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Abstract We study the shear jamming of athermal frictionless soft spheres, and find that in
the thermodynamic limit, a shear-jammed state existswith different elastic properties from the
isotropically-jammed state. For example, shear-jammed states can have a non-zero residual
shear stress in the thermodynamic limit that arises from long-range stress-stress correlations.
As a result, the ratio of the shear and bulk moduli, which in isotropically-jammed systems
vanishes as the jamming transition is approached from above, instead approaches a constant.
Despite these striking differences, we argue that in a deeper sense, the shear jamming and
isotropic jamming transitions actually have the same symmetry, and that the differences can
be fully understood by rotating the six-dimensional basis of the elastic modulus tensor.

Keywords Granular materials · Shear jamming · Disordered solids · Finite-size scaling ·
Scaling theory · Jamming · Linear elasticity

1 Introduction

The critical jamming transition of soft frictionless spheres at zero temperature provides a
framework for understanding the mechanical and low-temperature response of a wide range
of disorderedmaterials [1–16]. However, in order to connect the jamming scenario to systems
that include, for example, temperature, attractive interactions, or friction, it is important to
understand how these effects perturb the physics of the jammed solid. For example, spheres
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with frictional interactions are able to jam at lower densities than those without friction when
subjected to an external shear stress, leading to a so-called anisotropic “shear-jammed”
state [17].

Several studies have examined shear jamming in frictionless particle packings [18–23]
and have shown that finite systems can shear jam [18,19]. Here, we focus primarily on
mechanical properties of the shear-jammed state of three-dimensional athermal, frictionless,
soft repulsive spheres, and report three findings.

First, although the density range over which frictionless shear jamming occurs vanishes
in the thermodynamic limit, as previously observed [18], frictionless shear jamming is not
a finite-size effect. In isotropic jamming, the lack of long-range correlations in the bond
forces associated with particle-particle contacts means that the average residual shear stress,
s, is zero by symmetry and fluctuations scale as N−1/2 relative to the pressure, p. However,
because the shear-jammed state has long-ranged bond force correlations, it can support a
non-zero residual shear stress as well as pressure in the thermodynamic limit, unlike the
isotropically-jammed state, which supports only pressure. States of this kind had already
shown to exist in the jammed phase [22]. Through a careful scaling analysis we show that
such states can support a shear stress even infinitesimally above the shear-jamming transition
in the thermodynamic limit.

Second, the shear-jamming transition is different from the isotropic jamming transition.
In isotropic jamming, the property that shear stress fluctuations vanish in the thermodynamic
limit gives rise to different scalings of the bulk modulus, B, and shear modulus, G [24];
the vanishing of G/B as the transition is approached from above is one of the defining
characteristics of jamming. In shear jamming, the fact that the shear stress does not vanish
in the thermodynamic limit changes the scaling of the shear modulus so that G/B remains
constant at the shear-jammed transition, as has been argued in various contexts [25–27].

Our third andmain finding is that, despite these striking differences, the shear and isotropic
jamming transitions share an important symmetry. The effect of shear on the scaling behaviors
discussed above is a result of an induced rotation of the six-dimensional eigenvectors of
the stiffness tensor [23]. Once this rotation is taken into account, the SO(3) symmetry of
isotropic jamming is preserved in the rotated subspace. Therefore, despite having different
scaling exponents for the shear modulus, shear jamming and isotropic jamming should be
considered members of the same universality class.

2 Systems Studied

We study 3d athermal disordered packings of N = 64 to N = 4096 frictionless spheres in
cubic boxes with periodic boundary conditions. Particles i and j , of radius Ri and R j and
whose centers are separated by a distance ri j , interact through the potential

U (ri j ) = U0

α

(
1 − ri j

Ri + R j

)α

�

(
1 − ri j

Ri + R j

)
. (1)

We show results for α = 2, corresponding to harmonic repulsions between particles. We also
carried out simulations for the Hertzian potential (α = 5/2), and found no difference beyond
the expected ones found in isotropic jamming.1 Here U0 sets the energy scale, and �(x) is
the Heaviside step function. The packing fraction is φ = ∑

i Vi/V , where Vi is the volume

1 A rescaling is necessary, as shown, e.g. in Ref. [28].
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of particle i and V is the volume. In order to avoid crystallization, we study 50:50 bidisperse
packings with 1:1.4 diameter ratio.

3 Creating Shear Jammed Packings

To create our packings, we conduct Nruns = 1000 to 10000 independent runs for each
value of φ and N studied. Each run begins with a completely random (infinite-temperature)
configuration. We minimize the total potential energy [the sum of the pair interactions of
Eq. (1)] to a nearby local minimum with the FIRE algorithm [29]. At this point, a fraction
fI(φ) of the systems are isotropically-jammed, as in Ref. [30].2 We focus on the remaining
Nruns(1− fI(φ)) unjammed configurations. Using strain steps of δγ = 0.02, we apply simple
shear in the xy direction at constant packing fraction, minimizing the energy after each step,
until the system either jams or the strain exceeds a threshold of γMAX = 0.4. The fraction
of states that were initially unjammed but jammed due to shear strain is denoted by fs;
fsj = (1 − fI) fs is the fraction out of all states that are shear-jammed.
For isotropic jamming, the fraction of jammed states, fI(φ), collapses for different system

sizes N when plotted against (φ − φ∞
c )

√
N [30]. Thus, fI(φ) approaches a step function

centered around φ∞
c in the thermodynamic limit. We see in Fig. 1a that fs also collapses with

the same scaling variable and with the same φ∞
c = 0.6470(5). Fig. 1a shows that for any

system size, the onset of shear jamming lies below the onset of isotropic jamming, consistent
with earlier results [19,31], and that the difference between the two packing fractions appears
to vanish in the thermodynamic limit, consistent with Ref. [18].

Figure 1b shows the fraction of shear-jammed packings relative to the total number of
packings, fsj = (1 − fI) fs. The curve is bell-shaped due to the presence of two effects. At
low φ few packings shear jam because the packing density is too low. At high φ few packings
are shear jammed because they jam even without shear. The peak of fsj(φ) indicates the
optimal packing fraction to obtain shear-jammed packings through our protocol. Note that
the curves for different system sizes N collapse with (φ − φ∞

c )
√

N , as for fI and fs.
Figure 1c shows the median strain γc at which an initially unjammed configuration jams

due to shear.3 From the inset to Fig. 1c, we see that systems at lower values of φ shear-
jam at higher values of γc, consistent with earlier results [18]. Each curve ends at low φ or
high γc due to statistics; the more configurations we study, the higher each curve extends
in γc. Note that our results collapse for different system sizes in the same fashion as the
fraction of shear-jammed states, i.e. as (φ − φ∞

c )
√

N , without requiring any scaling of γc

with N . To understand the significance of this result, consider choosing φ for each N such
that (φ − φ∞

c )N 1/2 is fixed, and asking what happens with increasing N . If the y-axis in
Fig. 1c had been γc N x where x > 0, then we would find that the strain needed to shear-jam
the system would vanish as N → ∞. In that case, the properties of the shear-jammed state
would be identical to those of the isotropically-jammed state in the thermodynamic limit.
If, on the other hand, we had needed to collapse γc N x with x < 0, the strain required to
shear-jam the system would have diverged as N → ∞, implying that shear-jamming is not
possible in the thermodynamic limit. The fact that no power of N was needed to collapse the
data with γc shows that shear-jamming is possible in the thermodynamic limit even though

2 We establish that a configuration is jammed when it has a rigid backbone (not all the particles are rattlers)
and the number of contacts in the rigid cluster is above the isostatic value.
3 Since we apply strains only up to γMAX = 0.4, we are unable to capture the high γ tail of the distribution
of γ �

c . As a result, we show the median of γ �
c instead of the mean, and consider only values of φ and N such

that fs > 0.5.
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Fig. 1 a The fraction, fI, of states that isotropically jam and the fraction fs of states that do not isotropically
jam but shear jam, respectively, as functions of (φ − φ∞

c )
√

N . In all panels of this figure, φ∞
c = 0.6470(5).

Note that the same choice of the scaling variable collapses both curves, though the scaling function is different
and may depend on the protocol. In the inset we show uncollapsed data, fs(φ) with system sizes as indicated
in the legend to part (c) of the figure. Throughout this paper, we use a red–blue scale (for increasing system
size) for regular jammed packings, and violet–green scale for shear-jammed systems. b The fraction fsj as

a function of the scaling variable (φ − φ∞
c )

√
N of packings that shear jam relative to the total number of

packings. The inset depicts fsj(φ) for different values of N . cMedian of the strain γc needed to shear jam the

system. In the main plot we show a collapse as a function of the scaling variable (φ − φc)
√

N . The strain γc
does not need to be rescaled by N in order to collapse the data, implying that the shear-jammed state exists in
the thermodynamic limit and is distinct from the isotropically-jammed state. The uncollapsed data is shown
in the inset (Color figure online)

it occurs at φ∞
c , and that the properties of the shear-jammed state are different from those of

the isotropically-jammed state.

4 Mechanical Properties of the Shear Jammed State

We now consider systems strained past the point of shear-jamming into the jammed state.
Specifically, we generate systems at logarithmically spaced values of shear stress σxy . To
obtain these configurations, we start with a system that has been sheared beyond the onset of
shear jamming as described above. We then pick a target shear stress, σ t

xy at the upper end
of the range of shear stresses we want to study, and adjust the strain until the target shear
stress is obtained to within 1%. To approach σ t

xy efficiently we exploit the definition of the
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elastic constants, Cxyxy = dσxy
dγxy

. To linear order the needed strain is
σ t

xy−σxy

Cxyxy
. We combine

this with the Newton-Raphson method to tune the system to σ t
xy . By iteratively lowering σ t

xy ,
we create configurations with σxy spanning many orders of magnitude. This protocol is very
similar to that used in isotropic jamming to obtain systems at target pressures [24,32,33].
Although some dependence on the packing fraction is expected, we find that it is weak for the
system sizes studied. As a result, all the runs shown are for φ = 0.643, except for N=4096,
for which φ = 0.645.4

Figure 2a shows that the pressure p scales linearly with σxy with a prefactor that is
independent of N in the large N limit, reminiscent of the scaling observed in dense granular
flows [22]. In that case, the shear stress and pressure approach nonzero values as the shear
rate is reduced to zero; here, we are exploring the behavior near the shear-jamming transition,
where the shear stress and pressure both vanish. We note that the scaling σxy ∼ p contrasts
with the scaling observed in isotropic jamming where the shear stress fluctuates around zero,
with the magnitude of fluctuations scaling as N−1/2 [33], such that σ 2

xy ∼ p2/N [24]. The
inset to Fig. 2a shows that the shear stress in orthogonal directions (e.g. σxz) vanishes as
1/

√
N in the thermodynamic limit.

Figure 2b shows the behavior of the excess contact number (	Z ≡ Z − Z iso, where
Z iso ≡ 2d − 2d/N ). Just as for isotropic jamming, 	Z approaches 2/N as expected from
counting arguments [32] in the limitσxy → 0+. The inset shows that scaling collapse takes the
form 	Z N = F(σxy N 2), in analogy to the form 	Z N = FI (pN 2) observed in isotropic

jamming. Thus, at large σxy N 2, 	Z ∼ σ
1/2
xy ∼ p1/2. Note that for isotropic jamming,

	Z ∼ p1/2 at high pN 2 [32] but 	Z ∼ N 1/4σ
1/2
xy in that limit, since σxy ∼ N−1/2.

Similarly, the scaling behavior of the elastic constants reflects the anisotropy of the shear-
jammed state. In the thermodynamic limit, isotropically-jammed systems are characterized
by just two elastic constants, the bulk modulus B (which jumps discontinuously at jamming,
scaling as B ∼ 	ZγB where γB = 0) and the shearmodulusG (which increases continuously,
scaling as G ∼ 	ZγG with γG = 1). For shear-jammed systems, the shear modulus depends
on the direction in which it is measured; in addition to the bulk modulus, we characterize the
elasticity by the response to shear that is parallel (Cxyxy) and perpendicular (Cxzxz) to the
initially imposed strain.

Figure 3a shows that the bulk modulus approaches a constant as σxy → 0 (or equivalently
in the thermodynamic limit, as 	Z → 0), just as for isotropic jamming. However, Fig. 3b
shows that Cxyxy also approaches a constant in that limit (albeit a much smaller constant
than for the bulk modulus). This scaling of Cxyxy represents a striking departure from the
shear modulus of isotropic jamming, where Cxyxy vanishes at the transition. This difference
persists even in the thermodynamic limit, showing that the anisotropic shear-jammed state
remains distinct from the isotropically-jammed state in that limit.5 Note, however, that Fig. 3c
shows that the orthogonal shear modulus Cxzxz scales identically to the shear modulus in the
isotropic case: Cxzxz ∼ σ

1/2
xy ∼ 	Z with a finite-size plateau at low σxy that scales as N−1

(inset) [32].
We can understand the results of Figs. 2 and 3 by first reviewing the arguments of

Ref. [24] for isotropic jamming. Because long-range order in the orientation and magnitude
of the contact forces is absent in isotropically-jammed packings, the average deviatoric stress

4 For φ = 0.643, N = 4096, the data yield consistent results, but with larger error bars due to the difficulty
in obtaining shear-jammed states (see Fig. 1–center, inset).
5 Despite the stressed differences between isotropic and shear jamming, we will show in Sect. 5 that it is
possible to rationalize the different exponents in order to show that the shear does not change the universality
class of the jamming transition.
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Fig. 2 a The pressure p is proportional to the shear stress σxy for all system sizes. In the inset the collapse
shows that stress orthogonal to the direction of shear jamming, σxz , obeys the scaling relation σ 2

xz ∼ σ 2
xy/N .

b The excess contact number 	Z as a function of shear in the direction of shear jamming, σxy , for several
system sizes N . The inset shows a collapse for the same data set. The scaling variable for the stress is σxy N2

vanishes and its fluctuations scale as s2 ∼ p2/N . The N -dependence in this relation leads to
different scalings, s ∼ 	Z δσ and p ∼ 	Z δp for the shear stress and pressure with respect to
	Z : Ref. [24] shows that δσ − δp = ψ/2, where ψ = 1 is the finite-size scaling exponent.
Because the moduli are derivatives of the stresses with respect to the strains, this scaling
relation leads to γG = γB + 2(δσ − δp) where γG and γB are the scaling exponents for the
shear and bulk moduli. Thus, the lack of long-range orientational order leads directly to the
difference in δσ and δp , which in turn leads directly to the difference in γG and γB .

In shear-jammed systems, by contrast, Fig. 2 shows that p ∼ σxy with an N -independent
prefactor. As a result, δσxy = δp and the exponent γxyxy for Cxyxy is identical to γB for the
bulk modulus, as we indeed find in Fig. 3. On the other hand, the inset to Fig. 2a shows
that σ 2

xz ∼ σ 2
xy/N , implying δσxz = δp + ψ/2, as in the isotropic jamming case, leading to

different exponents for Cxzxz and B, as we find in Fig. 3.
As we show in the Appendix, these scalings can be derived from the behavior of bond cor-

relation functions introduced inRef. [24]. Integrals over these correlation functions contribute
to components of the stress tensor. If a bond correlation function approaches a constant value
at large separations, then the corresponding component of the stress tensor remain constant
as N → ∞; if it is short-ranged, the corresponding component of the stress tensor vanishes
as 1/

√
N . In the Appendix, we show that these bond correlation functions can be written in

a way that respects the broken symmetry of shear-jammed systems. In such systems, there is
still no long-ranged order in the xz orientation, but shear-jamming gives rise to long-ranged
bond-force correlations so that long-ranged order arises in the xy orientation. As a result, the
system can support a nonzero shear stress in the thermodynamic limit, implying δσxy = δp

and hence the results shown in Fig. 3.
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Fig. 3 Scalings of elasticmoduli for the shear-jammed state as a function of the stress in the shearing direction,
σxy . a The bulk modulus B approaches a nonzero value, B → B0 = 0.221(1), as σxy approaches the shear-
jamming transition from above. b The elastic constantCxyxy approaches a nonzero value,C∗

xyxy = 0.0015(1)

as σxy → 0+. The inset shows the scaling collapse of Cxyxy − C∗
xyxy . c The elastic constant Cxzxz vanishes

as Cxzxz ∼ σxy as σxy → 0+. The inset shows the scaling collapse of Cxzxz

In the limit where a vanishing strain γc is applied to shear-jam the system, onemight expect
the properties of the shear-jammed system to become identical to those of an isotropically-
jammed system. In particular, Cxyxy approaches a constant, C∗

xyxy for shear-jamming, but
vanishes for isotropic jamming. We observe that C∗

xyxy decreases with γc, consistent with it
vanishing as γc goes to zero (not shown).

5 Emergent Symmetry at the Shear Jamming Transition

A remarkable symmetry emerges at the shear jamming transition. We first note an important
symmetry at the isotropic jamming transition. In the thermodynamic limit, the bulk modulus
jumps to a non-zero value while the shear modulus remains zero, so Cαβγ δ = Bδαβδγ δ . By
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Fig. 4 Eigenvalues of the Mandel stiffness matrix C, as a function of the stress along the shear, σxy , for
N = 2048. The six eigenvalues are sorted according to their trace σαβ , reflecting the component of bulk
compression. Only one elastic component jumps at jamming, corresponding to a combination of the bulk
modulus and Cxyxy . The common quantitative scaling of the five smaller eigenvalues suggests an emergent
SO(3) invariance, and the exponent of 1/2 suggests that their scaling is the same as for isotropic jamming. In
the inset we show the independent components of X , the eigenvector associated to the largest eigenvalue λX ,
as a function of 1/N . From top to bottom, the data represent Tr(X)/3, Xxy = Tr(Xσxy), X yy − Tr(X)/3,
Xzz − Tr(X)/3, Xxz , X yz . Only the first two are distinguishable (Tr(X)/3 and Xxy ); the remaining are all
very close to zero (Color figure online)

spatial isotropy, the various shear moduli [33,34] in finite systems near jamming all scale the
same way; the SO(3) rotational symmetry of isotropic jamming induces a symmetry in the
various elastic moduli, all of which vanish linearly with 	Z as 	Z → 0 and N → ∞.

A convenient way to see this symmetry is by viewing the elastic constant tensorCαβγ δ as a
linear transformation from the six-dimensional space of strain tensors to the six-dimensional
space of stress tensors (explicitly implemented, for example, inMandel notation). The result-
ing 6 × 6 Mandel stiffness matrix has six eigenvalues; at the isotropic jamming transition,
one of these is nonzero while the remaining five vanish in the thermodynamic limit. The
eigenvector of the Mandel matrix corresponding to the nonzero eigenvalue corresponds to
the bulk modulus, while the five eigenvectors corresponding to the vanishing eigenvalues
are related to the shear moduli. As the system is compressed above the isotropic jamming
transition, the five eigenvectors remain the same, increasing linearly with 	Z .

Figure 4 indicates that this same scenario appears to arise during shear jamming, despite
the fact that shear breaks rotation invariance.Measuring the eigenvalues of theMandel matrix
transformation as inRef. [23],wefind that the constant values of both B andCxyxy as the shear
jamming transition is approached from above (σxy → 0+) both reflect the behavior of a single
eigenvalue of this transformation. Thus Cαβγ δ = B ′ Xαβ Xγ δ for some symmetric tensor X
given by the corresponding eigenvector; the components of X are described in the inset
of Fig. (4). Furthermore, the other five eigenvalues vanish at the shear-jamming transition
linearly with 	Z , just as for isotropic jamming. These results are consistent with earlier
findings by Peyneau and Roux [23], who found that one eigenvalue was much larger than
the others in stressed systems close to the jamming transition. In other words, both isotropic
jamming and shear jamming select a distinguished direction X in the six-dimensional space
of elastic moduli. In the case of isotropic jamming, this direction projects entirely onto the
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bulk modulus, but for shear jamming it projects onto both B and Cxyxy . In both cases, we
observe an emergent SO(3) symmetry in the remaining five dimensions.

Note from the inset to Fig. 4 that by far the dominant contribution to X comes from the
bulk modulus, with only a small contribution from Cxyxy . This behavior is reflected in the
values of B and Cxyxy at the transition; while clearly nonzero, the magnitude of Cxyxy is
roughly an order of magnitude smaller than the value of B. The small value of Cxyxy and its
small contribution to X may be a result of the fact that the packing is frictionless. Frictional
packings may have much larger values of Cxyxy relative to B and much higher anisotropies
in their structure.

Our results imply that the distinguishing hallmark of the jamming transition, whether
isotropic or shear-induced, is to break symmetry in six-dimensional stress space below the
jamming transition by picking out one distinguished direction at the jamming transition,
leaving SO(3) symmetry in the remaining five directions. The scalings of the elastic constants
are thus defined by the eigenvector X . Moduli that project onto X exhibit a discontinuity
at jamming, whereas those in the subspace orthogonal to X grow proportionally to 	Z .
This suggests that the scaling theory for shear jamming will be the same as for regular
jamming [24], “rotated” in this six-dimensional space, and that the distinguished role of
pressure in scaling near isotropic jamming will be replaced in shear-jamming by that of the
stress along the tensor direction X .

6 Discussion

In summary, we find that shear-jammed states are different from isotropically-jammed states.
This is due to the anisotropy induced by shear, even for frictionless sphere packings in the
thermodynamic limit. Shearing induces long-ranged bond correlations; as a result, the shear
stress, σxy , is proportional to the pressure with a prefactor that does not depend on N in
the thermodynamic limit. This leads to modified scaling exponents for σxy and the elastic
constant Cxyxy , so that Cxyxy , like the bulk modulus, jumps discontinuously at the onset of
shear jamming.

However, the differences between shear-jammed and isotropically-jammed states,
although striking, are more superficial than fundamental. The discontinuous behavior of
Cxyxy in shear jamming is due to a rotation of the dominant eigenvector X of the stiffness
matrix. This rotation seems to preserve an emergent SO(3) symmetry in the 5-dimensional
subspace orthogonal to X . Moduli exhibiting discontinuities at the jamming transition have
nonzero projections onto the vector X , whereas elastic moduli in the orthogonal subspace
scale linearly with	Z . The orientation of X in elastic constant space depends on the loading
history by which the system was jammed. An interesting question is whether this symmetry
emerges for any combination of strains leading to jamming [23] , and what is the relation
between X and the applied strain.

Note that there are other potential ways of creating shear-jammed states. One could start
with an isotropically-jammed state, apply a shear stress and then decrease the pressure.
This appears to lead to similar results [23], although a more careful examination of behav-
ior near the jamming transition is needed. Alternatively, one could start with unjammed
states at lower density and apply simultaneous shear and compression until the system
jams. With our protocol of starting with isotropically unjammed systems near the onset
of jamming, and then straining the system until it shear jams, it becomes more difficult
to create shear-jammed states with increasing system size because one must start with
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isotropically unjammed states that are closer to the onset of jamming. The difficulty of prepar-
ing shear-jammed states is therefore an artifact of our protocol, and our results show that
shear-jammed configurations in frictionless packings are well-defined in the thermodynamic
limit.
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Appendix: Stress Correlation Functions

The scalings of p, σxy , σxz , B, Cxyxy and Cxzxz can be understood microscopically in
terms of the behavior of spatial bond correlations. We can express the average deviatoric
squared stresses σ̃ 2, p2, σ 2

xy and σ 2
xz in terms of associated stress correlation functions

C (σ )(x), C (p)(x), C (σ )
xy (x) and C (σ )

xz (x).
In order to do so, we extend the correlation function C (σ )(x) defined in reference [24] to

take into account the anisotropy caused by the shear. The stress tensor is defined through

σαβ = − 1

V

Nb∑
k

b(k)r̂ (k)
α r̂ (k)

β , (2)

where the index k indicates a contact (bond) between two particles, Nb is the number of bonds,

r(k) = r̂ (k)

|r(k)| is the separation between the two touching particles, and b(k) = f (k)|r (k)|, where
f (k) is the force of bond k. The product between generic components of the stress tensor is

σαβσγ δ = 1

V 2

∑
k,k′

b(k)b(k′)r̂ (k)
α r̂ (k)

β r̂ (k′)
γ r̂ (k′)

δ

= 1

V 2

∑
k

b(k)2r̂ (k)
α r̂ (k)

β r̂ (k)
γ r̂ (k)

δ +

+ 1

V 2

∑
k 	=k′

b(k)b(k′)r̂ (k)
α r̂ (k)

β r̂ (k′)
γ r̂ (k′)

δ (3)

Taking out a factor Nb, both terms can be seen as an average over the bonds,

σαβσγ δ = Nb

V 2

〈
b2 r̂ (k)

α r̂ (k)
β r̂ (k)

γ r̂ (k)
δ

〉
+

+ Nb

V 2

〈∑
k 	=0

b(0)b(k) r̂ (0)
α r̂ (0)

β r̂ (k)
γ r̂ (k)

δ

〉
. (4)
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From the second term in the right hand side (r.h.s.) we can define a correlation function

C (σ )
αβγ δ(x) =

〈∑
k 	=0

b(0)b(k)
[
r̂ (0)
α r̂ (0)

β r̂ (k)
γ r̂ (k)

δ

]
δ
([

x(0) − x(k)
]

− x
)〉

, (5)

where x(k) is the position of bond k.
The correlation function C (σ )

αβγ δ(x) is related to the stress through

σαβσγ δ = Nb

V 2

〈
b2 r̂ (k)

α r̂ (k)
β r̂ (k)

γ r̂ (k)
δ

〉
+ Nb

V 2

∫
dd x C (σ )

αβγ δ(x) . (6)

With an analogous procedure it is possible to define a wide variety of correlation func-
tions,6 each with a relation that connects it to the stress.

In this instance we are interested in the correlation functions

C (σ )(x) =
〈∑

k 	=0

b(0)b(k)
[
(r̂ (0) · r̂ (k))2 − 1/d

]
δ
([

x(0) − x(k)
]

− x
)〉

, (7)

C (p)(x) =
〈∑

k 	=0

b(0)b(k)

[
1

d2

]
δ
([

x(0) − x(k)
]

− x
)〉

, (8)

C (σ )
xy (x) =

〈∑
k 	=0

b(0)b(k)
[
r̂ (0)

x r̂ (0)
y r̂ (k)

x r̂ (k)
y

]
δ
([

x(0) − x(k)
]

− x
)〉

, (9)

C (σ )
xz (x) =

〈∑
k 	=0

b(0)b(k)
[
r̂ (0)

x r̂ (0)
z r̂ (k)

x r̂ (k)
z

]
δ
([

x(0) − x(k)
]

− x
)〉

, (10)

that are related to the stress through

σ̃ 2 = Nb

V 2

〈
b2

〉 d − 1

d
+ Nb

V 2

∫
dd x C (σ )(x) , (11)

p2 = Nb

V 2d2

〈
b2

〉 + Nb

V 2

∫
dd x C (p)(x) , (12)

σ̃ 2
xy = Nb

V 2

〈
b2 r̂2x r̂2y

〉
+ Nb

V 2

∫
dd x C (σ )

xy (x) , (13)

σ̃ 2
xz = Nb

V 2

〈
b2 r̂2x r̂2z

〉 + Nb

V 2

∫
dd x C (σ )

xz (x) , (14)

The first term in the r.h.s. of Eqs. (6), (11), (12), (13), (14) is of order
〈
b2

〉
/N , while the

second term depends on the integral of the correlation function. Let O2 represent the l.h.s
of any of these equations. If the corresponding correlation function is short-ranged then the
integral is proportional to

〈
b2

〉
N 0, and O2 ∼ 〈

b2
〉
/N ∼ p2/N . However, if the correlation

function is long-ranged, then the integral is proportional to
〈
b2

〉
N , and

O2 ∼ 〈
b2

〉
N 0 ∼ p2N 0 (15)

In Fig. 5a and b we show that the correlation function C (σ )(x) is short-ranged for
isotropically-jammed states, and long-ranged for shear-jammed states: shear-jamming

6 For example one could be interested in the correlators obtained by expanding the traceless stress tensor or
the pressure.
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Fig. 5 Bond correlations C(σ )(x), C(σ )
xy (x) and C(σ )

xz (x), normalized with the square pressure p2, as a func-

tion of the distance x between bonds, for all system sizes at σxy = 10−8. The integrals of the correlation
functions are related with the square stresses through Eqs. (11), (12), (13), (14): if the integral is extensive
(i.e. the correlation in long-ranged) then the related squared stress is of order p2. If it is intensive (short-range
correlations), the squared stress is of order p2/N . a Correlation C(σ )(x) in isotropically-jammed packings. It
is short-ranged (inset), so σ̃ 2 ∼ p2/N in such systems. b Correlation C(σ )(x) in shear-jammed packings. It

does not decay to zero (inset), so σ̃ 2 ∼ p2 in such systems. c Correlation C(σ )
xz (x) in shear-jammed packings.

There are no long-ranged correlations orthogonal to the direction of shear jamming (inset), so σxz ∼ p2/N .

d Correlation C(σ )
xy (x) in shear-jammed packings. The long-distance correlations decay to a positive constant,

so σxy ∼ p2. The insets depict a zoom of the same data of the larger plot, so that the differences between
long-ranged correlation functions and short-ranged ones are more visible

induces long-range correlations in the system, which lead to a non-zero deviatoric stress.
The two bottom plots of Fig. 5 show that the correlation C (σ )

xy (x) along the shear is long-

ranged, whereas in the orthogonal direction C (σ )
xz (x) is short-ranged, explaining why σxy and

σxz scale differently.
The long-ranged nature of C (σ )

xy (x) leads to the scaling σ 2
xy ∼ p2, consistent with Fig. 2.

This in turn leads to the prediction that the scaling exponents for Cxyxy and B are the same,
consistent with Fig. 3.
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