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CHAPTER 1
GRAIN BOUNDARY ENERGIES AND COHESIVE LAWS AS A
FUNCTION OF GEOMETRY

1.1 Introduction

In materials such as silicon and various aluminum alloys, cracks initiate and prop-
agate along the interfaces between polycrystals known as grain boundaries. When
the cracks initiate at the site of these microscopic defects, the macroscopic frac-
ture strength of the material is dependent on the microscopic structure of the grain
boundaries. The debonding of an interface such as a grain boundary is described
by a cohesive law, such as the one shown in figure 1.1.

Cohesive laws are used by finite element cohesive zone models, which simu-
late fracture initiation at interfaces [34]. It has been shown that the shape and
scale of the cohesive law has a large effect on the outcome of the finite element
simulation [34, 18]. However, the CZM studies of grain boundary fracture have
used cohesive laws that are guessed, chosen for numerical convergence, and do
not take into consideration the effect of varying grain boundary geometries within
the material — the same cohesive law is often used throughout the material de-
spite the fact that in a real material, grain boundaries of varying geometries must
occur [29, 30, 45].

It would be useful to find a formula for the cohesive laws of the grain bound-
aries of a given material as a function of geometry, for input into finite element
simulations. The geometry of a 3D grain boundary depends on 5 parameters that
describe the orientations of the two grains. In addition, there are three different

modes of fracture (normal to the crack plane, shear in a direction paralle] to the
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crack line, or shear in a direction perpendicular to the crack line) to explore ® as
well as dependencies on temperature, impurities at the interface, and emission of
dislocations to consider.

Thus far, no systematic study of grain boundary cohesive laws as a function
of geometry has been done with molecular dynamics or experiment. There is
difficulty in measuring cohesive laws experimentally because it is difficult to isolate
and measure the displacements on either side of the grain boundary.

Cohesive Law

[B)

! ! ! T ]

N

Stress (Lennard-Jones Units)
[=]
[ 7S —

1 | . | : |
cO 05 1 15

Displacement (A)

18]

Figure 1.1: An Example of a Cohesive Law. The stress vs. strain curve
that describes the debonding of a 2D grain boundary with tilt angles
33.418° and 26.58°. Our measurements include the elastic response
of the perfect crystal on either side of the grain boundary. For input
into finite element simulations, which need the cohesive law of only
the interface, we must subtract off the elastic response of the bulk as
shown here. This is described in detail in Chapter 2.

Previous atomistic studies of the mechanical response of grain boundaries have

1For cracks propagating through a grain boundary, the direction of the crack
front in relation to the structure of the grain boundary may affect the fracture
toughness, but this dependence is not included in cohesive laws.
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concentrated on a small number of symmetric grain boundaries in 3D [15, 39, 40,
41, 42, 45]. Exploring the complete picture of 3D grain boundary cohesive laws
involves exploring a 5-dimensional space with three modes of fracture. Because
of this difficulty, we have taken a step back. We seek to systematically explore
the cohesive laws for mode I fracture for all possible grain boundary geometries
in 2D that can be simulated in periodic boundary conditions for a particular size
and strain. We will initially be focusing on symmetric grain boundaries and then
expanding the picture to look at asymmetric 2D grain boundaries. The main use

“of such data would be for finite element simulations of polycrystals, as described
above. For this purpbse, it would be nice to find a functional form which describes
the fracture strength of the grain boundary as a function of geometry.

We find, however, that the fracture strength as a function of tilt angles is
discontinuous everywhere, with particularly large jumps at special, high symmetry
grain boundaries composed of a simple arrangement of structural units with a
low repeat distance. These special boundaries are also associated with cusps in
the grain boundary energy. We will describe dependence of the energy and the
fracture strength near these special boundaries by treating the them as perfect
crystals with added dislocations.

Most studies use the coincidence site model [12] to construct and classify spe-
cial grain boundaries [15, 39, 40, 41, 45] while a few mention the significance of
structural units [11, 15, 31, 40, 48]. The only 2D study we are aware of, the
“bubble-raft” model, observes the structural units of several of the special, high
angle grain boundaries for the triangular lattice and how patterns of structural
units combine to create vicinal geometries [31]. Other 3D studies also discuss

how grain boundaries near special grain boundaries can be decomposed into the
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structural unit of the special grain boundary with added flaws [11, 48]. We de-
velop a systematic way of finding high symmetry geometries and show that the
combinations of patterns of structural units at vicinal grain boundaries are key to
understanding the dependence of energy and fracture strength on geometry.
Sansoz and Molinari find the grain boundary energy by allowing the grains
to relax together from an initial separation of a few angstroms [40] while others
perform a conjugant gradients search [15]. We use a systematic method for ex-
plicitly imposing a relative shift between the grain and using atomistic relaxation
for finding the global energy minimum similar to that used in [39, 48]. It is well
established that there exist cusps in the grain boundary energy energy for special
high angle grain boundaries [15, 23, 36, 40, 41, 46, 48, 47]. Recent studies of grain
boundary constitutive properties focus on the response to shear [40, 45] or compare
shear and tension [39, 42]. Warner et. al. claim that the tensile response does not
depend on the geometry of the grain boundary [45]. Others have seen jumps in
the tensile fracture strength at high angle grain boundaries geometries [15, 41].
We will explain the cusps in energy and jumps in fracture strength by drawing
an analogy between perfect crystals and high symmetry, high angle grain bound-
aries. The dislocation model of low angle grain boundaries gives a 8log 6 form for
the grain boundary energy. Because vicinal grain boundaries can be thought of
as high symmetry grain boundaries with added flaws, the energy cusps at special
grain boundaries have the same flogf form. Just as adding dislocations to the
perfect crystal adds a nucleation point for fracture, and therefore a discontinuity
(jump down) in fracture strength, adding a flaw to a high symmetry, high angle
grain boundary abruptly changes the local fracture strength by adding a potential

nucleation site for fracture.
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1.2 Grain Boundary Geometries

In 2D, grain boundary geometriés are described by two tilt angles as shown in
figure 1.2, but there are several other choices to make in setting up the geometry
of a grain boundary simulation. We must decide which boundary conditions, in
both directions, will best simulate the bulk. We must consider the effects of the
length and width of the simulation. Since we will use periodic boundary conditions
in the y-direction, we must find which geometries are possible to simulate in a
periodic box, i.e. which pairs of grain orientations have finite repeat distances
that are rational with respect to one another. We will find that as a consequence
of using grain boundaries that have rational repeat distances, we must also find
which relative shift in the y-direction has the lowest energy, giving the most natural

grain boundary configuration.

1.2.1 Boundary Conditions and Length

Using free boundary conditions in the direction parallel to the grain results in
edge effects, potentially causing cracks to nucleate at the edges. One alternative
to free boundary conditions is to use a layer of constrained atoms. Typically, in a
finite element simulatio:: of a subsection of a material, the nodes on the surfaces
of the model are constrained to not move in a direction perpendicular to the
surface. This is known as “rollered” boundary conditions. We can imitate these
boundary conditions in an atomistic simulation by constraining a layer of atoms
at the surface or edge of the simulation to not move perpendicular to that surface
or edge. This will effectively suppress the Poisson effect and has the advantage

of allowing us to simulate grain boundaries of any geometry. The other choice of
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Figure 1.2: An Example of a Grain Boundary. The tilt angles are given by 6,
and 6, and the repeat distances are D; = |(a1,b:1)] and D, = |(az, be)]|.
We have assumed the convention where 0° indicates an orientation with

miller indices (2, 1).
boundary conditions in the y-direction is periodic boundary conditions, which have
the disadvantage of only allowing geometries that have finite repeat distances. We
have compared simulations of different sizes with rollered boundary conditions in
the y-direction to a simulation of the same geometry, but with periodic boundary
conditions in the y-direction. The results of this comparison are shown in figure 1.3.
We see that if we use rollered boundary conditions, we need a simulation that is 48
times longer in the y-direction in order to converge to within 2% of the results found
by a simulation with periodic boundary conditions. For computational efficiency,
we choose to use periodic boundary conditions in the y-direction. The consequences
of this will be discussed in section 1.2.4. If we used periodic boundary conditions

in the z-direction, this would create a second grain boundary. For this reason,
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and since we need to pull the grain boundary apart in the z-direction, we use a
constrained layer of atoms to impose fixed boundary conditions in the z-direction.
These are represented by the darker atoms in figure 1.2. The constrained layer of
atoms has a width equal to twice the cutoff distance from the potential to eliminate
surface effects for the free atoms.

Cohesive Law
Length and Boundary Condtions Test

3 T T T T T T T

o—e periodic, length = 7.8 A
»—a rollered, length=7.8 A | —
+—e rollered, length = 15.6 A
o~ rollered, length = 62.3 A
o—e rollered, length =374 A | ]

&
T

X
T

Stress (Lennard-Jones Units)
(s

Displacement A)

Figure 1.3: Lengths and Boundary Conditions. For convergence to within
2% with rollered boundary conditions, we need a system size that is
48 times the necessary system size with periodic boundary conditions.

1.2.2 Width and Mechanism of Fracture

The width of the simulation has consequences for the accurate measurement of
the grain boundary energy as well as for the mechanism of failure. The strain
field extending from the grain boundary will have a width roughly equal to the
repeat distance of the boundary according to St. Venant’s principle. In order

to accurately measure the grain boundary energy, we will need each grain to be
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roughly as wide as the simulation is high. Tests measuring the grain boundary
energies for simulations of different widths found that the energy converged to
within 1% when each grain had a width equal to the height of the grain boundary.

For simulations of a few angstroms wide, the crack opens up along the grain
boundary with a slow unzipping mechanism, starting at particular flaws. For
wider simulations, the crack snaps open, soon after a peak stress is reached. This
is shown in figures 1.4 and 1.5. The slow unzipping of the narrow simulations is
characteristic of fixed displacement boundary conditions - since the displacements
of a region close to the interface is fixed, the opening of the crack is controlled,
allowing us to see the details of how the crack opens. The snapping open, seen
with a wider simulation, is characteristic of fixed force boundary conditions. In
the wider simulations, the material on either side of the grain boundary acts as
a spring, which effectively softens the boundary conditions, approximating fixed-
force boundaries for long lengths. When the constrained region is far away, the

interface snaps open once it reaches the maximum stress that it can sustain.

1.2.3 Lattice Symmetries and Tilt Angles

For the triangular lattice, it is clear that we only need to explore tilt angles between
0° and 60°, but we can further reduce the space of grain boundary geometries to
consider. Figure 1.6 represents the space of tilt angle pairs. Reflecting a point in
this space through the 6, = 6; line corresponds to swapping the two grain orienta-
tions which, as shown in figure 1.6, is equivalent to flipping the grain boundary in
both the vertical and horizontal directions, resulting in the same grain boundary.
Reflecting through the (30, 30) point takes (8;,8,) to (60—6,,60—8,), reversing the

sense of rotation of each grain. As shown in figure 1.6, this is equivalent to flipping
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i Cohesive Law .
Fixed Force vs. Fixed Displacement for Different Widths

! | ' i

(8]

*—e width=6 A
—e width= 18 A

&

Stress (Lennard-Jones Units)
[=]
& -

y ] 0.6 0.8
Displacement (A)

Figure 1.4: The Effect of Width on the Cohesive Law. For wider sim-
- ulations, the grain boundary snaps open, consistent with fixed force
boundary conditions. For narrower simulations, the grain boundary
slowly unzips, characteristic of fixed displacement boundary condi-

tions.

the grain boundary in the vertical direction. Reflecting through the 8, = 60 — 6,
line takes (6,,62) to (60 — 62,60 — 6;), both switching the grains and reversing
the senses of rotation. This is equivalent to flipping the grain boundary in the
horizontal direction, also shown in figure 1.6. Thus, we only need to consider the
pairs of tilt angles in the triangle enclosed by the 82 = 0 line, the 6, = 6, line, and

the §; = 60 — 6, line ~ the shaded region in figure 1.6.

1.2.4 Finding All Possible Geometries for Periodic Bound-

ary Conditions

In order to better simulate the grain boundary in the bulk as described in sec-

tion 1.2.1, we would like to use periodic boundary conditions along the direction
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The top left

figure shows the 6 A wide simulation at its peak stress, occurring at a
a? + b% + ab.
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The Effect of Width on Mechanism of Failure.
The tilt angle is then given by

strain of 2.775%. The top right figure shows the 18 A wide simulation
at its peak stress, occurring at a strain of 2.925%. The bottom two fig-

ures show both simulations at a strain of 3%. For the wider simulation,

the grains have snapped apart just a few steps after the peak stress,
while for the narrower simulation, the grains are still slowly unzipping,

several steps after the peak.
of the grain boundary (y-direction). In the z-direction, a boundary layer of fixed

atoms is used to impose the boundary conditions. In order to simulate 2D grain

commensurate with one another. Let (a,b) be the lattice vector that is parallel
to one another, the repeat distance of a particular orientation of a 2D triangular

entation to have a finite repeat distance, but also for the repeat distances to be
to the edge of a 2D triangular lattice. Since the basis vectors are at a 60° angle

boundaries in periodic boundary conditions, we need not only for each grain ori-

lattice is given by

Figure 1.5:
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Figure 1.6: Finding the Minimum Necessary Range of Angles. For each
point in the shaded region, there is an equivalent grain boundary in
each of the other regions.

In order to expand the number of possible geometries, we have also considered
geometries for which applying a small strain to each grain allows us to fit both
grains inside the same periodic box. For any pair of orientations that have repeat
distances that are not commensurate, we can find a continued fraction approxima-
tion to the ratios of their lengths, p/q = D;/D,. We can strain each grain equally
into a box of size L = (1/2)(pD, + gD, ), where the strain required is |{L — pD,|/L.
For a strain of 0.001%, the grain boundary would have to be 50,000 A long before
the strain would alter the structure of the grain boundary. We find all pairs of tilt
angles that correspond to commensurate or near commensurate grain boundaries
by looping over pairs of surface vectors and comparing the repeat distances.

Figure 1.7 shows all possible geometries that can be simulated with a periodic
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2D Geometries With Repeat Distances Less Than 70 A

Figure 1.7: All Possible Geometries. The set of points above represent all
2D grain boundary geometries that can be simulated in a periodic
box of 70 A or less, with a strain of 0.001 or less. There are gaps near
perfect crystals, symmetric grain boundaries, and high symmetry grain
boundaries (discussed in section 1.2.6) because creating a new, nearby
geometry requires adding flaws at large distances. Lines radiating from
high symmetry geometries represent flaws added at closer and closer
distances as you move away from the point representing the original
geometry.
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length of 70 A or less, and a strain of 0.001% or less. The §; = 6, line corre-
sponds to perfect crystals, while the §; = 60 — 6, line corresponds to symmetric
grain boundaries. There is a gap near each of these lines because creating very
small angle grain boundaries, or a geometry very close to symmetric grain bound-
aries, requires adding flaws that are separated by large distances. We see gaps
near other high symmetry grain boundaries for the same reason. High symmetry
grain boundaries are diécussed in section 1.2.6. The lines radiating out from high
symmetry grain boundaries represent adding single flaws to those high symmetry
grain boundaries at larger and larger distances, as you approach the high symme-
try boundary. Each line represents a different type of flaw. The symmetry about
the #; = 30 line is due to the fact that grains with tilt angles § and 60 — 8 have
the same repeat distance. Therefore, the grain boundaries given by the tilt angles
(6:,62) and (60 — 6;,0-) have the same overall repeat distance, though these are

different grain boundaries.

1.2.5 Finding the Most Natural Grain Boundary Configu-

ration

Besides the tilt angles, there are other factors to consider in constructing the
grain boundary geometries. For commensurate grain boundaries, there will be an
ideal relative displacement in the direction parallel to the grain boundary (the
y-direction in figure 1.2). This ideal displacement will correspond to the lowest

energy and thus is the most natural configuration for a given pair of tilt angles. 2

2 The Frenkel-Kontorova model [19] describes a one dimensional chain of atoms,
connected by springs, subject to an external, sinusoidal potential. If the relaxed
length of the spring and the width of the potential wells are commensurate a
minimum energy state exists. For the incommensurate case, there will be a pinned
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In setting up a grain boundary geometry for measurement of the cohesive law,
we must find the displacement along the boundary which gives the lowest energy.
We do this by initializing the two grains with a small displacement in the z-
direction and varying displacements in the y-direction, relaxing the atoms, and
measuring the grain boundary energy per length. The range of displacements in

the y-direction that we must search over is given by

D, Dy;%Dy; =0

A= (1.3)
min (ng - LD2/D1JDII s ID2 - I-D2/D1-|D1I) D2%D1 7—L 0

where we assume D; < D,. This is illustrated in figure 1.8. . The grain boundary

energy per length is defined as

Etotal = Natoms * Eputk
L

where Eiuq is the total potential energy for the configuration of atoms (excluding
the constrained atoms), Nuoms is the number of unconstrained atoms, Epy is the
energy of a single atom in the bulk, and L is the length of a the grain boundary.
An example of the results of such a search is shown in figure 1.9. The regions with
the same final displacement and energy correspond to basins of attraction around
the finite number of final configurations of atoms.

We have also tried thermal annealing and have found that for certain geome-
tries, the grain boundary migrates to form a jagged interface with segments of
different grain bcundaries that collectively have a lower total energy than the ge-
ometry given by the original set of tilt angles. The tendency of certain grain
boundaries to corrugate is also discussed by Ishida and Pumphrey [31, 36]. As a

corrugated grain boundary is torn apart to measure the cohesive law, the corners

phase with many local minima and an unpinned phase, depending on the depth of
the wells in relation to the stiffness of the springs.
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Figure 1.8: The Necessary Search Range for y-displacements. The mini-
mum range we must search over to find the most natural configuration
is equal to the minimum shift that gives an equivalent configuration of
atoms along the surface. Assuming that the edges of the repeat cells
line up at the bottom, the minimum shift to produce an equivalent
configuration is done by lining up the top edge of the first repeat cell
in the grain with a larger repeat (the grain on the right in the diagram)
with the nearest edge of a repeat cell in the grain with a smaller repeat
distance (the grain on the left). If D, is equal to an integer nrumber
of repeats of D;, the minimum search range is equal to D;. |D2/D; |
gives the number of repeats of the left grain that fit within a single
repeat of the right grain and [D./D;]| gives the number of repeats
of the grain on the left that contain one repeat of the grain on the
right. If D,/D; is not an integer, the minimum search range is then
min ({Dz — | Dy/D1| D, D2 — [D2/Dr] D1 )

form stress concentrations which weaken the grain boundary. Despite the fact that
this configuration may be more natural, it is not what we intend to measure. We
wish to measure the fracture toughness of all possible pairs of tilt angles, even if
those pairs of tilt angles happen to be unstable. In other cases, the minimization
proceduré described above produced a curved grain boundary. In these cases, we've

constrained the displacements in the y-direction such that a consistent pattern of

flaws along a straight grain boundary is achieved.

1.2.6 High Symmetry Grain Boundaries

Certain grain boundary geometries have particularly low repeat distances. These

grain boundaries have special properties. They mark the center of cusps in the
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Final Displacement vs. Initial Displacment
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Figure 1.9: Finding the Energy Minimizing Grain Boundary Configura-
tion. Each plateau in the top plot and each flat region in the bottom
plot correspond to the basin of attraction of a local minimum. The
most natural grain boundary configuration corresponds to the global
energy minimum.
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grain boundary energy and discontinuous increases in the fracture strength as a
functions of tilt angle. Table 1.1 show examples of high symmetry grain boundaries
and figure 1.10 shows examples of geometries in between, which constitute adding
a single flaw to the high symmetry grain boundary. Note how the added flaws
constitute a compromise between the two high symmetry geometries. Furthermore,
a less high symmetry grain boundary can be repeated, and have a single flaw added.
Because of this the grain boundary energy and fracture strength as a function of

tilt angle will have a self similar nature.

Table 1.1: High Symmetry Grain Boundary Geometries

6 | Miller Indices | Repeat Distance (lattice constants) | £ | Structure

49.10 (1,4) 2.64 7 | 39333

43.89 (2,5) 3.61 13 | %33

53.41 (1,7) 4.35 19 | BHHP

40.89 (1,2) 4.58 21 | 333333
38.94 (4.7) 6 31 | BBEEES

=9 ?","i”s’), >,
51.78 (2,11) 7.0 49 | Fensy

SJI
(S]]

The coincidence site lattice model (CSL) describes grain boundaries in terms of
¥, the inverse density of lattice sites that are shared by the two grain orientations
when rotated about a common lattice point [12]. In 2D, CSL grain boundaries are
necessarily commensurate and vice versa. For the triangular lattice, each common

lattice point for a given pair of grain orientations has a repeat cell that is an
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equilateral triangle with one edge defined by the surface vector with length D. ¥
is equal to the number of lattice points inside this cell and is given by the area
of the cell divided by the area of one lattice triangle, ¥ = D?. While the CSL
formulation gives a simple method for finding commensurate grain boundaries, it
is misleading to suggest that the actual coincidence of sites plays a physical role.
In fact, shifting the grains in the y-direction so as to minimize the grain boundary
energy (described in section 1.2.5) generally causes the atoms to no longer coincide.
Without this shift, the two free surfaces will have atomic planes that meet at the
same point. The elastic energy is lowered by staggering the dislocations [27]. Wolf
has pointed out that for 3D, the CSL formulation of grain boundaries involves a
redundant number of parameters [46].

Bishop and Chalmers introduced the concept of “structural units” - polygonal
structures of atoms along high angle grain boundaries {11]. We find that the
patterns of “structural units” are more relevant to the physical properties of the
grain boundaries. When relaxed, the structural units of grain boundaries in 2D,
triangular lattices are 5 atoms forming a regular pentagon or a pentagon that is
slightly stretched. Each high symmetry grain boundary is comprised of a simple
pattern of pentagonal structural units (figure 1.1). When a high symmetry grain
boundary is perturbed, an element of the pattern of structural units from the
neighboring high symmetry grain boundary is introduced (figure 1.10). As the tilt
angles move closer to the neighboring high symmetry grain boundary, the flaws
become closer together until they outnumber the original structure. The roles of
flaw and original structure are then reversed. In this manner, combinations of
patterns of structural units can be used to build up any commensurate, high angle

grain boundary.
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Figure 1.10: Finding the Burger’s Vector for Flaws Along Vicinal Grain
Boundaries. Grain boundaries with tilt angles in the vicinity
of high symmetry grain boundaries are comprised of the pattern of
structural units of the high symmetry grain boundary with an element
from the neighboring high symmetry geometry. When defining the
Burger’s vector of a flaw added to a high symmetry grain boundary
we are no longer comparing the flaw to the perfect lattice but to the
repeating pattern of structural units. Therefore, we must cross the
grain boundary at equivalent portions of the structural unit in our
reference loop and in our loop around the flaw. The loop on the
bottom is the reference loop around the region of the grain boundary.
without the added flaw. The loop on the top surrounds the added
flaw, which we model as a grain boundary dislocation. The arrows
indicate the segments needed to make the top loop match the bottom
loop; for example, the arrow on the upper right indicates that the
path around the defect is one atomic length shorter on that leg than
the corresponding leg of the reference loop. The arrows sum to the
Burger’s vector of the added grain boundary dislocation. This grain
boundary has a tilt angle of 44.3° and a Burger’s vector with a length
of 0.495 lattice constants, and a direction along the negative z-axis.
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We find the structural units a useful way of conceptualizing the different grain
boundary geometries. We have not found the coincidence site lattice model useful
in our investigations. In systematically constructing grain boundaries with small
repeat distances (section 1.2.4 and appendix A), we have found the surface lattice
vectors of the two sides of the grain boundary to be the most useful description.
The structure of high angle grain boundaries can also be described in terms of a
dislocation model. The “extra flaws” added to create vicinal grain boundaries can
be described as partial dislocations. Figure 1.10 shows how to find the Burger’s
vectors for the added flaws by examining the flaw in the pattern of structural units.
We will show in section 1.5.2 that this model gives excellent agreement in the stress
field due to the added flaws, outside the background of the original flaw structure.
We will show in sections 1.4 and 1.5 that the dislocation model provides the most
powerful framework for understanding the geometry dependence of the properties

of grain boundaries.

1.3 Measuring the Cohesive Law

The atomistic simulations are done using the DigitalMaterial package {7]. The
potential we are using for 2D simulations is the Lennard Jones potential with
a smooth, fourth order cutoff between 2.41 and 2.7 A. The ground state is a
triangular lattice with a lattice constant of 1.11 A.

We set up the grain boundary by initializing two rectangular grains with the
given rotations that define the grain boundary geometry we wish to measure. At
either end in the z-direction, there is a layer of atoms with a thickness equal to two
potential cut-off distances. These atoms are represented by the darker atoms in

figure 1.2 and are constrained to not move. If necessary, both grains are strained
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by equal and opposite amounts in order to have both grains fit into a periodic box.

The most natural grain boundary configuration is found using the method
described in section 1.2.5. The energy found by this method is what we record as
the grain boundary energy. After finding this ideal y-displacement, we increment
the strain by displacing the constrained layer of atoms. We relax the atoms and
measure the force in the z-direction per unit length on the constrained layer of
atoms. If the measurement of the stress drops abruptly during one strain step, the
simulation restores the positions from a previous step, reduces the size of the strain
increment, and proceeds. The result of such a simulation is shown in figure 1.1.
The maximum stress in the stress strain curve is what we define as the peak stress.

At high angle grain boundaries, the fracture is very brittle in nature. With a
wide enough simulation, as discussed in section 1.2.2, the grain boundary snaps
open shortly after reaching the peak stress. For lower angle grain boundaries,
the failure is not always brittle. Symmetric, low angle grain boundaries with
tilt angles near 0° undergo intragranular fracture, with the crack nucleating at a
single dislocation and growing at an angle 30° from the grain boundary direction.
Symmetric grain boundaries with tilt angles near 30° fail with alternate dislocations
gliding in opposite directions unless the glide is prevented by the boundaries of the
narrow simulation. In this case, the grain boundaries undergo brittle fracture with
a predictable peak stress. This is discussed further in section 1.5.1

Sections 1.2.3 and 1.2.4 explain the minimum range of pairs of tilt angles neces-
sary to explore all geometries and how to find the geometries that can be simulated
in periodic boundary conditions. We have measured the grain boundary energy
and peak stress for all symmetric grain boundaries with repeat distances under

20 A. In order to explore the regions close to high symmetry grain boundaries,
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we have added a few geometries with longer repeat distances, close to the high

symmetry grain boundaries.

1.4 Grain Boundary Enérgy

The energy associated with the series of flaws that make up the grain boundary is
defined in equation 1.4. As stated earlier, and found by several earlier studies [40,
15, 23, 36, 486, 35, 47|, cusps appear at high symmetry boundaries. For small angle

grain boundaries, the grain boundary energy has the form

_ ub o[ e .
Egp = _—47r(1 =) 16| log (—27?'9!) x |6]log |4]. (1.5)

where u is the shear modulus, b is the Burger’s vector, v is the Poisson ratio, and
« is a factor that includes the core energy [27]. One can now imagine the same
scenario applied to high symmetry boundaries. We can take the a high symmetry
grain boundary and add or subtract flaws a distance d apart as showr in figure
1.11. By the same reasoning as used for the low angle grain boundaries, the energy

near the high symmetry grain boundary will have the form

ub o i ea’
4x(l—v) 19— 6ol log (27.‘[0 - 90}> (1.6)

where Ej is the energy of the high symmetry grain boundary which occurs at the

bgp = Eg+

angle 6 and o' describes the core energy of the flaw within the pattern of flaws.
The grain boundary energies for all of the symmetric grain boundaries that

we have measured are shown in figure 1.12. Note that cusps occur at the angles

listed in table 1.1. We are able to fit the data for symmetric grain boundaries to

a function of the form

. b . . bao
Egs(6) = aolsm3ello°lsin39[ - ago| sin 3(4 30)llo°|sin3(9—30)|
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Figure 1.11: Adding a Flaw to a High Symmetry Grain Boundary. The
lighter dislocations represent flaws added a distance d apart, to an
existing pattern of dislocations, shown in black, with a short repeat
distance. The added flaws can also move, screen, or cancel the faws
that make up the high symmetry boundary.

b

= () — c0s66: | log i
+ ;)(az | cos 66 °056‘11°°|cos69—cosﬁei|

(a)
) — c0s66:) log b;
+ a;"(cos 66 — cos 66;) log [00368 — cos 691‘])

+ Y cjcos(676) +d (1.7)

=0
The first two terms fit the cusps at 0° and 30°, where the cusps are symmetrical
about their respective center points. The next set of terms in the sum fit the cusps
at high symmetry tilt angles. The function |cos 66 — cos 66;| log m—_lc—osm was
chosen as a fitting function because it approximately gives a 8log(1/6) shaped cusp
in the near vicinity of 6; and because it has the correct symmetry: even mirror
symmetry at 0° and 30° and an overall period of 60°. We use one term that is
antisymmetric about 6; and one term that is symmetric about 6; so that we can fit
the shape on either side of the cusp independently. We do not expect the slope of
the curve on either side of the cusp to be the same since the Burger’s vectors of the
additional flaws for the geometries on either side of the high symmetry geometry
may differ (figure 1.10).

The 6; can be any angles that have the shortest repeat distances, such as those
given in table 1.1. The curve in figure 1.12 is the result of fitting equation 1.7 to the

data shown in the same figure. We have used 6; = (49.10°, 43.89°, 40.89°, 38.94°)
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Grain Boundary Energy vs. Tilt Angle
Symmetric Grain Boundaries
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Figure 1.12:  Grain Boundary Energies for Symmetric Geometries.
Cusps appear at high symmetry grain boundaries (listed in table 1.1)
and have the same flogf shape as the energy of low angle grain
boundaries. The line is the fit given by equation 1.7

since these angles have particularly prominent cusps and short miller indices (given
in table 1.1). Only three terms were used in the final sum over cos 676.
The result is analogous to a Devil’s Staircase, with a cusp singularity at each

angle that corresponds to a special rational number.

1.5 Fracture Strength

1.5.1 Low Angle Grain Boundaries

The Frank cqnditions s.tate that the total Burger’s vector for the dislocations mak-
ing up a low angle grain boundary is equal to the difference of the surface vectors
that define the orientation of each grain. In order to guarantee that the grain
boundary will have only one dislocation per repeat distance after it is relaxed,

we must choose surface vectors that have a difference equal to a basis vector and
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Table 1.2: Coefficients for Fitting Grain Boundary Energy to Eq. 1.7.

ags) aga) bgs) bzga.)

11076 | 74x107* | 0.196 13.6

21 0.68 -0.023 0.292 | 9.19 x 1077

31022 |-89x10"%! 0.104 4.76

41 044 0.039 0.154 | 3.93 x 103

Qo azy | bo b3o
1.83 1.65 1.72 4.14
C1 Co C3 d
-0.14 1.71 -0.070 0.094

have the same repeat distance. One pair of surface vectors is (2n + 1, —n) and
(2n+1, —n —1). This gives a symmetric grain boundary with a single dislocation
with tilt angles close to 0°, a Burger’s vector equal to (0,1) and a repeat dis-
tance of v/3n2 + 3n + 1. Our simulations show that such grain boundaries fail via
intragranular fracture rather than intergranular fracture as shown in figure 1.13.

We have also explored low angle grain boundaries centered around the 30°
lattice orientation. At exactly 30°, there is an abrupt jump up in fracture strength
since the perfect crystal has no nucleation site for fracture. Our simulations find .
a peak stress of 4.31 (Lennard-Jones Units) for the perfect crystal.

The low angle grain boundaries near the 30° lattice orientation have surface
vectors (1,7) and (n, 1), repeat distances v/1 -+ n + n2, and total Burger’s vector
(—1,1), which splits into two flaws with Burger’s vectors (0,1) and (-1, 0) shown

in figure 1.14. For wide enough simulations, these dislocations glide in opposite
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Figure 1.13: Intragranular Fracture for Low Angle Grain Boundaries.
The figure on the left shows a grain boundary with symmetric tilt
angle 0.81° at 0 strain. The same grain boundary is shown on the
right with a strain of 3.125%. Symmetric low angle grain bound-
aries centered around the 0° orientation (miller indices (0, 1)) fail via
intragranular fracture rather than intergranular fracture.

directions until they are restricted by the constrained zones on either side. For
narrower simulations, the dislocations do not glide but form nucleation points for
grain boundary fracture causing an abrupt jump down in the peak stress compared

to the peak stress of the perfect crystal.

Figure 1.14: Intergranular Fracture for Low Angle Grain Boundaries.
The first figure shows a grain boundary with symmetric tilt angle of
30.96 at 0 strain. The second figure shows the same grain boundary
at 3.625% strain. In this wider simulation, the dislocations glide
apart (diagonal white stripes). The third and fourth figures shows
a narrower simulation of the same tilt angle where the intergranular
fracture nucleates at each dislocation.

For narrow simulations of low angle grain boundaries in this region, we find

that the peak stress has a parabolic dependence on angle, shown in figure 1.15.
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Angular Dependence of Peak Stress
Low Angle Grain Boundaries
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Figure 1.15: Peak Stress vs. Tilt Angle For Low Angle Grain Bound-
aries. The peak stress has a large jump downward as soon as a grain
boundary deviates from § = 30 (perfect crystal). Here the peak stress
for the perfect crystal, at the 30° orientation is 4.31 (Lennard-Jones
units), which would require a vertical scale 11 times as big. The dis-
locations forming the boundary act as nucleation sites for fracture no
matter how far apart they are. After this jump the peak stress has a
parabolic dependence on angle for low angle grain boundaries that are
constrained by width to fracture in qualitatively similar ways. Frac-
ture nucleates exactly at the dislocation and the first non-vanishing
term in the stress at this point due to neighboring dislocations goes
as 1/d?, where d is the distance between dislocations. '

We can explain this parabolic dependence by assuming that the dislocation has a
critical stress for nucleating fracture equal to o.. The dislocation feels a stress due
to its neighboring dislocations, each a distance d apart, in addition to the external,

applied stress. The total stress felt by each dislocation can be written

0 = Ozt + Z f: ’:—: (1.8)

neigh. disloc. n=0
where .. is the external stress. The n = 1 term is the Volterra solution given by

_ pb y(3z*+ %)
02z(2,y) = Tor(1—v) (2 +y2)2

3

(1.9)
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where the z-direction is the direction of the Burger’s vector. Since, the Volterra so-
lution is odd, the stress at each dislocation vanishes as we sum over the neighboring
dislocations on either side. The first nonvanishing term in equation 1.8 isthen =2
term which has three contributions. The n > 1 terms are the multiple expansions
of the stress field [5] as well as nonlinear terms. The nonlinear term in strain field
has the form du/dz * du/dz, giving a power law of 1/r2, which contributes to the
n = 2 term. Geometrical restrictions cause some grain boundaries to have flaws
unequally spaced in the y-direction, though for the results given in figure 1.15 we
have only explored geometries with equally spaced flaws. The grain boundaries
geometries used in figure 1.15 do have flaws that are not aligned perfectly in the
z-direction. In each of these cases, shifting the dislocation constitutes adding a
dislocation dipole (adding one positive and one negative, canceling a dislocation
and adding a new one), and therefore is another contribution to the 1/72 term.
The external stress needed to produce a stress equal to ¢ at each flaw is then

Opeak = O¢ — 22—2 =g, — Al — 6o)? (1.12)

where a, combines the three contributions described above.

1.5.2 High Angle Grain Boundaries

Figure 1.16 shows the results of the peak stress measurements for high angle sym-
metric grain boundaries. At the same points for which we had cusps in energy, we
have discontinuous increases in fracture strength. By drawing the same analogy

between adding dislocations to perfect crystals and adding flaws to high symmetry
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boundaries as described in figure 1.11 we can understand the discontinuities in the
fracture strength at high symmetry grain boundaries and the angular dependence

of fracture strength near the high symmetry geometries.

Angular Dependence of Peak Stress
High Angle Grain Boundaries
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Figure 1.16: Peak Stress vs. Tilt Angle For High Angle Grain Bound-
aries. The peak stress as a function of tilt angle is discontinuous
everywhere, with higher values at special tilt angles representing high
symmetry grain boundary geometries. The dependence of peak stress
on angle near the high symmetry grain boundaries depends on the
structure of the additional flaws that make up the nearby geometries.

For high angle grain boundaries, the added flaw is no longer the sole nucleation
site for fracture and fracture does not necessarily nucleate in the core of the added
flaw. The added dislocation creates a stress field given roughly by the Volterra
solution (equation 1.11) with a positive stress on one side, negative stress on the
other, and a singularity at the center shown in figure 1.17. The stress field differs
slightly from the Volterra solution because the elastic constants of the material
at the grain boundary vary from those of the perfect crystal. The fracture nucle-

ates along the boundary in the region where the stress due to the added flaw is
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positive. Because fracture does not nucleate at the center of the added flaw, the
Volterra solution as summed over the neighboring, added flaws does not cancel at
the nucleation site. This leads to a linear law for fracture strength as a function

of tilt angle, for grain boundaries near high symmetry geometries.

Figure 1.17: Stress Fields Due to Dislocations.  The figure on the left
shows the stress fields surrounding two dislocations according to for-
mula 1.11. The figure on the right shows the stress fields surrounding
the added dislocations as calculated according to the virial definition
of atomic stress [2].

Consider the grain boundaries with tilt angles ranging from 49.39° to 53.41°,
which are close to the high symmetry grain boundary at 49.11°. [show example -
describe in caption how to find Burger’s vector - refer to plot with peak stress re-
sults]. The additional flaws that characterize these grain boundaries have Burger’s
vectors equal to (—v/3sinf, — sin6) and (—v/3sin 6, sin §), where 8 is the symmet-
ric tilt angle of the lattice. The norms are 2| sin 6| and the angles are 210 and 150°.
For these geometries, the zz component of the stress field (due to two dislocations
a distance D = b/2(6y — 6)) along the y-axis is

_ #(2v/3y (8o — 6) — 3sin(6o — 6)) sin(6o — 6)
27(1 — v)(y(6o — 6) — V/3sin(6 ~ 6))
p(3 —2v3y) (60— 6) | _
po " O((6, — 9))® (1.14)

0zz(Y) (1.13)
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Angular Dependence of Peak Stress
High Angle Grain Boundaries
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Figure 1.18: Peak Stress vs. Tilt Angle Near High Symmetry Grain
Boundaries. There is a discontinuity in peak stress at tilt angles
close to high symmetry grain boundaries. The plot above shows the
peak stress for the grain boundary with tilt angle 49.1 (described in
table 1.1) and the nearby geometries.

where 6, is the tilt angle of the high symmetry grain boundary. We need to look

at simulations in the fixed displacement (narrow width) regime in order to observe

where fracture nucleates. We find that for geometries with this pattern of flaws,
fracture nucleates at the same distance above the added flaw. The external stress

needed to nucleate fracture at a distance y from the added flaw, along the grain

boundary is then approximately

- =a_#(3—2\/§y)(90—9)
Pt T a1 - v)(y — V3)

(1.15)

which expia.ins the linear dependence on angle shown in figure 1.18.
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CHAPTER 2
MULTISCALE MODELING OF FRACTURE

2.1 Introduction

As stated in chapter 1, one of the motivations for finding the cohesive laws for grain
boundaries is for input into a finite element, polycrystal model. In this chapter,
we will compare a finite element, cohesive zone model (CZM) with atomistically
generated cohesive laws to a fully atomistic simulation of the same geometry. We
will compare the stress fields of each model and where fracture initiates. The model
we will investigate is that of a cube embedded in a boundary that bisects a larger
cube (Figure 2.1). The motivation for this model is that of a particle embedded
in a grain boundary which is the site of fracture initiation in certain aluminum

alloys.

2.1.1 The Cohesive Zone Model (CZM)

The cohesive zone model consists of a finite element model with zero volume in-
terface elements placed in between the regular finite elements at interfaces. An
example of an interface element is shown in figure 2.2a. These interface elements
simulate fracture by debonding according to a cohesive law, the relation between
the traction and displacement across the interface. The form of cohesive law used
here is the piecewise linear form developed by Tvergaard and Hutchinson [44] also
described by Gullerud et. al. [21]. An example is shown in figure 2.2b. The piece-
wise linear form of the cohesive law is determined by the initial stiffness ko, the
peak traction 7,, and the critical displacement, d. at which the surface is considered

fully debonded and traction free.
32
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Figure 2.1: Schematic Diagram of the Cube In Cube Model. Figure (a)
shows a schematic diagram of the cube in cube model. The inner cube
is centered within the outer cube and has a length equal to 1/3 that of
the outer cube. Figure (b) shows the numbering of the internal faces of
the model. The upper-left figure shows the entire cube in cube model,
while the rest show only the inner cube. In our simulation, we load the
upper face of the model in the z-direction. Under such loading, faces
4, 7, 14, and 22 are subject to pure normal traction. Faces 0, 1, 2, 3,
5, 6, 20, and 21, are subject to pure shear traction. (The numbering of
the internal faces is not contiguous because the FEM simulation also
numbers the ten external faces.) The inner cube is a single crystal,
but in order to allow for intragranular fracture through this crystal, we
add an internal face through the center. The constitutive relation for
this interface is that of a perfect crystal. Notice that pairs 0&1, 2&6,
3&5, and 20&21 are boundaries that macroscopically have identical
cohesive laws since they are related by an inversion, i.e. they constitute
symmetric pairs of interfaces for which the grains have been swapped.

Camacho and Ortiz [13] describe mixed loading by assigning different weights to
the tangential and normal components of displacement, described by a factor 5. We
also assume that the resistance relative to tangential displacements is considered

to be independent of direction. This leads to an effective, displacement of
§ = /82 + (362 (2.1)

where 6, is the normal displacement and 4, is the tangential displacement. The
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Example of a Piecewise Linear Cohesive Law

i

Traction, T

Normalized Displacement , 4

(b)

Figure 2.2: Interface Elements and the Piecewise Linear Cohesive Law.
Figure a shows a schematic diagram of an interface element. The
displacement across the interface ¢, is initially zero. Each triangle
is part of a tetrahedral element in the material on either side of the
interface. Figure b shows the form of the constitutive relation for
the interface elements. The slope of the first linear segment is the
initial stiffness, k. When the traction across the interface reaches the
peak traction, 7,, the interface element begins to soften. When the
normalized displacement, defined by A = §/4. reaches a value of 1, the
interface has fully debonded.

effective traction is

T = /72 + 327 (2.2)

where 7, is the normal component of traction and 7; is the tangential component

of traction.

2.2 Atomistically Determined Material Properties Used by

CZM

The parameters needed by the CZM simulation that are determined by atomistics
are the elastic constants associated with the atomic potential, the orientation of

the lattice in each grain, and the cohesive law of each interface. We are modeling
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silicon using the Stilling-Weber potential [43], which includes a parameter that
tunes the brittleness of the potential. A value of 1.0 is standard, a value of 2.0
makes the material more brittle. We calculate separate material properties (elastic

constants and cohesive laws) for each version of Stillinger-Weber.

2.2.1 Determining the Elastic Constants

In order to make a direct comparison between the atomistic simulation and FEM,
we must determine the elastic constants of each version of Stillinger-Weber for
input into the FEM simulation. T hg elastic constants are measured by initializing
a cube of atoms in a diamond lattice, incrementing a strain in one direction and
measuring the stress tensor at each increment.
For an interatomic potential with 3-body terms of the form
Ei=) [, (2.3)
i<k

we can find the o8 component of stress at atom ¢ by utilizing the relation {27

1 0F;
. —_ — 9
O (2.9
where V is the volume per atom. This leads to [6]
OE; 0Or;  OE; Org
Oi)a, — -+ _— . 2.5
(0)as = JZ:;C 815 Ocap  Orx Otas (2:3)
Because
(7'11)7/35&5 (7'11)35 o,y (2.6)
the atomic stress is
OF;
_1 ri)s + =22 (1) s, 2.7
J%c 6( 1_7) 3)3 a(rik)a( k)ﬁ ( )
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We use a value of V equal to the volume per atom in the ground state (per-
fect lattice). This has the shortcoming that for atoms near dislocations or grain
boundaries, the volume per atom will be quite different.

C11, Ch2, and Cyy are determined by 0z/€zz, Ozz/€yy, and 0zy/€ay respectively.

The results are given in table 2.1

Table 2.1: Elastic Constants of Stillinger-Weber Silicon

brittle factor = 1.0 | brittle factor = 2.0 | experiment [16]

Cu 69.74 GPa 92.78 GPa 166 GPa
Ci2 35.20 GPa 23.69 GPa 64 GPa
Caa 52.00 GPa 83.37 GPa 80 GPa

2.2.2 Measuring the Cohesive Laws

The method for measuring the cohesive law of a grain boundary with an atom-
istic simulation is described in section 1.3. Here we are measuring fully 3D grain
boundary geometries. In order to simulate grain boundaries of any geometry (not
geometries restricted by commensurability), we use rollered boundary conditions
all around instead of periodic boundary conditions. Each grain is 30 A wide and
pulled apart with a strain increment of 0.5%. An example of the stress-strain curve
that results from such a simulation is given in Figure 2.3.

The CZM uses a traction displacement law that describes the debonding at the
interface in question {49, 13, 44] as discussed in section 2.1.1. The piecewise linear
form is determined by the initial stiffness kp, the peak traction 7, and the final

displacement é.. We will need to extract these parameters from the output of our
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Atomistic Stress vs. Strain
Brittle Stillinger-Weber Silicon
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Figure 2.3: Strain versus Stress: Brittle Stillinger—-Weber Silicon. Strain
versus stress for the twelve different interfaces needed for the con-
tinoum FEM cube-in-cube simulation. Each grain is 30A on a side.
Notice that the vertical interface cohesive law is invariant under in-
version, so some pairs of faces would have identical cohesive laws if
measured in an infinite-sized system (or one with periodic boundary
conditions, with micro-parameters completely optimized). Thus the
differences between faces 0&1, 2&6, 3&:3, and 20&21, both here and in
Figures 2.4,2.5, and 2.6 reflect the discreteness effects of the choice of
lattice origin and positions of the edges of the simulation.

grain boundary simulation (figure 2.3).

Because we are measuring the displacements 30 A from the actual boundary,
we need to subtract off the elastic response of the grain. The elastic constant
describing strain normal to the grain boundary is found by rotating the elastic
constants found in section 2.2.1 by the same rotation matrix that describes the

rotation of the lattice vectors in each grain
Ciin1 = RuRijRikRuCijia- (2.8)

We must then combine C7,,; from each grain such that the stress in each grain is
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equal (analogous to springs in series)

d d di+d
0 = Clthgr = Ol = Ciffi % (2.9)
Clf = 2/ (—— + —) (2.10)
1111 = .
ch C%

where d; and d, refer to the displacement in each grain and W is the width of each

grain. The displacement near the grain boundary is then given by

dgp = 2We — —o=-2(W — W) (2.11)
Cllll

where Wy, represents a finite width associated with the interface. Since the grain
boundary is more stiff than the perfect crystal for the silicon geometries we have
studied, this finite width is necessary so that équation 2.11 does not give a neg-
ative value. The initial stiffness is then given by the peak stress divided by the
displacement at peak stress. The final displacement is set such that the Griffiths
criterion is met i.e. such that the area under the curve is equal to the difference
between the final surface energies of the broken grain and the initial energy of the
grain boundary interface, A = 2(y — Ygb)/0ec-

For the perfect crystal, we can simply scale the cohesive law to a width equal
to the finite width used to process the grain boundary cohesive laws since we do
not need to separate the behavior of the bulk from the behavior of an interface.
This has the effect of preserving the non-linear elastic response. The non-linear
elastic response of the bulk is not separated from the response of the interface for
the case of grain boundaries, since the elastic response of the bulk that we subtract
off is assumed to be linear.

In principle, two boundaries for which the grains have been swapped (such as
faces 0&1, 2&6, 3&5, 20&21 as shown in figure 2.1b) should have the same overall

structure and therefore have the same cohesive law. In practice, when simulating
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Corrected Atomistic Cohesive Law
Bnittle Suallinger-Weber Silicon

02 . . : ; ; T —

o—e Face 0
o -0 Face |
w»—a Face 2

o—s Face 3

o~ Face 5

o--c Face 6
— Face 7
»—« Face 14
~-— Face 20
= == Face 21
o— Face 22

4

=
1
|

Stress (cvli\s)

0.05

i

- el PR

4 6
Strain (at constrained regions)

Figure 2.4: Cohesive Law: Brittle Stillinger—Weber Silicon. Cohesive law,
displacement versus stress, for the brittle potential and twelve inter-
faces of figure 2.3. The transformation from strain to effective dis-
placement at the interface is as described in section 2.2.2. The effective
thickness of the interface is 9A on each side. (Note that this is compa-
rable to the entire size of the smaller MD cube-in-cube simulations.)

a finite region of a grain boundary, microparameters (the choice of section of the
interface, the translations of the grains relative to one another, and the cutting
plane of each lattice orientation) alter the grain boundaries which would otherwise
be the same by symmetry. The differences between the cohesive laws for the pairs

0&1, 2&6, 3&5, 20&21 in figures 2.5 and 2.6 indicate the scope of this effect.

2.3 Fully Atomistic Model

The fully atomistic model is run with a software package called Overlapping Finite
Elements and Molecular Dynamics (OFEMD) which is described in detail in chap-
ter 3). OFEMD uses the DigitalMaterial [7] library and FemLib to run atomistic

simulations of any geometry within a finite element mesh. The geometry and mesh
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Figure 2.5: Piecewise Linear Cohesive laws: Brittle Stillinger—Weber Sil-
icon. Simplified piece-wise linear cohesive law used in the FEM sim-
ulations. The peak stress and its corresponding displacement were
taken from 2.4, and the critical displacement where the force vanishes
is chosen to make the area under the curve equal the Griffiths energy.

information of the model is stored in a relational database [24, 25, 26]. OFEMD
retrieves the geometry and mesh information by sending XQueries to a webservice
that returns the information in xml format. Using FemLib, OFEMD parses this
xml and stores the and geomertry information in python objects.

OFEMD then loops over each material region in the mesh, finds a bounding
box for each, initializes a rectangular cluster of atoms with the given orientation to
fill this bounding box, removes the atoms that are not within the material region,
and then sets up constrained regions of atoms that are used to enforce the rpllered
boundary conditions. The constrained zones are found by detecting which atoms
are within two cutoff distances of any outer face of the model. Because Stilling-
Weber contains three body terms, two cutoff distances are needed to ensure that
the free atoms are not subject to surface effects. There is a constrained zone
for each face (atoms that are within a constrained zone width of only one face),

edge (atoms that are within a constrained zone width of exactly two faces), and
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Figure 2.6: Piecewise Linear Cohesive laws: Ordinary Stillinger—Weber

Silicon. The same as figure 2.5 but for the original, ductile Stillinger-
Weber potential for silicon.

corner (atoms that are within a constrained zone width of more than two faces).
The atoms on the faces are constrained to not move perpendicular to the face,
the atoms on the edge are constrained to move only parallel to the edge, and the
atoms in the corners are totally fixed in position to simulate rollered boundary
conditions.

OFEMD retrieves the kinematic boundary conditions that are specified in the
database. In this model, a normal loading is imposed on the upper face. We
manually update the positions of the atoms in the constrained zones that are
adjacent to the upper face to impose this boundary condition, incrementing up to

15% strain in 0.5% strain increments, relaxing the atoms at each step.

2.4 Cohesive Zone Model Comparison

In this section, we compare the fracture behavior of atomistic and continuum FEM
simulations. We use both the standard Stillinger—Weber potential (which is ductile

for intragranular fracture) and the modified, brittle Stillinger-Weber potential. We
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explore simulations of two sizes (inner cube sizes of 10 and 20A). The interfacial
cohesive laws in each case were measured as in Figures 2.5 and 2.6, from MD
simulations with 30A grains. (The snapshots of CZM frames were saved at strain
levels .1% greater than those for the atomistic simulations.) The color scales
denote .., the vertical component of stress. The stress for the MD simulations
was calculated using in equation 2.7.

Figures 2.7 through 2.10 shows the results of both the atomistic and continuum
simulations for brittle Stillinger-Weber silicon, with a length scale (defined by the
dimension of the inner cube) of 10 A. The first row of figures shows the zy center
plane of the atomic simulation (roughly the plane of fracture). The second row
shows the same plane of fracture for the CZM simulation. The third row shows
the zz center plane of the atomistic simulation, illustrating the stresses around the
fracture zone and the crack opening. The fourth row shows the zz center plane
of the CZM simulation. The stress free state, indicated by the color plue, is an
indication that decohesion has occurred across the interface within that region.

We shall see that the MD simulations and the FEM simulations differ in several
important respects. First, the FEM simulations fracture overall at a higher stress
level. This might be a nucleation effect; the irregular atomic structures at the
external faces and internal edges and corners could be acting as nucleation points
for fracture in ways that are not reflected in the continuum simulation. Second,
the pattern of fracture—which interfaces break in which order—is in some cases
different for the two simulations. Some of these differences are accidental; the
system has inversion symmetries across the zz and yz planes that is broken only
by the microparameter choices in the grain-boundary cohesive law MD simulations

and the fully atomistic cube-in-cube simulations. Hence an MD simulation that
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breaks first along the ‘front’ edge is equivalent to a FEM simulation breaking
along the ‘back’. Indeed, were we to use fully converged, infinite-system cohesive
laws such as the periodic boundary conditions used in chapter 1, an ideal FEM
simulation would break symmetrically. It is also a possibility that asymmetries in
the mesh and rounding errors in the finite element simulation contribute to the

breaking of symmetry.

2.4.1 Brittle Stillinger-Weber with a Length Scale of 10 A

Figure 2.7 shows the comparison between the smaller simulations of the brittle po-
tential (an inner cube length of 10A, with the brittle modification of the Stillinger-
Weber potential). The atomistic simulation appears to begin fracture at 11% strain
in the upper right corner in figure 2.7a with the fracture spreading across the right
side and finally across the center plane, excluding the inner cube at 15% strain.
At this small scale, the inner cube is amorphized during the first relaiation step.
The finite element simulation begins fracture on the right side as well between
11.1% strain and 12.1% strain, approximately where the MD simulation fractures.
The only feature which breaks the 90 degree rotation symmetry for the finite ele-
ment simulations are the differences in cohesive laws. The finite element simulation
fractures slightly more rapidly, also ending by breaking through the inner cube but

at 14.1% strain rather than 15%.

2.4.2 Brittle Stillinger-Weber with a Length Scale of 20 A

For the 20 A length scale atomistic simulations, fracture also begins at the upper
right corner in figure 2.8a, however fracture begins noticeably earlier at 8% strain

and propagates through the center plane more rapidly. At 9% strain, the atomistic
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Figure 2.7: Comparison of the Atomistic and CZM Simulations of the

Cube-In-Cube with a Length Scale of 10 A, using Brittle
Stillinger-Weber Silicon. As described in the text.
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Figure 2.8: Comparison of the Atomistic and CZM Simulations of the
Cube-In-Cube with a Length Scale of 20 A, using Brittle
Stillinger-Weber Silicon. As described in text.
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simulation is comparable to the continuum simulation at 13% strain, with the
center plane, excluding the inner cube, cracked through. This more rapid fracture
of the atomistic simulation could be due to microstructure differences, but could
also be due to the larger system size. A larger system height means there is more
energy stored in elastic strain per unit area of interface. Once a given region
reaches the maximum stress that it can sustain, it snaps open. With a smaller
system size, the opening of the interface is controlled since the constrained zones
are closer. This is related to the effect described in section 1.2.2 where larger
systems effectively approach fixed force boundary conditions (figures 1.4 and 1.5).

Both the MD simulation and the finite element simulation begin to decohere
at the upper face of the inner cube (compare ﬁgure 2.8k with the slight blue deco-
hered region above the inner cube in figure 2.80). However, the FEM simulation
ultimately decoheres at the center plane instead. In the atomistic simulation, we
also see a competition between cracking at the top of the inner cube and cracking
through the center plane. Ultima;ely, the crack propagates partially through the
inner cube at an angle, reaching the top of the inner cube. This effect cannot
be replicated in the finite element simulation because it did not have a interface

elements in position to crack at this angle.

2.4.3 Original Stillinger-Weber with a Length Scale of 10 A

For the original version of Stillinger-Weber silicon (which is more ductile for single-
crystal fracture), the MD simulations fracture at around 14-15% strain, similar to
the fracture threshold seen for the brittle potential MD simulations at that size.
The continuum simulations, however, at a much higher strain, 30% compared to

15%, despite using cohesive-zone models derived from the original potential.
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Figure 2.9: Comparison of the Atomistic and CZM Simulations of the
Cube-In-Cube with a Length Scale of 10 A, using Original
Stillinger-Weber Silicon
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The atomistic simulation begins fracture at the top (10% strain figure) and
spreads along the right side (11, 12% figures). At the end of the MD simulation
(14% strain), it has cracked through all but the center cube. The CZM simulation
begins fracture along the external edge along the side, and has also not cracked

through or around the inner cube at the conclusion of the simulation.

2.4.4 Original Stillinger-Weber with a Length Scale of 20 A

For the 20 A case, the atomistic simulation again fractures at a much lower stress
than does the CZM simulation. The atomistic simulation fractures through all
- but the center cube very rapidly between 14% and 15% strain, reflecting again the
effective soft-spring fixed-stress fracture conditions from the larger system size; the
CZM simulation fractures more gradually, showing a sweep from right to left. The
behavior of tke CZM simulation is similar to that of the 10 A case with fracture

beginning on the right side and slowly propagating through the center plane.

2.5 Conclusion

In this chapter, we have described a method for comparing finite element simula-
tions of polycrystal models to fully atomistic simulations of the same geometry. We
have based the material properties, including the cohesive laws for grain bound-
aries, used in the polycrystal simulation on atomistic calculations. We find that in
one case, the 10 A brittle Stillinger-Weber simulation, the agreement between the
two simulations in terms of the strain at which the fracture begins, and the pattern
of fracture is fair. However it is unclear whether this agreement is accidental.
Many of the differences between the atomistic simulations and the finite element

simulations can be attributed to the difference in choice of microparameters defin-
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Figure 2.10: Comparison of the Atomistic and CZM Simulation of the
Cube-In-Cube with a Length Scale of 20 A, using Original
Stillinger-Weber Silicon. As described in text.
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ing the grain boundary geometries (the location of the lattice origin with respect
to the int‘:erface).' Carefully matching these microparameters in future comparisons
can only partially correct for these differences — there will always be discreteness
effects in atomistic simulations that cannot be replicated in finite element simu-
lations, due to the distortion of atoms at interface corners and junctions of grain
boundaries. In Chapter 3 we describe a method for decorating regions of a fi-
nite element mesh with atoms to extract atomistic information about the cohesive
properties of geometrical features such as interface corners and grain boundary

junctions.
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CHAPTER 3
OVERLAPPING FINITE ELEMENTS AND MOLECULAR
DYNAMICS (OFEMD)

3.1 Introduction

OFEMD ! is a flexible tool for running molecular dynamics simulations within a
finite element mesh. OFEMD can perform molecular dynamics simulations with
any geometry and a variety of materials and dynamical algorithms using the Dig-
italMaterial package [7]. The finite element model may have regions representing
different grains of a single material 2. OFEMD retrieves geometry information
from a remote XML repository by sending an XQuery to a webservice or by exe-
cuting SQL commands on a remote database [24, 25, 26]. The user has the option
to decorate an arbitrary point, mesh vertex, mesh edge, mesh face, or the entire
mesh. The geometry options are to create a sphere, cylinder, or cube of atoms
with user specified dimensions, or an arbitrary shape defined by the entire finite-
element model. The motivations for the possible geometries are scenarios such as
decorating the bulk of a nanoscale model (entire mesh), a gram boundary within a
model (rectangle decorating a face), a triple junction of grains (cylinder decorating
an edge), or a more complicated multiple junction of grains (sphere decorating a
vertex). OFEMD then initializes the chosen geometry with atoms. If the cho-

sen geometry parameters span multiple grains within the finite element model,

!The name OFEMD and portions of the code are from Nick Bailey.

2In principal, the finite element geometry may have multiple materials and an
arbitrary overall geometry. If interatomic potentials for multiple materials were
to be added to DigitalMaterial, OFEMD could simulate bi-material interfaces,
junctions of multiple materials, and multiphase nanoscale systems.

o1
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OFEMD initializes each grain with a different lattice orientation *>. OFEMD then
performs an atomistic simulation in which the atoms are either deformed according
to the mesh displacements solved for by the finite element simulation, or a con-
strained zone of atoms is used to impose the same kinematic boundary conditions
(rollered boundary conditions on all faces with a strain imposed on one face, for
example) in the finite element model. OFEMD outputs the atomic positions and
stresses (if implemented in the potential) at each time step to a file readabie by
OpenDX. OFEMD can feed back to larger scale, continuum simulations in three
ways: with decision making information such as how a crack propagates at a triple
junction of grains, crack initiation, and overall comparison with small scale con-
tinuum simulations. OFEMD can also extract the grain boundary geometries for
each topological face within the model and print this information for use in a grain

boundary fracture simulation using DigitalMaterial [7] and Python.

3.2 Interface

OFEMD'’s numerous options can be accessed by passing options in a command line.
This simplifies implementing a web service interface as well as use with scheduling
software such as OpenPBS [1]. Internally, the user defined parameters are stored
in a Python dictionary object. Also, another interface such as a graphical interface
or another python script can spawn an OFEMD simulation by passing a Python
dictionary with the relevant user parameters to OFEMD.

The parameters are described in table 3.1. The user can get list of parameters

by typing at command line:

31deally, the lattice orientation should be specified in the finite element model.
If not, OFEMD randomly generates a lattice orientation.
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> python OFEMD.py —-help

usage:

python ScriptName.py [option] [valuel

options (in no particﬁlar order):

[’webService’, ’timestep’, ’height’, ’radius’, ’strainlncrement’,
’nSteps’, ’subMesh’, ’verbose’, ’atomsGeometry’,
’findGrainBoundaryGeometries’, ’verboseMover’, ’databaseUserName’,
>cylinderAxis’, ’edgeToDecorate’, ’databasePassword’, ’width’,
’rectangleAxes’, ’topologyUUID’, ’meshUUID’, ’meshSource’,
’caselID’, ’bc’, ’brittleFactor’, ’lengthScale’, ’material’,
’QMtolerance’, ’checkpointing’, ’maxQMIteratioms’,
’deformationMethod’, ’displacementScale’, ’decoratedFeature’,
’parallel’, ’randomNumberSeed’, ’databaseServer’, ’faceToDecorate’,
’center’, ’database’, ’soapAction’, ’dispsUUID’, ’attributeUUID’,

*moverType’, ’vertexToDecorate’, ’length’, ’directory’]
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Table 3.1: OFEMD Parameters

Parameter Name | Type | Default | Description
Atoms Geometry Parameters
atomsGeometry string “Sphere” Choices: “Full”, “Rectangle”, “Cylinder”, “Sphere”.
decoratedFeature string "vertex” Choices: “entire”, “point”, “edge”, “face”, vertex.
edgeToDecorate two ints 01 Two connected mesh vertex ID’s specifying an edge in the mesh.
faccToDecorate threeints {012 Three connected mesh vertex 1D’s specifying a face in the mesh.
vertex'ToDecorate int 0 Any mesh vertex 1D.
center three floats | 0.0 0.0 0.0 Any coordinate within the scaled mesh. This option is only used if
decoratedFeature is equal to “point”.
radius float 5.0 Only used if atomsGeometry is “Sphere” or “Cylinder”.
cylinderAxis three floats | 0.0 0.0 1.0 Only used if atomsGeometry is Cylinder. If decoratedFeature is
cdge, this option is overridden and the cylinder axis is given by the
orientation of the decorated edge.
length float 10.0 This option is not used if atomsGeometry is “Sphere” or “Iull”.
width float 10.0 Only used if atomsGeometry is “Rectangle”.
height (loat 10.0 Only used if atomsGeometry is “Rectangle”.
rectangleAxes nine floats | 1.0 0.0 0.0 | Only used if atomsGeometry is Rectangle. This option is overridden
0.0 1.0 0.0 | if decoratedFeature is face or edge. The nine floats must represent
0.0 0.0 1.0 the rows of an orthonormal matrix
Simulation Type
dceformationMethod | string “meshDisp” | Choices: “kinematicBC”, “meshDisp”. “kinematicBC” can only be
used if decoratedFeature is “entire”.

continued on next page
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continuned from previous page

Parameter Name Type Default Description
findGrainBoundary- | bool 0 If set to 1, OFEMD outputs a file containing the grain boundary
Geometries geometry for cach of the internal faces in the model.
Geometry and Mesh Access Parameters
meshSource string “xml” Choices: “xml” or “database”
soapAction string N/A Valid soapAction URL.
webService string N/A Valid XDocExchange web service URL.
meshUUID string N/A Valid mesh uuid for XMLRepository webservice.
dispsUUID string N/A Valid displacements uuid for XMLRepository webservice.
attributeUUID string N/A Valid attributes uuid for XMLRepository webservice.
caselD int N/A Valid case ID number for attributes file.
topologyUUID string N/A Valid topology uuid for XMLRepository webservice.
databaseServer string N/A The domain name of the server hosting the database that contains
the mesh '
database string N/A The name of the database that contains the mesh that the user
wishies to access.
databascUserName | string N/A A username that has access to the database.
databascPassword string N/A The password associated with the username given by databaseUser-
Name
Scaling Parameters
lengthScale float 1000000.0 OFEMD scales the mesh by this factor. This is helpful if the mesh

is defined with different length units than those used by the inter-
atomic potential. Must make sense with chosen geometry parame-
ters, i.e. the scale of the decorated region should be comparable to
a mesh clement size.

continued on next page
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continued from previous page

Parameter Name Type Default Description

displacementScale float 1.0 OFEMD scales the mesh displacements by this factor. Only used
if deformationMethod is “meshDisp”. '

subMesh string conncetivity | Choices: “cube”, “connectivity”, only used if atomsGeometry is
not “Full” '

Scaling Parameters

nSteps int 2 The number of steps taken in a “kinematicBC” simulation

QMtolerance float 0.01 Any float between 0 and 1. This is the tolerance used by the quick-
Min atoms mover.

maxQMIterations integer 100 The maximum number of iterations to be used by the quickMin
atoms mover.

timestep float 0.001 Any reasonable timestep.
MD Parameters

material string “SW_evA” Determines the interatomic potential used by DigilalMaterial 7).

Choices: “EDIP” (Silicon [10, 33]), “SW_nat” (Stillinger-Weber sil-
icon with natural units [43]), “SW_evA” (Stillinger-Weber silicon
with eV and Aas units [43]), “CLJ” (Lennard-Jones with a cut-
off described in Chapter 1), “HolianCLJ” (Holian cut Lennard-
Jones [28], “MEAM_AI", “MEAM_Si”",”"MEAM_W”, “MEAM_F¢”
(Modified Embedded Atom Method for aluminum, silicon, tung-
sten, and iron [9, 8]).

continued on next page
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continued from previous page

Parameter Name Type Default Description

brittleFactor float 2.0 Used only by the Stillinger-Weber potentials, brittleFactor is a pa-
rameter that tweaks the “brittleness” of the material.

be string “constrained”| Choices: “rollered”, “constrained”. “rollered” is only appropriate
if atomsGeometry is “Rectangle” or “Iull”,

randomNumberSeed | int ) Any positive integer, this changes the randomly gencrated lattice
orientations, allowing for repeatable results.

moverType string “qm” Choices: “qm"” (QuickMin), “verlet”, “cg” (Conjugant Gradients),
“langevin”, “combo” (a combination of Conjugant Gradients and
Quick Min). :

System Parameters

checkpointing bool 0 Whether to periodically save the state.

verbose int 3 Any integer between 0 and 5. Defines the level of debugging output.

verboseMover bool 0 Whether to output debugging info from the atoms mover.

directory string . The directory in which to output data from the OFEMD simulation.

parallel bool 0 1 OFEMD needs to be explicitly told whether it is running in parallel

or not.




3.3 Example Problems

The following example problems were run using a finite element geometry of a
cube consisting of 5 grains generated with a Voronoi tessellation. All atomistic
simulations were done with a MEAM [9, 8] potential for Si with a diamond lattice
as the ground state. Figure 3.1 is a sphere of atoms decorating a vertex in the mesh
where 4 grains meet. An example of a command to run this simulation (excluding

the mesh access parameters) is:

python OFEMD.py atomsGeometry Sphere decoratedFeature vertex
vertexToDecorate 10 radius 20.0 lengthScale 200000

displacementScale 50 QMtolerance 0.0001 maxQMIterations 10000

Figure 3.2 is a cylinder of atoms decorating an edge which is a triple junction.

Example command line options are:

python OFEMD.py atomsGeometry Cylinder decoratedFeature edge
edgeToDecorate 9 5 radius 20.0 length 20 lengthScale 200000

displacementScale 50 QMtolerance 0.0001 max(MIterations 10000

Figure 3.3 shows a rectangle of atoms decorating a face of the mesh that coin-

cides with a grain boundary. Example command line options are:

python OFEMD.py atomsGeometry Rectangle decoratedFeature face
faceToDecorate 16 28 98 length 30 width 30 height 30

displacementScale 100 QMtolerance 0.0001 maxQMIterations 10000

Figure 3.4 shows the entire finite element mesh decorated with atoms. An

example of a command line that would produce such a simulation is:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

A & FA S
~‘-,__‘7'_‘ 2% 1% X
B LM ¢
5 DANESS X
kS G - -
(L EE
- AR SA SR
‘Q &_! :D‘ s .
St SENA L D2
20 DTN
P @ AN
d

Figure 3.1: Sphere Of Atoms Decorating a Vertex. In this example, the
vertex constitutes a meeting point of four grains. Each hue indicates
a different grain and darker atoms indicate the constrained layer of
atoms.

python OFEMD.py atomsGeometry Full decoratedFeature entire
deformationMethod kinematicBC lengthScale 50000 nSteps 10

QMtolerance 0.0001 maxQMIterations 10000

3.4 Infrastructure

3.4.1 Retrieving the Mesh

The first step in an OFEMD simulation is to retrieve the mesh information. This is
done by the Mesher class which uses FemLib (a library of finite element routines) to

retrieve relevant mesh info from either a remote database or an XQuery webservice.
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Figure 3.2: Cylinder of Atoms Decorating and Edge. The natural shape
to use when examining a triple junction of grains is a cylinder. The
endcaps are rollered allowing for the possibility of examining how a
crack that intersects the faces of the cylinder would propagate upon
meeting the triple junction of grains.

If atomsGeometry is set to “Full”, Mesher retrieves the full mesh. Otherwise, for
efficiency, Mesher retrieves a subset of the mesh with a method that depends on the
value of the subMesh parameter. This step presents a challenge in that before we
have retrieved the mesh, we are unaware of how the scale of the typical element size
in the region we are decorating (often, element sizes vary by orders of magnitude
within a mesh) compares to the scale of the decorated region. OFEMD provides
two methods for retrieving sub-meshes: “cube”, which is more appropriate for
cases where the scale of the decorated region is comparable or larger than the
size of the elements, and “connectivity”, which is more appropriate if the scale

of the decorated region is small compared to the size of an element. If subMesh
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Figure 3.3: Cube Decorating a Face. Decorating a grain boundary face with
a rectangular cluster of atoms would allow the user to see if and how a
crack might initiate at that grain boundary under mixed mode loading.

is set to “cube”, the Mesher retrieves a portion of the mesh contained by a cube

with length determined by geometry choices made by the user (radius for sphere,

\/ra,dz'us2 + 3length? for cylinder, \/length? + width? + height? for rectangle) plus
a cutoff. If this cube contains no complete elements, the length is doubled until
at least one complete element is found. The advantage of this method is that the
mesh retrieved will contain the entire atomistically decorated region if it extends
past many elements but has the pitfall that it might not retrieve all of the needed
elements that contain the decorated region if the scale of the decorated region is

small compared to the scale of an element: it is time consuming to check that each
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Figure 3.4: Decorating an Entire Finite Element Mesh. Decorating the
entire finite element mesh is only tractable if the length scalé of the
mesh (adjustable with the lengthScale parameter) is small. For such
simulations we can make a direct comparison to finite elements.

atom is contained in an element. For simulations where the scale of the region
decorated with atoms is small compared to the size of an element, and a specific
feature of the mesh is being decorated, the “connectivity” option for subMesh is
more appropriate since it will retrieve the minimum portion of the mesh necessary
and avoids doubling the length of the cube many times. If subMesh is set to
“connectivity”, the Mesher retrieves all elements that are connected to the feature
of the mesh (vertex, edge, or face) that, is being decorated.

The mesher is also responsible for overriding the user set geometry parameters
based on which feature of the mesh is to be decorated. The center is reset to the

location of the vertex to be decorated, the center of the edge to be decorated, or
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the center of the face to be decorated. If the decoratedFeature is an edge, then
the cylinder axis or one of the rectangle axes is set such that it is aligned with
the edge. If the decorated feature is a face, then the cylinder axis or one of the

rectangle axes is set to be perpendicular to the face.

3.4.2 Decorating With Atoms

The AtomsDecorator classes initialize all of the ListOfAtoms objects (the data
structure used by DigitalMaterial [7]) and the rest of the molecular dynamics
objects used by DigitalMaterial. There are four classes derived from a base Atom-
sDecorator class corresponding to the four geometry options: SphereDecorator,
CylinderDecorator, RectangleDecorator, and FullDecorator.

The SphereDecorator, CylinderDecorator, or RectangleDecorator loops over
each material contained in the sub-mesh found by the mesher, and initializes a
sphere, cylirider, or rectangle of atoms with the given dimensions and lattice ori-
entation. It then loops over each of the atoms and removes any atoms that are
not contained within the current material. A shell of atoms for the constrained
layer is initialized in a similar manner. Note that the final dimensions of a sphere,
cylinder, or rectangle will be equal to the user specified dimensions plus a shell of
atoms with a thickness given by twice the cutoff distance of the chosen interatomic
potential. Two cutoff distances are needed to completely shield the inner atoms
from edge effects since some of the potentials have three body terms as discussed
in section 2.3. For sphere or cylinder simulations, the only boundaryConditions
option is fixed. For the sphere this fixes all of the atoms in the constrained shell in
all directions. For the cylinder, the constrained layer in the curved shell is fixed in

three dimensions while the endcaps are constrained to not move along the direction
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of the cylinder’s axis (rollered boundary conditions). For a rectangular cluster, the
constrained layers can be rollered or fixed in all three directions.

The FullDecorator fills an arbitrary geometry by performing a similar routine to
the other AtomsDecorators, except it finds a bounding box for each material region
and initializes a rectangular cluster of atoms to fill this box. The atoms outside
the current material are then removed from the rectangular cluster, allowing for
arbitrarily shaped material regions to be filled. The constrained layer is found by
detecting which atoms are within two cut-off distances of the faces of the model.
Presently, the FullDecorator assumes rollered boundary conditions. In order to
implement rollered boundary conditions, the atpms adjacent to each face are put
into a different ListOfAtoms branch. These atoms are then constrained to not
move in a direction perpendicular to the face. Separate branches are needed for
the atoms that are adjacent to more than one face such that there is a branch for
each face, edge, and corner. If an atom is adjacent to two faces, it is constrained
to move only in the direction parallel to the edge where the two faces meet. If an

atom is in a corner of the model (adjacent to more than two faces) it is fixed.

3.4.3 Deforming the Atoms

The third step in an OFEMD simulation is to deform the atoms. If deforma-
tionMethod is set to “kinematicBC” (which is only appropriate if whole mesh is
decorated), OFEMD uses the kinematic boundary conditions, a deformation on a
face or faces specified by the finite element model, to increment the positions of the
appropriate constrained zone. The atomic positions are then relaxed or integrated
forward in time according to the chosen dynamical algorithm.

The AtomsDeformer class is responsible for deforming the atoms according
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to the mesh displacements if the deformationMethod is set to “meshDisp”. The
AtomsDeformer class loops over the atoms and uses FemLib to find the natu-
ral coordinates of each atom relative to the element that contains that atom.
AtomsDeformer then retrieves the mesh displacements from the database or XML
repository. The displacement of each atom is then found by interpolating the dis-
placements of the mesh nodes to find the displacement of each atom using the
natural coordinate (relative to the element) found earlier. The positions ofl all of
the atoms (including the constrained layers) are updated according to the mesh
displacements. The constrained layers are then fixed (in one or more dimensions)
according to the user specified boundary conditions and the atomic positions are

relaxed or integrated forward in time according to the chosen dynamical algorithm.

3.4.4 Retrieving Grain Boundary Geometries

One of OFEMD’s options, findGrainBoundaryGeometries, does not decorate a
mesh or perform an atomistic simulation but simply retrieves information from the
mesh for use in grain boundary simulaﬁons using DigitalMaterial [7] as described
in Chapter 1. If this option is chosen, the only other options that are relevant are
the mesh specification options.

The GrainBoundaryGeometryFinder class is responsible for retrieving grain
boundary geometry information from the mesh. The GrainBoundaryGeometry-
Finder retrieves the basic mesh information using FemLib and then loops over
each of the internal topological faces in the model. For each face, it finds the
vector normal to the face and a rotation matrix that rotates this vector to the z-
axis (assuming that the grain boundary python script places the grain boundary on

the y2-plane). GrainBoundaryGeometryFinder then rotates the lattice orientation
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vectors for the two materials that meet at that topological face and outputs this

information to ascii files labeled by the face ID number.
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CHAPTER 4
THE BRITTLE-DUCTILE TRANSITION FOR GRAIN
BOUNDARIES

4.1 Introduction

A classic model of brittle vs. ductile behavior was proposed by Rice and Thom-
son [38] in which the determining factor for brittle or ductile behavior at zero
temperature is whether or not there is an energy barrier for dislocation nucleation.
In cases where there is an energy barrier, a brittle to ductile transition temperature
can be found. This model gives good estimates for whether or not a material is
brittle at zero temperature but bad results for the transition temperature. We will
review this model in detaﬂ and adapt it for fracture at grain boundaries. Since
this model depends on surface energies and grain boundary energies, we have cal-
culated these energies atomistically for several geometries in Al, Si, Fe, and W. We
then use the adapted model and atomistic surface and grain boundary energies to
estimate which grain boundaries are brittle or ductile at zero temperature and to
find the transition temperature.

An estimation of whether a grain boundary is brittle or ductile at zero temper-
ature is useful in preparing for atomistic simulations of grain boundary fracture.
Atomistic simulations of ductile fracture are not computationally feasible because
the dislocations spread out rapidly, increasing the size of the simulation needed for
accurate results. Even simulations of brittle fracture, done in parallel, can take 12
hours or more to complete. Measurements of surface and grain boundary energies
take only minutes, allowing for an estimate of whether or not a grain boundary

geometry is brittle to be made very quickly before a much more time consuming
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fracture simulation is made.

4.2 Rice and Thomson’s model

Rice and Thomson describe brittle vs. ductile behavior of cracks as a competition
between cleavage of atomic planes and the emission of dislocations at the critical
stress intensity for a brittle crack to grow [38]. If a dislocation loop with a Burger’s
vector having a component normal to the crack line is nucleated and expands, an
atomically sharp crack will be blunted. The external stress necessary to cause
such a crack to grow is substantially increased. Materials for which this scenario
is probable are considered ductile. If a dislocation loop does not nucleate and
expand, the crack will continue to grow in a brittle fashion.

The nucleation and growth of a dislocation loop at a crack tip is described
by an energy function derived by Rice and Thomson[38]. They assume that the
dislocation loop is a half circle in a slip plane which intersects the crack front as
shown in figure 4.1. The total energy of this configuration consists of three parts:
the self energy of the dislocation loop, the surface energy of the ledge created when
the crack is blunted, and the energy of the dislocation loop in the stress field of
the crack.

In a dislocation loop, the stress field of each part of the loop exerts a force on
the rest of the loop. The self energy of a dislocation loop is the work done against

these forces [27]. The interaction energy of two dislocation loops is given by

Wio= [ dAibi0n, (4.1)
1

where A; is the area within loop 1, b; is the Burger’s vector of loop 1, and o3 is

the stress field produced by loop 2. If the Peach Koehler formula for the stress of
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dislocation loop

crack plane

Figure 4.1: Crack and Slip Plane Geometry. The geometry of the dislocation
loop is defined by the inclination of the slip plane relative to the crack
plane ¢, the radius of the dislocation loop r, the Burger’s vector of the
dislocation loop b and its inclination within the slip plane, .

a dislocation loop is inserted into equation 4.1,'the result is

_ ﬁ_ (b1 X bz) . (Cﬂl X dlg) _/i (bl . Cﬂl)(bz . dlg)
le - 27 ‘%Ch %;2 R + 47 ‘7{;'1 Ca R
ok a2 5
o 47(l - v) }g:l fcz(bl X dh) Ox;0z; (by i) (42)

where R is the distance between dl; and dl,, u is the shear modulus of the material
and v is the Poisson ratio. The self energy of a loop can be obtained from this by
setting C; = Cy = C and b; = b, = b and dividing by 2 since equation 4.2 counts

the interaction between two given elements twice. This gives

_ b fd)bd) g PR
Ws_g;r-j{:fc R - '87r(1—z/)j{:f(:(bx.6ih)'8:c,-6xj (bxdl,). (4.3)

For a circular dislocation loop (figure 4.2) this is

2 [14+27R—Ry <
w, = & }( sin 8 dl; / sinbs o,
87 Jc l

w 1+Ro R
. #bz 11+2zR-Ro cos 6,
= fc cos 6dly /u% =i, (4.4)
R = 2Rsn® ; 2! dl = Rd6;  dl, = Rd#,,

where Ry is the core cutoff of a dislocation. The integration limits are such that

the interactions of elements of the loop that are within a core cutoff distance of
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each other do not contribute to the integral. Performing the integration gives:

2—-v 8r
3 -
Userg = ub .r 31 ) In e2&y’ (4.5)

the self energy of a circular dislocation loop with radius » = R/b and core cutoff
& = Ro /b in units of Burger’s vector b. This formula is also appropriate for a
dislocation half circle at a surface as it represents the self energy of the half circle

and its image.

YA

dll R’ di2

R 01 02

Figure 4.2: A Circular Dislocation Loop. To find the self energy of a disloca-
tion loop, we perform a double integral over the same loop. We assume
that the Burger’s vector is in the direction of the z-axis.

The energy of the ledge left behind at the crack front, by the dislocation loop

(figure 4.3) is given by

Utedge = 27b% cos ¥ sin ¢(r — &)- (4.6)
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The surface energy per unit area is 7. The height of the ledge is bcos ) sin ¢ since
2 is the angle of the Burgers vector with the crack front * and ¢ is the inclination of
the slip plane. The width of the ledge is 2br, since r is in units of b. & is subtracted
from 7 because the ledge is only fully formed when r is greater than the cut-off
radius. Rice and Thomson [38] explain equation 4.6 in terms of the misfit function
for a Peierls model of a dislocation rather than as a surface energy times an area.
They take the factor of sin ¢ to “approximately represent the modification of ledge
energy from - cos ¢ due to slip plane inclination”. It is unclear whether this factor
is actually necessary in terms of the area description as the inclination of the single
atom wide ledge is undefined. Also note that v is an average surface energy, used
here to represent the surface energy of a single row of atoms. As a continuum
approximation of a single atomic plane blunting the crack tip, this constitutes a
serious limitation of the model. A more accurate model would include atomistic
calculations of the energy associated with a row of atoms blunting the crack tip.
The shear stress, given by elastic theory of normal (mode I) loading of a crack

tip, at a distance p on the slip plane (figure 4.1) is

-1/2

0po = K1(87p)™"/*sin ¢ cos ¢/2 (4.7)

where K is the elastic stress intensity factor 2 and p must be small compared to
the overall crack length. The stress intensity factor that would cause the crack

to grow (if no dislocations were emitted) can be found by solving the Griffith’s

'Rice and Thomson [38] first treat the dislocation emitted from the crack tip
as a line parallel to the crack front. In this case, cos® is the edge component of
the dislocation.

2The stress around a crack tip is often written in the form K 17 711(277) "2 (6),
where K, K, and Kj;r are the stress intensity factors of the three modes of
loading: normal, shear parallel to the crack line, and shear perpendicular to the
crack line. Because of the 7~'/2 singularity in the stress field, the stress at a crack
tip is often described in terms of the ’stress intensity factors™: Ky, K, and Kjyy.
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Figure 4.3: Ledge Left Behind at Crack Front by an Emitted Dislocation
Loop. As a dislocation is emitted from an atomically sharp crack front,
the crack front is blunted, creating a ledge with a height roughly equal
to becos . Rice and Thomson [38] include a factor of sin ¢ to represent
an adjustment to the ledge energy due to slip plane inclination. It
is unclear whether this factor is necessary and it appears that the
energy measurement of an atomic scale ledge can best be achieved
atomistically.

criterion 3:

2
1—1/ 2

where E is the Young’s modulus of the material. The energy to expand the loop

from a radius of & to 7 is

U, = /&:/:awbu_rdrdt?

Ev 1, : T
" / 2 _
{47(1 —1/2)} b® cos ¢ sing cosq&/-/;drfo dé — (4.9)

b, = bcos? is the component of the dislocation which is perpendicular to the

crack front, p = brsin 6. Integrating equation 4.9 gives

2
U, = —0.9862\/1—:—1—/—;1123‘ /% sin @ cost cos ¢/2(r%% — £5/%). (4.10)

The total energy of the dislocation loop is then:

Uacz = pb3 {TUO In E_- + U{(T - §0) - _U 3/2 53/2

3The Griffith’s criterion states that the plane strain, —K 2 relieved by fracture
equals the energy of the surfaces created.
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2—v
o = 8(1—v)’
U = .‘Zlcos'z/) sin ¢,
ub
2.092
U, = 2.09 lsingbcoszbcosqb/.? (4.11)

VI—v\ pb

(8/€?) =~ 1. For certain combinations of the properties of the material, the ge-
ometry of the slip plane, and the surface energies of the crack, the energy will
be monotonically decreasing in = as shown in figure 4.4 on the left. This implies
that dislocation loops can be spontaneously emitted at zero temperature aild the
material and crack geometry are considered ductile. For other combinations of the
parameters listed above, there will be a stable and unstable equilibrium, shown in
figure 4.4 on the right, meaning that in order for a dislocation loop to nucleate and
grow, it must overcome an energy barrier, U,. Such materials and crack geometries
will be brittle at zero temperature. This change in behavior comes in the form of
a saddle node bifurcation of the energy function 4.11.

For materials and geometries that do not spontaneously emit dislocation loops,
a transition temperature may be found from the energy barrier. The transition
temperature is the temperature at which the average waiting time for a dislocation
loop to nucleate is equal to the time a brittle cfack takes to propagate through a
distance comparable to the size of the dislocation loop [3]. Solving

t= Ee(%) = &S, (4.12)
c v

where c is the speed of sound, gives a brittle to ductile transition temperature of

U, 2r.c\\ ! :
=% (29" s
Another formula for the brittle to ductile temperature is given by Argon[4]:
Top = [ ~in(c/v) + - B (4.14)
0 =\7, T .
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Uact

Figure 4.4: Ductile and Brittle U, (r). The figure on the top shows the form of
Uget (1) for inherently ductile materials. The plot on the bottom shows
the form of U, (r) materials that are brittle at zero temperature and
have a transition to brittle-ductile transition at a temperature given

by D,b.
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where T, is the melting temperature and 7 is a parameter close to 0.5 which
relates to the temperature dependence of the shear modulus. No explanation is
given in [4] for the term involving Ti,.

We will find in section 4.4 that the Rice and Thomson model gives appropriate
qualitative (brittle vs. ductile) behavior for different materials but gives energy
barriers for brittle materials leading to transition temperatures that are above the
melting temperatures for Si and W. This is due to several limitations of the model.
One limitation of this model is the simplified geometry. Argon [4] calculatea nu-
merically the energy barrier for three different crack and slip plane geometries: a
slip plane which contains the crack line (the one discussed here), a slip plane which
intersects the crack plane but does not contain the crack line, and a crack plane
with a ledge. He finds that of these three geometries the geometry with a slip
plane which contains the crack line gives the highest energy barriers with values
of Tgp, found with equation 4.14, above the melting temperature. The geometry
with the crack plane containing a ledge gave the most reasonable energy barriers.
Scandian et. al. [17] showed experimentally that Tgp was lowered as the density of
defects along the crack line was increased. Another feature lacking in the Rice and
Thomson model is the mobility of dislocations [4, 22]. If dislocations are emitted
but do not relieve the stresses at the crack tip, brittle fracture will still occur [4].
Gumbsch(22] found that at low temperatures, dislocation nucleation governed brit-
tle vs. ductile behavior while at higher temperatures dislocation mobility was the
determining factor. Lastly, an accurate energy barrier for dislocation nucleation

must be obtained by atomistic methods, rather than continuum methods.
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4.3 Fracture at Grain Boundaries

We have extended Rice and Thomson’s model to predict whether grain boundaries
are brittle or ductile. Since the ductileness or brittleness of a crack depends on
the geometry and the fracture energy, and grain boundaries are often more suscep-
tible to fracture than single crystals, it is possible that certain grain boundaries
geometries in an inherently ductile material are brittle. We are also interested in
cases where a certain orientation of an inherently brittle material may fracture
in a ductile manner. Such predictions are useful for atomistic modeling of grain
boundary fracture since only brittle fracture is computationally feasible.

In order to model fracture at grain boundaries, equation 4.11 must be modified.
The surface energy (or half the Griffith’s energy) in the stress field term must be
replaced by the fracture energy of a grain boundary, g = 1(71 + 72 — Eg) where
7, and v, are the surface energies of the two grains and Ey, is the energy of the
grain boundary. The surface energy in the ledge term is considered a constant of

~ the material, . Here the surface energies used by Rice [38] are used for ;.. The
energy barrier for dislocation nucleation at grain boundaries is:

t)
Ue = ub® [onlng—:) + Ui(r — &) — 50}(7'3/2 -8,

2—-v .
(D

U = ot cos ¢ sin @,
ub
2.092
2092 [Zet sin ¢ cos ¥ cos ¢/2. (4.15)

V1i—v\ ub

U, =

The bifurcation between spontaneous emission of dislocations and the activated

state occurs when both 2zt = (0 and £ = 0 for the same r. Solving for the
dr dr o
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grain boundary fracture energy gives

b ¢ (2—v)? 16(1 — ,
’ngc = —Gﬁg CSC2 ¢ Sec2 g SeC2 w(_i___% exp (_1 =+ —‘STV_U)_ZL/_Ib Sin¢ cosv | .

-~

(4.16)

From equation 4.16, and the material properties given by Rice [38] and shown

in table 4.1, we can find the minimum fracture energies (minimizing over ¢ and )
which allow ductile behavior for Si, Al, Fe, and W. These are shown in table 4.1.
We have mentioned in section 4.2 how the sin ¢ factor in the ledge energy may not
be necessary. Removing that factor,b and calculating the critical fracture energy
again gives an estimate of the error in the Rice and Thomson model. This value,

'yg,z is also shown in table 4.1.
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Table 4.1: Material Properties and Minimum Griffith’s Energy for Ductile Behavior.

Material 07 It v b & Yobe ')'((12
crgs/cm? | dynes/em? x 10! A | Burger’s vectors | ergs/em? | ergs/cm?
Si 1200 6.05 0.215 | 3.83 0.25 4689 4801
Al 840 2.51 0.347 | 2.85 2 263 279
Fe 1975 6.92 0.291 | 2.49 2/3 1907 2020
W 1700 16.0 0.278 | 2.74 2/3 3055 3106

8L
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Initially, the same value of 795 was used for 7;. In this case an analytic form for
~Ygb. could not be found. Even a criterion for whéther or not there was a solution
for g could not be put in an analytic form. Solving numerically showed that for
Al, Fe, and W, there was a range of 7, that gave ductile behavior. For Si, this
form of the dislocation loop energy did not give ductile behavior for any value of
Ygb.- Lhis is because of the positive contribution of the ledge term which depends
on the surface energy. Because using g in the ledge term gave this unphysical
dependence on the grain boundary energy, a single value of the surface energy was

used for all geometries of each material.

4.4 Results

In order to calculate energy barriers and transition temperatures using equa-
tions 4.15 and 4.13, we need to calculate surface energies and grain boundary
energies. This was done using the DigitalMaterial [7] package with the MEAM
potential[9, 8] for all four elements. Two cubes of size 12 A were initialized with
the appropriate lattice rotations and set at a distance of 0.5 A apart (no gap was
used for the simulations of perfect crystals). At each face, other than the faces
making up the grain boundary, a layer of atoms two cut-off distances thick was
placed and constrained to not move along the perpendicular direction. In engineer-
ing terms this is known as “rollered” boundary conditions and is used to simulate
the material in the bulk by suppressing the Poisson effect. The rollered boundary
conditions were used instead of periodic boundary conditions so that the simula-
tion was not limited to lattice orientations that fit in periodic boxes. The atoms
were then allowed to relax, and the grain boundary energy was found by taking the

total potential energy of the atoms (not including those in the rollered boundary
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layers) minus the energy of a perfect crystal with the same number of atoms. The
same procedure was repeated to find the surface energies, only the two grains were
translated many cut-off distances apart before they were relaxed and the energy
measurement was taken. The grains were initialized with the same gap so that
the same surface cut was used for both the grain boundary energies and the sur-
face energies. The orientations were chosen to explore high index and low index
surfaces as well as irrational orientations. The entire calculation of both surface
energies and grain boundary energies takes only about 10 minutes to perform.
The results for the measurements of surface energies, grain boundary energies,
the corresponding energy barriers, and brittle-to-ductile transition temperatures (if
any) are given in table 4.2. The energy barriers given here are lower bounds. The
value of ¢y which minimizes the energy barrier is always 0. This corresponds to a
Burger’s vector that is perpendicular to the crack line. Thus the lower bound for U,
is the saddle point in Uy (7, @, % = 0). The minimizing ¢ is shown in table 4.2 and
appears to always be near 69°. Note that there may not actually be a slip plane at
this inclination with a Burger’s vector perpendicular to the crack line and the true
slip plane and Burger’s vector inclinations would give a higher energy barrier. U,fz),
), ¢$,"2n, and Tgl)) are the energy barrier, critical radius, minimizing slip plane
inclination, and brittle-to-ductile transition temperature given by equation 4.15 if
the sin ¢ factor is not included in the ledge term. These values give estimates of

the error in the Rice and Thomson model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

Figure 4.5: Uuuw(r,¢) for Grain Boundaries with a Brittle-Ductile Tran-
sition The lower bound of the transition temperature is given by the
saddle point in Uu(r, ¢) because we are looking for the minimum in
¢ and the barrier energy as a function of r.
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Table 4.2: Surface Energics and Resulting Energy Barriers for Two Slightly Different Models.

Material | Orientations Yab Uy Te Omin | T U,fz) 1‘£2) ggn T,(32,),
(ergs/cm?) | (eV) | (b) (K) (eV) (b) (K)
[1,0,0] 2229 12.1 1 4.6 | 68.8 | 5798 12.7 4.7 [70.5 | 6082
Si V7,1, 5] 1299 52.1 | 11.8 [ 69.1 | 24069 | 53.6 1.9 | 705 | 24777
1,17,83) 1360 46.8 | 10.9 [ 69.1 | 21679 | 48.2 11.1 [ 70.5 | 22338
1,0,0] [1,1,1] 10569
Al 1,0,0] [VT7,1, 57—%*—1] 689 Inherently Ductile Inherently Ductile
—/13,0,1] 778
V7,1, %55
1,19,73] [0,23,107] | 926
1,0,0] [1,1,1] 1991 0.00788 [1.09 [70.5 [4.2
Fe [1,0,0] [V7,1, 3/%1—'-] 2131 Inherently Ductile Inherently Ductile
[~V/13,0,1] 1923 0.0493 | 1.37 | 70.05 | 26
V7,1, ¥eH
1,19,73] [0,23,107] | 2283 Inherently Ductile
1,0,0] [1,1,1] 1864 14.5 [ 8.2 |69.2 | 7061 15.3 83 | 705 |T7415
W 1,0,0] [V7,1, Bt | 1635 24.1 | 10.8 | 69.3 | 11608 | 25.1 109 | 705 | 12074
—/13,0, 1j 1583 27.1 | 114 | 69.3 | 12976 | 28.1 11.6 | 70.5 | 13472
V7,1, Y5l
1,19, 73] [0,23,107] 1994 10.7 [ 7.1 | 6G9.2 | 5267 114 7.2 |70.5 | 5b34
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Equation 4.15 gives approximately correct qualitative behavior for the differ-
ent materials. Silicon and tungsten are very brittle at zero temperature, while
aluminum is ductile. We find that iron is the only material for which certain grain
boundaries are brittle and certain are ductile, at least using the modified ledge
energy. For those grain boundary geometries that are listed as inherently ductile

in table 4.2, only a range of ¢ gives ductile behavior. For instance, the grain

boundary with miller indices [-/13,0,1], [V7, 1, ‘/32"‘1] (with the unmodified ledge
term) is only ductile if there is a slip plane with an inclination in the range of 60°
to 69°. If the true slip plane is outside of this range, the grain boundary will be
brittle at zero temperature and have an energy barrier for emission of a dislocation
loop.

These results are relevant to future work in atomistic simulation of grain bound-
ary fracture because they suggests that there are no brittle grain boundaries in Al
Therefore atomistic simulations of Al grain boundaries are not computationally
feasible. Previous attempts at grain boundary fracture of Al confirm this. The
results also suggest that no orientations of Si or W are ductile at zero tempera-
ture, meaning that Si and W are good choices of materials for atomistic fracture
simulations. The most interesting results are for Fe, the brittleness or ductileness
of which may depend on grain boundary geometry. Atomistic simulations of grain
boundary fracture may be possible for some geometries and not others. Before
performing a lengthy fracture simulation, a quick measure of the surface and grain
boundary energies could be done to check whether or not a given grain boundary
geometry has a fracture energy near the cutoff. Atomistic simulations of grain
boundary fracture in iron could also be used to test the accuracy of the cutoff

given by equation 4.15.
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The surface energies found above can be used to find a bound for the grain
boundary energies needed to allow for brittle fracture in bimaterial interfaces,
specifically Al-Si. Using the lowest surface energies found for Si and Al, and the
fracture energy cut off for Al, (since the ductile behavior will occur in the Al half)
263 ergs/cm?, the minimum grain boundary energy which would predict brittle
fracture is 1572 ergs/cm?. Since this is in the range of other grain boundaries
energies for single element, Al-Si interfaces with such an energy are plausible.

While the qualitative behavior is reasonably predicted by equation 4.15, the
energy barriers and corresponding brittle-to-ductile transition temperatures for Si
and W are nowhere near experimental values. In fact, they are above the melting
temperature for each element. Transition temperatures found with thermal gra-
dient crack arrest experiments for Si, range from 843 K to 1034 K [20]. For W,
experiments find a brittle-to-ductile transition temperature ranging from 370 K to
470 K [22]. The crack velocity used to calculate Tgp was 1 x 10725 m/s, similar
to the experimental values found in Argon’s experiments [20]. The transition tem-
peratures for the brittle Fe grain boundaries are actuglly lower than experimental
values. Thermal gradient crack arrest experiments with Fe-3wt.%Si range from
106K to 130K [37]. These experiments found a crack velocity on the order of 1le™>

m/s. With such a velocity, equation 4.13 actually gives a negative value.

4.5 Conclusion

We have found a way of predicting whether a grain boundary or bi-material inter-
face is brittle at zero temperature based on an adaptation of the classic model by
Rice and Thomson [38] and a relatively fast atomistic calculation. We have seen

that Rice’s model has a number of limitations. A better method of calculating the
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energy barrier of a dislocation loop would involve atomistic measurements rather
than continuum approximations. One suggested strategy for calculating the energy
barrier is the nudged elastic band method [32]. Two configurations of a cracked
cube of atoms, one with a dislocation loop at a radius greater than the estimated
critical radius, one without would be initialized. The minimum energy path of
configurations between them would be found by the nudged elastic band method.
This path would give an atomistic calculation of the energy barrier of a dislocation

loop emitted from a crack tip.
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APPENDIX A
COMMENSURABILITY OF 3D GRAIN BOUNDARIES

A.1 Introduction

A grain boundary is commensurate if the structure has repeating, long range order,
as shown by Wolf [46] this includes not only grain boundaries for which the pair
of surface cells constitute a commensurate pair of rectangles, but may include
parallelogram surface cells. Note that such a grain boundary cannot be simulated
in periodic boundary conditions. A grain boundary can be simulated in periodic
boundary conditions if each surface has a unit cell that can be described by two
orthogonal surface vectors which have the same distances in both directions. In
this appendix, we present an algorithm for finding all possible 3D grain boundaries

that can be simulated in periodic boundary conditions, for a simple cubic lattice.

A.2 Algorithm

The steps needed for systematically finding all commensurate grain boundaries

with a surface unit cell with area under a given cutoff, An,, are:

1. Find all surfaces with a primitive unit cell with area less than Apq, with

corresponding lattice vectors, $] and $; that define the primitive unit cell.

2. For each surface found in step 1, find all new surface unit cells defined by

linear combinations of §7 and $3.

3. Find all pairs of the surface unit cells found in step 2 that are compatible,

allowing for small strains.

86
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Given a normal lattice vector 7, we must find the two orthogonal vectors that
describe the minimum unit cell of the surface. We find a pair of orthogonal surface
vectors by taking the cross product of 77 and a low index lattice vector ¢. A pair
of orthogonal surface vectors are then given by §1 =7 x ¥ and §3 = 7 x §7. The
area of the unit cell is then given by |$1||$3]. In order to quickly find a pair of
orthogonal surface vectors describing a small unit cell area, we try a few different
low index lattice vectors for ¥, specifically all permutations of- (1,0,0) and (1,1,0)
that are not equal to 7. In order to guarantee that we have the smallest unit cell,
we then loop through all pairs of orthogonal surface vectors for which the largest
component of the vector is smaller than the area of the current surface unit cell.
If a smaller unit cell is found, the search recurses to find only unit cells that are
still smaller. We can extend the whole algorithm for finding commensurate grain
boundaries for simple cubic lattices to any lattice with cubic symmetry (FCC,
BCC, Diamond) in this step if we search over not only integer vectors, but all
lattice vectors for the particular type of lattice we are interested in.

Utilizing a function that returns the orthogonal surface vectors that define the
smallest unit cell, we can loop over all normal lattice vectors to find all the surfaces
that have a primitive unit cell with an area under a given cutoff. Because of cubic
symmetry, we can avoid duplicate surfaces by only looping over miller indices
(¢,7,k) where i >= j >= k and all ¢, 7,k are positive integers with a greatest
common denominator greater than 1.

Once we have a list of all the surfaces that have a unit cell with an area under
the given cutoff and the surface vectors that define the primitive unit cell for each
surface, we can loop over this list to find all linear combinations of the unit cell

vectors that define a new unit cell that is still under our area limit. If the primitve
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unit cell for a given surface is described by the vectors §7 and $3), we are looking for
S = k151 + koS3 and Sp = 117 + lo85 such that S; - $, = 0 and |$;||S5| is less than
the given maximum area. Specifically, for each surface, we loop over k;, k; and
lo. In order to avoid finding duplicate linear combinations and to guarantee that
(81, S5, ) form a set of right handed, orthogonal vectors [show figure of quadrants]
we only allow S to be in the first quadrant or parallel to §; and S to be in the
second quadrant or parallel to 3. This translates to loop limits of (1, [knez])
(where kmgz is Amez/(|51]]82])) for k1 and I, with ko having loop limits (0, [£maz |)-

l; is then set to be
_kalo] 53}
kisif?

h= (A1)

If the resulting area, |5;[|S,]| is less than Ay, then the linear combination infor-
mation is stored in a list.

Once we have a list of all possible surface cells with an area less than A,
we can compare each pair to see if they are compatible. First, in order to speed
up the search for compatible pairs, we sort the list of surface cells by area. A pair
of surface cells will only be compatible if |4; — Ag|/Avg <= 2 * €maz + €,a7°.
This allows us to limit our search more effectively. Then, if both dimensions of
the unit cell for both surfaces are within the strain limit, the grain boundary is
commensurate and can be simulated in periodic boundary conditions.

Five parameters are necessary to define a 3D grain boundary. One convenient
choice of parameters for defining grain boundary geometries are the two normal
vectors 77 and 7> (each constituting two parameters when normalized) and the
twist angle, ¢. The twist angle is defined to be zero when the grain boundary is
a pure tilt grain boundary. These five parameters are enough to specify a grain

boundary, however it is also useful to find the tilt axis and tilt angle. The tilt axis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

is given by [46]

and the tilt angle is defined as
Y=sin"t|m xm. (A.3)

In order to calculate the twist angle we find the rotation matrix that performs
only the tilt rotation. Specifically, we find the rotation matrix R that takes the
orthogonal basis defined by {¢, —n1,tx 13 } to {t, 7%, £ x5 }. We apply this rotation
matrix to SII (the first of the pair of surface vectors defining the unit cell for the

first surface) to find S_{ll = RS;;. The twist angte is then found by comparing 5—1.1,

to 8-2'12
¢ = cos™? (———511, . 531 ) (A.4)
1S11 {|S21 ]

A.3 Commensurate Grain Boundary Results

A.3.1 Simple Cubic Crystals
A.4 Code

To illustrate exactly how the algorithm described in section A.2 is implemented,

we provide the python code.

from math import *
from exgcd import *
from Numeric import =*

def FindMinimumOrthogonalSurfaceUnitCell(mi,maxarea):
# takes miller index and returns surface vectors that represent

# minimum unit cell for surface we assume that mi[0] is never O

vlist=[(0,1,0),(0,1,1),(0,0,1),(1,0,1)]
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Figure A.1: Dependence of the Number of Commensurate Grain Bound-
aries on Interface Area and Allowed Strain As the allowed strain
is increased, the number of commensurate grain boundaries rises more
rapidly with maximum interface area.

minarea=1e10

for v in vlist:
sl = dividebyGCD(cross(mi,v))
s2 = dividebyGCD(cross(mi,s1))
area = norm(sl)*norm(s2)
if area < minarea:
minarea = area
Si=s1
S2=s2

#return S1,S2
return FindIfSmallerOrthogonalUnitCellUnderCutoff (
S1,S2,mi,maxarea)

def FindIfSmallerOrthogonalUnitCellUnderCutoff(sl,s2,mi, maxarea):
# takes surface vectors and finds if there is a smaller unit

# cell for surface

area = norm(sl)*norm(s2)
minarea = area
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Surfaces With a Unit Cell Area Under 100 Units

40 . ; ; ,

50

Figure A.2: Stereographic Projection of Surface Normal Vectors for
Which the Surface has a Primitive Unit Cell with Area
less than 100 Lattice Constants The sterographic projec-
tion is found using the relation (i3 + j% + k®)~Y2 % (i,5,k) =
(sinacos B,sinasin B,cosa). In order to plot this particular stero-
graphic projection, we have limited (7,7, k) to k <=j <=1.

minsi=sl
mins2=s2
limit = mir(int(ceil(area)),int(ceil (maxarea)))
for j in xrange(0,limit):
for k in xrange(0,limit):
# we assume that mi[0] is never O
if (j*mi[1]+k*mi(2]) % mi[0] == O:
i = =(j*mi[1]+k*mi[2]) /mi[0]
if not (i==0 and j==0 and k==0):
S1 = dividebyGCD((i,j,k))
S2 = dividebyGCD(cross(mi,S1))
newarea = norm(S1)=*norm(S2)
if newarea - minarea < -.1:
if newarea < 0.75*1limit:
return \
FindIfSmallerOrthogonalUnitCellUnderCutoff (\
S1,S2,mi,maxarea)

else:
minarea = newarea
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Pure Tilt Grain Boundaries
Surfaces Commensurate with the [100] Surface.
“0 g T g T ‘ I /;//1 *
304 / -
J d ]
g d
80+ / -
[
=]
/./ _ ]
0 L | i ] a | . 1 .
0 10 20 30 ) S0
asin(B)

Figure A.3: Stereographic Projection of Surfaces that are Commensu-
rate with the (100) Surface in a Pure Tilt Grain Boundary.
Since the space of 3D grain boundaries is five dimensional, it is most
convenient to examine the results by plotting a 2D cut of the 5D space.

minsl = S1
mins2 S2

return minsl,mins2

def FindSurfacesOrthoCells(limit):
geometries = []
millerIndices = [J
file = open("SurfacesUnder"+repr(limit)+".dat","w")

# these loop limits create vectors with i >= j >= k and
# i cannot be O.
for i in xrange(l,int(ceil(limit))+1):
for j in xrange(0,i+1):
for k in xrange(0,j+1):

if (i,j,k) !'= (0,0,0):
mi = dividebyGCD((i,j,k))

if mi not in millerIndices and norm(mi)<=limit:
millerIndices.append(mi)
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Mixed Type Grain Boundaries
[100] and [110] Surfaces
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Figure A.4: Tilt Angles and Twist Angles of All Boundaries between the
(100) and (110) surfaces.

s1,s2 =\
FindMinimumOrthogonalSurfacelUnitCell(
mi,limit)
area = norm(sl)*norm(s2)

if area<=limit:
# change to dictiomary
geometries.append([mi,si,s2,areal)
file.write(repr(mi)+" "+repr(si)+
" “+repr(s2)+" "+repr(area)+

" \nn )
return geometries

def FindOrtholLinearCombinations(surface,maximumArea):
# given a set of surface vectors, find all linear combinations
# of the surface vectors that give a new unit cell with an area
# under maximumArea

mi=surface[0]

al=array(surface(1])
a2=array(surface[2])
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normsgal = normsq(al)

normsqa2 = normsq(a2)
unitArea=surface[3]

limit = float(maximumArea)/unitArea

linearCombinations = []

# we only need to search the ki1 and k2 positive quadrant for
# the lc that will constitute Al
# we include (1,0) in the search, but not (0,0) or (0,1)
for k1 in xrange(l,int(ceil(limit))+1):
for k2 in xrange(0,int(ceil(limit))+1):
# if k1 is positive, 12 can only be positive in order
# for A2 to be orthogonal to
# Al and for the system to be right handed
for 12 in xrange(l,int(ceil(limit))+1):
# ensure that ki1, k2, 11, and 12 give linear
# combinations of al and a2 that are orthogonal and
# have integer components
if (12*k2*normsga2) % (ki*normsgal) == O:
11 = -12x(k2*normsqa?2)/(ki1*normsgal)
Al = klxal+k2*a2
A2 = 11%al+12*a2

crossproduct = cross(Al,A2)
area = norm( crossproduct )
normAl = norm(A1)
normA2 = norm(A2)

if area <= maximumArea:
normAl = norm(Al)
normA2 = norm(A2)
linearCombinations.append((
mi, (k1,k2,11,12),1list(A1),1ist(A2),
normAl,normA2,area))

return linearCombinations
def CompareArea(lcl,1c2):
if 1ci[6] > 1c2[6]:
return 1

elif lci[6] == 1lc2[6]:
return O
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else:
return -1

def FindCommensurateBoundariesOrtho(maximumArea, strainLlimit):

surfaces = FindSurfacesOrthoCells(maximumArea)
geometries = [J '
linearCombinations = []

macroparams = []

numiCs = 0

file = open("BoundariesUnder"+repr(maximumArea)+".dat","w")

# loop over surfaces and find linear combinations for each
for i in xrange(len(surfaces)):
1c = FindOrtholLinearCombinations(surfaces[i],maximumArea)
linearCombinations.extend(1lc)
numlCs += len(lc)

linearCombinations.sort(CompareArea)

for i in xrange(len(linearCombinations)):
for j in xrange(min(i+1,len(linearCombinations))):

areal = linearCombinations[i] [6]
area? = linearCombinations[j] [6]

if 2*fabs(area2-areal)/(area2+areal) < 3*strainlimit:

linearCombinations[i] [0]
linearCombinations[j] [0]

mil
mi2

tiltl = cross(-ixarray(mil),mi2)
if tiltl !'= (0,0,0):
tiltAngle = asin( norm(tiltl) / \
(rorm(mil)*norm(mi2)))
tiltAxis = dividebyGCD(tiltl)
else:
tiltAngle = O
tiltAxis = (0,0,0)

Al = linearCombinations[i] [2]
A2 = linearCombinations[i] [3]
normAl = linearCombinations[i] [4]
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normA2 = linearCombinations([i] [5]
Bl = linearCombinations[j] [2]

B2 = linearCombinations[j] [3]
normBl = linearCombinations[j] [4]
normB2 = linearCombinations[j] [S]
area = linearCombinations[j] [6]

#if normAl == normBl and normA2 == normB2:
if (2xfabs(normAl-normB1)/(normAl+normBl) <=
strainlimit and
2xfabs (normA2-normB2) / (normA2+normB2) <=
strainlLimit):
# twist angle
twistAngle = CalculateTwistAngle(
tiltAngle,tiltAxis,mil,mi2,A1,B1)

xxstrain = 2*fabs(normAi-normB1)/ \
(normAl+normB1)
2xfabs (normA2-normB2)/ \
(normA2+normB2)

|

yystrain

# check that it’s a unique boundary
if (mil,mi2,twistAngle) not in macroparams:
geometries.append([mil,mi2, (A1,A2), (B1,B2),
tiltAxis,tiltAngle,
twistAngle,xxstrain,
yystrain,areal)
macroparams.append((mil,mi2,twistAngle))
file.write(repr([mil,mi2,tiltAxis,
tiltAngle,twistAngle,
xxstrain,yystrain,area] )+

] \nu )

#if normAl == normB2 and normA2 == normBl:
if (2*fabs(normAl-normB2)/(normAl+normB2) <=
strainlimit and
2xfabs (normA2-normB1) / (normA2+normBl) <=
strainLimit):
# twist angle
twistAngle = CalculateTwistAngle(
tiltAngle,tiltAxis,mil,mi2,A1,B2)

xxstrain = 2*fabs(normAl-normB2)/ \
(normA1+normB2)
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yystrain = 2xfabs(normA2-normB1)/ \
(normA2+normB1)

# check that it’s a unique boundary
if (mil,mi2,twistAngle) not in macroparams:
geometries.append([mil,mi2, (A1,42), (B1,B2),
tiltAxis,tiltAngle,
twistAngle,xxstrain,
yystrain,area])
macroparams.append((mil,mi2,twistAngle))
file.write(repr([mil,mi2,tiltAxis,
tiltAngle,twistAngle,
xxstrain,yystrain,area] )+

n \D." )

else:
j=len(linearCombinations)

return geometries

def CalculateTwistAngle(tiltAngle,tiltAxis,mil,mi2,surfacel,
surface2):
if tiltAngle != O:
t = normalize(tiltAxis)
ml = normalize(-ixarray(mil))
s1 = cross(t,ml)
m2 = normalize(mi2)
s2 = cross(t,m2)

#rl rotates (t,m2,s2) to X,¥y,z
rl = array((t,m2,s2))

#r2 rotates Xx,y,z to t,ml,sl

r2 = transpose(array((t,m1,s2)))
#r3 rotates t,m2,s2 to t,ml,sl
r3 = matrixmultiply(z2,rl)

# rotate first surface vector

A = array(surfacel)

B = array(surface2)

Bprime = matrixmultiply(r3,B)
else:

A = array(surfacel)

Bprime = array(surface2)
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cosangle = dot(A,Bprime)/(norm(Bprime)*norm(A))
if fabs(fabs(cosangle) - 1.0) < le-3:
twistAngle = 0
else:
twistAngle = acos(cosangle)

return twistAngle

limit = 100
strainlimit = 0.01
FindCommensurateBoundariesOrtho(limit,strainlimit)
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APPENDIX B
MDWEBSERVICES CODE: GRAINBREAKER AND OFEMD

The software used in the simulations described in chapters 1, 2, and 3 are in-
cluded in a package called MDWebServices and can be downloaded from http://
www.lassp.cornell.edu/sethna/DM/mdwebservices/. MD WebServices contains
two python packages (GrainBreaker and OFEMD) as well as their shared infras-
tructure. The name MDWebServices, reflects that both packages were originally
designed to be accessed via a WebService [14] interface. Both packages can also be
accessed by a simple command line interface as described in chapter 3 or driven
by separate python scripts that utilize the subroutines. Both packages use Digi-
talMaterial [7] as the core for the molecular dynamics simulations.

GrainBreaker measures cohesive laws for either 2D or 3D grain boundaries
and was used for the systematic study of 2D grain boundaries in chapter 1 and
the 3D grain boundary simulations in chapter 2. The method that GrainBreaker
implements is described in detail in chapcer 1. It can simulate any material for
which there is an interatomic potential implemented in DigitalMaterial, any grain
boundary geometry (pair of lattice rotations), and either fixed, roliered, or periodic
boundary conditions (provided the user has provided a set of lattice rotations that
constitute a commensurate grain boundary as described in appendix A).

OFEMD was used for the fully atomistic simulations of the cube in cube model
in chapter 2 and is described in detail in chapter 3. The code that retrieves the
mesh information from a relational database or XML repository is implemented
as two python extensions to the finite element library (FEMLib) written by Paul
Wawrzynek. These two files, XMLFemModel.py and DBFemModel.py are also

available from http://www.lassp.cornell.edu/sethna/DM/mdwebservices/.
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