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ABSTRACT 

We have developed a method for accelerating equilibration in numerical 
simulations of glassy models, using the Frenkel-Kontorova model for developing 
and testing the algorithm. This simple model is like a glass in that relaxation 
times diverge rapidly as the critical temperature is reached, so that  no mat- 
ter how slowly it is cooled, the system eventually gets stuck in some random 
metastable configuration. By adding "numerical enzymes," or long-range Monte 
Carlo moves which precisely eliminate certain barriers to relaxation, we can 
equilibrate rapidly to significantly lower temperatures.  Our numerical method 
for developing these enzymes is a learning algorithm motivated by Darwinian 
evolution. 

We begin this paper with a brief discussion of the Frenkel-Kontorova [FK] 
model, which is the simplest we know of that  includes incommensurability and 
frustration in a natural way. We then discuss a general approach for equilibrat- 
ing numerical models of, e.g., configurational glasses, in which the Hamiltonian 
is simple and not random, but  relaxation time scales are so slow that the system 
always gets stuck in high-energy, random configurations. We find that  "numer- 
ical enzymes", or complicated multiple-atom Monte Carlo moves fine-tuned to 
bypass the barriers to relaxation, can be of great assistance for shedding light 
on the underlying behavior of a model with natural  dynamics too slow for effec- 
tive numerical s tudy using normal techniques. Although such enzymes may be 
subtle and complex, a learning algorithm motivated by  principles of Darwinian 
evolution and natural  selection can find them. 

The FK model consists of a one-dimensional chain of atoms, each connected 
to its nearest neighbors by springs, with an externally applied sinnsoidal poten- 
tial: 

H=-~-K ~ ( z $ . +  1 _ x j  - or) 2 - V ~ cos2~rxj. (1) 

J i 

Frustration occurs when the periodicity of the applied potential competes with 
the tendency of the springs to keep the atoms evenly spaced; we work in the 
"pinned" limit, 1 in which the spring constant K is small. We have investigated 2 
the behavior on cooling from a finite temperature,  at which atoms undergo 
thermal motion, to a zero temperature frozen chain. Any finite cooling rate qr is 
too fast for the system to be able to equilibrate all the way into the ground state, 
although cooling more slowly does result in somewhat bet ter  equilibration. 
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Figure 1: Dynamical Behavior of the FK 
Model. Without enzymes, no significant 
ordering develops even with very slow cool- 
ing. The addition of enzymes allows the 
true underlying behavior to be explored 
numerically in reasonable computer time. 
(K=I, V=3, lattice spacing = 1) 

We have run simulations of this 
model using a standard Metropolis 
Monte Carlo algorithm, and have found 
that the correlation length ~, which mea- 
sures the average length scale of regions 
in local ground state configurations, di- 
verges incredibly weakly as a function of 
cooling time 1/ff : 

~ log(log(I)), (2) 

as shown in Figure 1 and discussed in 
detail in reference [2]. If normal simu- 
lations had been the only way to study 
the model, we would probably not even 
have suspected that the limiting behav- 
ior was actually an ordered ground state. 
This model is glassy in the sense that di- 
verging time scales cause the =melt" to 
fall out of equilibrium at some history- 
dependent temperature and get stuck in 

one of many possible metastable configurations, generally exhibiting no long- 
range order. Like a glass, cooling a lot slower allows equilibration to only a 
slightly lower temperature. 

Widom, Strandburg and Swendsen 3 encountered a similar situation in sim- 
ulating a two-component Lennard-Jones [LJ] system. They, like others, found 
its dynamical behavior to be glassy. By adding special three-atom moves and 
long hops to the normal small relaxations in Monte Carlo simulations, how- 
ever, they were able to equilibrate much faster and thus discover underlying 
quasicrystalline behavior in a system with suitable LJ parameters. 

Motivated by their work, we have set out to develop a general method for 
finding special moves to accelerate equilibration and thereby illuminate the un- 
derlying behavior of various glassy models. We have started with the FK model 
because of its simplicity, but hope to be able to apply the technique to more 
realistic models whose true equilibrium behavior is obscured by complexity and 
diverging time scales in simulations. 

The "numerical enzymes" we are looking for must be able to provide an 
accelerated mechanism for relaxation of metastable states. Calculating them 
directly will generally be impossible; we need to be able to find them with out 
knowing in advance what  the high-energy configurations or corresponding low- 
energy relaxed states are like. We have therefore developed a learning algorithm 
to get the computer to systematically discover and fine-tune effective enzymes 
with only minimal guidance. The method works well in the FK model. 

Our approach, like the genetic algorit]~ms that  have been used with great 
success by engineers and others, 4 is motivated by biological principles. The 
basic idea is that  the solution to a problem is discovered through evolution of a 
population of some kind, in which an appropriate formula for health or fitness 
determines each individual member's survival and reproduction. Those that  do 
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poor ly  die off, and  are replaced most  of ten by  the  offspring of except ional ly  
heal thy  individuals.  In our  algori thm, we have  a popula t ion  of moves: each 
individual  is represented  by an ~d imens iona l  vec tor  telling how far to a t t e m p t  
to move  each of n atoms. We use a modified Monte  Carlo-like code in which 
we select one individual at r andom from this finite popula t ion  of discrete moves 
for every  u p d a t e  of the FK chain, keeping t rack of each one 's  per formance  in 
p romot ing  equil ibration.  Detailed balance is preserved by mult iplying the  move  
by a r a n d o m  sign whenever  it is used. This  a lgor i thm is not  a Markov process,  
and therefore  not  genuine Monte  Carlo, bu t  it is able to discover precise and 
compl ica ted  enzymes  tha t  can be used to accelerate a legit imate Monte  Carlo 
code .  

The  formula  for health must  be based on  success in lowering the  energy of 
the chain,  bu t  any reasonable implementa t ion  of this should work fine. We have 
chosen to  mul t ip ly  an individual 's  heal th  by  a factor  ~ < 1 whenever  it is t r ied,  
and add an amoun t  proport ional  to the energy decrease of the  chain if the  new 
configurat ion is accepted. The  popula t ion  is u p d a t e d  periodically,  and  those 
tha t  are unhea l thy  die off. We main ta in  a popu la t ion  of cons tan t  size; whenever  
one dies, two moves  are selected randomly  wi th  probabi l i ty  propor t iona l  to  thei r  
heal th,  and  a new individual is created as thei r  vector  sum or  difference. One 
paren t  is occasionally zero-padded so the child can  move more  atoms. 

We begin each run at high t empera tu re ,  wi th  the moves d is t r ibuted  ran-  
domly f rom 0 to 0.3 lattice spacings in length,  then  let the  popula t ion  evolve 
as the  FK chain  slowly cools. The  popula t ion  quickly adjusts  to an appropr ia te  
length scale for the  prevailing t empera tu re ,  bu t  with an excess of long moves  
for hopping  a toms between wells, as shown in Figure  2. Upon  cooling, the  ther-  
mal d is t r ibut ion  sharpens  and the enzymes become separa te ,  no longer jus t  an 
anomalously  long tall  to the ordinary  the rma l  peak.  

By the  t ime the  chain is cold enough  
tha t  the  first kind of  defects have equili- 
b r a t ed  out ,  the popula t ion  discovers t ha t  
the enzymes  must  move  at least th ree  
a toms at  once, moving  one a large dis- 
tance  across the  bar r ie r  and relaxing two 
neighbors.  This  is the  needed move  for 
equi l ibrat ing out  a lower energy k ind  of 
defect. At  still colder t empera tu res ,  the  
enzymes find tha t  they  need to  move  
more  and  more  a toms at once. If t hey  fail 
to discover some necessary improvement ,  
they  will be  unable  to  cont inue equili- 
b ra t ing  defects out  as the chain  cools, 

Figure 2: The population gradually and will become ext inct ,  leaving only  
develops precision, as shown by the his- t h e r m a l  m o v e s  in t h e  p o p u l a t i o n .  
tograms for kT = 0.5 and 0.04, and also This  a lgor i thm is quite robus t  and  
complexity. By kT = 8 x 10 -8,  each not  par t icu lar ly  sensit ive to details in the  
enzyme moves 16 atoms: number 0 by a lgor i thm,  a l though some though t  mus t  
an amount of 0.5949 lattice spacings, and be given to  ensure  t ha t  it general ly en- 
neighbors by smaller amounts; thermal courages survival  of  the  enzymes.  For  
moves are tiny and involve 6 to 8 atoms, example ,  the relat ive scarci ty  of low en- 
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ergy defects means that  enzymes succeed infrequently at low temperatures; they 
simply cannot compete. We eliminate this bias by dividing the population into 
two classes, those that  move at least one atom at least a third of a lattice spac- 
ing and those that  do not, and multiplying the health of each individual by 
a normalization factor to promote equality between the classes. Of course, no 
amount of special t reatment will help the enzymes if they fail to adapt to the 
changing environment and become unable to ever lower the energy of the chain. 

If we cool slowly enough and set all the parameters to reasonable values, then 
long-range, fine-tuned enzymes usually develop that  are capable of equilibrating 
out even very low energy defects. The inset to Figure 2 shows the 15-atom 
enzymes discovered by a run in which K 1 When we added this enzyme to a l r  = II" 
proper Monte Carlo code, we were able to equilibrate to a very low temperature 
and corresponding long correlation length, as shown in Figure 1. 

In conclusion, we have found that  diverging relaxation time scales prevent 
the FK model from equilibrating all the way to its zero-temperature ground state 
given finite cooling rate, and that  much slower cooling results in equilibration to 
only slightly lower temperature. We have developed a method for accelerating 
relaxation in such a system in order to study the equilibrium behavior numer- 
ically. To do this, we use a modified Monte Carlo-like algorithm in which we 
keep track of the success of various moves, retaining and refining those that  are 
especially useful for reducing the energy of the chain. We use the enzymes, or 
precisely coordinated motion of many atoms at once, that  are discovered by the 
modified program to dramatically accelerate equilibration in a legitimate Monte 
Carlo code. The method should be especially useful in studying complicated 
models where the ground states and equilibrium properties cannot be deduced 
analytically. 
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