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Crossover behavior in interface depinning
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We study the crossover scaling behavior of the height-height correlation function in interface depinning in
random media. We analyze experimental data from a fracture experiment and simulate an elastic line model
with nonlinear couplings and disorder. Both exhibit a crossover between two different universality classes. For
the experiment, we fit a functional form to the universal crossover scaling function. For the model, we vary the
system size and the strength of the nonlinear term and describe the crossover between the two universality classes
with a multiparameter scaling function. Our method provides a general strategy to extract scaling properties in
depinning systems exhibiting crossover phenomena.
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I. INTRODUCTION

Driven interfaces in random media display intriguing
scaling laws that are common to a wide variety of phenomena,
including fluid imbibition, crack front roughening, dislocation
hardening, superconducting flux lines, the equilibrium motion
of piles of rice down an incline, and domain wall motion in
magnets [1,2]. The scaling laws are commonly associated with
an underlying depinning critical point that has been elucidated
by simple models for interface dynamics. These models have
been extensively studied using continuum simulations [3–6],
cellular automata [3,7–11], and field-theoretic ε expansions
[3,12–17], providing a sophisticated picture of the nonequilib-
rium phase transition and of the different universality classes.

The interface morphology is usually characterized by
the roughness exponent ζ , resulting from a coarse graining
operation of the interface height function h(x). Namely, when
we change all length scales by a factor b, or x → bx, then
statistically h → bζ h – hence

h(x) ∼ b−ζ h(bx). (1)

For many experiments and simulations, it is convenient to
measure ζ by computing the height-height correlation of the
interface

C(r) = 〈[h(x + r) − h(x)]2〉 ∼ r2ζ . (2)

[In Sec. II [18] we shall study a system with anomalous
scaling, where the power law exhibited by C(r) differs from
the universal rescaling exponent ζ . Rather than rescaling h

in such systems, one studies the rescaling of the correlation
function directly, C(r) ∼ b−2ζ C(br) ∼ r2ζ . These systems
are multiaffine [18]: different moments of h will scale with
different exponents]. Here ζ should be uniquely determined
by which universality class the system belongs to. However,
in practice, the observed ζ varies (see Table I) even for the
same type of system, such as paper wetting. Measuring a

single exponent for these systems may prove inadequate due
to the presence of crossover behavior between universality
classes. This is a common source of confusion and controversy.
If the crossover is gradual, an experiment or simulation
may measure an effective exponent ζeff intermediate between
existing theories and appear to demand a new theoretical
explanation (i.e., universality class).

In Sec. II we analyze a straightforward experimental
example of a crossover between two forms of rough-
ness in two-dimensional fracture. There we introduce the
universal crossover scaling functions and provide a brief
renormalization-group rationale.

In the remainder of the paper, we examine a more complex
theoretical model. Crossovers, long studied in ordinary critical
phenomena, have now been studied for several interface
models [22]; however, theoretical studies have proven chal-
lenging in different ways [26]. For thin film magnets, the
experiments [27–29] observe a crossover between short-range
and mean-field universality classes as long-range dipolar fields
are introduced, which can be done by changing the thickness
of the film. However, for models of that type, simulations
are challenging, because of both the long-range fields and
the striking zig-zag morphologies that emerge and compete
with the avalanche behavior. Crossovers involving the tran-
sition between depinning and sliding dynamics incorporating
periodically correlated disorder [30] have also been studied.
It is not typical, however, to study and report the universal
scaling functions for these crossovers, a challenge we now
shall address.

We shall analyze a numerically tractable, but analytically
tricky, crossover [26]: the transition between the linear,
super-rough, quenched Edwards-Wilkinson model (qEW) and
the nonlinear quenched KPZ model (qKPZ) [2,22]. In both
experiment and theory, we focus on the crossover behavior of
the height-height correlation function.
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TABLE I. Roughness exponents in experiments. Table repro-
duced from Ref. [1]. Notice that there is a wide range of ζ reported,
even for the same experimental system.

Experiment ζ Reference

Fluid flow 0.73 [19]
0.81 [20]

0.65–0.91 [21]
Paper wetting 0.63 [22]

0.62–0.78 [23]
Bacteria growth 0.78 [24]
Burning fronts 0.71 [25]

II. CROSSOVER IN FRACTURE SURFACE
CORRELATIONS

Just as the critical exponent ζ is universal (independent
of microscopic details, within a class of physical system), so
too is the crossover behavior between universality classes. As a
simple example, Santucci et al. [18] have measured a relatively
sharp crossover between two regimes for two-dimensional
fracture (inset in Fig. 1). Because the fracture is done slowly,
we can view the crack front as self-organizing to the depinning
transition for the crack front. Well below a critical distance r∗,
they observe a power law C(r) ∼ r2ζ− with an exponent that

FIG. 1. (Color online) Crossover scaling in fracture roughness
[18]. The inset shows experimental data for the height-height
correlation function C(r) = 〈[h(x + r) − h(x)]2〉 of a 2D fracture
front, generated by pulling apart two pieces of PMMA that have been
sand-blasted and sintered together [18]. The three curves differ in
the size of the sand-grain beads; the relation between the bead size
and the toughness fluctuations in the PMMA were not measured.
The dashed lines show two different power-law critical regimes, with
C(r) ∼ r2ζ− and C(r) ∼ r2ζ+ , governing the short- and long-distance
scaling behavior: the crossover between these regimes is evident.
Our fit gives ζ− = 0.63 and ζ+ = 0.32, within the experimentalists’
suggested range ζ− = 0.6 ± 0.05 and ζ+ = 0.35 ± 0.05. The main
figure shows a scaling plot of r−2ζ−C(r) versus r , with the curves
shifted vertically and horizontally to best collapse. The thick black
curve is a one-parameter fit of the universal scaling function to the
functional form in Eq. (4).

was interpreted as originating from coalescing cracks [31]
or with Larkin scaling [32]. Well above r∗ they observe a
different power law C(r) ∼ r2ζ+ consistent with the depinning
transition of a line [32–34]. The crossover between these
two universal power-law regimes should be described by a
universal crossover function [35], Cfrac:

C(r) ≈ C∗r−2ζ−Cfrac(r/r∗) (3)

independent of microscopic details. At small arguments
Cfrac(X) must go to a constant, and at large arguments
Cfrac(X) ∼ X2(ζ−−ζ+), so as to interpolate between the two
power laws. When analyzing different systems governed by
the same universal crossover, one may plot all the crossovers
in a scaling plot, dividing the distances r on the ordinate by
a system-dependent factor r∗ for each curve, and dividing
the magnitudes of the correlations on the abscissa by a
system-dependent constant C∗ (see Fig. 1). The resulting
data curves then should align, giving the universal function
Cfrac(r/r∗).

To continue with this simple test case, we may fit the
universal scaling function to an approximate functional form.
(Indeed, we find it convenient to do a joint fit of the functional
form, the exponents, and the constants r∗ and C∗). To the
extent that a guessed functional form reproduces the universal
one, it is equivalent: advanced field-theoretic methods for
calculating exact scaling functions are not needed to analyze
future experiments. However, judicious choices of functional
forms with the correct limiting behavior can greatly facilitate
this process. The interpolation 1/(1 + X−2(ζ−−ζ+)) has the
correct limits, but its rather gradual crossover does not explain
the data. We may heuristically add a parameter n which at
large values produces an abrupt crossover:

Cfrac(X) = [1 + (X2(ζ−−ζ+))−n]−1/n. (4)

This yields an excellent fit to the data with n ≈ 4 (see Fig. 1).
Why is the scaling form of Eq. (3) expected? Briefly, the

renormalization group studies the behavior of systems under
coarse graining: describing the properties of a system at length
scales changed by a factor b. One gets universal power laws
when the system becomes invariant under repeated coarse
grainings: if C(r) → b2ζ C(r/b), under coarse graining by a
factor b, then by coarse graining n times such that r = bn

one has C(r) ∝ b2ζn = r2ζ . In the case of a crossover, a fixed
point is unstable to some direction λ in system space. Then a
small initial λ grows under rescaling by some factor b1/φ , so
C(r,λ) → b2ζ−C(r/b,λb1/φ). Now rescaling until bn = r , we
have

C(r,λ) → b2nζ−C(r/bn,λbn/φ) = r2ζ−C(1,λr1/φ)

= r2ζ−Cfrac(λφr), (5)

where we choose Cfrac(X) = C(1,X1/φ). If the unstable
direction flows to a new fixed point with a different ζ+,
that behavior will be reflected in the large-X dependence
C(X) ∼ X2(ζ−−ζ+) [36, Sec. 4.2]. Note that different physical
systems will have different overall scales of height fluctuations,
so we must have an overall scale C∗ for each experiment. (If the
experiments fall into a parameterized family, C∗ will depend
smoothly on the parameters, giving analytic corrections
to scaling as discussed in Sec. IV). Note, though, that the
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rescaling factor r∗ for lengths, while it will still vary from
one system to another, now depends on λ with a power-law
singularity, as r∗ = 1/λφ ; within the renormalization group,
λ measures how far along the unstable direction the original
system was poised. In particular, r∗ becomes large as λ → 0,
as in that limit the unstable fixed point remains in control.

The three experiments depicted in Fig. 1 started with
different bead sizes. If all other features of the experiment
are held fixed, one may assume that the control parameter
λ depends in some smooth way on the bead size. Had we
several values of bead size, we could then extract values for
the universal crossover exponent φ.

In the following sections, we shall perform a far more
sophisticated version of this type of analysis. By exhaustively
varying system size and nonlinearity in an interface growth
model, we shall not only generate universal two-variable
functional forms for the correlation crossover scaling function,
but will be able to make predictions about both the dependence
of the crossover length scale (corresponding to r∗) and the
dependence of the correlation amplitude (corresponding to
C∗) on the control parameters. A rich, nuanced understanding
of the model behavior thus emerges.

III. LINE DEPINNING MODEL

The equations of an interface in a disordered environment
may be written generally as follows. Let the one-dimensional
interface, h(x,t) be driven by a force H (t) through a disordered
environment with a local quenched random force η(h(x),x):

∂h

∂t
= γ∇2h + λ(∇h)2 + η(h(x),x) − k〈h〉x + H (t). (6)

Here γ is a surface tension, and λ is the coefficient of
the KPZ term. The KPZ term controls lateral spreading
of the interface, breaks the statistical tilt symmetry, and
changes the universality class [1]. H (t) is a slowly increasing
external driving force. Our simulations are done with a lattice
automaton; the lattice naively might be thought to break this
statistical tilt symmetry, but simulations have long shown that
the model faithfully describes both universality classes [37].

The term −k〈h〉x is borrowed from simulations of magnets,
where it represents the demagnetization force [38], approxi-
mating the effects of the long-range dipolar field cost of a net
advance in the front. This restoring force “self-organizes” the
depinning transition to the fixed point, allowing simulations
to access many metastable states, without having to enforce
an actual quasistatic field. It is known [39] that this restoring
force does not produce loop corrections to the renormalization
group equations and therefore does not change the universality
class of the problem. We have confirmed numerically that its
effects are small for our crossover and appear irrelevant. As
the restoring force makes the simulation vastly more efficient,
we include this restoring force, but we do not include k in our
scaling analysis.

IV. ANALYSIS OF CROSSOVER SCALING

Using the automaton simulation employed in Ref. [40], we
tune λ/γ from 0 to 5 and observe how the resulting behavior
changes. Figure 2 shows how the front morphology qualita-
tively changes while we increase the nonlinear parameter λ.
Notice that with increasing λ the fronts between events are
flatter than at small λ.

According to Eq. (2), naively one would assume we could
recover the exponent ζ by defining an effective exponent ζeff

to be half the local-log slope of the height-height correlation
functions (Fig. 3). From other numerical studies, for qEW,
we expect ζEW 
 1.25. (Cellular automata [8,41] models
show ζEW = 1.25 ± 0.01; continuous string models [42] found
ζEW ≈ 1.26.) For qKPZ, we expect ζKPZ = 0.63 [11,43].
However, there are two things about Fig. 3 worth noting:
(1) the slope measure of ζ drifts between 0.63 and 1.0 as
we change λ, and (2) the measured value is never greater than
one as is naively expected for the linear qEW model. The
dropoff at r ∼ L/4 is due to the periodic boundary conditions.

The second issue has a known resolution: for ζ > 1, when
the interface is “super-rough,” the height cannot grow faster
than linearly with distance, so the height-height correlation
function cannot directly exhibit a power law larger than one
[44]. This so-called anomalous scaling [45–47] implies that the

FIG. 2. (Color online) Crossover of qKPZ to qEW model. Fronts generated from 128 × 256 simulations with the nonlinear KPZ term
coefficients set to (a) λ = 0, (b) λ = 0.001, (c) λ = 0.1, (d) λ = 5. The random colors (shades) represent the area between each pinned front.
The morphology of the interfaces changes dramatically as λ increases.
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FIG. 3. (Color online) Local log slope. The measured local-log
slope, d log C/d log r of the height-height correlation function for
varying λ and k = 0.01. The lower dashed red line is ζKPZ = 0.63 as
expected for the KPZ universality class. The upper dashed blue line is
ζSR = 1.0, the largest growth allowed for super-rough interfaces. The
thin lines show the predictions of our fits (Sec. IV), and the dashed
black line is the fit value of ζKPZ. The sharp cutoff in the curves at large
r is due to the periodic boundary condition, which forces ζeff = 0 at
r = L/2; the larger L curves have later cutoffs. As expected, for small
λ the curves are described by the EW behavior ζSR = 1 at small r ,
while for large λ they are well described by ζKPZ. For intermediate
values of λ ∼ 0.1, we observe a clear transition from EW behavior
at small r to KPZ behavior at intermediate r , before being cut off by
the finite size effects.

exponent ζ is reflected not in the distance dependence of the
correlation function, but rather in its system-size dependence.
We thus consider the finite-size scaling form

CEW(r|L) ∼ L2ζEW (r/L)2CEW(r/L); (7)

the roughness exponent ζEW may be estimated by the
system-size dependence of the magnitude of CEW. Note that
the periodic boundary conditions implies that CEW(r|L) =
CEW(−r|L) = CEW(L − r|L); near r = L/2 the correlation
function reaches a peak (and ζeff vanishes, as in Fig. 3). Thus
X2CEW(X) = (1 − X)2CEW(1 − X). To control the sharpness
of the peak in the correlation function at X = 1/2, in analogy
to the crossover sharpness parameter n of Eq. (4), we introduce
nEW giving a transition between the two power laws:

X2CEW(X) = {(X2)−nEW + [(1 − X)2]−nEW}−1/nEW . (8)

For qKPZ [Fig. 2(c)], the correlation function in a system size
L takes the finite-size scaling form

CKPZ(r|L) = Ar2ζKPZCKPZ(r/L), (9)

where we introduce nKPZ to form a periodic functional form

X2ζKPZCKPZ(X) = {(X2ζKPZ )−nKPZ

+ [(1 − X)2ζKPZ ]−nKPZ}−1/nKPZ . (10)

The drift in the exponent ζ , however, demands a study of the
scaling near the unstable qEW fixed point and the functional
form of the resulting crossover scaling function. The role of
λ in generating the crossover from qEW to qKPZ has only
been studied qualitatively [4,7,10,11], with no full description
of the crossover scaling [26]. The crossover describes the RG
flow from the qEW fixed point to the qKPZ as the relevant
parameter λ is added. The scaling form for the height-height
correlation function is thus that of a relevant variable λ added
to the qEW scaling:

C(r|L,λ) = L2ζEWC(r/L,λφr). (11)

For λ � 0, C(r|L,λ) → CKPZ(r|L); therefore,

C(r/L,λφr)

→ A(λ)r2ζKPZCKPZ(r/L)/L2ζEW

= A(λ)(r/L)2ζKPZL−2(ζEW−ζKPZ)CKPZ(r/L)

= Aanalytic(λ)(r/L)2ζKPZ (λφL)−2(ζEW−ζKPZ)CKPZ(r/L). (12)

FIG. 4. (Color online) Height-height correlation function. The
numerics generated with an automata code (symbols) are well
described by Eq. (16) (black curves) with fit parameters φ =
1.0 ± 0.4, ζKPZ = 0.65 ± 0.04, ζEW = 1.1 ± 0.15, nCross = 1.0 ±
0.7, B = 2.5 ± 6.0. nEW = 0.27 ± 0.03, nKPZ = 1.1 ± 0.6, A0 =
2.7 ± 7, A1 = 770 ± 900, and A∞ = 0.3 ± 1. (A fit constrained to
the expected values of ζEW and ζKPZ give slightly worse, but acceptable
fits, with the other parameter estimates within the quoted ranges). The
legends denote L and λ for each simulated correlation function; all
runs had k = 0.01. The errors quoted are a rough measure of the
systematic error [48], as described in the text, and are representative
of the differences we find using different weightings and functional
forms. (They are much larger than the statistical errors). The
amplitude dependence is captured by the scaling form. Three of the 12
parameters (ζEW, ζKPZ, and φ) are universal critical exponents, three
(A0, A1, and A∞) describe the nonuniversal dependence of an overall
height scale on parameters, two describe finite-size effects, and only
two (nCross and B) are needed to describe the universal crossover
function to the accuracy shown.
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FIG. 5. (Color online) Rescaled spectral function S(q|L,λ) for
the height fluctuations. Rescaling by the naive RG power q1+2ζEW

does collapse the data for vanishing λ (up to a significant noise):
the anomalous scaling for the super-rough interface in real space is
not manifested in Fourier space. The theory curves are given by the
Fourier transform of the same best fit shown in previous figures.

Here A(λ) is in general a nonuniversal prefactor for the
KPZ correlation function. As with C∗ in Sec. II, A is
expected to vary [49] with the parameters of the problem.

Here it has a typical smooth variation Aanalytic(λ), times a
singular piece Asingular(λ) due to the EW fixed point: A(λ) =
Aanalytic(λ)Asingular(λ). We derive the power-law divergence of
the amplitude

Asingular(λ) = λ−2(ζEW−ζKPZ)φ (13)

by noting that C(r/L,λφr) must be a scaling function with only
invariant combinations of r , L, λ.

We must also have C(r/L,0) ∼ (r/L)2CEW(r|L). Using
these limits, Eq. (14), and the fact that A(λ) gets large as
λ → 0 and small as λ → ∞, we can construct a function that
crosses over between these two limits:

C(r|L,λ) = Aanalytic{[Asingular(λ)BCKPZ(r/L)]−nCross

+CEW(r/L)−nCross}−1/nCross

= L2ζKPZC(X,Y ), (14)

where X = r/L and Y = λφr , and CKPZ and CEW are
defined in Eqs. (7)–(10). We expand the analytic function
Aanalytic = (A0 − A∞)/(1 + A1λ) + A∞ in a form analytic at
zero and saturating at large λ at A∞[50], and we include a
relative scale factor B. Finally, we vary the sharpness of the
crossover with nCross, just as we did in the experimental study
of fracture [Eq. (4)].

The theoretical curves in were fit to the data in Figs. 3, 4,
and 5, deleting the noisy half near r = L/2 in the first, and
using weights σ 2 ∼ √

r/L designed to equalize the emphasis
on each decade. The errors quoted are a rough estimate of the
systematic error [48] given by quadratically exploring fits with
roughly twice the ξ 2 of the best fit.

(a) (b)

FIG. 6. (Color online) Scaling collapse of the height-height correlation function. The correlation-function data of Fig. 4 are collapsed
to illustrate the crossover between EW and KPZ-dominated lengths (r < r∗ and r > r∗, respectively; see also Refs. [28,29]). Here r∗ =
L[B(Lλφ)2(ζEW−ζKPZ)]−1/(2−2ζKPZ) is the distance where the EW and KPZ components of the correlation function are equal in magnitude, and
C∗ = λ−2φ(ζEW−ζKPZ)r2ζKPZ factors out the dependence expected in the KPZ regime (hence yielding flat behavior for r � r∗). (b) Effects of
analytic corrections to scaling are also factored out; all of the curves lie on a universal curve apart from the effects of the finite system sizes
(causing each curve to drop on the right). (a) The analytic correction to scaling has a significant impact on the scaling collapse: ignoring it
in the analysis would produce significant errors in critical exponents and scaling functions. The thick blue curve shows the scaling function
prediction for the crossover [which, if x = r/r∗, can be shown to be C/C∗ = Bx2(x2nCross + x2nCrossζKPZ )−1/nCross ].
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Note that this gives us a universal function of three variables
(r , L, and λ). Note that it predicts a singularity at small λ in
the form of a divergent amplitude Asing ∼ λ−2(ζEW−ζKPZ)φ in the
qKPZ correlation function [Eq. (9)] as λ → 0. This universal
singularity in the amplitude (corresponding to a prediction of
C∗ in Sec. II) explains the amplitude dependence seen in Fig. 4.
There is an analogous universal amplitude dependence seen for
the Heisenberg → Ising crossover at small Ising anisotropy
[36, Sec. 4.1].

We can use the scaling form of the correlation function
C(r|L,λ) to derive other, less complex crossover scaling
functions traditionally studied in interface depinning problems
[30,42]. The spectral scaling function is equal to the Fourier
transform of our correlation function (with subtleties at q = 0):

S(q|L,λ) = |h̃(q)|2 =
∫

r

C(r|L,λ) exp(iqr) dr

∼ q−1−2ζEWS(λ−φq,qL). (15)

Here the universal spectral crossover scaling function S(X̃,Ỹ )
can be written in terms of our universal correlation crossover
scaling function [C(X,Y ) from Eq. (11)] as

S(X̃,Ỹ ) =
∫

dz exp(iz)Ỹ 2ζEWC(z/Ỹ ,z/X̃) (16)

depicted in Fig. 5. Here it is known that S does not have
anomalous scaling; the power laws ζEW and ζKPZ can be read
off from the slopes at large and small Ỹ . More ordinary,
single-variable scaling functions can be derived from our two-
variable scaling functions, such as that governing the average
width of an interface [given by the zero Fourier component
of S(q) or an integral of C(r)]; such scaling functions [as
for the fracture scaling function of Eq. (3)] allow traditional
scaling collapses (as in Fig. 1). However, one should note
that our analyzed simulations extend to λ ∼ 1, where analytic
corrections to scaling, as vividly illustrated in Fig. 6(a), would
likely invisibly distort the resulting scaling collapses. It is an
advantage of multivariable scaling fits that they both allow
the incorporation of such analytic corrections (extending the
range of applicability) and force their incorporation (exposing
weaknesses of the naive theory).

V. CONCLUSIONS

In this paper, we have analyzed the scaling properties for
an experimental 2D fracture front and a model of an interface
moving in random media, focusing on the crossover scaling
of the roughness. The experimental system is successfully
modeled using a one-variable universal scaling function with
one free parameter, controlling the sharpness of the transition.
The theoretical model, the crossover from the qEW to the
qKPZ universality class with the addition of a nonlinear term,
allows us to estimate the complete universal scaling function
for the height-height correlation function including both finite-

size effects and the nonlinear effects of the tuning parameter
λ, while satisfying known limits given by the renormalization
group.

We emphasize the importance of our sophisticated use
of the scaling forms and corrections predicted from the
renormalization group. Figure 1 illustrates that not only the
power laws, but the entire functional form of the crossover,
is a universal property that should be reported. Equation
(4) is an effective one-parameter way of embodying the
sharpness of the crossover, which we use also in the theoretical
analysis of Sec. IV for both the crossover and the effects
of periodic boundary conditions. Figures 3, 4, and 5 show
how different experimental characterizations of the roughness
of an interface can be simultaneously fit with a single
functional form. Figure 6(a) vividly indicates the importance
of analytic corrections to scaling in extending the validity
of the theoretical analysis to smaller systems and farther
outside the critical region. Only systems with λ < 10−3 will
follow the scaling behavior without incorporating the analytic
corrections, while the entire crossover is faithfully represented
in Fig. 6(b) by including them in the fit.

By developing functional forms for the correlation func-
tions [40], we gain the flexibility of incorporating analytic
corrections, multiple scaling variables, and a systematic error
analysis while allowing the quantitative reporting of the
universal scaling functions. One should note that the parameter
estimation errors quoted here are large compared to more
traditional scaling analyses. In part this is due to our estimation
of the relevant systematic errors [48]; statistical errors would
be perhaps an order of magnitude smaller. In part, however, this
is due to our incorporation of known but usually ignored con-
founding factors; analytic corrections to scaling and crossover
effects will invisibly distort the results of more direct mea-
surements, and the drift in exponents quoted in the literature
in critical phenomena often exceeds the error estimates.

It is challenging but satisfying to develop these functional
forms. Measuring and fitting them is far more physically
intuitive and less technically demanding than direct field-
theoretic calculations [42] (although theoretical calculations
often form important inspiration for choosing functional forms
[40]). Successful functions are parsimonious in the number of
adjustable parameters, and developing them often forces one
to develop a far more complete understanding of the physics
of the system under consideration.
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