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Jamming and unusual charge density
fluctuations of strange metals
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James P. Sethna1 & Debanjan Chowdhury 1

The strange metallic regime across a number of high-temperature super-
conducting materials presents numerous challenges to the classic theory of
Fermi liquid metals. Recent measurements of the dynamical charge response
of strange metals, including optimally doped cuprates, have revealed a broad,
featureless continuum of excitations, extending over much of the Brillouin
zone. The collective density oscillations of this strange metal decay into the
continuum in a manner that is at odds with the expectations of Fermi liquid
theory. Inspired by these observations, we investigate the phenomenology of
bosonic collectivemodes and the particle-hole excitations in a class of strange
metals by making an analogy to the phonons of classical lattices falling apart
across an unconventional jamming-like transition associated with the onset of
rigidity. By making comparisons to the experimentally measured dynamical
response functions, we reproduce many of the qualitative features using the
above framework. We conjecture that the dynamics of electronic charge
density over an intermediate range of energy scales in a class of strongly
correlated metals can be at the brink of a jamming-like transition.

A hallmark of numerous interacting phases of quantum matter are
their long-lived collective excitations (such as phonons,magnons, and
skyrmions). Microscopically, these collective modes require a coher-
ent motion of the constituent particles in the system. While such
modes often have a long lifetime at low energies, they are prone to
decay once they encounter the multi-particle continuum at high
energies. Even in weakly interacting metals, there are two kinds of
long-lived excitations—the plasmon, which represents a collective
(longitudinal) density fluctuation, and single-electron like quasi-
particle excitations near the Fermi surface. The plasmon eventually
decays at large enough momentum and frequency (i.e., for ω >ω⋆(q))
into the multi-particle continuum due to purely kinematic reasons.
Within Landau’s original formulation of Fermi liquid (FL) theory for
electrically neutral fermions (e.g., as in liquid Helium-3)1, the zero-
sound mode is associated with a collective oscillation of the entire
Fermi surface and has properties that are qualitatively similar to a
longitudinal acoustic phonon. The soundmodegets renormalized into

the plasmon mode in the presence of Coulomb interactions. It is nat-
ural to consider the fate of collective modes and their possibly
unconventional decay into multi-particle continua in the regime of
strong interactions.

Recent advances in the experimental technique of momentum-
resolved electron energy-loss spectroscopy (M-EELS)2 have made it
possible to measure the dynamical charge response of numerous
strongly correlated materials over a broad range of frequencies and
momenta3–5. Focusing specifically on the strange metal regime of a
cuprate material (BSCCO), these experiments report evidence of a
featureless particle-hole continuum extending over most of the Bril-
louin zone (BZ), while being independent of temperature and doping.
Remarkably, the unconventional continuum persists up to the highest
measurable energies and accounts for more than 99% of the total
spectral weight in the f − sum rule3,4. Perhaps the most noteworthy
observation is the absence of a sharply dispersing plasmon in the BZ
(except for a narrow range of momenta, q≲0.05 r.l.u., near the
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Γ − point6,7), as it decays into the featureless continuum. Evidence for
such a continuum has been reported in earlier Raman studies8,9 and
recentM-EELSmeasurements in other strongly interactingmetals (e.g.,
Sr2RuO4

5). The microscopic origin for the decay of the plasmon into
such continua remains unclear. Recent theoretical works have utilized
solvable lattice electronic models10 to analyze the unconventional
particle-hole continuum11 and the anomalous decay of plasmons12 in
the strongly correlated regime of certain non-Fermi liquid metals; see
ref. 13 for a complementary holographic computation of
plasmon decay.

In addition to the anomalous dynamics of the charge-density
fluctuations, the normal metallic state across a number of strange
metals exhibits universal scattering lifetimes14–17 and violates the Mott-
Ioffe-Regel limit with increasing temperature18,19, suggesting an
absence of electronic quasiparticles with a long mean-free path and
lifetime. A satisfactory theoretical explanation for the complex and
universal aspects of this phenomenology does not presently exist
starting from microscopic models.

These results point to the intriguing possibility of the strongly
interacting electron fluid forming a collective and self-organized,
nearly jammed state. At intermediate energy scales, it is conceivable
that certain aspects of the dynamical response associated with the
collectivemodes canbe understoodbydrawing analogies to a strongly
correlated classical liquid. By analyzing the universal behavior of such
a liquid near the onset of rigidity (Fig. 1a) and a detailed comparison to
recent M-EELS experiments in cuprates, we conjecture that the
intermediate-scale charge-dynamics in strange metals belongs in the
family of a class of theories with critical rigidity correlations. This

brings together a new class of problems under the umbrella of jam-
ming, which includes rigidity transitions observed in colloids and
granular materials20,21, living tissues22,23, elastic networks24–27, disloca-
tion systems28,29, deep learning30, and analogs of metal-insulator tran-
sitions for interacting quantum bosons31. Quenched randomness in
geometrically frustrated magnets has also been shown to produce a
jammed spin liquid32, which is known to display unconventional spin-
dynamics33.

In this manuscript we address the question of what phenomenon
might give rise to a largely momentum-independent continuum such
as that observed in M-EELS experiments. We conjecture that these
observations might be connected to phenomena characteristic of the
rigidity transition in granular media20. Near such a transition, the
vibrational density of states develops an anomalous, nearly frequency-
independent plateau34,35. This paper will be concerned with addressing
the similarities between the experimentally measured density corre-
lations of strange metals and the calculated density correlations near
the onset of rigidity, based on our recent analysis of the density
response near a rigidity transition36.

Results
The onset of rigidity in classical liquids (but without any long-range
crystalline order) has a complex dynamical signature. The transition is
associatedwith a singular rearrangement of the low-energy vibrational
spectrum of the nearly rigid solid20; see Fig. 1b. These low-energy
excitations will become the analog of the unconventional particle-hole
continuum in the strange metal that we described above. Moreover,
the longitudinal phonons in these viscoelastic systems can decay into

Fig. 1 | Charge-density responsenear onset of rigidity and in strangemetals. aA
random network of bonds (red) displayed in a rigid vs. floppy system, on either
side of a continuous rigidity percolation (RP) transition; the critical properties
near RP are distinct from a jamming transition associated with random packings
of hard spheres20. We hypothesize that the two-particle density response over a
broad range of intermediate energies near the hole-doping induced transition
associated with the electrons near optimal doping in cuprates38 can be described
as a rigidity-type transition. b The vibrational density of states,DðωÞ, as a function
of frequency (ω) at a fixed distance from the RP critical point δp = 10−3. The
plateau inDðωÞ onsets for ω>Δω? ∼ ∣δp∣. Inset: The polarization function, Π″(q,ω),
in the absence of Coulomb interactions, as a function of q and ω, revealing the
acoustic collective mode and its damping inside the continuum. c The density

response function, χ″(q,ω), (including the Coulomb interaction) with
ωp =0:66∣δp∣. The response functions, χ″(q,ω), averaged over a range of ∣δp∣≤σ
(see a) as a function of ω for different q at a fixed distance (δp) from RP for
d ∣δp∣ = 1.1 × 10−3, σ = 0.9 × 10−3, and e ∣δp∣ = 1.6 × 10−3, σ = 0.9 × 10−3. The plasma
frequency is chosen to be at ωp =0:5ω?. The dashed line represents the q-inde-
pendent shape of the imaginary part of the susceptibility in the absence of dis-
order. Frequencies in d and e are rescaled by the same scaling frequency ω?

associated with the average distance to the transition δp; see theMethods section
for details. Experimental data from M-EELS3 demonstrating the overall q-inde-
pendent shape of the continuum for f optimally doped BSCCO and g overdoped
BSCCO. Error bars represent statistical (Poisson) error. The lowest frequencies
show the lattice phonon, which we do not describe in our framework.
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this continuum of low-energy vibrational excitations, much like the
plasmons do in the cuprate strange metal.

Starting with scaling forms for the longitudinal susceptibility that
were derived recently by some of us36,37, we will write down a coarse-
grained effective description for the long-wavelength and low-
frequency bosonic excitations in a liquid at the brink of rigidity per-
colation (RP); see Fig. 1a. Percolation is a transition in connectivity;
rigidity percolation is a transition from elastic to floppy, with a dra-
matic peak in low-energy excitations we believe common to strange
metals. We will extend our formalism to analyze the inelastic density-
density response using the predictions of our scaling theory andmake
direct comparisons with the M-EELS results, highlighting the simila-
rities between the mechanism for anomalous decay of the plasmon
into the continuum at momenta away from the Γ −point. Given the
relatively large energy-scales over which the charge response has been
probed, it is likely that the quantum critical collective modes asso-
ciated with various forms of broken symmetries that emerge at low-
energies38 do not play a fundamental role in the interpretation of the
M-EELS experiments.

Our starting point is based on a recently proposed scaling ansatz
for the dynamical susceptibilities near classical jamming and RP36,37.
There has been a dearth of solvablemodels in finite dimensions where
universal features of the dynamical susceptibilities canbe analyzed in a
reliable fashion; we utilized the tractable effectivemedium theory26 to
compute these in refs. 36, 37 and obtained their explicit analytical
forms. Given that the strange metals where the anomalous density
fluctuations have been observed are quasi two-dimensional, we will
model our system as a stack ofweakly coupled two-dimensional layers.
The individual layers are described in terms of a randomly percolated
lattice of harmonic springs (Fig. 1a); the connection to the density
fluctuations of an underlying electronic fluid will be made explicit
later. For our present discussion, we will start specifically with the
longitudinal part of the displacement response, ΞL, near RP,

ΞLðq,ωÞ≈� ∣δp∣�γL eq,eω� �
, ð1aÞ

eq � q
∣δp∣ν

, eω � ω

∣δp∣zν
, ð1bÞ

where q and ω represent the wavevector and frequency, respectively,
and ∣δp∣ represents the deviation away from the critical point. The
critical exponents for susceptibility, correlation length, and correla-
tion time are denoted γ, ν, and z, respectively. For RP, our calculation
leads to γ = 2, z = 2 and ν = 1/2. In two-dimensions, the above scaling
form has additional dependence on the logarithms of the scaling
variables which do not qualitatively affect any of our results; a detailed
discussion of the origin of these additional logarithms will be dis-
cussed elsewhere (see Sec. I of the Supplementary Information39 for
more details). L eq,eω� �

is a universal scaling function whose explicit
form appears in the Methods section. In all of our subsequent analysis
and in our comparison with the experimental results, ΞL(q,ω) will play
a central role. Near RP, the transverse response, ΞT q,ωð Þ, has the same
universal scaling form as ΞL q,ωð Þ but with different non-universal
constants.

The onset of rigidity is tied to a significant rearrangement of the
vibrational density of states, DðωÞ; see Fig. 1b and Methods for a defi-
nition. Near RP, DðωÞ∼ω for ω≲Δω⋆ ~ ∣δp∣ (up to additional loga-
rithms). For ω≳Δω?,DðωÞ has a remarkably flat continuum as a
function of ω over several orders of magnitude of frequencies; see
Fig. 1b. The physical origin of this low-energy continuum is related to
the boson peak that demarcates a crossover from Debye to isostatic
behavior, and is a recurring feature in the physics of glassy
systems35,40,41. From the point of view of our analogy to the excitations
in the strange metal, these modes are naturally interpreted as the
particle-hole continuum. This analogy will become more direct when

we analyze the nature of the collective excitations—these are the
phonons of the solid becoming floppy, which turn into the plasmon in
the strange metal with the inclusion of Coulomb interactions—and
their decay into the flat DðωÞ near RP.

In order to make the analogy between classical liquids and their
vibrational excitations to the collective modes in strange metals, we
need a precise relationshipbetween the longitudinal susceptibility (ΞL)
and the electron density correlation functions. As in the jelliummodel,
we assume the negatively charged electronic liquid co-exists with a
uniform oppositely charged (static) background to maintain electrical
neutrality; we are only interested in the dynamics of the former. In the
proposedmodel, the changes in the local displacement,U, are tied to a
local fluctuation of the electronic number density. More precisely,

nðxÞ=n0ð1� ∇ � UÞ, ð2Þ

where n0 = ρ/m is the average background density. One of the central
quantities of interest is the polarization function,
Πðq,ωÞ=n2

0q
2 ΞLðq,ωÞ, which is related to the longitudinal suscept-

ibility introduced earlier. This is the density-density response of the
neutral system near the transition. Since the electronic liquid is
charged and interacts via repulsive Coulomb interactions, V ð∣x � x0∣Þ,
we include it explicitly as

ΔU =
1
2

Z
x

Z
x0
δnðxÞV ð∣x � x0∣Þδnðx0Þ, ð3Þ

where δnðxÞ=nðxÞ � n0 = � n0∇ � U . The experimentally measured
density-density response, χ(q,ω), can be obtained from the polariz-
ability after including the effects of Coulomb interactions,

χðq,ωÞ= Πðq,ωÞ
1� V ðqÞΠðq,ωÞ : ð4Þ

In the remainder of this study, we will calculate χ(q,ω) near RP using
the universal form of ΞL(q,ω), and highlighting both its similarities and
differences when compared against the experimentally measured
density response function in the cuprate strange metal. See Sec. II of
the Supplementary Information39 for more details.

To analyze the effect of the plasmon decay into the continuum, it
is conceptually simpler to approach the transition from the rigid side.
The imaginary part of the susceptibility, χ″(q,ω), reveals a sharply
dispersing plasmon for Δq? ∼ ∣δp∣1=2 (up to logarithms), controlled by
the distance to RP (δp), that broadens significantly as a result of decay
into the low-energy vibrational states over a broad range of wavevec-
tors and frequencies; see inset of Fig. 1b. The effect of V(q) on χ(q,ω) is
to renormalize the acoustic mode to the plasma frequency,
ωp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πe2n0=m

p
, where we have assumed the three-dimensional

form, V(q) = 4πe2/q2; see Fig. 1c. The broadening of the plasmon due to
decay into the unconventional continuum remains identical. The
phenomenology described here is exactly what we set out to achieve
theoretically inspired by the M-EELS experiments in strange metals—a
plasmon that is damped beyond small momenta q ≳Δq⋆ into a fea-
tureless, low-energy continuum. The close similarity that we demon-
strate between the unconventional decay of the phonon into the
vibrational continuum near RP and of the plasmon into the measured
particle-hole continuum in strange metals is one of the central results
of this paper.

Let us next turn to studying the detailed q,ω −dependence of
χ(q,ω) near RP in order to make further comparisons with the mea-
sured charge response functions. For the smallest values of q, there is a
sharp plasmon that appears at the plasma frequency, ωp. For
q≳Δq? ∼ ∣δp∣1=2, the plasmon broadens rapidly, and χ(q,ω) becomes
nearly q-independent with a broad feature centered near Δω⋆.
Increasing q further serves only to adjust the crossover frequency

Article https://doi.org/10.1038/s41467-023-39499-x

Nature Communications |         (2023) 14:3919 3



beyond which there is a crossover to a 1/ω3 falloff, in accordance with
the f-sum rule (see Fig. 2a). The q-independent shape of χ″(q,ω) is also
shown as the dashed blue curve in Fig. 1d, e. This broad feature is tied
to the same boson peak that was discussed above in the context of the
onset of the enhancement of the low-energy modes in DðωÞ.

Although our form of χ 00 q,ωð Þ near the transition reproduces the
strongly overdamped plasmon and the q-independent shape of the
response over the measured frequency range, the response at the
lowest frequencies does not have the characteristic plateau of the
experiment. To address the possible origin of this feature, we can
appeal to the inherent inhomogeneity that is present in these materi-
als. There is experimental evidence for nanoscale electronic inhomo-
geneity across multiple families of cuprate single crystals (including,
e.g., BSCCO)42,43. For a given sample at a fixed nominal doping, the
experiments probe the density response averaged over all of the
inhomogeneous regions of the sample. To replicate this feature in our
theoretical analysis, we sample and smear our results for χ(q,ω) over a
distribution of δp. We thus assume that the variations in doping level
change the distance to the onset of rigidity. Our averaging presumes
the disorder does not couple to the translational Goldstone mode of
the transition (by solely changing the density of bonds). The doping,
however, breaks translational symmetry, and pinning on defects is also
known to lower the threshold of rigidity44–47. Adding the effects of
pinning to our analysis could be fruitful in future work. The qualitative
effects of the above averaging procedure are similar for any smooth,
symmetric distribution.

Near the boson peak, the disorder-averaged susceptibility is most
drastically altered. When the mean deviation from criticality is com-
parable to the width of the disorder distribution, ∣δp∣ ≤ σ, the spectrum
becomes dispersionless as a function ofω for large q >Δq⋆; see Fig. 1d.
Within our framework, the frequency-independent plateau observed
near optimal doping can be interpreted as the disorder-induced
smearing of the boson peak near RP. Beyond this featureless region,
there is a crossover into an anomalous power-law regime, χ″(q,ω) ~ 1/ωα

with α < 3. Both of these features are similar to the experiments3; see
Fig. 1d–g for a comparison. At the largest frequencies, the asymptotic
forms of the polarization with and without disorder-averaging are
identical with α = 3. The shape of the susceptibility is largely inde-
pendent of q over a wide range of ω. This leads to a q-independent
crossover frequency from the plateau to a power-law falloff at large ω.
As we move away from the transition fixing the magnitude of the
disorder σ, the plateau at low frequencies evolves into a bump; see

Fig. 1e. This bump can be interpreted as a severely overdamped plas-
mon, whose location becomes nearly q-independent at large q. The
q-independence is tied to the decay into the particle-hole continuum,
whose onset is at a fixed Δω⋆.

The power-law scaling behavior of the singular part of the sus-
ceptibility χ″ before and after the inclusion of disorder averaging is
illustrated in Fig. 2. At the highest frequencies, the power-law scaling is
unaffected by the specific type of disorder considered here. At low
frequencies, we see the emergence of a plateau region whose width is
q-independent (and set by the amount of disorder σ) for q ≳Δq⋆. For
experimentalmeasurements close to this critical point, all wavevectors
except for those closest to the center of the BZ will probe the inco-
herent plateau rather than the collective mode. The most notable
difference between this framework and the one observed in the
experiments is in the wavevector dependence of the magnitude of the
response. If the response has a q-independent shape at all frequencies,
then one infers that it must scale as ~q2 to satisfy the f-sum rule. The
singular responses computed in this paper also satisfy the appropriate
sum rules, since q sets the frequency at which we crossover into the
Drude-type scaling ~ω−3. See Sec. III of the Supplementary
Information39 for more details. A recent complimentary theoretical
work12

finds a distinct high-frequency scaling ∼ 1=ω2log2ðωÞ, which is
also consistent with the f-sum rule and is in better qualitative agree-
ment with the experiments.

Within the framework of rigidity percolation, we have pointed out
an intriguing analogy between the large collection of low-energy
vibrational modes and the particle-hole continuum of strange metals,
intowhich collectivemodes can rapidly decay. Theonset energyof this
decay is set by the distance to the critical point. Although the details of
the specific momentum-dependence for the polarizability are not in
perfect agreement with the MEELS experiment, we can reproduce a q-
independent shape for q >Δq⋆ that is set by the distance to the critical
point. It is possible that a different, and yet to be understood, uni-
versality class of rigidity transition displays a power-law density
response that agrees better with the experiments. A broad implication
of our hypothesis is that over a range of intermediate energy scales
over which the density correlations in strangemetals appear to display
features like jamming, the electronic fluid might also display inter-
esting memory effects known to arise in glassy systems and near
rigidity transitions. Finding new experimental ways to probe this
physics remains an interesting future direction. Developing a micro-
scopic quantum theory of interacting electrons whose effective theory
reduces to an analogous rigidity transition is a challenging open
problem31,48. In this regard, exploring possible connections between
the low-energy vibrational excitations near jamming and the low-
energy non-quasiparticle-like excitations in the solvable quantum
Sachdev-Ye-Kitaev models10,49 will be an interesting theoretical
exercise.

Methods
Universal scaling function
In three spatial dimensions and higher, the scaling function Lðeq,eωÞ has
the explicit form36,37

Lðeq,eωÞ= aeq2M ± ðeωÞ � evðeωÞh i�1
, ð5aÞ

M ± ðeωÞ= b ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cevðeωÞq

± 1
� �

, ð5bÞ

where a, b and c are constants, with evðeωÞ=ρ eω2 and i γ eω for undamped
and overdamped dynamics, respectively. Here, ρ is a mass density and
γ is a viscous drag coefficient. The plus and minus signs in M ± ð:::Þ
correspond to the rigid and floppy states, respectively. We use the
undamped form of the response exclusively.

Fig. 2 | Distinct spectroscopic regimes of the charge-density response. Fre-
quency and momentum-dependence of χ″, a without (σ =0) and b with
(σ =0.9 × 10−3) disorder averaging. Here ∣δp∣= 1:1 × 10�3,e= 10�4. In a, the largest
values of q lead to a bump in the susceptibility at a q-independent frequency Δω⋆,
followed by a decay ~ω−1 eventually crossing over into ~ω−3 Drude-like behavior. In
b, a plateau in the response emerges at the lowest frequencieswhosewidth is set by
σ. The qualitative behavior is retained even after including corrections to the
response that fix the scaling in the lowest frequency regime (see Fig. 1d, e).
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Vibrational density of states
The vibrational density of states can be computed from

DðωÞ= � ω
π

Z
BZ
d2qTr Im Gij q,ωð Þ

h i� �
, ð6aÞ

Gij q,ωð Þ=ΞL q,ωð Þq̂iq̂j +ΞT q,ωð Þ δij � q̂iq̂j

� �
ð6bÞ

The density of states has an additional ω prefactor as we are con-
sidering excitations in a classical disordered system.

Disorder averaging of charge-density response
We convolve our universal scaling function with a specific disorder
distribution, such that the effective disorder-averaged polarization
function takes the form (denoted ‘-’)

χδpðq,ωÞ=
Z 1

�1
d Δp0ð ÞPσðΔp0Þχδp0 ðq,ωÞ ð7aÞ

Pσ ½Δp0�= 1ffiffiffiffiffiffiffiffiffiffiffi
2πσ2

p e� Δp0ð Þ2=2σ2
, ð7bÞ

where χδp(q,ω) is the response at a fixed distance (δp) fromRP, and we
choose a Gaussian distribution, Pσ ½Δp�, with width σ and
Δp0 � δp0 � δp. For the forms of the response in Fig. 1d, e, the fre-
quency is rescaled by ω? = 10

�3 in both figures, instead of the distinct
δp. This is to make comparison to the experiment, where the dopant
concentration is changed (moving the system further from a critical
point in our framework), but not the frequency scale.

Data availability
The experimental MEELS data for BSCCO used to generate Fig. 1f–g
have been publicly available on Zenodo since the publication of ref. 3
(at ref. 50). These figures are a reproduction of Figs. 2a and 4a in ref. 3
without the offset in q.

Code availability
All theoretical plots were made in Mathematica, and the associated
notebooks are available on Zenodo (at ref. 51).
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