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Abstract. - We study the asymptotic behaviour of the correlation function q(t)= 
l N  = - ( Si(0) Si@>) for dilute, short-range Ising ferromagnets and spin glasses with single spin- 
N i-1 

flip dynamics, Using an eigenfunction expansion for the time evolution operator and a 
variational estimate for the gap in the spectrum of this operator, we prove that, for a range of 
temperatures above the T, of the random system q(t) & A  exp [- C(1og V I ,  with a = 2 in two 
dimensions. The same inequality holds in d-dimensions, with a = d/(d - 11, modulo a single 
conjecture in the equilibrium statistical mechanics of Ising ferromagnets. The slow relaxation of 
large (pure>> clusters is responsible for this nonexponential bound. 

1. Introduction. 

Recently there has been much interest in the dynamics of disordered spin systems. 
However, there are very few exact results available for time-dependent correlation 
functions, in random systems. We have earlier given arguments to suggest that random 
magnets [l] and spin glasses [2] exhibit slow nonexponential relaxation even above their 
transition temperature T,, a manifestation of the Griffiths singularities [3] in dynamics. In 
this paper we show that these arguments can be made rigorous in certain situations. 

We study the asymptotic behaviour of the spin-spin autocorrelation function 

for random bond Ising models with dilution. We prove that in d = 2 dimensions 

q(t) 2 A exp [ - C(1og t)"] , (1.2) 

(#) Present address: Department of Physics, University of Illinois, Urbana, IL 61801, U.S.A. 
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for a range of temperatures above T,, with a = 2. In d-dimensions we can prove the same 
inequality, with a = d/(d - 11, provided a certain conjecture for the ferromagnetic Ising 
model holds (see eq. (2.7)). 

The physical idea underlying (1.2) is as follows. It is well known that for random spin 
systems rare clusters of spins all of whose interactions are ferromagnetic, or more generally 
unfrustrated, lead to weak singularities [3] in the free energy as a function of the magnetic 
field in the temperature range between the T ,  of the random system and that of the 
corresponding .pure>> system. These same clusters also dominate the long-time dynamics in 
this temperature range by locking into one of two ground states and flipping from one to the 
other very infrequently. For a more detailed discussion of the physical significance of this 
result we refer the reader to ref. [2]. 

2. Outline of derivation. 

We shall first outline a derivation of our main result and then present proofs for the 
various intermediate steps. Consider the model defined by the Hamiltonian H = 2 Jt3StS3 

and single spin-flip relaxational dynamics (defined in sect. 3). Si = 2 1 and the summation 
extends over all pairs of nearest neighbors on a d-dimensional hypercubical lattice. The bond 
strengths Jij are quenched, independent random variables with a nonzero probability for 
bonds of zero strength. The reasons for restricting attention to models with dilution will 
become clear below. 

We consider the correlation function defined by (1.1). The angular brackets in this 
definition denote a double average: over all possible time evolutions starting from a given 
configuration and over an equilibrium distribution of initial conditions. We prove in sect. 3 
that for a fixed site i, the autocorrelation function is necessarily nonnegative, namely 
(Si(0) Si(t)) 3 0. Thus each term in the summation in (1.1) is nonnegative and q(t) is bounded 
below by a sum which runs over a subset of the lattice. 

We will use the contribution of unfrustrated [4] clusters to compute a lower bound to q(t). 
It will suffice for our purposes to restrict attention to hypercubical clusters surrounded by 
zero bonds ('). Let Po(L) be the probability that a given site belongs to such a cluster which 
is L sites to a side. As L -+ cc), Po(L) = a  exp [- bLd], where a and b can be explicitly 
calculated, though we shall never need them. 

We show in sect. 4 that each cluster makes a contribution to q(t) which is larger than 
K exp [- t/z(L)], where s(L) is the relaxation time for that cluster and K > 0. Since these 
clusters are isolated from one another, they relax independently giving rise to the lower 
bound 

(11) 

We further prove that T(L) has an Arrhenius lower bound given by 

~ ~ 

(') In the absence of dilution, say for the k J spin glass, we do not know how to rigorously control 
the effect of boundary conditions on the relaxation of clusters. See, however, ref. [Z] for arguments 
suggesting the validity of the result in the presence of weak bonds as, for example, in a Gaussian 
distribution. 
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where the barrier height V(L) is defined below. Combining (2.1) and (2.2), we obtain 

q(t) 2 C PdL)K exp 1- t / T A  (L)1 . (2.3) 
L 

The barrier height V(L) is defined by 

V(L) FL(M = 0)  - F L  , (2.4) 

where FL is the free energy of an Ld Ising ferromagnet and FL(M = 0) is the free energy of 
the same system constrained to have zero total magnetization (see sect. 4). To proceed 
further, we need to know how this barrier height scales with system size. Since, on physical 
grounds, V(L) is closely related to the surface free energy of a domain wall, we would expect 
it to be proportional to the surface area below the ferromagnetic transition temperature TF. 
This is rigorously known [5] only in d = 2 dimensions, where V(L) - L for all T < TF. For 
d > 2, we make the very plausible, but unproven, conjecture (2) that, for T < TF 

v ( L ) - L ~ - ~ ,  L-- . (2.5) 

Using this, (2.3) may be estimated for t+ to give 

If we consider a bounded distribution of bond strengths, (2.6) is expected to hold in the 
temperature range between the T, of the random system and the ferromagnetic TF for the 
largest bond strength. Since the barrier height V(L) = 0 for T > TF, q(t) is presumably 
exponential. 

3. Nonnegativity of autocorrelations. 

In this section we will prove that (Si(0)Si(t)) 2 0, under rather more general conditions 
(any relaxational dynamics; arbitrary multi-spin interactions) than are required for the rest 
of the paper. 

{Sf. ..., Sk} of the 
system are labelled by a = 1 . . . Z N .  Let P,(t) be the probability for the system to be in a state 
a at a time t. We define a continuous-time dynamics on the configuration space via the 
Master equation [6] 

Consider an N site king Hamiltonian H[{Si}]. The states { S } ,  

(3.1) 

The (time-independent) transition rates wap satisfy the detailed balance condition 

wap PpE = wp. p,” , (3.2) 

where P,”, the equilibrium probability at temperature T for the system to be in state a, is 

~ ~~ 

(3 In fact, even the surface free energy, defined to be the difference in the free energies between 
periodic and antiperiodic boundary conditions, is rigorously known to d e  as Ld-’ only for sufficiently 
low temperatures and not for all T c T F .  
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given, as usual, by P,“ = Z-l exp[-E,ikBTl, where E,=H[{S},I and the partition 
function Z = c exp [- E9/kB TI. 

Following Abe [71, we find it convenient to define pJt)  = P,(t)/PF. The equation of 
motion for p is then given by 

13 

(3.3) 

- is the Liouville, or time evolution, operator. We next define an 

inner product [8] 
(3.4) 

for arbitrary functions f and g defined on the configuration space. We further define the 
matrix element 

(fl fig) = c P,Efx -f&,, 4 

4 

Using (3.2), it is then straightforward to  show [71 that -f is symmetric, i . e .  for arbitrary 
fL”9kls f and g ,  (f l - f ls) = ( g  I-flf). 

Now, since f is real and symmetric it has real eigenvalues Aa, defined by 

f@$=lAa+;) U =  1. . .2N,  (3.5) 
P 

or, in more compact notation -flp) = Aalp). For an arbitrary function f 

where the second equality follows from the definition of $and (3.2). Thus (f 1 f l f )  2 0 for 
any f, so that Aa 2 0 for U = 1 ... 2N. It is easy to verify that the smallest eigenvalue A‘’’ = 0 
corresponds to the eigenfunction $hl) = 1 (for all configurations a) which represents the 
equilibrium distribution. 

We are now ready to prove the autocorrelation inequality. Abe’s proof[71 for the 
ferromagnet goes through in the more general case with competing interactions. Let 
SA = nSz, for some finite subset A of points on the lattice. Define 

E A  

(SA(O>SA(t>) CPz(O)SiPp(tla; > (3.7) 
%3 

where P$(t/ a; 0) is the conditional probability for the system to be in state ,B at time t, given 
that it was in a state z at time t = 0 and P,(O) = P,“, since we are interested in fluctuations in 
the equilibrium state. Solving the time evolution equation (3.3), subject to the initial 
condition p, = 1, yields 

~ ~ ( t l a ;  0) = PF(exp [- $~I)~,(P,E)-~. (3.8) 

Substituting in (3.7), and using the eigenfunction expansion (3.5) immediately gives the 
required result 

(SA(O)SA(t)) = (SA1 exp 1- -ft]lsA) = exp [- Aut] I (SA(p) l 2  * (3.9) 
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Another useful way of rewriting this result is to use our knowledge of A'" = 0 and 
obtain ( SA(O) SA(t))  3 (SA)  . 

1, to 
2 

4. Bound on relaxation time. 

We now turn to the contribution of the unfrustrated, or equivalently ferromagnetic, 
clusters to q(t>. Since these clusters are isolated, we shall study ferromagnets with free 
boundary conditions. 

We restrict ourselves to single spin-flip dynamics with a nonconserved order parameter. 
A specific example of such a dynamics is that introduced by Glauber[6] in which 

for states (a, p) which differ only by the sign of the j-th 
I ,  

spin, and zero otherwise. While the arguments below are not tied to this particular form, it 
is important t o  assume that the transition rates are bounded above, i . e .  uapS 1 in 
appropriate units. 

Using the results of the previous section, we obtain 

(si(o)si(t)) 3 1 ( s ~ I + ( ~ ) )  1' exp [- A ' ~ ) ~ I  . (4.1) 

Summing up the contribution of the independent clusters to q(t), we then obtain (2. l), where 
the relaxation time r(L) = 1/A'2). 

We now use the variational principle to obtain an upper bound on the gap A'" in the 
spectrum of for a cluster of N = Ld spins. It can be checked easily that the stationary 
values of the function 

(4.2) 

with respect to variations in the .wave function. +I are the eigenvalues Aa and the stationary 
points +: the corresponding eigenfunctions. Using (3.7), we can rewrite this in a more 
convenient form 

(4.3) 

The eigenfunction corresponding to the slowest decaying mode must be orthogonal to the 
aground statea (or equilibrium) eigenfunction +(l). We thus make the simplest choice 

consistent with this requirement, namely $ = sgn M a ,  where M, = 2 S; is the total 
magnetization in state a. For simplicity, we assume N odd so that M,#O. Using this trial 
wave function and the single spin-flip nature of transition rates, we obtain 

N 

i=l  

(4.4) 

Here the sum is over pairs of states, with total magnetizations of opposite sign, which have a 
nonzero transition rate between them. 

As noted above the transition rates are bounded, so that wap 5 1. Further there are 
exactly ( N +  1Y2 states with M =  - 1 connected to a given state w t h  M = + 1 by a single 
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spin-flip. Thus, we have E* W$ s ( N  + 1)/2. Let Z ( M  = 1) denote the restricted partition 

function (3) with fixed total magnetization M = + 1. We thus obtain 
B 

S ( M  = 1) 
S = (Ld + 1) exp [ - V(L)/L,T], 1 -S(iV+l) 

4 L )  (4.5) 

where we have defined the barrier height 

with the free energy FL = - kB T log Z. Note that even though the prefactor of (Ld + 1) 
makes the Arrhenius bound (4.5) nonoptimal, this estimate will suffice for our purpose. For 
example, for a system of noninteracting spins, this bound gives < const fl which is 
clearly not optimal, since we expect A(2) - 0(1), independent of system size. However, for 
the systems of our interest with unfrustrated interactions the prefactor is only a logarithmic 
correction to V(L) which presumably grows like a power of L. 
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(3) This corresponds to a canonical ensemble in contrast to the unrestricted partition function 2, 
which corresponds to the grand canonical ensemble. See, e.g., Gallavotti [91. 
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