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Using notions of supersymmetry we present an exactly soluble model of anyons with both statistical
and scalar interactions in 2+1 dimensions. We demonstrate that half-statistics particles with two spin
flavors condense into a local singlet state which is both a charge superfluid and a “spin metal” in the
sense that there is charge-pairing off-diagonal long-range order with gapless charge excitations but a gap
in the collective spin-mode spectrum. The present results shed considerable light on the mean-field

theory of fractional statistics.

PACS numbers: 74.65.+n, 05.30.—d, 73.50.Jt, 74.20.—z

An anyon is a particle in 2+1 dimensions obeying
fractional statistics' and may be viewed as a hard-core
boson (or a fermion) to which a flux tube is attached.
The statistical interaction is highly nontrivial and it has
so far resisted full solution. Some progress can be made
using a mean-field theory of statistics? in which the sta-
tistical flux is replaced by a uniform magnetic field Beg.
This idea? was first put to practical use in the theory of
the fractional quantum Hall effect> (FQHE), where
fermions in an external field Bex can be mapped onto bo-
sons in zero mean field (Beg+ Bex=0). The ordering
associated with the FQHE gap is revealed in the form of
algebraic off-diagonal long-range order (ODLRO) for
the composite particles (bosons plus flux tubes).* More
recently this idea has been greatly expanded and extend-
ed by Laughlin®’ to the case of semions (particles with
statistical angle 6/r=1/2) for which the mean-field
theory yields fermions filling the two lowest Landau lev-
els. Laughlin pointed out the remarkable fact that pairs
of semions can condense to form a Bose superfluid.

The mean-field approximation has several peculiari-
ties®~!9 since the purely quantum Aharonov-Bohm phase
is replaced by a classical Lorentz force and the particles
see a preferred (quantum) length scale /=(Ac/eB.g) /2.
This turns out not to be a problem in the FQHE since
the incompressible Laughlin state has a gap and its den-
sity is pinned at precisely this same length scale due to
the (physical) external field.* However, mean-field
theory for semions incorrectly suggests the existence of
an excitation gap analogous to that in the integer Halil
effect. Augmenting the mean-field theory with fluctua-
tions at the RPA level!' restores the linearly dispersing
density mode expected in a superfluid. A local increase
in density is accompanied by a compensating increase in
the local Beg such that the lowest two Landau levels can
remain filled and there is no preferred length scale.®!?

The purpose of this paper is to present an exactly solu-
ble model of anyons which sheds considerable light on all
these points and which totally bypasses difficulties in-

herent in the mean-field solutions. The model differs in
one (highly) nontrivial way from the usual one in that
the particles have an attractive hard-core interaction.
(The effect of the hard-core repulsion that is usually con-

“sidered is to prevent intersection of the boson world lines

and hence make the homotopy class of their braiding
well defined.!) The present model was inspired by recent
applications of supersymmetry and the Atiyah-Singer in-
dex theorem to particles in an arbitrary magnetic field.!?
We will prove below that the index theorem can be ex-
tended to the nontrivial many-body case where the flux is
not fixed in time but is carried on the particles them-
selves; i.e., for anyons. Consider the pair of Hamiltoni-
ans

N
H* =j§l ;- I; ¥ By,

with
BjEVanj=Z 2962(I'j_l'k) s
kst f

where IT;= —iV;+a;, 2D pseudoscalar notation is used
for the cross product, and without loss of generality we
take # > 0. We could interpret this as the Hamiltonian
of a collection of spin-aligned particles which have a
Zeeman energy corresponding to g factor 2, but prefer to
view the system as a collection of spinless fractional-
statistics particles with §-function scalar interaction (at-
tractive for H ™, repulsive for H ~). H can be factored
into an N =2 supersymmetric form

fIi =Z(jS)1.(jS) )
J

where Q,-i =IIf +iII}. Taking the vector potential to be
divergenceless, we define Slrl by af =¢**6/S. We see
that V}S = —B; and hence S is proportional to the
Coulomb energy of an associated classical plasma

S=——6= Z lnlrj—rkl.
T k<j
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It is straightforward to verify that the state defined by
v =flzle *S=f1z1 I1 lz; —z¢| ~9,
£>j

where f is any entire function of the z’s (with z;
=x;—iy;), is annihilated by Q;* for every j and hence'*
is an exact zero-energy eigenstate of H ™. The zero-
energy eigenstates of H ~ are

v~ =flzle S=fLz1 [T |z; —z| T¥~.
i<y

‘These latter are unfortunately not normalizable except in
the presence of a finite external field (B <0) which in-
troduces the extra factor exp(+BenX|z;]%/4) into the
solution. These states were previously known. %13

We turn now to the question of singlet superconduc-
tivity for half-statistics particles which carry either ordi-
nary spin'® or a flavor quantum number related to
species doubling on a lattice.!” (Note spin as used here
has nothing to do with the spin or Zeeman energy used
in the supersymmetry.) Consider the following state
written in “Greek-Roman” notation'® ® =A¥grlz1(q,
a...,eB8, ...,8), where A is the antisymmetrizer,
and « and f§ are the up and down spinors, respectively.
The spatial part of the wave function is given (in the fer-
mion representation) by

YGR = H (z; —fj)(f[i] —z_[j])es s
i<j

with

eS=T1 |zi—z;| " zig—zn] =12
i<j

x[Tlzx =z ~V2. n
P
In our notation i=1,2,...,N and [jl=N+1,

N+2,...,2N refer to spin up and down, respectively.
From the generalized index theorem, ® is an exact,
zero-energy eigenstate of the semion Hamiltonian with
the appropriate 8-function attraction among all the par-
ticles (independent of flavor). The Hamiltonian is thus
spin independent and @ is a spin singlet since it mani-
festly obeys the Fock cyclic condition.'® [Indeed, ® has
the same spin symmetry as, and is (as will be shown
below) the unique adiabatic continuation of, the mean-
field solution consisting of both spin states of the lowest
Landau level being filled.]

Provided that we are interested in expectation values
of operators which do not flip spins, we are allowed to
deal only with ¥gr and ignore the antisymmetrization
(since nontrivial permutations of the spinors yield or-

|

thogonal states'®). It is a remarkable fact that
N

|¥er|?=exp | — B _;_(_Qi%')ln]zi -zl |,
i<j

where the sum runs over all 2N particles, f=1, and
gi == 1 for up and down spin, respectively. That is, the
particle distribution is identical to that of the classical
neutral Coulomb gas!® with spin playing the role of
Coulomb “charge.” The coupling constant is I'=gq?
=1, which is well on the high-temperature side of the
Kosterlitz-Thouless transition occurring?® at I'=4.
Hence this state is a spin “metal,” That is, opposite
spins are not bound into real-space pairs (as they would
be for I'>4), but rather spin currents are free to flow
and there is perfect, “metallic” screening of isolated
spins with a screening wave vector given in the Debye
approximation by x2-27moﬁq 2. where ng is the mean
particle density. Thus this state is not merely a singlet
but a local singlet” in the precise sense defined by Gir-
vin.?! In the single-mode approximation®?? (SMA) the
spin-density collective excited state is ¥y =pZ® with

woo
pE= 2, ofe™ .
/=
The energy of the collective mode is A(k) =f(k)/s°(k),
where f(k)=h2k?/2m is the oscillator strength and the

spin structure factor is given in the Debye approximation
by

s°(k)=N "UD|pZipP|®) =k 2/ (k2 +x2) .

Thus there is a finite “spin-plasmon” gap A(k) =A2(k?
+x2)/2m, as is appropriate for a spin metal. Note that
the corresponding S°= x| spin waves are degenerate
with the S*=0 mode derived here. (The corresponding
structure factors involve flipped spins but are the same as
5% because of rotational invariance of the singlet state
®.)

At the same time, this spin metal is also a charge
superfluid. To see off-diagonal long-range order?*?* in
the two-body density matrix, it is necessary (as in the
FQHE *) to make a singular gauge change'

- K=z
For=¥ LB
GR GRI/;I |2k =2zl

The effect of this is to cause each particle to see — & in-
stead of + ¥ flux quantum on particles of the opposite
spin. This in turn renders an up-down spin pair “gauge
neutral” with respect to the statistical field. Now consid-
er the two-body density matrix

5(21,2111;21,2'{11)-Z“'N(N—l)kl;llfdzn fdzzm Yer(zi,22, . .y zmizhinzia, - - -y ziw)

XWGR(Z],ZZ, .
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where Z is the norm of ¥gr. Following the discussion in
Ref. 4, this expression can be analyzed as a neutral plas-
ma of 2(N —1) charges plus four “impurities” located at
z1, zn), z1, and z{;3. The state exhibits true two-body
ODLRO since if zy=zj and z] == z{;1, the pairs form
charge- and gauge-neutral objects which are invisible to
the plasma. (“Charge” here means the fake Coulomb
charge corresponding to spin.) The free energy of the
plasma and hence 5 become independent of |z; —z{| at
large distances. One can estimate the coherence length
to be E~ng "2 (where ng is the mean density) since
phase fluctuations in the integration will become severe
once |z,—zp| exceeds the average particle spacing.
This is similar to the RPA result for spinless semions.!!

Associated with the ODLRO is a gapless Goldstone
density-wave mode. For a system of NV anyons with point
flux tubes and a é-function scalar interaction of strength
& simple dimensional analysis shows that the ground-
state energy per particle is linear in the density n,
E=21(6,g)Nn, so that the static susceptibility is precisely
2(0)=—1/2A. In the single-mode approximation,®?2
the speed of the collective density mode is v =[—n/
mx(0)1V2=(2n\/m) "2, where m is the mass. Thus,
knowing only the ground-state energy, we can compute
the speed of the collective mode. The supersymmetric
point is like the ideal Bose gas in that A =0 (however,
any small perturbation will render A finite). It also fol-
lows that ¥ must be scale invariant (i.e., homogeneous)
at the supersymmetric point.

The present model contains both a scalar and a statist-
ical gauge-field attraction.” Therefore we cannot prove
that the gauge forces alone are sufficient to produce pair-
ing,” although this appears to be well estab-
lished. ™ !1:23-25 1n a physical system, we expect the
“flux tubes” to result from an effective low-energy action
for some bare theory and hence the flux tubes will have
some finite size (i.e., there will generically be F, wF* and
higher terms in the Chern-Simons action). Fortunately
the index-theorem results still apply in this case. We
need only replace Eq. (1) by the corresponding
Boltzmann factor for a plasma of finite-size particles of
the appropriate form factor. Using this result we can ex-
plicitly adiabatically continue the state from the mean-
field limit (infinite diameter flux tubes) to the anyon lim-
it (infinitesimal diameter flux tubes). However, a techni-
cally more convenient procedure is to follow the heuristic
prescription of Greiter and Wilczek?® which keeps the
flux-tube diameter infinitesimal but gradually “gathers
up” flux from the background and adds it to the flux
tubes. Then we have at any stage in this process Eq. (1)
replaced by

N
eSe=e 1 ~DSexp —ﬁ 2 Uze|*+zwl» |,
k=1

where /2=1/20no, and S is the same as in Eq. (1). For
any value of a between the mean-field limit (@ =1) and

the anyon limit (¢ =0) this is the exact solution. Within
the SMA the collective spin excitation gap is indepen-
dent of @, but because of the preferred length scale //~/a
set by the mean field, there is a charge gap which varies
as A, =ahw., where ho, is the mean-field Landau-level
spacing.

These arguments suggest that a good variational wave
function for spinless semions is

v=PpP,[7,z]e, )

where S is given by Eq. (1) and P, is the polynomial
part of the mean-field solution (for two filled Landau
levels). Because P, depends on both z and Z, ¥ does not
fulfill the index-theorem conditions and so must have
positive energy. However, the extra freedom permits P,
to vanish linearly when any two particles approach each
other, making this an allowed wave function even for the
case of hard-core repulsive interactions. Numerical esti-
mates of the variational energy of this state are under
way.?’ ,

In the Laughlin plasma analogy*’ for the mean-field
wave function, the Gaussian piece plays the role of a
neutralizing background charge. Hence we can view the
supersymmetric solution presented here as gathering up
the background charge and placing it on the particles,
thereby converting the problem from an incompressible
one-component plasma to a compressible (scale-in-
variant) neutral gas. One can gain further insight into
this by making a Hubbard-Stratonovic decoupling of the
¢S term (ignoring various formal divergences?®),

l[/¢[Z] ,

1
\If~fD¢exp [“ 4—9fd2r|V¢(r)|2
where

w,lz1=P,[z,z]exp [—fdzrp(r)gb(r)] .

We can interpret ¥ as the RPA wave function for the
problem in the sense that it is a linear superposition of
(approximate) mean-field states y, corresponding to a
fluctuating background field [B(r) = —V29p=26pl. Be-
cause of the plasma neutrality, these states tend to have
the particles follow the background flux (charge) as it
fluctuates, in the same spirit as the RPA.!!

In this context it is useful to consider the test case® of
ordinary bosons, treated as fermions plus flux tubes at
6/r=1. The mean-field theory gives one filled Landau
level (and a large gap)

WMF=i11(E;—Ej)exp[——A";—zzkzlzkp] . (3)

Moving the background charge onto the particles in the
manner discussed above yields

v=T] G —zplz—z| . 4)
i<j
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Making a singular gauge transformation' to turn this
back into a boson state gives precisely ¥ =1, which is of
course the exact ground state for free bosons and, in an
important sense, a much better approximation even to
the hard-core repulsion problem than the mean-field
state in Eq. (3). In particular, this state explicitly exhib-
its the correct ODLRO, whereas the mean-field state
(after singular gauge transformation back to the boson
representation) only exhibits algebraic ODLRO since it
is incompressible.* Thus this test case lends strong sup-
port to the thesis that Eq. (2) represents a good varia-
tional state for spinless, hard-core repulsive anyons.

Finally, we note that in analogy to the FQHE, quasi-
particle excitations are charged vertices.>*"*% Jackiw
and Pi’*® have recently considered soliton solutions to a
nonlinear Schrédinger equation closely related to the
present model. Johnson and Canright®' have-extended
the supersymmetry idea to the study of excited states. It
is also straightforward to generalize the solutions
presented here to the case of pure charges interacting
with pure flux tubes, and to spin-S anyons at 8/z=1/S.
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