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Chapter 1

Overview

Systems biology is a relatively new field which aims for an integrated understand-

ing of biological processes on the cellular, organismal or even ecological level. It is

broadly divided into two categories: mathematical modeling of complex biological

processes, and the collection/analysis of large genomic, proteomic or metabolomic

data sets. The mathematical modeling approach presumes the existence of a

“wiring” diagram or network picture which already provides the basic set of in-

teractions underlying the experimental observations. The task of mathematical

modeling is to refine the set of interactions within the network picture and to allow

specific biological hypotheses to be tested as they relate to behavior of the system.

Large data set collection and analysis has the murkier objective of uncovering basic

interactions between biological units (genes, RNA, proteins, metabolites etc.), the

connections between genotype and phenotype, and in some cases of reconstructing

the network diagram. The two sides are of course complementary; analyzing large

data sets is facilitated by knowing something about the underlying processes which

produce the experimental outcomes.

In this thesis, we focus on the first objective: we build a model, based on current

10
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biological knowledge, of certain cellular biochemical pathways that are specifically

probed by molecular biology experiments. We then discuss some methods that can

be used to analyze the model, to make useful predictions, and to determine the

relative importance of components within the biological network.

Chapter 2 introduces a biological model of the processes which control the re-

sponse of cultured cells to a growth hormone stimulus. The system is probed by

a number of molecular biology experiments which measure the activity or rela-

tive amounts of the signaling proteins within the network over time. Given these

measurements, we first optimize the free parameters of the model in order to repro-

duce the observed behavior. This difficult process leads to a number of refinements

within the model—incorporating new reactions or changing the relative strength

of existing interactions. Some of the difficulties of the optimization process are dis-

cussed in Appendix B.2. Next, we validate the model by making a prediction which

matches qualitative experimental behavior. Fundamental for making predictions

is the assessment of uncertainties; if the confidence interval on a prediction is too

large, the prediction cannot be used for model validation. Finally, we introduce

the optimal experimental design methodology which provides a means for testing

biological hypotheses with good precision, by suggesting a minimal number of ex-

tra measurements that need to be made. A further analysis of this model is done

in Appendix A.1 and in Appendix B.1. There we look at various measures of the

sensitivity of parameters or parameter combinations to subsets of the experimental

data. This type of analysis allows us to pick out crucial interactions in the network

which appear to control the dynamical behavior.

Chapter 3 analyzes some of the algorithms which are used to make uncertainty

estimates (on both parameters and on predictions). These algorithms are com-
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monplace in Bayesian statistics applications, the goal being to generate a sample

from the posterior parameter distribution that is consistent with the experimental

data. These methods are attractive as they offer a way to automatically sample all

of parameter space and provide an exhaustive collection of models, each of which

reproduces the experimental observations. Thus, rigorous testing of an hypothesis

(about parameter values or the dynamics of the model, for example) requires eval-

uation on all of the posterior sample. In practice, the algorithms which generate

the posterior sample are imperfect and can have very slow convergence rates. This

is especially true for the class of models that we call “sloppy”: the model behavior

is much less sensitive to parameter moves in some directions than in others. There-

fore in Chapter 3 we suggest a straightforward method that can be used to bound

the convergence rate of these algorithms. We explicitly show that when the distri-

bution one wishes to sample from has a discrepancy in scales that is characteristic

of sloppy models, the convergence properties deteriorate. We also discovered that

“smart” variants of the basic algorithms which claim to sample parameter space

more efficiently often completely fail to converge.

In Chapter 4, a completely different approach to modeling cellular processes

is introduced; one that involves simulating reaction events stochastically. At a

molecular level, this is the required description, but often the assumption is made

in biomolecular reaction networks that all the species involved are present in high

enough molecule number that stochastic effects can be ignored. We examine, with

a toy model, a modification of the fully stochastic description: some species are

in large enough number such that they can be modeled deterministically and as

continuous variables, but the deterministic equations themselves change stochas-

tically due to the presence of other species that only exist in small numbers and
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take on discrete values. We present an algorithm for the solution of this problem,

and also explore the application of an averaging method which should provide an

effective set of deterministic equations for the expected trajectory of the contin-

uous variables, in the limit that the reactions for the discrete variables are fast.

The averaging method, however, fails to capture the correction to the dynamics

for most of the parameter regimes we have examined. Despite being overly simpli-

fied, the toy model includes the effect of the inherent stochasticity of DNA-protein

binding interactions, which should be accounted for in larger models also.



Chapter 2

Optimal experimental design in

an EGFR signaling and

down-regulation model1

We apply the methods of optimal experimental design to a differential equation

model for epidermal growth factor receptor (EGFR) signaling, trafficking, and

down-regulation. The model incorporates the role of a recently discovered protein

complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor

(GEF), Cool-1 (β-Pix), and the Rho family G protein Cdc42. The complex has

been suggested to be important in disrupting receptor down-regulation [72, 22].

We demonstrate that the model interactions can accurately reproduce the experi-

mental observations, that they can be used to make predictions with accompanying

uncertainties, and that we can apply ideas of optimal experimental design to sug-

1As of this writing, this chapter is under review by IEE Proceedings Systems Bi-
ology with the same title and authors F.P. Casey, D. Baird, Q. Feng, J.J. Waterfall,
R.N. Gutenkunst, C.R. Myers, K.S. Brown, R.A. Cerione and J.P. Sethna

14
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gest new experiments that reduce the uncertainty on unmeasurable components of

the system.

2.1 Introduction

The epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase

receptor which becomes activated upon binding of its ligand, epidermal growth

factor (EGF), and signals via phosphorylation of various effectors [12]. Besides

sending signals to downstream effectors, the activated EGFR also will initialize

endocytosis which is followed by either degradation or recycling of the receptor.

These are the normal receptor down-regulation processes. Persistence of activated

receptor on the cell surface can lead to aberrant signaling and transformation

of cells [70]. In addition, a variety of tumor cells exhibit overexpressed or hy-

peractivated EGF receptor [33, 15], indicative of the failure of normal receptor

down-regulation.

We concern ourselves with building a mathematical model of the receptor en-

docytosis, recycling, degradation and signaling processes that can reproduce ex-

perimental data and incorporates the effects of regulating proteins that themselves

become active after EGF stimulation. The schematic for the model is shown in

Fig. 2.1. In particular, we examine the roles of the GEF, Cool-1, and the GTPase,

Cdc42 that have recently been discovered to be important for EGFR homeosta-

sis [22, 72] through their interaction with the E3 ubiquitin ligase, Cbl. There is

evidence for two interaction mechanisms which disrupt the normal receptor down-

regulation.

The first mechanism involves the formation of a complex between active Cool-1,
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active Cdc42 and Cbl. After activation of the receptor, Cool-1 becomes phospho-

rylated through a Src - FAK phosphorylation cascade. Phosphorylated Cool-1 has

GEF activity and in turn activates Cdc42 by catalyzing the exchange of GDP for

GTP. Unlike other GEFs however, activated Cool-1 can remain bound to its target,

Cdc42, [72] and can then form a complex with Cbl (mediated through Cool-1 bind-

ing), effectively sequestering Cbl from the receptor. Therefore the internalization

and degradation of the receptor is inhibited and its growth signal is maintained.

(We use the ERK pathway as a readout on the receptor mitogenic signal.) The

second mechanism is based on the findings of [22] that activated Cool-1 can directly

bind to Cbl on the receptor and block endocytosis in a manner we hypothesize be

analogous to the action of Sprouty2 [71].

To maintain normal receptor signaling, we postulate it is crucial that deacti-

vation of Cool-1 and subsequent dissociation of the Cbl, Cool-1 and Cdc42 com-

plex occur. Then Cbl can induce receptor internalization and ubiquitin tag it for

degradation in the lysosome. Internalized receptor lacking ubiquitin moieties can

be returned to the cell surface from the early endosome via the recycling pathway.

The role of Cbl in the degradation mechanism for the receptor has been under-

stood for some time [45, 20, 27]. However, its function in mediating endocytosis

still remains controversial (e.g. [35, 38, 51, 16, 65]) as the receptor can be inter-

nalized through more than one endocytic pathway. We do not address that issue

here but rather we assume in our model that Cbl association and activation is

necessary for endocytosis, whether through a CIN85-endophilin interaction [67]

or through ubiquitination of the receptor [65] and therefore we do not include a

separate Cbl-independent endocytosis pathway. The overall set of these protein-

protein interactions is summarized in Fig. 2.1 (we also incorporate phosphatases
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in the model to act on the various phosphorylated species, but this is not shown in

the network figure). There is a significant overlap between our model and previous

models of EGF receptor signaling and/or trafficking, [61, 41, 54, 5]. Since we

wish to focus on the role of the Cool-1/Cdc42 proteins within the network and

to demonstrate the utility of optimal experimental design, we leave out some of

the known intermediate reactions involved in the MAPK and EGFR-Src activa-

tion pathways, preferring a “lumped” description which is more computationally

manageable.

Figure 2.1: Schematic diagram showing the set of interactions in the model of

EGFR signaling, endocytosis and down-regulation (see also [22]). Phosphatases

are not shown.

The goals of this manuscript are to demonstrate how a modeling approach can
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be used to

(a) refine the necessary set of interactions in the biological network,

(b) make predictions on unmeasured components of the system with good precision

and

(c) reduce the prediction uncertainty on components that are difficult to measure

directly, by using the methods of optimal experimental design.

2.2 Methods

2.2.1 Mathematical model, parameter and prediction un-

certainties

Before we introduce the algorithms needed to address the design question, we

define the model and data in more detail. Our differential equation model for

EGFR signaling and down-regulation contains 56 unknown biochemical constants:

53 unknown rate and Michaelis Menten constants (where they can be found, initial

estimates were drawn from the literature), and 3 unknown initial conditions which

we found useful to vary. The dynamical variables are comprised of 41 separate

chemical species, including complexes. The data consist entirely of time series in

the form of Western blots. (The data both come from the lab of the co-authors

and from the literature, see Appendix A.1 for details.) We have been careful to

select data only on NIH-3T3 cells, and in experimental conditions where the cell

has been serum-starved prior to EGF stimulation, to prevent activation events not

related to the EGFR ligand binding. Most of the time series data are over a period

less than a few hours which allows us to ignore transcriptional processes.
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Since we have no information on most of the biochemical constants, we must

infer them from the data. Therefore we optimize a cost function which measures

the discrepancy of simulated data from the real data,

C(θ) =
D∑

α=1

mα∑
i=1

(
yα(tαi, θ)− dαi

σαi

)2

(2.1)

where α is an index on the D measured species, mα is the number of time points

on species α, y is the trajectory of the differential equation model, θ is a vector

of the logarithm of the biochemical constants, dαi is the measured value at time

tαi for species α and σαi is the error on the measured value. In other words, we

have a standard weighted least squares problem to reduce the discrepancy of the

model output to the data by varying θ. (We use the logarithm of the biochemi-

cal constants as it allows us to apply an unconstrained optimization method while

maintaining the positivity constraint and it removes the discrepancies between bio-

chemical values that have naturally different scales in the problem). As absolute

numbers of proteins in the network cannot be accurately measured, data sets mea-

suring activities of proteins are fit up to an arbitrary multiplicative scale factor,

which adds parameters to the model not of direct inferential interest (nuisance pa-

rameters). Where the relative quantity of a species can be measured (normalized

by the level before EGF stimulation for example), the output of the differential

equations are similarly scaled by an appropriate common factor.

After the model has been successfully fit to the experimental data, we have a

parameter estimate θ̂ which in general will have large covariances, approximated
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by the inverse of the Fisher information matrix (FIM). The FIM is defined as

M = E[∂2C/∂θ2] (2.2)

=
D∑

α=1

mα∑
i=1

∂yα(tαi, θ)

∂θ

t∣∣
θ̂

∂yα(tαi, θ)

∂θ

∣∣
θ̂

(2.3)

= J tJ . (2.4)

where the expectation is over the distribution of errors in the data, which are

assumed to be Gaussian. The expression for the FIM above is exact when the

model fits perfectly, i.e. at the best fit, the expectation of the residuals is zero,

E[yα(tαi)−di] = 0. The ith parameter uncertainty is given by the square root of the

ith diagonal element of the inverse FIM. J = ∂yα(tαi, θ)/∂θ|θ̂ is the the sensitivity

matrix of residuals with respect to parameters at the best fit and is the analog to

the design matrix in a linear regression setting. The design space is the range of

species α and of time points tαi for which measurements could be taken. (αi is the

column index of J .)

We can also make predictions on components of the trajectory (measured or

unmeasured), ŷβ(t) = yβ(t, θ̂). The variances on these quantities are given by

Var(ŷβ(t)) ≈ ∂yβ(t, θ)

∂θ

t

|θ̂M−1∂yβ(t, θ)

∂θ
|θ̂ (2.5)

The form of Eqn. 2.5 can be thought of as a combination of the underlying param-

eter uncertainty, quantified by M−1, and the linear response of the system to the

parameter uncertainty, quantified by the sensitivities. Note that M is also com-

puted using the sensitivities of the trajectory of the differential equations, which

we obtain by implementing the forward sensitivity equations [62]. In practice,

M is close to singular if we do not include some prior information on parameter

ranges. Therefore we assume a Gaussian prior on the parameters centered on the

best fit values and with a standard deviation of log(1000). (This corresponds to
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an approximately 1000-fold increase or decrease in the non-logarithmic best fit

biochemical values.)

We recognize there can be other sources of uncertainty in predictions, for ex-

ample if the dynamics of the system are modeled stochastically or if there is model

uncertainty that needs to be taken into account. The former is not relevant here as

the measurements we fit are not on the single cell level, but rather the average of

large populations of cells. The latter is certainly of interest but we choose an ap-

proach where model errors are corrected during the fitting and validation process,

rather than included a priori in the model definition.

Given the approximate nature of variance estimates derived from the Fisher

information matrix and the linearized model response, we supplemented these cal-

culations with a computationally intensive Bayesian Markov Chain Monte Carlo

(MCMC) method to compute credible intervals for the predictions we make on the

model (see Appendix A.1). The estimates from the Bayesian MCMC approach

are in sufficient agreement with the linearized error anaylsis results that we be-

lieve the optimal experimental design algorithms introduced below are justifiably

aimed at reducing the approximate uncertainties of Eqn. 2.5. Using MCMC for

error estimates within the framework of the optimal design algorithms would be

computationally infeasible.

2.2.2 Optimal Experimental Design

Optimal experimental design is a technique for deciding what data should be col-

lected from a given experimental system such that quantities we wish to infer

from the data can be done so with maximum precision. Typically the network as

shown in Fig. 2.1 has components that can be measured (e.g. total levels of active
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Cdc42, total levels of surface receptor etc.) and components that are not directly

measurable (e.g. levels of the triple complex comprising Cool-1, Cdc42 and Cbl).

Therefore we can pose the question of how to minimize the average prediction

uncertainty on some unmeasurable component of interest by collecting data on

measurable components of the system (we will use the term unmeasurable loosely

for the remainder to describe species that are between difficult and impossible to

measure by standard methods). This is just one possible design criterion, called V-

optimality in the literature; other criteria involve minimizing the total parameter

uncertainty in the system (D-optimality), minimizing the uncertainty in the least

constrained direction in parameter space (E-optimality) or minimizing the maxi-

mum uncertainty in a prediction (G-optimality) [2]. Other authors [21, 58, 43] have

focused on reducing parameter uncertainty but we believe that complex biologi-

cal models, even with large amounts of precise time series data, have intrinsically

large parameter uncertainty [8, 28, 69]. On the other hand, even with no extra

data collection, the uncertainty on unmeasured time trajectories in these biological

systems can be surprisingly small despite the large parameter uncertainty [28].

By altering the form of the matrix J in Eqn. 2.4, by measuring different species

at different times, we have the possibility of reducing the average variance of ŷβ,

which is an integral over time of the quantity defined in Eqn. 2.5. We discuss the

types of design and algorithms that can be used to achieve this.

A distinction must be made between starting designs and sequential designs.

A starting design is one in which no data has been collected and the experimenter

would like to know what design is best to minimize a given criterion function.

Within this category are two subcategories: exact designs and continuous designs.

Exact designs refer to the optimal placement of a finite number of design points. As
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the the design points need to be assigned amongst all the measurable species in the

system the optimization problem is of a combinatorial nature. There have been

specific algorithms developed for this situation [2] which involve choosing some

initial design with the required number of points and then randomly modifying

it by doing exchanges, additions and deletions. More general global optimization

algorithms have been applied to the problem of finding exact designs in differential

equation and regression models [39, 6].

Continuous designs refer to the selection of a design measure, η, which is equiv-

alent to a probability density over the design space. The advantage of assuming

a continuous design is that the criterion function can then be differentiated with

respect to the design measure and tests for optimality can be derived. Asymptoti-

cally, for a large number of design points the continuous and exact designs should

coincide. For a linear model described by y = f(t)tθ + ε where f(t) ∈ RN and ε is

an error term, the FIM is

M(η) =

∫

τ

f(t)f(t)tη(x) dt

by definition of the design measure, η. However, M is a symmetric N ×N matrix

made up of a convex combination of the rank one symmetric matrices, f(t)f(t)t.

Therefore it can be represented by a convex combination of at most N(N + 1)/2

design points (from Caratheodory’s Theorem) x1, . . . , xN , i.e. as a convex combi-

nation of delta function probability measures on those points. In other words even

continuous optimal designs for linear models have only a finite number of design

support points [66]. In one of the approaches that follows, we will attempt to find

a continuous design by approximating the design measure by a number of finely

spaced measurement points with weights associated with each one, and we will see

that a near optimal design is in fact only supported on a small subset of those
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points.

Sequential designs are more relevant to the situation we consider here: ex-

perimental data have already been collected and the model has already been fit.

Therefore we can get an initial estimate for the parameters in the system and we

can evaluate the FIM. Suppose that the current design already has n points and

the current FIM is Mn = J t
nJn. The effect of adding the (n + 1)th design point

(e.g. yα at time point tαi) merely adds a single row to Jn. Therefore the new FIM

is the old FIM plus a rank one update:

Mn+1 = J t
n+1Jn+1 = J t

nJn +
∂yα(tαi)

∂θ

∣∣
θ̂

∂yα(tαi)

∂θ

t∣∣
θ̂

.

The new inverse FIM is also a sum of terms (by applying the Sherman-Woodbury-

Morrison formula [26]): one involving the inverse of the old FIM and the other in-

volving the sensitivity vector at the new point, ∂yα(tαi)/∂θ|θ̂, so evaluating Eqn. 2.5

for a large number of proposed measurements is computationally inexpensive.

We take an approach which is a combination of continuous design and sequential

design: assume that some initial experiments have already been carried out and we

have an FIM for the system. We will then define a cost function K(α, tαi) based

on the integral of Eqn. 2.5 and minimize it with respect to α and tαi. Initially

the minimization looks for the best single data point to reduce the uncertainty (a

sequential design method). Once we know for which species the data needs to be

collected, we can then place many potential measurements on that species with

associated weights and minimize over the weights (to mimic continuous design

methods where the set of weights is the approximate design measure).



25

2.3 Results

2.3.1 Model refinements

The model was fit to 11 data sets, all Western blot data that describe various

signaling, internalization and degradation events that are triggered after receptor

activation by ligand, see Appendix A.1 for the full set of fitted time series and

description of experiments. As an example of a experimental fit with uncertainties,

we show in Fig. 2.2 the best fit time course and standard deviation for total surface

receptor from one of the experiments for which data was included in the model

(experiment 1 in Appendix A.1).

Figure 2.2: Example of experimental fit and uncertainties around the best fit

trajectory (dotted lines) for total surface receptor (experiment 1 in Appendix A.1).

During the iterative process of fitting and model refinement we discovered cer-

tain interactions and model parameters had to be adjusted to be consistent with

the experimentally observed behavior. These can be viewed as predictions of pu-

tative interactions, that emerge from the modeling process. We briefly summarize

these adjustments below.
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(1) It appears necessary to incorporate an interaction to allow the triple com-

plex to be dissociated by a dephosphorylation reaction. In particular a reaction

was needed whereby Cool-1 within the complex could be inactivated by its own

dedicated phosphatase (a possible candidate already present in the system is SHP-

2, which has been shown to dephosphorylate the related Sprouty protein [29]).

Without this effect, we would not observe the complete deactivation of Cool-1 as

it would be “protected” within the triple complex. Additionally, a sensitivity anal-

ysis to determine dominant reactions in the model identified phosphatase reactions

as important (see Appendix A.1).

(2) Interestingly, there is an important balance between the level of receptor

and Cool-1 in the system to maintain the correct dynamics: if the level of receptor

greatly exceeds the Cool-1 level, then the activated receptor will lead indirectly

to phosphorylation of Cool-1 which in turn sustains the level of signaling receptor

before significant amounts can be endocytosed. It is also essential that the protein

level of Cdc42 in the system be sufficiently high, approximately balanced with the

Cbl levels as they both come together in the triple complex. If this was not so,

the greatly reduced Erk pathway signaling we see in the data set for the Cdc42

knockdown would not be possible to reproduce (Appendix A.1 experiment 8). Of

course, Cdc42 is involved in many other cellular processes, so what is actually

important here is the amount available to participate in interactions with Cbl.

(3) The F28L fast cycling (hyperactive) mutant of Cdc42 has the ability to

delay endogenous receptor down-regulation for many hours beyond wild type cells

(see experiment 5 in the Appendix A.1). This is only possible if the binding affinity

of active Cdc42 to the Cool-1-Cbl complex is strong enough to deplete the levels

of the latter and force the forward binding reaction of Cbl to activated Cool-1.
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This provides a mechanism to sequester more of the Cbl protein (in both the triple

complex and the Cool-1-Cbl complex) than would otherwise be possible.

In addition to the above adjustments, we made the following observations re-

lating to the network dynamics and structure.

We find that given these experimental data sets, a single endocytosis mecha-

nism which is Cbl dependent and solely acts on activated receptors is sufficient to

describe the available data on EGFR trafficking in NIH-3T3 cells. We acknowl-

edge that there is much controversy in the literature as to the dominant endocytosis

mechanisms and required regulators, in general. However, given only a Cbl inde-

pendent endocytosis mechanism, the model would be unable to account for the

apparent saturation of the internalization rates for overexpressed receptors (ex-

periments 1-3 in Appendix A.1) compared to endogenous receptors (experiment

5 in Appendix A.1). Therefore having a Cbl dependent pathway is convenient in

explaining those experimental observations, although any number of proteins, not

in the model, could cause saturation in the endocytic pathway.

Despite the apparently earlier activation of Cdc42 than its putative GEF, active

Cool-1, (see experiments 10 and 11 in Appendix A.1) the data still supports a

mechanism whereby Cdc42 activation only occurs through Cool-1. The explanation

of this effect is that the level of Cool-1 is significantly higher than Cdc42. Then,

while only a fraction of Cool-1 is being activated at early times, it is still sufficient

to induce substantial activation of Cdc42. This is an example of an apparently

contradictory experimental result which only after quantitative modeling is shown

still to be consistent with the proposed mechanism. In particular, we found there

was no need to invoke another parallel activation mechanism for Cdc42 (through

Vav for example) as initially might have been assumed.
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2.3.2 Predictions

Once we have a model which reproduces the experimental observations, we would

like to make predictions on unmeasured or unmeasurable components of the sys-

tem. The motivation is twofold. Firstly, if we make a prediction on a currently

unmeasured component of the system which is subsequently measured, we have an

opportunity to test the validity of our model. Secondly, if we are confident in the

model, we may want to test a hypothesis about the role of an unmeasurable com-

ponent in the system. If that unmeasurable component has large uncertainties, we

then need to apply the methods of experimental design to improve the situation.

We will discuss these issues in what follows.

Model validation

To first give an example of model validation, consider the qualitative observa-

tion in [22] that in stably expressing v-Src cells, in conditions where Cool-1 is

overexpressed, ligand-induced receptor internalization is blocked compared to an

endogenous Cool-1 control, for at least 60 minutes. The model is adjusted to

simulate the conditions of these v-Src cells by making all Src in its active form,

switching off Src inactivation and increasing the initial amounts 10-fold to mimic

the stable transfection. We then predict the total surface receptor number under

the two conditions and assign uncertainties using Eqn. 2.5. The results are shown

in Fig. 2.3. The qualitative observation of strong inhibition of internalization un-

der conditions of overexpressed Cool-1 is verified by the model. Note that in this

case the uncertainties are small enough that we can confidently predict a large

difference in the fraction of receptors on the cell surface after 60 minutes under

the two conditions. Interestingly, the model also predicts this inhibition is much
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Figure 2.3: Total surface receptor numbers after EGF stimulation in stably ex-

pressing v-Src cells. Endogenous levels of Cool-1 (dashed curve) or overexpressed

Cool-1 (solid curve). The dotted lines show the uncertainties in each of the best

fit predictions
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weaker in cells that are not stably expressing v-Src, essentially because the Cool-

1 is not “pre-activated” and endocytosis of significant numbers of receptors can

occur before the pool of Cool-1 can become phosphorylated.

Optimal design for the triple complex

Another question of interest is whether the triple complex, which appears to

be responsible for sequestering Cbl and blocks receptor down-regulation when

Cdc42(F28L) is expressed, also forms in appreciable amounts in wild type cells.

We would assume the answer is affirmative, as we observe a reduced downstream

mitogenic signal from the receptor under conditions of knockdown of Cool-1 or

Cdc42. Since the triple complex is an example of a species that is very difficult

to obtain an accurate set of measurements for, we can test a hypothesis about

its formation in wild type cells by looking at its predicted time course, Fig. 2.4.

The relative amount of the triple complex is shown in Fig. 2.4, where the number

Figure 2.4: Predictions with uncertainty on the time course of the triple complex

consisting of active Cool-1, Cbl and active Cdc42. The quantity plotted is the

percentage of total Cbl that is bound in the triple complex.
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of molecules of the triple complex has been scaled relative to the total level of

Cbl. Relative levels of complexes and the times of formation/dissociation are more

meaningful quantities than absolute numbers of molecules, which are merely rough

estimates used to initialize the simulations. The best fit trajectory for the triple

complex suggests that at a maximum over 12% of Cbl is sequestered in the com-

plex which represents a significant proportion. However the uncertainty bounds

are too large to make this assertion; at the level of the lower bound, less than 4%

of Cbl is sequestered at a maximum, and the triple complex dissociates within 15

minutes. This motivates the need for an optimal design approach. We define a

criterion which is the average uncertainty in the prediction on the triple complex.

We then optimize this quantity using a sequential design approach (therefore we

need to perform only line minimizations in the time coordinate for each of the 11

measurable species in the system) and follow up by finding an approximate optimal

continuous design on that species. The results of such an analysis are shown in

Fig. 2.5.

The most striking features of the optimal design results are that

1. a single measurement on total active Cdc42 can significantly reduce the vari-

ance we see in the prediction on the triple complex, as in Fig. 2.5 (b)

2. even though the approximate continuous design allows for 160 hypotheti-

cal measurements on the activity of Cdc42, the optimal design weights are

concentrated to just a dozen early time points. That is, by just taking a

few measurements we can get a design very close to the optimal continuous

design for measuring total active Cdc42.
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(a) (b)

Figure 2.5: (a) Trajectory of total active Cdc42 (solid line) with single sequen-

tial design measurement (marked with a dot) and approximate continuous design

weights (dotted line) to reduce the average variance of the prediction on the Cool-1,

Cbl, Cdc42 complex. The weights are optimized over 160 uniformly spaced hypo-

thetical measurements placed between 0 and 80 minutes on Cdc42. (b) Shows the

reduction in the original uncertainty bounds resulting from the single measurement

(dotted line) and the approximate continuous design measurement (dashed line)

in (a). Compare with Fig. 2.4 before the addition of new measurements.
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It is worth noting here that these extra measurements have little effect on the

parameter uncertainty. In Fig. 2.6 on the left, we show the eigenvalues of the

approximate covariance matrix M−1 both before and after the addition of the

new data points. On the right is the square root of the diagonal elements of

M−1, giving the standard deviation in each parameter. As can be seen, the large

parameter uncertainties are changed little after the addition of the optimal data

points. In a sense, the underlying parameter uncertainty defined by M−1 in Eqn.
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Figure 2.6: (a) Eigenvalues of the approximate parameter covariance matrix, M−1,

with (light squares) and without (dark circles) the optimally designed data to re-

duce the uncertainty of the triple complex trajectory. (b) Individual parameter

standard deviations, sorted from smallest to biggest with (light squares) and with-

out (dark circles) the optimally designed data. Note that the cutoff in the spectrum

of eigenvalues is due to the prior information assumed on parameters ranges. Even

with prior information, 40 of the 60 parameters have uncertainties corresponding

to a greater than 20-fold increase or decrease in their non-logarithmic values.



34

2.5, although large in some directions, is mostly aligned with directions where the

model sensitivity is small. Conversely, if we include hypothetical measurements

on the binding and unbinding constants involved in forming the triple complex,

we find only a negligibly small decrease in the uncertainty in the prediction of the

triple complex (see Appendix A.1). This is not so surprising when we understand

that the uncertainty arises from the uncertainties in components of the system

upstream of the triple complex; using parameter measurements alone, almost every

rate constant in the system would have to be measured accurately to constrain the

prediction [28].

New measurements on total active Cdc42

Further measurements were made on total activated Cdc42 in the lab by Western

blotting and with no refitting, our model was able to match the new data using a

scale factor alone, see Fig. 2.7. (However, we cannot consider this as a validation

of our model, since prior to the inclusion of the new data, the uncertainties on

total activated Cdc42 were very large. Any experimental observations within the

uncertainty bounds would be consistent with the model.) The uncertainties of the

triple complex time course, given the real data and the optimally weighted data,

is shown in Fig. 2.7 (b). Importantly, given that the measured activities of total

Cdc42 were consistent with the trajectory for the optimized set of parameters, the

reduction in uncertainty of the triple complex for the real data is comparable to

that for the optimally selected data and we can make a firm conclusion that the

triple complex does sequester significant amounts of the Cbl protein even in wild

type cells after EGF stimulation. Therefore it appears that the complex plays a

part under normal conditions in the EGFR homeostasis. (Note that if the new data
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(a) (b)

Figure 2.7: (a) Without refitting to the new total active Cdc42 data, our prediction

matches the data using only a single multiplicative factor. a.u. = arbitrary units.

(b) Reduced uncertainty on the time course of the active Cool, Cbl, and active

Cdc42 complex for the optimal set of design points (dashed line) (same as Fig. 2.5

(b) ) and for the real data (dotted line).
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collected showed a very different time course than in Fig. 2.7, an additional re-

optimization step would need to be performed before we could assess the prediction

and uncertainties for the triple complex.)

2.4 Discussion

We have demonstrated that by quantitatively modeling the dynamics of EGFR

signaling and down-regulation in a mammalian cell line, we are led to incorporate

interactions and modify existing reactions in order to reproduce the experimental

observations. Note that these interactions are not directly tested by experiments,

but we can infer them from the existing data. This refinement of an existing

model of interactions and parameters is one important aspect of the modeling effort

and gives insight into the underlying dynamics. Of course, we recognize that the

model as it stands will only explain the behaviors observed in the data sets we have

chosen. The addition of new experiments that test for receptor signaling from early

endosomes [9], alternative endocytic mechanisms [65], autocrine signaling [63, 64]

or the interactions between members of the erb-B family [32], for example, will

require appropriate extensions of the mathematical model.

The second part of the process is to make predictions on the unmeasured or

unmeasurable species of the system, assuming that the model has been suitably

refined. We suggest that for testable predictions to be made, uncertainty estimates

need to be attached to them [8]. In some cases the prediction uncertainties are

rather small, despite large parameter uncertainty. On the other hand, if some pre-

dictions show large uncertainty, and involve species that are not directly measur-

able, we may then define a suitable design criterion and suggest new experimental
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measurements that need to be taken to reduce that uncertainty. The results of

such an analysis are promising, in that we find a rather small number of measure-

ments (realistic to perform with standard molecular biology techniques) need be

taken to begin to make predictions with good precision. Given such measurements

on the EGFR system, we see that the triple complex of active Cool-1, Cbl and

active Cdc42 does indeed form in appreciable quantities in wild type cells and we

also get an estimate for the time of formation and dissociation.

More generally, we believe that experimental design for reducing prediction

uncertainties can play an important role in the iterative process of model refinement

and validation and can be used in the testing of biological hypotheses.



Chapter 3

Variational method for estimating

the rate of convergence of Markov

Chain Monte Carlo algorithms1

We demonstrate the use of a variational method to determine a quantitative lower

bound on the rate of convergence of Markov Chain Monte Carlo (MCMC) algo-

rithms as a function of the target density and proposal density. The bound relies

on approximating the second largest eigenvalue in the spectrum of the MCMC op-

erator using a variational principle and the approach is applicable to problems with

continuous state spaces. We apply the method to one dimensional examples with

Gaussian and quartic target densities, and we contrast the performance of the basic

Metropolis-Hastings algorithms with a “smart” variant that incorporates gradient

information into the trial moves. We find that the variational method agrees quite

1As of this writing, this chapter is under review by SIAM Journal of Scien-
tific Computing with the same title and authors F.P. Casey, J.J. Waterfall, R.N.
Gutenkunst, C.R. Myers and J.P. Sethna
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closely with numerical simulations. We also see that the smart MCMC algorithm

often fails to converge geometrically in the tails of the target density except in the

simplest case we examine, and even then care must be taken to choose the appro-

priate scaling of the deterministic and random parts of the proposed moves. We

apply the same method to approximate the rate of convergence in multidimensional

Gaussian problems with and without importance sampling. Thus we demonstrate

the necessity of importance sampling for target densities which depend on variables

with a wide range of scales.

3.1 Introduction

Markov Chain Monte Carlo (MCMC) methods are important tools in parametric

modeling [25, 50] where the goal is to determine a posterior distribution of parame-

ters given a particular dataset. Since these algorithms tend to be computationally

intensive, the challenge is to produce algorithms that have better convergence rates

and are therefore more efficient [1, 3]. Of particular concern are situations where

there is a large range of scales associated with the target density, which we find is

widespread in models from many different fields [8, 7, 23, 69, 28].

There are a number of techniques to either determine exactly or bound the

convergence rate for MCMC algorithms on discrete state spaces [4], but there

has been little discussion on finding quantitative eigenvalue bounds for continuous

state spaces. Where work has been done in that area [59, 40], upper bounds

on the convergence rate can be derived but the techniques are rather involved

and the bounds may not be very useful. Therefore, in this work, we show that

a conceptually straightforward variational method can provide convergence rate
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estimates for continuous state space applications. Even though we provide only

lower bounds on the convergence rate we show these bounds can be remarkably

tight. Furthermore, lower bounds allow us to discover conditions for which the

MCMC method fails to converge.

We have been able to obtain explicit formulas for one dimensional example

problems but the method may be more generally applicable, when applied in an

approximate way, as we demonstrate for a multidimensional problem.

3.2 Markov Chain Monte Carlo

Typically, one wishes to obtain a sample x1, x2... from a probability distribution

π(x) which is sometimes called the target distribution. An MCMC algorithm works

by creating a Markov chain that has π(x) as its stationary distribution, i.e. after

many steps of the chain any initial distribution converges to π(x). A sufficient

condition to establish π(x) as the stationary distribution is that the chain be

ergodic and that the transition density, t(x, y), of the chain satisfy detailed balance:

π(x) t(x, y) = π(y) t(y, x).

Given a proposal density q(x, y) for generating moves, one way to construct the

required transition density [55, 48] is to define t(x, y) = α(x, y) q(x, y) where

α(x, y) = min

(
q(y, x)π(y)

q(x, y)π(x)
, 1

)
(3.1)

is the acceptance probability of the step x → y. Obtaining the sample from the

stationary distribution then involves letting the chain run past the transient (burn-

in) time and taking uncorrelated samples from the late time trajectory. How long it

takes to reach the stationary distribution determines the efficiency of the algorithm
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and for a given target distribution, clearly it depends on the choice of the proposal

density. We can write down the one-step evolution of a probability density p(x) as

a linear operator:

(Lp)(y) =

∫
t(x, y)p(x) dx +

(
1−

∫
t(y, x) dx

)
p(y)

=

∫
(t(x, y)p(x)− t(y, x)p(y)) dx + p(y)

where dx = dx1 . . . dxn, dy = dy1 . . . dyn, n is the dimension of the state space

and all integrals are from −∞ to ∞ here and elsewhere in this manuscript. The

second form makes it explicit that p(y) = π(y) is the stationary distribution by

the detailed balance relation.

Now, if the linear operator has a discrete set of eigenfunctions and eigenvalues,

it holds that the asymptotic convergence rate is determined by the second largest

eigenvalue in absolute value (the largest being one) [44, 56]. We will write this

eigenvalue as λ∗, and will refer to it as the second eigenvalue meaning the second

largest in absolute value. Assuming geometric convergence of the chain [57], the

discrepancy between the density at the mth iterate of the chain and the target

density decreases as (λ∗)m for large m. Therefore we would like λ∗ to be as small

as possible.

The variational calculation allows us to obtain an estimate for λ∗, but before we

can do this we need to convert our operator into a self-adjoint form which ensures

that the eigenfunctions are orthogonal. This is easily accomplished by a standard

technique [4] of defining a new transition density by s(x, y) = t(x, y)
√

π(x)/
√

π(y)

and our self-adjoint operator is then given by

(Sp)(y) =

∫
s(x, y)p(x) dx +

(
1−

∫
t(y, x) dx

)
p(y) (3.2)

=

∫
(s(x, y)p(x)− t(y, x)p(y)) dx + p(y) (3.3)
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where the “diagonal” part of the old operator (multiplying p(y)) need not be

transformed using s(x, y). It is easy to show that defined as above, S is self-

adjoint. Note that if u(x) is an eigenfunction of the operator S, then
√

π(x)u(x)

is an eigenfunction of the original operator L with the same eigenvalue.

3.2.1 Metropolis-Hastings and smart Monte Carlo

MCMC algorithms essentially differ only in the choice of proposal density and ac-

ceptance probability that is used in selecting steps. We will refer to the standard

Metropolis-Hastings (MH) algorithm as that which uses a symmetric proposal den-

sity to determine the next move; for example, a Gaussian centred at the current

point:

q(x, y) =
√
|L|/(2π) exp

(−(y − x)T L(y − x)/2
)

where L is an inverse covariance

matrix that needs to be chosen appropriately for the given problem (importance

sampling). In other words, the proposed move from x to y is given by y = x + R

where R ∼ N(0, L−1) is a normal random variable, mean 0 and covariance L−1.

Thus the update on the current state is purely random. We will see that when

the target density is not spherically symmetric, a naive implementation of the

Metropolis-Hastings algorithm where the step scales are all chosen to be equal

leads to very poor performance of the algorithm. As would be expected the con-

vergence deteriorates as a function of the ratio of the true scales of the target

density to the scale chosen for the proposal density.

One variant used to accelerate the standard algorithm is a smart Monte Carlo

method [60] that uses the gradient of the negative of the log target density at every

step, G(x) = −∇ log(π(x)) to give

q(x, y) =

√
|L|√
2π

exp

(
−1

2
(y − (x−H−1G(x))T L(y − (x−H−1G(x))

)
(3.4)
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and H can be considered either as a constant scaling of the gradient part of the

step or, if it is the Hessian of − log(π(x)), as producing a Newton step. The move

to y is generated as y = x−H−1G(x) + R, so now we have a random component

R ∼ N(0, L−1) and a deterministic component −H−1G(x). Viewed like this, moves

can be considered to be steps in an optimization algorithm (moving to maximize

the probability of the target density) with random noise added. We will see that

with an optimal choice of H and for Gaussian target densities, the smart Monte

Carlo method can converge in one step to the stationary distribution. We will

also see that for a one dimensional non-Gaussian distribution it actually fails to

converge geometrically, independent of the values of the scaling parameters.

3.2.2 Variational method

Once we have the self-adjoint operator for the chain, S from Eqn. 3.3, and we know

the eigenfunction with eigenvalue λ1 = 1,
√

π(x), we can look for a candidate

second eigenfunction in the function space orthogonal to the first eigenfunction

where the inner product is defined by (p1, p2) =
∫

p1(x)p2(x) dx. Given a family

of normalized candidate functions in this space, va(x), with variational parameter

a, the variational principle [19, 44] states

maxa|(va,Sva)| ≤ λ∗ ≤ 1 (3.5)

and depending on how accurately our family of candidate functions captures the

true second eigenfunction, this can give quite a close approximation to the second

dominant eigenvalue. In the problems we examine in the following sections the

target densities have an even symmetry which makes it straightforward to select

a variational trial function: any function with odd symmetry will naturally lie in
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the orthogonal space. For more complicated problems with known symmetries this

general principle may be useful in selecting variational families for the purposes of

algorithm comparison.

Writing out explicitly for S in (va,Sva) we have

(va,Sva) =

∫ ∫
va(x)s(x, y)va(y) dxdy −

∫ ∫
t(y, x) (va(y))2 dxdy + 1 . (3.6)

As we will see in the following section, the lower bound in Eqn. 3.5 can be arbitrar-

ily close to 1 and therefore equality holds. In these situations we see the chain does

not converge geometrically. We will also see that there can be eigenvalues in the

spectrum that are close to −1 which determine the asymptotic convergence rate,

i.e. λ∗ = |λn| where λn < 0. Interestingly, for this situation there is oscillatory

behaviour of the Markov chain state space density.

3.3 Examples

3.3.1 Gaussian target density

Consider the simplest case of a one dimensional Gaussian target distribution

π(x) =
√

k/(2π) exp(−kx2/2) with variance 1/k. Under the standard MH al-

gorithm, the proposal density is

q(x, y) =

√
l

2π
exp

(
−1

2
l(y − x)2

)
. (3.7)

The issue is to determine l optimally; a first guess would be that l = k is the best

choice. We will see that this is not actually correct.

To begin, define a variational function va(x) ∝ x exp(−ax2/2), orthogonal to

the target density and normalized such that
∫

v2
a dx = 1. We can motivate this

choice by recognizing that any initial distribution that is asymmetric will most
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likely have a component of this test function, and a convergence rate estimate

based on it roughly corresponds to how fast probability “equilibrates” between

the tails. (More commonly, variational calculations will use linear combinations of

many basis functions with the coefficients as variational parameters. We find here

that including higher order terms in the test function is unnecessary as we obtain

tight enough bounds just retaining the lowest order term.)

We proceed by evaluating Eqn. 3.6 noting that because of the form of the

acceptance probability, Eqn. 3.1, there are two functional forms for the kernels

t(x, y) and s(x, y) delineated by the equation y2 = x2, i.e. whether the “energy”

change, ∆E(x, y) = − log(π(y))+log(π(x)) = k(y2−x2)/2, is positive or negative.

(It is then convenient to define the coordinate change y = rx, x = x or x = ry, y =

y where −1 ≤ r ≤ 1 and −∞ ≤ x, y ≤ ∞ to evaluate the integrals.) An explicit

expression for (va,Sva) can be obtained for this case of a Gaussian target density.

Next, we use a numerical optimization method to maximize the bound defined

by Eqn. 3.5 with respect to a. The result of this analysis is shown in Fig. 3.1

along with an empirically determined convergence rate for comparison. (To obtain

the rate empirically, we run the MCMC algorithm for many iterates on an initial

distribution and observe the long time differences from the target distribution.

These differences are either fit using Hermite polynomial functions or by looking

for the multiplicative factor by which the density changes from one iterate to the

next.) The variational bound tightly matches the asymptotic convergence rates in

this case, and an optimum step size l can be ascertained. Clearly our l = 1 initial

guess for the best scaling is far from optimal.

Moving to the one dimensional smart Monte Carlo, we have a Gaussian proposal
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Figure 3.1: Variational estimate on the second eigenvalue for the one dimensional

Gaussian problem using the standard MH method, with k = 1.0. The variational

estimate is the solid line and the empirically determined values are marked with

stars. Some of the empirical convergence rates seem to be less than the lower

bound, but this is due to inaccuracies in their estimation
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density of the form :

q(x, y) =

√
l

2π
exp

(
−1

2
l

(
y − (x− k

h
x)

)2
)

(3.8)

where 1/l is the variance of the random part of the step and 1/h is the scale of

the deterministic part. (Letting h →∞ we recover the standard MH algorithm of

Eqn. 3.7.)

Taking h = k corresponds to performing a Newton step at every iterate of the

algorithm. Thus, since the log of the target density is purely quadratic, the current

point will always be returned to the extremum at 0 by the deterministic component

of the smart Monte Carlo step and the random component will give a combined

move drawn from q(x, y) = q(y) =
√

l/(2π) exp (−ly2/2), which has the form of

an independence sampler [55]. If we then also choose l = k, we see immediately

that we are generating moves from the target distribution from the beginning, i.e.

we have convergence in one step starting from any initial distribution.

In real problems, however, − log(π(x)) will not be quadratic. We may obtain

an estimate for l and h by considering its quadratic approximation or curvature

but in many cases those estimates will have to be adjusted. If the curvature is

very small (or in multidimensional problems if the quadratic approximations are

close to singular), the parameters will have to be increased to provide a step size

control to prevent wildly unconstrained moves (analogous to the application of a

trust region in optimization methods [14]). If the curvature is large but we believe

that the target density is multimodal, we need to decrease the parameters to allow

larger steps to escape the local extrema. Therefore we examine in the following

the dependence of the convergence rate as we vary both of the parameters l and

h.

The acceptance probability Eqn. 3.1 has two functional forms separated by a
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boundary in the (x, y) plane given by

(
k + l

k

h

(
−2 +

k

h

))
(y2 − x2) = b(k, h, l)(y2 − x2) = 0 . (3.9)

In particular, the acceptance probability is

α(x, y) = min

(
exp

(
−1

2
b(k, h, l)(y2 − x2)

)
, 1

)
. (3.10)

Now we have a complication over the standard MH method because depending

on the sign of the coefficient function b(k, h, l) in Eqn. 3.9, we find that either

α(x, y) < 1 on |y| ≥ |x|, α(x, y) = 1 on |y| < |x| or vice versa. This is shown in

Fig. 3.2.

x

y

α(x, y) < 1

α(x, y) < 1

α(x, y) = 1α(x, y) = 1
x

y

α(x, y) = 1

α(x, y) = 1

α(x, y) < 1α(x, y) < 1

0.5 1 1.5 2

1

2

3

4

l

h

b(1, h, l) < 0

b(1, h, l) ≥ 0

h = 0.5

(a) (b) (c)

Figure 3.2: Regions in xy plane where acceptance probability α(x, y) < 1 or

α(x, y) = 1, when (a) b(1, h, l) ≥ 0 and (b) b(1, h, l) < 0. The equation for

the boundary is shown in (c), see Eqn. 3.9 with k = 1.0. (The standard MH

algorithm will only have regions described by (a). )

As before, for a given value of h and l, we need to break up the double integrals

of the scalar product (va,Sva), Eqn. 3.6, into the appropriate regions. Our choice

of variational function is the same as before (since the target density is the same)

and we again can get an explicit (but complicated) expression for Eqn. 3.6 which
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we maximize with respect to a. The results of this analysis are shown in Fig. 3.3

(a), where we fix k = 1.0 and vary h, l. We have confirmed that these lower bounds

are quite accurate as shown in Fig. 3.3 (b).
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Figure 3.3: Estimate of second eigenvalue for the symmetrized smart Monte Carlo

operator. (a) k = 1 is fixed and h, l are allowed to vary. (h = 1.0, l = 1.0 is the

optimal scaling for deterministic and random parts of the step.) (b) We take a slice

through this surface at l = 1.5 and empirically determine the second eigenvalue at

points along this curve (stars). The error bars are too small to be seen. Dashed

lines are discontinuities.

The remarkable feature of these results is that even for this simple Gaus-

sian problem, the selection of step scale parameters h, l is critical to achieve

convergence. As already mentioned, there is a trivial choice of optimum with

h = l = k = 1 that gives one step convergence from any initial distribution (and

therefore λ∗ = 0). However, if we change parameters infinitesimally such that

l = 1 + ε, h = 1 (ε > 0) we go through a discontinuous transition where we see

no convergence from any initial distribution. This can be understood by recog-
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nizing that after one step we will have a proposal density (before accept/reject)

∝ exp(−(1 + ε)x2/2) which has a factor exp(−εx2/2) less probability in its tails

than the target density. Suppose there is an initial distribution or point mass con-

centrated at x = 20/
√

ε. The proposed step of the smart Monte Carlo algorithm,

starting at x, will revisit x too infrequently by a factor exp(−100). Thus detailed

balance will force the transition x → 0 to be accepted with a probability of only

exp(−100), and thus the initial distribution will take an exponentially long time

to converge to the target density.

In fact this is one of the two disconnected regions where no geometric conver-

gence is observed in Fig. 3.3. The largest of the two (with h > 1/2) is defined

exactly by the equation b(1, h, l) < 0 (compare Fig. 3.2 (c) with Fig. 3.3 (a)).

In this region the bound on the second eigenvalue approaches 1 as the variational

parameter, a → 0. This corresponds to a perturbation on the target density of

x
√

π(x) for the unsymmetrized MCMC operator L. In other words, we have a

test distribution that has exponentially more probability in its tails than the tar-

get density. For initial states x arbitrarily far away from the origin, the acceptance

probability α(x, y) in the region |y| < |x| is arbitrarily small. To see this, note that

Eqn. 3.10 is an exponentially decaying function of y2−x2 in this region, and given

the form of the proposal density Eqn. 3.8, we see that the expected value of y2−x2

is arbitrarily large and negative. Thus states far out will never be “allowed back”

and the fat tails of
√

π(x) will never shrink back down those of π(x). Further-

more, moves x → y where |y| ≥ |x| are always accepted (because α(x, y) = 1 on

|y| > |x|) which simultaneously prevents convergence. The situation is analogous

to that described for l = 1 + ε and h = k = 1, except now there is a cutoff both on

the deterministic step and the random step. A typical example of this is shown in
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Fig. 3.4. Once we cross to the b(1, h, l) ≥ 0 region, moves x → y where |y| < |x|
are always accepted by Eqn. 3.10 (Fig. 3.2 (a)). Therefore excess probability in

the tails is allowed to flow back into the central part of the distribution and the

convergence is not blocked.

Figure 3.4: Forty iterates of the smart Monte Carlo algorithm (solid lines), Eqn.

3.8, when the initial distribution is normal with standard deviation five times the

Gaussian target density (dashed line). Parameters are chosen to be in the region

of no convergence (h = 2.0, l = 1.5), see Fig. 3.3 (a). We see that the tails of the

initial distribution are essentially unchanging after many iterates and have failed

to converge to the target density

In the second region where no convergence is observed, (h < 1/2 in Fig. 3.3),

we have a situation where the deterministic step alone (taking l →∞) leads to the

proposed moves being generated by an unstable mapping, from the (n−1)th to nth

iterate: x(n) = x(n−1)−βx(n−1) where β > 2. The trial variational function for this

situation also maximizes the bound as a → 0, again implying that the tails are
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not decaying to the stationary distribution. The reason is that, even when l < ∞,

we have a situation in which the expected or mean position of a state x after one

step is y where |y| ≥ |x|. Thus excessive probability in the tails cannot be shifted

inward to match the target density.

The h = 1/2 “trough” is a special case where we have oscillatory behaviour.

That is, the second eigenvalue is negative but greater than −1 and in fact con-

vergence does occur. Interestingly setting h = k/2 means that b(k, h, l) = k and

the acceptance probability of Eqn. 3.10 looks again like that of the standard MH

algorithm, but the convergence is actually faster. In a sense, given that the deter-

ministic part of the step moves x → −x and the target distribution is symmetric,

the oscillatory behavior allows the chain to sample the distribution twice as fast.

3.3.2 Quartic target density

In scientific or statistical applications where

MCMC is used, the log of the target density will ordinarily have higher order terms

beyond the quadratic order we studied in the previous section. For example, in

a Bayesian inference problem the posterior distribution will rarely have a simple

Gaussian form. Both finding the maximum a posteriori parameter estimates and

sampling from the posterior are made more difficult in the presence of these higher

order terms.

Therefore, we wish to extend the previous example by studying a target dis-

tribution of the form π(x) = 2(3/4)k(1/4)/Γ(1/4) exp (−kx4/2) Here, the log of the

target density is quartic and the proposal density (Gaussian) no longer has the

same form as the target density. We would like to understand the performance of

the Monte Carlo algorithms in this circumstance. (The test distribution is taken to
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be ∝ x exp (−ax4/2), i.e. in the orthogonal space to the stationary distribution).

The goal is to estimate the optimal value of l, as before. We can argue approx-

imately that the step scale should be such that kx4/2 ≈ 1 for a typically move x,

i.e. the change in energy is about 1 and the acceptance probability is therefore

exp(−1). This gives a typical value for x2 =
√

2/
√

k. Since the proposal density

is Gaussian with variance 1/l, we therefore would naively predict l =
√

k/
√

2.

Applying the variational method, we were unable to find a closed form solution

to Eqn. 3.6 so we had to resort to numerical integrals in determining the bound

in Eqn. 3.5. The results are shown in Fig. 3.5 for the standard MH method; it

suggests an optimal choice for the step size parameter, l, which is an improvement

over our initial guess of 1/
√

2 (when k = 1).

Turning to the smart Monte Carlo algorithm, if we wish to make the determin-

istic part of the proposed move a Newton step using the Hessian of − log(π(x))

at x = 0 we are left with a singular Hessian and an infinite deterministic step,

reinforcing the need for the step length control parameter, h.

Surprisingly, we find that, independent of the value of h and l, (k fixed at

1), the scalar product (va,Sva) → 1 as a → 0. Thus there are no choices of

scaling parameters which will lead to convergence. This is borne out by numerical

simulation, see Fig. 3.6 for the changes in an initial density under many iterates

of the algorithm with an arbitrary choice for s, h.

The failure of the smart Monte Carlo method for the quartic problem is clearly

due to non-convergence of the tails of the distribution, and can be seen by analyzing

the integrals defining the operator, Eqn. 3.6, and noting that they all tend to zero

as the variational parameter tends to zero, independent of the choice for k, h and

l.
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Figure 3.5: Second eigenvalue estimate from the variational method (solid line) and

data points (stars), for the quartic target density (k = 1) using the standard MH

method, Eqn. 3.7. The numerical values for λ∗ are now estimated by taking the

ratio of the discrepancy from the target density in subsequent iterates and finding

a single multiplicative factor which describes the decay. This is done rather than

using functional forms analogous to Hermite polynomials to fit the decay, because

it appears that there may be more significant contributions from higher order

terms. This also explains why the lower bound shown differs more than in Fig. 3.1

and Fig. 3.3 (b). The data point shown at 1/
√

2 ≈ .71 (see text) does not appear

to be optimal.
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Figure 3.6: Forty iterates of the smart Monte Carlo algorithm (solid lines), Eqn.

3.8, when the target density is quartic (dashed line). The initial distribution of

points is normal with standard deviation about five times that of target density

(dashed line). Parameters are arbitrarily chosen as (h = 1.0, l = 1.0), and we

see that the tails of the initial distribution are unchanged for every iterate of the

algorithm. Other parameter sets tested lead to the same behaviour.
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The quartic problem is a representative example containing higher order terms

beyond quadratic in the log of the target density. Almost all real world applica-

tions will involve higher order nonlinearities and we would expect to see a similar

inability of the smart Monte Carlo method to converge geometrically. It may well

be that in applications where the method is extensively used (e.g. [34, 42, 37]) the

convergence criteria are less precise than ours. (For example it may be acceptable

to merely monitor the variance of some function of the state space variables and

conclude that convergence has been achieved when it ceases to change appreciably.)

3.4 Multidimensional target densities

For multidimensional problems, it is quite common that there is a large range of

scales associated with the target density [8, 28, 69]. That is, the curvature of the

probability density along some directions in the parameter space is much larger

than in other directions. Clearly, if an MCMC method is not designed to take

these different scales into account through importance sampling, the algorithm

will perform very poorly. If the curvature is very high in a particular direction and

we try to take a moderately sized step, it will almost certainly be rejected but if

we take small steps in directions that are essentially flat the MCMC algorithm will

be very slow to equilibrate. We would like to show explicitly here what happens

to the convergence rate when the scale of the problem has been underestimated or

overestimated.

The variational calculations for the one dimensional examples of the previous

section either yielded explicit formulas or gave integrals that were relatively fast

to compute numerically. However as we go to multiple dimensions neither of these
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features are present, in general. Typically the integrals describing (va,Sva) will not

factor into one dimensional integrals. For Gaussian target densities the full space

is broken into regions analogous to those in Fig. 3.2, described by an equation like

ytAy ≥ xtAx where A is a symmetric n by n matrix which is not necessarily positive

definite. For the standard MH algorithm applied to a multivariate Gaussian target

density with inverse covariance matrix K, we have A = K, and therefore all the

dimensions are coupled through the energy change, ∆E = ytKy − xtKx. We

would still like to be able to get a lower bound on λ∗, and to this end note that

any test function orthogonal to the target density will work in Eqn. 3.5; we do not

explicitly need to introduce a variational parameter. It is still necessary to make

choices that are both tractable in computing (v,Sv) and are “difficult” functions

for the given algorithm to converge from.

As an example, take the multivariate Gaussian distribution of the form

π(x) =

√
|K|

(2π)
n
2

exp

(
−1

2
xtKx

)
(3.11)

with x = (x1, ..., xn), and consider using the MH algorithm with importance sam-

pling, i.e.

q(x, y) =

√
|L|

(2π)
n
2

exp

(
−1

2
(y − x)tL(y − x)

)

where again L is the inverse covariance matrix/step size control term and to sim-

plify we assume that both K and L are diagonal. Without any analysis we might

guess that the optimum choice for L is K.

First we construct a test function that will provide a useful bound when the

proposed steps are too large for the natural scale of the problem. For simplic-

ity, consider putting a delta function distribution at the origin. If we take large

steps the acceptance probability should be low and there will be a large overlap
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between the initial state and the final state. In the limit that the proposed steps

have infinite length, the initial state will not be changed at all and the bound

on the second eigenvalue will approach one. To do this more carefully we de-

fine a test function which is a Gaussian whose variance will ultimately be taken

to zero to represent the delta function. However, we also need to add another

term to ensure the test function is orthogonal to the target density, in order to

apply the variational bound. Therefore, for the unsymmetric operator we write

the test function as : uσ(x) = −Aπ(x) + Bwσ(x) where wσ(x) is the probabil-

ity density for a multivariate Gaussian with covariance matrix σ2I and A and B

are constants. For the symmetrized operator the trial function is transformed to

vσ(x) = −A
√

π(x) + Bwσ(x)/
√

π(x). A and B are constrained to satisfy the

orthogonality relation (vσ, π) = 0 and a normalization (vσ, vσ) = 1. These lead to

the conditions

A = B and B2

∫ (
wσ(x)√

π(x)

)2

dx = 1 + B2 .

Then it can be seen that

(vσ,Svσ) = −B2 + B2

(
S wσ(x)√

π(x)
,

wσ(x)√
π(x)

)

where we have used the orthogonality condition, the fact that wσ(x) integrates to

1 and that S is self-adjoint. Writing out the operator S explicitly we get
(
S wσ(x)√

π(x)
,

wσ(x)√
π(x)

)
=

∫ ∫
wσ(x)√

π(x)
s(x, y)

wσ(y)√
π(y)

dxdy −
∫ ∫

t(x, y)

(
wσ(x)√

π(x)

)2

dxdy

+

∫ (
wσ(x)√

π(x)

)2

dx .

The last term on the right hand side is (1+B2)/B2, making use of the normalization

condition, so we are left with

(vσ,Svσ) = B2

∫ ∫
wσ(x)√

π(x)
s(x, y)

wσ(y)√
π(y)

dxdy−B2

∫ ∫
t(x, y)

(
wσ(x)√

π(x)

)2

dxdy+1 .
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Since we are ultimately taking a limit as σ → 0 (wσ → a delta function) we can

make approximations to these integrals as follows :

∫ ∫
wσ(x)√

π(x)
s(x, y)

wσ(y)√
π(y)

dxdy ≈ s(0, 0)

∫ ∫
wσ(x)√

π(x)

wσ(y)√
π(y)

dxdy

and ∫ ∫
t(x, y)

(
wσ(x)√

π(x)

)2

dxdy ≈
∫

t(0, y) dy

∫ (
wσ(x)√

π(x)

)2

dx .

Finally by taking σ → 0 we have the expression

(Sv0, v0) = 1−
∫

t(0, y) dy .

As already mentioned, for the multidimensional problem we expect different func-

tional forms for the kernels s(x, y) and t(x, y) depending on the initial and final

state (x, y) and this is what makes decoupling the integrals difficult. However for

this choice of test function the equation for the boundary (with x = 0) is given

by ytKy = 0 and since K is positive semidefinite we always stay on one side of

the boundary (the energy never decreases from the initial distribution placed at

x = 0). Then

(Sv0, v0) = 1−
√
|L|

(2π)
n
2

∫
exp

(
−1

2
yt(K + L)y

)
dy (3.12)

= 1−
n∏

i=1

√
li

li + ki

. (3.13)

where li and ki are the diagonal elements of the diagonal matrices L and K,

respectively. With no importance sampling we would have L = kI where k would

be chosen to make sufficiently large steps to enable it to sample π(x). A rough

argument as follows can give some insight into the form of Eqn. 3.13 : 1/
√

li is a

measure of the scale in the ith coordinate direction of the proposal density, 1/
√

ki is

the scale in the ith coordinate direction of the target density. Suppose that li ¿ ki
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for each i, that is the scales of the proposal density are too large in all directions.

Then the ratio of the mean volume of moves generated by q(0, y) to the volume

occupied by π(y) is exactly
∏n

i=1

√
li/
√

ki. Intuitively, this ratio is proportional to

the acceptance probability, and in the regime li ¿ ki the acceptance probability

determines the convergence properties.

We want to use Eqn. 3.13 to show how choosing step sizes too large even in

one direction will result in a very inefficient algorithm. Suppose that for all but

one of the directions we make li = ki, i = 1, . . . , n− 1 which would be roughly the

correct scaling in those directions. Then the bound on the second eigenvalue is

(Sv0, v0) = 1−
√(

1

2

)n−1
√

1

1 + kn/ln
. (3.14)

From this we can see that as we go to larger and larger step sizes relative to the

scale in the last direction (kn/ln →∞), the bound on λ∗ increases to 1. Conversely

we can argue that if one of the directions of the target density has a scale that is

considerably smaller than the step scales being used in the proposal density, we

will get very few acceptances and the convergence rate will be close to 0. Hence

we see explicitly the need for importance sampling to accelerate convergence.

We would also like to address what happens in the other limit as the step size

becomes excessively small compared to the natural scale of the problem. (In fact

Eqn. 3.13 gives a lower bound of zero in that case which is not surprising as it is

based essentially on the term in the operator equation which gives the probability

of staying at the current state. If we take infinitesimally small steps, the acceptance

probability will be one and we will never stay at the current state). When the step

scales are infinitesimally small we expect intuitively that the bound on the second

eigenvalue will also approach one; even though the acceptance ratio is close to one,

very small steps will never be able to “explore” the target distribution sufficiently.
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To compute this limit, we propose a test function which has components of the

target density in all directions except the last, where it has an antisymmetric form

to make sure it is orthogonal to the target density. With respect to the symmetrized

operator S this means

v(x) ∝ xn

n∏
i=1

√
πi(xi) . (3.15)

Here
√

πi(xi) is the one dimensional Gaussian density which is the ith factor in a

diagonalized multivariate Gaussian density. We still have the problem of decou-

pling the n-dimensional multivariate problem into n one dimensional problems. To

manage this we use a device to re-express the operator equation , Eqn. 3.6, ex-

plicitly in terms of the change 1
2
(ytKy − xtKx). (i.e. − log π(y)

π(x)
), which we denote

by ∆E. That is

(v,Sv) =

∫ ∫
v(x)s(x, y)v(y) dxdy −

∫ ∫
t(x, y) (v(x))2 dxdy + 1

=

∫ ∫
xnπ(x)q(x, y)

(∫
min(e−∆E, 1) δ

(
∆E − 1

2

n∑
i=1

ki(y
2
i − x2

i )

)
d∆E

)
−

x2
nπ(x)q(x, y)

(∫
min(e−∆E, 1) δ

(
∆E − 1

2

n∑
i=1

ki(y
2
i − x2

i )

)
d∆E

)
dxdy

Then we use the integral representation of the delta function

δ(x) = 1
2π

∫
exp(−iwx) dw, factor q(x, y) =

∏n
i=1 qi(xi, yi), and rearrange the order

of integration to give :

(v,Sv) =
1

2π

∫
min(e−∆E, 1)

(∫
A(w)e−iw∆E dw

)
d∆E (3.16)

where A(w) contains the integration over the now decoupled (x, y) coordinates :

A(w) =

(
n−1∏
i=1

∫ ∫
πi(xi)qi(xi, yi)e

1
2
iwki(y

2
i−x2

i ) dxi dyi

)
× (3.17)

∫ ∫
(xnyn − x2

n)πn(xn)qn(xn, yn)e
1
2
iwki(y

2
n−x2

n) dxn dyn (3.18)

=
n−1∏
i=1

1

(1 + ki

li
w(−i + w))

1
2

ikn

ln
w

(1 + kn

ln
w(−i + w))

3
2

(3.19)
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Note that the complex integral with respect to dw has a branch point at the roots

of (1 + kn

ln
w(−i + w))

3
2 which lie on the imaginary axis at r1 and r2. It simplifies

the analysis to consider the situation ki = li for i = 1, . . . , (n − 1) and assume

that n − 1 is even. This way, the roots of (1 + w(−i + w))
n−1

2 , r1,0 and r2,0, are

(n − 1)/2 order poles and not branch points, also on the imaginary axis. If we

now also assume that kn < sn, then we can take a contour as shown in Fig. 3.7

when ∆E < 0 and a similar one in the lower imaginary plane when ∆E > 0.

Thus Eqn. 3.19 is reduced to a residue term and a real integral which needs to be

Im

Re

r
1

r
1,0

Figure 3.7: Contour used to evaluate Eqn. 3.19 when ∆E < 0. r1 is a branch

point and r1,0 is a pole of order (n − 1)/2. The contour is the same for ∆E < 0

except restricted to the negative imaginary plane.

evaluated numerically. The result is plotted for n = 11 in Fig. 3.8 along with the

bound that came from Eqn. 3.14. Thus we see the trade off between taking large

steps that potentially can explore the space quickly but have a higher chance of

being rejected and taking small steps which will have a high acceptance probability

but will be unable to sample the space quickly. As we saw when doing the full

variational calculation for the one dimensional problems, the best step scale to use

is not what we may have guessed; the natural choice ln = kn = 1 here does not
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��

Figure 3.8: Lower bound on second eigenvalue for the multivariate Gaussian prob-

lem, Eqn. 3.11, with n = 11. Step scale =
√

1/ln. kn = 1 sets the scale of the

target density in the last direction. The test function is chosen as the negative of

the target density perturbed by a delta function (solid line) or as the target density

itself in all directions but the last (dashed line). The estimate for the lower bound

is a maximum of the two curves.
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appear to minimize the second eigenvalue. We believe this kind of “approximate”

variational approach may be a useful way to deal with problems which are difficult

to analyze otherwise.

3.5 Conclusion

By applying a variational method, it is possible to obtain an accurate (lower bound)

estimate for the second eigenvalue of an MCMC operator and thus the asymptotic

convergence rate of the chain to the target distribution. Given such an estimate

we can optimally tune the parameters in the proposal distribution to improve

the performance of the algorithm. The procedure has a role to play between

the various numerical algorithms that perform convergence diagnostics before the

full simulations are run, to allow the user to manually tune parameters, and the

adaptive schemes [24, 1] that require no preliminary exploration.

In addition, the variational method allows us to discover weaknesses in variants

of the basic Metropolis-Hastings algorithm which on the surface appear to be

reasonable prescriptions for sampling the target density. This is most dramatically

seen in the smart Monte Carlo method discussed above which apparently has

serious flaws for even the simplest of one dimensional target densities. Although

the smart MC method has been widely used in molecular dynamics applications [34,

42, 37] the scales are often chosen by physical considerations (for example, to not

exceed significantly the step sizes needed to accurately describe the dynamical

evolution of the system) and furthermore, the diagnostics of convergence are not

as rigorous as ours; typically a physical quantity is monitored till it appears to

reach an equilibrium value, the rare events which correspond to the tails of the
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target distribution are possibly of lesser importance in those studies. Therefore

the convergence problems we have discussed here, to our knowledge, have not been

previously examined.

It would be interesting to apply the same technique to the more broadly used

gradient based hybrid MC algorithms [17] and other non-adaptive accelerated

methods (e.g. parallel tempering [18]). More generally, the variational analysis

could be a useful tool in making comparisons between the convergence properties

of the latest MCMC algorithms without extensive numerical simulation.



Chapter 4

Averaging for fast stochastic

perturbations of differential

equations

4.1 Introduction

In modeling signaling networks and other cellular processes, differential equations

are the most commonly used framework for describing the protein-protein or even

protein-DNA interactions. There is a host of numerical methods for their solution

and they are fast at tracking the dynamics of a large number of different species.

However, it has been recognized that to accurately describe the reaction events

at a molecular level, one needs to simulate the system stochastically [47]. In

cases that some species in the system only exist in low numbers in a single cell, the

deterministic and stochastic trajectories will be very different. In fact experimental

observations [46] in bacteria suggest that stochastic dynamics play an important

66



67

part of deciding single cell fate.

However, in a typical cell biology experiment to measure relative protein level

or activity, for example, only the average of the stochastic trajectories will be

measured since large numbers of cells need to be lysed to provide a good signal

to noise ratio. Interestingly, the average of the stochastic trajectories can also

differ from the deterministic dynamics, but can be described by a modified set of

differential equations even when the noise amplitude is large, in some limits.

There are two main categories of approximations that can be made on the

stochastic equations describing the evolution of the joint probability density of the

species in the system: a time scale separation approximation and a large system

size approximation.

The large system size approximation assumes that the stochastic sample path

can be well described by a mean trajectory with a Gaussian noise component that

has a small standard deviation compared to the mean. Under that assumption, an

effective set of differential equations can be derived for the evolution of the mean

and the covariances, by systematic expansion of the master equation [68]. The

equations for the mean will have correction terms involving the covariances.

The time scale separation approximation, applied to the stochastic description

of the system, involves partitioning reactions into fast and slow subsets [10, 11] or

partitioning the species in the system into fast and slow subsets [53] in a chemical

master equation framework. The assumption is then made that in between two

slow reactions in the system, many fast reactions will fire. Equivalently, it is

assumed that the time-dependent joint probability density describing the dynamics

of the fast reactions or species will come to equilibrium instantaneously between

slow reaction events. Thus it is a stochastic version of the quasi-steady state
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approximation in deterministic dynamics. The fast species and reactions in the

system can then be factored out and we are left with a reduced system involving

the (corrected) dynamics for the slow species. The methods currently available

based on the master equation deal only with the asymptotic limit (as the ratio of

time scales becomes infinite), and do not attempt to make first order corrections.

The approach we take here is to take the infinite system size limit for some

components of the system while simultaneously looking for corrections to the fast

time scale limit for the other components. In other words we have species that are

in very large numbers, but are slow, and species that are in small numbers, but

participate in fast reactions. In that case we can start with a mixed determinis-

tic/stochastic description of the system (rather than starting from a full stochastic

description in terms of a master equation), given by ċ = f(c(t), p(c(t), t)) where

the vector field, f , has a stochastic time-dependent modulation given by p(c(t), t).

We can think of p as time-dependent parameters of the vector field. They remain

constant until events fire and then the vector field changes form. The complication

is that the transition rates for the process p will in general depend on the contin-

uous variables c(t). We will outline a numerical scheme for solving such a system

below.

Then we attempt to derive an approximation to the stochastic dynamics in

the limit that the switching rates for the stochastic variables are fast. This is the

averaging approximation, which aims to provide a corrected deterministic set of

equations to describe the expectation of the trajectory. Our averaging method,

however, mainly fails to capture the correction to the dynamics for the parameter

regimes we have examined.
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4.2 Mixed dynamics simulation

We start with a time-dependent vector field that changes stochastically

dc

dt
= f(c(t), p(c(t), t)) (4.1)

p(c(t), t) is a sample path of a continuous time Markov Chain with discrete state

space, {p1, p2, ...}, and has an associated time dependent transition rate matrix,

Γnm(c(t)) = Prob(pn → pm; c(t)). Therefore the rate of leaving state n is Γn(t) =

∑
m Γnm(c(t)). Over a suitably small interval ∆t, the probability of leaving state

n is approximately Γn(t)∆t. This means that the probability of still being in state

n in a finite interval of time, (t, T ), where T = t + N∆t is given by

lim
∆t→0

N∏
i=1

(1− Γn(t + i∆t)∆t) = e−
R T

t Γn(t′) dt′ (4.2)

(To see this, take the log of the first expression and Taylor expand to linear order

in ∆t.) To generate a firing time for the stochastic event, we then need to increase

T until Eqn. 4.2 exceeds a simulated uniform random variable on [0, 1]. Simul-

taneously, we integrate forward the equations for the time evolution of c(t). The

algorithm for mixed dynamics proceeds as follows:

1. At time t, the stochastic variables are in state pn, say. We generate a uniform

random number R in [0, 1].

2. We integrate both Γn(t) and c(t) forward in time until T , when e−
R T

t Γn(t′) dt′ =

R. Then a stochastic event must take place.

3. We choose the new state pm with a probability given by

Γnm(c(T ))/(
∑

m Γnm(c(T ))) as is standard in simulating continuous time

Markov Chains.
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4. We repeat from step 1, until we have simulated the entire time interval of

interest.

In practice, we do not catch the crossing of R in step 2 using an event trapping

technique, but rather use the fact that R(T ) = e−
R T

t Γn(t′) dt′ is monotonic to re-

parametrize time using R itself. That is, we append an equation

dT/dR = (−e−
R T

t Γn(t′) dt′Γn(T ))−1 = −1/(RΓn(T ))

to the system of differential equations and rewrite dc/dT as dc/dR = (dc/dt)/(dR/dT ).

Note that this method has features in common with the recently developed

hybrid algorithms [30, 10] which dynamically partition species into small and large

numbers, simulating the evolution of the former with a fully stochastic algorithm,

and the latter with a Poisson, Langevin or deterministic approximation algorithm.

It is the averaged trajectories that come from a simulation using this algorithm

which we wish to approximate using the averaging technique introduced in the

next section. In particular, we examine a system where the transition rates for the

process p are large compared to the time scale of the slow (deterministic) variables

in the system.

4.3 Auto-inhibitory gene dynamics

To illustrate the method, we consider a simple genetic network of one gene that

is repressing for its own transcription, see Fig. 4.1. The operator site P is a

random variable that can only be {0, 1} and so breaks the assumption of large

molecule number that would warrant a deterministic description. Nevertheless,
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Figure 4.1: Auto-inhibitory one gene network. When the operator site P is cleared

mRNA transcripts can be made at a rate kt and translation occurs at a rate

ktr to make protein A. However A binds to its own operator site and represses

transcription. The mRNA is degraded at rate kdm and the protein is degraded at

rate kd.

the deterministic equations for the system are

dP

dt
= −kbPA + kuP : A (4.3)

dP : A

dt
= kbPA− kuP : A (4.4)

da

dt
= ktmP − kdma (4.5)

dA

dt
= kta− kdA− kbPA + kuP : A (4.6)

(4.7)

Now we replace the first two equations by a stochastic process (telegraph noise)

that represents the flipping between the P = 0 (operator occupied, transcription-

ally inactive) and P = 1 (operator unoccupied, transcriptionally active) states,

with rates given by Γ10 = kbA and Γ01 = ku. (We get this from looking at the

RHS of Eqn. 4.3 with P = 1, P : A = 0 and P = 0, P : A = 1.) The remaining
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two equations is the vector field for a and A which randomly changes as P changes

(P : A = 1 − P ). As we would like to uncouple fast/slow components of the tra-

jectory, it is convenient to define a new variable B = P : A + A, i.e. total protein

level, which remains constant during the fast binding/unbinding reactions on the

operator site. It also is useful to set the RNA and protein degradation rates equal,

kdm = kd, and rescale time by the degradation rate (t → kdt). Then define the

constants α = ktm/kdm, β = kt/kd, to yield the equations we simulated using the

mixed dynamics algorithm:

da

dt
= αP (B(t), t)− a (4.8)

dB

dt
= βa−B + 1− P (B(t), t)) (4.9)

An example of a sample path generated by the mixed dynamics algorithm is shown

in Fig. 4.2. Note that although the level of total protein, B, is not directly affected

by the binding/unbinding events, and therefore does not change on the time scale

of P (as A does), it is affected by the integral of the process P . In the asymptotic

limit that the binding/unbinding rate of the repressor protein to the repressor

site is infinitely fast compared to the dynamics of a and B we can make the zero

order approximation and assume that the noise process assumes its average value

with respect to the slow variables. We denote the average by 〈P (B(t), t)〉 and

can identify it with an ensemble average or expectation over the distribution of

bound and unbound states: 〈P (B(t), t)〉 = 1 ·ku/(kbB +ku)+0 ·kbB/(kbB +ku) =

ku/(kbB + ku) (The probability of P = 1 (in equilibrium) is ku/(kbB + ku) and

kbB/(kbB + ku) is the probability of P = 0. Note that Γ10 = kbA = kb(B − P :

A) = kbB because P : A must be zero for binding to occur.) This expression for

the average effect of the fast binding/unbinding is then used in Eqn. 4.9 to give

the zero order modified deterministic equations. Note that a major benefit of the
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Figure 4.2: The stochastic trajectories for the mRNA level (solid line) and protein

level (dotted line). The telegraph noise, P , alternates between 1 (gray filled) and 0

(white). Parameters are α = 20.0, β = 2.0, kb = .5 and ku = 2.5 (the kb, ku, values

do not correspond to the fast noise regime, but are chosen to show the stochastic

transitions).
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averaging method is that the numerical solution of the equations is now greatly

expedited, compared to the mixed dynamics simulation method.

The next order approximation incorporates the (small) effect of the change

in the trajectory of B, when the state P is zero or one, on the transition rate

Γ10 = kbB. The picture is that even though the switching from P = 1 to P = 0

is fast, the effect on B’s trajectory will in turn feed back into the switching rate.

Formally, we will write the variables in the system as a decomposition of a slow

large term and a fast small term. B(t) = B0(t) + ζ(t) and a(t) = a0(t) + η(t),

where ζ and η are the fast small perturbations. Then from Eqns. 4.9,

da0

dt
+

dη

dt
= αP (B0 + ζ, t)− a0 − η (4.10)

dB0

dt
+

dζ

dt
= βa0 + βη −B0 − ζ + 1− P (B0 + ζ, t) (4.11)

We now assume there is a separation of time scales that allows us to consider a

short term average noise level 〈P 〉(B0(t)) = ku/(kbB0(t) + ku) which is on a time

scale long enough such that many binding/unbinding events have occurred but

short compared to the evolution of B0(t). Then we can decompose P (B0(t), t) =

〈P 〉(B0(t)) + P̃ (B0(t)), so P̃ is two state noise (states 1−〈P 〉 and −〈P 〉) with the

same rates as P but with mean zero. Thus, by equating the fast terms on the LHS

and RHS of Eqn. 4.10 and Eqn. 4.11, we get,

dζ

dt
≈ −P̃ (B0, t) and ζ(t) = −

∫ t

−∞
P̃ (B0, t

′) dt′ (4.12)

and

dη

dt
≈ αP̃ (B0, t) and η(t) = α

∫ t

−∞
P̃ (B0, t

′) dt′ . (4.13)

Using P̃ here ensures that both ζ and η have mean zero. (Their variance increases

linearly in t however.) We have not included the fast decay terms for η and
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ζ from Eqns. 4.10 and 4.11 as the corresponding decay rate is of order 1. We

will see later that the correlation function defining the correction has decay rate

1/(kbB0) + 1/ku À 1. Alternatively, one can argue that the fast terms η and ζ on

the RHS of Eqns. 4.10 and 4.11 are small compared to the P term and so can be

ignored.

Ultimately we are interested in the first order corrected average to 〈P (B(t), t)〉 =

〈P (B0 + ζ, t)〉 which incorporates the zero order approximation of ζ given above.

Therefore we define the functional F (B(t), t) = 〈P (B(t), t)〉. The functional

derivative of F with respect to the path B is well defined and is given by

δF

δB(r)
(B, t) = lim

h→0

1

h
(F (B + hδ(t− r), t)− F (B, t))

where the effect on F due to a vanishing delta function perturbation at t = r

is being evaluated. Then the change in F due to a perturbing function ζ(t) is

given by F (B0(t)+ ζ(t)) = F (B0(t))+ (ζ(r)| δF
δB(r)

(B0, t)) where the round brackets

denote a scalar product (in this case an integral over the appropriate range of r).

Applying this to Eqn. 4.11 and after averaging (recalling that 〈ζ〉 = 0 and 〈η〉 = 0)

we have

dB0

dt
= βa0 −B0 + 1− 〈P 〉 − 〈(ζ(r)| δ〈P̃ 〉

δB(r)
(B0(t), t))〉

where the last term is the next order correction to the dynamics. We define

σ = 1/(kbB0) and τ = 1/ku as the mean time bound or unbound. Then write the

functional derivative in terms of σ to get

〈(ζ(r)| δ〈P̃ 〉
δB(r)

(B0, t))〉 = − 1

kbB2
0

〈(ζ(r)| δ〈P̃ 〉
δσ(r)

(σ, t))〉

= − 1

kbB2
0

〈
∫ ∞

−∞
ζ(r)

δ〈P̃ 〉
δσ(r)

(σ, t) dr〉

= − 1

kbB2
0

lim
h→0

1

h

∫ t

−∞
〈ζ(r)(P̃ (σ + hδ(t− r), t)− P̃ (σ, t))〉 dr
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where we have used the fact that contributions to the functional at a time t can only

come from a time r < t and the angled brackets is a linear operator. The picture

we associate with the difference path, (P̃ (σ + hδ(t − r), t) − P̃ (σ, t)) is shown in

Fig. 4.3. The difference path is the shaded region that occurs when the perturbed

path (with longer waiting time in the up state) splits from the unperturbed path.

It is the correlation of this difference path with the unperturbed path that we will

want to compute.

Figure 4.3: The sample paths for the perturbed telegraph noise (solid line) and

the unperturbed telegraph noise (dotted line). The perturbation occurs at a time

r in the past and we evaluate its effect at time t. The difference path is how

we interpret the functional derivative of the telegraph signal with respect to its

transition rate to the lower state. (The upper state has value 1−〈P 〉 and the lower

state has value −〈P 〉 for P̃ .)

Next we change variables u = t− r and flip the integral to get

− 1

kbB2
0

lim
h→0

1

h

∫ ∞

0

〈ζ(t− u)(P̃ (σ + hδ(u), t)− P̃ (σ, t))〉 du

= − 1

kbB2
0

lim
h→0

1

h

∫ ∞

0

〈ζ(t)(P̃ (σ + hδ(u), t + u)− P̃ (σ, t + u))〉 du

=
1

kbB2
0

lim
h→0

1

h

∫ ∞

0

〈(
∫ t

−∞
P̃ (σ, t′) dt′)(P̃ (σ + hδ(u), t + u)− P̃ (σ, t + u))〉 du

since < . . . > is invariant under time translation t 7→ t+u and we have substituted
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for ζ(t), from Eqn. 4.12. Another change of variables s = t − t′ and bringing the

integrals outside the angled brackets gives finally:

1

kbB2
0

lim
h→0

1

h

∫ ∞

0

∫ ∞

0

〈P̃ (σ, t− s)(P̃ (σ + hδ(u), t + u)− P̃ (σ, t + u))〉 duds

=
1

kbB2
0

lim
h→0

1

h

∫ ∞

0

∫ ∞

0

〈P̃ (σ, t)(P̃ (σ + hδ(u), t + u + s)− P̃ (σ, t + u + s))〉 duds

letting t 7→ t + s

Focusing attention on the integrand we define a correlation function

A(u, s) = 〈P̃ (σ, t)(P̃ (σ + hδ(u), t + u + s)− P̃ (σ, t + u + s))〉

which represents the correlation of a signal at a time point t with the difference

path at t+u+s given that the signal produced an effect at t+s (when u = 0). The

way to approach computing the correlation function is to fix s and then look at

how the function evolves in the u direction by deriving a differential equation for u.

The initial condition to the differential equation will be the function A(u = 0, s).

For shorthand let {10} represent a state of the difference path where the perturbed

path is up (P̃ = 1 − 〈P 〉) and the unperturbed path is down (P̃ = −〈P 〉). Only

this state will contribute to the correlation A(u, s). ({01} cannot occur as the path

with a longer waiting time in the up state cannot make a transition to the down

state without the unperturbed path doing the same.) Expand A(u, s) in terms of

conditional probabilities as follows

A(u, s) = P[{10} at t+u+s |1 at t ] (1− 〈P 〉) (
σ

σ + τ
)

+P[{10} at t+u+s | 0 at t ] (−〈P 〉) (
τ

σ + τ
)

= p1,{10}(u, s) (1− 〈P 〉) (
σ

σ + τ
)− p0,{10}(u, s) (1− 〈P 〉) (

σ

σ + τ
)

Here, we have used here the fact that the difference path states {11} and {00} do

not contribute anything to the correlation, τ/(σ + τ) = 1−〈P 〉, and we use p1,{10},
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p0,{10} as a short hand for conditional probabilities. As outlined above we derive

an equation for p1,{10}(u; s) and p0,{10}(u; s), for fixed s, by noting

p1,{10}(u + du; s) = p1,{00}(u; s).0 + p1,{10}(u; s).(1− du

σ
− du

τ
) +

p1,{11}(u; s).0 + p1,{01}(u; s).0

where, for example, (1 − du
σ
− du

τ
) is the probability of staying in the state {10}

during the interval (u, u + du), given that the state at time u is {10}. Therefore,

ṗ1,{10} = −(
1

σ
+

1

τ
)p1,{10}

Similarly

ṗ0,{10} = −(
1

σ
+

1

τ
)p0,{10}

giving

p1,{10}(u, s) = p1,{10}(0, s) exp(−(
1

σ
+

1

τ
)u)

and similarly for p0,{10}. Now note that

p1,{10}(0, s) = P[P̃ (σ + hδ(0), t + s) = 1− 〈P 〉, P̃ (σ, t + s) = −〈P 〉|P̃ (σ, t) = 1− 〈P 〉]

=
h

σ2
p11(s)

=
h

σ2

1

σ + τ

(
τ exp(−(

1

σ
+

1

τ
)s) + σ

)

where p11(s) = P[P̃ (σ, t + s) = 1− 〈P 〉|P̃ (σ, t) = 1− 〈P 〉] is the probability of an

even number of flips in time s given that the noise starts in the up state. (p11(s)

can be found by solving Kolmogorov’s equations for the two state system.) h/σ2

is the probability of a split between the perturbed and unperturbed paths, given

that they are in the up state. Given a delta function perturbation on one of the

paths, the probability of a split over a time interval ∆t is ∆t/σ−∆t/(σ +h/(∆t))
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where the delta function is has height h/(∆t). Taking h ¿ ∆t and dropping terms

of order h2 we get h/σ2. A similar derivation gives

p0,{10}(0, s) = P[P̃ (σ + hδ(0), t + s) = 1− 〈P 〉, P̃ (σ, t + s) = −〈P 〉|P̃ (σ, t) = 1− 〈P 〉]

=
h

σ2
p01(s)

=
h

σ2

σ

σ + τ
(1− exp(−(

1

σ
+

1

τ
)s)

Inserting these conditional probabilities into the formula for A(u, s) we arrive at

A(u, s) =
hτ

σ(σ + τ)2
exp(−(

1

σ
+

1

τ
)u) exp(−(

1

σ
+

1

τ
)s)

After integration of this correlation function over u and s, we get a correction given

by

1

kbB2
0

στ 3

(σ + τ)4
=

1

kb

B0

(B0 + 1)4
when kb = ku (4.14)

Therefore the new averaged deterministic equations have the asymptotic form for

〈P 〉 = σ/(σ + τ) in addition to the correction of Eqn. 4.14.

4.4 Conclusion

Using this correction term does not appear to give significantly better agreement to

the mean trajectory of the numerical solution, compared to using the asymptotic

equations alone, for the parameter regimes we are interested in. We have found

slightly closer agreement for the correction to the fixed point of the system but we

feel that either there is another correction of larger size being neglected or there

are subtle errors in the numerical implementation.

Shown in Fig. 4.4 is the mean trajectory for the protein level and the relative

differences to the corrected trajectories, where the correction is either given by 〈P 〉
only or 〈P 〉 and Eqn. 4.14. As can be seen the correction in this regime (where the
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average time in the up state is approximately .01 and the average time in the down

state is .02) is very small compared to the deviation of both the asymptotic and

first order corrected solutions from the mean trajectory. This suggests that there is

a much larger correction from the asymptotic formulas that has not been taken into

account. Part of the reason for the very small difference between asymptotic and

(a) Mean protein trajectory (b) Relative differences for asymp-

totic and corrected equations.

Figure 4.4: (a) Mean protein trajectory when kb = 2.5, ku = 50, α = 20, β = 2.0.

Averaged over 800000 sample paths. Error bars are too small to be seen. (b)

Relative differences for the asymptotic and corrected equations. Relative differ-

ences are defined as numerical mean trajectory minus theoretical mean trajectory

(asymptotic (light circles) or with correction (dark triangles)) divided by the error

bars for the numerical mean trajectory.

corrected trajectories is the presence of the term of order 1/B3
0 in Eqn. 4.14. We

can modify the equilibrium such that B0 tends towards small values, but then we

are not in the regime that we set out to describe, i.e. large numbers of slow species,

small numbers of fast species. However, if we do this and also set parameters such

that the transition rates are an order of magnitude slower than in Fig. 4.4 (to
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produce a large correction term), we get a mean protein trajectory and relative

differences from theory as shown in Fig. 4.5(a) and Fig. 4.5(b). In this regime,

(a) Mean protein trajectory (b) Relative differences for asymptotic

and corrected equations.

Figure 4.5: (a) Mean protein trajectory when kb = 5.0, ku = 5.0, α = 20, β = .1.

The mean times in the up and down states are approximately .2. Averaged over

850000 sample paths. Error bars are too small to be seen. (b) Relative differences

for the asymptotic and corrected equations. Relative differences are defined as

numerical mean trajectory minus theoretical mean trajectory (asymptotic (light

circles) or with correction (dark triangles)) divided by the error bars for the nu-

merical mean trajectory.

the correction appears to describe the numerical mean better than the asymptotic

form for most of the trajectory, and in particular the steady state mean dynamics

(from 5 to 8 time units approximately) are quite accurately captured.

Clearly, more numerical tests are needed to determine if the correction we have

computed is accurately describing the behavior in the small protein number regime,

for different values of ku, kb; if this is the case, the source of the 1.0/B3
0 scaling in

Eqn. 4.14 needs to be examined more carefully.



Appendix A

A.1 Supplementary information for Chapter 2

A.1.1 Experimental data

The experimental data are drawn from literature sources [31, 13, 72] and collected

in the lab of the co-authors (D.B., Q.F. and R.A.C.) [22]. All measurements were

performed using Western blots assays on NIH-3T3 cells and were quantified using

densitometry. Within the simulation all species were represented in numbers of

molecules per cell. As many of the reactions are restricted to the cell membrane,

the numbers quoted can be thought of as effective amounts associated with the

membrane. As we are only interested in relative amounts and relative changes

of protein level or activity, the absolute numbers used are of less importance and

should not be interpreted literally. Approximate receptor numbers were either

reported with the source of the experiment or were left as free parameters in the

model. EGF molecule number per cell was estimated assuming one million cells

per dish and an aliquot of EGF solution of volume 3nL.

All experimental conditions involved serum starvation followed by EGF stim-

ulation of various levels. The Western blots were quantified by measuring average

82
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pixel density in each lane. Error bars (when not available through replicates) were

assigned typically as 20% of nominal value.

The full set of numbered experiments, corresponding to fits shown in Fig. A.1,

are as follows :

1. Percentage of receptors remaining on cell surface (bound or free of ligand) as a

function of incubation time with 100nM EGF. 100,000 receptors (transfected)

reported initially [31].

2. Percentage of receptors remaining on cell surface as a function of incuba-

tion time with 100ng/ml EGF. 100,000 receptors (transfected) reported ini-

tially [13].

3. Percentage of receptors remaining on cell surface as a function of incuba-

tion time with 100ng/ml EGF. 275,000 receptors (transfected) reported ini-

tially [13].

4. Percentage of surface, internal and degraded EGF after pre-loading the recep-

tors with EGF in conditions that prevent internalization and then allowing

internalization at time zero. There is no EGF exposure apart from preloaded

amounts. 100,000 receptors (transfected) reported initially [31].

5. Total level of EGFR as a function of incubation time with 100ng/ml EGF.

3 experimental conditions: endogenous levels of Cdc42, transfection of the

Cdc42F28L fast cycler, transfection of the Cdc42(∆L8/F28L) fast cycler

which is Cool-1 binding defective. 8000 receptors (endogenous) reported

initially [72].

6. Phosphorylation of Cool-1 (endogenous levels) after incubation with 100ng/ml
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EGF for the given times. Number of EGFR receptors (transfected) is a free

parameter [22].

7. Phosphorylation of Cool-1 (transfected) after incubation with 100ng/ml EGF

for the given times. Number of Cool-1 molecules taken as 10 fold over normal.

Number of EGFR receptors (transfected) is a free parameter [22].

8. Phosphorylation of Erk after incubation with 100ng/ml EGF for the given

times. 2 experimental conditions: endogenous levels of Cdc42 or an siRNA

knockdown of Cdc42. The knockdown was estimated to reduce the Cdc42

levels to 18 percent of normal [22]. EGFR was at endogenous levels (assumed

to be 8000 receptors as in [72]).

9. Phosphorylation of Erk after incubation with 100ng/ml EGF for the given

times. 2 experimental conditions: endogenous levels of Cool-1 or an siRNA

knockdown of Cool-1. The knockdown was estimated to reduce the Cool-1

levels to 26 percent [22]. EGFR was at endogenous levels (assumed to be

8000 receptors as in [72]).

10. Phosphorylation of Cool-1 after incubation with 100ng/ml EGF for a range

of times. EGFR number (transfected) is a free parameter. This experiment

differs from the previous endogenous Cool-1 activation assay in that early

time points are measured [22].

11. Activation of Cdc42 (total level of Cdc42 GTP-bound) after incubation with

100ng/ml EGF [22]. EGFR was at endogenous levels (assumed to be 8000

receptors as in [72]).
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A.1.2 Model details

The model as shown in Fig.2.1 of the main text involves 41 distinct dynamical

variables and 53 unknown rate and Michaelis-Menten constants. Additionally, it

was found useful to include the total number of Cool, Cbl and Cdc42 molecules

as ¯tted variables. Thus the optimization problem of minimizing the least squares

cost function involves 56 free parameters. Optimization was primarily carried out

using a Levenberg-Marquardt method [14], working in the natural logarithm of

the biochemical constants to enforce the positivity constraint. The ¯ts to the

experimental data are shown in Fig.A.1, including the last experiment performed

on active Cdc42 which needed no re-optimization.

The system was modeled using SloppyCell, available at

http://sloppycell.sourceforge.net . SloppyCell is a Python-based modeling

environment which facilitates the development, simulation and optimization of

biochemical networks. The Systems Biology Markup Language (SBML) format

¯le [36] for the model (interpretable by SloppyCell and many other biochemical

network simulators) and best ¯t parameter sets can be obtained from the ¯rst

author.

A.1.3 Parameter sensitivities

A common technique in model exploration is sensitivity analysis | determining

which directions in parameter space are dominant in controlling the system be-

havior (as measured by the ¯t to the data in this case). Fig.































100

the same experiment.

The main use of this residual with respect to residual response matrix is there-

fore in determining whether particular data sets are “fighting” with each other;

that is, the parameter moves needed to accommodate one data set drastically

worsens the fit for another data set.

Finally, we look at the correlation matrix for parameters in Fig. B.4. We see

(a) Full 56 by 56 correlation matrix (b) 2 by 2 block with high pos-

itive correlation between bind-

ing/unbinding constants

Figure B.4: (a) The correlation matrix. (b) Binding and unbinding constant cor-

relations for Cbl binding to ubiquitinated receptor.

an example in Fig. B.4(b) of a binding/unbinding rate constant pair which are

highly positively correlated. Thus, a single multiplicative change to both the non-

logarithmic parameters has no significant effect on the fit. In Fig. B.4(a), we also

see a cluster of negatively correlated elements in a block on the diagonal (param-

eters 38 to 43). These elements correspond to the parameters in the EGFR-Src-

FAK-Cool activation pathway, which show a positively correlated residual response

in Fig. B.1. Taken together, this information suggests that if model reduction is
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a priority, then little would be lost be subsuming the Cool activation pathway

into just one reaction. Likewise, Fig. B.4(b) suggests that the binding/unbinding

reactions involved could be put in equilibrium without significantly worsening the

fit to the data.



102

B.2 Optimization and data fitting

One of the major obstacles to rapid model development in systems biology is the

time taken to optimize models to match with experimental observations. Faced

with a lack of fit, the decision to continue searching parameter space with the exist-

ing model rather than incorporating new interactions in the network to improve the

fit is not clear cut. The existence of many local minima is certainly of concern but

the distributions produced by our Markov Chain Monte Carlo sampling methods

tend not to be multimodal, suggesting that the cost surface is better described by

a single connected region in parameter space that has a wide range of curvatures in

different directions — quantified by the typical sloppy spectrum of eigenvalues [69].

Combined with the large range of scales, there are also many directions that are

nearly degenerate with respect to the cost; certain parameter combinations can

change by large amounts without significant change to the data fit. (This also

means that looking for a unique minimizing parameter set is irrelevant).

Given these difficulties, some care must be taken in applying commonly used

local optimization methods. We discuss some of these issues below.

B.2.1 Large range of scales

The typical scales for the allowed moves in parameter space, while maintaining a

good fit, vary enormously from the most constrained parameter direction (stiff)

to the least constrained (sloppy). One way to quantify this is through the Fisher

Information Matrix (FIM) (introduced in Chapter. 2). Shown in Fig. B.5(a) are the

eigenvalues of the FIM for the EGF receptor model (assuming prior information

on parameters). There is also a wide range of scales in individual parameter
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directions, quantified by the diagonal elements of the FIM, shown in Fig. B.5(b).

Together this suggests that optimization algorithms which produce moves that are

invariant under scale changes should be preferred on these types of problems. As

an example, consider the standard Gauss-Newton step without a trust region:

∆θ = −H−1(θ)∇C(θ)

Now, under a linear transformation of coordinates, φ = Pθ, and defining F (φ) =

C(Pφ) we find the Hessian transforms as Hφ = P tHP and the gradient ∇Cφ =

P t∇C. Then the optimization move with respect to φ coordinates is

∆φ = −H−1
φ ∇Cφ = P−1H−1∇C

i.e. ∆φ = P−1∆θ and the moves with respect to the new or old coordinates are

equivalent.

Scale invariance is also a property of the Levenberg-Marquardt (LM) method

without a trust region:

∆θ = −(J tJ)−1J tr (B.2)

where r is the residual vector. Once we introduce a trust region we break the scale

invariance,

∆θ = −(J tJ + λI)−1J tr (B.3)

as this becomes ∆θ = −(1/λ)J tr in the limit of λ →∞, which is clearly not scale

invariant. There are two options to make the LM method scale invariant. The

first is to use the non-trust region method, Eqn. B.2 and cut steps back (almost

always necessary as J tJ is often close to singular) either by a simple overall scaling

or by performing a line minimization in the ∆θ direction. The second is to use a

multiplicative Lagrangian trust region parameter: ∆θ = −(J tJ+λdiag(J tJ))−1J tr

which is recommended in [52].
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Figure B.5: (a) Eigenvalues for the FIM and (b) Sorted diagonal elements, giving

the (approximate) second derivative of the cost with respect to each parameter.

The values are plotted assuming a prior distribution on parameters (dark circles),

or assuming no prior distribution (light triangles). We impose the same prior

distribution on parameters as in Chapter 2, which constrains the fluctuations to

within a 1000-fold increase or decrease in the non-logarithmic parameters. The

prior is is responsible for the “flattening off” of the eigenvalue spectrum and of

the sorted diagonal elements. Note that the largest eigenvalues correspond to

an allowed fluctuation of less than 1% in the non-logarithmic parameters, the

lowest eigenvalues with priors give the 1000-fold fluctuations, but without priors

the lowest eigenvalues correspond to fluctuations with fold changes of exp(±36),

which are clearly unphysical.
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The standard conjugate gradient (Polak-Ribiere) step can also be made scale

invariant by computing inner products with respect to the inverse Fisher Informa-

tion matrix. Under the standard algorithm, the search direction at the kth iterate,

sk, is given by:

s0 = −∇C(θ0) and sk = −∇C(θk) +
∇Ct

k(∇Ck−∇Ck−1)

∇Ct
k−1∇Ck−1

sk−1.

Under our scale invariant version, we use M−1 = (J tJ)−1 as a scalar product and

write:

s0 = −M−1∇C(θ0) and sk = −M−1∇C(θk) +
∇Ct

kM−1(∇Ck−∇Ck−1)

∇Ct
k−1M−1∇Ck−1

sk−1

Note that if ∇C is computed by finite differencing, then J can be obtained simul-

taneously, at almost no extra computational cost.

A comparison of these methods on (artificially) badly scaled problems is shown

in Fig. B.6. (The test functions are drawn from [49], and we have selected three

that cause the most difficulties when they are modified to have a wide range of

parameter scales.) At least on these test problems, the simpler non-trust region

LM method with cutoff appears to perform better than the LM method with mul-

tiplicative trust region parameter, λ. However, the method does not appear to

provide significant improvement in larger biological network problems. The diffi-

culty is that a completely scale invariant method on a sloppy biological problem

would use the unmodified FIM or Hessian to compute steps. As we see in Fig. B.5,

the smallest eigenvalues are exceptionally small. If we perform just an overall

scaling of the step, without disproportionately reducing the size in these sloppy di-

rections (as a trust region algorithm would do), we will have an unwanted situation

in which the step size in the stiff directions will be cut back excessively.

The issue of needing finer control over the size of the optimization step is

common in complex biological models. Often flat regions in parameter space cor-
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Figure B.6: Bar chart showing the average percentage of failures for 3 badly scaled

test functions in the test suite [49] over 100 randomized initial conditions. Each

test function is 16 dimensional and failure is defined as a cost greater than 1 after

the maximum number of iterations has been exceeded (the minimum possible cost

is zero). LM std. and CG std. are the non-scale invariant Levenberg-Marquardt

(LM) and conjugate gradient (CG) methods. LM scale1 is the Numerical Recipes

scale invariant method [52]. LM scale2 and CG scale are our scale invariant meth-

ods discussed in text.
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respond to directions which control fast transient reactions in the biochemical

network, but for which there is no data. Therefore moving in these directions

causes no significant improvement in fit, but significantly slows the integration of

the differential equations. Therefore, within our trust region LM algorithm, we set

a maximum allowed step size in parameter space and then solve for the appropri-

ate λ to achieve this step size or less. This is easily accomplished by performing

the matrix inversion of Eqn. B.3 using a singular value decomposition J = UΣV t,

where U is m by m, Σ is m by n and V is n by n. Then,

∆θ = (J tJ + λI)−1J tr

= (V ΣtΣV t + λI)−1V ΣtU tr

= V (Σ2 + λI)−1ΣtU tr

= V (Σ2 + λI)−1d

where d = ΣtU tr and Σ2 = ΣtΣ is a diagonal n by n matrix. Therefore, V t∆θ =

(Σ2 + λI)−1d and ‖∆θ‖ =
√∑n

i=1 d2
i /(σ

2
i + λ)2 ≤ maxi|di|/(σ2

i + λ), and we can

directly solve for λ to control the norm of the step.

B.2.2 Ill-conditioned curvature matrices

Another numerical difficulty for optimization methods on moderate to large size

biology models is the high condition number of the curvature matrices, either the

Hessian of the cost or J tJ (of course this is closely related to the problem of a

large range of scales). This makes the inversion step needed in Eqn. B.2 more

inaccurate. The regularization brought about by applying a trust region, while it

prevents a “blow-up” of errors in the computed step, will not change the condition

number of J tJ . One approach we found was useful to more reliably compute the
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inverse of J tJ is to use the SVD algorithm on J instead of on J tJ directly. (In a

sense, J tJ has a condition number which is the square of J .) Alternatively, in the

Levenberg-Marquardt algorithm, the proposed step can be computed by solving

the linear least squares problem J∆θ = r at every step using a QR factorization,

rather than having to work with J tJ .

B.2.3 Linearly dependent search directions

Gradient based (eg. conjugate gradient) and pattern search (eg. Powell’s method)

optimization algorithms generally compute search directions based on previous

moves. One pitfall of these methods is that in problems where the local cost sur-

face has a range of curvatures from very small to large is that the search directions

can collapse onto subspaces, and in some cases there is close to an exact linear de-

pendence between subsequent search directions. Then the line minimization step

along the search directions will land in approximately the same place every iterate,

and we will get premature convergence. A quantification of this is shown in the ta-

ble below, where we have tested the conjugate gradient method on the same three

test problems as for Fig. B.6 without the artificial distortion of scales. We show

the number of times the last 4 search directions showed an average correlation of

more than .999 as a percentage of successful optimizations and as a percentage of

failed optimizations. The statistics are collected from 300 runs in total. There is a

significant increase in the linear dependency of search directions for the failed runs.

(Surprisingly, the linear dependency is also very frequent in successfully completed

optimization runs).
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Standard CG Linear dependence

Failures (32.3% of total) 97.9%

Successes (67.7% of total) 80.8%

In an effort to circumvent this, we propose a conjugate gradient method which

not only has the desired properties of a conjugate directions method, i.e. con-

verges to the minimum of an n-dimensional quadratic form in exactly n steps, but

also generates an orthogonal set of conjugate directions. Therefore, we expect this

method not to have the weakness of the standard conjugate gradient methods.

The downside is that the method requires more than one gradient evaluation at

every step. The algorithm proceeds as follows:

1. Start at θ0, an initial guess at the optimum.

2. Assume at iterate k we have computed k (orthogonal) search directions,

s1 . . . sk, which we store rowwise in a matrix Vk. From these directions we

have updated our initial parameter set to θk. Note: k ≤ n where n is the

number of parameters.

3. Compute the next search direction as an eigendirection of the local Hessian,

kept orthogonal to the previous search directions in Vk. The eigendirection

is computed using a power iteration, noting that Hv = ∇C(θk +v)−∇C(θk)

for a pure quadratic cost C, and for any direction, v. For a general cost

function, we compute the eigendirection by iterating:

ελm+1vm+1 = εH(θk)vm = ∇C(θk + εvm)−∇C(θk) for m = 1 . . . S

vm+1 = vm+1 − V t
k Vkvm+1

where H(θk) is the local Hessian, and the number of iterates S is decided

based on accuracy requirements. The second step maintains orthogonality
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to the previous search directions during the power iteration stage. The final

iterate yields vS, which we use as the new search direction. The new search

direction is appended to Vk. If k = 0, V0 is empty, and the first search

direction is merely the dominant eigenvector of H(θ0). Note also that λS is

an approximation to the second derivative in the search direction.

4. We minimize the cost along the new search direction by choosing a step

∆θk = −(1/λS)st
k∇C(θk) (i.e. the negative of the derivative of the cost along

the search direction divided by the second derivative along that direction).

5. We repeat from step 2 until k = n. This is one cycle of the algorithm.

6. To perform more cycles we simply empty the matrix of search directions

from the last cycle, Vn, so that the next search direction is again along the

dominant eigenvector of H(θn).

Note that if the gradient of the cost is available cheaply, from the adjoint

method for example, this algorithm becomes more appealing. In step 4, having

the second derivative information along the search direction prevents the need to

do a line search (as in standard conjugate gradient), but in implementation requires

a cutoff step size to be set.

This method is clearly a method of conjugate directions; with a purely quadratic

cost function the search directions will exactly be the eigendirections of the quadratic

form. However the search directions are also orthogonal. This suggests that the

method may do better on problems where the standard CG fails due to linear

dependence among the search directions. Numerical tests have shown that this

method has a percentage of failures on the test problems of 28%, compared to

32% for standard CG (based on 300 runs), a modest improvement. However, no



111

attempt has been made to fine tune the algorithm for optimal performance.

B.2.4 Fake data

A heuristic we have found to be useful in the fitting process is the addition of fake

data to the existing data sets. The data for the model of Chapter 2 only consists

of 3 or 4 time points and generally does not capture the early time dynamics.

Therefore, to guide the fitting process it was often found necessary to add

fake data at early times to force the time scale for the transient dynamics to be

consistent with the later time measurements. It was also particularly useful in the

process of separating the trajectories for active Erk for each of the 2 experimental

conditions of experiments 8 and 9 in Chapter 2.

Whether the addition of fake data actually distorts the cost surface sufficiently

to reduce barriers between local minima and allows the optimizer to slide from

one local minimum to another needs to be investigated. It may also be the case

that the fake data just helps to increase the curvature in some directions; before it

is added the parameters may be in a relatively flat region of the cost surface and

cannot effective “see” the direction to the minimum.

Of course, once a satisfactory fit is obtained, the fake data is removed. The

Markov Chain Monte Carlo methods will then explore the low cost regions around

the best fit and so the final distribution of parameter sets are not influenced by

the fake data used to find the minimum of the cost basin.
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