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In this paper we report simulation studies of equilibrium features, namely, circular islands on model sur-
faces, using Monte Carlo methods. In particular, we are interested in studying the relationship between the
density of vapor around a curved island and its curvature. The ‘‘classical’’ form of this relationship is the
Gibbs-Thomson formula, which assumes that the vapor surrounding the island is an ideal gas. Numerical
simulations of a lattice gas model, performed for various sizes of islands, do not fit very well to the Gibbs-
Thomson formula. We show how corrections to this form arise at high vapor densities, wherein a knowledge
of the exact equation of state~as opposed to the ideal-gas approximation! is necessary to predict this relation-
ship. By exploiting a mapping of the lattice gas to the Ising model, one can compute the corrections to the
Gibbs-Thomson formula using high field series expansions. The corrected Gibbs-Thomson formula matches
very well with the Monte Carlo data. We also investigate finite size effects on the stability of the islands both
theoretically and through simulations. Finally, the simulations are used to study the microscopic origins of the
Gibbs-Thomson formula. It is found that smaller islands have a greater adatom detachment rate per unit length
of island perimeter. This is principally due to a lower coordination of edge atoms and a greater availability of
detachment moves relative to edge moves. A heuristic argument is suggested in which these effects are
partially attributed to geometric constraints on the island edge.@S0163-1829~96!01635-9#

I. INTRODUCTION

The study of the stability and evolution of nanoscale fea-
tures is useful in understanding microscopic processes in-
volved in the formation and growth of solids. Theoretical
studies of the coarsening of an ensemble of ‘‘islands’’1 as
well as models for the decay of single nanoscale
‘‘islands,’’2–4 make use of the fact that there exists a high
vapor pressure in equilibrium with extremely small islands
on the surface. These theories which describe systems away
from equilibrium make use of the relationship between the
equilibrium vapor pressure around a circular island and the
curvature of the island, which is given by the Gibbs-
Thomson formula. In this paper, we shall take a closer look
at this formula and show that it needs important corrections
at high vapor densities wherein interaction between atoms of
the vapor cannot be ignored. We will discuss the two-
dimensional problem of an island in equilibrium with a vapor
of adatoms on the surrounding terrace. We will ignore the
~often small! three-dimensional bulk evaporation-
condensation and bulk vapor pressure.

For a two-dimensional island of radiusr in equilibrium
with the vapor of adatoms around it, the Gibbs-Thomson
formula5,6 is

p~r !5p`exp@g/~rrskBT!#, ~1!

wherep` is the vapor pressure outside a straight interface
between solid and vapor,g is the edge free energy per unit
length of the two-dimensional island on the substrate,rs is
the density of the solid island,kB is Boltzmann’s constant,
and T the absolute temperature. This relation assumes that
the gas surrounding an island is ‘‘ideal’’ and hence we may
write down a similar expression for the density of the gas in
equilibrium with an island of radiusr as

r~r !5r`exp@g/~rrskBT!#. ~2!

The above equation is often seen in the context of nucleation
theory of growth in first order phase transformations5 in ad-
dition to its application to the study of equilibrium and decay
of features on surfaces.

Section II discusses the derivation of the ‘‘classical’’
Gibbs-Thomson formula for a finite size system having a
constant number of atoms. We simulate a two-dimensional
lattice gas on a square lattice, using Monte Carlo techniques,
in order to test this relation and find that the Gibbs-Thomson
formula deviates significantly from the data from our simu-
lation ~Sec. III!. This is because of the assumption that the
vapor around the island is an ideal gas. In our case, we can
map the lattice gas to the Ising model, enabling us to use
high field series expansions to generate an equation of state
for the lattice gas that improves upon the ideal-gas assump-
tion. This is used to derive a corrected Gibbs-Thomson for-
mula in Sec. IV. This corrected Gibbs-Thomson formula
gives a very good description of the data obtained from the
simulation. In Sec. V we discuss the constraint of finite size
along with predictions regarding the stability of the islands.
We investigate the microscopic origins of the enhanced va-
por pressure around small islands in Sec. VI and present a
plausible argument in which we try to correlate the enhance-
ment with geometric constraints on the island. We finally
conclude with Sec. VII.

II. THE GIBBS-THOMSON FORMULA

The Gibbs-Thomson formula is encountered frequently in
the study of curved interfaces in equilibrium.6 It is also en-
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countered in the context of nucleation and critical droplet
theory ~for first order phase transformations!,5 wherein one
studies the formation of droplets of liquid~analogous to the
solid islands mentioned in the introduction! in a supersatu-
rated gas and the free-energy barrier to the formation of these
droplets. However, in this context, the droplet formed is of-
ten at a saddle point of the total free energy of the system, in
short an unstable, stationary state. These droplets can be sta-
bilized by finite size effects.7 If the system under study~with
a fixed number of atoms! is placed in a box of fixed volume
and temperature then one can show that under certain condi-
tions the global minimum of the free energy of the system
consists of a droplet/island in equilibrium with its vapor and
the relationship between the island size and vapor pressure is
given by the Gibbs-Thomson formula.

We will now derive the Gibbs-Thomson formula for this
system. ConsiderN atoms of supersaturated vapor in a two-
dimensional box of volumeV, at a temperatureT. The sys-
tem is at a metastable state on its phase diagram~point 1 in
Fig. 1!, because the supersaturated vapor can lower its Helm-
holtz free energy by nucleating a solid island~point 5 on the
phase diagram!, which would be in equilibrium with the re-
maining vapor around it~point 2!8. We will show this explic-
itly by computing the change in free energy of the system
upon nucleation of an island.

The change in Helmholtz free energy of the system on
nucleating a solid island of radiusr , from the supersaturated
vapor, has three pieces to it:

~a! An increase in edge free energy of the island formed
given by

DFedge52prg, ~3!

whereg is the line tension or free energy per unit length of
the edge.

~b! A change in the bulk free energy of the condensing
atoms. If the number density of the solid formed isrs , the
decrease in free-energy is computed by considering the free-
energy changes along the isotherm 1-2-3-4-5 in Fig. 1 and
works out to be

DFc5rspr
2kBTlnS r`

r i
D2pr 2kBT~r`2rs!. ~4!

Here, r` is the number density of the gas when it is in
equilibrium with a straight interface at point 3 of the phase
diagram andr i[N/V the initial number density of the vapor.
The free-energy changes are computed by integrating the dif-
ferential change in free energy at constant temperature,
dF52pdV. The first term represents the change in free en-
ergy along path 1-2-3 assuming that the supersaturated vapor
behaves as an ideal gas and the second term represents the
free-energy change along path 3-4. We have neglected the
change in free energy of the solid when it is compressed to a
high pressure along path 4-5. This is equivalent to assuming
zero compressibility for the solid phase. In most physical
situations even though the compressibility of the solid phase
is not exactly zero, the slope of the isotherm on theP-V
curve is very high. Consequently the corresponding contri-
bution to the free-energy change is small and the assumption
that we make is therefore reasonable. We have also derived
the Gibbs-Thomson formula with a nonzero compressibility
for the solid by assuming that the vacancies in the solid
behave as an ideal gas. However, we do not describe this
here. The results from such an assumption produce an im-
perceptible change in the plots of the Gibbs-Thomson for-
mula at the densities and temperatures of interest to us.

~c! A decrease in free energy of the noncondensing atoms
as they expand to occupy the region left vacant by the con-
densing atoms,

DFnc52~N2rspr
2!kBTlnS V2pr 2

V2rspr
2V/ND . ~5!

The total free-energy change is the sum of the above three
pieces

DF tot52prg1rspr
2kBTlnS r`

r i
D2pr 2kBT~r`2rs!

2~N2rspr
2!kBTlnS V2pr 2

V2rspr
2V/ND . ~6!

This is plotted for rs50.996, T51347 K, r`50.0036,
g50.1173,N5120, V510000 in Fig. 2. This choice of
numbers will become clear in Secs. III and IV, where we
describe simulations performed with these parameters. It can
be seen from Fig. 2 that the free energy has four extrema: a
minimum (I ) at which an island is in true equilibrium with
its surrounding vapor; a maximum~U!, at which a smaller
island is in metastable equilibrium with the surrounding va-
por; the unstable vapour phase itself (V); and the unstable
solid phase (S). Extremizing the total free energy with re-
spect tor yields

lnS r f

r`
D5

g

rrskBT
1

r f2r`

rs
, ~7!

wherer f[(N2rsspr
2)/(V2pr 2) is the number density of

the vapor surrounding the island. This form for the relation-
ship between the radius of the island and the density of vapor
surrounding it is true at both the maximum (U) and the
minimum (I ) and yields two roots forr at constantN and
V, only one of which is stable. The second term on the right
hand side of Eq.~7! is usually small6 and is often neglected
to yield a form for the density which is identical to Eq.~2!.

FIG. 1. Equation of state for the ideal gas.
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This approximation is justified in our case too; a point we
shall return to at the end of the next section.

III. SIMULATION DETAILS

We perform Monte Carlo simulations of a lattice gas of
‘‘atoms’’ constrained to a single layer. The lattice gas Hamil-
tonian~for a square lattice in two dimensions! can be written
as

HG52e (
, i , j.

ninj , ~8!

whereni51 or 0 depending on whether sitei is occupied
by an atom. The sum runs over nearest neighbor (^ i , j &) pairs
and reduces the total energy by2e whenever two nearest
neighbor sites are occupied. Thus,e represents a bond en-
ergy. We now briefly describe details of the simulation.

We use a continuous time Monte Carlo~MC! scheme9

that helps reduce the time required to run the simulations.
Barriers for moves of atoms in the MC were based on barri-
ers for the Cu~100! surface calculated using effective me-
dium theory.10 They are allowed to depend on the coordina-
tion of the atom both before and after it makes a move. The
barriers used are shown in Table I. The barriers are not all
independent since they satisfy the constraint of detailed bal-
ance. Details regarding the choice of barriers as well as the
number of barriers can be found in the paper referring to the

decay of these islandlike features,3 along with some other
details regarding the simulation. The choice of barriers can-
not affect the macroscopic static equilibrium behavior of the
islands, but definitely plays a role in its dynamics. Macro-
scopic static behavior in equilibrium is governed solely by
the bond energy. This is chosen to bee50.341 eV. For this
bond energy, the critical temperature~at which all solid
melts into gas! is Tc52245 K. This is known from the criti-
cal temperature of the Ising model to which this model can
be mapped, as described later on in this section. Simulations
were performed at temperatures of 1347 K and 1000 K, both
well below the critical temperature. The system size was
1003100 lattice units and we ran the simulation by letting
islands of different sizes come to equilibrium with their va-
por. Time scales are governed by a global attempt frequency
which was set ton51012 s21. The initial configuration in
each run was a circular island, with no adatoms around it,
sitting at the center of a vacant terrace, with periodic bound-
ary conditions. The island would quickly source out atoms
onto the terrace and come to equilibrium with this gas of
atoms. The equilibrium between island and vapor is signaled
by an island, the size of which fluctuates in time around a
stable mean value. Figure 3 shows a snapshot of one of these
islands in equilibrium with its vapor as seen in the simula-
tion. Typically each of these runs made about 40–100 mil-
lion MC moves and took about 4 to 9 h of CPUtime on a
IBM RS6000.

Once the island has come to equilibrium with its vapor

FIG. 2. The change in free energy as a function ofr , for a
system of volumeV510 000, for various values ofN. Notice the
global minimum of the Helmholtz free energy is a solid island of
radius r;5, for the caseN5120. Further, ifN,84, the globally
stable extremum switches from island plus vapor (I ) to pure vapor
(V).

FIG. 3. A snapshot of an island with vapor around it as seen in
the simulation.

TABLE I. Energy barriers for intralayer atomic moves.

Initial
coordination Final coordination

zerofold onefold twofold threefold

zerofold 0.697 eV 0.479 eV 0.328 eV 0.166 eV
onefold 0.820 eV 0.624 eV 0.450 eV 0.275 eV
twofold 1.010 eV 0.791 eV 0.591 eV 0.377 eV
threefold 1.189 eV 0.957 eV 0.718 eV 0.462 eV
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one can compute its radius from a knowledge of its average
size and one can also compute the average density of the gas
around the island, by averaging at regular intervals of time,
uncorrelated reports of the density. This is done for each of
the islands of different initial size that we ran at the two
temperatures mentioned above. There are various definitions
possible for the radius of an island.6 We compute its radius
using the relationarea5pr 2, where the area can be com-
puted from the snapshots of the island that are reported~it
includes the area of vacancies inside the island!. The radius
thus computed is equivalent to the equimolar radiusr e de-
fined by Gibbs.6 All length scales are measured in units of
the lattice spacing which is set to 1.

The density of the gas is computed by counting the num-
ber of atoms on the terrace and then dividing this by the area
of the terrace that is free for occupation by the gas. Care is
taken to exclude a one-lattice spacing zone around the island
as this cannot be occupied by an atom of the vapor~if it were
it would be part of the island!. In order to perform statistics
we first compute the correlation time for the data. This is
done by computing the autocorrelation of the island size as a
function of time~in equilibrium!. Typically, the autocorrela-
tion decays with some time constantt. We then consider
data points which are separated by more than a couple of
time constants, as independent in time. Essentially, we bin
the data into bins of size about 2t, replacing the data with its
average value in each bin. We then take an average of these
average values and compute the standard deviation assuming
the average data point in each bin to be uncorrelated with
that in another bin. The same procedure is adopted to deter-
mine the density of gas around the island. This is how the
error bars are obtained for plotting purposes.

Figure 4 shows a plot of the logarithm of the density
vapor versus the curvature (1/r ) of the island, for the two
different temperatures. In order to compare the data to the
prediction from the Gibbs-Thomson formula@Eq. ~2!#, we
need the edge free energyg, the density of the solid deep
inside the bulkrs , and the density of the vapor outside a
straight interfacer` . These can be obtained by exploiting a
mapping of the lattice gas to the Ising model, outlined below.

The Hamiltonian for the lattice gas@Eq. ~8!# can be made
to resemble that of an Ising model, using the transformation
ni5(11si)/2, to give

HI52e/4(
^ i , j &

sisj2e(
i
si2Ne/2, ~9!

whereN is the total number of sites on the lattice and the
spin si takes on values of61. The second term would be
analogous to a field term in the Ising model with an external
field of strengthe.

This mapping helps us determine the parametersg, r`,
and rs , that are relevant to this simulation. The edge free
energy~i.e., surface tension!, g, is known as a function of
temperature and orientation of the normal to the surface for
the case of the two-dimensional Ising model.11 It varies be-
tween a maximum and minimum value indicated in Table II
and we see that the variation is not significant at the two
temperatures at which we perform the simulations. We use
an average value for the surface tension, which we approxi-
mate as

gavg5
*g ds

* ds
'

*g2du

*g du
. ~10!

The results of averaging are also indicated in Table II. Once
again note that length scales are measured in terms of the
lattice spacing which is set to 1. The values forr` andrs are
known from the spontaneous magnetization. Using the map-
ping for lattice gas to Ising variables these can be calculated
asr`5(12m)/2 andrs5(11m)/2, wherem is the sponta-
neous magnetization. The values ofr` andrs are also indi-
cated in Table II. Note that the density of the solidrs is not
identically equal to one. This is because of the presence of

FIG. 4. Plot of the logarithm of the density of vapor outside an
island vs the reciprocal of its equilibrium radius. The dashed line
represents the Gibbs-Thomson prediction assuming an ideal gas of
vapor. The solid curve is the prediction using the corrected Gibbs-
Thomson formula for the Ising model.~a! is the data at a tempera-
ture of 1000 K, while~b! is at 1347 K.

TABLE II. Constants for the Ising model for bond energy5
0.341 eV.

T51347 K T51000 K

Tc 2245 K 2245 K
gmin 0.1161 eV 0.1465 eV
gmax 0.1184 eV 0.1543 eV
gavg 0.1173 eV 0.1507 eV
r` 0.003578 0.000396
rs 0.996422 0.999602
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vacancies inside the solid, which can be seen even in the
simulation. With this we have the three parameters necessary
to plot the Gibbs-Thomson formula.

The dashed line in Fig. 4 is the ‘‘classical’’ Gibbs-
Thomson prediction for the relationship between the density
of vapor and radius of the island as defined in@Eq. ~2!#. We
see that the formula is satisfactory at large radii and low
temperatures but important corrections are needed elsewhere.
The next section discusses corrections to the ‘‘ideal-gas’’
equation of state used in the derivation of the Gibbs-
Thomson formula.12 Note that one may just fit the data to an
exponential form given by the Gibbs-Thomson formula. This
yields a value for the surface tension of 1.59gavg. As one can
see this is 60% off from the average value one would expect
from the Ising model results. However, this is useful in fit-
ting the data to an analytic expression of the Gibbs-Thomson
form with a prefactor in the exponent, viz.,
r`exp@ag/(rrskBT)#, wherea51.59.

IV. CORRECTED GIBBS-THOMSON FORMULA
FOR THE ISING MODEL

The mapping from the lattice gas to the Ising model was
discussed in Sec. III. This enables us to compute properties
of the lattice gas system from a knowledge of the corre-
sponding Ising system. We will be interested in obtaining
corrections to the Gibbs-Thomson formula that take into ac-
count the ‘‘nonideal’’ nature of the gas of adatoms surround-
ing an island. To this end we rederive the Gibbs-Thomson
formula using a more accurate equation of state than the
ideal gas one for the lattice gas/Ising system, using high field
series expansions.

One can obtain the Helmholtz free-energy per site of the
Ising model~as a function of field, at a fixed temperature! by
means of series expansions, starting from a very high value
of the field. The first four terms of such an expansion of the
equilibrium free energy forh.0 are

f.@h#52h2e/22kBt@vx41v2~2x622.5x8!

1v3~6x8216x10131/3x12!1v4~x8118x10285x12

1118x142209/4x16!1•••#, ~11!

where v[exp„22h/(kT)…, x[exp„2e/(2kBT)…, kB is
Boltzmann’s constant, andT the absolute temperature. The
coefficients of various terms in this expansion are obtained
analogous to low temperature expansions.13,14 We use the
first 13 terms of this expansion in our analysis. Differentiat-
ing the above expansion with respect to field yields an ex-
pansion for the magnetization per site as a function of field,
for h.0. The magnetization is odd inh ~note the expansion
is not!,

m.@h#5122@vx412v2~2x622.5x8!

13v3~6x8216x10131/3x12!14v4~x8118x10

285x121118x142209/4x16!1 •••#. ~12!

The expressions forf @h# andm@h# for h,0 can be obtained
by using the up-down symmetry of the Ising model. Thus,
f,@h#5 f.@2h# for h,0 and m,@h#52m.@2h# for
h,0. This can be used to plot the equation of state for this

system~Fig. 5!. For large positive values of the field, the
state is essentially one in which all the spins are pointing up
~or all n51, the solid phase!. Conversely, the spins are all
pointing down~gaseous phase of adatoms! for large negative
values of the field. The dashed portionsBC andEF on the
equation of state represent metastable states and are analytic
continuations of the equilibrium equation of statem@h#, i.e.,
we usem.@h# as given by Eq.~12! for h,0 to generate the
curveBC, on the equation of state. Note the similarity be-
tween this equation of state and the equation of state for an
ideal gas~Fig. 1!. Adatoms and solid can coexist in equilib-
rium at zero field. In this case, one has a flat interface be-
tween solid and gas. In addition to this one could have meta-
stable states of the system wherein adatoms and solid coexist
at a finite field~e.g., statesp andq on the equation of state
coexist at a field value ofhf). However, in this case one
could have a solid with a finite radius of curvature~just as in
the ideal-gas case: points 5 and 2 in Fig. 1!. In order to
compute the radius of the solid in equilibrium with the gas of
adatoms around it, one can compute the free-energy change
in nucleating a solid, in a system of pure gas which is at state
F on the phase diagram. The procedure adopted is similar to
the one in Sec. II. However, one has to minimize the appro-
priate thermodynamic potential. For the ordinary Ising model
~nonconserved order parameter! the Helmholtz free energy is
at a minimum in the equilibrium state at constant tempera-
ture, volume, and external field. Since we work with a con-
stant number of atoms in the lattice gas, the total magnetiza-
tion of the Ising model is held fixed (M[( isi5 const!.
Consequently, one would have to minimize the Legendre
transform of the Helmholtz free energy, which we shall
henceforth refer to as the free energy,G(T,V,M )5F1Mh
~it could also be called a thermodynamic potential!. Consider
starting out with a state consisting ofNi atoms uniformly
distributed on a square lattice of volumeV and having a
magnetization corresponding to pointF on the phase dia-
gram. This state can lower its free energy by forming a solid
island with vapor around it, the solid island being at point
q of the phase diagram and the vapor at pointp, at the same
external fieldhf as the solid. One can compute the change in
the free energy in nucleating an island of up spins of radius
r and this change is again composed of three pieces.

~a! An increase in surface free energy given by

DGedge52prg, ~13!

FIG. 5. Equation of state for the Ising model.
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where g is the line tension or edge free energy per unit
length of the island.

~b! The change in free energy in the region of the island
that condenses out. This change is computed by taking the
difference in free energy between the initial stateF and final
stateq and is given by

DGc5pr 2~ f.@hf #2 f,@hi #1hfm
.@hf #2him

,@hi # !.
~14!

~c! The change in free energy of the remaining region of
volume (V2pr 2), as it moves from pointF of the meta-
stable part of the phase diagram to pointp,

DGnc5~V2pr 2!~ f,@hf #2 f,@hi #1hfm
,@hf #

2him
,@hi # !. ~15!

The total change in free energy is thus

DGtot52prg1pr 2~ f.@hf #2 f,@hi #1hfm
.@hf #

2him
,@hi # !1~V2pr 2!~ f,@hf #2 f,@hi #

1hfm
,@hf #2him

,@hi # !. ~16!

Note that although the above equation for the free energy
makes it look like a function of two independent variables,
r andhf , there is only one independent variable. The second
variable is fixed by the constraint of conservation which can
be expressed as

Vmi5pr 2m.@hf #1~V2pr 2!m,@hf #. ~17!

Thus,DGtot can be looked upon as a function ofr alone
by replacing the final external fieldhf that appears in Eq.
~16! with the value obtained by formally solving forhf as a
function of r from Eq. ~17!. Extremizing Eq.~16! with re-
spect tor yields the radius of the island in equilibrium with
the gas. This gives us the analog of the Gibbs-Thomson for-
mula for the lattice gas system,

g1r „f.@h#2 f,@hf #1hf~m
.@hf #2m,@hf # !…

1
]hf
]r S pr 2hfx

.@hf #1~V2pr 2!hfx
,@hf #

2p D50,

~18!

wherex@h#[]m/]h is the susceptibility and]hf /]r can be
determined from Eq.~17!. Instead of regarding the above
equation as an equation inr , we substitute forr in terms of
hf using the constraint@Eq. ~17!#. This enables us to solve
the above equation forhf numerically after substituting the
series expansions for the free energy, magnetization, and sus-
ceptibility. We use the first thirteen terms in the series ex-
pansion. On finding the equilibrium final external fieldhf ,
for a given initial density of atoms, the equilibrium radius of
the island at the extremum of the free energy can be obtained
using the constraint@Eq. ~17!#. The final field also tells us the
final magnetization outside the island~point p on Fig. 5! and
hence the density of adatoms outsider f5(11m,@hf #)/2.
This gives us the required relation between the radiusr of
the island vs density of gas outsider f , which we refer to as
a corrected Gibbs-Thomson equation. The solid line in Fig. 4

represents the curve for the corrected Gibbs-Thomson for-
mula. It is clearly seen that the corrected theory gives better
agreement with the simulations than the continuum theory,
particularly for islands of very small radii (r,8 or
1/r.0.125). This leads us to believe that the approximation
of an ideal gas of adatoms around the island is the principal
cause for the break down of the classical Gibbs-Thomson
formula at high vapor densities.

V. STABILITY OF ISLANDS
AND THE THERMODYNAMIC LIMIT

In this section we discuss the effects of finite size on the
stability of the islands that we see in the simulation. We first
look at finite size effects as predicted by the continuum ver-
sion of the model that we have for a system of atoms~as in
Sec. II!. Figure 2 shows the effect of varying the number of
atoms,N, at constant volumeV, on the total free-energy
change in nucleating an island. We see that the stable mini-
mum (I ) is no longer a global minimum of the free-energy of
the system onceN falls below a certain value and later this
minimum vanishes completely~the curve becomes flat! be-
low a certain critical value ofN which we denote as
Ncr(V), which evidently depends onV. Similar behavior is
observed if we increase the volumeV at constantN. How-
ever, if we take the thermodynamic limit at constant initial
density (r i 5 const,V→`) the stable minimum persists and
moves off towardsr5`. These results can be understood by
means of a stability analysis.

The equilibrium between an island and the vapor around
it is dynamic in nature and can be understood as a balance
between the rate at which atoms from the vapor attach them-
selves to the perimeter of the island and the rate at which
atoms detach themselves from the perimeter of the island to
become part of the vapor. The former rate would be propor-
tional to the density of the vapor surrounding the island,
while the latter would be governed purely by temperature
and would be independent of the density of vapor surround-
ing the island, in the low density limit.

Consider a change in the radius of an island in equilib-
rium with its vapor. If the island grows from an initial radius
r to a radiusr1dr by swallowing some atoms from the
vapor phase, the concomitant change in the density of the
vapor would be

dr f52
2pr ~rs2r f !dr

V2pr 2
. ~19!

If the new island of radiusr1dr is to be in equilibrium with
vapor around it, one can compute the change in equilibrium
vapor density around it~i.e., the difference between the va-
por density around an island of radiusr1dr and the vapor
density around an island of radiusr ) from the Gibbs-
Thomson formula@Eq. ~7!#,

dr f52
gr fdr

kBTr
2~rs2r f !

. ~20!

The above two equations predict that the density will de-
crease if the island grows (dr.0), which is to be expected.
If the actual change in density@Eq. ~19!# is larger in magni-
tude~smaller in value! than that dictated by equilibrium@Eq.
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~20!# the island would be stable. This is because the new
density around the island is too low and consequently the
new attachment rate would be lower than the detachment
rate. This in turn would force more atoms to detach from the
island, thus bringing down the size of the island. From this
one can conclude that for stability one needs

2
2pr ~rs2r f !dr

V2pr 2
,2

gr fdr

kBTr
2~rs2r f !

, ~21!

which can be written as

r 3.
gr iV

2pkBT~rs2r i !
2 S 12

pr 2

V D 2S 12
rspr

2

r iV
D , ~22!

wherer i5N/V as before. We see from this that for stability
the radius of an island should be greater than a certain mini-
mum value which is obtained by solving

rmin5S gr iV

2pkBT~rs2r i !
2D 1/3S 12

prmin
2

V D 2/3S 12
rsprmin

2

r iV
D 1/3.
~23!

Along with this if we use the Gibbs-Thomson formula@Eq.
~2!# we can obtain a relation for the critical valueNcr as a
function of the volume. All issues of local stability of the
islands can be resolved using these equations. The curve
Ncr(V) in N2V space defines a boundary between regions
where one can have stable islands and regions where one can
have no stable islands.15

One can show that for large system size the last two terms
in the product of Eq.~23! go to unity and we have

rmin
3 5gr iV/@2pkBT~rs2r i !

2#. ~24!

This shows that the minimum radius of a stable island grows
as the one third power of the volume of the box in two
dimensions.

We now digress to note the behavior of the unstable root
(U) of the free energy in Fig. 2 in the thermodynamic limit.
It is seen that the unstable root does not scale with system
size by plotting this root obtained by numerical solutions
versus the system volumeV. The unstable root reaches a
limiting value in the limit V→`, which can be obtained
from Eq. ~7! by neglecting terms of orderr 2/V. The critical
radiusr !, which is obtained by taking this limit, is given by

r !5
g

kBT@rsln~r i /r`!1~r`2r i !#
. ~25!

This form is identical to the form for the critical radius
quoted in the context of nucleation theory.5 The nucleation
barrier, which is the free-energy barrier that the system of
supersaturated vapor should overcome in order to form a
stable island plus vapor, attains a limiting value of

DF!5
pg2@rsln~r i /r`!1r`1rs22r i #

kBT@rsln~r i /r`!1r`2r i #
2 . ~26!

How about seeing the unstable islands in our simulation?
We have observed that if we start out with 109 atoms in a

1003100 system at a temperature of 1347 K, the island size
fluctuates considerably and there are several frames of data
where the island breaks up into many smaller ones. This can
be understood within the framework of our theory for the
Ising model. Figure 6 shows the change in free energy on
nucleating an island of radiusr in the Ising model for 109
particles. From this we see that the island-vapor system is
not a point of global minimum of free energy. Further the
nucleation barrier to go from this state to one of uniform
vapor is given byDG/kBT55.26. Also, we can see from this
figure that the fluctuations to various other island sizes are
not highly unlikely. This would account for the large fluc-
tuations in island size. The same effect is seen for 25 par-
ticles at a temperature of 1000 K.

VI. INVESTIGATION OF MICROSCOPIC ORIGINS

Since these simulations of atomic scale systems exhibit
the Gibbs-Thomson effect, viz., an enhanced vapor pressure
around islands of small radii relative to the vapor pressure
outside a flat interface, the opportunity arises to investigate
the relationship between this thermodynamic effect and the
microscopic dynamics. We may ask, from a microscopic
point of view, what is the origin of the enhanced adatom
vapor concentration in equilibrium with a small island. A
complete discussion of this issue involves many details of
the microscopic characteristics of the island-vapor interface,
which are beyond the scope of this paper. Here we outline
our main findings; the interested reader is referred to Refs.
16 and 17 for further details.

As discussed in Sec. V, equilibrium between the island
and vapor implies detailed balance at the interface: atoms are
attaching to and detaching from the island with equal rates.
Analysis of our simulations shows that for small equilibrium
islands, the interface transfer activity is enhanced in propor-
tion to the vapor density. For example, the data points in Fig.
7 show the rate at which atoms detach from an island per
unit length of the macroscopic island-vapor interface. This
leads to the following microscopic interpretation of the
Gibbs-Thomson effect. As the island size decreases, it be-
comes easier for atoms to detach from it, raising the detach-
ment current density. However, we find that there is no no-
ticeable change in the ease with which an atom can attach to

FIG. 6. The free energy of an island of radiusr plotted for a
system of 109 particles withV510 000.
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the island for islands, the radii of which vary between 4 and
35. Therefore, a higher vapor density is required to maintain
dynamic equilibrium.

The enhanced detachment current density for smaller is-
lands can be ascribed to trends in the character of the sites on
the island edge. On smaller islands, the density of edge at-
oms is found to actually decrease, so that there are fewer
atoms per unit length of interface available for detachment.
However, the average coordination of the edge atoms is
found to be smaller, which leads to lower energy barriers for
edge atom motion. Also, each edge atom on a smaller island
tends to have more detachment moves available to it. That is,
when the edge atom moves it is more likely to detach, as
opposed to moving along the edge of the island. The net
result of these trends yields the observed enhancement in
detachment.

Note that the above trends, observed in the equilibrium
islands~e.g., Fig. 3! of our simulations also hold true for a
square island, although a square is not the thermodynamic
shape of an equilibrium island at finite temperatures. As a
square island is made smaller, the corner sites acquire greater
significance. Since the corner sites of a square island have a
lower coordination than sites on the side of a square, the
average coordination of edge atoms on a small square is
lower than it is on a large square. Similarly, corner atoms
have two detachment moves available, while side atoms have
only one. Therefore, a smaller square has a higher ratio of
available detachment moves to number of edge atoms.

This analogy between the simulated islands and square
islands suggests that an important element of the observed
behavior is the simple geometric constraint that any closed
perimeter on a square lattice must have four more outward
pointing corners than it has inward pointing crevices. As a
test of this idea, Fig. 7 compares the detachment current
density observed in the simulation with that expected for a
square island of the same area and at the same temperature.
As expected, the overall detachment current density is lower
for the square island, as it has the smoother edge. However,
as the island size is varied, the magnitude of the enhance-
ment in detachment from the square is comparable to the

enhancement in detachment from the simulated islands. It is,
therefore, clear that it is important to consider the effect of
the ‘‘four extra corners’’ in an understanding of the Gibbs-
Thomson effect at a microscopic level. It is difficult to quan-
tify the effect of this geometrical constraint, as it is impos-
sible to label an individual corner on an equilibrium island as
being due to either geometry or thermal roughening. How-
ever, comparison with the nonequilibrium square island
gives an indication of the strength of the effect.

VII. CONCLUSIONS

We have simulated a lattice gas to mimic the behavior of
a cluster of atoms, on generic surfaces, in an effort to study
the relationship between the cluster radius and the vapor den-
sity around it. We have shown that the ‘‘classical’’ Gibbs-
Thomson relationship one computes assuming an ideal gas
of atoms is incorrect at high vapor densities and a knowledge
of the true equation of state is necessary to obtain a better
result. We have seen that the corrected formula can be used
down to islands with about 150 atoms at a temperature of 0.6
Tc and islands with about 30 atoms at 0.445Tc , in the case
of our simulations.

Further, we have seen how metastable states in traditional
nucleation theories can be made stable by finite size effects.
We have seen how these states may arise in the context of
the Ising model and have explored the metastable continua-
tion of the equation of state in the Ising model. Simulations
performed on the Ising model agree well with our predictions
regarding stability.

As far as experimental observations of the corrections to
the Gibbs-Thomson formula are concerned, such an effect
would surely be observed in a system with short range inter-
actions at small island sizes and high temperature~about
60% of the melting temperature!. However, in real situations
in addition to the short range attractive forces that bind at-
oms to each other there exist long range dipolar forces at step
edges, between the atoms at the edge and the vapor. This
may skew the predictions of a theory like ours which is
simple and ignores such effects. Finally, we have looked at
the microscopic origins of the Gibbs-Thomson formula and
have offered heuristic arguments that it maybe correlated to
geometric constraints.
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