevant variables with

eigenvalue −2,−4. How does this transformation perturb the scaling of the correlation

function? The scaling ansatz of the correlation function is [Chen et al., 2013]

C(r) = 〈φ(0)φ(r)〉 = r−ηC(r/t−ν , h/tβδ, u/tλu/λt), (5.52)

where η = 1/4, ν = 1, β = 1/8, and δ = 15 are the 2D Ising critical exponents. Putting

our transformation φ′ into this ansatz, we can calculate the corrections to scaling due

to these irrelevant perturbations. The leading correction due to φ′ = φ+ a(∂4
xφ+ ∂4

yφ)

scales as r−4−η. Perturbing φ with a Laplacian of φ produces a leading correction which

scales as r−2−η. We could also propose the transformation φ′ = φ+ aφ3, using CFT to

predict the corrections due to 3 and 4-point correlation functions. These integer singular

corrections could also be caused by the integer irrelevant eigenvalues predicted by CFT.
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Therefore we hypothesize that (for the two dimensional) Ising model, the reason there

do not appear resonance corrections and singular scaling is because all these irrelevant

operators are redundant or gauge irrelevant. We will devote future works to fleshing out

this line of inquiry.

5.10 Conclusion

We have studied the normal form of the 2D Ising model flow equations, clarifying the

understanding of its corrections to scaling. Using the normal form we showed that the

scaling ansatz of the free energy should not multiply the log by a scaling function, and

we used the exact solution to find the nonlinear scaling field in t̃(t). We found the

resonances due to irrelevant operators like λu = −3/4,−2,−4, . . ., showing that the

powers of logarithms they would produce in the free energy contradict Onsager’s solution

which contains a single log. We concluded that either the irrelevant variables must be

zero at the critical point, as Caselle et al. [Caselle et al., 2002] found for the irrelevant

operator λu = −2, or the coefficients in the nonlinear terms of the flows must be zero.

We concluded further that the resonances cannot predict powers of logs in the zero field

susceptibility without also adding spurious powers of logarithms to the free energy. We

explored the normal form for the finite-size 2D Ising model, used our nonlinear scaling

field to improve the scaling collapse of the specific heat, and concluded numerically that

resonance with L−1 either does not arise or happens with rather small amplitude. Finally

we investigated the behavior of the RG flows under the Legendre transformation, finding

that generically flows in the entropy and energy will be non-analytic, in stark contrast to

the analytic assumptions underpinning RG.
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5.11 Appendix

5.11.1 Analytic Corrections and Irrelevant Variables

Corrections to scaling from irrelevant variables are usually called singular because upon

expansion of the scaling function their generically non-integral exponents lead to singu-

larities in predictions from the RG. In the 2D Ising model the most dangerous of the

irrelevant variables have integer eigenvalues[Caselle et al., 2002], and so their contributions

are indistinguishable from analytic corrections. Therefore we must understand the extent

to which irrelevant variables limit our ability to infer the flow equation of the 2D Ising

model from coordinate transformations of the exact solution.

Here we show an example that demonstrates that our coordinate transformation

will yield the coefficients of the analytic terms of the flows as functions of the irrelevant

variables of the square-lattice Ising model. in the flows which depend on irrelevant

variables. Define an analytic change of variables t = t̃ exp(−Au/λ). Under this change of

variables the normal form, including some irrelevant variable u with eigevalueλ transforms

to

df/d` = 2f − t2e2Au/λ (5.53)

dt/d` = t(1 +Au) (5.54)

du/d` = −λu. (5.55)

Could we infer the constant A by transforming the exact solution to the normal form

solution? Applying the inverse of this coordinate transformation to the normal form

solution f̃0 = t̃ 2
0 (F(u0t̃

2
0 ) − log t̃0) we can quickly find the free energy predicted by
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Eqn. 5.55 (dropping the subscripts for brevity)

f(t) = t2e2Au/λ(F(ut2e2Au/λ)− log t−Au/λ) (5.56)

where F a universal scaling function. Say Eqn. 5.56 is the true solution to the 2D Ising

model, with true corresponding flows specified by Eqn. 5.55. If we find the coordinate

transform bringing Eqn. 5.56 to the normal form solution, does the does the inverse of

this allow us to infer the flows correctly? The transformation t̃ = t expAu0/λ will bring

Eqn. 5.56 to the normal form, where u0 is the constant value of u for the Ising model.

Since we can not understand how the exact solution varies with u0 we infer the flows

df̃

d`
= 2f̃ − t̃ 2e2Au0/λ dt̃

d`
= t̃. (5.57)

These flows are equivalent to the normal form we began with, up to a rescaling of t̃ by

exp(2Au0/λ), and we have failed to recover any of the terms which depend on u. We

conclude that since we cannot vary irrelevant variables in the exact solution we will not be

able to infer any of the terms with irrelevant variables in the flow equations. Conversely,

we will not be able to infer the contributions of irrelevant variable to the scaling variables

t̃, f̃ .
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Chapter 6

On the Use of ArXiv as a Dataset

6.1 Introduction

Real world datasets are typically multimodal (comprised of images, text, and time series,

etc) and have complex relational structures well captured by a graph. Recently, advances

have been made on models which act on graphs, allowing the rich features and relational

structures of real-word data to be utilized [Hamilton et al., 2017b,a, Battaglia et al., 2018,

Goyal and Ferrara, 2018, Nickel et al., 2016]. Many of these advances have been facilitated

by the availability of large, benchmark datasets: for example, the ImageNet [Russakovsky

et al., 2015] dataset has been widely used as a community standard for image classification.

We believe the arXiv can provide a similarly useful benchmark for large scale, multimodal,

relational modelling.

The work constituting this chapter was done in collaboration with Matthew Bierbaum, Kevin
O’Keeffe, and Alexander A. Alemi. It was presented in an ICLR 2019 workshop and can be found at
arXiv:1905.00075.
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6.1. Introduction

The arXiv1 is the de-facto online manuscript pre-print service for Computer Science,

Mathematics, Physics, and many interdisciplinary communities. Since 1991 the arXiv has

offered a place for researchers to reliably share their work as it undergoes the process of

peer-review, and for many researchers it is their primary source of literature. With over

1.5 million articles, a large multigraph dataset can be built, including full-text articles,

article metadata, and internal co-citations.

The arXiv has been used many times as a dataset. Liben-Nowell and Kleinberg [2007]

used the topology of the arXiv co-authorship graph to study link prediction. Dempsey

et al. [2019] used the authorship graph to test a hierarchically structured network model.

Lopuszynski and Bolikowski [2013] used the category labels of arXiv documents to train

and assess an automatic text labelling system. Dai et al. [2015] used a subset of the

full text available on the arXiv to study the utility of “paragraph vectors” for capturing

document similarity. Alemi and Ginsparg [2015] used the fulltext to evaluate a method

for unsupervised text segmentation. Eger et al. [2019] and Liu et al. [2018] built models

to predict future research topic trends in machine learning and physics respectively. The

arXiv also formed the basis of the popular 2003 KDD Cup [Gehrke et al., 2003], in which

researchers competed for the prize of best algorithm for citation prediction, download

estimation, and data cleaning2.

All these works used different subsets of arXiv’s data, limiting their potential impact,

as future researchers will be unable to directly compare their work to these existing results.

The goal of this paper is to improve this situation by providing an open-source pipeline

to standardize, simplify, and normalize access to the arXiv’s public data, providing a

benchmark to facilitate the development of models for multi-modal, relational data.

1https://arxiv.org
2The data for those challenges are available at http://www.cs.cornell.edu/projects/kddcup/

datasets.html
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6.2 Dataset

We built a freely available, open-source pipeline3 for collecting arXiv metadata from the

Open Archive Initiative [Lagoze and Van de Sompel, 2001], and bulk pdf downloading

from the arXiv4. Further, this pipeline converts the raw pdfs to plaintext, builds the

intra-arXiv co-citation network by searching the full-text for arXiv ids, and cleans and

normalizes author strings.

6.2.1 Metadata

Through its participation in the Open Archives Initiative,5 the arXiv makes all article

metadata6 available, with updates made shortly after new articles are published7. We

provide code for utilizing these public APIs to download a full set of current arXiv

metadata. As of 2019-03-01, metadata for 1,506,500 articles was available. For verification

and ease of use purposes, we provide a copy of the metadata (less abstracts) on the

date we accessed it. An example listing is shown in Figure 6.1. Each article includes

an arXiv id (e.g. 0704.0001)8 used to identify the article, the publicly visible name of

the submitter, a list of authors, title, abstract, versions and category listings, as well as

optional doi, journal-ref and report-no fields. Of particular note is the first category

listed, the primary category, of which there are 171 at this time. Notice that the list

of authors is just a single string of author names, potentially joined with commas or

‘and’s. We’ve provided a suggested normalization and splitting script for splitting these
3https://github.com/mattbierbaum/arxiv-public-datasets/releases/tag/v0.2.0
4https://arxiv.org/help/bulk_data
5http://www.openarchives.org/
6https://arxiv.org/help/prep
7Further details available at https://arxiv.org/help/oa
8There are two forms of valid arXiv IDs, delineated by the year 2007, described in https://arxiv.

org/help/arxiv_identifier.
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authors strings into a list of author names. Additional fields may be present to denote

doi, journal-ref and report-no, although these are not validated they can potentially

be used to find intersections between the arXiv dataset and other scientific literature

datasets. Population counts for the optional fields are shown in Table 6.1.

1 {’id ’: ’1905.00075 ’,
2 ’submitter ’: ’Colin B. Clement ’,
3 ’authors ’: ’Colin B. Clement , Matthew Bierbaum , Kevin P. O\’ Keeffe , and Alexander A. Alemi ’,
4 ’title ’: ’On the Use of ArXiv as a Dataset ’,
5 ’comments ’: ’7 pages , 3 figures , 2 tables ’,
6 ’journal -ref ’: ’’,
7 ’doi ’: ’’,
8 ’abstract ’: ’The arXiv has collected 1.5 million pre - prints over 28 years ,
9 hosting literature from physics , mathematics , computer science , biology ,

10 finance , statistics , electrical engineering , and economics . Each pre - print
11 features text, figures , author lists , citation lists , categories , and other
12 metadata . These rich, multi - modal features , combined with the natural
13 relational graph structure created by citation , affiliation , and co - authorship
14 makes the arXiv an exciting candidate for benchmarking next - generation models .
15 Here we take the first necessary steps toward this goal, by providing a
16 pipeline which standardizes and simplifies access to the arXiv ’s publicly available data. We

use this pipeline to extract and analyze a 6.7 million edge citation graph , with an 11
billion word corpus of full -text research articles . We present some baseline
classification results , and motivate application of more exciting relational neural
network models .’

17 ’categories ’: [’cs.IR ’],
18 ’versions ’: [’v1 ’]}

Figure 6.1: An example of what the metadata for this very article may look like if it were
submitted to the arXiv.

Count 1,506,500 1,491,303 1,229,138 810,209 608,286 154,922

Field id submitter comments doi journal-ref report-no

Table 6.1: Number of articles with the corresponding field populated. Note that the fields
id, abstract, authors, versions, and categories are always populated.

6.2.2 Full Text

One advantage the arXiv has over other graph datasets is that it provides a very rich

attribute at each id node: the full raw text and figures of a research article. To extract

the raw text from PDFs, we provide a pipeline with two parts. A helper script downloads
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the full set of pdfs available through the arXiv’s bulk download service9. Since arXiv

hosts their data in a requester-pay AWS S3 buckets, this constitutes ∼ 1.1 TB and

∼ $100 to fully download. For posterity, we have provided MD5 hashes of the pdfs at

the state of the frozen metagraph extraction. Raw TEX source is also available for the

subset of articles that provide it. Second, we provide a standard pdf-to-text converter –

powered by pdftotext10 – to convert the pdfs to plaintext.

Using this pipeline, it is currently possible to extract a corpus of 1.37 million raw text

documents. Figure 6.2 shows an example of the text extracted from a pdf. Though the

extracted text isn’t perfectly clean, we believe it will still be useful for many tasks, and

hope future contributions to our repository will provide better data cleaning procedures.

The extracted raw-text dataset is ∼ 64 GB in size, totaling ∼ 11 billion words. An

order of magnitude larger than the common billion word corpus [Chelba et al., 2013], this

large size makes the arXiv raw-text a competitive alternative to other full text datasets.

Moreover, the technical nature of the arXiv distinguishes it from other full text datasets.

For example, the TEX data contained in the arXiv presents an opportunity to study

mathematical formulae in bulk, as is done in the NTCIR-11 Task: Math-2 [Aizawa et al.,

2014].

6.2.3 Co-Citations

While the arXiv does not currently publicly provide an api to access co-citations, our

pipeline allows a simple but large co-citation network to be extracted. We extracted

this network by searching the text of each article for valid arXiv ids, thereby finding

which nodes should be linked to a given node in the co-citation network. We provide

9https://arxiv.org/help/bulk_data
10Version 0.61.1, available on most Debian systems from the apt package poppler-utils
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1 Published as a conference paper at ICLR 2019
2
3 O N THE U SE OF A R X IV AS A DATASET
4 Colin B. Clement
5 Cornell University , Department of Physics
6 Ithaca , New York 14853 -2501 , USA
7 cc2285@cornell .edu
8
9 Matthew Bierbaum

10 Cornell University , Department of Information Science
11 Ithaca , New York 14853 -2501 , USA
12 mkb72@cornell .edu
13
14 Kevin O’ Keeffe
15 Senseable City Lab, Massachusetts Institute of Technology
16 Cambridge , MA 02139
17 kokeeffe@mit .edu
18
19 Alexander A. Alemi
20 Google Research
21 Mountain View, CA
22 alemi@google .com
23
24 A BSTRACT
25 The arXiv has collected 1.5 million pre - print articles over 28 years , hosting literature from

scientific fields including Physics , Mathematics , and Computer Science . Each pre - print
features text, figures , authors , citations , categories , and other

26 metadata . These rich, multi - modal features , combined with the natural graph
27 structure --- created by citation , affiliation , and co - authorship --- makes the arXiv
28 an exciting candidate for benchmarking next - generation models . Here we take the
29 first necessary steps toward this goal, by providing a pipeline which standardizes
30 and simplifies access to the arXiv ’s publicly available data. We use this pipeline to
31 extract and analyze a 6.7 million edge citation graph , with an 11 billion word corpus of full

-text research articles . We present some baseline classification results ,
32 and motivate application of more exciting generative graph models .

Figure 6.2: Example text extracted from this pdf.

a compressed binary of the resulting network at the repository11, so that researchers

can study it directly, and avoid the difficulty of constructing it themselves. Table 6.2

summarizes the size and statistical structure of our co-citation network, compared with

other popular citation networks. Šubelj et al. [2014] also studied data from the arXiv,

but as indicated in the bottom row of Table 6.2, it used only the 34,546 articles from the

2003 KDD Cup challenge.

Table 6.2 reports standard statistics for the co-citation network. Our arXiv co-citation

network contains O(106) nodes, an order of magnitude larger than the O(105) nodes in

11As part of one of the tagged releases: https://github.com/mattbierbaum/
arxiv-public-datasets/releases

144

https://github.com/mattbierbaum/arxiv-public-datasets/releases
https://github.com/mattbierbaum/arxiv-public-datasets/releases


On the Use of ArXiv as a Dataset

Table 6.2: Graph statistics for popular citation networks. All but the data for
this work (first row) were taken from Table 1 and 2 in [Šubelj et al., 2014]. 〈k〉 is the
average degree, and αin and αout are power law exponents of best fit for the degree
distribution. WCC refers to the largest weakly connected components, computed using
the python package ‘networkx’. The power law exponents αin, αout were found using the
python module powerlaw. When fitting data to a powerlaw, the package discards all
data below an automatically computed threshold xmin. These thresholds for kin and kout
were xmin = 73 and xmin = 59 respectively.

Dataset Nnodes Nedges 〈k〉 αin αout % WCC

arXiv 1.35× 106 6.72× 106 9.933 2.93 3.93 62

WoS 1.40× 105 6.4× 105 9.11 2.39 3.88 97

CiteSeer 3.84× 105 1.74× 106 9.08 2.28 3.82 95

KDD2003 3.34× 104 4.21× 105 24.50 2.54 3.45 99.6

the other citation networks. The exponents of best fit for the degree distributions αin and

αout are consistent with the existing citation networks Šubelj et al. [2014], as it the the

degree 〈k〉. 62% of the nodes are contained in the largest weakly connected component,

while 31% of the nodes are fully isolated – meaning their in-degree kin and out-degree

kout are zero. Recall that our arXiv co-citation network only contains publications which

have been posted on the arXiv; a given paper which cites papers published elsewhere –

and not on the arXiv – will have kout = 0 in this set, which is an explanation the large

number of isolated nodes.

Beyond constructing and analyzing a co-citation network, the arXiv dataset can

be used for many tasks, such as relationally powered classification, author attribution,

segmentation, clustering, structured prediction, language modeling, link prediction and

automatic summary generation. As a basic demonstration, in Table 6.3 we show some

baseline category classification results. These were obtained by training logistic regression
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on 1.2 million arXiv articles to predict in which category (e.g. cs.Lg, stat.ML) a given

article resides. See Appendix .1 for a detailed explanation of the experimental setup.

Titles and abstracts were represented by vectors from a pre-trained instance12 of the

Universal Sentence Encoder of Cer et al. [2018]. We see that including more aspects of

each document (titles, abstracts, fulltext) and exposing their relations via co-citation

leads to better predictive power. This is only scratching the surface of possible tasks and

models applied to this rich dataset.

Table 6.3: Baseline classification performance on a holdout set of 390k articles. Titles
and abstracts were embedded in a 512 dimensional subspace using the Universal Sentence
Encoder, and trained on 1.2 million articles with logistic regression. ‘All’ refers to the
concatenation of titles, abstract, fulltext, and co-citation features. ‘All - X’ refers to
the ablation of feature X from ‘All.’ Top n is the classification accuracy testing when
the correct class is in the top n most confident predictions. Detailed explanation of the
features and methods can be found in Appendix .1.

Features Top 1 Top 3 Top 5 Perplexity

Titles (T) 36.6% 59.3% 68.8% 12.7

Abstracts (A) 46.0% 70.7% 79.5% 7.5

Fulltext (F) 64.2% 79.4% 85.9% 4.6

Co-citation (C) 37.8% 49.4% 53.8% 18.5

All = T + A + F + C 78.4% 91.4% 94.5% 2.3
All - T 77.0% 90.7% 94.0% 2.5

All - A 74.7% 88.3% 91.9% 2.8

All - F 59.0% 79.8% 86.2% 4.6

All - C 75.5% 89.9% 93.6% 2.6

12From https://tfhub.dev/google/universal-sentence-encoder/2
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6.3 Conclusion

As research moves increasingly towards structured relational modelling [Hamilton et al.,

2017b,a, Battaglia et al., 2018], there is a growing need for large-scale, relational datasets

with rich annotations. With its authorship, categories, abstracts, co-citations, and full text,

the arXiv presents an exciting opportunity to promote progress in relational modelling.

We have provided an open-source repository of tools that make it easy to download and

standardize the data available from the arXiv. Our preliminary classification baselines

support the claim that each mode of the arXiv’s feature set allows for greatly improved

category inference. More sophisticated models that include relational inductive biases—

encoding the graph structures of the arXiv—will improve these results. Further, this

new benchmark dataset will allow more rapid progress in tasks such as link prediction,

automatic summary generation, text segmentation, and time-varying topic modeling of

scientific disciplines.
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.1. Logistic Regression Article Classification Baseline

.1 Logistic Regression Article Classification Baseline

ArXiv articles are assigned primary categories (e.g. cs.AI is Artifical Intelligene and

cs.CC is computational complexity) by the article submitter, which is then confirmed

by the ArXiv moderation system. This label can be obtained for each article from the

OAI metadata described in the main article, and is the first element of a space-delimited

string in the categories attribute. There are, at the time of writing, L = 175 possible

categories. Since more categories can be added in the future and the metadata can be

modified, please consult the frozen metadata file in the github repository release13 for

these 175 categories. This appendix explains how we developed the article classification

baselines using features from the titles, abstracts, full-text, and co-citation network. The

code for performing this task can be found in the git repository14.

.1.1 Building Features

The title, abstract, and full-text of each article is a variable-length string, and each article

has both a title and abstract from the OAI metadata, but not all articles have a full-text

pdf. In our frozen dataset there are N = 1, 506, 500 articles with metadata, but only

1,357,536 have full-text in the ArXiv. We vectorized each string into 512 dimensions using

the pretrained Universal Sentence Encoder,15 substituting zeros for missing full-text.

The intra-ArXiv citation graph can be used via the N ×N co-citation matrix, which

13https://github.com/mattbierbaum/arxiv-public-datasets/releases
14https://github.com/mattbierbaum/arxiv-public-datasets/blob/v0.2.0/analysis/

classification.py
15https://tfhub.dev/google/universal-sentence-encoder/2

148

https://github.com/mattbierbaum/arxiv-public-datasets/releases
https://github.com/mattbierbaum/arxiv-public-datasets/blob/v0.2.0/analysis/classification.py
https://github.com/mattbierbaum/arxiv-public-datasets/blob/v0.2.0/analysis/classification.py
https://tfhub.dev/google/universal-sentence-encoder/2


On the Use of ArXiv as a Dataset

is defined as

Mij =


1 if article i cites article j or vice-versa

0 else.
(1)

In order to prevent a leaking of the test set into the training set, using the train/test

partition defined below, we omitted citations in M from articles in the training set which

connect to the test set, but retained citations in the test set which connect to the training

set.

We can also define the N × L category matrix in the standard one-hot fashion

Cjl =


1 if article j is in category l

0 else.
(2)

Then the co-citation feature matrix is the N × L matrix product MC. Note that this

feature uses only nearest-neighbor citation graph relationships. We could include next-

nearest neighbor relationships and so on by calculating MC + aM2C + bM3C + . . . for

some constants a and b. In this paper we only used first order connections via MC as

the co-citation feature vectors.

.1.2 Training

Using vector embeddings from titles, abstracts, and full-text, and co-citation features as

described above, we fed several combinations of these vectors concatenated in the obvious

way into the scikit-learn SGD classifier sklearn.linear_model.SGDClassifier. We

used the keyword arguments loss=’log’, tol=1e-6, max_iter=50, and alpha=1e-7 to

define the model, which uses 50 epochs, and very small quadratic regularization alpha

on the weights and biases.
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.1. Logistic Regression Article Classification Baseline

With the features and model defined, we performed a train/test split by shuffling

the data in place randomly, and selecting the first Ntrain = 1, 200, 000 for training. The

remaining Ntest = 306, 500 articles were used to evaluate the accuracy of the trained

classification, and the model perplexity as reported in table in the main text.
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