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Cohesive laws are stress-strain curves used in finite element calculations to describe the debonding of
interfaces such as grain boundaries. It would be convenient to describe grain boundary cohesive laws as a
function of the parameters needed to describe the grain boundary geometry; two parameters in two dimensions
and five parameters in three dimensions. However, we find that the cohesive law is not a smooth function of
these parameters. In fact, it is discontinuous at geometries for which the two grains have repeat distances that
are rational with respect to one another. Using atomistic simulations, we extract grain boundary energies and
cohesive laws of grain boundary fracture in two dimensions with a Lennard-Jones potential for all possible
geometries which can be simulated within periodic boundary conditions with a maximum box size. We
introduce a model where grain boundaries are represented as high symmetry boundaries decorated by extra
dislocations. Using it, we develop a functional form for the symmetric grain boundary energies, which have
cusps at all high symmetry angles. We also find the asymptotic form of the fracture toughness near the
discontinuities at high symmetry grain boundaries using our dislocation decoration model.
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I. INTRODUCTION

In materials such as silicon and various aluminum alloys,
cracks initiate and propagate along the interfaces between
polycrystals known as grain boundaries. When the cracks
initiate at the site of these microscopic defects, the macro-
scopic fracture strength of the material is dependent on the
microscopic structure of the grain boundaries. The debond-
ing of an interface such as a grain boundary is described by
a cohesive law, giving the displacement across the interface
as a function of stress �Fig. 1�.

Cohesive laws are used by finite element cohesive zone
models �CZM�, which simulate fracture initiation at
interfaces.1 It has been shown that the shape and scale of the
cohesive law has a large effect on the outcome of the finite
element simulation.1,2 However, the CZM studies of grain
boundary fracture have used cohesive laws that are guessed,
chosen for numerical convergence, and do not take into con-
sideration the effect of varying grain boundary geometries
within the material—the same cohesive law is often used
throughout the material despite the fact that in a real mate-
rial, grain boundaries of varying geometries must occur.3–5

It would be useful to find a formula for the cohesive laws
of the grain boundaries of a given material as a function of
geometry, for input into finite element simulations. The ge-
ometry of a three-dimensional �3D� grain boundary depends
on five parameters that describe the orientations of the two
grains. In addition, there are three different modes of fracture
�normal to the crack plane, shear in a direction parallel to the
crack line, or shear in a direction perpendicular to the crack
line� to explore6 as well as dependencies on temperature,
impurities at the interface, and emission of dislocations to
consider.

Thus far, no systematic study of grain boundary cohesive
laws as a function of geometry has been done with molecular
dynamics or experiment. There is difficulty in measuring co-
hesive laws experimentally because it is difficult to isolate
and measure the displacements on either side of the grain
boundary.

Previous atomistic studies of the mechanical response of
grain boundaries have concentrated on a small number of
symmetric grain boundaries in three dimensions.5,8–12 Ex-
ploring the complete picture of 3D grain boundary cohesive
laws involves exploring a five-dimensional space with three
modes of fracture. Because of this difficulty, we have taken a
step back. We seek to systematically explore the cohesive
laws for mode I fracture for all possible grain boundary ge-
ometries in two dimensions that can be simulated in periodic
boundary conditions for a particular size and strain. We will
initially be focusing on symmetric grain boundaries and then
expanding the picture to look at asymmetric 2D grain bound-
aries. One use of such data would be for finite element simu-
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FIG. 1. An example of a cohesive law. The stress vs strain curve
that describes the debonding of a 2D grain boundary with tilt angles
33.418° and 26.58°. Our measurements include the elastic response
of the perfect crystal on either side of the grain boundary. In the
results shown above, we have subtracted off the elastic response of
the bulk in order to isolate the elastic response of the interface. This
is described in detail in Ref. 7 where cohesive laws of grain bound-
aries are used in finite element simulations of polycrystals.
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lations of polycrystals,7 as described above. For this purpose,
it would be nice to find a functional form which describes the
fracture strength of the grain boundary as a function of ge-
ometry.

We find, however, that the fracture strength as a function
of tilt angles is discontinuous everywhere, with particularly
large jumps at special, high symmetry grain boundaries com-
posed of a simple arrangement of structural units with a low
repeat distance. These special boundaries are also associated
with cusps in the grain boundary energy. We will describe
dependence of the energy and the fracture strength near these
special boundaries by treating them as perfect, albeit com-
plex, crystals with added dislocations to break the symmetry.

Most studies use the coincidence site model13 to construct
and classify special grain boundaries5,8–11 while a few men-
tion the significance of structural units.8,10,14–16 The only 2D
study we are aware of, the “bubble-raft” model, observes the
structural units of several of the special, high angle grain
boundaries for the triangular lattice and how patterns of
structural units combine to create vicinal geometries.15 Other
3D studies discuss how grain boundaries with geometries
close to those of special grain boundaries can be decomposed
into the structural unit of the special grain boundary with
added flaws.14,16 We develop a systematic way of finding
high symmetry geometries and show that the combinations
of patterns of structural units at vicinal grain boundaries are
key to understanding the dependence of energy and fracture
strength on geometry.

Sansoz and Molinari find the grain boundary energy by
allowing the grains to relax together from an initial separa-
tion of a few Å,10 while others perform a conjugate gradients
search.8 We use a systematic method for explicitly imposing
a relative shift between the grain and using atomistic relax-
ation for finding the global energy minimum similar to that
used in Refs. 9 and 16. It is well established that cusps exist
in the grain boundary energy for special high angle grain
boundaries.8,10,11,16–20 Recent studies of grain boundary con-
stitutive properties focus on the response to shear5,10 or com-
pare shear and tension.9,12 Warner et al. claim that the tensile
response does not depend on the geometry of the grain
boundary.5 Others have seen jumps in the tensile fracture
strength at high angle grain boundaries geometries.8,11

We will explain the cusps in energy and jumps in fracture
strength by drawing an analogy between perfect crystals and
high symmetry, high angle grain boundaries. The dislocation
model of low angle grain boundaries gives a � ln � form for
the grain boundary energy. Because vicinal grain boundaries
can be thought of as high symmetry grain boundaries with
added flaws, the energy cusps at special grain boundaries
have the same � ln � form. A similar argument will apply to
the peak fracture stress. Just as adding dislocations to the
perfect crystal adds a nucleation point for fracture, and there-
fore a discontinuity �jump down� in fracture strength, adding
a flaw to a high symmetry, high angle grain boundary
abruptly changes the local fracture strength by adding a po-
tential nucleation site for fracture.

II. PROCEDURE FOR CALCULATING GRAIN
BOUNDARY ENERGY AND COHESIVE STRENGTH

We calculate energies and cohesive strengths for grain
boundaries using the DigitalMaterial21 package to perform

atomistic simulations. The potential we are using for 2D
simulations is the Lennard-Jones potential with a smooth,
fourth order cutoff between 2.41 and 2.7 Å. The ground state
is a triangular lattice with a lattice constant of 1.11 Å.

We set up the grain boundary by initializing two rectan-
gular grains with the given rotations that define the grain
boundary geometry we wish to measure. An example of the
configuration of atoms that make up a grain boundary simu-
lation is shown in Fig. 2. We use periodic boundary condi-
tions in the y direction in order to avoid edge effects which
could potentially cause cracks to nucleate at the intersection
with the surface.22 This has the disadvantage of only allow-
ing geometries that have finite repeat distances. A method for
finding these geometries is discussed in detail in Sec. III B. If
necessary, both grains are strained slightly by equal and op-
posite amounts in order to have both grains fit into a periodic
box. We use a constrained layer of atoms to impose fixed
boundary conditions in the x direction. These are represented
by the darker atoms in Fig. 2. The constrained layer of atoms
has a width equal to twice the cutoff distance of the potential
to eliminate surface effects from the free atoms.

Besides the tilt angles, there are other factors to consider
in constructing the grain boundary geometries. For commen-
surate grain boundaries, there will be an ideal relative dis-
placement in the direction parallel to the grain boundary �the
y direction in Fig. 2�. This ideal displacement will corre-
spond to the lowest energy and thus is the most natural con-
figuration for a given pair of tilt angles.23

We find the displacement along the boundary which gives
the lowest energy by initializing the two grains with a small
displacement in the x direction and varying displacements in
the y direction, relaxing the atoms �with the boundary layers
constrained to be rigid and nonrotating�, and measuring the
grain boundary energy per length. The range of displace-
ments in the y direction that we must search over is given by

� = �D1 D2 mod D1 = 0

min��D2 − �D2/D1�D1��
��D2 − �D2/D1�D1�� D2 mod D1 � 0

� , �1�

where we assume D1�D2. This is illustrated in Fig. 3. The
grain boundary energy per length is defined as

FIG. 2. �Color online� An example of a grain boundary. The tilt
angles are given by �1 and �2 and the repeat distances are D1

= ��a1 ,b1�� and D2= ��a2 ,b2��. We have assumed the convention
where 0° indicates an orientation with Miller indices �2,1� for the
vertical face of the grain boundary.

VALERIE R. COFFMAN AND JAMES P. SETHNA PHYSICAL REVIEW B 77, 144111 �2008�

144111-2



EGB =
Etotal − Natoms � Ebulk

L
, �2�

where Etotal is the total potential energy for the configuration
of atoms �excluding the constrained atoms�, Natoms is the
number of unconstrained atoms, Ebulk is the energy of a
single atom in the bulk, and L is the length of the grain
boundary. An example of the results of such a search is
shown in Fig. 4. The regions with the same final displace-
ment and energy correspond to basins of attraction around
the finite number of final configurations of atoms. The mini-
mized energy per unit length �Eq. �2�� found by this method
is what we record as the grain boundary energy.

We have also tried thermal annealing and have found that
for certain geometries, the grain boundary migrates to form a
jagged interface with segments of different grain boundaries
that collectively have a lower total energy than the geometry
given by the original set of tilt angles. The tendency of cer-
tain grain boundaries to corrugate is also discussed by Ishida
and Pumphrey.15,18 As a corrugated grain boundary is torn
apart to measure the cohesive law, the corners form stress
concentrations which weaken the grain boundary. Despite the
fact that this configuration may be more natural, it is not
what we intend to measure. We wish to measure the fracture
toughness of all possible pairs of tilt angles, even if those
pairs of tilt angles happen to be unstable. In a few cases, the
minimization procedure described above produced a curved
grain boundary. In these cases, we constrained the displace-
ments in the y direction such that a consistent pattern of
flaws along a straight grain boundary is achieved.

After finding the ideal y displacement, we increment the
strain by displacing the constrained layers of atoms in the x
direction, away from the grain boundary. We relax the atoms
and measure the force in the x direction per unit length on
the constrained layer of atoms. If the measurement of the
stress drops abruptly during one strain step, the simulation
restores the positions from a previous step, reduces the size

of the strain increment, and proceeds. The result of such a
simulation is shown in Fig. 1. The maximum stress in the
stress strain curve is what we define as the peak stress.

III. GRAIN BOUNDARY GEOMETRIES

A. Lattice symmetries and tilt angles

For the triangular lattice, it is clear that we only need to
explore tilt angles between 0° and 60°, but we can further
reduce the space of grain boundary geometries to consider.
Figure 5 represents the space of tilt angle pairs. Reflecting a
point in this space through the �2=�1 line corresponds to
swapping the two grain orientations which, as shown in

FIG. 3. The necessary search range for y displacements. The
minimum range we must search over to find the most natural con-
figuration is equal to the minimum shift that gives an equivalent
configuration of atoms along the surface. Assuming that the edges
of the repeat cells line up at the bottom, the minimum shift to
produce an equivalent configuration is done by lining up the top
edge of the first repeat cell in the grain with a larger repeat �the
grain on the right in the diagram� with the nearest edge of a repeat
cell in the grain with a smaller repeat distance �the grain on the
left�. If D2 is equal to an integer number of repeats of D1, the
minimum search range is equal to D1. �D2 /D1� gives the number of
repeats of the left grain that fit within a single repeat of the right
grain and �D2 /D1� gives the number of repeats of the grain on the
left that contain one repeat of the grain on the right. If D2 /D1 is not
an integer, the minimum search range is then min��D2

− �D2 /D1�D1� , �D2− �D2 /D1�D1��
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FIG. 4. Finding the energy minimizing grain boundary configu-
ration. Each plateau in �a� and each flat region in �b� correspond to
the basin of attraction of a local minimum. The most natural grain
boundary configuration corresponds to the global energy minimum.

FIG. 5. �Color online� Finding the minimum necessary range of
angles. For each point in the shaded region, there is an equivalent
grain boundary in each of the other regions.
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Fig. 5, is equivalent to flipping the grain boundary in both
the vertical and horizontal directions, resulting in the same
grain boundary. Reflecting through the �30,30� point takes
��1 ,�2� to �60−�1 ,60−�2�, reversing the sense of rotation of
each grain. As shown in Fig. 5, this is equivalent to flipping
the grain boundary in the vertical direction. Reflecting
through the �2=60−�1 line takes ��1 ,�2� to �60−�2 ,60
−�1�, both switching the grains and reversing the senses of
rotation. This is equivalent to flipping the grain boundary in
the horizontal direction, also shown in Fig. 5. Thus we only
need to consider the pairs of tilt angles in the triangle en-
closed by the �2=0 line, the �2=�1 line, and the �2=60−�1
line—the shaded region in Fig. 5.

B. Finding all possible geometries for periodic boundary
conditions

In order to better simulate the grain boundary in the bulk
as described in Sec. II, we would like to use periodic bound-
ary conditions along the direction of the grain boundary �y
direction�. In order to simulate 2D grain boundaries in peri-
odic boundary conditions, we need not only for both grain
orientations to have finite repeat distances, but also for the
repeat distances to be commensurate with one another. Let
�a ,b� be the lattice vector that is parallel to the edge of a 2D
triangular lattice. Since the basis vectors are at a 60° angle to
one another, the repeat distance of a particular orientation of
a 2D triangular lattice is given by

D =�	a +
1

2
b
2

+ 	�3

2
b
2

= �a2 + b2 + ab . �3�

The tilt angle is then given by

� = sin−1	 a + b/2
�a2 + b2 + ab


 . �4�

In order to expand the number of possible geometries, we
have also considered geometries for which applying a small
strain to each grain allows us to fit both grains inside the
same periodic box. For any pair of orientations that have
repeat distances that are not commensurate, we can find a
continued fraction approximation to the ratios of their
lengths, p /q�D1 /D2. We can strain each grain equally into
a box of size L= �1 /2��pD2+qD1�, where the strain required
is �L− pD2� /L. For a strain of 0.05%, the grain boundary
would have to be 1000 Å long before the strain would alter
the structure of the grain boundary. We find all pairs of tilt
angles that correspond to commensurate or near commensu-
rate grain boundaries by looping over pairs of surface vectors
and comparing the repeat distances.

Figure 6 shows all possible geometries that can be simu-
lated with a periodic length of 70 lattice constants or less,
and a strain of 0.05% or less. The �1=�2 line corresponds to
perfect crystals, while the �1=60−�2 line corresponds to
symmetric grain boundaries. There is a gap near each of
these lines because creating very small angle grain bound-
aries, or a geometry very close to symmetric grain bound-
aries, requires adding flaws that are separated by large dis-
tances. We see gaps near other high symmetry grain

boundaries for the same reason. High symmetry grain bound-
aries are discussed in Sec. III C. The lines radiating out from
high symmetry grain boundaries represent adding single
flaws to those high symmetry grain boundaries at larger and
larger distances, as you approach the high symmetry bound-
ary. Each line represents a different type of flaw. The sym-
metry about the �1=30 line is due to the fact that grains with
tilt angles � and 60−� have the same repeat distance. There-
fore the grain boundaries given by the tilt angles ��1 ,�2� and
�60−�1 ,�2� have the same overall repeat distance, though
these are different grain boundaries.

C. High symmetry grain boundaries

Certain grain boundary geometries have particularly low
repeat distances. These grain boundaries have special prop-
erties. They mark the center of cusps in the grain boundary
energy and discontinuous increases in the fracture strength as
a function of tilt angle. Table I shows examples of high sym-
metry grain boundaries and Fig. 7 shows examples of geom-
etries in between, which constitute adding a single flaw per
supercell repeat distance to the high symmetry grain bound-
ary. Note how the added flaws constitute a compromise be-
tween the two high symmetry geometries. Furthermore, a
less high symmetry grain boundary can be repeated, and
again have a single flaw added. Because of this hierarchical
procedure for constructing lower-symmetry boundaries, the
grain boundary energy and fracture strength as a function of
tilt angle will have a self-similar nature.

The coincidence site lattice model �CSL� describes grain
boundaries in terms of �, the inverse density of lattice sites
that are shared by the two grain orientations when rotated
about a common lattice point.13 In two dimensions, CSL
grain boundaries are necessarily commensurate and vice
versa. For the triangular lattice, each common lattice point
for a given pair of grain orientations has a repeat cell that is
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FIG. 6. �Color online� All possible geometries. The set of points
above represent all 2D grain boundary geometries that can be simu-
lated in a periodic box of 70 lattice constants or less, with a strain of
0.05% or less. There are gaps near perfect crystals, symmetric grain
boundaries, and high symmetry grain boundaries �discussed in Sec.
III C� because creating a new, nearby geometry requires adding
flaws at large distances. Lines radiating from high symmetry geom-
etries represent flaws added at closer and closer distances as you
move away from the point representing the original geometry. Lines
of slope 1 represent a constant misorientation between the two
grains.
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an equilateral triangle with one edge defined by the surface
vector with length D. � is equal to the number of lattice
points inside this cell and is given by the area of the cell
divided by the area of one lattice triangle, �=D2. While the
CSL formulation gives a simple method for finding commen-
surate grain boundaries, it is misleading to suggest that the
actual coincidence of sites plays a physical role. In fact,
shifting the grains in the y direction so as to minimize the
grain boundary energy �described in Sec. II� generally causes
the atoms to no longer coincide. Without this shift, the two
free surfaces will have atomic planes that meet at the same
point. The elastic energy is lowered by staggering the
dislocations.24 Wolf has pointed out that for three dimen-
sions, the CSL formulation of grain boundaries involves a
redundant number of parameters.19

Bishop and Chalmers introduced the concept of “struc-
tural units”—polygonal structures of atoms along high angle
grain boundaries.14 We find that the patterns of structural
units are more relevant to the physical properties of the grain
boundaries. When relaxed, the structural units of grain
boundaries in two dimensions, triangular lattices are five at-
oms forming a regular pentagon or a pentagon that is slightly
stretched. Each high symmetry grain boundary is comprised
of a simple pattern of pentagonal structural units �Table I�.
When a high symmetry grain boundary is perturbed, an ele-
ment of the pattern of structural units from the neighboring
high symmetry grain boundary is introduced �Fig. 7�. As the
tilt angles move closer to the neighboring high symmetry
grain boundary, the flaws become closer together until they
outnumber the original structure. The roles of flaw and origi-
nal structure are then reversed. In this manner, combinations
of patterns of structural units can be used to build up any
commensurate, high angle grain boundary.

We find the structural units are a useful way of conceptu-
alizing the different grain boundary geometries. We have not

TABLE I. �Color online� High symmetry grain boundary geometries.

θ Miller Repeat Distance Σ Structure

Indices (lattice constants)

49.10 (1,4) 2.64 7

43.89 (2,5) 3.61 13

53.41 (1,7) 4.35 19

40.89 (1,2) 4.58 21

38.94 (4,7) 5.56 31

51.78 (2,11) 7.0 49

FIG. 7. �Color online� Finding the Burger’s vector for flaws
along vicinal grain boundaries. Grain boundaries with tilt angles in
the vicinity of high symmetry grain boundaries are comprised of the
pattern of structural units of the high symmetry grain boundary with
an element from the neighboring high symmetry geometry. When
defining the Burger’s vector of a flaw added to a high symmetry
grain boundary we are no longer comparing the flaw to the perfect
lattice but to the repeating pattern of structural units. Therefore we
must cross the grain boundary at equivalent portions of the struc-
tural unit in our reference loop and in our loop around the flaw. The
loop on the bottom is the reference loop around the region of the
grain boundary without the added flaw. The loop on the top sur-
rounds the added flaw, which we model as a partial grain boundary
dislocation. The arrows indicate the segments needed to make the
top loop match the bottom loop; for example, the arrow on the
upper right indicates that the path around the defect is one atomic
length shorter on that leg than the corresponding leg of the refer-
ence loop. The arrows sum to the Burger’s vector of the added grain
boundary dislocation. This grain boundary has a tilt angle of 44.3°
and the added partial dislocation has a Burger’s vector with a length
of 0.495 lattice constants and a direction along the negative x axis.
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found the coincidence site lattice model useful in our inves-
tigations. In systematically constructing grain boundaries
with small repeat distances �Sec. III B�, we have found the
surface lattice vectors of the two sides of the grain boundary
to be a useful description. We suggest that the structure of
high angle grain boundaries can best be described in terms of
a dislocation model. The “extra flaws” added to create vici-
nal grain boundaries can be described as partial dislocations.
Figure 7 shows how to find the Burger’s vectors for the
added flaws by examining the flaw in the pattern of structural
units.25 We will show in Sec. V B that this model gives ex-
cellent agreement in the stress field due to the added flaws,
outside the background of the original flaw structure. We will
show in Secs. IV and V that the dislocation model provides
the most powerful framework for understanding the geom-
etry dependence of the properties of grain boundaries.

IV. GRAIN BOUNDARY ENERGY

We have measured the grain boundary energy and peak
stress for all symmetric grain boundaries with repeat dis-
tances under 20 lattice constants and asymmetric grain
boundaries with repeat distances under 30 lattice constants.
In order to explore the regions close to high symmetry grain
boundaries, we have added a few geometries with longer
repeat distances, close to the high symmetry grain bound-
aries.

The energy26 associated with the series of flaws that make
up the grain boundary is defined in Eq. �2�. As stated earlier,
and found by several earlier studies,8,10,17–20,27 cusps appear
at high symmetry boundaries. For small angle grain bound-
aries, the grain boundary energy has the form

EGB =
�b

4��1 − ��
���ln	 e	

2����
 
 ���ln��� , �5�

where � is the shear modulus, b is the Burger’s vector, � is
the Poisson ratio, and 	 is a factor that includes the core
energy.24 One can now imagine the same scenario applied to
high symmetry boundaries. We can take a high symmetry
grain boundary and add or subtract flaws a distance d apart
as shown in Fig. 8. By the same reasoning as used for the
low angle grain boundaries, the energy near the high sym-
metry grain boundary will have the form

EGB = E0 +
�b

4��1 − ��
�� − �0�ln	 e	�

2��� − �0�
 , �6�

where E0 is the energy of the high symmetry grain boundary
which occurs at the angle �0 and 	� incorporates the core
energy of the flaw within the pattern of flaws.

The grain boundary energies for all of the symmetric
grain boundaries that we have measured are shown in Fig. 9.
Note that cusps occur at the angles listed in Table I. We are
able to fit the data for symmetric grain boundaries to a func-
tion of the form

EGB��� = a0�sin 3��ln
b0

�sin 3��
+ a30�sin 3��

− 30��ln
b30

�sin 3�� − 30��
+ �

i=0

n 	ai
�s��cos 6�

− cos 6�i�ln
bi

�s�

�cos 6� − cos 6�i�
+ ai

�a��cos 6�

− cos 6�i�ln
bi

�a�

�cos 6� − cos 6�i�

 + �

j=0

m

cj cos�6j��

+ d .

The first two terms fit the cusps at 0° and 30°, where the
cusps are symmetrical about their respective center points.
The next set of terms in the sum fit the cusps at
high symmetry tilt angles. The function �cos 6�
−cos 6�i�ln

1
�cos 6�−cos 6�i�

was chosen as a fitting function be-
cause it asymptotically gives a � ln�1 /�� shaped cusp in the
near vicinity of �i and because it has the correct symmetry:
even mirror symmetry at 0° and 30° and an overall period of
60°. We use one term that is antisymmetric about �i and one
term that is symmetric about �i so that we can fit the shape
on either side of the cusp independently. We do not expect
the slope of the curve on either side of the cusp to be the
same since the Burger’s vectors of the additional flaws for
the geometries on either side of the high symmetry geometry
may differ �Fig. 7�.

The �i can be any angles that have the shortest repeat
distances, such as those given in Table I. The curve in Fig. 9
is the result of fitting Eq. �7� to the data shown in the same

FIG. 8. �Color online� Adding a flaw to a high symmetry grain
boundary. The lighter dislocations represent flaws added a distance
d apart, to an existing pattern of dislocations, shown in black, with
a short repeat distance. The added flaws can also move, screen, or
cancel the flaws that make up the high symmetry boundary.
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FIG. 9. �Color online� Grain boundary energies for symmetric
geometries. Cusps appear at high symmetry grain boundaries �listed
in Table I� and have the same � ln � shape as the energy of low
angle grain boundaries. The line is the fit given by Eq. �7�. Notice
that hints of smaller cusps are visible in the data.
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figure. We have used �i= �49.10° ,43.89° ,40.89° ,38.94°�
since these angles have particularly prominent cusps and
short Miller indices �given in Table I�. Three smooth sinu-
soidal terms were used in the final sum over cos 6j�. The
fitting coefficients are given in Table II.

The result is analogous to a devil’s staircase, with a cusp
singularity at each angle that corresponds to a special ratio-
nal number. In principle, the energy has a logarithmic cusp at
a dense set of points but �as is typical for devil’s staircases�
the high-order cusps rapidly diminish in size.

The results for the energy and peak stress of all of the
grain boundaries we have simulated are shown in Fig. 10. As
with the symmetric grain boundaries, we see energy cusps
for grain boundaries with particularly low repeat distances.
For example, one of the cusps in Fig. 10 is centered around
the grain boundary with tilt angles 24.79° and 3.00° which
has a repeat distance of 9.53 lattice constants. Figure 11
shows geometries in the neighborhood of this high symmetry
boundary with a constant misorientation. We see a similar,
� ln � shape to the cusp centered around the high symmetry
geometry, suggesting that the same concept of adding flaws
to the short-repeat distance grain boundary applies to asym-
metric 2D grain boundaries along constant misorientation
lines.

V. FRACTURE STRENGTH

A. Low angle symmetric grain boundaries

The Frank conditions state that the total Burger’s vector
for the dislocations making up a low angle grain boundary is
equal to the difference of the surface vectors that define the
orientation of each grain. In order to guarantee that the grain
boundary will have only one dislocation per repeat distance
after it is relaxed, we must choose surface vectors that have
a difference equal to a basis vector and have the same repeat
distance. One pair of surface vectors is �2n+1,−n� and �2n
+1,−n−1�. This gives a symmetric grain boundary with a
single dislocation with tilt angles close to 0°, a Burger’s
vector equal to �0,1� and a repeat distance of �3n2+3n+1.
Our simulations show that such grain boundaries fail via
intragranular fracture rather than intergranular fracture as
shown in Fig. 12.

The apex of the triangle �1=�2=30° in Fig. 6 is a perfect
crystal oriented at 30°, which is the end point of a series of
symmetric tilt boundaries. At exactly �1=�2=30°, there is an
abrupt jump up in fracture strength since the perfect crystal
has no “extra dislocations” at which to nucleate fracture. Our

TABLE II. Coefficients for fitting grain boundary energy to
Eq. �7�.

i ai
�s� ai

�a� bi
�s� bi

�a�

1 0.76 7.4�10−4 0.196 13.6

2 0.68 −0.023 0.292 9.19�10−7

3 0.22 −8.9�10−3 0.104 4.76

4 0.44 0.039 0.154 3.93�10−3

a0 a30 b0 b30

1.83 1.65 1.72 4.14

c1 c2 c3 d

−0.14 1.71 −0.070 0.094

FIG. 10. �Color online� Grain boundary energies for asymmetric
geometries. The surface and contour represents a smooth interpola-
tion between the particular geometries that have been simulated,
represented by the black dots in the �1�2 plane. Perfect crystals
have zero grain boundary energy, shown by the groove along the
�1=�2 line.
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FIG. 11. �Color online� Asymmetric grain boundary energies in
neighborhood of high symmetry geometry. The grain boundary ge-
ometries considered in the above plot each have a misorientation of
21.79° and are in the vicinity of the high symmetry grain boundary
with tilt angles 24.79° and 3.00°. The lines are fit to � ln � for the
points on either side of the cusp.

(b)(a)

FIG. 12. �Color online� Intragranular fracture for low angle
grain boundaries. �a� shows a grain boundary with symmetric tilt
angle 0.81° at 0 strain. The same grain boundary is shown in �b�
with a strain of 3.125%. Symmetric low angle grain boundaries
centered around the 0° orientation ��Miller indices �0,1�� fail via
intragranular fracture rather than intergranular fracture.
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simulations find a peak stress of 4.31 �Lennard-Jones units�
for the perfect crystal.

The low angle grain boundaries near the 30° lattice orien-
tation have surface vectors �1,n� and �n ,1�, repeat distances
�1+n+n2, and total Burger’s vector �−1,1�, which splits into
two flaws with Burger’s vectors �0,1� and �−1,0� shown in
Fig. 13. For wide enough simulations, these dislocations
glide in opposite directions until they are restricted by the
constrained zones on either side. For narrower simulations,
the dislocations do not glide but form nucleation points for
grain boundary fracture causing an abrupt jump down in the
peak stress compared to the peak stress of the perfect crystal.

For narrow simulations of low angle grain boundaries in
this region, we find that the peak stress has a parabolic de-
pendence on angle, shown in Fig. 14. We can explain this
parabolic dependence as due to a partial screening of the
external stress �ext by the neighboring dislocations on the
grain boundary. Assume that the dislocation has a critical
stress for nucleating fracture equal to �c. The dislocation
feels a stress due to its neighboring dislocations, each a dis-
tance d apart, in addition to the external, applied stress. The
total stress felt by each dislocation can be written

� = �ext + �
neigh. disloc.

�
n=0



an

dn , �7�

where �ext is the external stress. The n=1 term is the Volterra
solution given by

�xx�x,y� = −
�b

2��1 − ��
y�3x2 + y2�
�x2 + y2�2 , �8�

�yy�x,y� =
�b

2��1 − ��
y�x2 − y2�
�x2 + y2�2 , �9�

�xy�x,y� =
�b

2��1 − ��
x�x2 − y2�
�x2 + y2�2 , �10�

where the x direction is the direction of the Burger’s vector.
Since the Volterra solution is odd, the n=1 term of the stress
at each dislocation vanishes as we sum over the neighboring
dislocations on either side. The first nonvanishing term in
Eq. �7� is the n=2 term which has three contributions. �i� The
n�1 terms are the multipole expansions of the stress field28

as well as nonlinear terms. �ii� The nonlinear term in strain
field has the form du /dx�du /dx, giving a power law of 1 /r2.
�iii� Geometrical restrictions cause some grain boundaries to
have flaws unequally spaced in the y direction �though for
the results given in Fig. 14 we have only explored geom-
etries with equally spaced flaws�. The grain boundary geom-
etries used in Fig. 14 do have flaws that are not aligned
perfectly in the x direction. In each of these cases, shifting
the dislocation constitutes adding a dislocation dipole �add-
ing one positive and one negative, canceling a dislocation
and adding a new one�, and therefore is another contribution
to the 1 /r2 term. The external stress needed to produce a
stress equal to �c at each flaw is then

�peak = �c −
a2

d2 = �c − A�� − �0�2, �11�

where a2 combines the three contributions described above.
This parabolic dependence on �−30° is depicted on the left-
hand side of Fig. 15.

(a) (d)(c)(b)

FIG. 13. �Color online� Intergranular fracture for low angle
grain boundaries. �a� shows a grain boundary with symmetric tilt
angle of 30.96° at 0 strain. �b� shows the same grain boundary at
3.625% strain. In this wider simulation, the dislocations glide apart
�thin diagonal white stripes�. �c� and �d� show a narrower simula-
tion of the same tilt angle where the intergranular fracture nucleates
at each dislocation.
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FIG. 14. �Color online� Peak stress vs tilt angle for low angle
grain boundaries. The peak stress has a large jump downward as
soon as a grain boundary deviates from �=30° �perfect crystal�.
Here the peak stress for the perfect crystal at the 30° orientation is
4.31 �Lennard-Jones units�, which would require a vertical scale 11
times as big. The dislocations forming the boundary act as nucle-
ation sites for fracture no matter how far apart they are. After this
jump the peak stress has a parabolic dependence on angle for low
angle grain boundaries that are constrained by width to fracture in
qualitatively similar ways. Fracture nucleates exactly at the dislo-
cation and the first nonvanishing term in the stress at this point due
to neighboring dislocations goes as 1 /d2, where d is the distance
between dislocations.
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B. High angle grain boundaries

Figure 15 shows the results of the peak stress measure-
ments for high angle symmetric grain boundaries. At the
same points for which we had cusps in energy, we have
discontinuous increases in fracture strength. By drawing the
same analogy between adding dislocations to perfect crystals
and adding flaws to high symmetry boundaries as described
in Fig. 8 we can understand the discontinuities in the fracture
strength at high symmetry grain boundaries and the angular
dependence of fracture strength near the high symmetry ge-
ometries.

For high angle grain boundaries, the added flaw is no
longer the sole nucleation site for fracture and fracture does
not necessarily nucleate in the core of the added flaw. The
added dislocation creates a stress field given roughly by the
Volterra solution �Eq. �10�� with a positive stress on one side,
negative stress on the other, and a singularity at the center
shown in Fig. 16. The stress field differs slightly from the
Volterra solution because the elastic constants of the material

at the grain boundary vary from those of the perfect crystal.
The fracture nucleates along the boundary in the region
where the stress due to the added flaw is positive. Because
fracture does not nucleate at the center of the added flaw, the
Volterra solution as summed over the neighboring, added
flaws does not cancel at the nucleation site. This leads to a
linear law for fracture strength as a function of tilt angle, for
grain boundaries near high symmetry geometries.

Consider the grain boundaries with tilt angles ranging
from 49.39° to 53.41°, which are close to the high symmetry
grain boundary at 49.11°. The additional flaws that charac-
terize these grain boundaries have Burger’s vectors equal to
�−�3 sin � ,−sin �� and �−�3 sin � , sin ��, where � is the
symmetric tilt angle of the lattice. The norms are 2�sin �� and
the angles are 210° and 150°. For these geometries, the xx
component of the stress field �due to two dislocations a dis-
tance D�b /2��0−��� along the y axis is

�xx�y� =
��2�3y��0 − �� − 3 sin��0 − ���sin��0 − ��

2��1 − ���y��0 − �� − �3 sin��0 − ���
�12�

�
��3 − 2�3y���0 − ��
2�y�1 − ���y − �3�

+ O��0 − ��3, �13�

where �0 is the tilt angle of the high symmetry grain bound-
ary. We need to look at simulations in the fixed displacement
�narrow width� regime in order to observe where fracture
nucleates.30 We find that for geometries with this pattern of
flaws, fracture nucleates at the same distance above the
added flaw. The external stress needed to nucleate fracture at
a distance y from the added flaw, along the grain boundary is
then approximately
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FIG. 17. �Color online� Peak stress vs tilt angle. There is a
discontinuity in peak stress at tilt angles close to high symmetry
grain boundaries. The plot above shows the peak stress for the grain
boundary with tilt angle 49.1° �described in Table I� and the nearby
geometries.
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FIG. 15. �Color online� Peak stress vs tilt angle for high angle
grain boundaries. The peak stress as a function of tilt angle is dis-
continuous everywhere, with higher values at special tilt angles
representing high symmetry grain boundary geometries. The depen-
dence of peak stress on angle near the high symmetry grain bound-
aries �parabolic near 30°, linear near 49.11°� depends on the struc-
ture of the additional flaws that make up the nearby geometries.

(b)(a)

FIG. 16. �Color online� Stress fields due to dislocations.
�a� shows the stress fields surrounding two dislocations according to
formula �10�. �b� shows the stress fields surrounding the added dis-
locations as calculated according to the virial definition of atomic
stress �Ref. 29�.
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�peak = �c −
��3 − 2�3y���0 − ��
2�y�1 − ���y − �3�

�14�

which explains the linear dependence on angle shown in
Figs. 16 and 17.

The results for the peak stress of all grain boundaries with
repeat lengths less than 30 lattice constants are shown in Fig.
18. We also note spikes in peak stress for grain boundaries
with particularly low repeat distances. Consider again the
grain boundary with tilt angles 24.79° and 3.00° which has a
repeat distance of 9.53 lattice constants. Figure 19 shows the
peak stress of this grain boundary and grain boundaries in its
neighborhood along a line of constant misorientation.

VI. CONCLUSION

We have systematically explored the space of 2D grain
boundaries, the patterns of structural units that make up short
repeat distance grain boundaries, and the flaws in the pat-
terns of structural units that make up vicinal grain bound-
aries. We have shown that the patterns of structural units are
key to understanding the singularities in energy and peak
stress at special grain boundaries by drawing an analogy to
perfect crystals. We have used this insight to find a functional
form for the energies of 2D symmetric grain boundaries and

to understand the tilt angle dependence of peak stress near
special grain boundaries.

In principle, with enough computer time it would be pos-
sible to conduct a similar study for the 5D space of idealized
3D grain boundaries. We suspect that the perfect crystal anal-
ogy could also explain the cusps in energy and discontinuous
spikes in peak stress for special 3D grain boundaries. The
geometry dependence of energy and peak stress surrounding
these special grain boundaries will be more complicated
since the grain boundaries can have a pure tilt, pure twist, or
a mixed type of geometry. In real polycrystals, the fracture
strength and energy are further complicated by impuritites at
the interface, emission of dislocations during fracture, and
more complex geometries such as triple junctions of grains,
which are often the nucleation site for fracture. Systematic
studies of such systems are infeasible and better suited by on
the fly simulations of local regions of interest.

ACKNOWLEDGMENTS

This work was supported by NSF Grants No. ITR/ASP
ACI0085969 and No. DMR-0218475. We also wish to thank
Nicholas Bailey, Drew Dolgert, Gerd Heber, Anthony In-
graffea, Surachute Limkumnerd, Chris Myers, and Paul
Wawrzynek.

1 A. Needleman, J. Mech. Phys. Solids 38, 289 �1990�.
2 M. Falk, A. Needleman, and J. Rice, J. Phys. IV 11, 43 �2001�.
3 E. Iesulauro, A. R. Ingraffea, S. Arwade, and P. A. Wawrzynek,

in Fatigue and Fracture Mechanics, edited by W. G. Reuter and
R. S. Piascik �American Society for Testing and Materials, West
Conshohocken, PA, 2002�, Vol. 33, pp. 715–728.

4 E. Iesulauro, A. R. Ingraffea, G. Heber, and P. A. Wawrzynek, in
44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics,

and Materials Conference �AIAA, Norfolk, VA, 2003�.
5 D. H. Warner, F. Sansoz, and J. F. Molinari, Int. J. Plast. 22, 754

�2006�.
6 For cracks propagating through a grain boundary, the direction

of the crack front in relation to the structure of the grain bound-
ary may affect the fracture toughness, but this dependence is not
included in cohesive laws.

7 V. R. Coffman, J. P. Sethna, G. Heber, A. Liu, A. Ingraffea, and

FIG. 18. �Color online� Grain boundary peak stresses for asym-
metric geometries. As with Fig. 10, the surface and contours repre-
sent a smooth interpolation between particular geometries. Due to
the interpolation, each high stress peak is rendered as a finite-width
cone. The peak stress of perfect crystals is much higher than that of
grain boundaries. In order to use a smaller vertical scale, we have
not included these data points which would otherwise show a ridge
along the diagonal.

22 23 24 25 26 27 28
θ1

1

1.2

1.4

1.6

1.8

2

Pe
ak

St
re

ss
(L

en
na

rd
-J

on
es

U
ni

ts
)

FIG. 19. �Color online� Asymmetric grain boundary peak
stresses in neighborhood of high symmetry geometry. The grain
boundary geometries plotted above are the same as those in Fig. 11,
along a line of constant misorientation in the vicinity of a high
symmetry geometry. The lines show a possible linear fit to the
points on either side of the low repeat distance grain boundary.

VALERIE R. COFFMAN AND JAMES P. SETHNA PHYSICAL REVIEW B 77, 144111 �2008�

144111-10



E. I. Barker, arXiv:0803.1003 �unpublished�.
8 S. P. Chen, D. J. Srolovitz, and A. F. Voter, J. Mater. Res. 4, 62

�1989�.
9 F. Sansoz and J. F. Molinari, Scr. Mater. 50, 1283 �2004�.

10 F. Sansoz and J. F. Molinari, Acta Mater. 53, 1931 �2005�.
11 O. A. Shenderova, D. W. Brenner, A. Omeltchenko, X. Su, and

L. H. Yang, Phys. Rev. B 61, 3877 �2000�.
12 D. E. Spearot, K. I. Jacob, and D. L. McDowell, Mech. Mater.

36, 825 �2004�.
13 W. Bollmann, Crystal Defects and Crystalline Interfaces

�Springer-Verlag, New York, 1970�.
14 G. H. Bishop and B. Chalmers, Scr. Metall. 2, 133 �1968�.
15 Y. Ishida, in Grain Boundary Structure and Properties, edited by

G. A. Chadwick and D. A. Smith �Academic Press Inc., London,
1976�, pp. 93–106.

16 D. Wolf and K. L. Merkle, in Materials Interfaces: Atomic-level
Structure and Properties, edited by D. Wolf and S. Yip �Chap-
man & Hall, London, 1992�, pp. 88–150.

17 R. J. Harrison, G. A. Bruggeman, and G. H. Bishop, in Grain
Boundary Structure and Properties �Ref. 15�, pp. 45–91.

18 P. H. Pumphrey, in Grain Boundary Structure and Properties
�Ref. 15�, pp. 139–200.

19 D. Wolf, in Materials Interfaces: Atomic-level Structure and
Properties �Ref. 16�, pp. 1–52.

20 D. Wolf and J. A. Jaszczak, in Materials Interfaces: Atomic-level
Structure and Properties �Ref. 16�, pp. 662–690.

21 N. Bailey, T. Cretegny, J. P. Sethna, V. R. Coffman, A. J.
Dolgert, C. R. Myers, J. Schiotz, and J. J. Mortensen,
arXiv:cond-mat/0601236 �unpublished�.

22 Another alternative is to use a layer of constrained atoms. Typi-
cally, in a finite element simulation of a subsection of a material,
the nodes on the surfaces of the model are constrained to not
move in a direction perpendicular to the surface. This is known
as “rollered” boundary conditions. We can imitate these bound-
ary conditions in an atomistic simulation by constraining a layer
of atoms at the surface or edge of the simulation to not move
perpendicular to that surface or edge. This will partially amelio-
rate the edge effects, suppress the Poisson effect, and has the
advantage of allowing us to simulate grain boundaries of any
geometry �Ref. 7�. We have compared simulations of different
sizes with rollered boundary conditions in the y direction to a

simulation of the same geometry, but with periodic boundary
conditions in the y direction. We see that if we use rollered
boundary conditions, we need a simulation that is 48 times
longer in the y direction in order to converge to within 2% of the
results found by a simulation with periodic boundary conditions.
Hence for computational efficiency, we choose to use periodic
boundary conditions in the y direction.

23 The Frenkel-Kontorova model �Ref. 31� describes a one-
dimensional chain of atoms, connected by springs, subject to an
external, sinusoidal potential. If the relaxed length of the spring
and the width of the potential wells are commensurate a mini-
mum energy state exists. For the incommensurate case, there
will be a pinned phase with many local minima and an unpinned
phase, depending on the depth of the wells in relation to the
stiffness of the springs.

24 J. P. Hirth and J. Lothe, Theory of Dislocations �John Wiley &
Sons, New York, 1982�.

25 Since this Burger’s vector may be a sum of lattice vectors from
either side of the grain boundary, the total may not be a full
translation vector of the triangular lattice.

26 We use “energy” for “energy per unit length” throughout.
27 G. Palumbo and K. T. Aust, in Materials Interfaces: Atomic-level

Structure and Properties �Ref. 16�, pp. 190–207.
28 N. Bailey, Ph.D. thesis, Cornell, Ithaca, NY, 2002.
29 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids

�Oxford Science Publications, New York, 1987�.
30 For simulations of a few Å wide, the crack opens up along the

grain boundary with a slow unzipping mechanism, starting at
particular flaws. For wider simulations, the crack snaps open,
soon after a peak stress is reached. The slow unzipping of the
narrow simulations is characteristic of fixed displacement
boundary conditions—since the displacements of a region close
to the interface is fixed, the opening of the crack is controlled,
allowing us to see the details of how the crack opens. The snap-
ping open, seen with a wider simulation, is characteristic of
fixed force boundary conditions. In the wider simulations, the
material on either side of the grain boundary acts as a spring,
which effectively softens the boundary conditions, approximat-
ing fixed-force boundaries for long lengths. When the con-
strained region is far away, the interface snaps open once it
reaches the maximum stress that it can sustain.

31 Y. I. Frenkel and T. Kontorova, Zh. Tekh. Fiz. 8, 1340 �1938�.

GRAIN BOUNDARY ENERGIES AND COHESIVE ... PHYSICAL REVIEW B 77, 144111 �2008�

144111-11


