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GLASSES 

Glasses are amorphous like liquids, but are rigid like crystals. To a chemist, this 
may seem natural: silicon dioxide, when covalently bonded into a well-relaxed random 
network, should resist deformations as an elastic solid just as it would in a crystalline 
network. To a theoretical physicist, this is more mysterious. What broken symmetry’ 
causes the rigidity‘! 

Of course, the chemist may in the end be right-the observed rigidity may be due 
purely to short-range order. I f  so, glasses must flow like a (very viscous) liquid on 
sufficiently long time scales. Even though it is not favorable for any individual bond to 
break, rearrangements of sufficiently large clusters of atoms will allow the energy to 
decrease or remain the same. (If the order is short range with a range R, a cluster of 
size larger than R will typically allow such an internal rearrangement.) At any finite 
temperature, these rearrangements will proceed by thermal activation at  a slow but 
nonzero rate. Any external stress applied to the system will produce a bias in these 
rearrangements, producing in the end the finite shear rate characteristic of a liquid. If 
the glass is truly solid, it must have some sort of long-range order to produce infinite 
barriers to rearrangements. The study of the glass transition is the study of the phase 
boundary between the fluid liquid and the rigid glass. This subject is controversial, and 
has recently seen several interesting developments. 

In  this paper we will not discuss the glass transition. We will deal partly with the 
universal low-temperature2 properties of glasses, which are not as controversial; 
indeed, in many ways they are quite well understood. The tunneling center t h e ~ r y ~ , ~  
explained why glasses have specific heats proportional to temperature and thermal 
conductivities proportional to T 2 ,  in contrast to insulating crystals where both 
properties are proportional to T 3  for low temperatures T.  I t  predicted correctly that 
glasses would have a saturable ultrasonic attenuation and a “time-dependent” specific 
heat; the experimental specific heat varies logarithmically with the measuring time. 

We will also deal with the low-frequency response of glassy materials. In the 
experimental phenomenology, there are two kinds of low-frequency response in glasses, 
with quite different signatures, which often (or always) coexist. There has been much 
study of the a-relaxation processes because of their relationship to the glass transition. 
The a-relaxations typically are observed in the supercooled liquid, and have a 
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characteristic time scale that appears to diverge at  a temperature somewhat below the 
temperature a t  which the liquid falls out of equilibrium (freezes into a glass); their 
time dependence often is well fit by the Williams-Watts or Kohlrausch form ~ ( t )  = 

e&’’‘)’. The relaxations we will discuss almost certainly correspond to the P-relaxations 
in glasses, which have not been studied much. The @-relaxations are observed in the 
glass at lower temperatures; they often span many decades in frequency, and their 
characteristic time scale diverges only at  zero temperature, with an Arrhenius law 
suggesting thermal activation. 

A glass will have a completely different configuration of atoms each time it is 
formed. Thus very generally, whether or not the glass is truly rigid, there will always be 
some local rearrangements of the atoms with very small energy costs; since the atoms 
have no definite positions, they have flexibility in their local configurations. The 
tunneling center theories use these rearrangements to explain the universality of the 
low-temperature properties of glasses. All glasses have local rearrangements of atoms 
with nearly degenerate energies; quantum tunneling of these atoms between their two 
configurations produces many low-energy excitations with long time scales; these 
“two-level systems” produce the observed behavior, which is thus naturally common to 
all glasses. These rearrangements can also proceed by thermal activation, and thus 
provide a natural explanation for the low-frequency ( p )  relaxation. 

The experimental methods used to understand the structure of crystals are largely 
useless in studying glasses. Although some average information about the microscopic 
structure of glasses such as the radial distribution function can be measured, relatively 
atypical regions like tunneling centers are hard to study. (Tunneling centers that 
contribute to the specific heat below 1 K involve maybe 1 molecular group in lo5.) The 
development of the tunneling center theory has been hindered both by the lack of a 
microscopic picture of the centers and by the related lack of experimental or 
theoretical information about the distribution of tunneling center parameters. The 
relaxations responsible for the low-frequency properties in glasses are  also largely not 
understood; there is little upon which to base a theory. 

Thus the discovery that certain crystalline systems have many properties charac- 
teristic of glasses is an exciting opportunity. The mixed crystal (KBr),-,(KCN), shares 
many properties with glasses; however, unlike glasses, its structure is well understood. 
In the next section, we will review some of what is known experimentally about the 
glassy behavior found for intermediate values of x, and give some important parame- 
ters describing the dilute (x = 0) and pure (x = 1) limits. In the third section we will 
discuss our mean-field theory5-’ and describe its predictions for the dielectric loss peak 
and the time-dependent specific heat a t  x = 0.5. In the final section we will discuss the 
relationship with true glasses. 

EXPERIMENTS ON (KBr),-.(KCN), 

(KBr)l-x(  KCN), forms cubic single crystals with a sodium chloride structure. The 
cyanide ions, C W ,  are shaped roughly like (North American) footballs, and randomly 
displace bromines in the lattice. Since the molecular size of the cyanide ion is close to 
that of bromine, mixed crystals of high quality with no apparent chemical clustering 
can be made over the whole range from the dilute limit x = 0 to the pure potassium 
cyanide limit x = 1 (FIG. I ) .  For very low cyanide concentrations (x 5 0.01) the 
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FIGURE 1. A theorist's conception of a typical (1,0,0) plane in (A) dilute, (B) pure, and (C) 50% 
(KBr),-JKCN),. The arrows on the cyanide molecules indicate the direction of n. The cyanide 
molecule in A tilts out of the plane of the paper. 

cyanides act as independent tunneling centers; for pure KCN the cyanides align into 
ordered phases a t  low temperatures (FIG. 2). For reasonably high cyanide concentra- 
tions (0.6 < x i I )  the cyanides still develop long-range orientational order, although 
the phase diagram becomes rather complicated. In the range 0.1 5 x < 0.6, the 
cyanides freeze into a disordered "orientational glass" state. In this section, we will 
discuss each of these ranges in turn, briefly summarizing the relevant experimental 
information. 

In the dilute limit (F~G.  I h )  each cyanide is isolated and has a cubic crystal 
environment. The cyanide ion has eight ( 11 1 ) equilibrium orientations: with a barrier 
height of 36 K separating them. At low temperatures the cyanide tunnels between 
these equilibrium orientations, producing, for example, a Schottky anomaly peak in 
the specific heat and a dip in the thermal conductivity. This behavior is well 
understood." In particular, we will use the effective moment of inertia of the cyanide 
ion measured in the dilute limit (2.65 x g - cm2);" this is larger than the 
corresponding moment of cyanide in vacuum, because of an effective mass contribution 
from the motion of surrounding ions during the tunneling p r o c e ~ s . ' ~ . ' ~  Note the other 
important fact that we learn from the dilute limit: the crystal field contribution to the 
local potential is small. In our model, we can safely ignore the 36 K contribution of the 
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crystal field to the barrier height; the cyanides start as free rotors, and cyanide-cyanide 
interactions will determine the barrier heights. 

Pure potassium cyanide (FIG. 1 B) goes through two orientational phase transitions. 
The higher temperature ferroelastic transition a t  168 K aligns the axes of the cyanide 
ions without introducing dipolar order; the lower temperature antiferroelectric transi- 
tion at  8 3  K orders the cyanide dip01es.l~ We can conclude from this (and from 
measurements in the dilute limit) that the forces that distinguish between the carbon 
and nitrogen ends of the ion are relatively weak; we shall ignore the dipole-dipole 
interactions in our model, and concentrate on the stronger elastic forces, which in pure 
potassium cyanide act to align the quadrupolar axes of the ions. In the ferroelastic 
phase, each cyanide ion has two equilibrium orientations separated by 180"; thermally 
activated flips between these orientations produce a dielectric loss peak. From the 
temperature dependence of this peak estimated from combined dielectric loss, nuclear 
magnetic resonance, and ionic thermal conductivity measurements, we discover that 
the barrier height for flipping a cyanide a t  low temperatures is 1570 K; this gives us a 
measure of the cyanide-cyanide interaction strength. There is also a softening of one of 
the phonon modes associated with this transition. (This transition, which is first order, 
has been studied at  length: we will not discuss it here.) The ferroelastic phase transition 
in a variety of alkali cyanides is well described by quadrupolar mean-field theo- 
ries;7,15-22 our model for the diluted system is a straightforward generalization of these 
theories. Finally, the asymmetry energy for a cyanide dipole in the low-temperature 
antiferroelectric phase (the energy difference between the preferred orientation and 
the metastable flipped orientation) has been measured to be roughly 340 K (L. Wu, Y .  
H. Jeong, and S. R. Nagel, personal communication); we shall use this as a crude 
estimate of the spread of asymmetry energies in the glassy cyanides. 

For cyanide concentrations above x = 0.6, the low-temperature phase has 
long-range orientational order. The phase diagram in this region is quite c o m p l e ~ ; ~ ~ , ~ ~  
the orthorhombic ferroelastic phase of the pure cyanide gives way to triclinic, 
monoclinic, and rhombohedra1 regions, which sometimes coexist. (There appears not to 
be any long-range dipolar order (J .  M. Rowe, personal communication) in any phase 

FIGURE 2. A phase diagram for 
(KBr),_,(KCN),. Note that the univer- 
sai glassy properties extend into the I 
region of long-range orientational disor- Y 
der (x = 0 7). Reproduced here with +- 

permission, from Loidl and Knorr.' 
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other than the orthorhombic phase). Such complex phase diagrams are common in 
frustrated systems; the elastic interactions between cyanides depend on their relative 
positions, and can prefer either parallel or perpendicular relative orientations. We 
argue below, however, that this complexity is not central to the properties (low- 
temperature properties and dielectric loss) that we wish to understand; our model will 
ignore this frustration. The mean-field theory of Kanter and S o m p o l i n ~ k y , ~ ~  which we 
will briefly discuss in the next section, is very frustrated, but ignores the dilution; their 
results would seem to indicate that the frustration is only partial. Finally, we will note 
but not discuss a recent announcementz6 that the orientational frcezing transition 

lJobs !o',o oh0 oko 

I 

Temperature (K )  

FIGURE 3. Specific heat, determined from the 
temperature rise of the quasi-adiabatic sample 
after the times t indicated. The curves are of the 
form C = A(r)T + CDT3, where C, is the Debye 
value determined from elastic measurements. 
Adapted from Meissner et aL6 

becomes second order a t  x = 0.73, in the middle of the range 0.6-1 of complex 
crystalline phases. 

At low temperatures and intermediate concentrations, (KBr), JKCN), shows all 
of the universal properties of glasses. The specific heat is proportional to T, and is time 
dependent (FIG. 3); the thermal conductivity is proportional to T2,  and crosses over a t  
-2 K into the plateau characteristic of gla~ses .~ '  The dielectric constant is glassy.2s 
Ultrasonic attenuation and phase velocities are characteristic of glasses.29 It has 
recently been demonstrated that the low-temperature glassy properties persist into the 
crystalline region6 to x = 0.7. Thus the glassy behavior is not closely related to the lack 
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of long-range order in the cyanides; it may well be that the low-temperature properties 
of glasses are quite independent of the glass freezing transition. 

Let u9 discuss the specific heat a t  length. Consider the specific heat measurements 
of Meissner and Knaak6 for (KBr),,(KCN),, shown in FIGURE 3 .  Note first that the 
specific heat at a fixed temperature depends on the time scale of measurement (in this 
experiment, on the time passed since the heat pulse was added to the sample). The 
specific heat near 0.1 K varies by nearly a factor of two as the measuring time changes 
from to 10 sec. This reflects the long internal relaxation times for the cyanide 
tunneling centers. The tunneling centers in glasses always produce this time depen- 
dence: they have a wide range of tunneling rates, and absorb or emit energy as they 
come to equilibrium. As the time scale becomes longer, the measured specific heat 
includes more of these slow degrees of freedom, and therefore becomes larger. Note 
second that the specific heat crosses over from linear in T to cubic in T at a 
temperature around 0.5 K. The CUiveS fit to the data are of the form A ( t )  T + C, T3.  
The linear term A ( t )  is universally found in glasses; its magnitude and time 
dependence are within the normal range. The cubic term is not fit to the data; it is the 
Debye specific heat due to phonons calculated from the elastic constants. It gives a 
good fit to the data around 1 K (although beyond 1 K there are deviations). Usually in 
glasses the Debye contribution does not exhaust the cubic term, and there is an 
anomalous T3 contribution to the specific heat. For (KBI-),~(KCN),, this anomalous 
term is absent within experimental accuracy. 

The low-frequency behavior of (KBr) ,,(KCN), has caused some confusion in the 
past. There are several experimental probes of the dynamics that have been used. 
Ultrasonic, Brillouin, and inelastic neutron-scattering experiments were used to 
measure the temperature a t  which the sound velocity softened at  high frequencies; 
dielectric loss measurements were used to measure characteristic relaxation rates a t  
low frequencies. Two groups interpreted the results in terms of a single Arrhenius 
law-suggesting that the relaxation slows down continuously with a single activation 
energy and that there was no glass transition..”.” Not everyone accepted this view; 
Rowe, Rush, and Michel (personal communication) claimed that continuous slowing 
down was incompatible with their neutron-scattering measurements, that dielectric 
loss was probing a different susceptibility (in particular, was observing 1 SOo cyanide 
reorientations), and that the sound velocity measurements when taken alone showed a 
much steeper temperature dependence (compatible with a freezing of the cyanide 
quadrupolar order). These ideas have now been confirmed by torsional oscillator 
experiments that overlap the frequency range of the dielectric loss measurements.8232 
These measurements show that the frequency of the sound velocity anomaly does 
decrease very quickly with temperature, and is decoupled from the frequency of the 
dielectric loss peak. (Jt is tempting to identify the former with the a-relaxations in real 
glasses, but the analogy will probably not hold; the disorder here is fixed whereas in 
glasses the disorder is freezing in while the glass is forming.) Thus the elastic 
interactions between the cyanide quadrupoles freeze their long axes into a disordered 
configuration, but the cyanide ions remain able to flip over, just as in pure potassium 
cyanide. 

The dielectric loss measurements gave more information than just a characteristic 
frequency. FIGURE 4 shows the frequency-dependent dielectric loss for 
(KBr),5(KCN),5, at three fixed temperatures, measured by Birge et d3’ Notice three 
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FIGURE 4. Dielectric loss as a function of 
frequency for (KBr),,(KCN),,.  The horizon- 
tal scale is measured in decades. Note that c2 
versus log,,w is shown for several temperatures 
with least-squares Gaussian fits (solid lines). 
Adapted from Birge et al.” 
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things about these data. First, the peaks span up to eight decades in frequency, 
indicating the very broad range of relaxation times characteristic also of glasses. (In 
contrast, the dielectric loss peak in KCN forms a good Debye peak with a width of 1 . I  
decades.) Second, the peak shifts to lower frequencies and broadens as the temperature 
is lowered. Indeed, the peak frequency follows an Arrhenius law over their experimen- 
tal range; also, if the relaxation is due to a distribution of barrier heights, the peak 
should broaden like 1 / T (differences in activation energies producing larger differ- 
ences in rates a t  lower temperatures). Third, the loss peak is described beautifully by a 
log-normal distribution (the solid Gaussians in FIGURE 4). 

Birge et al.” proposed that their log-normal loss peak was due to a Gaussian 
distribution of barrier heights hindering cyanide reorientations 

P ( V )  = ( fiuJi exp [ ( V - V o ) 2 / ~ ; ]  

Theories involving distributions of relaxation times have become unpopular in the 
study of glasses. Independent centers relaxing with a distribution of barrier heights 
suffer from the same criticism; almost any relaxation, whether due to independent or 
collective effects, can be described by a suitable distribution. It is crucial for credibility 
that the distribution be temperature independent. If the barrier crossing rate is 
Arrhenius 

the dielectric loss is well described by the distribution shown in equation 1 with a weak 
temperature dependence 

Vo = 659 K 

O; = 300 K - 1.5 T 
(3) 

That is, the peak position of the loss and most of the width variation are characteristic 
of a distribution of barrier heights. The experimental data a t  different temperatures 
test different regions of the barrier height distribution; FIGURE 5 shows the range over 
which the dielectric loss measurements have checked the Gaussian form of the 
distribution. 

Our model for (KBr),_,(KCN), is based on the mean-field theory of ferroelastic 
freezing in pure potassium cyanide.’ One could argue that it is overambitious to 
extrapolate from a theory of long-range crystalline order to a glassy state that is 
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separated from it by several other crystalline phases. I claim that this is not so; the 
properties we are interested in are local, and do not depend strongly on frustration or 
nonexistence of long-range order. Despite the complexity of the phase diagram, the 
dielectric loss peak corresponding to the 180’ cyanide reorientations in the pure 
cyanide broadens smoothly and continuously into the loss peak observed in the glassy 
material.” The glassy low-temperature properties, on the other hand, extend into the 
region with long-range crystalline order, as noted above. Thus there are good 
experimental reasons to believe that the low-frequency and low-temperature behavior 
can be described by a diluted ferroelastic mean-field theory. 

MEAN-FIELD THEORY 

In  this section we will develop a mean-field theory for (KBr), JKCN),., in terms of 
a diluted lattice of interacting quadrupoles. There have been other theories applicable 
to this stimulated interest in it by predicting 
that it would have glassy low-temperature properties. The approach of Michel et is 
probably closest to ours, although they concentrate on the glass transition and mostly 
do not explore lower temperature behavior. 

First, we will discuss the dielectric loss. The Gaussian form for the peak will follow 
from the central limit theorem; its width will be explained as fluctuations in the 
number of nearest neighbors. The (weak) temperature dependence of the barrier 
height distribution will be explained from the temperature dependence of the order 
parameter. Briefly, the barrier height to reorienting a cyanide will be due to 
cyanide-cyanide interactions, and will become smaller as the surrounding cyanides 
become thermally disordered. Second, we will discuss the time-dependent specific 
heat. Extrapolating the Gaussian distribution to very low barrier heights, we can 
(largely independently of the mean-field theory) predict the number of active 

indeed, Fischer and 

FIGURE 5. Main graph: Proposed Gaus- 
sian distribution of barrier heights for 
(KBr)o,(KCN)os at  zero temperature. The 
darkened regions of the curve represent the 
range over which the dielectric loss measure- 
ments have tested the distribution. Expanded 
section: Low-barrier tail showing those tunnel- 
ing centers that contribute to the specific heat 
below 1 K. Note that V,,,,,(t) is the largest 
barrier to reorientation that a cyanide molecule 
can tunnel through in a time 1; V,,, = 96 K for 
t = 1 sec. 
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tunneling centers as a function of the time scale. From this extrapolation, we are able 
to get a good description of the time dependence of the specific heat, and its absolute 
magnitude. 

We could describe the orientation of a cyanide molecule by a vector n pointing from 
the carbon to the nitrogen. Since the cyanides remain free to Rip by 180°, however, we 
should ignore the diffcrcnce between the carbon and nitrogen ends of the molecule by 
writing Hamiltonians that are even in n. Thus, we shall use the quadrupole 
QLB = ( n b 5  - to describe the orientation of ion i. Our Hamiltonian will give the 
elastic energy of the crystal in terms of the Qua. I t  will describe the elastic forces on a 
cyanide due to its cyanide neighbors; these forces are mediated by lattice deforma- 
tions. 

There are two model Hamiltonians that have been uscd to study this problem. The 
one we will discuss a t  length incorporates only the effects of dilution. If we let x, = 1 if a 
C N -  occupies site i, and x, = 0 if a Br- occupies site i ,  our Hamiltonian is given by 

This Hamiltonian will generally have a ferroelastic ground state; some cyanides have 
more neighbors than others, but all cyanides prefer to be aligned. The mean-field 
theory for this Hamiltonian can easily be solved explicitly,’ as we shall see. 

The other model, studied by Kanter and S~mpolinsky,~’ ignores dilution but 
incorporates frustration in a fashion paralleling spin glasses. Their Hamiltonian is 

( I J )  

where the coefficients J;@’* are, apart from obvious symmetries, independent random 
variables. They solve this approximately in mean field, using replica symmetry 
breaking. It is clearly true that their model contains more of the glassy physics; they 
have a multiplicity of disordered ground states. The trivial, unfrustrated way we have 
included the disorder produces many ground states only insofar as each cyanide has 
two orientations. In  the microscopic energetics of the tunneling centers, however, 
surely the dilution is important (cyanides with few neighbors will have lower barriers), 
and surely the frustration is only partial (the cyanides are not dilute; all the 
near-neighbor cyanides will presumably have the same J J .  Indeed, the width of the 
barrier height distribution predicted from Kanter and Sompolinsky’s model is far too 
large, and the predicted distribution is not Gaussian. 

For the diluted Hamiltonian of equation 4, the force experienced by a quadrupole 
a t  site i is given by the derivative 

We now make a mean-field approximation that all neighbors are equivalent to an 
average neighbor with field strength Q,8.b Thus, if  the number of neighbors is 

bThis is exact on a Bethe lattice with a random number of neighbors, if  the average 
coordination number Z ,  is taken to infinity keeping the probability distribution P ( Z / Z , )  of 
having Z neighbors fixed. 
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With the assignment J, = JN,, this gives the effective mean-field Hamiltonian 

7 f c ~  = - JNiQa,QL, = JiQa&, (8) 

Now the average neighbor is not an average cyanide. Those cyanides that have 
more cyanide neighbors affect proportionately more cyanides, and thus contribute 
more to the mean field. Let there be Mcyanides in the sample. Then the probability of 
a cyanide having N neighbors is 

On the other hand, the probability that a neighborj of a cyanide has N neighbors is 

N 
= - P ( N )  

NO 

where No is the average number of neighbors. That is, each cyanide is counted once in 
P ( N ) ,  but counted Ni times as a neighbor in P' (N) .  The average quadrupole moment of 
a cyanide depends on the number of its neighbors. 

Thus the average neighbor moment Q will then be an average over N ,  weighted by 

where J ,  is the mean of thedistribution P ( J ) .  
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By a change of coordinates, Q,, can be diagonalized. We assume Q is uniaxial, with 
major axis in the z direction. We can then write the traceless symmetric tensor Q in 
terms of a single function a( T )  

- a ( T )  0 

Q.. = 

In terms of a, ?Ye, is then 

%,, = Ja(T)(l - 3n3) (14) 

and the barrier height for a 180” flip of a cyanide orientation is 

V = 3Ja(  T )  (15) 

Thus within our model, the distribution of coupling constants J is directly scaled 
into a distribution of barrier heights V by a temperature-dependent order parameter 
a( T ) .  We must now discuss the form of P ( J ) .  The coupling of an ion to the mean field, 
and therefore the barrier hindering the dipolar reorientation, will be a sum of 
contributions from the (randomly distributed) neighboring cyanides. Our model 
assumes that these contributions are uncorrelated; since each cyanide has 12 near 
neighbors, the distribution is given by the binomial distribution 

P ( N )  = 2T1’[:) 

This distribution is very nearly Gaussian; if we assumeC that next-nearest-neighbor 
interactions are large enough to smear out the discreteness in the tails, the central limit 
theorem implies a Gaussian form for P ( J )  

P ( J )  = (&a,)-’ exp [ - ( J  - J,) ’ /u~] (17) 

where the mean coupling Jo will scale linearly with the cyanide concentration x. (This 
also implies that the transition temperature scales roughly with x,’v3’ which is pretty 
accurate (FIG. 2) . )  Using equation 9, this leads to a barrier height distribution of 
precisely the form seen in equation 1 with V, for (KBr)o,5(KCN)o,5 half that of the 1570 
K Arrhenius barrier height for the dielectric loss peak in pure KCN. Thus the 
mean-field prediction for the mean coupling strength in (KBr),,(KCN),, is 20% 
higher than the experimental value V, = 659 K. The ratio of the width to the peak of 

‘This is a crucial assumption, as the entire contribution to the specific heat comes from 
cyanides with “between zero and one neighbors.” On the one hand, we can see in FIGURE 5 that 
the dielectric loss peak remains Gaussian and smooth to quite high barriers; if it is symmetric and 
represents the barrier height distribution our extrapolation is justified. On the other hand, P ( J )  is 
convolved with a Debye peak to produce the dielectric loss, which may smooth out effects of 
discreteness. There is a recent report of evidence for some kind of discreteness in Brillouin 
scattering off (KBr),,,(KCN),,,.38 
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the (nearly Gaussian) binomial distribution is l / & ,  this prediction is 12% smaller 
than the experimental ratio u/Vo = 300 K/659 K. 

In the rest of the paper, we will use the experimental values for the zero 
temperature barrier height distribution (equation 3) to determine the distribution of 
coupling constants (rather than using our extrapolations from the pure KCN). Thus 
since a(0) = ’/3 

Jo = Vo = 659 K 

uj = uV(T= 0 )  = 300 K (18) 

(See FIGS. 4 & 5.)  
We can find the temperature-dependent order parameter a(T)  by solving the 

mean-field theory using the standard self-consistent calculation. The mean alignment 

FIGURE 6. Mean-field order param- 
eter a as a function of temperature, 
for the Gaussian distribution of cou- 
pling strengths given by the experi- 
mental parameters of equation 18. 
The ferroelastic transition tempera- 
ture T, obtained from minimizing the 
free energy is 106.6 K. (This temper- 
ature need not correspond to the glass 
transition temperature; our model 
does not describe the glass transi- 
tion.) 
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depends on the strength a( T )  of the mean field. The mean-field strength 

.(T) = 

depends in turn on the alignment of the cyanides. In FIGURE 6, we may see the results 
of our self-consistent calculation for a(T) .  (Details can be found in Sethna and 
Chow.’) 

At low temperatures, a(T)  is approximately linear in T. As for pure KCN,7s33 we 
can see that the peak frequency of the dielectric loss will continue to have an Arrhenius 
form. The peak Jo of the coupling constant distribution corresponds to a temperature- 
dependent peak Vo( T )  = 3J0a( T )  of the barrier height distribution. If .( T )  = (1/3) - 
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aI  T, then barrier crossing over the temperature-dependent barrier Vo( 7') is indistin- 
guishable from crossing the zero temperature barrier V,(O) = Jo  with a diKerent 
prefactor 

(21) woe- VdT)lkaT = , o e - 3 J d T ) l k e T  = ( , o e 3 J ~ l / k s ) e  - J o l k e l  

Thus the measured Arrhenius slope should be temperature independent, as is observed 
experimentally. The width of the barrier height distribution (and thus of the dielectric 
loss peak), however, scales directly with a( T )  

av = 3cu(T)a, (22) 

The value of a,  leads to a prediction o,(T) = ay(0) - 0.708T; our mcan-field theory 
predicts roughly half of the experimental tcmperature dependence (equation 3). 

Thus fluctuations in the number of nearest neighbors plausibly explains the 
Gaussian form, width. and peak position of the dielectric loss in (KBr)os(KCN)o 5 .  The 
temperature dependence of the width is explained within a factor of two by describing 
the thcrmal disorder in the neighboring cyanides using a mean-field theory with a 

FIGURE 7. A typical double-well potential plotted 
against 0, the orientation angle of the cyanide mole- 
cule. The barrier height V and asymmetry t are 
functions of the local environment of the cyanide. 

8 

distribution of coupling constants. The low-frequency dielectric loss is due to cyanides 
independently crossing over a distribution of barriers; because the barriers are due to 
cyanide-cyanide interactions, they become smaller as the neighboring cyanides become 
thermally disordered. 

We have explained dielectric loss in terms of 180" cyanide reorientations that were 
thermally activated; the specific heat will be explained by 180" cyanide reorientations 
mediated by quantum tunneling. We will get thc magnitude of this time-dependent 
specilic heat within a factor of two. To give some context for this result, we can 
compare it to a naive extrapolation from low concentrations: if the cyanides did not 
interact, and each contributcd [he Schottky anomaly characteristic of dilute impuri- 
ties, the specific heat at 0.1 K would be 10' times larger than that observed on a 10-sec 
time scale.2" The factor of 10' reduction of the specific heat comes out of the 
calculation in two ways. First, interactions between cyanides raise the barrier to 
reorientation. Unlike dilute cyanides, most cyanides in the glassy regime will not relax 
by quantum tunneling on a human time scale, and will not contribute to the specific 
heat. Sccond, interactions between cyanides produce an asymmetry between the two 
preferred orientations. Only those cyanides whose two orientations are degenerate 
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within k,T will contribute to the specific heat; most cyanides are frozen into their lower 
state. 

As mentioned in the introduction, the low-temperature properties of glasses have 
traditionally been explained using tunneling  center^.^,^ These centers are formed by 
atoms or groups of atoms of unknown microscopic structure, with two metastable 
configurations. Just as for the cyanide impurities, these centers are characterized by a 
barrier height Vand an asymmetry E (FIG. 7).  Because the microscopic structure of the 
centers is unknown in glasses, little can be said about the distribution of tunneling 
center parameters P ( E ,  V) .  Significant conclusions, however, can be drawn on very 
general grounds. For example, the distribution must be even in the energy asymmetry 
P ( E ,  V) = P(-c ,  V) (each center has two wells, one higher in energy, one lower), and 
smooth on scales of tenths of eV. Thus, assuming P(0, Y) # 0, the density of tunneling 
states is roughly constant in the energy range of interest. Roughly speaking (see 
below), because only those centers with t 5 kT contribute, this leads to a specific heat 
linear in temperature. 

By using our microscopic model of the tunneling centers in (KBr),,(KCN),, we 
will be able to make more detailed predictions about the low-temperature properties. 
In particular, we have definite information about the distribution of tunneling centers, 
gleaned from our understanding of the isolated cyanide impurity and the pure alkali 
cyanides. The traditional model assumes a flat distribution in the tunneling parameter, 
which corresponds to a distribution P( V, c) a V-’i2. From the dielectric loss experi- 
ments, we know the distribution of barrier heights is the Gaussian of equation 1. We do 
not have a direct experimental probe of the distribution of asymmetries t; however, the 
inverse density of centers near zero asymmetry should be roughly given by the 
asymmetry energy -340 K between the two orientations in the pure cyanide antifer- 
roelectric phase. 

The rate I‘ of tunneling by an angle B through a barrier of height Vis given by a 
simple WKB calculation 

r(v) = r,, exp ( - A B ~ Z F / ~ )  (23) 

where A is a numerical constant; for a sinusoidal V(B), A = 4/7r. Because our cyanides 
are reorienting by 180°, B = 7r. The magnitude of the attempt frequency I?,, has been 
estimated in the pure cyanide to be 8.3 x lo’’ Hz;’ our results are quite insensitive to 
the value chosen for this prefactor. We use I = 2.65 x g . cmz - 16 amu - A’. The 
probability that a cyanide molecule with barrier height Vwill flip over within t seconds 
is thus 1 - exp(-I’(V)t). In calculating the specific heat, we will weight the 
contribution of each cyanide by this factor. To get a rough idea of the number of active 
cyanides a t  a measuring time t ,  let us define a maximum crossable barrier Vmx(t),  for 
which F(Vmax(t)) = t-’. For t = 1 sec, Y,,,,,(t) = 96 K (FIG. 5).dThis implies (evaluating 

dAt temperatures above about 2 K, the dominant relaxation process on a I-sec time scale will 
be thermal barrier crossing. This will lead to a temperature dependence of the number of active 
tunneling centers, which gives a small contribution to the specific heat that goes roughly as T’. In 
addition, there should be modes within the individual wells (librational modes) that give a similar 
contribution. Perhaps the anomalous T’ specific heat in real glasses will be explained eventually 
by these effects. The experimental value for this term in (KBr),,,(KCN),S is compatible with 
zero, however, and the theoretical value for the effects of thermal activation and libration are 
swamped by the Debye phonon contribution. There appears to be a substantial anomalous T 3  
term for x = 0.25; we await measurements of the dielectric loss. 
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an error function) that 0.35% of the cyanide molecules have a flip rate higher than 1 
Hz. Thus roughly one cyanide in 300 can tunnel in 1 sec, and one in 340 has asymmetry 
small enough to contribute to the specific heat below 1 K; crudely, these together 
explain why the specific heat is down by lo5. 

More explicitly, a t  low temperatures, the cyanide double-well center can for most 
purposes be considered a two-level system. The lowest two states of the double well can 
be nearly degenerate, and higher states are not accessible a t  low temperatures.e We 
can truncate, keeping only these states; we write the Hamiltonian 7f2, in a “position” 
eigenstate basis (where (1,O) and (0, 1) correspond to the two stable orientations of the 
cyanide). The two-level system is then defined by the asymmetry t and a tunneling 
matrix element A 

- t /2  - A  
s 2 L = (  -A t/2) (24) 

The energy splitting between the two levels is 2[(t2/4)2 + A2]’/*. Because A << e for 
most centers contributing to the specific heat, we approximate the energy splitting by 
t f  As in the traditional models, we make the approximation that P ( t ,  V )  = n,P(Y) 
(that is, is independent of the asymmetry t) for t 5 kT.  With these approximations, the 
specific heat of the distribution of two-level systems is3s4 

H 2  

6 
A( t )  = - k k : n , ~ ~ d V P ( V ) [ I  - exp(-I’(V)t)] 

Fitting the experimental specific heat a t  t = 1 sec gives the value no = l / (kB x 292 K). 
This agrees well with the inverse of the asymmetry (340 K) found for the pure cyanide 
(L. Wu, Y. H. Jeong, and S. R. Nagel, personal communication).g We then use 
equation 25 to predict the time dependence of the linear term in the specific heat (FIG. 
8). This one parameter fit is in good agreement with the experimental data, and is 
almost as good as the two-parameter fit given by the traditional models (straight line in 
FIG. 8). 

CONCLUSIONS ABOUT GLASSES 

We have explained that the time-dependent specific heat and the dielectric loss 
peak in (KBr),,,(KCN),, are due to 180° cyanide reorientations. These properties are 
universal in glasses; all glasses show a broad distribution of relaxation times, and all 
show the same time-dependent linear term in the specific heat. We have deliberately 
chosen to study these universal properties in a single well-characterized material. 
Many rather general and abstract theories of glassy behavior have been motivated by 

eThey can be accessed virtually, however, and are important in mediating tunneling in the 

fWe have estimated the importance of A in the specific heat of (KBr),_,(KCN),; it produces 

%‘his agreement is probably accidental; the two numbers should agree maybe to within a factor 

presence of interactions.’*J3 

sli ht deviations from the linear form at low temperatures. 

of two. 



SETHNA GLASSY CRYSTALS 145 

the idea that universal properties cannot depend on details of the particular glass. The 
converse, however, is also true-an explanation for a universal property must apply to 
each individual glass, and in particular to (KBr),,(KCN)o,S. 

Although the microscopic structure of (KBr),-,(KCN), is well understood, we 
emphasize that our model is not microscopically derived: we ignore the frustration 
completely. The elastic interactions that freeze the quadrupoles do not typically favor 
parallel relative orientations; they compete, and this competition is responsible both for 
the variety of phases between x = 0.6 and x = 1 and for the orientational glass state for 
x < 0.6. Although the results of Kanter and SompolinskyZ5 suggest that completely 
random interactions do not form a sensible model for this material, they do 
demonstrate that new physical effects-particularly level repulsion causing a reduced 
density of low barriers-should very generally follow from incorporating frustration. 
We may suggest that the dilution substantially reduces the effects of frustration and 
“level repulsion,” but we should certainly agree that a model calculation with more 
realistic interactions ought to be done. 

FIGURE 8. The open circles are the 
prefactors A ( t )  of the measured linear 
specific-heat anomaly (FIG. 2). The 
curve is the result of our calculation; it 
has one free parameter no that we can 
independently estimate within a factor 
of two. The straight line is the predic- 
tion of the standard model; both the 
slope and the intercept are free parame- 
ters. 
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What have we learned about glasses? First, we have a microscopic picture of the 
tunneling centers in a t  least one glassy material. The original tunneling center papersgs4 
did not attempt to provide a microscopic model for the centers. There has been much 
speculation since these papers appeared about the nature of these two-level systems; 
proposals run from rearrangements of large clusters of atoms to topological inversions 
of defect lines.39 Although these exotic centers may occur in some materials, in this 
case ordinary tunneling defects of the form well known in alkali halides’’ determine the 
glassy behavior. 

Second, we have started with roughly one tunneling center per molecular unit, and 
explained the magnitudes of the universal properties. The form of the specific heat is 
naturally explained by the traditional tunneling center models, but the small variation 
found in the magnitude is surprising: why should all glasses have the same density of 
active tunneling centers (within a factor of lo)? At least in this case, the density arises 
naturally from the statistical origin of the distribution of barrier heights. 

Third, we have connected the low-temperature and low-frequency properties, 
explaining both in terms of the same centers. Our discussion cannot be directly 
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transferred to glasses in general. Dielectric loss peaks are not usually of the log-normal 
form found in (KBr)o,5(KCN)o,5. Apart from another glassy crystal:' most low- 
frequency p-relaxation peaks found in glasses are asymmetric, often fit by the 
Williams-Watts function mentioned in the introduction. It is possible that the glassy 
crystals are in fact atypical. On the other hand, it is intriguing to speculate that they 
may be ideal, clean systems, where the low-frequency physics is not obscured by dirt 
effects so far unavoidable in normal glasses. What we can surely conclude from the 
cyanide system is that the low-frequency and low-temperature properties are a t  times 
linked; we should look for a common origin in glasses as well. 

Finally, the (KBr),_,(KCN), system may provide answers to many of the 
remaining puzzles about glasses. We have already mentioned a possible role for 
thermal reorientations and librational modes of the cyanides in explaining the 
anomalous T 3  specific heat; this would presumably carry over directly to normal 
glasses. The plateau in the thermal conductivity between 1 K and 10 K has also 
provoked much theoretical speculation over the years, without a satisfactory resolu- 
tion. A rough calculation of the low-temperature T 2  thermal conductivity (due to 
resonant scattering from the cyanide centers) has been presented: we are currently 
working to understand the thermal conductivity in more detaiL4' 

We believe that more insight is yet to come from the glassy crystals, as new 
experiments are done and more sophisticated theoretical methods are used. 

SUMMARY 

Glasses are amorphous like liquids, but are rigid like crystals. Unlike a crystal, in 
which each atom has a set position, a glass will have a completely different 
configuration of atoms each time it is formed. Sometimes atoms or local groups of 
atoms will have two low-energy configurations and will be able to shift between them. 
Some of these atoms shift much faster than others, leading to a broad distribution of 
relaxation times. These two-level systems are also responsible for the universal 
low-temperature properties shared by all configurational glasses. The microscopic 
configurations of the two-level systems, however, have remained a mystery. 

The mixed crystal (KBr),_,(KCN), shares many properties with glasses; however, 
unlike glasses its structure is well understood. The two-level systems in this material 
are cyanide ions which can reorient by 1 80°. Because each cyanide has a different set of 
cyanide neighbors, some can flip over more easily than others: there is a distribution of 
barrier heights hindering the 1 80° rotations. The broad distribution of relaxation times 
exhibited by the dielectric loss measurements comes from random thermal rotations of 
cyanide ions over these barriers. The time-dependent specific heat (one of the universal 
low-temperature properties of glasses) comes from quantum tunneling of these ions 
through the same barriers. 
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DISCUSSION OF THE PAPER 

A. NAVROTSKY (Princeton University, Princeton, N J ) :  The model for a range of 
activation energies rests on the binomial distribution of next-nearest neighbor occu- 
pancies, that is, a random CN-Br distribution. Do experiments detect either clustering 
(positive AH,,,,.J or ordering (negative AHm,x)? If there is local order, how seriously are 
the theoretical predictions affected? What would be the stable low-temperature 
structure, as opposed to glass? [NOTE: This same question is answered in the discussion 
of the paper by A. Loidl and K. Knorr in this volume-Ed.] 

SETHNA: The mixed crystal (KBr),-,(KCN), forms good single crystals, which 
cleave nicely and are optically transparent, throughout the concentration range. This 
indicates that there is no large-scale inhomogeneity. I naturally will defer to my 
experimental colleagues for further details, but I know of no measurements that rule 
out clustering or ordering on a local level. I can say that, although the qualitative 
features of the theory would survive some clustering, the Gaussian form for the barrier 
height distribution assumes independent contributions to the barrier height-cluster- 
ing even on a very local level would distort the distribution. (In some ways this may be 
evidence against clustering because the Gaussian is observed experimentally.) 

Let me also emphasize here that our model is not an explanation from first 
principles. In order to produce the observed behavior, we assumed that the interactions 
were ferroelastic, tending to align the cyanides. Although it is true that the high- 
temperature phase in the pure cyanide is ferroelastic, the microscopic interactions are 
surely more complex, and frustrated. I have hopes that dilution may reduce the 
frustration, but certainly a numerical simulation with honest pair interactions is 
necessary before the Gaussian distribution of barrier heights can be considered 
understood. 

J. T. BENDLER (General Electric Research and Development Center, Schenectady, 
N Y ) :  I wish to agree with Dr. Sethna’s comment that any nonexponential time-decay 
law may be represented in terms of a superposition of exponential decay processes, and 
in the case of the Kohlrausch function, this leads directly to the L’evy stable 
probability densities 

with p = C / T  a dimensionless relaxation rate. The inverse transform is an asymmetric 
stable density of characteristic exponent cy (Montroll, E. W. & J.  T. Bendler, J.  Stat.  
Phys. 34 129, 1984). These solutions to the Chapman-Kolmogorov equation were 
studied by L’evy as generalizations of (or exceptions to) the central limit theorem, and 
were termed stable because, like the Gaussian, distributions of sums of stable random 
variables are invariant to addition of further variables. Asymptotically they behave as 
power laws, and hence have interesting scaling properties, which Mandelbrot has 
exploited in modeling phenomena with self-similarity (Mandelbrot, B. B., The Fractal 
Geometry of Nature, W. H. Freeman, San Francisco, CA, 1982). 

If one interprets the Kohlrausch law as resulting directly from jumps over barrier 
distributions, it is hard to see why a stable density appears as a natural choice. On the 
other hand, if the dipole relaxation is dependent on another process, such as defect 
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diffusion, the defects may hop over a Poisson barrier distribution (Bendler, J.  T. & 
M. F. Schlesinger, Macromolecules 18 591, 1985), and this, folded into the first- 
passage time distribution to reach the dipole, generates the Kohlrausch law (Schlesin- 
ger, M. F. & E. W. Montroll, Proc. Natl. Acad. Sci. USA 81: 1280, 1984). In 
polymers, bond isomerizations display activation barriers even in dilute solution so that 
a Gaussian barrier distribution did not seem appropriate. 

Let me emphasize that I agree that the Kohlrausch function does not fit the 
KBr-KCN dispersion, although the Wagner function does. In this case of low- 
temperature relaxation, the direct model described by Dr. Sethna is reasonable. It is 
for the high-temperature (Kohlrausch) behavior that something else is needed. 

SETHNA: The fact that the binomial distribution converges to a Gaussian is no 
accident. It is a special case of the central limit theorem; the sum of many uncorrelated 
random quantities, if they are “well behaved,” will have a Gaussian distribution. In 
particular, the sum of any number of uncorrelated quantities, each of which has a 
Gaussian distribution, automatically is Gaussian: the Gaussian distribution is stable. 
Dr. Bendler points out that there are other stable distributions with longer tails, which 
have been discussed in the context of I/f noise and the Kohlrausch form for the 
a-relaxation in glasses. There are two relevant issues I should mention, however, to 
avoid confusion. 

First, as  I understand it, these other distributions are sums of random times, 
whereas the log-normal frequency distribution in (KBr),-,(KCN), comes from sums 
of random contributions to the barrier height. 

Second, at least within our model, there is no question that the contributions to the 
barrier height are well behaved. The contributions may or may not be correlated (that 
is, clustering might be important, as Dr. Navrotsky points out), and they may or may 
not sum to form the total barrier height (that is, the quadrupolar fields add but the 
barrier, as an eigenvalue difference, may not, as Kanter and Sompolinsky point out). 
But surely each contribution has a finite range of possible values (no long tail), and the 
contributions have roughly equal magnitudes; they are well-enough behaved. 


