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look significantly different as the grid spacing 
decreases. Again, this is analogous to the corre-
sponding simulations of our dislocation dynamics 
shown in Figure 4, where larger cells continue to 
distort and shift as the grid spacing decreases.

Simulation Analysis
If the simulations aren’t convergent, how can we 
decide if the theory is physically relevant and 
can be trusted to interpret experiments? In tur-
bulence, it has long been known that, as vortices 
develop, self-similar patterns arise in the flow 
and exhibit power laws in the energy spectrum 
and in the velocities’ correlation functions.10 

A successful simulation of fully developed turbu-
lence isn’t judged by whether the flow duplicates 
an exact solution of Navier-Stokes! Turbulence 
simulations study these power laws, comparing 
them to analytical predictions and experimental 
measurements.

Our primary theoretical focus in our plasticity 
study3 has been to analyze power-law correlation 
functions for the dislocation density, plastic dis-
tortion tensor, and local crystalline orientation. 
As Figure 5 shows, like turbulence simulations, 
these statistical properties seem to converge nicely  
in the continuum limit.

It’s worth noting that, in both cases, noncon-
vergence emerges when small-scale features ap-
pear on the wall (see Figure 6) or the interface 
(see Figure 7).

In the case of our simulations of plastic flow 
(Equation 1), starting from smooth initial den-
sity profiles, finite time singularities develop in 
the form of � -shocks. The existence of finite-
time singularities was shown in a 1D variant 
of these equations, which is associated with the 
Burgers equation.11 Figure 6 shows how this 

effect occurs by considering the two-norm dif-
ferences (the integrand in space of the L2 norm 
discussed earlier). At t = 0.04 (see Figure 2a), 
when the N = 512 curve starts to cross all the 
other curves, singular features start to appear 
around a wall (as in Figure 6b). Although the 
boundaries are nonconvergent when specific  
locations and times are considered (Figure 2a), 
the statistical properties and associated self- 
similarity (Figure 5) are convergent.

In the case of Navier-Stokes simulations (see  
Figure 7), the existence of finite-time singularities 

Figure 3. Continuum dislocation dynamics. Simulation results at t = 1.0 of our CDD Equation 1 at different 
grid sizes (h), starting from a smooth initial condition. (a) h = 1/128, (b) h = 1/256, and (c) h = 1/512. We 
use periodic boundaries in both horizontal and vertical directions, and all physical quantities are constant 
along the perpendicular direction.

(a) (b) (c)

Figure 4. The Rayleigh-Taylor instability of the Navier-Stokes equation. 
The Rayleigh-Taylor instability is a �uid-mixing phenomenon that 
occurs when an interface between two different �uid densities is 
pulled by gravity. These simulation results here are of the Rayleigh-
Taylor instability at t = 4.0, for µ → 0, at different grid spacings 
(h) with periodic boundaries in the horizontal direction and �xed 
boundaries along the vertical. (a) h = 1/128, (b) h = 1/256, and 
(c) h = 1/512. The initial condition has density interface with a single 
mode perturbation in the vertical velocity. The system size is (Lx, Ly) = 
(1.0, 2.0).

(a) (b) (c)
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is a topic of active research: even though local-in-
time analytic solutions are easily shown to exist, 
global-in-time analytic solutions can be proven 
to exist only for special cases, such as in the 2D  
incompressible genuine Euler equation.12 In 3D, 
the mechanism of vortex stretching is conjec-
tured to lead to finite-time singularities,13 even 
though there are still crucial open questions. De-
spite its complexity, turbulence can be concretely 
studied in special cases. For our example of the  
Rayleigh-Taylor instability, the two-fluid interface 
gets distorted and bubbles form (Figure 3); over 
time, the bubbles exhibit emergent self-similar 
characteristics,9 showing statistical convergence. 
However, there’s no spatiotemporal convergence, 
because the interface develops complex, turbulent 
features as the grid becomes finer (see Figures 2b  
and 7).

S ometimes science seems to be frag-
mented, with independent fields whose 
vocabularies, toolkits, and even philoso-
phies almost completely separate. But 

many valuable insights and advances arise when 
ideas from one field are linked to another. Com-
putational science is providing a new source of 
these links, by tying together fields that can fruit-
fully share numerical methods.

Our use of well-established numerical methods 
from the fluids community made it both natural 
and easy to utilize their analytical methods for 
judging the validity of our simulations and inter-
preting their results.�
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Figure 5. Statistical properties and convergence. 
Although the continuum dislocation dynamics 
(CDD) simulations with different grid sizes are 
nonconvergent (Figure 2a), the statistical properties 
are the same. The dislocation density correlation 
function is plotted here for different simulation  
sizes at the same time, exhibiting consistent power 
laws.
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Figure 6. Nonconvergence and singularity for CDD. (a) h = 1�256, (b) h = 1�512, (c) h = 1�256, and 
(d) h = 1�512. For (a) and (b), t = 0.04; for (c) and (d), t = 1.00. The two-norm difference between h and 
h/2 are plotted. At short time, t = 0.04, the differences are small: (a) is empty and (b) nearly so. At later 
times, t = 1.00, the two-norm difference becomes signi�cant especially where the walls are forming (see 
Figure 4 for wall locations).
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