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Gibbs-Thomson formula for small island sizes: Corrections for high vapor densities
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In this paper we report simulation studies of equilibrium features, namely, circular islands on model sur-
faces, using Monte Carlo methods. In particular, we are interested in studying the relationship between the
density of vapor around a curved island and its curvature. The “classical” form of this relationship is the
Gibbs-Thomson formula, which assumes that the vapor surrounding the island is an ideal gas. Numerical
simulations of a lattice gas model, performed for various sizes of islands, do not fit very well to the Gibbs-
Thomson formula. We show how corrections to this form arise at high vapor densities, wherein a knowledge
of the exact equation of statas opposed to the ideal-gas approximatismecessary to predict this relation-
ship. By exploiting a mapping of the lattice gas to the Ising model, one can compute the corrections to the
Gibbs-Thomson formula using high field series expansions. The corrected Gibbs-Thomson formula matches
very well with the Monte Carlo data. We also investigate finite size effects on the stability of the islands both
theoretically and through simulations. Finally, the simulations are used to study the microscopic origins of the
Gibbs-Thomson formula. It is found that smaller islands have a greater adatom detachment rate per unit length
of island perimeter. This is principally due to a lower coordination of edge atoms and a greater availability of
detachment moves relative to edge moves. A heuristic argument is suggested in which these effects are
partially attributed to geometric constraints on the island ef$@163-18286)01635-9

. INTRODUCTION p(1)=p.exd v/(rpksT)]. )

The study of the stability and evolution of nanoscale fea-
tures is useful in understanding microscopic processes irnFhe above equation is often seen in the context of nucleation
volved in the formation and growth of solids. Theoretical theory of growth in first order phase transformatidirsad-
studies of the coarsening of an ensemble of “islarida¥ dition to its application to the study of equilibrium and decay
well as models for the decay of single nanoscaleof features on surfaces.
“islands,”?"* make use of the fact that there exists a high Section Il discusses the derivation of the “classical”
vapor pressure in equilibrium with extremely small islandsGibbs-Thomson formula for a finite size system having a
on the surface. These theories which describe systems aw@¥nstant number of atoms. We simulate a two-dimensional
from equilibrium make use of the relationship between thggattice gas on a square lattice, using Monte Carlo techniques,
equilibrium vapor pressure around a circular island and thg, orger to test this relation and find that the Gibbs-Thomson
curvature of the island, which is given by the Gibbs-¢qmni5 deviates significantly from the data from our simu-

Thor_nson formula. In this paper, we Shf"‘” take a closer I_OOHation (Sec. ll)). This is because of the assumption that the
at this formula and show that it needs important correction apor around the island is an ideal gas. In our case, we can
at high vapor densities wherein interaction between atoms o : . ' . '

. S map the lattice gas to the Ising model, enabling us to use
the vapor cannot be ignored. We will discuss the two-

dimensional problem of an island in equilibrium with avaporh'gh field series expansions to generate an equation of state

of adatoms on the surrounding terrace. We will ignore thefor the lattice gas that improves upon the ideal-gas assump-
(often small three-dimensional bulk evaporation- tion. This is used to derive a corrected Gibbs-Thomson for-

condensation and bulk vapor pressure. mula in Sec. IV. This corrected Gibbs-Thomson formula
For a two-dimensional island of radiusin equilibrium  9ives a very good description of the data obtained from the
with the vapor of adatoms around it, the Gibbs-Thomsorsimulation. In Sec. V we discuss the constraint of finite size
formulz© is along with predictions regarding the stability of the islands.
We investigate the microscopic origins of the enhanced va-
p(r)=p.exd ¥/(rpksT)], (1) por pressure aroun(_j sme_lll islands in Sec. VI and present a
plausible argument in which we try to correlate the enhance-
wherep.. is the vapor pressure outside a straight interfacdnent with geometric constraints on the island. We finally
between solid and vapos is the edge free energy per unit conclude with Sec. VIL.
length of the two-dimensional island on the substrateis
the density of the solid islandg is Boltzmann’s constant,
and T the absolute temperature. This relation assumes that Il. THE GIBBS-THOMSON FORMULA
the gas surrounding an island is “ideal” and hence we may
write down a similar expression for the density of the gas in The Gibbs-Thomson formula is encountered frequently in
equilibrium with an island of radius as the study of curved interfaces in equilibrithit is also en-
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Here, p., is the number density of the gas when it is in
equilibrium with a straight interface at point 3 of the phase
diagram angb;=N/V the initial number density of the vapor.
The free-energy changes are computed by integrating the dif-

ol ferential change in free energy at constant temperature,

\ dF=—pdV. The first term represents the change in free en-
ergy along path 1-2-3 assuming that the supersaturated vapor
behaves as an ideal gas and the second term represents the
free-energy change along path 3-4. We have neglected the

vapor change in free energy of the solid when it is compressed to a

high pressure along path 4-5. This is equivalent to assuming

zero compressibility for the solid phase. In most physical
situations even though the compressibility of the solid phase

v is not exactly zero, the slope of the isotherm on &/

curve is very high. Consequently the corresponding contri-

bution to the free-energy change is small and the assumption

that we make is therefore reasonable. We have also derived
countered in the context of nucleation and critical dropletthe Gibbs-Thomson formula with a nonzero compressibility
theory (for first order phase transformatioriswherein one  for the solid by assuming that the vacancies in the solid
studies the formation of droplets of liquidnalogous to the pehave as an ideal gas. However, we do not describe this

solid islands mentioned in the introductioim a supersatu- here. The results from such an assumption produce an im-

rated gas and the free-energy barrier to the formation of thegserceptible change in the plots of the Gibbs-Thomson for-

droplets. However, in this context, the droplet formed is of-mula at the densities and temperatures of interest to us.

ten at a saddle point of the total free energy of the system, in (c) A decrease in free energy of the noncondensing atoms

short an unstable, stationary state. These droplets can be stg& they expand to occupy the region left vacant by the con-

bilized by finite size effectéf the system under studyvith densing atoms,

a fixed number of atomss placed in a box of fixed volume

and temperature then one can show that under certain condi- ) V—r?

tions the global minimum of the free energy of the system AFpe=—(N—psr“)kgTIn V—pr2VIN| ®)

consists of a droplet/island in equilibrium with its vapor and

the relationship between the island size and vapor pressure 1€ total free-energy change is the sum of the above three

given by the Gibbs-Thomson formula. pieces

We will now derive the Gibbs-Thomson formula for this
system. ConsidelN atoms of supersaturated vapor in a two- _ 2 P=) 2 _
dimensional box of volum&, at a temperatur&. The sys- AFio=2mty+ pmt kBTIn( ) ™ KeT(p=po)

tem is at a metastable state on its phase diadpoimt 1 in 2

Fig. 1), because the supersaturated vapor can lower its Helm- —(N—p 7TI’2)kBT|n(V_—7Tr) ) (6)

holtz free energy by nucleating a solid islagmbint 5 on the * V—pemr?VIN

phase diagram which would be in equilibrium with the re- I _ _ _

maining vapor around ifpoint 28, We will show this explic- This ‘is plotted for p;=0.996, T=1347 K, p..=0.0036,

ity by computing the change in free energy of the systemyzo'n??" N=120, V=10000 in Fig. 2. This choice of
. ; numbers will become clear in Secs. Il and IV, where we
upon nucleation of an island.

The change in Helmholtz free energy of the system o describe simulations performed with these parameters. It can

: S : 'he seen from Fig. 2 that the free energy has four extrema: a
nucleating a solid island of radius from the supersaturated - ° : . L L .
. o minimum (I) at which an island is in true equilibrium with
vapor, has three pieces to it:

(@) An increase in edge free energy of the island formedtS surr'ou'ndlng vapor, a mf’".x"."“'('U)z at which a smgller
Island is in metastable equilibrium with the surrounding va-

solid

FIG. 1. Equation of state for the ideal gas.

given by por; the unstable vapour phase itséf)( and the unstable
solid phase §). Extremizing the total free energy with re-
AF eqge= 271 y, (3)  spect tor yields
wherey is the line tension or free energy per unit length of | pPiy_ Y n Pt~ Poo R
the edge. pw] TpkeT ps

(b) A change in the bulk free energy of the condensing 5 o )
atoms. If the number density of the solid formedpis the ~ Wherep;=(N—pss7r)/(V—mr?) is the number density of
decrease in free-energy is computed by considering the freéb€ vapor surrounding the island. This form for the relation-

energy Changes a|ong the isotherm 1-2-3-4-5 in F|g 1 an§h|p between the radius of the island and the denSity of vapor
works out to be surrounding it is true at both the maximuny) and the

minimum (1) and yields two roots for at constaniN and
V, only one of which is stable. The second term on the right
AFC=p5wr2kBTln(p—w) —mt%gT(p.—py). (4 hand side of Eq(7) is usually smafl and is often neglected
[ to yield a form for the density which is identical to E@).

Pi
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FIG. 2. The change in free energy as a functionr pffor a
system of volumeév=10 000, for various values dfl. Notice the
global minimum of the Helmholtz free energy is a solid island of

radiusr ~5, for the caseN=120. Further, ifN<84, the globally FIG. 3. A snapshot of an island with vapor around it as seen in
stable extremum switches from island plus vapQrtp pure vapor  the simulation.
(V).

. L _ decay of these islandlike featuréslong with some other
This approximation is justified in our case t00; & point Wegetajls regarding the simulation. The choice of barriers can-
shall return to at the end of the next section. not affect the macroscopic static equilibrium behavior of the

islands, but definitely plays a role in its dynamics. Macro-
lll. SIMULATION DETAILS scopic static behavior in equilibrium is governed solely by

We perform Monte Carlo simulations of a lattice gas ofthe bond energy. This is chosen to &e0.341 eV. For this

“atoms” constrained to a single layer. The lattice gas Hamil-20Nd energy, the critical temperatutat which all solid

tonian(for a square lattice in two dimensionsan be written melts into gasis TC:2245. K. This is k”OW.” from the criti-
as cal temperature of the Ising model to which this model can

be mapped, as described later on in this section. Simulations
were performed at temperatures of 1347 K and 1000 K, both
Hg:_€<2> nin, (8 well below the critical temperature. The system size was
) 100X 100 lattice units and we ran the simulation by letting
wheren;=1 or 0 depending on whether sités occupied islands of different sizes come to equilibrium with their va-
by an atom. The sum runs over nearest neighbigi ) pairs  por. Time scales are governed by a global attempt frequency
and reduces the total energy bye whenever two nearest which was set tav=10"? s~ 1. The initial configuration in
neighbor sites are occupied. Thusfrepresents a bond en- each run was a circular island, with no adatoms around it,
ergy. We now briefly describe details of the simulation. sitting at the center of a vacant terrace, with periodic bound-
We use a continuous time Monte CarlbIC) schemé ary conditions. The island would quickly source out atoms
that helps reduce the time required to run the simulationsonto the terrace and come to equilibrium with this gas of
Barriers for moves of atoms in the MC were based on barriatoms. The equilibrium between island and vapor is signaled
ers for the Cu(100 surface calculated using effective me- by an island, the size of which fluctuates in time around a
dium theory'® They are allowed to depend on the coordina-stable mean value. Figure 3 shows a snapshot of one of these
tion of the atom both before and after it makes a move. Théslands in equilibrium with its vapor as seen in the simula-
barriers used are shown in Table |. The barriers are not ation. Typically each of these runs made about 40—100 mil-
independent since they satisfy the constraint of detailed balion MC moves and took about #19 h of CPUtime on a
ance. Details regarding the choice of barriers as well as thiBBM RS6000.
number of barriers can be found in the paper referring to the Once the island has come to equilibrium with its vapor

TABLE |. Energy barriers for intralayer atomic moves.

Initial
coordination Final coordination

zerofold onefold twofold threefold
zerofold 0.697 eV 0.479 eV 0.328 eV 0.166 eV
onefold 0.820 eV 0.624 eV 0.450 eV 0.275 eV
twofold 1.010 eV 0.791 eV 0.591 eV 0.377 eV

threefold 1.189 eV 0.957 eV 0.718 eV 0.462 eV
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one can compute its radius from a knowledge of its average
size and one can also compute the average density of the gas
around the island, by averaging at regular intervals of time,
uncorrelated reports of the density. This is done for each of
the islands of different initial size that we ran at the two
temperatures mentioned above. There are various definitions
possible for the radius of an islafidive compute its radius
using the relatiorarea= mr?, where the area can be com-
puted from the snapshots of the island that are repdited
includes the area of vacancies inside the isjaiitie radius
thus computed is equivalent to the equimolar radipsle-
fined by Gibbs All length scales are measured in units of
the lattice spacing which is set to 1.

The density of the gas is computed by counting the num-
ber of atoms on the terrace and then dividing this by the area
of the terrace that is free for occupation by the gas. Care is
taken to exclude a one-lattice spacing zone around the island
as this cannot be occupied by an atom of the vdjparwere
it would be part of the island In order to perform statistics
we first compute the correlation time for the data. This is
done by computing the autocorrelation of the island size as a
function of time(in equilibrium). Typically, the autocorrela-
tion decays with some time constant We then consider
data points which are separated by more than a couple of
time constants, as independent in time. Essentially, we bin
the data into bins of size about-2replacing the data with its
average value in each bin. We then take an average of these
average values and compute the standard deviation assuming
the average data point in each bin to be uncorrelated with
that in another bin. The same procedure is adopted to deter-
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mine the density of gas around the island. This is how the FiG. 4. Plot of the logarithm of the density of vapor outside an

error bars are obtained for plotting purposes.

island vs the reciprocal of its equilibrium radius. The dashed line

Figure 4 shows a plot of the logarithm of the density represents the Gibbs-Thomson prediction assuming an ideal gas of

vapor versus the curvature (}/of the island, for the two

vapor. The solid curve is the prediction using the corrected Gibbs-

different temperatures. In order to compare the data to th&homson formula for the Ising modeh) is the data at a tempera-

prediction from the Gibbs-Thomson formul&qg. (2)], we
need the edge free energy the density of the solid deep
inside the bulkps, and the density of the vapor outside a
straight interfacep,,. These can be obtained by exploiting a
mapping of the lattice gas to the Ising model, outlined below.

ni=(1+s;)/2, to give

ture of 1000 K, while(b) is at 1347 K.

_Jyds  [y’de
YT Tds T [yde”

The Hamiltonian for the lattice gd&qg. (8)] can be made The results of averaging are also indicated in Table Il. Once
to resemble that of an Ising model, using the transformatio@gain note that length scales are measured in terms of the

(10

lattice spacing which is set to 1. The values forandpg are

known from the spontaneous magnetization. Using the map-
ping for lattice gas to Ising variables these can be calculated

Hy=—€ldY, 55— €, 5—Nel2, 9)
i i

whereN is the total number of sites on the lattice and the
spin s; takes on values of-1. The second term would be
analogous to a field term in the Ising model with an external
field of strengthe.

This mapping helps us determine the parameterg..,

asp.,=(1—m)/2 andps=(1+m)/2, wherem is the sponta-
neous magnetization. The valuesgmf andpg are also indi-
cated in Table Il. Note that the density of the sghidis not
identically equal to one. This is because of the presence of

TABLE IlI. Constants for the Ising model for bond energy

and p, that are relevant to this simulation. The edge free

energy(i.e., surface tensiony, is known as a function of
temperature and orientation of the normal to the surface fof.
the case of the two-dimensional Ising modfelt varies be-
tween a maximum and minimum value indicated in Table 1y,
and we see that the variation is not significant at the twoy,,,
temperatures at which we perform the simulations. We usg,,

an average value for the surface tension, which we approxi

0.341 eV.

T=1347 K T=1000 K
2245 K 2245 K

Yonin 0.1161 eV 0.1465 eV
0.1184 eV 0.1543 eV
0.1173 eV 0.1507 eV
0.003578 0.000396
0.996422 0.999602

mate as
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vacancies inside the solid, which can be seen even in the 010
simulation. With this we have the three parameters necessary
to plot the Gibbs-Thomson formula.

The dashed line in Fig. 4 is the *“classical” Gibbs- e F Tn Al
Thomson prediction for the relationship between the density
of vapor and radius of the island as defined . (2)]. We
see that the formula is satisfactory at large radii and low
temperatures but important corrections are needed elsewhere.
The next section discusses corrections to the “ideal-gas”
equation of state used in the derivation of the Gibbs- o0s
Thomson formuld? Note that one may just fit the data to an
exponential form given by the Gibbs-Thomson formula. This

h(eV)

0.00

—_— -
m
\
\*~_-

o

yields a value for the surface tension of 1539,. As one can oo ‘ . ‘ .

see this is 60% off from the average value one would expect - woe e o o8

from the Ising model results. However, this is useful in fit-

ting the data to an analytic expression of the Gibbs-Thomson FIG. 5. Equation of state for the Ising model.

form with a prefactor in the exponent, viz., ) . ,
p.exfayl(rpksT)], wherea=1.59. system(Fig. 5. For large positive values of the field, the

state is essentially one in which all the spins are pointing up
(or all n=1, the solid phage Conversely, the spins are all
IV. CORRECTED GIBBS-THOMSON FORMULA pointing down(gaseous phase of adatonfer large negative
FOR THE ISING MODEL values of the field. The dashed portioBE€ andEF on the

The mapping from the lattice gas to the Ising model wasequation of state represent metastable states and are analytic
discussed in Sec. lll. This enables us to compute properticgontinuations of the equilibrium equation of statgh], i.e.,
of the lattice gas system from a knowledge of the correwe usem~[h] as given by Eq(12) for h<0 to generate the
sponding Ising system. We will be interested in obtainingcurve BC, on the equation of state. Note the similarity be-
corrections to the Gibbs-Thomson formula that take into actween this equation of state and the equation of state for an
count the “nonideal” nature of the gas of adatoms surroundideal gas(Fig. 1). Adatoms and solid can coexist in equilib-
ing an island. To this end we rederive the Gibbs-Thomsorium at zero field. In this case, one has a flat interface be-
formula using a more accurate equation of state than théween solid and gas. In addition to this one could have meta-
ideal gas one for the lattice gas/Ising system, using high fiel§table states of the system wherein adatoms and solid coexist
series expansions. at a finite field(e.g., statep andq on the equation of state

One can obtain the Helmholtz free-energy per site of thecoexist at a field value of). However, in this case one
Ising model(as a function of field, at a fixed temperatuby ~ could have a solid with a finite radius of curvatuyjest as in
means of series expansions, starting from a very high valuthe ideal-gas case: points 5 and 2 in Fig. [h order to
of the field. The first four terms of such an expansion of thecompute the radius of the solid in equilibrium with the gas of

equilibrium free energy foh>0 are adatoms around it, one can compute the free-energy change
in nucleating a solid, in a system of pure gas which is at state
f7[h]=—h— e/2— kgt[ wx*+ w?(2x5—2.5¢8) F on the phase diagram. The procedure adopted is similar to

3 .8 10 1 408 10 1> theone in Sec. Il. However, one has to minimize the appro-
+ w®(6x°— 16x'%+ 31/ + w*(x*+ 18— 85« priate thermodynamic potential. For the ordinary Ising model
+118Y— 200/46) + - - -], (12) (nonconserved order paramettrte Helmholtz free energy is

at a minimum in the equilibrium state at constant tempera-
where w=exp(—2h/(kT)), x=exp(—e/(2kgT)), kg is  ture, volume, and external field. Since we work with a con-

Boltzmann’s constant, and the absolute temperature. The stant number of atoms in the lattice gas, the total magnetiza-

coefficients of various terms in this expansion are obtainedion of the Ising model is held fixedM=2X;s;= cons).

analogous to low temperature expansibhs. We use the Consequently, one would have to minimize the Legendre
first 13 terms of this expansion in our analysis. Differentiat-transform of the Helmholtz free energy, which we shall
ing the above expansion with respect to field yields an exhenceforth refer to as the free ener@(T,V,M)=F+Mh
pansion for the magnetization per site as a function of field(it could also be called a thermodynamic potentigonsider

for h>0. The magnetization is odd im (note the expansion starting out with a state consisting df atoms uniformly

is noy, distributed on a square lattice of volumé and having a
N 4 9 nb 8 magnetization corresponding to poiRt on the phase dia-
m~[h]=1-2[wX"+20%(2x°—2.5¢) gram. This state can lower its free energy by forming a solid
+303(6x8— 1610+ 31/3¢12) + 4w*(x8+ 18x10 island with vapor around it, the solid islanc_i being at point

g of the phase diagram and the vapor at painat the same
—85x1%+ 1184 209/4) + - - - 1. (120  external fieldh; as the solid. One can compute the change in

the free energy in nucleating an island of up spins of radius
r and this change is again composed of three pieces.
(@ An increase in surface free energy given by

The expressions fdif h] andm[ h] for h<0 can be obtained
by using the up-down symmetry of the Ising model. Thus,
f<[h]=f"[—h] for h<0 and m~[h]=—m"[—h] for
h<0. This can be used to plot the equation of state for this AGgqge= 2717, (13
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where y is the line tension or edge free energy per unitrepresents the curve for the corrected Gibbs-Thomson for-
length of the island. mula. It is clearly seen that the corrected theory gives better
(b) The change in free energy in the region of the islandagreement with the simulations than the continuum theory,
that condenses out. This change is computed by taking thgarticularly for islands of very small radiir&8 or
difference in free energy between the initial stetand final  1/r>0.125). This leads us to believe that the approximation
stateq and is given by of an ideal gas of adatoms around the island is the principal
cause for the break down of the classical Gibbs-Thomson
AG=mr?(f7[hy]- f<[hi]+hfm>[hf]_him<[hi])il4) formula at high vapor densities.

V. STABILITY OF ISLANDS

(c) The change in free energy of the remaining region of
AND THE THERMODYNAMIC LIMIT

volume (V—r?), as it moves from poinE of the meta-
stable part of the phase diagram to pgnt In this section we discuss the effects of finite size on the
N 2N E<Th 1 f< < stability of the islands that we see in the simulation. We first
AGne=(V=ar)(1=[h] =17 [hi]+hm~[hy] look at finite size effects as predicted by the continuum ver-

—h,m=<[h]). (15  sion of the model that we have for a system of atdassin
Sec. l). Figure 2 shows the effect of varying the number of
The total change in free energy is thus atoms, N, at constant volumé/, on the total free-energy
change in nucleating an island. We see that the stable mini-
AG= 27t y+mr(f7[he]— f<[hi]+hm”[hy] mum (1) is no longer a global minimum of the free-energy of

Chm<Th. 2\ (< _$<lh. the system oncél falls below a certain value and later this
hmThil) + (V=ar (- The] = hi minimum vanishes completelithe curve becomes flabe-
+him=[h{]—h;m=~[h;]). (16) low a certain critical value ofN which we denote as
N¢(V), which evidently depends ov. Similar behavior is
Note that although the above equation for the free energybserved if we increase the volunveat constaniN. How-
makes it look like a function of two independent variables,ever, if we take the thermodynamic limit at constant initial
r andhy, there is only one independent variable. The secondjensity (p; = const,V— ) the stable minimum persists and
variable is fixed by the constraint of conservation which canmoves off towards ==. These results can be understood by

be expressed as means of a stability analysis.
o= o o The equilibrium between an island and the vapor around
Vmi=arm~[he]+(V—ar9)m=[hy]. (17 it is dynamic in nature and can be understood as a balance

Thus AG be looked functi &l between the rate at which atoms from the vapor attach them-
) U;S, _ tottr(]:anf_ el oote Uﬂpr:uastﬁ tunc lonfo _orlmze selves to the perimeter of the island and the rate at which
y replacing the Tinal external Tielly that appears in £9.  414ms getach themselves from the perimeter of the island to
(16 W'th the value obtained by forr_nglly solving fd’_rf asa  pecome part of the vapor. The former rate would be propor-
ik of.r from Eq. (.17)' EXtrem'ng 'Eq.(16_).w!th e tional to the density of the vapor surrounding the island,
spect tor yyeldg the radius of the island in 'equmbnum with while the latter would be governed purely by temperature
thelgafls. Tk:nslgl\_/es us the analog of the Gibbs-Thomson forg 4 \youid be independent of the density of vapor surround-
mula for the lattice gas system, ing the island, in the low density limit.
SR £< > < Consider a change in the radius of an island in equilib-
y+r (7 [h]= " hel+he(m~The]=m=Lh])) rium with its vapor. If the island grows from an initial radius
ohe [ mr2hex [hel+ (V=72 hix <[ hy] r to a radiusr+dr by swallowing some atoms from the
ar o =0, vapor phase, the concomitant change in the density of the
vapor would be

(18

where y[ h]=dm/oh is the susceptibility andh;/dr can be dp;=— M
determined from Eq(17). Instead of regarding the above V—ar
equation as an equation in we substitute for in terms of ¢ he new island of radius+dr is to be in equilibrium with

h; using the constraintEq. (17)]. This enables us to solve \anqr around it, one can compute the change in equilibrium
the above equation fdn; numerically after substituting the vapor density around ii.e., the difference between the va-
series expansions for the free energy, magnetization, and SUSar density around an island of radiug dr and the vapor
ceptibility. We use the first thirteen terms in the series ®Xdensity around an island of radiug from the Gibbs-
pansion. On finding the equilibrium final external fieig, Thomson formuldEq. (7)],

for a given initial density of atoms, the equilibrium radius of

the island at the extremum of the free energy can be obtained ypsdr

using the constraifEg. (17)]. The final field also tells us the dps=— W (20)
final magnetization outside the islafbint p on Fig. 5 and B Ps™ Pt

hence the density of adatoms outsisle=(1+m<[h¢])/2.  The above two equations predict that the density will de-
This gives us the required relation between the radiud  crease if the island growsl(>0), which is to be expected.
the island vs density of gas outsige, which we refer to as If the actual change in densif§qg. (19)] is larger in magni-

a corrected Gibbs-Thomson equation. The solid line in Fig. 4ude(smaller in valugthan that dictated by equilibriufEq.

(19
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(20)] the island would be stable. This is because the new
density around the island is too low and consequently the
new attachment rate would be lower than the detachment
rate. This in turn would force more atoms to detach from the
island, thus bringing down the size of the island. From this
one can conclude that for stability one needs

6.0

4.0

AG,, /KT

271 (ps— py)dr ypdr
- 7 - 7 ; (21
V—ar kgTro(ps— ps) 20t
which can be written as
ypiV mt?\?[  pemr?
3 0.0 5 1 L 1
r ZWkBT(Ps_Pi) (1 Y, ) (1 PiV (22) 0.0 1.0 2.0 , 3.0 40 5.0

wherep;=N/V as before. We see from this that for stability £ 6. The free energy of an island of radiugplotted for a
the radius of an island should be greater than a certain minkystem of 109 particles witk= 10 000.
mum value which is obtained by solving

13 2\ 23 2\ 13 100X 100 system at a temperature of 1347 K, the island size
. :( vpiV ) ( _ 7Trmin) (1_ psﬂmin) fluctuates considerably and there are several frames of data
min -\ 27kg T(ps— pi)? \Y piV " where the island breaks up into many smaller ones. This can
(23) be understood within the framework of our theory for the
Ising model. Figure 6 shows the change in free energy on
Along with this if we use the Gibbs-Thomson formylgg.  nucleating an island of radiusin the Ising model for 109
(2)] we can obtain a relation for the critical valie, as a  particles. From this we see that the island-vapor system is
function of the volume. All issues of local stability of the not a point of global minimum of free energy. Further the
islands can be resolved using these equations. The curveicleation barrier to go from this state to one of uniform
N (V) in N—V space defines a boundary between regionyapor is given byAG/kgT=5.26. Also, we can see from this
where one can have stable islands and regions where one chigure that the fluctuations to various other island sizes are

have no stable islands. not highly unlikely. This would account for the large fluc-
One can show that for large system size the last two termtuations in island size. The same effect is seen for 25 par-
in the product of Eq(23) go to unity and we have ticles at a temperature of 1000 K.
3 _ N2
Fnin= YPiVI[27kaT(ps=pi)"]- (24 VI. INVESTIGATION OF MICROSCOPIC ORIGINS

as the one third power of the volume of the box in twohe Gibbs-Thomson effect, viz., an enhanced vapor pressure
dimensions. . around islands of small radii relative to the vapor pressure

We now digress to note the behavior of the unstable roogtside a flat interface, the opportunity arises to investigate
(U) of the free energy in Fig. 2 in the thermodynamic limit. the relationship between this thermodynamic effect and the
It iS seen that the unstable root does not Scale W|th Syste%icroscopic dynamics_ We may ask, from a microscopic
size by plotting this root obtained by numerical solutionspgint of view, what is the origin of the enhanced adatom
versus the system volumé. The unstable root reaches a yapor concentration in equilibrium with a small island. A
limiting value in the limit V—oo, which can be obtained complete discussion of this issue involves many details of
from Eq.(7) by neglecting terms of order/V. The critical  the microscopic characteristics of the island-vapor interface,
radiusr*, which is obtained by taking this limit, is given by which are beyond the scope of this paper. Here we outline

our main findings; the interested reader is referred to Refs.

. Y 25) 16 and 17 for further details.

KeT[psIn(pilpe) +(ps—pi)] As discussed in Sec. V, equilibrium between the island

and vapor implies detailed balance at the interface: atoms are

This form is identical to the form for the critical radius attaching to and detaching from the island with equa| rates.
quoted in the context of nucleation thedrirhe nucleation  Analysis of our simulations shows that for small equilibrium
barrier, which is the free-energy barrier that the system ofsjands, the interface transfer activity is enhanced in propor-
supersaturated vapor should overcome in order to form §on to the vapor density. For example, the data points in Fig.
stable island plus vapor, attains a limiting value of 7 show the rate at which atoms detach from an island per
unit length of the macroscopic island-vapor interface. This
leads to the following microscopic interpretation of the
Gibbs-Thomson effect. As the island size decreases, it be-
comes easier for atoms to detach from it, raising the detach-

How about seeing the unstable islands in our simulationPnent current density. However, we find that there is no no-
We have observed that if we start out with 109 atoms in d@iceable change in the ease with which an atom can attach to

r

AF = 7Y LpdIN(pi/pe) + ot ps—2pi]
ksTLpsIn(pi/p) + poo—pil?

(26)
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. ‘ ‘ enhancement in detachment from the simulated islands. It is,
{ therefore, clear that it is important to consider the effect of
| et sare the “four extra corners” in an understanding of the Gibbs-
?ﬁ stified /,* Thomson effect at a microscopic level. It is difficult to quan-
tify the effect of this geometrical constraint, as it is impos-
sible to label an individual corner on an equilibrium island as
being due to either geometry or thermal roughening. How-
ever, comparison with the nonequilibrium square island
gives an indication of the strength of the effect.

3x10°

2x10° -

Jfr)

1x10°

VIl. CONCLUSIONS
FIG. 7. A comparison of the changes in detachment current
density found for islands in simulatiold {), and for a square island
treated in the same wayl}). The solid line representdj™+ A,
whereA is chosen such thaly— (J5+A)—0 asr—c. Lines, to
guide the eye, are fits to the forffeo) exp(C/r).

We have simulated a lattice gas to mimic the behavior of
a cluster of atoms, on generic surfaces, in an effort to study
the relationship between the cluster radius and the vapor den-
sity around it. We have shown that the “classical” Gibbs-
Thomson relationship one computes assuming an ideal gas
) ) . ) of atoms is incorrect at high vapor densities and a knowledge
the island for islands, the radii of which vary between 4 andyf the true equation of state is necessary to obtain a better
35. Therefore, a higher vapor density is required to maintaiResyit. We have seen that the corrected formula can be used
dynamic equilibrium. down to islands with about 150 atoms at a temperature of 0.6
The enhanced detachment current density for smaller is]-c and islands with about 30 atoms at 0.445 in the case
lands can be ascribed to trends in the character of the sites @ff our simulations.
the island edge. On smaller islands, the density of edge at- Fyrther, we have seen how metastable states in traditional
oms is found to actually decrease, so that there are fewg{ycleation theories can be made stable by finite size effects.
atoms per unit length of interface available for detachmentye nave seen how these states may arise in the context of
However, the average coordination of the edge atoms ige |sing model and have explored the metastable continua-
found to be smaller, which leads to lower energy barriers fokjon of the equation of state in the Ising model. Simulations
edge atom motion. Also, each edge atom on a smaller islangerformed on the Ising model agree well with our predictions
tends to have more detachment moves available to it. That iPegarding stability.
when the edge atom moves it is more likely to detach, as “Ag far as experimental observations of the corrections to
opposed to moving along the edge of the island. The nefhe Gibbs-Thomson formula are concerned, such an effect
result of these trends yields the observed enhancement {poyiq surely be observed in a system with short range inter-
detachment. _ __ actions at small island sizes and high temperafa@out
~Note that the above trends, observed in the equilibriunggos of the melting temperatureHowever, in real situations
islands(e.g., Fig. 3 of our simulations also hold true for a j, aqdition to the short range attractive forces that bind at-
square island, although a square is not the thermodynamigms to each other there exist long range dipolar forces at step
shape of an equilibrium island at finite temperatures. As &dges, between the atoms at the edge and the vapor. This
square island is made smaller, the corner sites acquire grear,%ray skew the predictions of a theory like ours which is
significance._ Sir)ce the corner sites of a square island haves'i‘mple and ignores such effects. Finally, we have looked at
lower coordination than sites on the side of a square, thfyne microscopic origins of the Gibbs-Thomson formula and

average coordination of edge atoms on a small square igaye offered heuristic arguments that it maybe correlated to
lower than it is on a large square. Similarly, corner atoMsyeometric constraints.

have two detachment moves available, while side atoms have
only one. Therefore, a smaller square has a higher ratio of
available detachment moves to number of edge atoms.
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