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For d-dimensional short-range Ising spin-glasses with local spin-flip dynamics, the correlation

function (s5(0)s(9)) is argued

to be bounded below by a function of the form

expl — c(InH¥“4=D]jna temperature range above the spin-glass transition. The slow relaxation of
large isolated clusters of unfrustrated spins is responsible for this bound. We suggest that this is
the signature for an intermediate Griffiths phase between the spin-glass and the paramagnetic

phases.
PACS numbers: 75.40.Bw, 75.30.Kz

Spin-glasses are thought to undergo a phase transi-
tion in sufficiently many dimensions from a high-
temperature paramagnetic phase with exponential re-
laxation into a low-temperature glassy phase with
long-range order in time. Much recent progress has
been made towards understanding the statics and
dynamics in the low-temperature phase, especially in
the mean-field limit.!"* The temperature range above
the spin-glass transition has received much less
theoretical attention.’

In this Letter, we demonstrate that the low-
temperature phase necessarily melts into a phase
whose correlation functions have nonexponential tails.
In particular, we derive a lower bound for the correla-
tion function

S (5(0)5(D) 7

1
N &

in a short-range Ising spin-glass with local spin-flip
dynamics. In & dimensions, we find®

g(D= A expl —c(lns)¥d-D}, (1)

where 4 and c are nonuniversal constants with 4 > 0
for a range of temperatures above the glass transition.
Note that the bound in (1) dies away more slowly than
an exponential but faster than a power law. In particu-
lar, the currently popular ‘‘stretched’’ exponential’-®
or Kohlrausch form expl — (¢/7)#] is ruled out at long
times for any 8> 0. We will show that the bound
disappears to all orders in perturbations about high
temperature and high dimension (which perhaps ex-
plains why it has escaped notice). This nonexponential
relaxation is due to the same unfrustrated clusters
which are responsible for the Griffiths singularity’® in
the magnetic susceptibility. We suggest that it is the
dynamical signature of a ‘‘Griffiths phase,”” lying
between the spin-glass and paramagnetic phases.

The physical ideal behind the bound in (1) is simple.
Rare compact clusters of spins whose interactions are
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unfrustrated!® lock into one of two configurations, and
flip from one to the other very infrequently. These
slow clusters give rise to nonexponential relaxation for
all temperatures between the spin-glass transition tem-
perature Tg; and the ferromagnetic transition tem-
perature Ty for the pure system (.e., for the unfrus-

trated regions of largest bond strengths). A result
identical to (1) has been recently obtained for dilute
ferromagnets by Dhar.!l'12 Langer and Kotliar!® have
been pursing path-integral saddle-point methods to
calculate the asymptotic form of the decay of g (¢).

Consider the model defined by the Hamiltonian
H =73 (Jys;s; and single spin-flip dynamics, where!4
s5;= =1 and the summation extends over all pairs of
nearest neighbors on a d-dimensional hypercubical lat-
tice. The bond strengths J; are quenched, indepen-
dent random variables.

We break up the sum over sites in the definition of
g (1) into two parts: one that includes all the compact
unfrustrated clusters and the other over the rest of the
system. Since the dynamics is relaxational, we expect
(but have not proven) that for any given site i, the
thermal average (s;(0)s;(#)) 7 is positive for all ¢ = 0.
Thus the contribution of the unfrustrated clusters
alone should provide a lower bound on the total relax-
ation ¢ (#). Let P(L,J) be the probability that a given
spin belongs to an unfrustrated cluster of L sites to a
side, and characteristic bond strength J. This cluster
will have two ground states (related by s— — s for all
spins in the cluster). At finite temperatures and short
times, fluctuations aboutr these ground states are
characterized by the magnetization M (J/T) of the
corresponding ferromagnet!> with bond strength J.
There is a free-energy barrier F(L,J) between states of
magnetization + M and zero. The relaxation rate of
the cluster, measured in uaits of the microscopic time
scale for single spin flips, is given by the Arrhenius
form expl— F(L,J)/T], where T is the temperature
(setting Boltzmann’s constant equal to 1). Since these
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clusters are very far apart, they relax independently,
giving rise to the lower bound

q(0) = [dL [as M*(J/ T) P(L,Dexpl— te=FLDIT],
2

We shall first make a crude estimate for this bound,
using a Gaussian distribution of bond strengths with
zero mean and variance J¢ and considering only fer-
romagnetic clusters. Later we shall discuss other un-
frustrated regions and possible boundary effects; these
change only the constants 4 and cin (1). The proba-
bility of finding a spin in a cluster with bonds of
strength +J to within AJ << J; is given by
AJ | dL4J? 3)
2m)72J, exp[ 28|
[The number of bonds in the cluster is d{(L

—1)L9 1= dL%] To flip the entire cluster over, we
must sweep a domain wall across it. The barrier to be
overcome is the surface free energy of a domain wall
spanning the cluster:

F(LD=o(J/ YL}, 4)
where o is the surface tension.!6

For t— oo, the integral in (2) may be evaluated by
the method of steepest descents. One can immediately
write down the two equations for the saddle point
L=L*(» and J=J*(1). Itis convenient to first elim-
inate the time f between these two equations to obtain
an equation for J* as a function of L*. Using (3) and
(4), and neglecting the prefactor L9 in (3) which only
gives rise to logarithmic corrections, we find that J* is
given by maximizing [o(J/ D194~/ [B + J?] where
B=2J¢In[(2m)Y2/AJ]. With use of standard
properties of the surface tension'”!® it is easy to see
that one obtains a finite J*(7) (in any dimension
d > 20)'° which turns out to be independent of L.
[Including subleading terms in L in (3) or (4) would
make J* weakly dependent on L.] The saddle-point
equations may now be used to obtain L*=={Int/
(DY where 3*(T)=¢(J*(T)/T)/T. Put-
ting all this together yields an estimate of the form (1)
with

c=(d/23) B+ (D ()]~ 4/“-D,
The preceding analysis is valid for arbitrary dimensions
and is directly applicable to the mean-field Ilimit
d— oo. The optimal bond strength J*(T) and the cor-
responding reduced surface tension X*(7) are weak
functions of dimension and approach finite limiting
forms as d gets large. We thus find that ¢ = dK(7)
as d — oo in (1) and our estimate vanishes exponen-
tially as d becomes large. Thus the nonexponential tail
in the relaxation due to large unfrustrated clusters ap-
pears to be absent in mean-field theory?® and the re-
laxation may well be exponential above the spin-glass
transition. This would be in agreement with mean-
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P(LJ)= Ld[

field results both from functional-integral methods!
and from linearized Glauber dynamics.2%>22

Since the Gaussian distribution is unbounded there
are clusters which are below their ferromagnetic transi-
tion temperature no matter how high the temperature.
It can be shown as T — oo that the optimal bond
strength J*(T) increases linearly with the temperature
(for d >2) and we obtain (1) with ¢ ~ 72+4/(d-D
x K,(d). Thus our bound vanishes also at high tem-
peratures. It is worth emphasizing that in both the
high-dimensionality (mean-field) and the high-
temperature limits our estimate has an essential singu-
larity. The nonexponential relaxation above the spin-
glass transition thus appears to vanish order by order
in perturbation theory in 1/dand 1/ T.

Let us now be more careful in the derivation of the
bound in (1). There are two important issues that
have not been addressed. First, using gauge invari-
ance,!”> one can show that for every ferromagnetic

cluster with L9 spins there are 2L°"! clusters of the
same size which have the same activation energy for
flipping between two low-energy configurations.?

This roughly multiplies P(L) by 2L°, subtracts (in 2)/
d from B, and thus changes only the constant cin (1).
Secondly, we have ignored possible effects of the
bonds connecting the cluster to the rest of the system.
One could imagine that under some circumstances the
environment of a cluster might conspire to “‘push” it
over. This becomes particularly disturbing in high
dimensions, where clusters develop very large surface
areas. We can control this problem for Gaussian and
flat bond distributions by surrounding the cluster with
weak bonds. (We expect that the decays in the +J
mode! are the same, aithough we cannot control the
effects of the boundaries so simply.) Surrounding the
cluster with bonds of strength at most AJ multiplies B
by 1+2/L in P(L) and lowers the guaranteed free-
energy barrier by AJ dL =97}, effectively lowering o
by dAJ. Again, the form (1) of our bound is un-
changed (although the large dimension and tempera-
ture limits are modified somewhat).

For a bounded distribution of bonds, nonexponen-
tial relaxation of the form (1) is expected only in a fin-
ite range of temperatures (Fig. 1). Below the spin-
glass transition temperature Tgg, ¢ (f) attains a
nonzero value at large times and our bound becomes
irrelevant. Above the ferromagnetic transition tem-
perature Ty for the pure system with unfrustrated
bonds of the maximum strength, the surface tension
in all clusters vanishes and our lower bound becomes
trivially zero. In this high-temperature paramagnetic
phase the relaxation is presumably exponential in
time. Between these temperatures, our analysis
demonstrates the existence of an intermediate phase
of nonexponentially relaxing correlations in time

(Fig. 1).
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FIG. 1. Dimension-temperature phase diagram for a

short-range Ising spin-glass with a bounded distribution of
bond strengths. The intermediate phase indicated by
hatched lines lies between the spin-glass transition tempera-
ture Tsg and the ferromagnetic transition temperature
Tszmax-

It is generally acknowledged that the free energy in
this temperature region has an essential singularity
(the Griffiths singularity) as a function of the external
magnetic field,? and an essential singularity at Tr even
at zero field.? Since the hexatic phase in two-
dimensional melting also possesses only an essential
singularity in the free energy,? we see no excuse for
not calling this intermediate-temperature region a
phase. The analogy can be pushed further. The glass
transition is associated with order in time; two-
dimensional melting is associated (at least partly) with
orientational order in space. Both the hexatic and the
Griffiths phases lie between a high-temperature phase
with no long-range order and a low-temperature phase
with long-range order. And, as we have just argued
for spin-glasses, both possess order which decays to
zero in a nonexponential fashion.

From an experimental point of view, the main im-
plication of our results is that exponential relaxation
just above the spin-glass transition is ruled out. It is
not certain that large compact clusters dominate the
relaxation at very long times, and thus it is possible
that the relaxation will be slower than the bound (1),
perhaps algebraic. [In physical materials inhomo-
geneities® in the sample would be expected to enhance
the importance of clusters, and swamp our bound (1) .]
Whether the magnitude of the effect will be visibie is
of course a separate issue. On the one hand, Griffith
singularities are notoriously difficult to see in experi-
ments. The largest clusters to flip, in samples of mac-
roscopic dimensions and after macroscopic times, will
still be quite small (optimistically containing no more
than 102 spins). The predicted singularity in the sus-
ceptibility has never been observed.? On the other
hand, the slow relaxation of the unfrustrated compact
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FIG. 2. Squares show the correlation function ¢ (¢) vs
time (in Monte Carlo steps per spin) for a two-dimensional,
+J, equal-probability spin-glass on a 50x 50 square lattice
with periodic boundary conditions at T=1.2J. (Tr=2.27J
in this model, and Tsg is thought to be zero in two dimen-
sions.) Crosses show the contribution to q(¢) from 311
spins immediately surrounding the four slowest unfrustrated
clusters on the lattice. Averages were made over all ap-
propriate initial times on four separate runs on the same lat-
tice; the runs totaled over 2'¢ Monte Carlo steps per spin.

clusters is dramatically visible in d =2, +J Monte
Carlo simulations.?’” Figure 2 shows ¢ (#) for a two-
dimensional, +J model on a 50x50 square lattice
with periodic boundary conditions, for T=1.2J. Also
shown in the contribution of 311 spins (12.4% of the
total) which form the immediate environments of four
unfrustrated clusters. (Spins within a correlation
length or so?® of a slow cluster will also show slow re-
laxation.) For ¢ > 100C Monte Carlo steps per spin,
the dominant contribution to the correlation function
comes from these four regions. Since the exponential-
ly rare unfrustrated clusters contribute to the correla-
tion function g (¢) for an exponentially long time be-
fore they flip, observing this phase by measuring
dynamical correlations should be much easier than by
measuring static susceptibilities. What this intermedi-
ate phase does to the spin-glass melting transition is
open to conjecture.

J. S. Langer and B. G. Kotliar played a major role in
the development of this work. N. D. Mermin and M.
E. Fisher gave useful and insightful comments on the
manuscript; in particular, the latter suggested the obvi-
ous name for the phase. We thank them for their
help, and the Institute for Theoretical Physics at Santa
Barbara for its hospitalitv. This work was supported by
the National Science Foundation under Grants No.
PHY77-27084 and No. DMR-8314625.
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