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Summary. The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo
sampling methods defined on the Riemann manifold to resolve the shortcomings of existing
Monte Carlo algorithms when sampling from target densities that may be high dimensional
and exhibit strong correlations. The methods provide fully automated adaptation mechanisms
that circumvent the costly pilot runs that are required to tune proposal densities for Metropolis–
Hastings or indeed Hamiltonian Monte Carlo and Metropolis adjusted Langevin algorithms.This
allows for highly efficient sampling even in very high dimensions where different scalings may be
required for the transient and stationary phases of the Markov chain.The methodology proposed
exploits the Riemann geometry of the parameter space of statistical models and thus automat-
ically adapts to the local structure when simulating paths across this manifold, providing highly
efficient convergence and exploration of the target density. The performance of these Riemann
manifold Monte Carlo methods is rigorously assessed by performing inference on logistic regres-
sion models, log-Gaussian Cox point processes, stochastic volatility models and Bayesian
estimation of dynamic systems described by non-linear differential equations. Substantial
improvements in the time-normalized effective sample size are reported when compared with
alternative sampling approaches. MATLAB code that is available from www.ucl.ac.uk/statistics/
research/rmhmc allows replication of all the results reported.

Keywords: Bayesian inference; Geometry in statistics; Hamiltonian Monte Carlo methods;
Langevin diffusion; Markov chain Monte Carlo methods; Riemann manifolds

1. Introduction

For an unnormalized probability density function p̃.θ/, where θ∈RD, the normalized density
follows as p.θ/= p̃.θ/=

∫
p̃.θ/dθ, which for many statistical models is analytically intractable.

Monte Carlo estimates of integrals with respect to p.θ/, which commonly appear in Bayesian
statistics, are therefore required. The predominant methodology for sampling from such a
probability density is Markov chain Monte Carlo (MCMC) sampling; see for example Robert
and Casella (2004), Gelman et al. (2004) and Liu (2001). The most general algorithm defining a
Markov process with invariant density p.θ/ is the Metropolis–Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970), which is arguably one of the most successful and influential Monte
Carlo algorithms (Beichl and Sullivan, 2000).

The Metropolis–Hastings algorithm proposes transitions θ "→θÅ with density q.θÅ|θ/, which
are then accepted with probability

α.θ, θÅ/=min{1, p̃.θÅ/q.θ|θÅ/=p̃.θ/q.θÅ|θ/}:
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This acceptance probability ensures that the Markov chain is reversible with respect to the
stationary target density p.θ/ and satisfies detailed balance; see for example Robert and Casella
(2004), Neal (1993a, 1996) and Liu (2001). Typically, the proposal distribution q.θÅ|θ/ which
drives the Markov chain takes the form of a random walk; for example q.θÅ|θ/=N .θÅ|θ,Λ/
is a D-dimensional normal distribution with mean θ and covariance matrix Λ.

High acceptance rates can be achieved by proposing smaller transitions; however, larger
amounts of time will then be required to make long traversals of parameter space. In high
dimensions, when D is large, the random walk becomes inefficient, resulting in low rates of
acceptance, poor mixing of the chain and highly correlated samples. A consequence of this is a
small effective sample size ESS from the chain; see Robert and Casella (2004), Neal (1996) and
Liu (2001). Although there have been various suggestions to overcome this inefficiency, guaran-
teeing detailed balance and ergodicity of the chain places constraints on what can be achieved
in alleviating this problem (Andrieu and Thoms, 2008; Robert and Casella 2004; Neal, 1993a).
Design of a good general purpose proposal mechanism providing large proposal transitions
that are accepted with high probability remains something of an engineering art form.

Major steps forward in this regard were made when a proposal process derived from a dis-
cretized Langevin diffusion with a drift term based on the gradient information of the target
density was suggested in the Metropolis adjusted Langevin algorithm (MALA) (Roberts and
Stramer, 2003). Likewise the Hamiltonian Monte Carlo (HMC) method (Duane et al., 1987)
was proposed in the statistical physics literature as a means of efficiently simulating states from
a physical system which was then applied to problems of statistical inference (Neal, 1993a,b,
1996; Liu, 2001). Duane et al. (1987) referred to the method as hybrid Monte Carlo sampling;
however, we shall follow others and use the term Hamiltonian to make it explicit that the method
is based on Hamiltonian dynamics. In HMC sampling, a deterministic proposal process based
on Hamiltonian dynamics is employed along with additional stochastic proposals that together
provide an ergodic Markov chain that is capable of making large transitions that are accepted
with high probability.

Despite the potential efficiency gains to be obtained in MCMC sampling from such proposal
mechanisms that are inherent in the MALA and HMC methods, the tuning of these MCMC
methods remains a major issue especially for challenging inference problems. This paper seeks
to address these issues in a systematic manner by adopting an overarching geometric framework
for the overall development of MCMC methods such as these.

Brief reviews of the MALA and HMC methods within the context of statistical inference
are provided in the following two sections. In Section 4 differential geometric concepts that
are employed in the study of asymptotic statistics are considered within the context of MCMC
methodology. Section 5 proposes a generalization of the MALA that takes into account the
natural geometry of the target density, making use of the definition of a Langevin diffusion on
a Riemann manifold. Likewise in Section 6 a generalization of HMC sampling, Riemann mani-
fold HMC (RMHMC) sampling, is presented, which takes advantage of the manifold structure
of the parameter space and allows for more efficient proposal transitions to be made. Finally, in
Sections 7–10, this new methodology is demonstrated and assessed on some interesting statisti-
cal problems, namely Bayesian logistic regression, stochastic volatility modelling, log-Gaussian
Cox point processes and parameter inference in dynamical systems.

2. Metropolis adjusted Langevin algorithm

Consider the random vector θ ∈ RD with density p.θ/ and denote the log-density by L.θ/ ≡
log{p.θ/}; then the MALA is based on a Langevin diffusion, with stationary distribution p.θ/,
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defined by the stochastic differential equation (SDE)

dθ.t/=∇θL{θ.t/}dt=2+db.t/

where b denotes a D-dimensional Brownian motion. A first-order Euler discretization of the
SDE gives the proposal mechanism

θÅ =θn + "2∇θL.θn/=2+ "zn

where z ∼N .z|0, I/ and " is the integration step size. Convergence to the invariant distribution
p.θ/ is no longer guaranteed for finite step size " owing to the first-order integration error that
is introduced. This discrepancy can be corrected by employing a Metropolis acceptance prob-
ability after each integration step, thus ensuring convergence to the invariant measure. As z is
an isotropic standardized normal variate and with

µ.θn, "/=θn + "2

2
∇θL.θn/

then the discrete form of the SDE defines a proposal density q.θÅ|θn/ =N{θÅ|µ.θn, "/, "2I}
with acceptance probability of standard form min{1, p.θÅ/q.θn|θÅ/=p.θn/q.θÅ|θn/}.

The optimal scaling " for the MALA has been theoretically analysed in the limit as D→∞
for factorizable p.θ/ (Roberts and Rosenthal, 1998). Although the drift term in the proposal
mechanismfortheMALAdefinesthedirectionfortheproposalbasedonthegradient information
(albeit the Euclidean form) it is clear that the isotropic diffusion will be inefficient for strongly
correlated variables θ with widely differing variances forcing the step size to accommodate the
variate with smallest variance. This issue can be circumvented by employing a preconditioning
matrix (Roberts and Stramer, 2003) M such that

θÅ =θn + "2M∇θL.θn/=2+ "
√

Mzn

where
√

M can be obtained by diagonalization of M or via Cholesky decomposition such that
M =UUT and

√
M =U. It is unclear how this matrix should be defined in any systematic and

principled manner; indeed a global level of preconditioning may be inappropriate for differing
transient and stationary regimes of the Markov process as demonstrated in Christensen et al.
(2005).

3. Hamiltonian Monte Carlo methods

We now give a brief introduction to the HMC method; for a detailed description and extensive
review see Neal (2010). As in the previous section consider the random variable θ ∈ RD with
density p.θ/. In HMC sampling an independent auxiliary variable p ∈ RD with density p.p/=
N .p|0, M/ is introduced. The joint density follows in factorized form as p.θ, p/ = p.θ/p.p/ =
p.θ/N .p|0, M/. If we denote the logarithm of the desired density by L.θ/ ≡ log{p.θ/}, the
negative joint log-probability is

H.θ, p/=−L.θ/+ 1
2 log

{
.2π/D|M|

}
+ 1

2 pTM−1p: .1/

The physical analogy of this negative joint log-probability is a Hamiltonian (Duane et al.,
1987; Leimkuhler and Reich, 2004), which describes the sum of a potential energy function
−L.θ/, defined at the position θ, and a kinetic energy term pTM−1p=2 where the auxiliary
variable p is interpreted as a momentum variable and the covariance matrix M denotes a mass
matrix.
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The derivatives of H with respect to θ and p have a physical interpretation as the time evolu-
tion, with respect to a fictitious time τ , of the dynamic system as given by Hamilton’s equations

dθ

dτ
= @H

@p
=M−1p,

dp
dτ

=−@H

@θ
=∇θL.θ/:

.2/

The solution flow for the differential equations, .θ.τ /, p.τ //=Φτ .θ.0/, p.0//,

(a) preserves the total energy, i.e. H{θ.τ /, p.τ /}=H{θ.0/, p.0/}, and hence the joint density
p{θ.τ /, p.τ /}=p{θ.0/, p.0/},

(b) preserves the volume element dθ.τ /dp.τ /=dθ.0/dp.0/ and
(c) is time reversible (Leimkuhler and Reich, 2004).

For practical applications of interest the differential equations (2) cannot be solved analytically
and numerical methods are required. There is a class of numerical integrators for Hamiltonian
systems which will fully satisfy criteria (b) and (c), volume preservation and time reversibility,
and approximately satisfy (a), energy conservation, to a given order of error; see Leimkuhler and
Reich (2004). The Stormer–Verlet or leapfrog integrator was employed in Duane et al. (1987),
and in various statistical applications, e.g. Liu (2001) and Neal (1993b, 2010), as described
below:

p.τ + "=2/=p.τ /+ "∇θL{θ.τ /}=2, .3/

θ.τ + "/=θ.τ /+ "M−1p.τ + "=2/, .4/

p.τ + "/=p.τ + "=2/+ "∇θL{θ.τ + "/}=2: .5/

Since the joint probability is factorizable (i.e., in physical terms, the Hamiltonian is separable), it
is obvious by inspection that each complete leapfrog step (equations (3), (4) and (5)) is reversible
by the negation of the integration step size ". Likewise as the Jacobians of the transformations
.θ, p/ "→ .θ, p + "∇θL.θ/=2/ and .θ, p/ "→ .θ+ "M−1p, p/ have unit determinant then volume is
preserved. As total energy is only approximately conserved with the Stormer–Verlet integrator
then a corresponding bias is introduced into the joint density which can be corrected by an
accept–reject step. Owing to the volume preserving property of the integrator the determinant
of the Jacobian matrix for the defined mapping does not need to be taken into account in the
Hastings ratio of the acceptance probability. Therefore for a deterministic mapping .θ, p/ "→
.θÅ, pÅ/ obtained from a number of Stormer–Verlet integration steps the corresponding accep-
tance probability is min[1, exp{−H.θÅ, pÅ/ + H.θ, p/}], and owing to the reversibility of the
dynamics the joint density and hence the marginals p.θ/ and p.p/ are left invariant. If the inte-
gration error in the total energy is small then the acceptance probability will remain at a high
level.

The overall HMC sampling from the invariant density p.θ/ can be considered as a Gibbs
sampler where the momentum p acts simply as an auxiliary variable drawn from a symmetric
density

pn+1|θn ∼p.pn+1|θn/=p.pn+1/=N .pn+1|0, M/, .6/

θn+1|pn+1 ∼p.θn+1|pn+1/ .7/
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where samples of θn+1 from p.θn+1|pn+1/ are obtained by running the Stormer–Verlet integra-
tor from initial values pn+1 and θn for a certain number of steps to give proposed moves θÅ

and pÅ and accepting or rejecting with probability min[1, exp{−H.θÅ, pÅ/+H.θn, pn+1/}]. This
Gibbs sampling scheme produces an ergodic, time reversible Markov chain satisfying detailed
balance whose stationary marginal density is p.θ/ (Duane et al., 1987; Liu, 2001; Neal, 1996,
2010).

The combination of equations (3) and (4) in a single step of the integrator yields an update
of the form

θ.τ + "/=θ.τ /+ ."2=2/M−1∇θL{θ.τ /}+ "M−1p.τ /

which is nothing more than a discrete preconditioned Langevin diffusion as employed in the
MALA (Roberts and Stramer, 2003) (see Neal (1993a, 1996, 2010) for further discussion on this
point). Viewed in this form it is clear that the choice of the mass matrix M, as in the MALA,
will be critical for the performance of HMC sampling, and like the MALA there is no guiding
principle on how this should be chosen and tuned.

The demonstrated ability of HMC sampling to overcome random walks in MCMC sampling
suggests that it should be a highly successful tool for Bayesian inference. A study suggests in
excess of 300 citations of Duane et al. (1987) within the literature devoted to molecular modelling
and simulation, physics and chemistry. However, there is a much smaller number of citations in
the literature devoted to statistical methodology and application, e.g. Liu (2001), Neal (1993b,
1996), Gustafson (1997), Ishwaran (1999), Husmeier et al. (1999) and Hanson (2001), indicating
that it has not been widely adopted as a practical inference method.

Although the choice of the step size " and number of integration steps can be tuned on the
basis of the overall acceptance rate of the HMC sampler, as already mentioned it is unclear
how to select the values of the weight matrix M in any automated or principled manner that
does not require some knowledge of the target density, similar to the situation with the MALA.
Although heuristic rules of thumb have been suggested (Liu, 2001; Neal, 1993a, 1996, 2010)
these typically rely on knowledge of the marginal variance of the target density, which is of
course not known at the time of simulation and thus requires preliminary pilot runs of the
HMC algorithm, this is also so for the MALA although asymptotic settings were suggested in
Christensen et al. (2005). Sections 7–10 of this paper will demonstrate how crucial this tuning
is to obtain acceptable performance of HMC methods and the MALA.

The potential of both the MALA and HMC methodology may be more fully realized by
employing transitions that take into account the local structure of the target density when pro-
posing moves to different probability regions, as this may improve the overall mixing of the
chain. Therefore, rather than employing a fixed global covariance matrix in the proposal den-
sity N .p|0, M/, a position-specific covariance could be adopted. Furthermore, the deterministic
proposal mechanism of HMC sampling, when viewed as the deterministic component of the
discrete preconditioned Langevin diffusion, relies on the gradient preconditioned by the inverse
of a globally constant mass matrix. We turn our attention now to geometric concepts which will
be shown to be of fundamental importance in addressing these shortcomings.

4. Exploiting geometric concepts in Markov chain Monte Carlo methods

The relationship between Riemann geometry and statistics has been employed in the develop-
ment of, primarily asymptotic, statistical theory; see for example Murray and Rice (1993) and
Barndorff-Nielsen et al. (1986). Geometric concepts of distance, curvature, manifolds, geodesics



128 M. Girolami and B. Calderhead

and invariants are of natural interest in statistical methodology and in what follows we shall
exploit some of these in the development of novel MCMC methods.

4.1. Fisher–Rao metric tensor
The formal definition of distance between two parameterized density functions p.y;θ/ and
p.y;θ+ δθ/ first appeared in Rao (1945) and took the quadratic form δθT G.θ/δθ where G.θ/
was shown to be equal to

−Ey|θ

[
@2

@θ2 log{p.y|θ/}
]
= cov

[
@

@θ
log{p.y|θ/}

]
,

the expected Fisher information matrix. Rao noted that as the matrix G.θ/ is by definition
positive definite it is a position-specific metric of a Riemann manifold. Therefore the space
of parameterized probability density functions is endowed with a natural Riemann geometry.
Given this geometry Rao went further and showed that expressions for the curvature of the
manifold and geodesics on the manifold between two densities could be derived (Rao, 1945)
and these ideas have been extended and formalized in the study of statistical inference, e.g.
Amari and Nagaoka (2000), Kass (1989), Murray and Rice (1993), Barndorff–Nielsen et al.
(1986), Critchley et al. (1993), Lauritzen (1987), Dawid (1975) and Efron (1975). The Fisher
metric also emerges from purely geometric arguments (Skilling, 2006) and it is straightfor-
ward to show for a probability simplex, pi !0, ΣD

i=1pi =1, that the metric is gij = δij=pi where
δij = 1 if and only if i = j. It then follows that a small displacement δl has squared length
.δl/2 =Σi,j δpiδpjgij =Σi .δpi/2=pi, which is nothing more than the Fisher information matrix
for a discrete probability distribution, suggesting this as the fundamental metric for probability
spaces.

4.2. General form of metric tensor for Markov chain Monte Carlo methods
There are, however, many possible choices of metric for a specific manifold, each having different
properties that may be of benefit in different forms of statistical analysis and specific applica-
tions. For example the motivating requirement for asymmetry in statistical inference is captured
in the preferred point metric and associated geometry (Critchley et al., 1993), whereas in Efron
and Hinkley (1978) an argument is made for the use of the observed Fisher information matrix

− @2

@θ2 log{p.y|θ/}|θ=θML

as an assessment of the conditional variance of a maximum likelihood estimator θML. For devel-
oping effective proposal mechanisms for MCMC sampling the potential utility of adopting the
observed Fisher information matrix is intuitively apparent given that it is the negative Hessian
of the log-probability at a specific point, although not strictly positive definite.

One can motivate the choice of the observed Fisher information matrix or indeed the empirical
Fisher information matrix,

ĉov
[

@

@θ
log{p.y|θ/}

]

(the finite sample estimate of the covariance of the score function) for applications in MCMC
methods for Bayesian inference where the metric is then conditional on the observed data rather
than the asymptotic sampling mechanism. Indeed for many statistical models where the expected
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Fisher information matrix is non-analytic, e.g. mixture models, the observed or empirical
versions may define suitable, pragmatic, conditional manifolds for MCMC purposes.

It should be stressed that the MCMC methods which follow in this paper exploit the Riemann
geometry that is induced by the metric defined by any arbitrary positive definite matrix G.θ/
and the practitioner is completely free in this choice. Indeed more general definitions of distance
between densities such as Hellinger distance, or integrated squared distance, may be employed
in deriving metrics to define a manifold if there is sufficient justification for their use in MCMC
applications.

As a Bayesian perspective is adopted in this paper, the examples that are reported employ the
joint probability of data and parameters when defining the metric tensor, i.e.

−Ey|θ

[
@2

@θ2 log{p.y, θ/}
]

which is the expected Fisher information matrix plus the negative Hessian of the log-prior.
For further discussion on ways to capture prior informativeness in the metric tensor see for
example Tsutakawa (1972) and Ferreira (1981). Of course other choices could have been made
but for illustration this suffices. The freedom to choose the metric does, however, open up a
new line of investigation regarding the intrinsic geometry that is obtained by the choice and
design of metrics and the characteristics which may make them appropriate for specific MCMC
applications.

In summary, the parameter space of a statistical model is a Riemann manifold. Therefore the
natural geometric structure of the density model p.θ/ is defined by the Riemann manifold and
associated metric tensor. Given this geometric structure of the parameter space of statistical
models, the appropriate selection and adoption of a position-specific metric, G.θ/, within an
MCMC scheme may yield more effective transitions that respect and exploit the geometry of
the manifold in the overall algorithm. We now show how the Riemann manifold structure may
be exploited within a correct MCMC framework for the MALA.

5. Riemann manifold Metropolis adjusted Langevin algorithm

Given the geometric structure for probability models a Langevin diffusion with invariant mea-
sure p.θ/, θ∈RD, can be defined directly on a Riemann manifold with arbitrary metric tensor
G.θ/ (Roberts and Stramer, 2003; Chung, 1982; Kent, 1978). The SDE defining the Langevin
diffusion on the manifold is

dθ.t/= 1
2 ∇̃θL{θ.t/}dt +db̃.t/ .8/

where the natural gradient (Amari and Nagaoka, 2000) is

∇̃θL{θ.t/}=G−1{θ.t/}∇θL{θ.t/}

and the Brownian motion on the Riemann manifold (Chung, 1982) is

db̃i.t/=|G{θ.t/}|−1=2
D∑

j=1

@

@θj
[G−1{θ.t/}ij|G{θ.t/}|1=2]dt + [

√
G−1{θ.t/}db.t/]i: .9/

Clearly in a Euclidean space where the metric tensor is an identity matrix equation (8) reduces
to the standard form of SDE. The first term on the right-hand side of equation (9) relates to
changes in local curvature of the manifold and reduces to 0 if curvature is everywhere constant.
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The second right-hand term provides a position-specific axis alignment of the Brownian motion
based on the local metric by transformation of the independent Brownian motion, b.t/.

By expansion of the gradient term in equation (9) the discrete form of the above SDE employ-
ing a first-order Euler integrator provides a proposal mechanism which follows as

θÅ
i =θn

i + "2

2
{G−1.θn/∇θL.θn/}i − "2

D∑
j=1

{
G−1.θn/

@G.θn/

@θj
G−1.θn/

}

ij

+ "2

2

D∑
j=1

{G−1.θn/}ij tr
{

G−1.θn/
@G.θn/

@θj

}
+{"

√
G−1.θn/zn}i

=µ.θn, "/i +{"
√

G−1.θn/zn}i .10/

with proposal density q.θÅ|θn/ =N{θÅ|µ.θn, "/, "2 G−1.θn/} and standard acceptance prob-
ability min{1, p.θÅ/q.θn|θÅ/=p.θn/q.θÅ|θn/} to ensure convergence to the invariant density
p.θ/. Immediately it is clear that the proposal mechanism makes moves in RD according to
the Riemann metric rather than according to the standard Euclidean distance. Pseudocode
describing the full manifold MALA (MMALA) scheme is given in supplementary material
that is available from www.ucl.ac.uk/statistics/research/rmhmc. For a manifold
with constant curvature this reduces further to a position-specific preconditioned MALA
proposal

θÅ =θn + "2 G−1.θn/∇θL.θn/=2+ "
√

G−1.θn/zn:

Of course even if the curvature of the manifold is not constant the above simplified proposal
mechanism, used in conjunction with the acceptance probability, will still define a correct
MCMC method that converges to the target measure. However, dependent on the charac-
teristics of the curvature this proposal process may not be so efficient in converging to the
stationary distribution and this will be explored further in the experimental evaluation. To illus-
trate this geometric approach and to gain some insight into the MMALA a simple example is
now given.

5.1. Illustrative example: parameters of a normal distribution
For N observations drawn from the normal distribution N .x|µ, σ/ the metric tensor based on
the Fisher information matrix is G.µ, σ/=diag.N=σ2, 2N=σ2/. Employing a flat prior on both
parameters this metric defines a Riemann manifold with constant curvature which is a hyper-
bolic space on the upper half-plane that is defined by the horizontal and vertical co-ordinates
µ and σ (Amari and Nagaoka, 2000). The distance between two densities N .x|µ, σ/ and N .x|µ+
δµ, σ + δσ/ as defined on this manifold is .δµ2 + 2δσ2/=σ2, indicating that, as the value of σ
increases, the distance between the densities decreases. The first-order Euler approximations for
the Langevin diffusion with invariant measure proportional to Πl N .xl|µ, σ/ follows as

µn+1 =µn +
"2mn

1
2.σn/2 + "zn,

σn+1 =σn +
"2mn

2
2.σn/3 − N"2

2σn
+ "wn

.11/

where mn
1 =Σl .xl −µn/ and mn

2 =Σl .xl −µn/2, with zn and wn standardized normal variates.
When the diffusion is defined on the Riemann manifold then the approximate diffusion follows
as
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µn+1 =µn +
"2

mmn
1

2N
+ "mσn

√
N

zn,

σn+1 =σn +
"2

mmn
2

4Nσn
− "2

mσn

4
+ "mσn

√
.2N/

wn:

.12/
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Fig. 1. Contours representing the sample estimate of p.µ, σjX/ where a sample of size N D30 was drawn
from N .XjµD0, σ D10/ (both MALA and MMALA discrete diffusions were forward simulated from initial points
µ0 D 5 and σ0 D 40 with a step size " D 0:75 for 200 steps): (a) sample path of the MALA proposal process
(as the space is hyperbolic and a Euclidean metric is employed the proposals take inefficient steps of almost
equal length thoughout); (b) MMALA proposals (in contrast, MMALA proposals are defined on the basis of the
metric for the hyperbolic space with constant negative curvature and as such the distances covered by each
step reflect the natural distances on the manifold, resulting in much more efficient traversal of the space)
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Fig. 2. Same data sample as in Fig. 1, but with µ0 D 15 and σ0 D 2 (the step size is reduced to " D 0:2
so that the MALA converges and 1000 proposal steps are taken): as in Fig. 1, from (a) it is clear that the
Euclidean metric of the MALA does not exploit the hyperbolic geometry and overshoots dramatically at the
start, whereas in (b) it is clear that the MMALA converges efficiently owing to the exploitation of the metric
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The discrete diffusion based on a Euclidean metric (11) has diffusion terms "zn and "wn whose
scaling is fixed by the integration step size " irrespective of position. In contrast the approx-
imate Langevin diffusion that is obtained by employing the Riemann metric tensor (12) pro-
duces terms "mσnzn=

√
N for the mean parameter and "mσnwn=

√
.2N/ for the variance which are

position dependent, thus ensuring appropriate scaling of the diffusion. The integration step size
"m is effectively dimensionless whereas " requires dimension proportional to σn, thus indicating
proposal inefficiency with " set at a fixed value as demonstrated in Figs 1 and 2. Extensive detailed
investigation of the performance of the MMALA will be provided in the experimental sections.

6. Riemann manifold Hamiltonian Monte Carlo methods

Following on from the previous section the Hamiltonian which forms the basis of HMC sam-
pling will now be defined in general form on a Riemann manifold. Zlochin and Baram (2001)
originally attempted to exploit this manifold structure in HMC sampling; however, their use
of a numerical integration method that did not guarantee reversibility or volume preservation
prevented them from developing a correct MCMC procedure.

The definition of the Hamiltonian on a Riemann manifold is straightforward and is a tech-
nique that is employed in geometric mechanics to solve partial differential equations (Calin and
Chang, 2004). From equation (2), it follows that p=Mθ̇, so the squared norm of each θ̇ under
the metric M is ‖θ̇‖2

M = θ̇TMθ̇ = pTM−1p. In a more general form, as the statistical model is
defined on a Riemann manifold, the metric tensor defines the position-specific squared norm
such that ‖θ̇‖2

G.θ/ = θ̇T G.θ/θ̇=pT G−1.θ/p and thus the kinetic energy term can be defined via
the inverse metric (Calin and Chang, 2004). To ensure that the Hamiltonian can be interpreted
as a log-density and that the desired marginal density for θ is obtained, the addition of the
normalizing constant for the Gaussian distribution is included in the potential energy term.
Therefore, the Hamiltonian defined on the Riemann manifold follows as

H.θ, p/=−L.θ/+ 1
2 log{.2π/D|G.θ|}+ 1

2 pT G.θ/−1p .13/

so that exp{−H.θ, p/}=p.θ, p/=p.θ/p.p|θ/ and the marginal density

p.θ/∝
∫

exp{−H.θ, p/}dp= exp{L.θ/}
√

{2πD|G.θ/|}

∫
exp{−1

2 pTG.θ/−1p}dp= exp{L.θ/}

is the desired target density.
Unlike the previous case for HMC sampling this joint density is no longer factorizable and

therefore the log-probability does not correspond to a separable Hamiltonian. The conditional
distribution for momentum values given parameter values is a zero-mean Gaussian distribution
with the point-specific metric tensor acting as the covariance matrix p.p|θ/ = N{p|0, G.θ/},
which will resolve the scaling issues that are associated with HMC methods, as will be demon-
strated in the following sections. The dynamics are defined by Hamilton’s equations as

dθi

dτ
= @H

@pi
={G.θ/−1p}i, .14/

dpi

dτ
=−@H

@θi
= @L.θ/

@θi
− 1

2
tr

{
G.θ/−1 @G.θ/

@θi

}
+ 1

2
pT G.θ/−1 @G.θ/

@θi
G.θ/−1p: .15/

The Hamiltonian dynamics on the manifold are simulated by solving the continuous time
derivatives and it is straightforward to see that they satisfy Liouville’s theorem of volume pres-
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ervation (Leimkuhler and Reich, 2004). However, for the discrete integrator it is not so straight-
forward. Naively employing the discrete Stormer–Verlet leapfrog integrator (equations (3)–(5))
gives transformations of the form .θ, p/ "→ .θ, p−"∇θH.θ, p// and .θ, p/ "→ .θ+"∇pH.θ, p/, p/,
neither of which admits a Jacobian with unit determinant. In addition, it is straightforward to
see that reversibility for θ and p is not satisfied for finite step size ", as G{θ.τ /} ,=G{θ.τ + "/}.
Therefore proposals that are generated from this integrator will not satisfy detailed balance in an
HMC scheme. What is required is a time reversible volume preserving numerical integrator for
solving this non-separable Hamiltonian to ensure a correct MCMC algorithm. A second-order
semiexplicit symmetric integrator that is symplectic can be formed by the composition of a first-
order implicit Euler integrator with its corresponding adjoint method. This is referred to as the
generalized leapfrog algorithm and because it is symmetric and symplectic it has the required
properties of volume preservation and reversibility. See for example Hairer et al. (2006), pages
187–190, and Leimkuhler and Reich (2004), pages 81–87, for a detailed derivation and proofs.

p
(

τ + "

2

)
=p.τ /− "

2
∇θH

{
θ.τ /, p

(
τ + "

2

)}
, .16/

θ.τ + "/=θ.τ /+ "

2

[
∇pH

{
θ.τ /, p

(
τ + "

2

)}
+∇pH

{
θ.τ + "/, p

(
τ + "

2

)}]
, .17/

p.τ + "/=p
(

τ + "

2

)
− "

2
∇θH

{
θ.τ + "/, p

(
τ + "

2

)}
: .18/

If the Hamiltonian is separable then the generalized leapfrog reduces to the standard Stormer–
Verlet leapfrog integrator. For the case of interest where the Hamiltonian is non-separable then
equations (16) and (17) are defined implicitly. These require to be solved and we employ simple
fixed point iterations run to convergence for this (see Hairer et al. (2006), pages 325–334); typi-
cally five or six iterations were required in the experiments conducted. The repeated application
of the above steps provides the means to obtain a deterministic proposal that is guided not only
by the derivative information of the target density, as in HMC sampling or the MALA, but
also exploits the local geometric structure of the manifold as determined by the metric tensor.
Intuitively, comparing the two Hamiltonians (1) and (13) shows that the constant mass matrix
M, defining a globally constant metric, is now replaced with the position-specific metric, thus
removing the requirement to tune the values of the elements of M, which so dramatically affects
the performance of HMC methods. Since the integration scheme that is detailed above is both
time reversible and volume preserving, employing it as a proposal process provides a correct
MCMC scheme satisfying detailed balance and convergence to the desired target density. The
overall RMHMC scheme can once again be written as a Gibbs sampler

pn+1|θn ∼p.pn+1|θn/=N{pn+1|0, G.θn/}, .19/

θn+1|pn+1 ∼p.θn+1|pn+1/ .20/

where samples θn+1 from p.θn+1|pn+1/ are obtained by running the generalized leapfrog inte-
grator from initial values pn+1 and θn for a certain number of steps to give proposed moves θÅ

and pÅ and accepting or rejecting with probability min[1, exp{−H.θÅ, pÅ/+H.θn, pn+1/}]. As
for standard HMC sampling this Gibbs sampling scheme produces an ergodic, time reversible
Markov chain satisfying detailed balance and whose stationary marginal density is p.θ/ (Duane
et al., 1987; Liu, 2001; Neal, 1996, 2010). However, in this case there is no need to select and tune
the mass matrix manually as it is defined at each step by the underlying geometry. Pseudocode
is provided in the supplementary material.
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the manifold will have greater error by not taking into account any changes in curvature. The
time-normalized ESS, however, is much better, as the computational complexity is far less.

It is also interesting to investigate the use of an alternative kinetic energy function in RMHMC
sampling; this idea was also briefly mentioned in Liu (2001) although no example was given.
We consider therefore the use of a kinetic energy term based on the Student t-density, with the
idea that, since the heavy tails might occasionally mean that a larger momentum is sampled,
this could plausibly result in less correlated samples of the target distribution. We note that,
since the multivariate Student t-distribution is symmetric, then the resulting Hamiltonian is still
reversible. The simulations take slightly longer to run than with standard Gaussian-distributed
momentum using the same integration time steps. This is due simply to the increased compu-
tation that is required to sample from a Student t-distribution, and also to the more involved
computation that is required to calculate the dynamics of this new Hamiltonian. The results
show that the ESS is actually significantly less than that of a Hamiltonian defined with Gaussian
momentum. This is possibly a result of a higher concentration of mass producing momenta with
values closer to zero, even though there will be occasional samples of momentum with much
larger magnitude.

In our simulations, manifold-based methods perform extremely well compared with the other
methods using small to medium-sized data sets. It is interesting to note that, owing to the dense
matrix form of the metric tensor and its inverse, the computational cost of the MMALA and
RMHMC sampling on Bayesian logistic regression will not scale favourably and it can be
seen that their time-normalized efficiency does indeed decrease as the number of regression
coefficients in the data set increases. This issue of scaling can, however, be eased somewhat by
employing simplified MMALA sampling, which assumes a locally constant metric tensor, thus
avoiding expensive computation of the derivatives of the metric tensor and for RMHMC sam-
pling a globally constant metric based on the linear regression metric. A further, more complex,
example based on a stochastic latent volatility model is now considered where the metric tensor
and its inverse are sparse, permitting scaling of RMHMC sampling to very high dimensions.

8. Manifold Metropolis adjusted Langevin algorithm and Riemann manifold
Hamiltonian Monte Carlo sampling for a stochastic volatility model

A stochastic volatility model that was studied in Liu (2001) and Kim et al. (1998) is defined
with the latent volatilities taking the form of an auto-regressive AR(1) process such that yt =
"tβ exp .xt=2/ with xt+1 =φxt + ηt+1 where "t ∼N .0, 1/, ηt ∼N .0, σ2/ and x1 ∼N{0, σ2=.1 −
φ2/} having joint probability

p.y, x, β, φ, σ/=
T∏

t=1
p.yt|xt , β/p.x1/

T∏
t=2

p.xt|xt−1, φ, σ/π.β/π.φ/π.σ/: .21/

We split up the sampling procedure into two steps, which as will be seen allow the implemen-
tation of both the MMALA and RMHMC sampling in a computationally efficient manner.
Firstly we simulate φ, σ and β from p.β, φ, σ|y, x/, where the priors are chosen to be p.β/∝1=β,
σ2 ∼ Inv-χ2.10, 0:05/ and .φ+1/=2∼beta.20, 1:5/. One way to deal with the constraints on the
values φ and σ is to implement a transformation of these to the real line, which we do by letting
σ = exp.γ/ and φ= tanh.α/, and noting that this introduces a Jacobian factor into the accep-
tance ratio in the standard manner. Secondly we sample the latent volatilities by simulating from
the conditional p.x|y, β, σ, φ/. We shall consider the use of the MMALA, RMHMC sampling,
the MALA and HMC sampling for the purpose of sampling both the parameters and the latent
volatilities.
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8.1. Manifold Metropolis adjusted Langevin algorithm and Riemann manifold
Hamiltonian Monte Carlo sampling for stochastic volatility model parameters
We require the partial derivatives of the joint log-probability with respect to the transformed
parameters to implement the MALA and HMC sampling, as well as expressions for the metric
tensor and its partial derivatives, to employ the MMALA and RMHMC algorithm. All these
quantities may be obtained straightforwardly (see Appendix A for details). We then use these
methods to draw samples from the conditional posterior p.β, α, γ|y, x/.

8.2. Manifold Metropolis adjusted Langevin algorithm and Riemann manifold
Hamiltonian Monte Carlo sampling for stochastic volatility model latent volatilities
Defining s = .s1, . . . , sT /T where each si = {y2

i β
−2 exp.−xi/ − 1}=2, δ1 = σ−2.x1 − φx2/, δT =

σ−2.xT −φxT−1/, the (T −2)-dimensional vector w with elementsσ−2.xt −φxt−1/−φσ−2.xt+1 −
φxt/, where t =2, . . . , T −1, and r= .δ1, wT, δT /, then the gradient ∇x log{p.y, x|β, φ, σ/}= s− r.

To devise an MMALA and RMHMC sampler for the latent volatilities x, we also require an
expression for the metric tensor and its partial derivatives with respect to the latent volatilities.
For the data probability of the model, p.y|x, β/, the expected Fisher information matrix is the
scaled identity matrix 1

2 I. The latent volatility is an AR(1) process having covariance matrix C
with elements E.xt+nxt/=φ|n|σ2=.1−φ2/ and as in the previous examples the metric tensor is
defined as the sum of the expected Fisher information matrix and the negative Hessian of the
log-prior, G = 1

2 I + C−1, conditional on current values of σ, φ and β. Now the expression for
the covariance matrix is completely dense and is therefore computationally expensive to manip-
ulate. Fortunately, this AR(1) process admits a simple analytical expression for the precision
matrix in the form of a sparse tridiagonal matrix, such that the diagonal elements are equal to
.1+φ2/=σ2, with the exception of the first and last diagonal elements which are equal to 1=σ2,
and the superdiagonal and subdiagonal elements are equal to −φ=σ2. Thus the metric tensor
also has a tridiagonal form. For large numbers of observations this sparse structure allows
great gains in computational efficiency, since the inverse of this tridiagonal metric tensor may
be computed in O.T/ as opposed to the usual O.T 3/. We note that computationally efficient
methods for manipulating tridiagonal matrices are automatically implemented by the standard
routines in MATLAB.

We note that the metric tensor in this case is not a function of the latent volatilities x and so
the associated partial derivatives with respect to the latent volatilities are zero. In this case as the
manifold has constant curvature the RMHMC scheme is effectively an HMC scheme with mass
matrix M now defined, based on the Riemann geometric principles, by the globally constant
metric tensor G. Likewise the MMALA collapses to an MALA scheme preconditioned by the
constant matrix G−1. It is clear that this preconditioning will improve both the mixing and the
overall ESS; see Lambert and Eilers (2009) for a recent application of this type of precondition-
ing in the MALA. We point out that, as in the case of RMHMC sampling, the preconditioning
matrix emerges naturally from the underlying geometric principles.

8.3. Experimental results for stochastic volatility model
We now compare the computational efficiency of RMHMC sampling, the MMALA, HMC
sampling and the MALA for sampling both the parameters and the latent variables of the sto-
chastic volatility model as previously defined: Tables 8 and 9. 2000 observations were simulated
from the model with the parameter values β =0:65, σ=0:15 and φ=0:98 as given in Liu (2001).
Using these data, 20000 posterior samples were collected after a burn-in period of 10000 sam-
ples. This sampling procedure was repeated 10 times. The efficiency was compared in terms of
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Table 8. 2000 simulated observations with β D 0:65, σ D 0:15 and φ D 0:98—
comparison of sampling the parameters β, σ and φ after 20000 posterior
samples averaged over 10 runs

Method Mean ESS Standard s=minimum Relative
time (s) (β, σ, φ) error (β, σ, φ) ESS speed

MALA 44.0 (19.1, 11.3, 30.1) (1.9,0.8,2.1) 3.89 36.7
HMC 424.8 (117, 81, 198) (9.3, 3.1, 10.3) 5.24 27.3
MMALA 2455.9 (17.2, 17.4, 44.5) (2.8, 2.4, 9.2) 142.8 1
RMHMC 329.4 (325, 139, 344) (19.0, 7.3, 25.2) 2.37 60.3

Table 9. 2000 simulated observations with β D 0:65, σ D 0:15 and φ D
0:98—comparison of sampling the latent volatilities after 20000 posterior
samples averaged over 10 runs

Method Mean ESS (minimum, s=minimum Relative
time (s) median, maximum) ESS speed

MALA 44.0 (9.7, 16.7, 28.4) 4.53 7.5
HMC 424.8 (409, 624, 1239) 1.04 32.9
MMALA 2455.9 (71.8, 131.0, 329.8) 34.2 1
RMHMC 329.4 (977, 1689, 3376) 0.34 100.6

time-normalized ESS, as in the previous section, for the parameters and the latent volatilities.
The MALA was tuned such that the acceptance ratio was between 40% and 70%, and it was
necessary to use a tuning for the transient phase that was different from that for the stationary
phase. HMC sampling was implemented again by using 100 leapfrog steps and tuning the step
size to obtain an acceptance rate of between 70% and 90%, which resulted in a step size of 0.015
for hyperparameters and a step size of 0:03 for the latent volatilities. RMHMC sampling was
implemented by using a step size of 0:5 and six integration steps per parameter proposal, and
a step size of 0:1 and 50 integration steps per volatility proposal.

In terms of sampling the hyperparameters (Fig. 6), manifold methods offer little advantage
over standard sampling approaches owing to the small dimensionality of the problem. RMHMC
sampling and the MALA give the best performance in terms of time-normalized ESS. The
MALA exhibits a very poor ESS; however, the computation time is also extremely small com-
pared with the other two methods. RMHMC sampling has the highest raw ESS but has much
more computational overhead compared with the MALA. When we consider sampling the latent
variable, RMHMC sampling offers greater advantages. In particular, it runs faster than HMC
sampling, partly because of the computationally efficient tridiagonal structure of the metric
tensor and partly because RMHMC sampling follows the natural gradient through the param-
eter space and requires significantly fewer leapfrog iterations to explore the target density. See
Figs 3 and 4 for an illustration of the contrast between HMC and RMHMC sampling of the
parameters of this model. In this example, the MMALA performs very badly owing to the need
to take a Cholesky decomposition of the inverse metric tensor of the latent variables, which is
a dense matrix, compared with RMHMC sampling, which only requires use of the tridiagonal
metric tensor. It should be noted that RMHMC sampling again requires very little tuning com-
pared with the other methods; unlike the MALA it does not require different tuning in different
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Fig. 6. Posterior marginal densities for (a) β, (b) σ and (c) φ, employing RMHMC sampling to draw 20000
samples of the parameters and latent volatilities by using a simulated data set consisting of 2000 observations:
the true values are β D0:65, σ D0:15 and φD0:98

parts of the parameter space, and unlike HMC sampling it requires no manual setting of a mass
matrix. It would be interesting to consider the use of the MMALA and RMHMC sampling as
a part of the particle MCMC methodology (Andrieu et al., 2010) for this particular model.

We now consider an example where the target density is extremely high dimensional, which
is encountered when performing inference using spatial data modelled by a log-Gaussian Cox
process.

9. Manifold Metropolis adjusted Langevin algorithm and Riemann manifold
Hamiltonian Monte Carlo sampling for log-Gaussian Cox point processes

RMHMC sampling and the MMALA are further studied by using the example of inference in a
log-Gaussian Cox point process as detailed in Christensen et al. (2005). This is a particularly use-
ful example in that the target density is of high dimension with strong correlations and provides
a severe test of MCMC capability. The data, model and experimental protocol as described
in Christensen et al. (2005) are adopted here. A 64 × 64 grid is overlaid on the area [0, 1]2

with the number of points in each grid cell denoted by the random variables Y ={Yi,j} which
are assumed conditionally independent, given a latent intensity process Λ.·/ = {Λ.i, j/}, and
are Poisson distributed with means mΛ.i, j/=m exp.Xi,j/, where m= 1=4096, X ={Xi,j}, x =
vec.X/, and y=vec.Y/, with X a Gaussian process having mean E.x/=µ1, and covariance func-
tion Σ.i,j/,.i′,j′/ = σ2 exp{−δ.i, i′, j, j′/=64β}, where δ.i, i′, j, j′/ = √

{.i− i′/2 + .j − j′/2}. The
joint density is

p.y, x|µ, σ, β/∝
∏
i,j

exp{yi,jxi,j −m exp.xi,j/} exp{−.x −µ1/TΣ−1.x −µ1/=2}: .22/

As in the previous example an overall Gibbs scheme in which we alternately sample from
p.x|y, σ, β, µ/ and p.σ, β|y, x, µ/ is considered. If we let L ≡ log{p.y, x|µ, σ, β/} and e =
m exp.xi,j/, then the derivative with respect to the latent variables follows straightforwardly
as ∇xL = y − e − Σ−1.x − µ1/, and −Ey,x|θ.∇x∇xL/ = Λ + Σ−1, where the diagonal matrix
Λ, whose ith diagonal element is defined as m exp{µ + .Σ/ii}, follows from the expectation
of the exponential of normal random variables. The metric tensor describing the manifold for
the random field is constant, G =Λ+Σ−1, and the MMALA and RMHMC schemes for the
conditional, p.x|y, σ, β, µ/, are basically the MALA, HMC sampling with mass and precondi-
tioning matrices M =Λ+Σ−1 and M−1. The computational cost of calculating the required
inverse of the metric tensor scales as O.N3/; however, once this quantity has been calculated,
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for RMHMC sampling a large number of leapfrog steps may be made with little additional
overhead, which as we shall see results in very efficient sampling of the latent variables.

To sample from the conditional p.σ, β|y, x, µ/ we employ a metric tensor based on the expected
Fisher information for the parameters θ= [σ, β] which follows as Dθ whose .l, m/th element is

1
2

tr
(
Σ−1 @Σ

@θl
Σ−1 @Σ

@θm

)
:

See Appendix B for details.
Since the metric tensor for the latent variables has dimension N × N, where N = 4096, the

O.N3/ operations that are required in the MMALA and RMHMC schemes will clearly be
computationally costly. However, it should also be noted that, in previous studies of this
log-Gaussian Cox process (Christensen et al., 2005), a transformation of the latent Gaussian
field is necessary based on the Cholesky decomposition of Σ−1 +diag.x/, which will therefore
also scale as O.N3/.

It is possible to consider jointly sampling the hyperparameters and the latent variables. Now
with L≡ log{p.y, x, σ, β|µ/}, we see that the expected Fisher information matrix is block diag-
onal with blocks Λ+Σ−1 and D−1

θ . Unfortunately, jointly sampling the latent variables and the
hyperparameters proves to be computationally too costly to implement, as the metric tensor is
now no longer fixed and so the generalized leapfrog integration scheme must be implemented
in RMHMC sampling with fixed point iterations, during each of which the metric tensor and
its inverse must be recalculated.

9.1. Experimental results for log-Gaussian Cox processes
Following the example given by Christensen et al. (2005), we fix the parameters β = 1=33,
σ2 = 1:91 and µ = log.126/ − σ2=2. We generate a latent Gaussian field x from the Gaussian
process and use these values to generate count data y from the latent intensity process Λ. Given
the generated data and the fixed hyperparameters, we infer x by using the MMALA, RMHMC
and MALA method as in Christensen et al. (2005). The algorithms were run on a single AMD
Opteron processor with 8 Gbytes of memory and were coded in MATLAB for consistency.

In many settings the MALA, like HMC sampling, is particularly sensitive to the choice of
scaling and very often a reparameterization of the target density is required for these methods to
be effective. Indeed this is seen to be so with this particular example, where the MALA cannot
sample x directly. We therefore follow Christensen et al. (2005) and employ the transformation
X =µ1+LΓ, where L is obtained by Cholesky factorization such that {Σ+diag.x/}−1 =LLT.
Even after this reparameterization, it is still necessary to tune the scaling factor carefully for this
method to work at all. This challenging aspect of employing the MALA has been investigated
in detail by Christensen et al. (2005), who characterized the problem very well, advising great
care in its implementation, but could not ultimately offer any panacea. In contrast with the nec-
essary transformation and fine-tuning that are required by the MALA, both the MMALA and
RMHMC sampling allow us to sample the latent variables x directly without reparameterizing
the target density.

Fig. 7 shows the traces of the log-joint-probability for both methods by using the starting
position xi,j =µ for i, j =1, . . . , 64. For the MALA these starting positions must be transformed
into corresponding values for Γ. The RMHMC sampler quickly converges to the true mode
after very minimal tuning of the integration step size based on the integration error, which
corresponds directly to the acceptance rate. The MMALA also converges very quickly to the
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given a more explicit recommendation on how to address this problem. Instead, the setting of simulation
lengths is given a fairly sketchy treatment, although suitable evaluation metrics are being used in the fairly
extensive experiments.

My final point is the related question of how this methodology can be made available and put into use
by the large community of MC practitioners who could benefit. HMC methodology is a little complicated
to explain, although the resulting algorithm is surprisingly simple. Nevertheless its use has been restricted
to small pockets of the community. The Riemann manifold HMC method is considerably more complex
to understand and implement, although it should be easier to run effectively once implemented. Good
recommendations on how to run RMHMC algorithms, not requiring intricate understanding of every
aspect of the algorithm, may be necessary for the algorithm to realize its potential.

The vote of thanks was passed by acclamation.

Arnaud Doucet (University of British Columbia, Vancouver), Pierre Jacob (Université Paris Dauphine
and Centre de Recherche en Economie et Statistique, Paris) and Adam M. Johansen (University of
Warwick, Coventry)
We congratulate the authors for their elegant contribution.

Consider those situations in which we do not have direct access to an appropriate metric but can obtain
pointwise, simulation-based estimates of its values. For example, we might be interested in performing
Bayesian inference in general state space hidden Markov models by using particle Markov chain Monte
Carlo methods (Andrieu et al., 2010). In this context, we integrate out numerically the latent variables
of the model by using a sequential Monte Carlo (SMC) scheme. A sensible metric to use is the observed
information matrix which can also be estimated in this way (Poyiadjis et al., 2010). We discuss here the use
of such estimates in a Markov chain Monte Carlo context.

Assume that we want to sample from a target π.x/ on X using the Metropolis–Hastings algorithm.
Denote the proposal’s parameters (e.g. scale) r ∈R. Defining an extended target over X ×R as π̄.x, r/=
π.x/q.r|x/ an algorithm may be defined on X ×R in which both R and X are sampled.

At iteration n+ 1 draw XÅ ∼ s.·|xn, rn/ and RÅ ∼q.·|xÅ/. Accept this proposal with the standard Met-
ropolis–Hastings acceptance probability on the extended space

α.xn, rn; xÅ, rÅ/=1∧ π̄.xÅ, rÅ/

π̄.xn, rn/

s.xn|xÅ, rÅ/q.rn|xn/

s.xÅ|xn, rn/q.rÅ|xÅ/

=1∧ π.xÅ/

π.xn/

s.xn|xÅ, rÅ/

s.xÅ|xn, rn/
:

Hence it is not necessary to be able to evaluate q, even pointwise, provided that it can be sampled from.
The resulting transition is reversible on the extended space and admits π as a marginal of its invariant
distribution. This simple result is well known: see Besag et al. (1995), appendix 1.

The manifold Metropolis adjusted Langevin algorithm, with metric tensor obtained by sampling, may be
justified by using precisely the same argument: a proposal of the form of equation (10) may be implemented
with a sampled estimate of the metric tensor and such gradients as are required (objects which can be
obtained readily in settings of interest, such as hidden Markov models); the extended space construction
above holds with x = 0 and r = .G, ∇G/ and the acceptance probability remains of the same form; the
constant curvature proposal may be implemented without the need for estimates of ∇G with x = 0 and
r =G.

The Hamiltonian Monte Carlo variant of the same is not trivial. As each step of the implicit integrator
requires access to the value of the metric at several (implicitly defined) points, direct application of the
above principles does not appear possible. However, more subtle approaches can be employed. In particular
one could consider trying to approximate the metric by using the expectation of a function with respect
to a probability measure independent of x and using common random variates from this measure during
a Hamiltonian Monte Carlo update.

Antti Honkela (Institute for Information Technology, Helsinki)
The application of Riemannian geometry of probability distributions to Markov chain Monte Carlo meth-
ods proposed in the paper appears a very promising new tool for developing efficient highly automated
computational techniques for Bayesian inference. The authors have done an especially beautiful job in
successfully combining efficient Hamiltonian numerical solvers with the theoretical framework.
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One aspect limiting the practical applicability of the method is the difficulty of deriving the necessary
geometric structure of different models as well as potentially the computational complexity of working in
that geometry. The authors already suggest a few alternatives to the expected Fisher information matrix.
The evaluation of which situations these are optimal both in theory and in practical computational imple-
mentations is an important topic for further study. Fortunately, because of the Metropolis adjustment,
the metric employed can be changed without sacrificing the correctness of the samplers.

In my own work I have applied Riemannian geometric ideas to speeding up variational inference
methods. These are based on fitting a parametric approximation to the posterior by optimizing some
objective. Posing this optimization problem on the Riemannian manifold that is defined by the approxi-
mations and applying a Riemannian conjugate gradient algorithm can yield orders of magnitude speed-up
over Euclidean gradient algorithms (Honkela et al., 2010), even when using some simplifications to the
algorithm to avoid the most complex Riemannian vector operations.

The potential connection between these methods suggests interesting opportunities for Riemann mani-
fold samplers. In our method we use the expected Fisher information geometry of the approximations. By
selecting a suitable approximation, this can be chosen to be tractable and efficient to evaluate. In Honkela
et al. (2010) we present a Riemannian geometric method for Gaussian mixtures, which are intractable in the
standard expected Fisher information framework. Perhaps these approximation geometries could be used
to work around this, to extend further the applicability of the beautiful methods that are presented here.

Serge Guillas (University College London)
The authors should be congratulated for this important paper. Dramatic improvements in efficiency of
Markov chain Monte Carlo techniques are expected from the algorithms proposed. One interesting area
of application of such schemes is the Bayesian calibration of computer models (Kennedy and O’Hagan,
2001). Full Bayesian analysis relies on Gaussian processes and is computationally challenging. The num-
ber of parameters can be high, and the outputs can be high dimensional, as in complex models for the
environment. For instance, to calibrate the National Center for Atmospheric Research thermosphere–
ionosphere electrodynamics general circulation model, Guillas et al. (2009) used multiple chains in paral-
lel to reduce wall clock time and to check Markov chain Monte Carlo convergence. The burn-in period was
around 200–500 iterations. The combination of samples from 10 chains, after the burn-in period, supplied
draws from the posterior. A reduction in the length of this burn-in period, by an order of magnitude as the
authors show in some of their examples—where the geometry of the problem can be exploited—will allow
further parallelization on large clusters, saving more time and enabling more advanced studies. For this,
we need to make use of the Fisher information matrix of a Gaussian process, with the possible addition
of hyperparameters. The derivation of the Fisher information matrix in this context has been investigated
for covariance structures of Gaussian, triangular and exponential types (Abt and Welch, 1998), and more
recently of Matérn type (Loh, 2005).

When the Fisher information matrix has no analytical form, the authors rightly suggest the use of
sampling methods (Spall, 2005). The issue is that it is extremely time consuming to include these addi-
tional steps in the Markov chain Monte Carlo algorithm. However, more recently, Das et al. (2010) have
developed an algorithm that makes use of known parts of the Fisher information matrix to improve effi-
ciency. One hopes that a class of problems may become tractable as a result of the combination of such
efficient techniques with the manifold Metropolis adjusted Langevin algorithm and Riemann manifold
Hamiltonian Monte Carlo approaches.

Simon Barthelmé (Technische Universität Berlin) and Nicolas Chopin (Centre de Recherche en Economie
et Statistique, Paris)
One of the many things that we like about this paper is that it forces us to change our perspective on
Metropolis–Hastings sampling. We may not be the only ones with the toy example of a bivariate, strongly
correlated, Gaussian distribution imprinted in our brain. This example explains well why taking correl-
ations into account is important. However, one often forgets that, contrary to the Gaussian example,
the curvature of the log-target-density may be far from constant, which justifies a local calibration of
hidden Markov strategies. The authors give compelling evidence that local calibration may lead to strong
improvements in large dimensional problems.

There are two ways to understand these results. One of them, which was put forward in this paper,
stems from the information geometry perspective: the parameter space is endowed with a metric de-
fined by G.θ/, which turns the posterior distribution into a density over a manifold. The general manifold
Metropolis adjusted Langevin algorithm (MMALA) based on a diffusion over that manifold is a beautiful
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mathematical device, but it is not immediately apparent how this leads to improved (relative) Markov
chain Monte Carlo performance. A different viewpoint proceeds from optimization: the MMALA
performs better because it uses a better local model of the posterior density.

As often pointed out, the Langevin proposal is a noisy version of a gradient ascent step. Similarly, the
simplified MMALA step is a noisy version of a (quasi-)Newton step, in which the Hessian is replaced
with the Fisher information matrix, which is an idea known as iteratively reweighted least squares in the
literature on generalized linear models. It is worth emphasizing the fact that the simplified versions, which
just rely on these local curvature ideas, but do not require third derivatives, do better in terms of relative
efficiency (not to mention in terms of human computation time!).

This suggests two avenues for further research. First, many optimization methods have been developed
that require only evaluating the gradient. This may be more convenient from the practitioner’s point of
view, and it also proves more effective whenever computing Hessian matrices is expensive. Methods, such
as the Broyden–Fletcher–Goldfarb–Shanno or Barzilai–Borwein method, approximate the Hessian locally
from the previous k iterations. Our preliminary experiments indicate that these methods may reduce the
correlation in Markov chain Monte Carlo chains.

The second point is that the auxiliary Gaussian distribution is merely a choice that is imposed by the
physical interpretation of the Hamiltonian. Do the authors have any intuition on what would be the
optimal auxiliary distribution?

Maurizio Filippone (University of Glasgow)
Consider non-parametric logistic regression with Gaussian process priors (Rasmussen and Williams, 2006),
where a set of n covariates xi ∈Rd are associated with response yi ∈{0, 1}:

p.f |0/∼N .f |0, K/,

p.yi|fi/=σ.fi/
yi{1−σ.fi/}1−yi :

Let K be the covariance matrix parameterized by a vector of (hyper)parameters θ= .ψσ, ψr1 , . . . , ψrd
/:

k.xi, xj|θ/= exp.ψσ/ exp{− 1
2 .xi −xj/

TA.xi −xj/},
A−1 =diag{exp.ψr1 /, . . . , exp.ψrd

/}:

We consider the manifold methods that are presented in this paper in comparison with a set of alternative
algorithms to sample from the joint posterior distribution of f and θ.

Efficiently sampling of f and θ is complex because of their strong coupling (Murray and Adams, 2010;
Neal, 1999). Gibbs style samplers, as used by the authors in Section 9, based on sampling of f |θ, y and
θ|f , y are convenient from an implementation standpoint, but extremely inefficient. This is because fixing
f induces a sharply peaked posterior for θ, resulting in a poor effective sample size (ESS) for the length
scale parameters (Murray and Adams, 2010).

The metric tensor comprises the Fisher information matrix and the negative of the Hessian of the prior:

Gf =−Ey|f [∇f∇fL]=σ.f/{1−σ.f/}+K−1 =Λ+K−1 Λ=diag[σ.f/{1−σ.f/}],

Gf ,θi =−Ey, f |θ

[
@∇fL
@θi

]
=−Ef |θ

[
K−1 @K

@θi

K−1f
]
=0,

Gθj ,θi =−Ey, f |θ

[
@2L

@θi @θj

]
= 1

2
tr

(
K−1 @K

@θi

K−1 @K

@θj

)
− @2 log{p.θ/}

@θi @θj

G=
(

Gf 0
0 Gθ

)
:

The derivatives of G follow from standard properties of matrix derivatives. Taking the expectations with
respect to y alone does not lead to a positive definite matrix G and it is therefore necessary to take them
with respect to y and f jointly (for Gf we compute the expectation with respect to y to leave the dependence
from f). G is block diagonal, so the geometry-based argument in favour of the decoupling of f and θ, when
sampled jointly by using manifold methods, does not hold.

Results and experimental settings for a bivariate logistic regression problem with n= 100 are reported
in Table 12. The results confirm that Gibbs style samplers are very inefficient in sampling the length scale
parameters.
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Table 12. ESS for Gibbs Metropolis–Hastings (Gibbs MH), Gibbs simplified manifold Metropolis adjusted
Langevin algorithm (Gibbs SMMALA), Gibbs Riemann manifold Hamiltonian Monte Carlo (Gibbs RMHMC)
Gibbs whitening (Gibbs Wht), HMC, SMMALA and RMHMC algorithms all averaged over 10 runs (the stan-
dard deviation is in parentheses)†

Parameter Gibbs Gibbs Gibbs Gibbs HMC SMMALA RMHMC
MH SMMALA RMHMC Wht

Minimum ESS f 3 (0) 27 (17) 78 (69) 26 (24) 3 (0) 17 (6) 182 (50)
Average ESS f 6 (0) 102 (27) 404 (92) 112 (24) 6 (0) 51 (4) 531 (80)
Maximum ESS f 18 (3) 205 (35) 888 (60) 300 (55) 21 (4) 94 (12) 100 (61)
ESS ψσ 30 (11) 54 (38) 30 (13) 56 (20) 5 (2) 18 (10) 530 (250)
ESS ψτ1 30 (13) 6 (2) 6 (4) 203 (112) 12 (11) 6 (2) 86 (33)
ESS ψτ2 36 (23) 8 (3) 7 (3) 136 (60) 10 (6) 7 (4) 111 (40)
103 ×G — — — — — 3 (0) 257 (18)
103 ×Gθ — 3 (0) 80 (6) — — — —
103 × chol.K/ 3 (0) 3 (0) 80 (6) 3 (0) 47 (1) 3 (0) 257 (18)

†In Hamiltonian-based methods, the maximum number of leapfrog steps was set to 30. The Gibbs MH and
HMC algorithms were tuned on the basis of posterior covariances estimated from pilot runs of the Gibbs Wht
algorithm. We also report the number of calls (in thousands) to the functions computing G, Gθ and the Cholesky
decomposition of K that are the main computational bottlenecks (along with the derivatives of Gθ with respect
to θ, although we are not reporting these statistics). All the methods were initialized from the true values used
to generate the data; the ESS is computed over 2000 samples collected after 1000 burn-in samples. In Gibbs style
samplers, the length scale parameters have a poor ESS, whereas the latent functions are sampled quite efficiently
by manifold methods, confirming that the geometric argument is effective in improving the sampling of f .

Gibbs sampling with Riemann manifold Hamiltonian Monte Carlo proposals seems suboptimal in this
problem, as it may be for the log-Gaussian Cox model presented by the authors in Section 9. A natural
decoupling of f and θ is offered by whitening the prior over f . Given the decomposition K =LLT, define
ν=L−1f ; sampling θ|f , y is replaced by θ|ν, y.

Even if G is block diagonal, the results for computationally demanding runs of Riemann manifold
Hamiltonian Monte Carlo algorithms show some potential in achieving an ESS that is comparable with
the whitening method. This motivates further investigation on less expensive (guiding) Hamiltonians for
the joint update of f and θ trading off some efficiency. Also, it would be particularly interesting to start
off from the whitened model and to study whether manifold methods can improve sampling efficiency.

Frank Critchley (The Open University, Milton Keynes)
It is a truth universally acknowledged that, when a man has been waiting a very long time for a bus,
two will come at once. I am such a man. I first encountered differential geometries for statistics in Barn-
dorff-Nielsen et al. (1986) and have never doubted their potential major influence on mainstream applied
statistics. However, realizing that potential has been a very long wait indeed (almost a quarter of a century!),
undoubtedly important results being locked away from everyday use behind conceptual and notational
barriers.

To my knowledge, the first bus arrived in the work of Copas and Eguchi (see, for example, Copas and
Eguchi (2010)). In particular, their geometrically inspired ‘double-the-variance’ formula gives an emin-
ently practical way to allow for model uncertainty, at least asymptotically. Close behind, this paper and
its accompanying software represent a second bus, whose arrival I wholeheartedly welcome.

Parenthetically, I would like to signal the (hopefully, not-too-distant) arrival of a third: computational
information geometry. Being a global approximate analogue of the first, local asymptotic bus, this treat-
ment of the ‘uncertainty of uncertainty’ is joint work with Anaya-Izquierdo, Marriott and Vos, some of
whom will be contributing in writing after the meeting.

Like all good ‘read’ papers, this one makes important contributions—among which, I find the geometric
Hamiltonian dynamic approach particularly appealing—whose very originality opens up new questions
of potential further interest. These include the following.

(a) To what extent are the procedures presented equivariant to reparameterization? If not fully, can they
be adapted to be so? If not, can an argument be made for a particular choice of parameterization?
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(b) Is there a potential role for alternative choices of metric? Possibilities here include one of the preferred
point metrics of Critchley et al. (1993)—perhaps, based on (estimates of) the target distribution, up
to proportionality—the preferred point expected score vector also carrying important information
in this case.

(c) Again, might non-Riemannian geodesics be of value, notions of ‘straightness’ based on exponential
or mixture connections being natural candidates?

Overall, as will be clear, I warmly welcome this paper, both in itself and as an exemplar of geometric
ideas informing applied statistics, and hope that many will want to step on board the bus which it represents.

N. Friel and J. Wyse (University College Dublin)
Our discussion explores an extension of the Riemann manifold Hamiltonian Monte Carlo (RMHMC)
methodology to Bayesian model selection, where we entertain a collection of plausible models M1, . . . , Mm

each with parameters θ1, . . . , θm and data y. We consider the augmented target distribution

exp{−H.θi, pi, Mi/}=π.θi, Mi|y/π.pi|θi/

where π.θi, Mi|y/ is the posterior distribution over model parameters and model index. Further the aux-
iliary pi ∼N{0, G.θi/}, where G.θi/ is the metric tensor defined at parameter θi. We consider a reversible
jump (RJ) Markov chain Monte Carlo (MCMC) extension of the RMHMC algorithm, which we term
RJRMHMC. The essential part of our algorithm is the stochastic mechanism whereby we propose a move
from .θl, pl, Ml/ to .θk, pk, Mk/. The scheme is described in Fig. 12. Briefly, this scheme involves leapfrog
steps from the current state to an intermediate state within model Ml. A jump move is then proposed to a
state in model Mk followed by leapfrog steps in model Mk. Negating the leapfrog integration steps yields
a reversible move from the current state to the proposed state. The acceptance probability appears as

α{.θl, pl/, .θÅ
l , pÅ

l /, .θÅ
k , pÅ

k /, .θk, pk/}=min
[

1,
exp{−H.θk, pk/}
exp{−H.θl, pl/}

φ{pÅ
l ; 0, G.θÅ

l /}Pr.k → l/

q.u/φ{pÅ
k ; 0, G.θÅ

k /}Pr.l→k/

]
,

where φ is a multivariate normal density. This depends not just on the current and proposed states, but
also on the intermediate states .θÅ

l , pÅ
l / and .θÅ

k , pÅ
k /. The leapfrog steps typically result in movement of the

chain towards a high density region of the posterior distribution—effectively yielding an adaptive proposal
mechanism for the jump move in the RJ algorithm.

We have applied our methodology to the Pima Indians logistic regression data set presented in the paper.
Our interest is to carry out a Bayesian variable selection of the seven covariates in the data set. We com-
pared an RJMCMC algorithm with the RJRMHMC algorithm where, for both methods, moves to models
differing by one variable were proposed. We ran both algorithms for the same central processor unit time
(500000 RJMCMC iterations and 5 million RJRMHMC iterations). The posterior model probability
estimates were similar and are displayed in Fig. 13. The acceptance rates within each algorithm were quite
different. Between- and within-model moves for the RJRMHMC algorithm had acceptance rates of 4%
and 96% respectively, whereas, for the RJMCMC algorithm, between- and within-model acceptance rates
were 2.5% and 11% respectively. This suggests that the RJRMHMC algorithm provides an improvement
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Fig. 12. Schematic diagram of the RJRMHMC ‘jump’ move from current state (θl , pl ) in model Ml to a
proposed state .θk, pk/ in model Mk
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Fig. 13. Posterior model probabilities from (a) the RJRMHMC and (b) the RJMCMC algorithms

in efficiency. The implementation of the RJRMHMC algorithm could be improved and extended in many
directions and this will form the basis for future research.

Vassilios Stathopoulos and Maurizio Filippone (University of Glasgow)
We consider a univariate binomial probit model where we use X , W and Y ∈{0, 1} to denote the observed
covariates, the latent variables and binomial responses respectively. The latent variables W are modelled as

W =Xβ + "

with "∼N .0, σ2/. The binomial variable is Y.W/=0 if W<0 and Y.W/=1 if W>0. The model in this form
is known to be non-identifiable as the likelihood is constant along straight lines out of the origin of the
.β, σ/-plane and therefore is only informative about their ratio (Nobile, 1998, 2000; McCulloch et al., 2000;
Imai and van Dyk, 2005). This poses significant challenges to the Markov chain Monte Carlo methods
discussed in this paper since the Fisher information matrix is not positive definite. The problem can be
resolved by considering an informative prior (Nobile, 1998) and by adding the negative of its Hessian to
the Fisher information matrix as suggested by the authors in Section 4.2. The resulting posterior, however,
is strongly skewed and, as we discuss here, this can lead to very poor mixing of the chains.

For the experiments presented here, we generated a synthetic data set for the binomial model as described
in Nobile (1998) and used the priors p.β/ =N .0, 100/ and p.1=σ2/ =G. 3

2 , 1
6 / which ensure weak identi-

fiability. Furthermore, we reparameterize σ, such that ψ = log.σ2/, and sample ψ. The log-likelihood is
given by

L=
∑

i

yi log
{

Φ
(

βxi

σ

)}
+

∑
i

.1−yi/ log
{

Φ
(

−βxi

σ

)}

where Φ is the cumulative function ofN .0, 1/. The gradient of the log-likelihood and the Fisher information
matrix follow as
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Consider observations y1, . . . , yn ∼N .θ1 +θ2
2, σ2

y/. The parameters θ1 and θ2 are non-identifiable without
any additional information beyond the observations: any values such that θ1 +θ2

2 = c for some constant c
explain the data equally well. By imposing a prior distribution θ1 +θ2 ∼N .0, σ2

θ / we create weak identifi-
ability, namely decreased posterior probability for c far from zero. Fig. 16 shows the prior, likelihood and
ridge-like posterior for the model. For this problem, we have

G.θ/=
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:

Fig. 17 compares typical trajectories of both HMC and RMHMC algorithms, demonstrating the ability
of RMHMC sampling to follow the full length of the ridge.

HMC and RMHMC algorithms also differ in sensitivity to the step size. As described by Neal (2010),
HMC algorithms suffer from the presence of a critical step size above which the error explodes, accumu-
lating at each leapfrog step. In contrast, RMHMC algorithms occasionally exhibit a sudden jump in the
Hamiltonian at one specific leapfrog step, followed by well behaving steps (as seen in Fig. 16(a)). This is
due to the possible divergence of the fixed point iterations in the generalized leapfrog equations

p
(
τ + "

2

)
=p.τ /− "

2
∇θH

{
θ.τ /, p

(
τ + "

2

)}
.35/

for given momentum p.τ /, parameter θ.τ / and step size ". Fig. 18 shows the probability that equation (35)
has a solution p."=2/ as a function of θ.0/, and of the derivative at the fixed point being ‘sufficiently small’
for the fixed point iterations to converge; the well-known sufficient theoretical threshold on the derivative
(see for example Fletcher (1987)) is 1, but we conservatively chose 1.2 on the basis of typical successful runs.
When the finite number of fixed point iterations diverges, the Hamiltonian explodes; however, subsequent
steps may still admit a fixed point and hence behave normally. Unsurprisingly, this behaviour is much
more likely to occur for larger step sizes.

Although the regions of low probability can strongly decrease the mixing of the algorithm, they do not
affect the theoretical convergence ensured by the rejection step. Understanding this behaviour can bring

(a) (b)

Fig. 17. Three typical consecutive trajectories of 20 leapfrog steps each, with step size 0.1, for the RMHMC
and HMC algorithm, chosen to highlight two acceptances (black) and one rejection (grey), representative of
the approximately 65% acceptance ratio for both the HMC and RMHMC algorithms: we see that the RMHMC
algorithm can track the contours of the density and reach the furthest tails of the ridge, adapting to the local
geometry, whereas the spherical moves of the HMC algorithm oscillate back and forth across the ridge
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Fig. 26. (a) Contour plot of the target density and 1000 posterior samples from a mixture of seven two-dimen-
sional Gaussian distributions with varying means and covariances by using (b) random-walk Metropolis sam-
pling and (c) the simplified MMALA
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Fig. 27. 1000 posterior samples from the first two dimensions of a mixture of two strongly correlated
20-dimensional Gaussian distributions by using (a) random-walk Metropolis sampling and (b) the simplified
MMALA

random-walk Metropolis scheme and the simplified MMALA; however, there is better coverage of each
mode when employing the manifold method.

A more challenging example is a mixture of two strongly correlated and unevenly scaled 20-dimensional
Gaussian distributions. This time we employ a schedule with 20 temperatures, again evenly distributed
between 0 and l, and then raised to the power 5. Fig. 27 shows the samples collected after the burn-in
period for the first two of the 20 dimensions. It is clear that the manifold-based method does a much better
job of covering the posterior modes. Fig. 28 shows the trace plots of these samples.

Multiple metric tensors
Following this theme Jasra and Singh suggest the use of a sequence of tempered densities, and hence
tempered metrics, in sequential Monte Carlo sampling—this may have a benefit

(a) in terms of reducing correlations and
(b) in that some of the metric tensors may be cheaper to work with and so the sequential Monte Carlo

sampler can use the computationally inexpensive metrics.

This is similar to the generalized Hamiltonian that is suggested by Beffy and Robert, employing multiple
metric tensors, possibly tempered, or capturing different small-scale and large-scale structures. Another
perspective, motivated by balancing computational load with sampling efficiency, is provided by Campbell
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Fig. 28. Trace plots of 1000 posterior samples from the first two dimensions of a mixture of two strongly
correlated 20-dimensional Gaussian distributions by using (a) random-walk Metropolis sampling and (b) the
simplified MMALA

who suggests careful block updating, with between-block independence assumed, e.g. Chib and Rama-
murthy (2010). These are without doubt valuable areas for further methodological developments.

Hierarchic Bayesian and latent variable models
The class of latent Gaussian models (e.g. the log-Gaussian Cox model in the paper) is given detailed con-
sideration by Filippone, Vehtari and Vanhatalos. Filippone highlights the huge computational load that
is required of a full RMHMC scheme, as used in the paper, for such a model and notes the decoupled
metric for latent functions and model parameters. It is clear that further effort is needed in defining an
appropriate metric(s) for such hierarchic models, as noted by Murray and Adams. We consider it is pos-
sible that a different geometric view for hierarchic Bayesian models and models with latent variables may
be advantageous with possible relationships to the e–m-connections of Amari. We also note that in, for
example, Chib and Ramamurthy (2010) it is clear that devising successful sampling schemes for complex
hierarchic models may require several different strategies to be harnessed. It is clear that manifold MCMC
sampling is one sampling strategy which will prove to be important in sampling over such complex models
(as the log-Gaussian Cox model in the paper) but, as in Chib and Ramamurthy (2010), cleverly deploying
a variety of strategies may prove more successful than naively adopting manifold methods throughout.
The, yet-to-appear, user manual that Draper speaks of will surely contain examples of when and where
manifold methods should be used and combined.

Griffin asks how the manifold methods proposed compare with adaptive methods in general; this is a
good question requiring further empirical investigation. However, we highlight that the manifold methods
although being adaptive have the guarantee of convergence to the desired invariant measure, something
which adaptive methods can only approximate.

Higher order integrators and approximations
Chin asks the question about the use of more accurate higher order solvers for the Langevin diffusion
suggesting, as does Sermaidis though in an exact setting, bypassing the accept–reject step. We highlight
that the Hamiltonian proposal mechanism is based on a deterministic geodesic flow across the manifold
whereas the Langevin mechanism is a random diffusion which in most cases will be less efficient even,
we argue, when more efficient stochastic differential equation integrators are employed. The opposite
strategy of employing approximations is advocated by Honkela and the combination of employing such
approximation schemes to define a geometry that is suitable for manifold MCMC sampling which will
converge to the correct target density and be computationally inexpensive, appears to be a most promis-
ing avenue for methodological development. On this theme Archambeau and Bouchard suggest study of
the bias–variance of manifold MCMC versus variational approximations, expectation propagation, and
indeed the integrated nested Laplace approximation scheme.

The many suggestions for development by Cornebise and Peters are exciting and of potential methodo-
logical importance, as are those of Mira and Haario, in particular the incorporation of manifold sampling
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as part of the zero-variance Monte Carlo scheme. Robert provides a provocative comment about the nec-
essary transition from continuous Hamiltonian dynamics to the discrete computational setting, and in a
similar vein Mansinghka questions the continuum–discrete divide. We conjecture that these questions may
suggest relaxations as described by Mansinhgka, as well as to for example volume preservation, reversi-
bility and adherence to the view of the MALA being a discretization of a diffusion process, requirements
which Mira and Haario also challenge.

Computation
The computational cost of the manifold methods is a recurring theme in many of the discussion contri-
butions. Roy, Honkela, Filippone, Barthelmé and Chopin, Bhadra, Campbell, Coolen, Draper, Gelman,
Guerrera, Rue and Simpson, Jasra and Singh, Mansinghka, Salimans and Welling, all raise the issue and
suggest possible approaches to reducing the computational cost.

Computational perspective
Firstly the computational cost of the manifold methods should be put into some perspective alongside
other numerically intensive techniques that are commonly employed in day-to-day statistical practice.
Consider N covariates and a data sample size M 3N; using leave-one-out cross-validation to assess the
value of a single regularization parameter in penalized logistic regression will incur a scaling of O.N4/, in
the worst case, for each value of the parameter.

In the simplified MMALA the dominating O.N3/ scaling is the worst case scenario. The Newton method,
Fisher scoring and iterated weighted least squares methods for optimization, which are routinely employed
in maximum likelihood estimation, all have the same order of scaling as the simplified MMALA. For the
full MMALA and RMHMC methods where the connection is defined by full matrices of metric tensor
derivatives, then the additional cost of N matrix multiplications will be incurred, resulting in the worst
case O.N4/ scaling as seen in the logistic regression example, and is of the same order as the commonly
employed leave-one-out estimator.

Approximate models and iterative updating
We expect that algorithmic research work will, over time, reduce this scaling considerably. For example
Honkela suggests geometries based on approximate models that may retain the main effects yet have
metrics and connections with much simpler computational structures. Barthelmé and Chopin, Roy and
Salimans suggest sequential updates of the metric tensor (square root) reducing the existing cubic scaling
to quadratic. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) style of rank 1 updating can be employed
straightforwardly in the simplified MMALA for example. However, with the iterative BFGS style updating,
the MMALA proposals no longer retain their Markov structure and so fall into the category of adaptive
MCMC methods where convergence to the invariant measure is approximate under conditions of dimin-
ishing adaptation. We have assessed the simplified MMALA using BFGS optimization on a variety of
problems with mixed results. Application of BFGS style updating to RMHMC sampling requires some
further investigation in terms of the effect that this will have on the symplectic properties of the integrator.
An elegant approach is taken by Salimans in the stochastic volatility model where the Kalman smoother
is employed, resulting in a significant speed-up in performance.

Another approach to reducing computational complexity is suggested by Bhadra where an annealing
scheme is employed with the curvature components being removed once reaching the mode of the density
as they will have little effect on sampling efficiency. Similarly Jasra and Singh suggest the use of a sequence
of tempered densities and associated metrics in sequential Monte Carlo sampling and this may have a
benefit in reducing computational costs. Looking to the extensive optimization literature may yield ideas
that are useful to MCMC development; indeed Welling draws attention to the importance of the burn-in
phase as optimization with detailed balance.

Block updating is a further way to reduce computational complexity as offered by Campbell, where
interblock independence is assumed in the metric tensor. Coolen goes further by considering the possibility
of finding a problem-dependent change of co-ordinates that makes the algorithm less compute intensive.
This is reminiscent of the centred and non-centred parameterizations described in Papaspiliopoulos et al.
(2007), an example of which is the whitening transformation of Murray and Adams.

Automatic differentiation, parallel computation and the future
Mansinghka makes a compelling case for the investigation of automatic differentiation methods for the
MMALA and RMHMC algorithm. Certainly the work of Siskind and Pearlmutter (2008) makes this
argument all the more persuasive and we are eager to see these tools developed further. It remains to
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be seen how amenable manifold-based sampling methods will be to leveraging computational benefits in
massively parallel environments, as suggested by Guerrera, Rue and Simpson. Both Welling and Gelman
ask about very large data sets and large-scale models, and we agree with Welling that those of us working
in this area still have some distance to travel.

Applications
The discussion highlights several application areas for manifold MCMC sampling, some of which may
yet demand further theoretical and methodological development. Sanz-Serna mentions promising results
in molecular dynamics, whereas Gripton and Christie describe an application in estimating permeability
fields, and the full results of these studies will indeed be of great interest. Guillas highlights the need for
efficient sampling methods for Bayesian calibration and emulation of computer models. This is a fasci-
nating area of application which is ripe with many challenges for the statistician; indeed Cao and Wang,
and Penny using the Fitzhugh–Nagumo model as an example, indicate some of these issues when cal-
ibrating non-linear differential equation models. They correctly point out that starting an MCMC run
at points in the parameter space that do not include the true parameter value is more realistic and we
have addressed this issue by the use of population MCMC sampling. Cao and Wang comment on iden-
tifiability for partially observed data. This has implications in the form of the Fisher information matrix
as it will be rank deficient and points to issues such as sloppiness, and the pathological example that was
presented by Stathopoulos and Filippone. We note that Mira and Haario obtain favourable results on the
Fitzhugh–Nagumo example where a standard Metropolis–Hastings scheme is employed, with proposal
covariance related to the system Jacobian at the maximum likelihood estimate. For more complex models
with a larger number of parameters and partial observations the issue of sloppiness arises and the matter
of finding the maximum likelihood estimate is a challenge in itself; see the contribution by Transtrum,
Gutenkunst, Chen and Sethna. We envisage that it is in such situations that the manifold methods will be
found to be particularly powerful.

Cox, Vehtari and Vanhatalo, Filippone, and Murray and Adams all raise relevant questions about the
application of models with latent Gaussian processes, in particular the log-Gaussian Cox model of the
paper. The main issue which arises is the joint sampling of latent functions and covariance function param-
eters for which Filippone illustrates the inefficiency of the scheme that is adopted in the paper. The potential
of a non-centred parameterization (Papaspiliopoulos et al., 2007), such as the whitening transformation,
is highlighted by Murray and Adams, as well as Filippone, and is worthy of further generalization in
geometric terms.

Further work will be required to address the question by Griffin of the suitability of manifold MCMC
sampling on stochastic volatility model extensions. At present it remains unclear how to design mani-
fold-based MCMC algorithms for the epidemic models with discontinuous density functions suggested
by Kypraios although a combination of particle MCMC and manifold techniques may be one way
forward.

User adoption
Both Roy and Honkela highlight the potential barrier to adoption of manifold Monte Carlo methods
as being the need to obtain expressions for the metric and the manifold connections. This amounts to
obtaining expressions for first-, second- and potentially third-order derivatives. Newton style optimiza-
tion schemes require the Hessian matrix, as is the case if confidence intervals are required for maximum
likelihood estimators. Indeed third-order derivatives are employed in integrated nested Laplace approxi-
mations, so we would argue that the analytical effort in obtaining the metric tensor and the components
of the connection is no more than that required in setting up Newton style optimizers, variational, inte-
grated nested Laplace approximation or expectation propagation types of approximate inference methods.
It certainly is the case that a rudimentary appreciation of differential geometric concepts is required in
employing this methodology and there is no doubt that this would require additional effort by potential
users. As Rasmussen points out, recommendations for effective usage, a user manual as Draper suggests,
that do not require a mastery of the technical details may be necessary to ensure wide adoption of the
methodology, and this forms part of our on-going efforts.
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