
SLOPPINESS, MODELING, AND EVOLUTION IN

BIOCHEMICAL NETWORKS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Ryan Nicholas Gutenkunst

January 2008

c© 2008 Ryan Nicholas Gutenkunst

ALL RIGHTS RESERVED

SLOPPINESS, MODELING, AND EVOLUTION IN BIOCHEMICAL

NETWORKS

Ryan Nicholas Gutenkunst, Ph.D.

Cornell University 2008

The wonderful complexity of livings cells cannot be understood solely by studying

one gene or protein at a time. Instead, we must consider their interactions and

study the complex biochemical networks they function in.

Quantitative computational models are important tools for understanding the

dynamics of such biochemical networks, and we begin in Chapter 2 by showing

that the sensitivities of such models to parameter changes are generically ‘sloppy’,

with eigenvalues roughly evenly spaced over many decades. This sloppiness has

practical consequences for the modeling process. In particular, we argue that if

one’s goal is to make experimentally testable predictions, sloppiness suggests that

collectively fitting model parameters to system-level data will often be much more

efficient that directly measuring them.

In Chapter 3 we apply some of the lessons of sloppiness to a specific modeling

project involving in vitro experiments on the activation of the heterotrimeric G

protein transducin. We explore how well time-series activation experiments can

constrain model parameters, and we show quantitatively that the T177A mutant

of transducin exhibits a much slower rate of rhodopsin-mediated activation than

the wild-type.

All the preceding biochemical modeling work is performed using the SloppyCell

modeling environment, and Chapter 4 briefly introduces SloppyCell and some of

the analyses it implements. Additionally, the two appendices of this thesis contain

preliminary user and developer documentation for SloppyCell.

Modelers tweak network parameters with their computers, and nature tweaks

such parameters through evolution. We study evolution in Chapter 5 using a

version of Fisher’s geometrical model with minimal pleiotropy, appropriate for the

evolution of biochemical parameters. The model predicts a striking pattern of

cusps in the distribution of fitness effects of fixed mutations, and using extreme

value theory we show that the consequences of these cusps should be observable

in feasible experiments.

Finally, this thesis closes in Chapter 6 by briefly considering several topics:

sloppiness in two non-biochemical models, two technical issues with building mod-

els, and the effect of sloppiness on evolution beyond the first fixed mutation.

BIOGRAPHICAL SKETCH

The author was born in Wilkes-Barre, Pennsylvania on September 21, 1980. When

he was seven, he and his family moved to Pueblo, Colorado. They were lured by

a new job for his father and 300 days of sunshine a year for his mother. Much

of Ryan’s youth was spent hiking and skiing with his father, and Ryan considers

himself a Colorado mountain boy.

Academically he was focused on math and science from a young age (at least

after giving up his dream of being a garbage man), but among his most valuable

experiences in high school was his time on debate team.

In the fall of 1998 he began his studies at the California Institute of Tech-

nology. There he worked with Dr. Eric Black on a simple description of a laser

interferometric gravitational wave detector and with Prof. Anthony Leonard on ex-

perimental fluid mechanics. Ryan survived the Caltech physics curriculum while

simultaneously developing an interest in the law, and in his senior year he applied

to both physics graduate schools and law schools. Ultimately he decided that life in

a suit was not for him, and he enrolled in the Cornell University physics graduate

program in the fall of 2002.

Ryan was initially unsure where his research interests were focused, but his

experiences in the IGERT program for nonlinear sciences led him toward mathe-

matical and computational biology. His first serious graduate research experience

was modeling the foraging behavior of tuna with Prof. Leah Edelstein-Keshet at

the University of British Columbia during his IGERT summer internship.

Upon returning to Cornell, Ryan was offered a position in the group of Prof.

James Sethna. Ryan’s initial work with the Sethna group was focused on protein

structure prediction, but he soon focused on sloppiness in biochemical networks

and modeling the activation of heterotrimeric G proteins. Along the way, Ryan

iii

took charge of SloppyCell, a port of Dr. Kevin Brown’s simulation software from

C++ to Python that was begun by Dr. Chris Myers. Recently, Ryan’s interests

have turned toward evolution, and his most recent project focused on an abstract

model of adaptive evolution. Upon graduation Ryan will be starting a one-year

post-doc with Scott Williamson in Cornell’s department of Biological Statistics

and Computational Biology.

iv

To Shannon and my parents.

v

ACKNOWLEDGEMENTS

It gives me great pleasure to thank a few of the many people who have helped me

throughout my academic career.

First I must offer heartfelt thanks to my advisor, Jim Sethna. The longer I’ve

been in graduate school, the more I realize how lucky I’ve been to work with Jim.

He not only brims with ideas but also brings an infectious enthusiasm to science.

Jim’s positive attitude helped keep me motivated after several rejections, and he

often found the bright side to what I thought were project-ending difficulties.

I also thank the other members of my special committee. Eric Siggia’s skepti-

cal questions were sometimes intimidating, but they helped drive several projects

forward. Rick Cerione and his group, particularly Jon Erickson and Sekar ‘Ram’

Ramachandran, led my initial forays into biochemistry. Finally, Carl Franck is

perhaps the kindest man in the department, and his A exam question led to great

research project.

Work would have been terribly dull were it not for the other members of the

Sethna group. Josh Waterfall always had a cheerful word, and Fergal Casey’s

cynicism helped keep things interesting. They were invaluable resources to bounce

ideas off of, as I came to appreciate after they graduated. The computer lab was

quite the lonely place until new students joined the theory group.

Much of my work revolved around SloppyCell, and it could not have progressed

so far without the help of others. Kevin Brown and Chris Myers, in particular,

started the software, and their design shapes it to this day. Jordan Atlas and Bob

Kuczenski both contributed significant ideas and code, while Sarah Stockwell and

Tamara Galor-Neah courageously suffered through bugs in the early versions.

My short and interesting time spent studying accelerator design was prompted

by Georg Hoffstaetter, and I could not have made any progress at all without

vi

Christopher Mayes and David Sagan. Conversations with Jason Mezey and Ben

Logsdon were very helpful in shaping my picture of evolution, and their kindness

helped my interest in the subject flourish.

The first two years of my graduate career were funded by an NSF IGERT fel-

lowship in nonlinear systems, and the following two were funded by an NIH molec-

ular biophysics training grant. The IGERT program and its head, Steve Strogatz,

showed me the wonderful breadth of subjects outside of traditional physics for

which math and computation can offer insights. The IGERT fellowship also gave

me the amazing opportunity to work with Leah Edelstein-Keshet at the University

of British Columbia. Her charm and warmth gave me a much needed confidence

boost in my abilities as a scientist, and I learned a great deal about productive

research from my project with her and her post-doc Nathaniel Newlands.

Of course, I wouldn’t be here without my parents. They taught me to value

education and knowledge and fostered my interest in science without falling into

the trap of being pushy and controlling.

Finally, I must thank my wife Shannon for the invaluable support she has given

me throughout graduate school. Her love helped keep me sane during the rough

times by reminding me how much more there is to life than computers and papers.

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . v
Acknowledgements . vi
Table of Contents . viii
List of Figures . xii
List of Tables . xiv
List of Listings . xv

1 Overview 1

2 Universally Sloppy Parameter Sensitivities in Systems Biology
Models 5
2.1 Abstract . 5
2.2 Non-technical Summary . 6
2.3 Introduction . 7
2.4 Results . 9

2.4.1 Systems Biology Models have Sloppy Sensitivity Spectra . . 9
2.4.2 Consequences of Sloppiness 13

2.4.2.1 Parameter Values from Collective Fits 15
2.4.2.2 Predictions from Direct Parameter Measurements . 18

2.5 Discussion . 20
2.6 Methods . 24

2.6.1 Hessian Computations . 24
2.6.2 Parameter Uncertainties . 24
2.6.3 Prediction Uncertainties . 25
2.6.4 Software . 25

2.7 Supporting Information . 25
2.7.1 Accession Numbers . 26

2.8 Acknowledgments . 26
2.9 Funding . 26
2.S1 Stiffest Eigenvectors . 27
2.S2 Effect of Other Poorly Determined Parameters 36
2.S3 Fragility of Other Predictions . 37
2.S4 Rescaled Model of Brown et al. 39
2.S5 Sloppy Model Analysis of Brodersen et al. Binding Studies 41

3 Computational Kinetic Modeling of Experiments on the Activa-
tion of a Transducin Mutant 43
3.1 Introduction . 43
3.2 Data . 44
3.3 Computational Model . 46
3.4 Fitting the Model . 47

viii

3.5 Parameter Uncertainties . 50
3.5.1 Bayesian Ensembles . 52
3.5.2 Covariance Analysis . 55

3.6 Discussion . 56
3.A Model Equations . 58
3.B Sloppiness of the Models . 59

4 Falsifiable Modeling of Biochemical Networks with SloppyCell 62
4.1 Abstract . 62
4.2 Introduction . 62
4.3 Methods . 63
4.4 Features and Implementation . 66
4.5 Conclusions . 67
4.6 Acknowledgements . 67

5 Adaptive Mutation in a Geometrical Model of Biochemical Evo-
lution 68
5.1 Abstract . 68
5.2 Introduction . 68
5.3 The Model . 70
5.4 Results . 72

5.4.1 Typical Mutation Size . 72
5.4.2 Adaptive Mutation Probability Densities 74
5.4.3 Cusp Spacings . 78
5.4.4 Non-spherical Fitness Functions 79

5.5 Discussion . 81
5.6 Acknowledgments . 84
5.A Extreme Value Theory for ∆ . 84
5.B Numerical Evaluation of 〈∆〉 . 86

6 Potpourri 87
6.1 Other Sloppy Systems . 87

6.1.1 Cornell’s Proposed Energy Recovery Linac 88
6.1.2 Kinematics of Insect Hovering 90

6.2 Scale Factor Entropy and Priors . 93
6.3 Faster Monte-Carlo Convergence in Curved Landscapes 97
6.4 Biochemical Evolution Beyond the First Fixation 103

6.4.1 Continuous Time Monte Carlo Simulation 104

A SloppyCell User Documentation 108
A.1 Overview . 109

A.1.1 Working Interactively . 109
A.1.2 Accessing SloppyCell . 110
A.1.3 Networks . 110

ix

A.1.4 Dynamics . 111
A.1.5 Models . 112

A.1.5.1 Priors . 112
A.1.6 Experiments . 113

A.1.6.1 Scale Factors . 113
A.1.6.2 Data Format . 114

A.1.7 Optimization . 115
A.1.8 Cost and Residual Derivatives 115
A.1.9 Ensembles . 116

A.1.9.1 Assessing and Speeding Convergence 117
A.1.9.2 Predicting from an Ensemble 118

A.1.10 Plotting . 118
A.1.11 KeyedLists . 119
A.1.12 Input and Output . 119
A.1.13 Miscellaneous Utilities . 121
A.1.14 Parallelization . 121

A.2 JAK-STAT Example . 121
A.2.1 Other Examples . 126

A.3 Installation . 126
A.3.1 Required Dependencies . 126
A.3.2 Optional Dependencies . 127
A.3.3 On Linux . 127
A.3.4 OS X . 128

A.3.4.1 Pre-built binary 128
A.3.4.2 From source code 129

A.3.5 Windows . 129
A.3.5.1 Pre-built binary 129
A.3.5.2 From source code 129

A.3.6 Testing the Installation . 129
A.4 Troubleshooting . 130

A.4.1 Failing Integrations . 130

B SloppyCell Developer Documentation 131
B.1 Test Suite . 131
B.2 Logging . 132
B.3 Integrator . 132
B.4 ExprManip . 133
B.5 Dynamic Functions . 133

B.5.1 Compilation . 134
B.5.2 Execution . 134

B.6 Sensitivity Integration . 136
B.6.1 Handling Events . 137

B.6.1.1 Time Sensitivities 137
B.6.1.2 Variable Sensitivities 138

x

B.6.1.3 Implementation . 139
B.6.2 Adjoint Method . 140

B.7 Parallel Execution . 141

Bibliography 143

xi

LIST OF FIGURES

1.1 Illustrative complex biochemical network 2

2.1 Parameter sensitivity spectra . 11
2.2 Sloppiness and uncertainties . 14
2.3 Fitting parameters to idealized data 16
2.4 Parameter and prediction uncertainties 19
2.5 Stiffest eigenvectors for model (a): Tyson’s model of the eukaryotic

cell cycle . 27
2.6 Stiffest eigenvectors for model (b): Zwolak et al.’s model of the

Xenopus egg cell cycle . 28
2.7 Stiffest eigenvectors for model (c): Goldbeters’s model of eukaryotic

mitosis . 28
2.8 Stiffest eigenvectors for model (d): Vilar et al.’s generic circadian

rhythm model . 29
2.9 Stiffest eigenvectors for model (e): Edelstein et al.’s model of nico-

tinic acetylcholine intra-receptor dynamics 29
2.10 Stiffest eigenvectors for model (f): Kholodenko’s model of a generic

kinase cascade . 30
2.11 Stiffest eigenvectors for model (g): Lee et al.’s model of Xenopus

Wnt signaling . 30
2.12 Stiffest eigenvectors for model (h): Leloup and Goldbeters’s model

of Drosophila circadian rhythm . 31
2.13 Stiffest eigenvectors for model (i): Brown et al.’s model of rat

growth-factor signaling . 31
2.14 Stiffest eigenvectors for model (j): von Dassow et al.’s model of the

Drosophila segment polarity network 32
2.15 Stiffest eigenvectors for model (k): Ueda et al.’s model of

Drosophila circadian rhythm . 32
2.16 Stiffest eigenvectors for model (l): Locke et al.’s model of Arabidop-

sis circadian rhythm . 33
2.17 Stiffest eigenvectors for model (m): Zak et al.’s model of an in silico

regulatory network . 33
2.18 Stiffest eigenvectors for model (n): Curto et al.’s model of human

purine metabolism . 34
2.19 Stiffest eigenvectors for model (o): Chassagnole et al.’s model of E.

coli carbon metabolism . 34
2.20 Stiffest eigenvectors for model (p): Chen et al.’s model of the bud-

ding yeast cell cycle . 35
2.21 Stiffest eigenvectors for model (q): Sasagawa et al.’s model of rat

growth-factor signaling . 35
2.22 Effect of other missing parameters on example prediction 36
2.23 Prediction uncertainties for Ras activity given EGF stimulation . . 38

xii

2.24 Prediction uncertainties for Mek activity given NGF stimulation . . 38
2.25 Eigenvalue for rescaled Brown et al. models 40
2.26 Sloppy eigenvalues of Brodersen et al.’s models 42

3.1 Fits to reduced data . 45
3.2 Illustration of our model for heterotrimeric G protein activation . . 47
3.3 Optimized initial condition adjustments 51
3.4 Example ensemble parameter distributions 54
3.5 Eigenvalues for G protein models 60
3.6 Stiffest eigenvectors for fits with fixed initial conditions 60
3.7 Eigenvector components for fits with optimized initial conditions . 61

4.1 Uncertainty analysis of JAK-STAT model 65

5.1 Illustration of the biochemical geometrical model 71
5.2 Fitness effects probability densities 76
5.3 Mean relative cusp spacing ∆ versus N 79

6.1 Eigenvalue spectrum for a model of Cornell’s proposed ERL 89
6.2 Stiffest three eigenvectors for a model Cornell’s ERL 90
6.3 Eigenvalue spectrum for a model of the kinematics of fruitfly flight 91
6.4 Stiffest three eigenvectors for the fruitfly 92
6.5 Effect of scale factor priors on ensemble construction 95
6.6 JTJ eigenvalues from several points along PC12 ensemble 97
6.7 Importance-sampled Monte-Carlo in the Rosenbrock function . . . 99
6.8 Monte-Carlo with JTJ recalculation in the Rosenbrock function . . 101
6.9 Comparison of Monte-Carlo algorithm convergence 102
6.10 Adaptive walks in spherical and sloppy landscapes 105
6.11 ‘Trapping’ in 2-D evolution . 106

A.1 Example autocorrelation functions 117
A.2 Automatically generated network diagram for G protein model . . 120
A.3 Optimal fit for JAK-STAT example 124
A.4 Histogram of log ’r3’ for the JAK-STAT model 125
A.5 Prediction uncertainties for the JAK-STAT model 126

xiii

LIST OF TABLES

3.1 Best-fit costs for G-protein models 49
3.2 Ensemble temperatures . 53
3.3 kex confidence intervals . 55

xiv

LIST OF LISTINGS

A.1 Example of experimental data format 114
A.2 Example SloppyCell script for the JAK-STAT model 123

xv

CHAPTER 1

OVERVIEW

Biology has made astonishing progress characterizing the molecular compo-

nents of life, culminating in the sequencing of whole genomes [1]. Understanding

the remarkable complexity of life, however, requires more than just a list of parts;

it requires understanding the networks of interactions between those parts [2]. (As

an example, Figure 1 illustrates a complex biochemical network with particularly

important medical consequences.) Mathematical and computational modeling will

play an important role in our quest to understand the organization and dynamics

of these networks [3, 4]. Even after decades of research [5], however, best practices

for modeling such complex multi-parameter systems are still being developed.

One important consideration is how to deal with uncertainties in the data [6],

in the fit parameters, and in resulting predictions. Brown et al. rigorously explored

one source of uncertainty in their model of growth-factor signaling in PC12 cells;

their analysis considered not just the set of parameters that best fit the data but

a statistical sampling of all parameter sets that fit the data [7, 8]. Like in many

other systems [9], the space of parameter sets that could fit the data was vast.

Perhaps surprisingly, some predictions were still very well constrained even in the

face of this enormous parameter uncertainty. Brown et al. found a striking ‘sloppy’

pattern in the sensitivity of their model to parameter changes; when plotted on a

logarithmic scale, the sensitivity eigenvalues were roughly evenly spaced over many

decades.

Since that study, sloppiness has been a focus of our group’s work. Notably, the

PC12 model was not unique; a model of atomic interatomic potentials is sloppy [10],

as is the classic problem of fitting exponentials [11]. In fact, their appears to be

a universality class of sloppy models [11]. This thesis opens in Chapter 2 by

1

2

Bax

CdK4

APC

Rb

E2FE2F

Rb

P

P

P

MKP1

P

Beta−catenin

Beta−catenin

Bax

Arrest
Cell Cycle

Arrest
Cell Cycle

Cbl

Downregulation
Receptor

Rho

MDM2

Vav

Src

Arrest
Cell Cycle

Protection
from
Apoptosis

Myc

Cell Death

mitochondria

ArfArf

ATM

Bax

via interaction with

CycD

CycE CycE CdK2

P16

Ras

EGF

Raf

Mek

PP2A

Cdc42

APC

GSK3

MDM2

PTEN

Rho

ATR

Myc

p53

p53

p21
E2F

Myc

p21

p16

MKP1

Erk

Erk

Sp1

CycD

PI3K

Cell Cycle Progression

Gene Expression

Cell Cycle Progression

Gene Expression

Growth &
Proliferation

Induction of
Apoptosis

TKTK TK TK

DNA Damgage/

PDGF

Akt

Figure 1.1: Shown is a cartoon of an illustrative biochemical network. Compiled
by Rick Cerione and Kevin Brown and illustrated by the author of this thesis, this
network includes many of the players involved in cancer biology.

3

empirically testing the universality of sloppiness in models biochemical networks.

We consider a diverse collection of models from the systems biology literature and

show they they all have sloppy sensitivity spectra.

In Chapter 2 we also explore some practical consequences of sloppiness for mod-

elers. In particular, we show that direct parameter measurements may be a very

inefficient way to build predictive models. Predictions of the behavior of the system

as a whole are best constrained by experiments that probe that system behavior,

even when those experiments only very loosely constrain a model’s parameters.

Chapter 3 discusses an application of the ‘sloppy modeling’ approach. Using

data collected by Sekar Ramachandran in the Cerione lab, we study a model of

the activation of heterotrimeric G proteins. The model itself is relatively simple;

the challenge lies in connecting it with noisy and extracting as much insight as

possible from a limited view of the dynamics.

Much of my work has focused on SloppyCell, a software environment for model

building that has found application both inside [12] (Chapters 2 and 3) and out-

side [13] the Sethna group. Chapter 4 is a short introduction to and advertisement

for the SloppyCell. The code is open source in part because of my desire to facil-

itate reproducible computational research [14]. For example, the supplementary

material for the paper in Chapter 2 includes SloppyCell scripts to reproduce most

of the results.

Theodosius Dobzhansky famously pointed out [15, 16] that: “Nothing in biol-

ogy makes sense except in the light of evolution.” Evolution has fascinated many

groups in physics [17] and the possible evolutionary implications of sloppiness have

interested our group for quite some time. Chapter 5 represents our first concrete

step in addressing evolution. There we consider evolution not in terms of sequences

or phenotypes, but in terms of biochemical parameters. Our geometrical model

4

predicts striking, experimentally-accessible cusps in the distribution fitness of ef-

fects of adaptive mutations. Perhaps surprisingly, we also find that sloppiness has

little influence on these cusps, suggesting that it leaves little signature on single

adaptive steps.

The body of this thesis closes with Chapter 6, which discusses a smattering

of topics. These include two non-network sloppy models, some technical details

about building effective parameter ensembles, and a brief look at the effects of

sloppiness on evolution beyond the first step in an adaptive walk.

Finally, in the interests of keeping SloppyCell alive, this thesis includes two

appendices documenting SloppyCell, one for users and one for developers. The

group cannot claim to be experts at software design, but we have tried to adhere

to good software development practices [18], and these appendices are an important

part of making the code useful to others. After submission of this thesis, these

appendices will be included on the SloppyCell website and in the SloppyCell source

code distribution.

CHAPTER 2

UNIVERSALLY SLOPPY PARAMETER SENSITIVITIES IN

SYSTEMS BIOLOGY MODELS∗

2.1 Abstract

Quantitative computational models play an increasingly important role in mod-

ern biology. Such models typically involve many free parameters, and assigning

their values is often a substantial obstacle to model development. Directly mea-

suring in vivo biochemical parameters is difficult, and collectively fitting them

to other experimental data often yields large parameter uncertainties. Neverthe-

less, in earlier work we showed in a growth-factor-signaling model that collective

fitting could yield well-constrained predictions, even when it left individual pa-

rameters very poorly constrained. We also showed that the model had a ‘sloppy’

spectrum of parameter sensitivities, with eigenvalues roughly evenly distributed

over many decades. Here we use a collection of models from the literature to

test whether such sloppy spectra are common in systems biology. Strikingly, we

find that every model we examine has a sloppy spectrum of sensitivities. We

also test several consequences of this sloppiness for building predictive models. In

particular, sloppiness suggests that collective fits to even large amounts of ideal

time-series data will often leave many parameters poorly constrained. Tests over

our model collection are consistent with this suggestion. This difficulty with col-

lective fits may seem to argue for direct parameter measurements, but sloppiness

also implies that such measurements must be formidably precise and complete to

usefully constrain many model predictions. We confirm this implication in our

growth-factor-signaling model. Our results suggest that sloppy sensitivity spectra

∗In press at PLoS Computational Biology with authors Ryan N. Gutenkunst, Joshua J. Wa-
terfall, Fergal P. Casey, Kevin S. Brown, Christopher R. Myers and James P. Sethna.

5

6

are universal in systems biology models. The prevalence of sloppiness highlights

the power of collective fits and suggests that modelers should focus on predictions

rather than on parameters.

2.2 Non-technical Summary

Dynamic systems biology models typically involve many kinetic parameters, the

quantitative determination of which has been a serious obstacle to using these mod-

els. Previous work showed for a particular model that useful predictions could be

extracted from a fit long before the experimental data constrained the parameters,

even to within orders of magnitude. This was attributed to a ‘sloppy’ pattern in

the model’s parameter sensitivities; the sensitivity eigenvalues were roughly evenly

spaced over many decades. Consequently, the model behavior depended effectively

on only a few ‘stiff’ parameter combinations. Here we study the converse problem,

showing that direct parameter measurements are very inefficient at constraining

the model’s behavior. To yield effective predictions such measurements must be

very precise and complete; even a single imprecise parameter often destroys pre-

dictivity. We also show here that the characteristic sloppy eigenvalue pattern is

reproduced in sixteen other diverse models from the systems biology literature.

The apparent universality of sloppiness suggests that predictions from most mod-

els will be very fragile to single uncertain parameters and that collective parameters

fits can often yield tight predictions with loose parameters. Together these results

argue that focusing on parameter values may be a very inefficient route to useful

models.

7

2.3 Introduction

Dynamic computational models are powerful tools for developing and testing hy-

potheses about complex biological systems [19, 20, 21]. It has even been suggested

that such models will soon replace databases as the primary means for exchang-

ing biological knowledge [22]. A major challenge with such models, however, is

that they often possess tens or even hundreds of free parameters whose values

can significantly affect model behavior [23, 24]. While high-throughput meth-

ods for discovering interactions are well-developed [25], high-throughput methods

for measuring biochemical parameters remain limited [26]. Furthermore, using

values measured in vitro in an in vivo application may introduce substantial in-

accuracies [27, 28]. On the other hand, collectively fitting parameters [29, 30]

by optimizing the agreement between the model and available data often yields

large parameter uncertainties [9, 31, 32]. In approaches typically more focused

on steady-state distributions of fluxes in metabolic networks, metabolic control

analysis has been used to quantify the sensitivity of model behavior with respect

to parameter variation [33], and flux-balance analysis and related techniques have

probed the robustness of metabolic networks [34, 35].

One way to cope with the dearth of reliable parameter values is to focus on

predictions that are manifestly parameter-independent [36], but these are mostly

qualitative. An alternative is not to forsake quantitative predictions, but to accom-

pany them with well-founded uncertainty estimates based on an ensemble of pa-

rameter sets statistically drawn from all sets consistent with the available data [7].

(Uncertainties in the model structure itself may be important in some cases. Here

we focus on parameter uncertainties, as they are often important on their own.)

Brown et al. took this approach in developing a computational model of the

well-studied growth-factor-signaling network in PC12 cells [8]. They collectively

8

fit their model’s 48 parameters to 68 data points from 14 cell-biology experiments

(mostly Western blots). After the fit, all 48 parameters had large uncertainties;

their 95% confidence intervals each spanned more than a factor of 50. Surpris-

ingly, while fitting this modest amount of data did not tightly constrain any single

parameter value, it did enable usefully tight quantitative predictions of behavior

under interventions, some of which were verified experimentally.

In calculating their uncertainties, Brown et al. found that the quantitative be-

havior of their model was much more sensitive to changes in certain combinations of

parameters than others. Moreover, the sensitivity eigenvalues were approximately

equally spaced in their logarithm, a pattern deemed ‘sloppy’. Such sloppy sen-

sitivities were subsequently seen in other multi-parameter fitting problems, from

interatomic potentials [10] to sums of exponentials [11]. The fact that sloppiness

arises in such disparate contexts suggests that it may be a universal property

of nonlinear multi-parameter models. (Here the term ‘universal’ has a technical

meaning from statistical physics, denoting a shared common property with a deep

underlying cause; see [11]. Universality in this sense does not imply that all models

must necessarily share the property.)

In this work, we begin by empirically testing seventeen systems biology mod-

els from the literature, examining the sensitivity of their behavior to parameter

changes. Strikingly, we find that Brown et al’s model is not unique in its sloppi-

ness; every model we examine exhibits a sloppy parameter sensitivity spectrum.

(Thus, in the models we’ve examined sloppiness is also universal in the common

English sense of ubiquity.) We then study the implications of sloppiness for con-

straining parameters and predictions. We argue that obtaining precise parameter

values from collective fits will remain difficult even with extensive time-series data,

because the behavior of a sloppy model is very insensitive to many parameter

9

combinations. We also argue that, to usefully constrain model predictions, direct

parameter measurements must be both very precise and complete, because sloppy

models are also conversely very sensitive to some parameter combinations. Tests

over our collection of models support the first prediction, and detailed analysis of

the model of Brown et al. supports the second contention.

Sloppiness, while not unique to biology, is particularly relevant to biology, be-

cause the collective behavior of most biological systems is much easier to measure

in vivo than the values of individual parameters. Much work has focused on op-

timizing experimental design to best constrain model parameters with collective

fits [37, 38, 39]. We argue against this focus on parameter values, particularly

when our understanding of a system is tentative and incomplete. Concrete predic-

tions can be extracted from models long before their parameters are even roughly

known [8], and when a system is not already well-understood, it can be more prof-

itable to design experiments to directly improve predictions of interesting system

behavior [12] rather than to improve estimates of parameters.

2.4 Results

2.4.1 Systems Biology Models have Sloppy Sensitivity

Spectra

Our collection of 17 systems biology models [20, 38, 40, 41, 42, 43, 44, 45, 46, 47,

8, 48, 49, 50, 51, 52, 53] was drawn primarily from the BioModels database [54],

an online repository of models encoded in the Systems Biology Markup Language

(SBML) [55]. The collected models encompass a diverse range of biological systems,

including circadian rhythm, metabolism, and signaling. All the models are formu-

10

lated as systems of ordinary differential equations, and they range from having

about ten to more than two hundred parameters. In most cases, these parameters

were not systematically fit or measured in the original publication.

We quantified the change in model behavior as parameters θ varied from their

published values θ∗ by the average squared change in molecular species time

courses:

χ2(θ) ≡ 1

2NcNs

∑
s,c

1

Tc

∫ Tc

0

[
ys,c(θ, t)− ys,c(θ∗, t)

σs

]2

dt, (2.1)

a kind of continuous least-squares fit of parameters θ to ‘data’ simulated from

published parameters θ∗. Here ys,c(θ, t) is the time course of molecular species

s given parameters θ in condition c, and Tc is the ‘measurement’ time for that

condition. We took the species normalization σs to be equal to the maximum

value of species s across the conditions considered; other consistent normalizations

yield the same qualitative conclusions.

For each model, the sum in Equation 2.1 runs over all molecular species in the

model and (except where infeasible) over all experimental conditions considered

in the corresponding paper—an attempt to neutrally measure system behavior

under conditions deemed significant by the original authors. (The total number of

conditions and species are denoted by Nc and Ns, respectively.) SBML files and

SloppyCell [56] scripts for all models and conditions are available in Dataset S1.

To analyze each model’s sensitivity to parameter variation, we considered the

Hessian matrix corresponding to χ2:

Hχ2

j,k ≡
d2χ2(θ)

d log θj d log θk
. (2.2)

We took derivatives with respect to log θ to consider relative changes in parameter

values, because biochemical parameters can have different units and widely varying

scales. AnalyzingHχ2
corresponds to approximating the surfaces of constant model

behavior deviation (as quantified by χ2) to be Np-dimensional ellipsoids, where Np

11

B

C

stiff sl
op

py

A
Eigenvalues

Alignment with parameter axes

a b c d e f g h i j k l m n o p q

10-6

10-5

10-4

10-3

10-2

10-1

100

S
tiff

S
lo

p
p
y

S
k
e
w

e
d

A
lig

n
e
d

a b c d e f g h i j k l m n o p q

10-3

10-2

10-1

100

Figure 2.1: Subfigure A illustrates the quantities we calculate from Hχ2
, while

subfigures B and C show that all the models we examined have sloppy sensi-
tivity spectra. A: Analyzing Hχ2

corresponds to approximating the surfaces of
constant model behavior change (constant χ2) as ellipsoids. The width of each
principal axis is proportional to one over the square root of the corresponding
eigenvalue. The inner ellipsoid’s projection onto and intersection with the log θ1

axis are denoted P1 and I1, respectively. B: Plotted are the eigenvalue spectra
of Hχ2

for our collection of systems biology models. The many decades gener-
ally spanned indicate the ellipses have very large aspect ratio. (The spectra have
each been normalized by their largest eigenvalue. Not all values are visible for
all models.) C: Plotted is the spectrum of I/P for each parameter in each model
in our collection. Generally very few parameters have I/P ≈ 1, suggesting that
the ellipses are skewed from the bare parameter axes. (Not all values are visible
for all models.) The models are ordered by increasing number of free parameters
and are: (a) eukaryotic cell cycle [40], (b) Xenopus egg cell cycle [41], (c) eu-
karyotic mitosis [42], (d) generic circadian rhythm [43], (e) nicotinic acetylcholine
intra-receptor dynamics [44], (f) generic kinase cascade [45], (g) Xenopus Wnt
signaling [46], (h) Drosophila circadian rhythm [47], (i) rat growth-factor signal-
ing [8], (j) Drosophila segment polarity [48], (k) Drosophila circadian rhythm [49],
(l) Arabidopsis circadian rhythm [20], (m) in silico regulatory network [38], (n)
human purine metabolism [50], (o) E. coli carbon metabolism [51], (p) budding
yeast cell cycle [52], (q) rat growth-factor signaling [53].

12

is the number of parameters in the model. Figure 2.1A schematically illustrates

these ellipsoids and some of their characteristics. (Details of calculating Hχ2
and

related quantities are found in Methods. Dataset S1 includes Hχ2
for each model.)

The principal axes of the ellipsoids are the eigenvectors of Hχ2
, and the width

of the ellipsoids along each principal axis is proportional to one over the square

root of the corresponding eigenvalue. The narrowest axes are called ‘stiff’, and the

broadest axes ‘sloppy’ [7]. The eigenvalue spectra for the models in our collection

are shown in Figure 2.1B (each normalized by its largest eigenvalue). In every case,

the eigenvalues span many decades. All but one span more than 106, indicating that

the sloppiest axes of the ellipsoids illustrated in Figure 2.1A are generally more than

one thousand times as long as the stiffest axes. In each spectrum the eigenvalues

are also approximately evenly spaced in their logarithm; there is no well-defined

cutoff between ‘important’ and ‘unimportant’ parameter combinations.

The Hessian matrix is a local quadratic approximation to the generally non-

linear χ2 function. Principal component analysis of extensive Monte Carlo runs in

the Brown et al. model, however, indicates that the sloppiness revealed by Hχ2
is

indicative of full nonlinear χ2 function [7].

Along with their relative widths, the degree to which the principal axes of the

ellipsoids are aligned to the bare parameter axes is also important. We estimated

this by comparing the ellipsoids’ intersections Ii with and projections Pi onto each

bare parameter axis i. If Ii/Pi = 1 then one of the principal axes of the ellipsoids

lies along bare parameter direction i. Figure 2.1C plots the I/P spectrum for each

model. In general, very few axes have I/P ≈ 1; the ellipses are skewed from single

parameter directions.

Naively, one might expect the stiff eigenvectors to embody the most important

parameters and the sloppy directions to embody parameter correlations that might

13

suggest removable degrees of freedom, simplifying the model. Empirically, we have

found that the eigenvectors often tend to involve significant components of many

different parameters; plots of the five stiffest eigenvectors for each model are in

Supporting Text S1. This is understandable theoretically; the nearly-degenerate

sloppy eigenvectors should mix, and the stiff eigenvectors can include arbitrary ad-

mixtures of unimportant directions to a given important parameter combination.

(Indeed, in analogous random-matrix theories the eigenvectors are known to be

uncorrelated random vectors [57].) While the relatively random eigenvectors stud-

ied here may not be useful in guiding model reduction, more direct explorations of

parameter correlations have yielded interesting correlated parameter clusters [58].

These characteristic parameter sensitivities that evenly span many decades and

are skewed from bare parameter axes define a ‘sloppy’ model [7]. Figures 2.1B

and 2.1C show that every model we have examined has a sloppy sensitivity spec-

trum. Next we discuss some broad questions about the relation between model

predictions, collective fits, and parameter measurements and see how the sloppy

properties of these models may suggest answers.

2.4.2 Consequences of Sloppiness

The difficulty of extracting precise parameter values from collective fits in systems

biology modeling is well-known [39]. Sloppiness offers an explanation for this and

predicts that it will be true even for fitting to complete data that the model can

fit perfectly. In a collective fit, the parameter set ensemble samples from all sets

of parameters for which the model behavior is consistent with the data. Because

sloppy models are very insensitive to parameter combinations that lie along sloppy

directions, the parameter set ensemble can extend very far in those directions, as

illustrated schematically in Figure 2.2A. As a result, individual parameters can be

14

A

B C

Figure 2.2: As in Figure 2.1A, the contours represent surfaces of constant model
behavior deviation. The clouds of points represent parameter set ensembles.
A: Collective fitting of model parameters naturally constrains the parameter set
ensemble along stiff directions and allows it to expand along sloppy directions.
The resulting ensemble may be very large, yet encompass little variation in model
behavior, yielding small prediction uncertainties despite large parameter uncer-
tainties. (Σ1 denotes the 95% confidence for the value of θ1.)
B: If all parameters are directly measured to the same precision, the parameter
set ensemble is spherical. The measurement precision required for well-constrained
predictions is set by the stiffest direction.
C: If one parameter (here θ2) is known less precisely than the rest, the cloud is
ellipsoidal. If not aligned with a sloppy direction, the cloud will admit many model
behaviors and yield large prediction uncertainties. (Note that the aspect ratio of
the real contours can be greater than 1000.)

15

very poorly determined (e.g., confidence interval indicated by Σ1 in Figure 2.2A).

Below we discuss a test of this prediction over all the models in our collection.

Unless one has direct interest in the kinetic constants for the underlying reac-

tions, uncertainties in model predictions are generally more important than un-

certainties in model parameters. The parameter set ensemble illustrated in Fig-

ure 2.2A yields large uncertainties on individual parameters, but can yield small

uncertainties on predictions. While the fitting process allows the ensemble to ex-

pand along sloppy directions, the fit naturally constrains the ensemble along stiff

directions, so that model behavior varies little within the ensemble, and predictions

can be consequently tight.

Direct parameter measurements, on the other hand, will have uncertainties

that are uncorrelated with the model’s underlying stiff and sloppy directions. For

example, if all parameter measurements are of the same precision, the parameter

set ensemble is spherical, as illustrated in Figure 2.2B. For tight predictions, this

ensemble must not cross many contours, so the required precision is set by the

stiffest direction of the model. Consequently, high precision parameter measure-

ments are required to yield tight predictions. Moreover, these measurements must

be complete. If one parameter is known less precisely, the parameter set ensemble

expands along that parameter axis, as illustrated in Figure 2.2C. If that axis is not

aligned with a sloppy direction, model behavior will vary dramatically across the

parameter set ensemble and predictions will have correspondingly large uncertain-

ties. Below we discuss tests of both these notions, exploring the effects of direct

parameter measurement uncertainty on predictions of a particular model.

2.4.2.1 Parameter Values from Collective Fits

Does the sloppiness of these models really prevent one from extracting parameters

from collective fits? Here we discuss a test of this prediction using an idealized

16

< 0.1
0.1 - 1

1 - 10

10 - 100

> 100

(a)

(b)

(c)

(d)

(e)

(o)

(n)

(m)

(l)

(k)

(j)

(i)

(h)

(g)

(f)

(q)

(p)

Relative confidence

interval size

Figure 2.3: Shown are histograms of the relative confidence interval size Σ for
each parameter in each model of our collection, after fitting 100 times as many
time-series data points (each with 10% uncertainty) as parameters. In most cases
a large number of parameters are left with greater than 100% uncertainty. (A
parameter constrained with 95% probability to lie between 1 and 100 would have
Σ ≈ 100.)
Labels are as in Figure 2.1.

17

fitting procedure.

Our χ2 measure of model behavior change (Equation 2.1) corresponds to the

cost function for fitting model parameters to continuous time-series data that the

model fits perfectly at parameters θ∗; Hχ2
is the corresponding Fisher information

matrix (Equation 2.2). We used this idealized situation to test the prediction that

collective fits will often poorly constrain individual parameters in our collection of

sloppy models.

We defined the relative 95% confidence interval size Σi as the ratio between pa-

rameter i at the upper and lower extremes of the interval, minus one. (A parameter

value constrained after the fit to lie between 10 and 1000 would have Σ ≈ 100, while

one constrained between 1.0 and 1.5 would have Σ = 0.5.) We assumed 100 times

as many data points (each with 10% uncertainty) as the number of parameters in

each model. Figure 2.3 shows histograms of the quadratic approximation to Σ for

each parameter in each model after fitting such data. (See Methods.) For most

of the models, the figure indicates that such fitting leaves many parameters with

greater than 100% uncertainty (Σ > 1). Indeed, even fitting this large amount of

ideal data can leave many parameter values very poorly determined, as expected

from the sloppiness of these models and our discussion of Figure 2.2A.

The fact that nonlinear multiparameter models often allow a wide range of

correlated parameters to fit data has long been appreciated. As one example,

a 1987 paper by Brodersen et al. on ligand binding to hemoglobin and albumin

empirically found many sets of parameters that acceptably fit experimental data,

with individual parameter values spanning huge ranges [9]. Our sloppy model

perspective ([7, 8, 11], Figure 1) shows that there is a deep underlying universal

pattern in such least-squares fitting. Indeed, an analysis of the acceptable binding

parameter sets from the 1987 study shows the same characteristic sloppy eigenvalue

18

spectrum we observed in Figure 2.1B (Supporting Text S5).

2.4.2.2 Predictions from Direct Parameter Measurements

Figures 2.2B and 2.2C suggests that direct parameter measurements must be both

precise and complete to usefully constrain predictions in sloppy systems. Here we

discuss a test of this notion in a specific model.

We worked with the 48-parameter growth-factor-signaling model of Brown

et al., shown schematically in Figure 2.4A [8]. The parameters in this model

were originally collectively fit to 14 time-series cell-biology experiments. We fo-

cused on this model because it is instructive to compare our results concerning

direct parameter measurements with prior results from collective fitting. For our

analysis, we assumed that hypothetical direct parameter measurements would be

centered about the original best-fit values.

One important test of the model was a prediction of the time-course of ERK

activity upon EGF stimulation, given inhibition of the PI3K branch of the pathway.

The yellow shaded region in Figure 2.4B shows the uncertainty bound on this

prediction from the original collective fit, calculated by exhaustive Monte Carlo [8].

The tightness of this prediction is remarkable considering the huge uncertainties the

collective fit left in the individual parameter values (yellow circles in Figure 2.4C).

Not a single parameter was constrained to better than a factor of 50.

How precise would direct parameter measurements have to be to yield as tight

a prediction as the collective fit? For this prediction, the PI3K branch (inhibited)

and C3G branch (NGF-dependent) of the pathway are irrelevant in the model;

the remaining reactions involve 24 parameters. To achieve the red prediction in

Figure 2.4B, all 24 involved parameters must be measured to within a factor of plus

or minus 25% (Figure 2.4C, red squares). With current techniques, measuring even

a single in vivo biochemical parameter to such precision would be a challenging

19

0 15 30 45
Time (min)

1/2

1

F
ra

c
ti
o

n
 o

f
E

rk
 a

c
ti
v
e

C

1 16 32 48

0.5

50

5,000

500,000

Sorted parameter index

R
e

la
ti
v
e

 c
o

n
fi
d

e
n

c
e

in
te

rv
a

l
s
iz

e

B

Akt/PKB

PI3K Ras

Extracellular

Cytosol
EGFR NGFR

mSos

Raf1

Mek1/2

Erk1/2

p90/RSK

C3G

Rap1

B-Raf

A

Figure 2.4: A: Our example prediction is for ERK activity upon EGF stimulation
given PI3K inhibition in this 48-parameter model of growth-factor-signaling in
PC12 cells [8].
B: Shaded regions are 95% confidence intervals calculated via exhaustive Monte
Carlo for our example prediction given various scenarios for constraining parameter
values.
C: Plotted is the relative size Σ of the 95% confidence interval for each parameter.
The scenarios represented are: (red, squares) all model parameters individually
measured to high precision, (blue, triangles) all parameters precisely measured,
except one estimated to low precision, (yellow, circles) all parameters collectively
fit to 14 real cell-biology experiments. Precisely measured individual parameter
values enable a tight prediction (B: middle red band), but even one poorly known
parameter can destroy predictive power (B: wide blue band). In contrast, the
collective fit yields a tight prediction (B: tightest yellow band) but only very loose
parameter constraints (C: circles). The large parameter uncertainties from the
collective fit (C: circles) calculated here by Monte Carlo are qualitatively similar
to those seen in the linearized fit to idealized data (Figure 2.3, model (i)). (For
clarity, the dashed red lines trace the boundary of the red confidence interval.)

20

experiment. Such high precision is required because, as illustrated in Figure 2.2B,

the measurements need to constrain the stiffest combination of model parameters.

What if a single parameter is left unmeasured? For example, consider high pre-

cision measurements of 23 of the 24 involved parameters, all but the rate constant

for the activation of Mek by Raf1. For this unmeasured parameter, we assumed

that an informed estimate could bound it at 95% confidence to within a total

range of 1000 (e.g., between 1s−1 and 1000s−1). The resulting prediction (blue

in Figure 2.4B) has very large uncertainty and would likely be useless. Note that

these hypothetical measurements constrain every individual parameter value more

tightly than the original collective fit (blue triangles versus yellow circles in Fig-

ure 2.4C), yet the prediction is much less well-constrained. Neither this parameter

nor this prediction is unique. Uncertainty for this prediction is large if any one

of about 18 of the 24 involved parameters is unmeasured (Supporting Text S2).

Furthermore, other possible predictions in this model are similarly fragile to single

unmeasured parameters (Supporting Text S3).

To usefully constrain Brown et al.’s model, direct parameter measurements

would need to be both precise and complete. By contrast, collective parameter

fitting yielded tight predictions with only a modest number of experiments. These

results are expected given the model’s sloppiness.

2.5 Discussion

By examining seventeen models from the systems biology literature [20, 38, 40, 41,

42, 43, 44, 45, 46, 47, 8, 48, 49, 50, 51, 52, 53], we showed that their parameter

sensitivities all share striking common features deemed ‘sloppiness’; the sensitivity

eigenvalues span many decades roughly evenly (Figure 2.1B), and tend not to be

aligned with single parameters (Figure 2.1C). We argued that sloppy parameter

21

sensitivities help explain the difficulty of extracting precise parameter estimates

from collective fits, even from comprehensive data. Additionally, we argued that

direct parameter measurements should be inefficient at constraining predictions

from sloppy models. We then showed that collective parameter fits to complete

time-series data do indeed yield large parameter uncertainties in our model collec-

tion (Figure 2.3). Finally, we confirmed for the 48-parameter signaling model of

Brown et al. [8] that direct parameter measurements must be formidably precise

and complete to usefully constrain model predictions (Figure 2.4).

What causes sloppiness? (1) Fundamentally, sloppiness involves an extraor-

dinarily singular coordinate transformation in parameter space between the bare

parameters natural in biology (e.g., binding affinities and rate constants) and the

eigenparameters controlling system behavior, as discussed in [11]. Both experi-

mental interventions and biological evolution work in the bare parameter space, so

this parameterization is fundamental to the system, not an artifact of the modeling

process. (2) Sloppiness depends not just upon the model, but also on the data it is

fit to; exhaustive experiments designed to decouple the system and separately mea-

sure each parameter will naturally not yield sloppy parameter sensitivities. (3) In

biological systems fit to time-series data, Brown and Sethna [7] note that sloppi-

ness may arise due to under-determined systems, proximity to bifurcations, and

separation of time or concentration scales, but they doubt that these can explain

all the sloppiness found in their model. Our analysis includes complete data on all

species, and hence is overdetermined. Small eigenvalues near bifurcations are asso-

ciated with dynamic variables, and not the system parameters we investigate. To

study the effect of time and concentration scales we calculated Hχ2
for a version of

the Brown et al. model in which all concentrations and rate constants were scaled

to one1. The resulting model remains sloppy, with eigenvalues roughly uniformly

1This analysis was suggested by Eric Siggia

22

spanning five decades (Supporting Text S4). (4) Motivated by simple example

systems, we have argued elsewhere that sloppiness emerges from a redundancy

between the effects of different parameter combinations [11]. We are presently

investigating decompositions of parameter space into sloppy subsystems [58] and

the use of physically or biologically motivated nonlinear coordinate changes to re-

move sloppiness or motivate simpler models. These potential methods for model

refinement, however, demand a complete and sophisticated understanding of the

system that is unavailable for many biological systems of current interest.

Parameter estimation has been a serious obstacle in systems biology modeling.

With tens of unknown parameters, a typical modeling effort might draw some

values from the literature (possibly from in vitro measurements or different cell

lines) [45, 50], set classes of constants to the same value (e.g., phosphorylation

rates) [43, 44, 53], and adjust key parameters to qualitatively best fit the existing

data [20, 49, 52]. In retrospect, these approaches may be successful because the

models are sloppy—they can be tuned to reality by adjusting one key parameter per

stiff direction, independently of how reliably the other parameters are estimated.

Computational modeling is a potentially invaluable tool for extrapolating from

current experiments and distinguishing between models. But we cannot trust the

predictions of these models without testing how much they depend on uncertainties

in these estimated parameters. Conversely, if we insist upon a careful uncertainty

analysis, it would seem unnecessary to insist upon tight prior estimates of the pa-

rameters, since they do not significantly enhance model predictivity. Because the

behavior of a sloppy model is dominated by a few stiff directions that nonethe-

less involve almost all the parameters, direct parameter measurements constrain

predictions much less efficiently than comparably difficult experiments probing

collective system behavior.

23

Our suggestion of making predictions from models with very poorly known pa-

rameters may appear dangerous. A model with tens or hundreds of unmeasured

parameters might seem completely untrustworthy; we certainly believe that any

prediction derived solely from a best-fit set of parameters is of little value. Un-

certainty bounds derived from rigorous sensitivity analysis, however, distinguish

those predictions that can be trusted from those that cannot. Of course, successful

fits and predictions may arise from models that are incorrect in significant ways;

for example, one model pathway with adjusted parameters may account for two

parallel pathways in the real system. A model that is wrong in some details may

nevertheless be useful in guiding and interpreting experiments. For computational

modeling to be useful in incompletely understood systems, we must focus not on

building the final, perfect, model with all parameters precisely determined, but on

building incomplete, tentative and falsifiable models in the most expressive and

predictive fashion feasible.

Given that direct parameters measurements do not efficiently constrain model

behavior, how do we suggest that experimentalists decide what experiment to

do next? If the goal is to test the assumptions underlying a model, one should

look for predictions with tight uncertainty estimates that can be readily tested

experimentally. If the goal is to reduce uncertainty in crucial model predictions, one

must invoke the statistical methods of optimal experimental design, which we have

studied elsewhere [12] and which may be conveniently implemented in modeling

environments that incorporate sensitivity analysis (such as SloppyCell [56]).

In our approach, the model and its parameters cannot be treated in isolation

from the data that informed model development and parameter fitting. This com-

plicates the task of exchanging knowledge in the modeling community. To support

our approach, standards such as SBML [55] that facilitate automated model ex-

24

change will need to be extended to facilitate automated data exchange.

Every one of the 17 systems biology models we studied exhibits a sloppy spec-

trum of parameter sensitivity eigenvalues; they all span many decades roughly

evenly and tend not be aligned with single parameters. This striking and appar-

ently universal feature has important consequences for the modeling process. It

suggests that modelers would be wise to try collective parameter fits and to focus

not on the quality of their parameter values but on the quality of their predictions.

2.6 Methods

2.6.1 Hessian Computations

Hχ2
can be calculated as

Hχ2

j,k =
1

NcNs

∑
s,c

1

Tc σ2
s

∫ Tc

0

d ys,c(θ
∗, t)

d log θj

d ys,c(θ
∗, t)

d log θk

∣∣∣∣
θ∗

dt. (2.3)

Second derivative terms (d2 ys,c(θ
∗, t)/d log θi d log θj) might be expected, but they

vanish because we evaluate Hχ2
at θ∗. Equation 2.3 is convenient because the first

derivatives d ys,c(θ
∗, t)/d log θk can be calculated by integrating sensitivity equa-

tions. This avoids the use of finite-difference derivatives, which are troublesome in

sloppy systems.

The projections Pi of the ellipsoids shown in Figure 2.2A onto bare parameter

axis i are proportional to
√(

invHχ2
)
i,i

. The intersections Ii with axis i are

proportional to
√

1/Hχ2

i,i , with the same proportionality constant.

2.6.2 Parameter Uncertainties

To rescale Hχ2
so that it corresponds to fitting Nd data points, each with uncer-

tainty a fraction f of the species’ maximal value, we multiply Hχ2
by Nd/f

2. In the

25

quadratic approximation, the one-standard-deviation uncertainty in the logarithm

of parameter θi after such a collective fit is given by σ2
log θi

= (f 2/Nd)
(

invHχ2)
i,i

.

The relative size of the 95% confidence interval is then Σi = exp (4σlog θi
)− 1.

2.6.3 Prediction Uncertainties

The red and blue prediction uncertainties shown in Figure 2.4B were calculated

by randomly generating 1000 parameter sets consistent with the stated parameter

uncertainties. (For each parameter θi, the logarithm of its value is drawn from

a normal distribution with mean log θi and standard deviation σlog θi
specified by

desired Σ.) For each parameter set, the Erk time course was calculated, and at

each timepoint the shaded regions in the figure contain the central 95% of the time

courses.

2.6.4 Software

All computations were performed in the open-source modeling environment Sloppy-

Cell, version 0.81 [56]. SBML files and SloppyCell scripts to reproduce all presented

calculations are in Dataset S1.

2.7 Supporting Information

Text S1: Stiffest Eigenvectors

Text S2: Effect of Other Poorly Determined Parameters

Text S3: Fragility of Other Predictions

Text S4: Rescaled Model of Brown et al.

Text S5: Eigenvalue Analysis of Brodersen et al. Binding Studies

Dataset S1: SBML Files, SloppyCell Scripts, and χ2-Hessians

26

2.7.1 Accession Numbers

Models discussed that are in the BioModels database [54] are:

(a) BIOMD0000000005, (c) BIOMD0000000003, (d) BIOMD0000000035,

(e) BIOMD0000000002, (f) BIOMD0000000010, (h) BIOMD0000000021,

(i) BIOMD0000000033, (k) BIOMD0000000022, (l) BIOMD0000000055,

(n) BIOMD0000000015, (o) BIOMD0000000051, (p) BIOMD0000000056,

(q) BIOMD0000000049.

2.8 Acknowledgments

We thank Eric Siggia for suggesting study of the rescaled model of Brown et al.

We also thank Rick Cerione and Jon Erickson for sharing their biological insights

and John Guckenheimer, Eric Siggia, and Kelvin Lee for helpful discussions about

dynamical systems. Computing resources were kindly provided by the USDA-ARS

plant pathogen systems biology group in Ithaca, NY. Finally, we thank several

anonymous reviewers whose comments strengthened the manuscript.

2.9 Funding

RNG was supported by an NIH Molecular Biophysics Training Grant, T32-GM-

08267. JJW was supported by a DOE Computational Science Graduate Fellowship.

CRM acknowledges support from USDA-ARS project 1907-21000-017-05. This

work was supported by NSF grant DMR-0218475.

27

2.S1 Stiffest Eigenvectors

The following figures show the four stiffest eigenvectors of Hχ2
(corresponding to

the four largest eigenvalues) for each model in our collection. In each eigenvector

the five parameters with the largest contributions are labeled. With few exceptions,

the eigenvectors tend to be inscrutable combinations of many parameters, and they

tend not to have immediately obvious biological interpretation.

0 2 4 6 8
-1

0

1 k1aa
k4

k4prime
Tdk6

(a) Tyson_1991

0 2 4 6 8
-1

0

1 Td

k4k1aak6 k4prime

0 2 4 6 8
-1

0

1 k6

k4prime
k4k1aa

Td

0 2 4 6 8
-1

0

1
k4k3

k1aak8notP

k9

Figure 2.5: Model (a): Tyson’s model of the eukaryotic cell cycle [40].

28

0 2 4 6 8 10
-1

0

1 v_w

v_wpp

v_dpp rho_w
rho_d

(b) Zwolak_2005

0 2 4 6 8 10
-1

0

1
v_drho_d

K_mdr
v_wrho_w

0 2 4 6 8 10
-1

0

1 rho_w
v_wpp

v_dpp

v_w
K_mwr

0 2 4 6 8 10
-1

0

1 v_dpp

v_wpprho_w
v_wK_mwr

Figure 2.6: Model (b): Zwolak et al.’s model of the Xenopus egg cell cycle [41].

0 2 4 6 8 10 12
-1

0

1
VM1

V2
Kc

viVM3

(c) Goldbeter_1991

0 2 4 6 8 10 12
-1

0

1
VM3 vd V2

vi V4

0 2 4 6 8 10 12
-1

0

1 vi

V2VM3

V4
Kc

0 2 4 6 8 10 12
-1

0

1
V4

VM3

vd V2VM1

Figure 2.7: Model (c): Goldbeters’s model of eukaryotic mitosis [42].

29

0 2 4 6 8 10 12 14
-1

0

1
deltaRdeltaA

alphaAp

deltaMA

betaA

(d) Vilar_2002

0 2 4 6 8 10 12 14
-1

0

1
deltaR

deltaMA

betaA deltaMR

betaR

0 2 4 6 8 10 12 14
-1

0

1
alphaRp

deltaMR

alphaAp

deltaMA

betaR

0 2 4 6 8 10 12 14
-1

0

1
betaA

deltaA alphaAp

deltaMA

deltaMR

Figure 2.8: Model (d): Vilar et al.’s generic circadian rhythm model [43].

0 5 10 15
-1

0

1
I_k_off

I_k_onA_k_off

A_k_on

AIp

(e) Edelstein_1996

0 5 10 15
-1

0

1 D_k_off

ID_k_2DI_k_2I_k_offIA_k_2

0 5 10 15
-1

0

1 DI_k_2

ID_k_2B_k_onB_k_off I_k_on

0 5 10 15
-1

0

1 I_k_off

A_k_on

A_k_off I_k_onAIp

Figure 2.9: Model (e): Edelstein et al.’s model of nicotinic acetylcholine intra-
receptor dynamics [44].

30

0 5 10 15 20
-1

0

1
V2 V9V5

V10
k8

(f) Kholodenko_2000

0 5 10 15 20
-1

0

1
k8KK5k4

V5

V2

0 5 10 15 20
-1

0

1
k3

V6

KK2

V2

k8

0 5 10 15 20
-1

0

1
V10

k4 V9

V5

k7

Figure 2.10: Model (f): Kholodenko’s model of a generic kinase cascade [45].

0 5 10 15 20
-1

0

1 Dsh0

v12k9K8 k5

(g) Lee_2003

0 5 10 15 20
-1

0

1

v12

k9

K8K7

k4

0 5 10 15 20
-1

0

1 APC0

K17
v12

k9
K8

0 5 10 15 20
-1

0

1 TCF0

K16

K17 v12K7

Figure 2.11: Model (g): Lee et al.’s model of Xenopus Wnt signaling [46].

31

0 5 10 15 20 25 30 35
-1

0

1
K_IT

K_IP
V_mT

V_sTV_dT

(h) Leloup_1999

0 5 10 15 20 25 30 35
-1

0

1 V_dT
V_mT

V_3T

v_sP

V_1T

0 5 10 15 20 25 30 35
-1

0

1
V_sT

V_mT

n

K_IT

V_dT

0 5 10 15 20 25 30 35
-1

0

1
v_sPk2 k_sPK_ITk4

Figure 2.12: Model (h): Leloup and Goldbeters’s model of Drosophila circadian
rhythm [47].

0 10 20 30 40
-1

0

1
kC3G

kRapGap

KmRapGapkRap1ToBRaf

kdBRaf

(i) Brown_2004

0 10 20 30 40
-1

0

1
kRasGap

kSosKmRasGapkRasToRaf1

kdRaf1

0 10 20 30 40
-1

0

1
kpP90RskkdSos

KmpP90RskKmdSoskNGF

0 10 20 30 40
-1

0

1

kRap1ToBRaf

kdBRaf

KmdBRaf

kC3G

kRapGap

Figure 2.13: Model (i): Brown et al.’s model of rat growth-factor signaling [8].

32

0 10 20 30 40
-1

0

1
H_EWG

K_WGwg

Mxfer_WGExo_WGH_IWG

(j) von_Dassow_2000

0 10 20 30 40
-1

0

1 nu_Bcid

K_ENcid
K_BcidK_WGen Exo_WG

0 10 20 30 40
-1

0

1 H_ptcH_CN
C_CID

K_CNptc
H_PTC

0 10 20 30 40
-1

0

1
Endo_WG

H_EWGK_WGwg

H_IWG

LMxfer_WG

Figure 2.14: Model (j): von Dassow et al.’s model of the Drosophila segment
polarity network [48].

0 10 20 30 40
-1

0

1
c1

D1

s2 D3
s3

(k) Ueda_2001

0 10 20 30 40
-1

0

1

D7D3

s5s3

T1

0 10 20 30 40
-1

0

1
s1

s3

D3

c1 s4

0 10 20 30 40
-1

0

1
s1a s3 D7T3

Figure 2.15: Model (k): Ueda et al.’s model of Drosophila circadian rhythm [49].

33

0 10 20 30 40 50 60
-1

0

1

m9

n3 k7p3

g1

(l) Locke_2005

0 10 20 30 40 50 60
-1

0

1
n2

m4

p2k4
g5

0 10 20 30 40 50 60
-1

0

1
g5

r3 m15m14

k12

0 10 20 30 40 50 60
-1

0

1
m15

p5k13

g1

r3

Figure 2.16: Model (l): Locke et al.’s model of Arabidopsis circadian rhythm [20].

0 20 40 60 80
-1

0

1

kDMA

kRAPAAkTA

kTB

kDMB

(m) Zak_2003

0 20 40 60 80
-1

0

1

kDMC

kTC

kDC2

kRAPCADkDMD

0 20 40 60 80
-1

0

1

kDF2kDMF

kREQPFEQkTF

kDMC

0 20 40 60 80
-1

0

1

kRK2PJK

kDMJ

kDMD

kRPGC

kDMG

Figure 2.17: Model (m): Zak et al.’s model of an in silico regulatory network [38].

34

0 20 40 60 80 100
-1

0

1 frnan11
arnag

agrna

aarna

arnaa

(n) Curto_1998

0 20 40 60 80 100
-1

0

1
frnan11

aarna

arnaa

arnag

agrna

0 20 40 60 80 100
-1

0

1
aadna

adnaa

adnag

agdna
fdnan12

0 20 40 60 80 100
-1

0

1 fdnan12

adnag
agdna

fampd4fada4

Figure 2.18: Model (n): Curto et al.’s model of human purine metabolism [50].

0 20 40 60 80 100 120
-1

0

1
nPFK

nPTSg6pKPFKf6ps

KPGIeq
KPFKpep

(o) Chassagnole_2002

0 20 40 60 80 100 120
-1

0

1
nPTSg6p

nPFK

KPFKf6ps

KTKbeqKTAeq

0 20 40 60 80 100 120
-1

0

1
KPGIeq rmaxPGDH

rmaxG6PDH KPGDHpgKTKbeq

0 20 40 60 80 100 120
-1

0

1

nPDH

KpepCxylasefdp

npepCxylasefdp

rmaxG6PDH

rmaxPGDH

Figure 2.19: Model (o): Chassagnole et al.’s model of E. coli carbon
metabolism [51].

35

0 20 40 60 80 100 120
-1

0

1
kd20_143

mdt_216

ksori_206

ks_189

eorib5_99

(p) Chen_2004

0 20 40 60 80 100 120
-1

0

1
mdt_216kd20_143 ks14_187

kd14_139 ksnet_205

0 20 40 60 80 100 120
-1

0

1

kasbf_132

kisbf_178

ks14_187

kd14_139

esbfn3_102

0 20 40 60 80 100 120
-1

0

1

ksn_204ksspn_209

kdn2_164kimcm_177

kamcm_129

Figure 2.20: Model (p): Chen et al.’s model of the budding yeast cell cycle [52].

0 50 100 150 200
-1

0

1re2_k1

J69_Vmax
J12_k1

J35_k1
J115_k1

(q) Sasagawa_2005

0 50 100 150 200
-1

0

1
J69_VmaxJ70_k1J3_k1J12_k1

J35_k1

0 50 100 150 200
-1

0

1 J70_k1

J77_k1J69_VmaxJ3_k1
J75_k1

0 50 100 150 200
-1

0

1
J52_k1

J54_k1J52_k2

J54_k2 J140_k1

Figure 2.21: Model (q): Sasagawa et al.’s model of rat growth-factor signaling [53].

36

2.S2 Effect of Other Poorly Determined Parameters

The subfigures in Figure 2.22 correspond to Figure 2.4 , for missing the measure-

ment of each of the 24 model parameters involved in our prediction. (Uncertainty

in those parameters involved in the inhibited PI3K branch or in NGF-dependent

C3G branch can have no effect on this prediction.) The blue regions are 95%

confidence intervals given a single poorly determined parameter. For comparison,

shown in red is the 95% confidence interval from precisely determining all param-

eters. For the exact role of each parameter in the model, see the original model

paper [8].

kRasToRaf1 KmRasGap kSos kdRaf1 kRasGap

kpMekCytoplasmic kdMek KmdRaf1 KmdMek kdErk

kpRaf1 kEGF KmpP90Rsk kdSos KmdErk

KmEGF KmdSos kpP90Rsk KmpRaf1 KmpMekCytoplasmic

KmRasToRaf1 KmSos krbEGF kruEGF

Figure 2.22: Effect of other missing parameters on our example prediction.

37

2.S3 Fragility of Other Predictions

Figures 2.23 and 2.24 show the 95% confidence intervals for two other example

predictions, as in Figure 2.4 . The red intervals correspond to measuring all pa-

rameters to within plus or minus 25% (at 95% confidence). The blue intervals

correspond to measuring all parameters as before, except for one, which is esti-

mated to within a total range of 1000. The yellow intervals correspond to the

collective parameter fit from Brown et al. [8].

Figure 2.23 shows a prediction of the activity of Ras given EGF stimulation in

a wild-type cell. Missing a measurement of the rate constant for activation of p90

by Erk yielded the large blue interval.

Figure 2.23 shows a prediction of Mek activity given NGF stimulation of a

wild-type cell, with the blue region corresponding to a missing measurement of

the rate constant for the activation of B-Raf by Rap1. In this case the collective

fit gave only an upper bound on the activity of Mek, so precisely measuring each

individual parameter would yield a stronger prediction than the collective fit. (A

measurement of zero Mek activity upon stimulation would be consistent with the

model as constrained by the collective fit, but inconsistent the model as constrained

by direct parameter measurements.) Nevertheless, the prediction with one missing

parameter measurement remains much less informative than the collective fit.

38

0 15 30

Time (min)

1/8

1/4

F
ra

c
ti

o
n
 o

f
R

a
s
 a

c
ti

v
e

Figure 2.23: Prediction uncertainties for Ras activity given EGF stimulation.

0 15 30 45

Time (min)

0

1/2

1

F
ra

c
ti

o
n
 o

f
M

e
k
 a

c
ti

v
e

Figure 2.24: Prediction uncertainties for Mek activity given NGF stimulation.

39

2.S4 Rescaled Model of Brown et al.

To study the effect of time and concentration scales on sloppiness, we consider two

modified versions of the model of Brown et al. [8].

In the first (‘Rescaled’), we attempt to adjust concentration and time scales

while maintaining fit quality. All concentrations are scaled to one, and all Michaelis

constants are set to one. Additionally, the binding of EGF to its receptor is set

to equilibrium, to remove one known sloppy mode. (NGF binding must be slow

to fit the experimental data.) All rate constants are then re-optimized, adding

an additional constraint on their total range. The resulting fit to the data has

an approximately 50% higher cost. The eigenvalues of Hχ2
for this version of the

model are shown in the central column of figure 2.25.

To fully remove the effects of time and concentration scales in the model, we

set all non-zero initial conditions to 1 and all parameters to 1 (‘All One’). The

resulting eigenvalues of Hχ2
are plotted in the right column in figure 2.25.

Note that both adjusted models remain sloppy, with eigenvalues roughly evenly

spaced over many decades.

40

Original Rescaled All One

10-6

10-5

10-4

10-3

10-2

10-1

100

0
λ/

λ

Figure 2.25: Eigenvalue for rescaled Brown et al. models.

41

2.S5 Sloppy Model Analysis of Brodersen et al. Binding

Studies

Brodersen et al. [9] studied the equilibrium binding of salicylate to human serum

albumin and of oxygen to hemoglobin. In both cases, they fit a binding model by

least-squares to data consisting of ligand per protein versus free ligand concentra-

tion. They repeated the fitting procedure 30 times in each case, terminating each

optimization once a parameter set was found that yielded an acceptable fit to the

data within the experimental noise.

The resulting two collections of parameter sets are not statistically weighted

ensembles like that we built to make predictions from the Brown et al. model.

Nevertheless, Brodersen et al.’s collections of acceptable parameter sets likely ap-

proximate such statistical ensembles. Using principal component analysis to fit

a multidimensional gaussian to each of Brodersen’s parameter collections yields a

Hessian matrix we can test for sloppiness.

Figure 2.26 shows eigenvalue spectra derived from Brodersen’s acceptable pa-

rameter sets for the Albumin (Alb ens) and Hemoglobin (Heme ens) models. For

comparison, the eigenvalues of the χ2 Hessians for the two models are also shown

(Alb chi^2 and Heme chi^2).

The sloppiness of both models is evident, using both our χ2 measure of sys-

tem behavior and with Brodersen’s parameter set collection. In each case the

eigenvalues span several decades roughly evenly.

42

Alb ens Alb chi^2 Heme ens Heme chi^2

10-6

10-5

10-4

10-3

10-2

10-1

100

0
λ/

λ

Figure 2.26: Sloppy eigenvalues of Brodersen et al.’s models.

CHAPTER 3

COMPUTATIONAL KINETIC MODELING OF EXPERIMENTS

ON THE ACTIVATION OF A TRANSDUCIN MUTANT

3.1 Introduction

G protein-coupled receptors (GPCRs) are large membrane-bound proteins that

are found in many higher eukaryotes. They are involved in a very diverse range

of biological processes, from vision to smell to the immune response; the human

genome is estimated to estimated to encode approximately 950 GPCRs [59]. Given

the many processes they help regulate, it is little surprise that GPCRs are medically

important. In fact, over 30% of all drugs target GPCRs [60].

Active GPCRs signal across the membrane by interacting with heterotrimeric

(or ‘large’) G proteins, which consist of two subunits, Gα and Gβγ. The Gα subunit

is structurally related to the ‘small’ G proteins of the Ras superfamily and binds

guanine nucleotides. Typically the subunit is inactive in signaling when bound

to guanine diphosphate (GDP) and active when bound to guanine triphosphate

(GTP). The Gβγ subunit binds GGDP
α , and most researchers suspect that the GαGβγ

complex dissociates upon receptor-driven exchange of GDP for GTP on Gα.

The prototypical heterotrimeric G protein signaling cycle begins with an inac-

tive receptor R and the complex GGDP
α Gβγ. Upon stimulation, the receptor adopts

an activated conformation R∗. The activated receptor binds GGDP
α Gβγ and drives

the release of GDP and subsequent binding of GTP. (In cells GTP is typically at

much higher concentration than GDP.) Upon GTP binding, the complex dissoci-

ates into R∗, GGTP
α , and Gβγ. Both the GGTP

α and Gβγ can signal down-stream

effectors. The GGTP
α subunit ceases to signal when its intrinsic GTP hydrolysis

activity converts the bound GTP into GDP, and the Gβγ subunit can be silenced

43

44

by binding to GGDP
α . Finally, the cycle is catalytic, in that an activated receptor

can typically activate many G proteins before returning to the inactive state.

The above activation cycle is well-accepted in outline, but many details remain

controversial. For example, several receptors may need to bind to promote nu-

cleotide exchange [61], or the Gβγ subunit may not dissociate from the Gα subunit

upon GTP binding [62]. Current methods to study the activation of heterotrimeric

G proteins include docking of component crystal structures [63], molecular dynam-

ics [64], various labeling techniques [65], and biochemical studies, including those

on mutants [66, 67, 68]. Here we study the activation cycle by coupling in vitro

biochemical studies and mutagenesis with detailed computational kinetic modeling.

We work with the vision pathway, where the receptor is rhodopsin and the G

protein is transducin [69, 70]; this is perhaps the best studied heterotrimeric G

protein system. In particular, we are interested in elucidating the role played by a

threonine residue found in the guanine nucleotide binding pocket of Gα [71]. This

threonine (T177 in transducin) hydrogen bonds to the terminal phosphate of GTP

and also coordinates a Mg2+ ion; it is one of the few residues conserved between

both the large and small G proteins.

3.2 Data

All the data we work with were collected by Sekar Ramachandran in the lab of

Rick Cerione.

Mammalian transducin does not express well in E. coli, so the experiments

were done with a chimeric version which does express well and is known to act

similarly to the pure mammalian version [72]. Herein we refer to this chimera

as the ‘wild-type’. The threonine at position 177 was mutated to alanine in the

background of the chimera, and this T177A mutant was also expressed in E. coli.

45

5 15 25 35

Time (min)

0

100

200
F
lu

o
re

s
c
e
n
c
e
 (

a
.u

.)

(a) Example raw fluorescence data

5 15 25 35

Time (min)

0

100

200

F
lu

o
re

s
c
e
n
c
e
 (

a
.u

.)

(b) Example data fits

Figure 3.1: (a) Shown is the change in fluorescence of a preparation of 292 nM wild-
type Gα, 16 nM Gβγ, and 2.3 nM R∗ upon addition of 1 µM of GTPγS. Note that
the difference between the traces is much larger than the fluctuations within each
trace. This motivated us to fit a model including systematic errors in the initial
conditions. These traces were taken on the same day; traces taken on different
days differ more. (b) Before fitting, the data is down-sampled for computational
convenience. The dots are the down-sampled data points from the traces in (a);
the uncertainties assigned to each data point are approximately the size of each of
the dots. The red curve (almost completely hidden by the green) is the optimal fit
with initial conditions fixed at their reported values. The blue and green curves
are the optimal fits allowing initial conditions to vary.

46

Gβγ and rhodopsin were purified from bovine retina.

Gα contains several intrinsically fluorescent tryptophan residues, and the flu-

orescence of the protein changes upon GDP-GTP exchange [73, 74]. This allows

Gα activation to be monitored with very high temporal resolution. Ramachandran

monitored the fluorescence change of preparations of GGDP
α , Gβγ, and solubilized

R∗ upon addition of the non-hydrolyzable GTP analog GTPγS for both the wild-

type and mutant over a large range of initial conditions. In most cases, GGDP
α was

at higher concentration than Gβγ or R∗, so the cycle had to be catalytic, with each

Gβγ and R∗ activating several GGDP
α . The wild-type data set consists of 26 traces

taken on 7 different days, for a total of 25,376 data points. The T177A data set

consists of 73 traces taken on 12 different days, for a total 155,862 data points.

A representative pair of traces is shown in Figure 3.1(a). Details on the process-

ing of the data and connecting it with the computational model are discussed in

Section 3.4.

3.3 Computational Model

The model we fit to the data is illustrated in Figure 3.2. Essentially it encapsulates

the traditional view of the heterotrimeric G protein cycle. First consider GGDP
α ,

at the lower left. This can irreversibly lose its bound GDP to become G
()
α . G

()
α

degrades spontaneously, but it can also irreversibly bind GTP to become GGTP
α .

Going clockwise around the circle, GGDP
α can reversibly bind Gβγ to form GGDP

α Gβγ,

which can reversibly bind R∗. The complex of GGDP
α Gβγ and R∗, denoted RT,

undergoes irreversible GDP-GTP exchange to form GGTP
α Gβγ and free R. Finally

GGTP
α Gβγ can reversibly dissociate to from GGTP

α and free Gβγ. GGTP
α Gβγ and

GGTP
α are assumed to contribute equally to the fluorescence signal.

The reactions are all modeled with mass-action kinetics, and the equations

47

GDP

α βγ
R

GDP

α βγ
GTP

βγ

R

GDP

α
GTP

α
GTP

GDP

GTP

GDP

α

βγα

βγ

R

Figure 3.2: Our computational model for the activation of heterotrimeric G pro-
teins is illustrated here. For a detailed discussion of the model, see Section 3.3.
The species boxed in yellow are assumed to contribute to the fluorescence signal.

defining the model are reproduced in Appendix 3.A.

3.4 Fitting the Model

We fit the model via least-squares, minimizing the cost function:

C (θ) =
1

2

∑
d

∑
i

(
Bd yi (θ)− di

σi

)2

+ priors. (3.1)

The Bd are scale factors [7] which account for the unknown conversion factor be-

tween measured fluorescence and concentration of GGTP
α . The subscript d indicates

that each scale factor is shared among runs performed on a given day; we parti-

tion the scale factors by day to account for possible instability of the fluorimeter.

Data point di is compared with the corresponding model result yi(θ) where θ is the

current set of parameters. σi is the Gaussian uncertainty assumed for each data

point and is estimated as the standard deviation of the first minute of each trace,

48

before GTPγS addition. The ‘priors’ terms reflect additional constrains that will

be discussed below. The model is fit separately for the wild-type and mutant data

sets, and several additional data manipulations are necessary beforehand.

As seen in Figure 3.1(a), each trace contains many data points. Clearly, how-

ever, the trace can be well-described by many fewer points. Thus we down-sample

using the autocorrelation of the traces. The autocorrelation time is estimated for

each raw data trace as the lag at which the autocorrelation function drops below

0.5. (Note that this is not the noise autocorrelation time, which is very small.)

Each trace is then down-sampled by taking points separated by one-half the above

estimated correlation time. The points in Figure 3.1(b) are the down-sampled val-

ues from the traces in Figure 3.1(a); the error bars on each point are approximately

the size of the points themselves. This very conservative down-sampling reduces

the number of data points considerably, to 1,055 points for the wild-type data and

2,656 points for the T177A data. This reduction greatly speeds up calculation of

the cost C(θ) for any given set of parameters.

Figure 3.1(a) shows that the variation in traces between replicate experiments

is much larger than the variation within any one trace. Note that the two traces

shown were taken on the same day, and variation between traces taken on different

days are larger. This variation could be accounted for by widening the uncertain-

ties assumed for each trace. However, given the relatively low number of replicate

experiments, it is unclear how much additional uncertainty to assume. The ex-

periments are performed in vitro, so we don’t expect the intrinsic variability that

can plague cell-based assays. Different batches of protein may, however, have de-

graded to different degrees, and the amount of protein added in each experiment

may be imprecise. Thus we include additional parameters η that allow the initial

conditions to vary from the reported values. Their inclusion may, however, over-fit

49

Table 3.1: Tabulated are the best-fit data costs for our models of wild-type and
T177A activation, with initial conditions fixed at their reported values, optimized
without constraints, and optimized with constraints. ‘Prior cost’ indicates the
portion of the total cost due to the ‘prior’ residuals. The total optimized cost is
the sum of the ‘Data’ and ‘Prior’ costs.

wild-type T177A
fixed free constrained fixed free constrained

Data cost 23,699 1,350 2,612 199,443 2678 20,339
Data cost per pt 21.0 1.2 2.3 69.5 1.0 7.7

Prior weight w 10,000 15,625
Prior cost 2,559 22,796

the data and lower the power of our analysis, as it adds dozens of parameters to

the wild-type fit and over two hundred to the T177A fit. To better understand the

effect of adjusting initial conditions, we perform several optimizations and com-

pare results. First the models are optimized with the initial conditions for each

experiment fixed at their reported values. They are then optimized with initial

conditions allowed to fluctuate with no constraint. This yields unrealistically large

adjustments, so additional optimizations are performed with prior terms of the

form

w

2
(log ηi − log 1.0)2 (3.2)

in the cost. The weights w for these constraints on the ηs are separately adjusted

for the wild-type and T177A to minimize these initial-condition fluctuations while

maintaining a fit that remains reasonable to the eye.

The optimizations are performed with SloppyCell (Chapter 4), using the

Nelder-Mead simplex and conjugate-gradient algorithms from the SciPy library

of scientific routines [75, 76] and SloppyCell’s Levenberg-Marquardt routine. The

final optimized costs for the fits with initial conditions fixed at their reported val-

ues, optimized without constraint, and optimized with prior constraint are shown

50

in Table 3.1. Figure 3.1(b) illustrates the improvement in fit when initial conditions

are freely optimized. The final costs per data point in the fits with freely optimized

initial conditions are approximately one. A perfect fit would yield a cost per data

point of one-half, so although our fit is decent, we are not obviously over-fitting.

With the assigned weights, w, the cost due to the prior constraints approximately

equals the cost to fit the data in both constrained fits. Note, however, that the

T177A constrained fit has a much higher data cost per residual than the wild-type

fit, indicating a much poorer fit.

Figure 3.3 shows the initial condition perturbations η that optimally fit the

wild-type and T177A data with the applied prior constraints. Note that the adjust-

ments are substantially larger for fitting the T177A data. The standard deviation

of η is 0.08 for the wild-type fit and 0.12 for the T177A fit, corresponding to 8%

and 12% variations in the initial conditions. It is estimated that the uncertainty in

each dispensing due to pipette accuracy is about 5% (S. Ramachandran, personal

communication). Our initial condition adjustments are of the same order, but

slightly larger. The only obvious trend is that GGDP
α for T177A seems to require

the most substantial adjustments. Perhaps this is because the protein has been

destabilized by the mutation.

3.5 Parameter Uncertainties

Basing one’s inferences solely on a single best-fit set of parameters is dangerous,

because many other sets may fit the data almost as well (Chapter 2). Here we

consider two ways to estimate the uncertainty of our parameters: the Bayesian

ensemble approach and covariance analysis.

51

4
/0
3
/0
4

4
/0
7
/0
4

4
/0
8
/0
4

4
/0
9
/0
4

4
/1
2
/0
4

4
/1
3
/0
4

4
/1
4
/0
4

4
/1
5
/0
4

4
/2
9
/0
4

4
/3
0
/0
4

5
/0
5
/0
4

5
/0
6
/0
4

5
/0
8
/0
4

1/2

1

2

η

(a) Wild-type

4
/0
3
/0
4

4
/0
7
/0
4

4
/0
8
/0
4

4
/0
9
/0
4

4
/1
2
/0
4

4
/1
3
/0
4

4
/1
4
/0
4

4
/1
5
/0
4

4
/2
9
/0
4

4
/3
0
/0
4

5
/0
5
/0
4

5
/0
6
/0
4

5
/0
8
/0
4

1/2

1

2

η

(b) T177A

Figure 3.3: The optimal initial condition adjustments η are plotted on a logarithmic
scale when fitting (a) the wild-type and (b) the T177A data. Points are colored
by the initial condition they effect: (red) rhodopsin, (green) Gβγ, (blue) GGDP

α . (A
value of η = 1/2 corresponds to the data being best-fit by an initial condition of
1/2 the reported value.)

52

3.5.1 Bayesian Ensembles

We used SloppyCell to build a ensemble of parameter sets consistent with the

fluorescence data we are fitting [7]. In the ensemble, parameter sets are statis-

tically sampled via a Markov-Chain Monte Carlo random walk with equilibrium

probability density

P (θ) ∝ e−G(θ,T)/T . (3.3)

Here G(θ, T) is the free energy at parameters θ and temperature T . This is the

cost plus an additional term accounting for fluctuations in the scale factors1.

Note that generating well-converged ensembles with all initial conditions al-

lowed to fluctuate would take an enormous amount of computer time. To have

a reasonable acceptance ratio, SloppyCell chooses each attempted step in the en-

semble so that it changes the cost by approximately one unit of temperature. The

overall expected fluctuations in the cost are one-half unit of temperature per pa-

rameter. Also, a random walk on average travels a distance proportional to the

square root of the number of steps taken. Together these facts suggest that the

number of steps required to converge (governed by the number to achieve the re-

quired cost fluctuations) should scale with the square of the number of parameters.

Allowing all initial conditions to fluctuate multiplies the number of parameters in

the wild-type fit by a factor of nine, suggesting that such an ensemble would take

approximately eighty times as many steps to converge as one with the initial condi-

tions fixed. For the T177A fit, it is much worse. There are 214 initial conditions, so

that the fluctuating initial conditions ensemble requires approximately five hundred

times as many steps to converge as one with fixed initial conditions. Rather than

generating these ensembles, we generate ensembles with initial conditions fixed at

1During the ensemble build, the scale factors are assigned a Gaussian prior on their logarithm,
centered at their best-fit mean with a standard deviation of 50%. (See Section 6.2 for a discussion
of the subtleties of scale factor priors.)

53

Table 3.2: Shown are the ensemble temperatures using Frederiksen et al.’s sugges-
tion [10] for the various ensembles. ‘reported i.c.’ and ‘optimal i.c.’ refer to the
ensembles with initial conditions fixed at their reported and optimized values, re-
spectively. ‘fluctuating i.c.’ is the ensemble (not actually built here) where initial
conditions are allowed to fluctuate.

wild-type T177A
reported i.c. 4740 39888
optimal i.c. 1034 8473

fluctuating i.c. 118 385

their reported and optimized values and use covariance analysis to estimate the

impact of initial condition fluctuations.

If all our data points were statistically independent and fit well by the model,

then a temperature of one would be statistically appropriate. However, our data

points are highly correlated even after down-sampling, and when initial conditions

are fixed at their reported values, the fits are poor. Following Frederiksen et al. [10],

we thus set the temperature T to twice the best-fit cost divided by the number

of parameters. At this temperature it is expected that typical members of the

ensemble will have approximately twice the cost of the best fit. Table 3.2 shows

the resulting temperatures for the various possible ensembles.

To speed convergence and to avoid taxing the integrator unnecessarily, when

building the ensemble we place weak priors on the logarithms of the parameter

values, to prevent them from wandering to zero or infinity. These priors restrict

the parameters to be within a factor of 106 larger or smaller than their best-fit

values.

Figure 3.4 shows the ensemble distributions of three parameters that illustrate

the different possible cases of constraint. All come from the ensembles with initial

conditions fixed at their optimized values. Note that kfαGTP βγ is only constrained

by the artificial priors we added to protect the integrator, while kfRT appears to

54

10-10 1015

γβPTGα
fk

(a) Very unconstrained

102 108

TRfk

(b) Constrained only from below

100 104

xek

(c) Usefully constrained

Figure 3.4: Shown are the distributions for three particular parameters in the
ensemble built with initial conditions fixed at their optimized values. Blue curves
correspond to the wild-type fit and red to the T177A fit. The only constraint
on kfαGTP βγ is the prior we placed to prevent integration errors, while kfRT is
constrained from below, but not from above. kex, on the other hand, is tightly
constrained.

55

Table 3.3: Tabulated are the confidence intervals for kex, the rate of rhodopsin-
mediated GDP-GTP exchange, from our ensembles and from the covariance anal-
ysis. (The units of kex are µM−1min−1.)

reported ensemble optimized ensemble fluctuating JTJ
wild-type (43, ∞) (74, 3032) (52, 269)

T177A (0.6, 6.0) (1.1, 2.4) (0.7, 4.0)

additionally be constrained from below. (This value at which it is constrained,

however, depends sensitively on how tightly we constrain the initial condition

adjustments in the optimization.) kex, on the other hand, is well-constrained, and

the difference between wild-type and T177A is obvious. In fact, kex is the only

parameter which the ensembles consistently constrain well; Table 3.3 shows the

resulting confidence intervals for kex.

3.5.2 Covariance Analysis

Covariance analysis involves a quadratic approximation to the shape of the cost

surface around the best fit set of parameters. Here we use the JTJ matrix to

describe the cost surface:

JTJ ≡
∑
k

drk
d log θi

drk
d log θj

. (3.4)

The sum is over residuals rk where each residual corresponds to a single data point:

rk ≡ (Bdyk(θ)− dk)/σk. The JTJ approximation to the Hessian is accurate when

the model fits the data well, and it is quite useful because SloppyCell can calculate

first derivatives without resorting to finite-differences. In the covariance analysis

approximation, the uncertainty in the logarithm of parameter i is then equal to

σθi
=

√
T
(

(JTJ)−1
)
i,i
. (3.5)

56

This analysis ignores nonlinearities that are captured by the ensemble approach,

but it is much less computationally expensive, so we use it to estimate the effect

of initial-condition parameter fluctuations on our results.

The final column of Table 3.3 shows the confidence intervals for kex obtained

from this analysis. They are quite similar to those obtained from the ensemble with

fixed initial conditions, again supporting the conclusion that kex is much smaller

for the T177A mutant than the wild-type.

Appendix 3.B discusses the ‘sloppiness’ of the models as quantified by JTJ .

3.6 Discussion

As seen in Table 3.3, our detailed analysis has placed on a firm statistical foot-

ing the observation that rhodopsin-mediated nucleotide exchange on the T177A

mutant is much slower than on the wild-type. It was expected that the mutation

would affect this rate of exchange, and here we have quantified that change.

This project offers several lessons about the modeling process. In particular,

note that our uncertainties of kex are smaller after fitting initial conditions, even

though that introduced many parameters (Table 3.3). This is directly related to our

use of Frederiksen et al.’s temperature prescription [10]; the better fit (and resulting

lower ensemble temperature) compensates for the extra degrees of freedom added

by fitting the initial conditions.

The constraints placed on the initial conditions during optimization are here

set quite arbitrarily. A better understanding of the actual initial condition un-

certainties is vital to make further progress. This is particularly true because the

optimized initial conditions may additionally be compensating for the effects of

biochemical steps that we have not included in the model. To estimate the actual

initial condition uncertainties, we could replicate the dispensing process several

57

times, but rather than carrying on with the experiment, carefully assay how much

protein ended up in the test tube. We could then adjust the prior weights w to

achieve the expected scatter in ηs.

In these fits we have used only one form of data. Other experiments have been

performed on the T177A mutant, and it may be very instructive to include them

in our analysis. Incorporating additional experiments will, however, require care.

Because the fluorescence data contains so many data points, it must be re-weighted

to avoid swamping experiments that are just as informative yet contain many fewer

data points. The re-weighting may, however, unavoidably be subjective, based on

how much information we think each experiment actually contains.

Given better control of the initial conditions or more data, it would perhaps

be interesting to consider alternative models for the activation process. Our pa-

rameter estimates are contingent both on the data we fit and the model we use,

and it is possible that there are signatures of more complicated mechanisms (e.g.

receptor oligomerization) in the data that are being obscured by our choice of

model or our use of all the initial conditions as fitting parameters. One possibly

important simplification made in the current model is that binding of Gβγ protects

GGDP
α from spontaneous loss of GDP; there is experimental evidence that rates

of spontaneous exchange are similar for GGDP
α and GGDP

α Gβγ (S. Ramachandran,

personal communication), and including this may improve the model fit with less

need for initial condition adjustments.

Finally, we could consider a coupled fit to both data sets, with all parameters

required to be equal between wild-type and T177A (except for kex, which was

anticipated to change due to the mutation). The equal parameters model is nested

within the model with independent parameters, so a likelihood-ratio test or Bayes

factor [77] can be used to assess whether the extra parameters improve the fit in

58

a statistically significant sense. This would provide a rigorous way of assessing

whether any parameters other than kex must differ between the mutant and the

wild-type to explain the data.

Our work here has helped quantify the effect of the T177A mutation on trans-

ducin activation, showing that the rate of rhodopsin-mediated GDP-GTP exchange

is much slower in the mutant. Our work also illustrates how important a thorough

understanding of the experimental uncertainties will be to continued modeling of

such experiments.

3.A Model Equations

d [R]
dt

= kdRT · [RT]

+ kex · [RT] · [GTP]
− kfRT · [R] ·

[
αGDPβγ

]
d [αGDP]

dt
= kdαGDPβγ ·

[
αGDPβγ

]
− kdαGDP ·

[
αGDP

]
− kfαGDPβγ ·

[
αGDP

]
· [βγ]

d [βγ]
dt

= kdαGDPβγ ·
[
αGDPβγ

]
+ kdαGTPβγ ·

[
αGTPβγ

]
− kfαGDPβγ ·

[
αGDP

]
· [βγ]

− kfαGTPβγ ·
[
αGTP

]
· [βγ]

d [GTP]
dt

= −kfαGTP ·
[
α()
]
· [GTP]

− kex · [RT] · [GTP]

d [α()]
dt

= kdαGDP ·
[
αGDP

]
− kfαGTP ·

[
α()
]
· [GTP]

− kdα() ·
[
α()
]

d [GDP]
dt

= kdαGDP ·
[
αGDP

]
+ kex · [RT] · [GTP]

59

d [αGTP]
dt

= kfαGTP ·
[
α()
]
· [GTP]

+ kdαGTPβγ ·
[
αGTPβγ

]
− kfαGTPβγ ·

[
αGTP

]
· [βγ]

d [αGDPβγ]
dt

= kfαGDPβγ ·
[
αGDP

]
· [βγ]

+ kdRT · [RT]
− kdαGDPβγ ·

[
αGDPβγ

]
− kfRT · [R] ·

[
αGDPβγ

]
d [αGTPβγ]

dt
= kfαGTPβγ ·

[
αGTP

]
· [βγ]

+ kex · [RT] · [GTP]
− kdαGTPβγ ·

[
αGTPβγ

]
d [RT]
dt

= kfRT · [R] ·
[
αGDPβγ

]
− kdRT · [RT]
− kex · [RT] · [GTP]

3.B Sloppiness of the Models

Our group has argued that least-squares fits to data universally have a ‘sloppy’

pattern of eigenvalues in their Hessian and JTJ matrices, with eigenvalues roughly

evenly spaced over many decades [7, 11] (Chapter 2). The eigenvalue spectra for

both the wild-type and T177A data fits are shown in Figure 3.5. To test the

sloppiness of the models, here we calculate JTJ using the parameters optimized

with no constraints on the ηs.

The eigenvalue spectra for both the wild-type and T177A fits with fixed initial

conditions are characteristically sloppy. The stiffest two eigenvectors (those corre-

sponding to the largest eigenvalues) for each of these fits are shown in Figure 3.6.

The stiff eigenvectors indicate combinations of parameters that are particularly

well-constrained by the data. In the wild-type fit the equilibrium constant for

formation of the GGDP
α Gβγ dimer (kdαGDP βγ/kdαGDP βγ) is a substantial component

60

w-t w-t

 i.c. fit
t177a t177a

 i.c. fit

10-6

100

106

λ

Figure 3.5: Shown are the eigenvalue spectra for the models fit to both the wild-
type and T177A data sets, with and without initial conditions allowed to vary.
Both fits with fixed initial conditions show characteristically sloppy spectra [7, 11]
(Chapter 2). The fits with the initial conditions allowed to vary, on the other hand,
have a substantial dearth of small eigenvalues.

Stiffest

-1

0

1
γβPDGα

fk
TRfk

γβPDGα
dk

2nd stiffest

-1

0

1 PDGαdk
xek

γβPDGα
dk

(a) Wild-type

Stiffest

-1

0

1 xekPDGαdk
TRfk

2nd stiffest

-1

0

1)(αdk

PTGαfk

xek

(b) T177A

Figure 3.6: Shown are the two stiffest eigenvectors (corresponding to the largest
two eigenvalues) for both data fits with fixed initial conditions. These vectors cor-
respond to particularly well-constrained combinations of parameters. Interestingly,
the second stiffest wild-type vector is very similar to the stiffest T177A vector.

61

10-6 100 106

λ

0

1

i2
v

(a) Wild-type

10-6 100 106

λ

0

1

i2
v

(b) T177A

Figure 3.7: Plotted are the squared magnitudes of each component of each eigen-
vector versus the corresponding eigenvalue. Components corresponding to the 10
core model parameters are shown by black dots, while red dots are ηR, green are
ηβγ and blue are ηα.

of the stiffest eigenvector, while the second stiffest vector involves the tradeoff

between spontaneous loss of GDP from GGDP
α (kdαGDP) and GDP-GTP exchange

driven by the receptor (kex). Similarly, these two parameters comprise the stiffest

eigenvector in the T177A fit, while the second stiffest vector for that fit constrains

the spontaneous capture of GTP by empty Gα subunits.

The fits with varying initial conditions deviate from the classical sloppy eigen-

value spectrum, with a much higher density of eigenvalues near the large end of

the spectrum. Figure 3.7 shows that the eigenvectors corresponding to the glut of

eigenvalues are mostly comprised of the initial condition adjustment parameters

η. The vectors with large components along the parameters intrinsic to the model

(indicated by the black dots) are spread out amongst eigenvalues with a charac-

teristic sloppy spacing, particularly in the wild-type fit. Interestingly, the stiffest

eigenvectors of the wild-type fit tend to have large components along the ηs for

adjusting the Gα initial condition (blue dots); this is not true for the T177A fit.

CHAPTER 4

FALSIFIABLE MODELING OF BIOCHEMICAL NETWORKS

WITH SLOPPYCELL∗

4.1 Abstract

Summary: To falsify model assumptions, predictions must statistically incorpo-

rate the effects all parameter sets consistent with the model and available data.

SloppyCell is an SBML-compatible modeling environment that implements two

algorithms for generating such falsifiable predictions.

Availability: Open Source (BSD) at http://sloppycell.sourceforge.net

Contact: rng7@cornell.edu

4.2 Introduction

Models of biochemical networks often involve dozens or hundreds of parameters,

and often very few of those parameters will have been directly measured. Thus

the parameters must be estimated, typically by fitting the model to time-series or

other system-level data via nonlinear optimization [29]. Numerous packages exist

to facilitate such parameter estimation. Among those that import models encoded

in the Systems Biology Markup Language (SBML) [55] are Systems Biology Tool-

box [78], Systems Biology Workbench [79], COPASI [80], and the SBML Param-

eter Estimation Toolkit (SBML-PET) [81]. Parameter estimation is complicated

by practical parameter unidentifiability; there is often a large, highly-correlated,

collection of parameter sets that fit the data well [9] (Chapter 2).

∗In preparation for submission as an Applications Note to Bioninformatics with authors Ryan
N. Gutenkunst, Jordan C. Atlas, Robert S. Kuczenski, Fergal P. Casey, Joshua J. Waterfall,
Kevin S. Brown, Christopher R. Myers and James P. Sethna.

62

63

In most cases, however, the ultimate goal of modeling a system is not to deduce

parameter values, but to test a particular set of assumptions about how the system

works and to generate useful predictions. Given that parameter unidentifiability

is common in fits of biochemical networks to data (Chapter 2), it is important

to not just make a prediction from the best-fit set of parameters, but to estimate

that prediction’s uncertainty by accounting for other sets of parameters that are

statistically consistent with the available data [7, 8]. Such uncertainty estimates

help distinguish between predictions that can and cannot be trusted. Moreover, if

a new experiment lies outside the uncertainty bounds of the prediction, it is strong

evidence that some assumption in the model structure is wrong, rather than just

a parameter estimate.

SloppyCell is an SBML-compatible modeling environment focused on studying

the ensemble of model parameter sets consistent with a set of data and thus making

falsifiable predictions.

4.3 Methods

Fitting a model to data typically typically involves minimizing some cost function

C(θ|D,M) which measures how much the predictions of model M differ from from

the data D at parameters θ; the best-fit set of parameters θ∗ minimizes the cost.

Assuming Gaussian uncertainties σd on each of the data points d, this corresponds

to a weighted least-squares fit:

C(θ|D,M) =
∑
d∈D

(yd(θ)− d)2

2σ2
d

, (4.1)

where yd(θ) is the model result for d at parameters θ. The uncertainties in a

model prediction depend on how quickly the cost increases away from the best-fit

set of parameters and on the sensitivity of that prediction to parameter changes.

64

SloppyCell implements two methods for estimating model prediction uncertainties,

Linearized Covariance Analysis and Bayesian Monte-Carlo [82].

Linearized Covariance Analysis approximates the cost function by a quadratic

form about the best-fit and considers only the linear sensitivity of the prediction

to parameter variation. The standard deviation σy of a quantity y is then given

by:

σ2
y ≈

∑
i,j

∂y

∂θi

(
H−1

)
ij

∂y

∂θj

∣∣∣∣
θ∗
, (4.2)

where the Hessian matrix Hij ≡ ∂2C(θ|D,M)/∂θi∂θj is the quadratic form for the

cost, ∂y/∂θi is the sensitivity of quantity y to parameter θi, and all quantities are

evaluated at the best-fit set of parameters θ∗.

The Bayesian Monte-Carlo approach [83, 7] explores the the full nonlinear cost

surface, sampling from the probability distribution of acceptable parameter sets,

P (θ|D,M) ∝ e−C(θ|D,M), (4.3)

via Markov-Chain Monte Carlo [84]. Uncertainties in any quantity of interest can

then be computed simply by evaluating that quantity over the resulting ensemble

of parameter sets. This Monte-Carlo analysis is much more expensive computa-

tionally than Linearized Covariance Analysis, but it fully captures nonlinearities;

such nonlinearities can be particularly important in models with relatively sparse

data.

Figure 4.1 shows an example application of the Monte-Carlo method to a model

of the JAK-STAT signaling pathway [85] that was also used as a test case by

SBML-PET. The upper panel shows the data that were fit, which are relative

measurements of total and phosphorylated STAT5 in the cytoplasm; the shaded

regions are the ensemble of acceptable model fits. The lower panel shows predic-

tions of the fraction of STAT5 in dimer form in the cytoplasm and nucleus; the

65

0 30 60

time (min)

0.0

0.5

1.0

C
y
to

p
la

s
m

ic
 S

T
A

T
5

 (
a
u
)

total

phospho

(a) Data fit to

0 30 60

time (min)

0.0

0.2

0.4

F
ra

c
ti

o
n
 t

o
ta

l
S
T
A

T
5

nuclear

cytoplasmic

(b) Fraction STAT in cytoplasmic dimer

Figure 4.1: JAK-STAT model [85] uncertainty analysis. (a) The fit data are
relative measurements of cytoplasmic STAT5. The error bars on the data corre-
spond to one standard deviation, and the shaded regions are the central 68% of
the ensemble of statistically acceptable model fits derived from a Bayesian Monte-
Carlo analysis. (b) Shown are predictions of STAT5 dimer concentrations. The
dashed lines are from the best-fit set of parameters and the shaded regions are 95%
uncertainty bounds.

66

dashed lines are from the best-fit set of parameters while the shaded regions are the

95% uncertainty bounds derived from the ensemble of parameter sets consistent

with the data. Note the large uncertainty bound on dimeric cytoplasmic STAT5;

given the model and data, there could be fives times as much of this species as

predicted by the best fit set of parameters.

Several SBML-compatible tools exist for generating and analyzing linear pa-

rameter sensitivities ∂y/∂θ; among them are the SBML ODE Solver Library [86],

the Systems Biology Toolbox [78], and BioSens [87]. To our knowledge, SloppyCell

is unique in its focus on using real data to generate prediction uncertainties and

in its inclusion of nonlinear Monte-Carlo-based analyses.

The STAT5 model is relatively small and well-constrained, with only 5 free

parameters and data from one condition. SloppyCell and the associated methods

have been used to study much larger systems, with dozens of conditions (Chapter 3)

or more than fifty free parameters [12].

4.4 Features and Implementation

Most of SloppyCell is implemented in the high-level programming language Python

(http://www.python.org) [88], and SloppyCell makes extensive use of the SciPy

library of scientific routines (http://www.scipy.org). Like other Python-based

projects [89, 90, 91] we find that the Python environment allows users great flex-

ibility while remaining easy to use, particularly with the enhanced IPython con-

sole [92]. SloppyCell’s plotting capabilities are based on matplotlib [93].

Deterministic integrations are driven by the Fortran library DASKR [94, 95].

SloppyCell interfaces with DASKR via F2PY (http://www.scipy.org/F2py)

which is also used to automatically build C model functions so that integra-

tions are done with full C speed. Sensitivities ∂y/∂θi are calculated by integrat-

67

ing differential sensitivity equations derived by automatic analytic differentiation

of the model equations; this avoids the imprecision of explicit finite-differences.

The Bayesian Monte Carlo method can consider stochastic systems, and stochas-

tic integrations are performed in SloppyCell using the Gillespie algorithm [96].

Cost and sensitivity calculations are parallelized using the Pypar MPI interface

(http://pypar.sourceforge.net).

SloppyCell supports most of the SBML level 2, version 3 specification, including

events and algebraic rules. Models can be constructed directly within SloppyCell

or imported from other sources, such as the BioModels database [54] (Chapter 2)

or GUI network tools like CellDesigner [97]. SloppyCell also has built-support

for handling data such as Western blots or microarrays which yield only relative

measurements.

4.5 Conclusions

As biochemical models progress from description to prediction, it is essential to

rigorously consider the uncertainties of those predictions so that the models can be

falsified. SloppyCell has proven a flexible and powerful research tool for building

and exploring models of complex biochemical networks, and the SloppyCell team

welcome new users, contributors and collaborators.

4.6 Acknowledgements

The authors thank Tamara Galor-Neah and Sarah Stockwell for help testing early

versions of SloppyCell, and Eric Siggia for helpful suggestions. The authors ac-

knowledge support from the National Institutes of Health, the Department of En-

ergy, the Department of Agriculture, and the National Science Foundation.

CHAPTER 5

ADAPTIVE MUTATION IN A GEOMETRICAL MODEL OF

BIOCHEMICAL EVOLUTION∗

5.1 Abstract

The distribution of fitness effects of adaptive mutations remains poorly understood,

both empirically and theoretically. Most recent theoretical work on the subject has

focused on either the genotypic or phenotypic level; here we focus on the level of

biochemical parameters (the “chemotype”). We study a version of Fisher’s ge-

ometrical model formulated in terms of such parameters, wherein pleiotropy is

minimal. This model generically predicts that there are striking singular cusps in

the distribution of fitness effects of fixed mutations and that a single biochemical

parameter should comprise all the mutations at the high end of that distribution.

Using extreme value theory we show that the farthest pair of these cusps are typi-

cally well-separated, even when hundreds or thousands of biochemical parameters

are relevant, implying that the effects we predict should be observable in realisti-

cally precise experiments. More broadly, our work demonstrates that new insight

can be gain by viewing evolution with a biochemical perspective.

5.2 Introduction

Many aspects of the theory of evolution are well-developed [98], but our under-

standing of adaptive mutation remains limited [99, 100]. Recently experimental

evolution has provided a new window onto adaptation [101], and there has been a

resurgence of theoretical work. Most of that work has focused either at the level

∗In preparation for submission to Evolution with authors Ryan N. Gutenkunst and James P.
Sethna.

68

69

of genotype or phenotype.

The mutational landscape model focuses on the genotype, considering adap-

tation in the space of genetic sequences [102]. The assumption that only a small

fraction of single nucleotide changes will result in genotypes fitter than the current

wild type motivates the application of extreme value theory [103] to fitness. Of par-

ticular note, the model predicts that the distribution of fitness effects of adaptive

mutations is exponential and that a population should often fix (become homo-

geneous for) the most beneficial mutation possible [104, 105]; recent experimental

results are consistent with both predictions [106, 107].

R. A. Fisher’s geometrical model focuses on the phenotype, considering adap-

tation in an N -dimensional “trait” space [108]. Fisher used the geometrical model

to argue that evolution is driven by the accumulation of many mutations of small

effect. This argument was influential until Motoo Kimura pointed out that se-

lection favors the fixation of mutations with larger effect, implying that it is mu-

tations of intermediate effect that are most likely to be fixed in the population

and thus drive observable evolution [109]. Recent studies have applied Fisher’s

model to a gamut of questions in evolutionary biology and population genetics;

these include sequential adaptations [110, 111], the load of deleterious mutations

carried by finite populations [112, 113], and organismal complexity and its evo-

lutionary “cost” [114, 115, 116]. Predictions from the model regarding epistasis

compare favorably with data [117], and the distribution of fitness effects the model

predicts is consistent with the mutational landscape model [118]. The abstract

nature of trait space, however, can lead to difficulty when interpreting model pre-

dictions [119, 120, 121].

An organism’s genotype determines its phenotype through the function of com-

plex biochemical networks. The field of systems biology is beginning to decipher

70

the organization and dynamics of these networks [2], and several groups have be-

gun applying this knowledge to evolutionary theory [122, 123]. Here we focus on

the evolution of an organism’s “chemotype”,1 the set of biochemical parameters

(binding affinities, reaction rate constants, etc.) that quantify the dynamics of the

organism’s biochemical networks. We use a version of Fisher’s geometrical model

and apply it to adaptation in chemotype space, in which pleiotropy is minimal.

We focus on the distribution of fitness effects of adaptive mutations, both before

and after fixation. We find that the model predicts that the distribution for fixed

mutations should exhibit a striking pattern of cusps and that mutations in the

high-fitness tail of the distribution should all involve a single biochemical param-

eter. Using extreme value theory, we show that these predicted effects should be

experimentally observable, even when a great many biochemical parameters are

relevant to fitness.

5.3 The Model

We consider adaptation of the N biochemical parameters that quantify an or-

ganism’s biochemical network, and we refer to such a set of parameters as an

organism’s chemotype. These parameters might include, for example, the binding

affinity between a given protein and regulatory region of DNA or the rate constant

for a particular enzyme.

As illustrated in Figure 5.1, an organism’s chemotype can be represented as a

point, ~z = z1, z2, . . . zN , in N -dimensional space. The relative change in biochemi-

cal parameter values caused by a mutation can be described by an N -dimensional

1To our knowledge, the term “chemotype” has been used in two other contexts. It has been
used to refer to common structural features in related organic compounds (a usage similar to
“moiety”) [124], and to refer to strains of plants [125] or bacteria [126] that are morphologically
similar but that differ in their production of particular chemicals.

71

r1r̂1
~z

z 2

z1

Figure 5.1: We consider evolution in biochemical space, where a population is
characterized by N biochemical parameters, its “chemotype”. The current and
uniform chemotype ẑ of a population is indicated by the solid arrow, and the
optimal chemotype is indicated by the dot and is the origin of our coordinate
system. The ellipse traces a contour of constant fitness. In this model mutations
change one parameter at a time; the dashed arrow indicates an adaptive mutation
of magnitude r1 in parameter k1.

vector ~r; the mutant has chemotype ~r + ~z.

Importantly, single-nucleotide changes are the dominant type of mutation in

short-term evolution. Such a mutation will typically only change a single region of

a protein or a single DNA binding site, corresponding to one or a few biochemical

parameters, so that most pairs of mutations are orthogonal in chemotype space.

In biological terms, we expect minimal pleiotropy at the biochemical level. Thus

in the model we restrict our mutations to those which change a single parameter

at a time, so that ~r = rr̂i, where r is the size of the mutation and r̂i indicates

that the mutation affects parameter i. This distinguishes our model from most of

versions of Fisher’s model, which consider maximal pleiotropy where mutations can

change all traits simultaneously. (Other authors have considered zero pleiotropy

models in the context of drift load [113, 127] or restricted pleiotropy as a form of

modularity [115].)

Close to the optimum chemotype, any smooth fitness landscape can be approx-

imated by a quadratic form, and comparisons between empirical mutation effect

distributions in different environments for several organisms support a Gaussian

72

form [128]. Thus we study a Gaussian fitness landscape:

W (~z) = exp

(
−1

2
~zTS~z

)
, (5.1)

where S is a positive definite matrix. Many of the analytic results below are derived

for spherically symmetric fitness functions, for which S = λI, where I is the identity

matrix. We show numerically, however, that our qualitative conclusions are robust

to even dramatically non-spherical fitness functions.

In this manuscript we work in the limit of strong selection and weak mutation,

so that the population is genetically homogenous aside from rare mutants that

arise one at a time and either fixate or go extinct before the next mutation arises.

In this case, the state of the entire population corresponds to a single point ~z in

chemotype space, and fixation of the mutation ~r moves the entire population to

chemotype ~z + ~r.

Finally, in our analyses it is convenient to work with the logarithmic fitness

change Q introduced by Waxman and Welch [129] and defined as

Q ≡ log

[
W (~z + ~r)

W (~z)

]
. (5.2)

Equivalently, Q = log (1 + s), where s is the selection coefficient. Mutations with

Q > 0 are adaptive, and note that

Q(ri) = −~zSr̂iri −
1

2
r̂Sr̂ir

2
i . (5.3)

5.4 Results

5.4.1 Typical Mutation Size

In our model, the dynamics of the evolutionary process depend on (1) the shape

of the fitness landscape defined by S, (2) the initial state ~z of the population, and

73

(3) the distribution of mutational effects r on biochemical parameters. In this

section we consider what the typical size of mutation parameter effects must be to

reproduce the observation that most non-neutral mutations are deleterious [130,

131]. To do so, we calculate what the probability of beneficial mutation Pben

would be if the distribution of mutational effects was identical for all parameters

and uniform over the range of possible beneficial mutations. This situation leads

to an unrealistically high probability of beneficial mutation, even in the limit of

large N . This indicates that the distribution of mutation parameter effects must

have a scale larger than that of the largest possible beneficial mutation; attempted

mutations must often ‘hop over’ the region of possible beneficial mutations.

The largest mutation ρi that can be made to parameter i without decreasing

the fitness is found by solving Q(ri) = 0 (see Equation 5.3), yielding

ρi = 2
|~zSr̂i|
r̂iSr̂i

(5.4)

= 2|~z · r̂i|, (5.5)

where the second expression for ρi (Equation 5.5) specializes to a spherical fitness

function and is simply twice the magnitude of the ith component of ~z. Intuitively,

in the spherical case, the fitness is proportional to |~z|2 =
∑

i |zi|2. A mutation

of size ρi of the proper sign simply changes the sign of zi, leaving the fitness

unchanged. Smaller mutations of that sign reduce |zi| and thus increase the fitness.

If the probability density of mutation chemotype effects is uniform over

±maxi ρi, the probability of a random mutation being adaptive is

Pben =
1

2N

∑
i ρi

maxi ρi
(5.6)

=
〈|ẑ · r̂i|〉

2 maxi |ẑ · r̂i|
. (5.7)

Asymptotically for large N , ẑ · r̂i has a Gaussian probability density with variance

1/N , which implies that 〈|ẑ · r̂i|〉 =
√

2/
√
πN . The largest absolute value of N

74

samples drawn from from a Gaussian density with variance 1/N is asymptotically√
2 log

(
N/
√

2π
)/
N [103]. Thus

Pben (N) ∼ 1

2
√
π log(N/

√
2π)

. (5.8)

This probability remains substantial even for large N (e.g. Pben (10, 000) ≈ 0.1).

This suggests that, for a realistically large fraction of mutations to be deleterious,

the typical scale of chemotype effects for mutations must be larger than maxi ρi.

Thus, for every parameter the mutation leading to the largest possible increase in

fitness is accessible.

Little is known empirically about the distribution of effects of random muta-

tions on biochemical parameters, and the complete distribution of fitness effects

for all mutations depends sensitively on this distribution. The distribution for

adaptive mutations, on the other hand, depends only on the small effect tail of the

distribution for chemotypic effects. The above argument shows that the typical

scale for chemotypic effects of mutations must be larger than the scale correspond-

ing to the largest beneficial mutation. Thus below we make the approximation

that the distribution of mutation chemotype effects is identical for all parameters

and is uniform over the range required to generate the largest beneficial mutation.

5.4.2 Adaptive Mutation Probability Densities

The probability density of fitness effects for adaptive mutations fa(Q) is

fa(Q) ∝
∑
i

∫
drif(ri) δ(Q−Q(ri)), (5.9)

where f(ri) is the probability density of chemotypic mutation effects. Making the

variable substitution u = Q(ri) yields

fa(Q) ∝
∑
i

∫
du f(ri(u)) δ(Q− u)√

(~zSr̂i)
2 − 2r̂iSr̂iu

. (5.10)

75

Assuming that f(ri) is uniform over the range where Q > 0 yields

fa(Q) ∝
∑
i

1√
r̂iSr̂i

√
ζi −Q

. (5.11)

The typical scale ζi for fitness effects of mutations of parameter i is

ζi ≡
(~zSr̂i)

2

2r̂iSr̂i
(5.12)

=
λ|~z · r̂i|2

2
≡ Q0|ẑ · r̂i|2. (5.13)

where the second line specializes to the spherically symmetric fitness function. In

that expression ẑ is a unit vector along ~z and

Q0 ≡ − logW (~z) (5.14)

is Q corresponding to a mutation that yields the global optimal fitness.

The probability density fa(Q) for a spherical fitness function is plotted in Fig-

ure 5.2(a) for N = 30 and ~z a single random unit vector. At each ζi the density

has a singular cusp, corresponding to mutations that yield the optimal fitness at-

tainable by changing parameter i. Intuitively, the range of mutations ∆ri about ri

that produce fitnesses in a given range ∆W is inversely proportional to the slope

of W (rir̂i). At each fittest mutation W (rir̂i) has zero slope along r̂i, yielding a

cusp.

The ensemble average fa,e(Q) of the probability density fa(Q) over different

initial ~z can be calculated by integrating fa(Q) (Equation 5.11) over the proba-

bility density of ζi (Equation 5.15). For a spherical fitness function, the ζi are

proportional to the squared magnitudes of the components of the unit vector ẑ.

Asymptotically as the number of dimensions N → ∞, these are squares of Gaus-

sian variables and have probability density

f(ζi) ∝ exp [−ζiN/(2Q0)]/
√
ζi, (5.15)

76

0 0.1 0.2
Q/Q0

P
ro

b
a
b
il
it

y
 d

e
n
s
it

y

(a) Adaptive mutations

0 0.1 0.2
Q /Q0

P
ro

b
a
b
il
it

y
 d

e
n
s
it

y

(b) Fixed mutations

Figure 5.2: (a) Plotted is the probability distribution of the fitness effect of adap-
tive mutations for N = 30, a spherical fitness function, and a particular random
~z. The singular cusps occur at each ζi. The smooth curve is the ensemble average
approximation corresponding to maximal pleiotropy. (b) Shown is the probability
distribution of fitness effects for fixed mutations in the large-population limit for
the same ~z as in (a). Notice how the cusps at large Q are much more prominent.
The histogram corresponds to 1000 samples from the distribution, each smeared
by a Gaussian to mimic a 1% error in the measurement of Q/Q0. With this level
of measurement noise the cusps are not distinguishable. The smooth curve is the
ensemble average approximation to the probability distribution.

77

which is a χ2 density with one degree of freedom. Taking this average also corre-

sponds to considering to the alternative model of maximum pleiotropy, in which a

single mutation can change all parameters [129]. For the spherical fitness function

the result is:

fa,e(Q) =

∫ ∞
Q

fa(Q)f(ζi)dζi (5.16)

∝ exp(−QN/(4Q0)) K0(QN/(4Q0)), (5.17)

where K0 is the zero-order modified Bessel function of the second kind. The smooth

solid curve in Figure 5.2(a) shows this ensemble average, which is very similar to

the distributions predicted by other theories [132]. The ensemble average corre-

sponds to averaging over populations with different initial chemotypes; repeated

experiments with identical initial populations in identical environments will yield

the cusped distribution.

In the limit of an infinitely large population, the probability that an adaptive

mutation with fitness effect Q fixates in the population is, for small Q, proportional

to Q [109, 133]. The probability density of fitness effects for fixed mutations ff (Q)

is thus

ff (Q) ∝ Qfa(Q). (5.18)

This density of fixed mutations is shown in Figure 5.2(b) for the same spherical

fitness function and initial chemotype ~z as in Figure 5.2(a). Note that the cusps

at large Q are much more prominent in the distribution of fixed mutation fitness

effects. We now turn to the question of how difficult these predicted cusps are to

observe in evolution experiments.

78

5.4.3 Cusp Spacings

Experimental measurements of the distribution of mutation effects of fixed muta-

tions are limited by two factors: (1) Beneficial mutations rarely arise, and those

that do are often lost to genetic drift without fixing in the population. Thus stud-

ies tend to have few samples from the distribution. (2) Experimental uncertainties

in the fitness measurements blur out fine features in the distribution. This second

effect is illustrated by the histogram in Figure 5.2(b). It represents 1000 samples

from ff (Q), each of which has been polluted by Gaussian noise in the measurement

of Q/Q0 with standard deviation 0.01. Even given this large number of samples,

the cusps are not resolved due to the errors in fitness measurement. It will be

experimentally challenging to observe these cusps directly.

Note that each cusp in Figure 5.2 corresponds to mutations affecting a different

biochemical parameter ζ. Our model thus not only predicts cusps, but also that

the most beneficial mutations will all affect the same biochemical parameter. To

experimentally observe this prediction, it suffices to measure relative fitness differ-

ences of order ∆, where ∆ ≡ (ζ1 − ζ2)/ζ1 is the separation between the two cusps

with the highest fitness, normalized by the fitness of the fittest cusp. We derive

the distribution of ∆ predicted by our model in Appendix 5.A, using the methods

of extreme value theory [103].

The solid line in Figure 5.3 is the exact asymptotic result (using Equations 5.23

and 5.24) for the mean of ∆ given a spherical fitness function. The dashed line is

an approximation to this result:

〈∆〉 ≈ 1

logN + log
(√

2/π
)

+ 1
, (5.19)

which is valid for large N . The black circles in Figure 5.3 are the results from 1000

numerical simulations at each N using Equation 5.13. The agreement between

the exact asymptotic result and the numerical simulations is excellent, and the

79

0 50 100 150

N

0

0.25

0.5

>
∆

<

Figure 5.3: Plotted is the mean relative spacing 〈∆〉 between the two cusps with
the largest ζ in the adaptive mutation distribution. The solid line is the asymptot-
ically exact result from extreme value theory for spherical fitness functions, while
the dashed line is the approximation of Equation 5.19. The circles are numerical
simulations for the spherical fitness functions, while the squares and triangles are
simulations results for mildly and severely non-spherical fitness functions, respec-
tively. The mean value of ∆ declines very slowly with N , suggesting that the cusps
will be well-separated for even very large N .

approximate result captures the trend well. Note that 〈∆〉 declines very slowly

as a function of N ; for a chemotype with N = 10, 000 relevant parameters the

mean ∆ is approximately 0.11, a relative fitness difference that is straightforward

to measure experimentally. For comparison, Figure 5.2 has ∆ ≈ 0.27, which is

approximately the predicted 〈∆〉 for N = 30.

Thus our model predicts, even for a large number of relevant mutating parame-

ters, a substantial range ∆ of the most beneficial mutations will all affect the same

biochemical parameter.

5.4.4 Non-spherical Fitness Functions

The analytic results in the previous section are all derived for spherical fitness

functions and uniform distributions of chemotypic mutation effects. In this section

we consider non-spherical fitness landscapes to test the generality of our result

80

that the largest two cusps in ff (Q) should be well separated even for large N .

Note also that any differences in typical size of chemotypic mutation effects on

different parameters can be eliminated by rescaling the parameters zi, so consid-

ering non-spherical fitness functions implicitly also considers different mutation

scales amongst the parameters. Spherical fitness functions have all eigenvalues of

S equal, while for non-spherical functions the width of the fitness contour along

any given eigenvector of S is proportional to the square root of the corresponding

eigenvalue λ.

For a given distribution of eigenvalues, 〈∆〉 can be calculated numerically from

the definition of ζ (Equation 5.12). In the tests described below, each scenario is

simulated 1000 times, each instance involving an independent S and initial chemo-

type ~z. The eigenvectors of S were random orthogonal vectors and the initial

chemotypes were chosen to have a fixed fitness W (~z). We chose the ensemble

of fixed W (~z) rather than the ensemble of fixed |~z| because the fitness is exper-

imentally measurable while |~z| is not. Additionally the ensemble of fixed W (~z)

is invariant under rescaling of the parameters zi. (The distribution of ∆ is inde-

pendent of the value chosen for W (~z).) Details of the procedure are described in

Appendix 5.B.

The black squares in Figure 5.3 result from mildly non-isotropic fitness land-

scapes corresponding to eigenvalues of S drawn uniformly from the range 0.4 <

λ < 3.6, as in [134]. The deviations of 〈∆〉 from the spherical case are very small.

The black triangles in Figure 5.3 arise from ‘sloppy’ fitness landscapes [7]

(Chapter 2) with the N eigenvalues spaced distributed in the logarithm from 106

to 10−6. This corresponds to the narrowest axis of the fitness contours being one-

millionth the width of the longest axes. Even with these very anisotropic fitness

functions the average spacing ∆ remains substantial and comparable to the average

81

in the spherical case.

5.5 Discussion

We have analyzed a version Fisher’s geometric model in which mutations are re-

stricted to changing only one of the N parameters at a time. This condition of

minimal pleiotropy is appropriate when the population is described in terms of

its chemotype, its biochemical reaction parameters, only one or a few of which

will be altered by any given point mutation. We have shown the model predicts

that the probability density of fitness effects of adaptive mutations will have cusps,

each associated with mutations of a particular chemotypic biochemical parameter.

These cusps are particularly prominent in the density of fitness effects of fixed

mutations (Figure 5.2). Finally, we have shown that the relative spacing between

the two cusps with the highest fitness remains substantial for large N , even for

highly non-spherical fitness functions (Figure 5.3), making them experimentally

distinguishable.

A key assumption of our model is that each parameter is continuously ad-

justable throughout the range of possible beneficial mutations. Because the genetic

code is discrete, this cannot be strictly true. The distribution of effects of random

mutations on biochemical parameters is not well-known, in part because most bio-

chemical studies focus on mutations of large effect. However, studies have shown

that random mutations can introduce small but non-zero changes to the enzymatic

activity of proteins [135] and the expression driven by promoter sites [136]. These

results suggest that our assumption of continuous parameter variation is proba-

bly reasonable. (The assumption of a flat probability distribution of mutations of

small effect may be questioned, but this assumption is not crucial to the existence

or observability of the effects we prediction.)

82

Implicit in our model is also the assumption that a genetically homogeneous

population has a single set of biochemical parameters and a single fitness. Stochas-

tic effects have been shown to be significant in several biochemical networks, which

may suggest unavoidable heterogeneity between even genetically identical individ-

uals [137]. The fitness measurements we consider, however, are performed on

a population, not an individual, and averaging over a large enough population

should mask any intrinsic stochasticity.

The fact that even very non-spherical fitness functions with a range in eigenval-

ues of 1012 yield a qualitatively similar cusp distribution to the spherical function

(Figure 5.3) is perhaps surprising. In our simulations we assumed that the eigen-

vectors, and thus the correlations between the parameters, were random, and this

is what leaves the distribution of ζ narrow. On average each parameter contributes

about equally to each eigenvector, so the fitness function is similar when projected

along each parameter direction. The assumption of random correlation structures

is, however, a reasonable approximation to the complicated eigenvectors found

in a study of the sensitivity of biochemical networks to parameter changes (Sec-

tion 2.S1). Although even such very strong anisotropy has little qualitative effect

on the probability density of the first fixed mutation, it may play a more important

role for adaptive walks of many steps (Section 6.4). Analytically study of steps

beyond the first may be difficult, however, because the distribution of ~z after the

first step is not simply related by symmetry to the prior distribution of ~z, unlike

in the Fisher model with maximal pleiotropy [110].

Each cusp corresponds to mutations of a given biochemical parameter, so a

substantial ∆ also suggests that the mutations conveying the largest fitness benefits

will typically all involve a single biochemical parameter. A similar result holds for

the mutational landscape model [104, 105]. This is a possible mechanism to explain

83

the surprising large amount of parallel evolution that can be observed in separate

populations exposed to similar environments [138, 139].

Experimental data on the probability density of fitness effects of naturally

arising adaptive mutations is sparse, in large part because adaptive mutations are

rare. Nevertheless, several groups have studied this density in bacteria and viruses

and found that it is consistent with a smooth exponential-like curve similar to

the continuum approximation seen in Figure 5.2(a) [107, 140]. The cusps our

model predicts, however, are much more prominent in the probability density of

fitness of effects of fixed mutations, which are even more rare. This distribution

has been studied experimentally in bacteria [132, 141, 131], and those results are

consistent with a smooth distribution like the continuum approximation shown

in Figure 5.2(b). These studies, however, suffer from a low number of samples.

(For example, the study of Barrett et al. isolated only 68 fixed mutations and

could not measure relative fitness to a precision needed to resolve the cusps we

predict. (better than 1%, see Figure 5.2(b))) This means that they cannot rule

out the presence of the cusps our model predicts. When coupled with genetic or

biochemical analysis, similar experiments to these should, however, be able to test

our other prediction—that all of the most beneficial mutations in a fractional range

∆ will involve changes to the same biochemical parameter. Given how slowly 〈∆〉

decreases with N , a relative precision of a few percent will likely be sufficient,

which is achievable by averaging repeated assays.

We have studied a version of Fisher’s geometrical model in biochemical param-

eter space, in which pleiotropy is zero. The model predicts cusps in the probability

density of fitness effects of fixed mutations, and an extreme value theory analysis

suggests that these cusps are likely to be experimentally accessible. Evolution has

long been studied in terms of genotype and phenotype and our results show that

84

considering evolution in terms of biochemical parameters—the chemotype—may

offer new insights.

5.6 Acknowledgments

We thank Carl Franck, whose exam question prompted this investigation. We also

thank Jason Mezey and Ben Logsdon for helpful discussions relating to population

genetics and evolution and Josh Waterfall and Fergal Casey for discussions of the

model itself.

5.A Extreme Value Theory for ∆

∆ is a ratio of two values; to calculate its probability density we first calculate the

density of i1 ≡ log ζ1 − log ζ2, the spacing between the logarithms of the largest

two ζs. Defining

ω ≡ log

(
ζN

Q0

)
(5.20)

and using the asymptotic χ2 density for ζ (Equation 5.15) yields the asymptotic

probability density of ω:

f(ω) = exp

[
−1

2

(
exp (ω)− ω

)]
/
√

2π. (5.21)

The corresponding probability distribution F (ω) ≡
∫ ω
−∞ f(ω′)dω′ is

F (ω) = erf
(

exp (ω/2) /
√

2
)
, (5.22)

where erf is the error function. This distribution has exponential-type extreme

value statistics [103].

85

The typical size u1,N of the largest of N samples from the density f(ω) is given

by F (u1,N) = 1− 1
N

. In our case this is

u1,N = 2 log
(√

2 erf−1 (1− 1/N)
)
. (5.23)

The corresponding scale parameter α1,N is

α1,N = Nf (u1,N) , (5.24)

and distance between the largest two samples i1 has probability density2

f(i1) = α1,N exp(−α1,N i1). (5.25)

The distance between the logarithms i1 is related to ∆ by ∆ ≡ 1 − ζ1/ζ2 =

1− exp(−i1). Thus the probability density for ∆ is

f(∆) = α1,N (1−∆)(α1,N−1) , (5.26)

and the average of ∆ is

〈∆〉 =
1

1 + α1,N

. (5.27)

A useful approximation for α1,N can be obtained using an asymptotic expansion

for erf−1 [142]:

√
2 erf−1 (1− x) ∼

√
log

(
2

πx2

)
− log log

(
2

πx2

)
. (5.28)

Propagating this expansion through u1,N and α1,N and neglecting terms of order

log logN in the final expression yields

α1,N ≈ logN +
1

2
log (2/π) . (5.29)

From this follows the approximate expression for 〈∆〉 in Equation 5.19.

2Gumbel’s result for this distribution (Equation 5.3.5(4) in Reference [103]) has α2,N in place
of α1,N . In the limit N →∞ the two expressions are equal, but α1,N is a better approximation
for small N .

86

5.B Numerical Evaluation of 〈∆〉

A random set of orthogonal vectors ~vi can be obtained from the eigenvectors of

a matrix G from the Gaussian Orthogonal Ensemble; G = H + HT where the

elements of H are standard normal random numbers. A matrix S with eigenvalues

λi can then be constructed via

Sj,k =
∑
i

λivi,jvi,k. (5.30)

Random chemotypes ~z with specified fitness Q0 = − logW (~z) can be obtained

using the Cholesky decomposition A of S−1, defined by AAT = S−1. ~z is then

given by

~z =
√

2Q0Aẑ, (5.31)

where ẑ is a random unit vector.

CHAPTER 6

POTPOURRI

6.1 Other Sloppy Systems

Chapter 2 showed that sloppiness is common, and perhaps universal, in complex

systems biology models. Sloppiness, however, arises in many other contexts, from

fitting interatomic potentials [10] to sums of exponentials [11]. Here we discuss a

few other contexts in which sloppiness arises.

A particularly interesting example of a sloppy eigenvalue spectrum comes from

Mezey and Houle’s study of G matrices in Drosophila wing shape [143]. Mezey

and Houle measured 20 quantitative characteristics of wing shape for 16,000 flies,

scaling each characteristic by the overall size of the wing and controlling for en-

vironmental variation by propagating the flies in the lab for several generations.

The G matrix is the correlation matrix for this set of measurements, or equiva-

lently, the inverse of the Hessian approximation we would obtain from Principal

Component Analysis of the data. The eigenvalues for Mezey and Houle’s G ma-

trix appear sloppy, spanning a range of 104 roughly evenly. A particular exciting

possibility is that a sloppy G matrix could result from the population equilibrating

in a fitness landscape that is itself sloppy (see Sections 5.4.4 and 6.4). However, it

must be noted (1) that genealogical simulations show that such a pattern can arise

in the absence of selection [144], and (2) that it is unknown whether populations

typically have time to equilibrate in their fitness landscape (J. Mezey; personal

communication).

87

88

6.1.1 Cornell’s Proposed Energy Recovery Linac

Cornell is planning to build an energy recovery linear accelerator (ERL) [145] as

an enhanced X-ray light source as an extension of the Cornell Electron Storage

Ring (CESR) [146]. The design of such a huge machine is in part a large opti-

mization problem; the desired capabilities of the machine must be optimized while

constrained by financial cost.

In designing Cornell’s ERL these constraints include maximizing use of the

existing CESR facility, accommodating the geography of the Cornell campus, and

providing the best beam feasible. The beam properties depend on the geometry of

the accelerator itself and on the placement and strength of the steering magnets

that constrain the beam. Our interest here is the optimization of the magnet

arrangement; is it a sloppy optimization problem?

Sloppiness would suggest opportunities in the design of the accelerator. In

particular, when built the accelerator will unavoidably have fixed construction er-

rors which must be compensated for by adjusting free parameters. One may be

able to take advantage of the sloppiness of the design in most efficiently compen-

sating for these errors. Perhaps the accelerator could even be designed so that

expected construction errors have substantial projection along sloppy directions of

the system.

To study the accelerator, we use a simulation of a prospective ERL design

created by Christopher Mayes. The simulation is implemented in Tao [147] which

is built on the Bmad library [148].

The adjustable parameters in this simulation are the position and strength of

magnets along the beamline; there are 217 such parameters in the simulation we

study. The cost function is a weighted sum of squared residuals reflecting the var-

ious design goals and constraints for the accelerator. These include characteristics

89

0 50 100 150 200

sorted index

10-15

10-10

10-5

100

0
λ/

λ

Figure 6.1: The eigenvalues for the ERL model are sloppy; spanning many decades
roughly evenly. Many of the eigenvalues are zero, as the model we consider is
under-constrained.

such as the beam emittance and dispersion at various points along the beamline.

Tao can output the Jacobian matrix, from which we construct the JTJ approx-

imation to the Hessian matrix (Equation 3.4). The normalized eigenvalues of this

approximate Hessian are shown in Figure 6.1. They show the huge range and even

spacing characteristic of a sloppy model [7]. Many of the eigenvalues are zero. This

reflects the fact that the number of active constraints, 171, is less than the number

of parameters. Moreover, many of those constraints were hard walls, with a cost

of zero until a given variable left some range, outside of which the cost is infinity.

The stiffest three eigenvectors are shown in Figure 6.2. Note that the param-

eters are approximately spatially ordered; parameters that affect magnets that

are close to each other will be close together in Figure 6.2. The dominant com-

ponents of the eigenvectors are well-localized, involving only a few close-together

magnets at a time. This is very different from the eigenvectors of biochemical net-

works (Section 2.S1) and ideal sloppy problems [11], which tend to have relatively

90

0 50 100 150 200
-1

0

1

e
’v

e
c
t

0

0 50 100 150 200
-1

0

1
e
’v

e
c
t

1

0 50 100 150 200

parameter index

-1

0

1

e
’v

e
c
t

2

Figure 6.2: The stiffest eigenvectors of the ERL are composed of localized clumps
of parameters corresponding to parameters for adjacent magnets.

random-looking eigenvectors. This may suggest that sloppiness manifests itself

differently in problems that have explicit spatial features.

6.1.2 Kinematics of Insect Hovering

Berman and Wang’s study of insect hovering flight [149] offers an interesting non-

network biological optimization problem. Their study revealed that the observed

wing motions during hovering for several insects are similar to the motions that

would minimize total aerodynamic power expenditure. The potential sloppiness of

this model is particularly interesting because we expect power output to be anti-

correlated with fitness. Sloppiness in this model would be more circumstantial

evidence that evolutionary fitness landscapes are sloppy (Sections 5.4.4 and 6.4).

In hovering flight the path of a wing can be described by 11 parameters, one

of which is discrete. Although the model has relatively few parameters, evaluating

its sloppiness is tricky because of the number of constrains involved; eight of the

91

10-4

10-2

100

0
λ/

λ

Figure 6.3: Shown is the eigenvalue spectrum resulting from a Principal Compo-
nents Analysis of the ensemble of fruitfly kinematic parameters. The ensemble is
built by penalizing states whose expended during hovering is more than about 10%
above the minimal power.

eleven parameters are constrained to physically sensible values, and the lift must

be constrained to be greater than one.

The constraints can be dealt with in a Hessian evaluation by restricting our

derivatives to the manifold in which the lift is unity (G. Berman, personal com-

munication). Here we study an ensemble of parameter sets, rather than building

a Hessian matrix. The free energy is set to infinity for any parameter set which

violated any constraint on parameter values or gave a lift less than one; otherwise

it is set equal to average power required by the stroke. The ensemble is built with-

out importance sampling, and the discrete parameter is chosen randomly from its

two values for each attempted step. The temperature is adjusted such that typical

members of the ensemble yielded a power 10% higher than the optimal power.

Figure 6.3 shows the principal component analysis eigenvectors of the ensemble

for the model of fruitfly flight. Note that they are sloppy. Figure 6.4 shows the cor-

92

0 2 4 6 8 10
-1

0

1

e
’v

e
c
t

0 thetaMf phim

etaM

phiEta

0 2 4 6 8 10
-1

0

1
e
’v

e
c
t

1 thetaM

f phim

eta0
phiEta

0 2 4 6 8 10

parameter index

-1

0

1

e
’v

e
c
t

2 eta0

etaMf phim
thetaM

Figure 6.4: Shown are the three stiffest eigenvectors of the fruitfly kinematic pa-
rameter ensemble. Like most sloppy models, the eigenvectors are fairly complex
combinations of the parameters.

responding three stiffest eigenvectors. Notice that they are complex combinations,

much like is seen in the biochemical network models (Section 2.S1). The eigenvec-

tors found in this ensemble approach differ somewhat from the eigenvectors seen

in a Hessian-based analysis (G. Berman, personal communication). In particular,

the parameter K has large components in the stiffest eigenvectors of the Hessian,

but only small components along the stiffest PCA eigenvectors considered here.

Berman and Wang showed that the observed fruitfly wing kinematics are similar

to those predicted by their model, and we’ve shown that the model is sloppy.

It would be very interesting to compare the natural variation in kinematics to

the stiff and sloppy directions predicted by the model. In particular, does the

natural variation fill the basin of kinetic parameters up to some level of power

expenditure? If so, it would some evidence that natural populations have enough

time to equilibrate amongst all acceptably fit phenotypes.

93

6.2 Scale Factor Entropy and Priors

When building an ensemble, we want to sample from the distribution of param-

eter sets compatible with the available data. By Bayes’s theorem, the relative

probability P (θ|D) of any given parameter set θ given data D is proportional to

P (D|θ)P (θ). P (D|θ) is the probability of the model reproducing the data given

parameters θ, and P (θ) is the prior probability placed on the parameters. If the

data points di have Gaussian uncertainties σi, then

P (D|θ) =
∑
i

exp

[
−(yi(θ)− di)2

2σ2
i

]
. (6.1)

It may be necessary to add additional fit parameters when a model is compared

with certain data sets. One common example is data that lacks an absolute scale.

For example, the absolute intensity of a band in a Western blot depends on the

properties of the antibody used and how the gel was loaded. Thus the intensity

of the band only has meaning relative to the intensity of other bands. To fit such

data, we must introduce scale factors Bk between theory and data [7] so that

Equation 6.1 becomes

P (D|θ, B) =
∑
i

exp

[
−(Bkyi(θ)− dk,i)2

2σ2
i

]
. (6.2)

The index k groups data points which share a common scale factor.

Conveniently, the optimal scale factors B∗k for any given θ are straightforward

to calculate analytically. The optimal scale factor B∗k is bk/ak where ak ≡
∑

i y
2
i /σ

2
i

and bk ≡
∑

i yidk,i/σ
2
i . Thus the scale factors do not need to be considered ex-

plicitly while optimizing P (D|θ) over parameters θ. However, when building an

ensemble it is important to consider all possible scale factors so that

P (θ|D) =

∫
P (θ|D,B)P (B)dB. (6.3)

Here we address the choice of the scale factor priors P (B).

94

Note that a revealing analogy can be drawn with thermodynamics if we define

P (θ|D) ≡ exp [−G(θ, T)/T] = exp [−(C(θ)− TS(θ, T))/T] . (6.4)

In analogy with the Boltzmann distribution, this defines the free energy G(θ, T),

the energy (cost) C(θ), and entropy S(θ, T). We typically take the cost to be

P (θ|D,B∗), the likelihood given the optimal scale factors. Then the entropy ac-

counts for the contribution of scale factor fluctuations, similar to how the entropy

in thermodynamics accounts for fluctuations in variables that have been integrated

out of consideration [150].

A straightforward and computationally convenient choice is to take the prior

on B to be uniform on the infinite interval [7]. Then

P (θ|D) =
∏
k

exp
(
b2k/2akT

)√2πT

ak
. (6.5)

This choice, however, is problematic for several reasons.

In practice the infinite uniform prior weights parameter sets more heavily if

they lead to small ak and thus large scale factors. An ensemble can thus evaporate

toward regions with large scale factors and correspondingly small theory curves y.

This is illustrated in Figure 6.5, where the dark blue curve shows the free energy

(∝ logP (θ|D)) over the course of an ensemble run for the PC12 model [8]. The

free energy diverges toward −∞ while the cost (∝ logP (D|θ, B∗), cyan curve)

increases dramatically, indicating that the fit of the model to the data is poor.

Additionally, the network equations become much more difficult to integrate when

the theory values y differ dramatically in scale. This is reflected by the long

stretches of constant free energy and cost seen in Figure 6.5, which indicate that

the acceptance ratio is very low, probably because many of the integrations are

failing.

Even if the infinite uniform prior did not introduce practical difficulties, the

fact that it allows negative scale factors is generally non-physical. Moreover, a

95

0 1 2

Ensemble step (x 10^6)

-100

0

100

200

300

free energy, unif sf

cost, unif sf

free energy, log sf

Figure 6.5: Plotted in dark and light blue are the free energy and cost (inverse
quality of fit) for an ensemble built for the PC12 model [8] using infinite uniform
priors on the scale factors. In green is the free energy in an ensemble built us-
ing weak Gaussian priors on the logarithms of the scale factors. This avoids the
pathologies of the infinite uniform priors.

96

uniform scale factor prior is inconsistent with how we treat model parameters that

we explicitly optimize. We typically work in the logarithms of the parameters

because we recognize that biochemical parameter values can have widely varying

scales. Biochemical concentrations and thus scale factors can also vary over a wide

range of scales, so it is appropriate to deal with logarithms of scale factors as well.

Unfortunately, a uniform prior on the logarithm of the scale factors yields a

divergent P (θ) because the fit does not become infinitely bad as the scale factors

tend to 0. Thus we need to apply a more restrictive prior.

We often work with priors on the explicit parameters that are Gaussian in their

logarithm. Taking a similar prior on the logarithm of Bk yields

P (θ) =

∫ ∞
−∞

P (θ| logBk)P (logBk) d logBk (6.6)

= exp
(
b2k/2akT

) ∫ ∞
−∞

exp
(
−ak/2T (exp(logBk)−B∗k)

2)P (logBk) d logBk,

(6.7)

where P (logBk) is Gaussian with a specified mean and standard deviation. The

above integral cannot be done analytically, but it is numerically well-behaved, and

can be computed quickly compared to the typical time for evaluating a model’s

dynamics.

The green curve in Figure 6.5 shows the free energy over an ensemble run using

a Gaussian prior on logB. It lacks the pathologies seen in the uniform prior case,

and as long as the prior is chosen quite loosely (large standard deviation), the

resulting predictions are expected to be broadly insensitive to it.

97

(a) (b) (c)(d) (e)

100

102

104

λ

Figure 6.6: Plotted are the eigenvalues of several variants of the Hessian matrix
calculated for the PC12 model. (a) JTJ at the best-fit parameters. (b) Ten JTJ
matrices from parameter sets distributed along an ensemble. (c) The average of the
JTJ matrices along the ensemble. (d) The inverse of the average of the inverses
of the JTJ matrices in along the ensemble. (e) JTJ derived from a Principal
Component Analysis of the ensemble. Note that at all points in the ensemble the
cost landscape is locally sloppy as evidenced by the eigenvalues. The cost basin
must be curved, however, as evidenced by how much less stiff the PCA eigenvalues
are.

6.3 Faster Monte-Carlo Convergence in Curved Land-

scapes

The cost landscapes of the models we study are not only sloppy; they are also

curved. This is indicated in Figure 6.6, which shows the eigenvalues of several

different Hessian-type matrices for Brown et al.’s PC12 model [8]. Column (a)

corresponds to JTJ at the best-fit set of parameters, and the eigenvalues are clas-

sically sloppy. The ten columns labeled (b) correspond to JTJ calculated using ten

different parameter sets drawn from an ensemble built for the model. All these

eigenvalue spectra are sloppy, demonstrating that the cost landscape is everywhere

locally sloppy, at least in the region of acceptable model fits.

Although the cost landscape is everywhere sloppy, the stiff and sloppy directions

differ between members of the ensemble. This is indicated by columns (c) and (d).

98

Column (c) shows the eigenvalues of
〈
JTJ

〉
ens

, the average of the JTJ matrices

calculated over the ensemble. If a parameter combination is stiff in any one JTJ

included in the average, it will tend to be somewhat stiff in the final average.

Column (d) shows the eigenvalue spectrum of
〈
JTJ−1

〉−1

ens
, the inverse of the average

of the inverses of the JTJ matrices calculated over the ensemble. In this case, a

parameter combination that is sloppy in any one of the averaged JTJ will tend to

be somewhat sloppy in the final average. Note that spectrum (c) has more large

eigenvalues than any of the JTJ in (a) or (b) while spectrum (d) has more small

eigenvalues. This indicates that along the ensemble the stiff and sloppy directions

are changing substantially; many more directions are stiff in (c) and many fewer

in (d).

The curvature of the cost basin causes computational difficulties when building

an ensemble. In general, we need to use importance sampling, choosing steps in

our random walk guided by some sampling matrix that avoids large steps in stiff

directions, because such steps would yield a very low acceptance probability. But

if a direction that is sloppy at the best fit is stiff elsewhere, the sampling matrix

calculated at the best energy will not help us avoid large steps in that direction.

Even more troubling, if the landscape curves so that a stiff direction from the

best-fit becomes a sloppy direction, the random walk will explore that direction

very slowly.

The difficulties of a curved free energy landscape can be well-illustrated in a

two-dimensional example. Figure 6.7 shows results of a 106 step ensemble where

99

-1 0 1 2 3

log x

0

2

4

6

8

10
lo

g
 y

(a) Ensemble

-1 0 1 2 3

log x

(b) log x projection

0 2 4 6 8 10

log y

(c) log y projection

0 250 500

lag (1e3 steps)

-1

0

1
a
u
to

c
o
rr

.

(d) Autocorrelations

Figure 6.7: Shown are results from a 106 step importance-sampled Markov-Chain
Monte Carlo run with a free energy landscape defined by the Rosenbrock function
(Equation 6.8) with R = 30. (a) The contours trace the free energy up to G = 4,
and the black dots are every five-thousandth member of the ensemble. The red
circle shows where the sampling matrix was calculated. (b) and (c) Histograms
of the ensemble projections along log x and log y are compared with the expected
distributions (cyan curves). (d) The autocorrelation of the free energy (blue),
log x (green), log y (red) are shown. The correlation times for log x and log y are
a substantial fraction of the total length of the ensemble.

100

the free energy was given by the Rosenbrock function with R = 30.1 Even after 106

steps this ensemble is nowhere near converged. The fact that the autocorrelation

times for log x and log y are each about 1/4 the total length of the ensemble

(Figure 6.7d) suggests that this ensemble represents at most four independent

draws from the desired distribution.

One way to cope with a curved basin is to recalculate the sampling matrix

every step. When doing this, the step acceptance probability must be modified to

satisfy detailed balance [84]. SloppyCell generate moves from a multidimensional

Gaussian matrix whose inverse correlation matrix is JTJ . When considering the

move from parameters θ1 to parameters θ2, the acceptance probability must now

be

α(1→ 2) =
exp(−G(θ2)/T)

exp(−G(θ1)/T)
·
|JTJ2| exp

[
−(θ2 − θ1)

TJTJ2(θ2 − θ1)
]

|JTJ1| exp
[
−(θ2 − θ1)

TJTJ1(θ2 − θ1)
] , (6.9)

where JTJ1 and JTJ2 are JTJ matrices calculated at the current and proposed

parameter sets, respectively, G(θ1) is the free energy at θ1, and |JTJ1| is the de-

terminant of JTJ1. The second term above reflects the different probabilities for

attempting a step from x to y and from y to x.

Figure 6.8 shows the results of a 104 step ensemble in the Rosenbrock function

using the algorithm where JTJ is recalculated at each step. It has clearly converged

much better than the previous ensemble, in approximately 1/25th the computer

time.

For real world problems, recalculating JTJ each step may be very computation-

1The Rosenbrock function is a classic test function for optimization algorithms [151] and, in
terms of logarithmic variables, has the form:

G(log x, log y) = (1− log x)2 +R
(
log y − (log x)2

)2
. (6.8)

As seen in figure 6.7, the basin for this function is both narrow (controlled by R) and curved.
The equilibrium distribution for log x is ρ(log x) ∝ exp

[
−(log x− 1)2

]
and the distribution for

log y can be calculated numerically.

101

-1 0 1 2 3

log x

0

2

4

6

8

10

lo
g
 y

(a) Ensemble

-1 0 1 2 3

log x

(b) log x projection

0 2 4 6 8 10

log y

(c) log y projection

0 250 500

lag (1e3 steps)

-1

0

1
a
u
to

c
o
rr

.

(d) Autocorrelations

Figure 6.8: Shown are results from a 104 step Markov-Chain Monte Carlo run over
the same free energy landscape as in Figure 6.7, but recalculating the sampling
matrix each step. (a) The black dots are every fiftieth member of the ensemble. The
red circle shows where the ensemble began. (b) and (c) Histograms of the ensemble
projections along log x and log y are compared with the expected distributions
(cyan curves). (d) The autocorrelation of the free energy (blue), log x (green),
log y (red) are shown. The correlation times for log x and log y are now a small
fraction of the total length of the ensemble.

102

0 1000 2000 3000 4000 5000
step

0.0

-0.5

-1.0

1
p

∆

(a) Early steps

0 24 48

CPU hours

0

-2

-4

1
p

(b) Long-term coverage

Figure 6.9: Shown are the projections of ensembles run using three algorithms onto
the stiffest eigenvector the the best-fit JTJ . In blue is an ensemble built using the
best-fit JTJ as the sampling matrix that guides the steps. The green ensemble is
built recalculating JTJ every step. The red ensemble uses the PCA hessian of the
blue ensemble as its sampling matrix. Note how the green ensemble makes much
more progress per step, but the red ensemble is most efficient because each green
ensemble step takes so much more CPU time.

103

ally costly. (In Brown et al.’s model [8] calculating JTJ takes 150 times as long

as calculating a cost.) An alternative that performs quite well is to use a ‘looser’

sampling matrix than that suggested by JTJ at the best fit. The question then be-

comes how to choose that sampling matrix. A practical, if not elegant, method is

to build a preliminary ensemble using the best-fit JTJ , then use either the Principal

Component Analysis hessian of that ensemble or
〈
(JTJ)−1

〉−1

ens
(columns (d) and

(e) in Figure 6.6). Using such a looser Hessian performs quite well, as shown by

the algorithm comparison in Figure 6.9. Along the y-axis is plotted the projection

of each member of the ensemble along the stiffest eigenvector of the best-fit JTJ .

The blue lines in the figure correspond to an ensemble run using the best-fit JTJ ,

while the green lines correspond to recalculating JTJ each step. Notice how the

much farther the JTJ ensemble goes each step in Figure 6.9(a). The red lines in the

figure correspond to an ensemble built using the PCA hessian of the blue ensemble

as the sampling matrix. The acceptance ratio is much lower, as evidenced by the

long stretches in Figure 6.9(a) in which the ensemble does not move. In the long

run, however, the red ensemble converges much more quickly than either the blue

or the green, as seen in figure 6.9(b).

The cost basins for our sloppy models are quite complex. They are locally

sloppy at each point, but they must also be curved. This poses a challenge for

Monte-Carlo algorithms, and this challenge can be overcome by recalculating JTJ

every step, or by the expediency of using a ‘looser’ sampling matrix.

6.4 Biochemical Evolution Beyond the First Fixation

Although numerical simulation show that a sloppy fitness landscape leaves little

signature on the first step in an adaptive walk (Section 5.4.4), sloppiness may

play a larger role in further steps. Here we turn to numerical simulations of longer

104

adaptive walks to search for signatures of sloppiness. Naively simulating the model

for many fixed mutations is quite computationally intensive, because adaptive

mutations are rare, and they rarely fix. A Continuous-Time Monte-Carlo algorithm

(Section 6.4.1), however, dramatically lowers the computational cost.

Figure 6.10 shows trajectories of adaptive walks in both spherical and non-

spherical fitness landscapes. Populations in sloppy fitness landscapes seem to

generically get ‘trapped’ at a fitness much lower than the optimum. This phe-

nomenon is illustrated for a two-dimensional landscape in Figure 6.11. As seen

in the Figure, the populations tend to become trapped along the ridge of high

fitness, since a large change in either parameter will cause a decrease in fitness,

and (in an infinite population) deleterious mutations cannot be fixed. Intriguingly,

this trapping phenomenon may be much weaker in a smaller population, where

deleterious mutations can fixate, perhaps allowing the smaller population to adapt

faster. We must be cautious, however; mutations of small fitness effect take longer

to fixate, and the approximation that each mutant goes extinct or fixates before the

next arises may become invalid, in which case must consider interference between

segregating mutations [152].

6.4.1 Continuous Time Monte Carlo Simulation

Continuous Time Monte Carlo allows us to simulate the model while tracking only

the very rare fixed mutations, thus saving us from explicitly considering the many

‘failed’ mutations.

The initial steps are very similar to the Gillespie algorithm [96]. For parameter

i in the chemotype, we calculate the total probability Pfi that the next fixed

105

0 5 10 15 20

Fixed mutations

0.4

0.6

0.8

1.0

F
it

n
e
s
s

(a) Fixed landscape and initial phenotype

0 5 10 15 20

Fixed mutations

0.4

0.6

0.8

1.0

F
it

n
e
s
s

(b) Varying landscape and initial phenotype

Figure 6.10: In both panels the gray lines correspond to thirty adaptive walks in a
spherical fitness landscape with N = 20, while the black lines are thirty walks in
an N = 20 sloppy landscape with log eigenvalues equally spaced over ten decades.
(a) Here the landscape and initial chemotype were fixed for each set of walks.
Notice that the population in the sloppy landscape seems trapped at a fitness of
approximately 0.6. (b) Here each walk corresponds to a different fitness landscape
and initial chemotype. As in (a), the walks in the sloppy landscape all get trapped
at relatively low fitness, although there is large variance in the trapping fitness.
Note that in both panels the x-axis is fixed mutations, not time. Particularly in
the sloppy case, the later fixed mutations take a very long time to arise.

106

1 2 3 4 5 6 7 8
-2

-1

0

1

2

3

4

5

Figure 6.11: The contours show an N = 2 sloppy fitness landscape with the two
eigenvalues differing by a factor of 100. Several evolutionary trajectories are shown
starting from a single initial chemotype. Note how all of the trajectories eventually
become ‘trapped’ along the ridge of high fitness, where a large mutation in either
parameter will lead to a decrease in fitness.

107

mutation involves that parameter:

Pfi =

∫ ∞
−∞

Pri(r)Pfix(W (r))dr. (6.10)

Here r denotes the size of the mutation and Pri(r) is the probability density of

mutation effects on parameter i. The probability of fixation for a mutant with

fitness W (r) is denoted Pfix(W (r)) and is a simple formula in the limit of a single

mutation segregating at a time [109, 133]. We then choose parameter i to mutate

among the N possible, with probability proportional to Pfi. Both mutation and

fixation are Poisson processes, so the time (in mutations attempted) between each

fixation is exponentially distributed with mean 1/
∑

i Pfi; time is incremented

based on this total rate.

Once we’ve chosen which parameter to mutate, we need to determine the mag-

nitude of that mutation. To do so, we choose a uniform random number F ∗ in the

range (0, Pfi), and solve

F ∗ =

∫ r∗

−∞
Pri(r)Pfix(W (r))dr, (6.11)

where r∗ is the final size of the fixed mutation. To solve the above integral equation,

we convert it to a differential equation:

dr

dF
=

1

Pri(r)Pfix(W (r))
(6.12)

and integrate it from F = 0 to F = F ∗.

For finite populations and unbounded Pri, there is a numerical difficulty that

F = 0 corresponds to r = −∞. To surmount this, the integration can be started

at finite F , using Equation 6.11 to set the initial condition for r.

APPENDIX A

SLOPPYCELL USER DOCUMENTATION

Welcome to SloppyCell!

SloppyCell is a software environment for building and analyzing computational

models of many-parameter complex systems. To date, our focus has been on

biochemical network models based on the Systems Biology Markup Language

(SBML) [55]. Many of the techniques and much of the code is, however, applicable

to other types of models.

SloppyCell’s goal is to provide a flexible environment that facilitates interactive

exploratory model development while also remaining efficient for computation-

intensive analyses. This goal is facilitated by our use of the computing lan-

guage Python (http://www.python.org) for both writing and driving Sloppy-

Cell. SloppyCell scripts are Python programs, but please don’t let that frighten

you. Python has proved easy to learn and there are numerous tutorials (e.g.

http://wiki.python.org/moin/BeginnersGuide) and useful books [153]. An

excellent introduction to Python in the context of scientific computing is the

May/June issue of Computing in Science and Engineering.

SloppyCell’s development has been driven by the research interests of the

Sethna group. For examples of the types of analysis we do, see our pa-

pers [7, 8, 10, 11, 12, 82] and Chapters 2 and 3.

This document opens begins with a high-level overview of SloppyCell’s archi-

tecture, followed by an example application (Section A.2). We then delve into

additional features and installation (Section A.3), and we close with some trou-

bleshooting.

108

109

A.1 Overview

A.1.1 Working Interactively

Python is an interpreted language, which means that there is no compile step

between writing and running the code. Thus Python can be used interactively,

and this is one of its greatest strengths, particularly when used with the enhanced

IPython shell [92].

A typical pattern for working with SloppyCell is to have one window running

the IPython shell and another open to your favorite text editor. Commands can

be directly typed and run in the shell, and when the results are satisfactory they

can be recorded into a .py script using the text editor. This pattern is particularly

powerful when used with IPython’s ‘magic’ %run and %run -i commands, which

allow external scripts to be run as if all their commands were typed into the shell.

The interactive nature of Python is also important for getting help. In-

formation and useful documentation can be accessed about any object using

help(<object>), and all the attributes (data and methods) of an object can be

listed using dir(<object>). IPython makes such exploration even more power-

ful, as it offers <tab> completion of object attributes. For example, to see all the

method of the object net that begin with calc, one would type net.calc<tab>.

Rather than expounding upon the details of every function and method in

SloppyCell, this document will focus on a higher-level description. Our aim here is

to show you what SloppyCell can do and where to look for that functionality. Once

you have that, the interactive help should guide you on how exactly the functions

work.

110

A.1.2 Accessing SloppyCell

To access the tools provided by SloppyCell, most user scripts should have

from SloppyCell.ReactionNetworks import *

near the top of the script. This imports most of SloppyCell’s modules into the

top-level namespace where they can be easily accessed.

A.1.3 Networks

At the heart of most SloppyCell projects is a collection of Network objects. A

Network describes a set of chemical species, their interactions, and a particular set

of experimental conditions. SloppyCell’s Networks are based on the SBML Level

2, Version 3 specification (http://sbml.org/documents/). A concise and mostly

complete summary of this specification can be found in the paper by Hucka et

al. [55] (available from http://sbml.org/documents/).

Briefly, an SBML network consists of species (that exist inside compartments)

whose dynamics are controlled by reactions and rules (assignment, rate, algebraic,

initial assignment). A network also describes parameters which typically quantify

the interactions, and events which cause discontinuous changes in model compo-

nents given specified triggers. A network can also specify mathematical function

definitions for use in other expressions.

Networks are constructed simply as

net = Network(’example ’).

All the SBML components are added to a network using methods that begin with

add, e.g.

net.add_parameter(’kf’, 0, is_optimizable=True).

This example shows one additional attribute SloppyCell assigns to parameters;

if they are constant, they can additionally be declared optimizable. When

111

Networks are composed into a Model, the optimizable parameters are exposed

at the Model level so they can be tweaked by optimization algorithms or when

building an ensemble.

Often one wishes to study several slight modifications to a single Network. To

that end, Networks have a copy method.

SloppyCell supports most of the current SBML specification, but there are

some exceptions. First, SloppyCell does no processing of units. It is assumed that

all numerical quantities in the Network have compatible units. Second, we don’t

support delay elements in math expressions. (Delays in event execution times are

supported.) Finally, because we often take analytic derivatives of the equations,

using discontinuous functions (e.g. abs() or ceil()) in the math for reactions

or rules will cause integration problems. Discontinuities should be coded using

events, and it is supported to use piecewise in the event assignments.

A.1.4 Dynamics

The Dynamics module contains methods to integrate a Network’s equations. The

most basic functionality is Dynamics.integrate which simply integrates a model’s

differential equations forward in time and returns a Trajectory object containing

the result.

Also quite useful is Dynamics.integrate_sensitivity, which returns a

Trajectory object containing the sensitivity trajectories. These trajectories are

∂y(t, θ)/∂θi, the derivatives of a given variable at a given time with respect to a

given optimizable variable (indexed by e.g. (y, theta_i)). These trajectories are

useful for optimizing parameters or experimental designs.

Finally, SloppyCell implements basic fixed-point finding in

Dynamics.dyn_var_fixed_point.

112

A.1.5 Models

A Model object unites one or more Networks with the data contained in one or

more Experiments:

m = Model([<list of expts >], [<list of nets >])

A Model’s primary task is to calculate the cost C for a set of parameters θ, defined

as:

C (θ) ≡ 1

2

∑
i

(
Bi yi (θ)− di

σi

)2

+ priors. (A.1)

Here yi(θ) is the model prediction, given parameters θ, corresponding to data point

di, and σi is the uncertainty of that data point. The Bi are scale factors which

account for data that are only relative, not absolute, measurements (e.g. Western

blots). See Section A.1.6.1 for more on scale factors. The ‘priors’ term in the costs

represents additional components of the cost, often designed to steer parameters

in particular directions.

A.1.5.1 Priors

Often it is useful to add additional ‘prior’ terms to the cost. These may reflect

previous direct measurements of a particular parameter, or restrict them to physi-

cally reasonable values. Prior terms are added using m.add_residual(res) where

res is a Residual object. By far the most common form of additional residual

we use is Residuals.PriorInLog. Such a residual adds a term to the cost of the

form:

1

2

(
log θi − log θ∗i

σlog θi

)2

. (A.2)

This acts to keep the logarithm of parameter θi from deviating much more than

σlog θi
from log θ∗i .

113

A.1.6 Experiments

An Experiment object contains describes a set of data and how it should be com-

pared with a set of Networkss.

A.1.6.1 Scale Factors

Each Experiment defines a set of measurements in which all measurements of the

same quantity share a scale factor. Scale factors are important for many forms

of biological data which do not give absolute measurements. For example, the

intensity of a band in a Western blot is proportional to the concentration of that

protein in the sample, but converting it to an absolute value may be very difficult to

do reliably. The optimal conversion factor for comparison to a given set of Network

results is, however, easy to calculate analytically and need not be included as an

extra fitting parameter. For historical reasons, by default SloppyCell assumes that

all data involve scale factors that should be optimized. If you know the absolute

scale of your data, use expt.set_fixed_sf to specify fixed scale factors. Or, if you

know that two variables should share a scale factor which needs to be optimized,

use expt.set_shared_sf.

Because SloppyCell handles the scale factors implicitly, when building an en-

semble we must account for their fluctuations by using a free energy rather than

the previously mentioned cost. This free energy depends on prior assumptions

about how the scale factors are distributed, and these priors can be changed us-

ing expt.set_sf_priors. For more on possible effects and subtleties of choosing

these priors, see Section 6.2.

114

expt.set_data ({’net1’:{’X’: {2.0: (2.85, 0.29) ,

5.0: (4.9, 0.49),

},

’Y’: {2.0: (1.25 , 0.13) ,

5.0: (1.12, 0.13),

},

},

’net2’:{’X’: {2.0: (6.7, 0.3),

4.2: (9.8, 0.2),

},

}

)

Listing A.1: Shown is an example of SloppyCell’s data format. This data set
contains data on the species with ids ’X’ and ’Y’ taken under two conditions
corresponding to the Networks with ids ’net1’ and ’net2’. Importantly, the two
conditions by default share a floating scale factor for ’X’.

A.1.6.2 Data Format

SloppyCell’s data format is simply a set of nested Python dictionaries or

KeyedLists. This can be unwieldy to write out by hand, but it provides flex-

ibility for future addition of more complex forms of data, and it can easily be

generated from other tables by simple scripts. The first level of nesting in the ex-

perimental data is keyed by the id of the Network whose results the data should be

compared with, and the next level is keyed by the variable the data refers to. The

final level is a dictionary or KeyedList of data-points, mapping times to tuples of

(<value>, <one-sigma uncertainty>).

The data format is best illustrated by example; see Listing A.1. This

Experiment contains data on two variables ’X’ and ’Y’ in two conditions, corre-

sponding to the Networks ’net1’ and ’net2’. Note that, because they are in the

same experiment, the two data sets on ’X’ will be fit using the same scale factor.

This might be appropriate, for example, if the data came from Western blots using

very similar numbers of cells and the same antibody.

115

A.1.7 Optimization

After the Model has been created, it is very common to want to optimize the

parameters θ to minimize the cost and thus best fit the data. SloppyCell in-

cludes several optimization routines in the Optimization module. These include

wrappers around SciPy’s Nelder-Mead and conjugate gradient routines and Slop-

pyCell’s own implementation of Levenberg-Marquardt. The conjugate gradient

and Levenberg-Marquardt routines use analytical derivatives calculated via sensi-

tivity integration, and all the routines have versions for both logarithmic and bare

parameters.

All the currently implemented methods do only local optimization, but min-

imizing the cost using any Python-based minimization algorithm is straight-

forward. To further explore parameter space, consider building a parameter en-

semble (Section A.1.9).

A.1.8 Cost and Residual Derivatives

In both optimization and ensemble building, various derivatives of the cost function

are very useful. These are all available using methods of the Model object, and in

each case there are versions for logarithmic and bare parameters. Using sensitivity

integration, we can calculate all first derivatives semi-analytically, without reliance

on finite-difference derivatives and the resulting loss of precision.

Most basic derivative is the gradient of the cost which is useful for many de-

terministic optimization algorithms.

A slightly more complicated object is the Jacobian J , which is the derivative

matrix of residuals versus parameters: Ji,j ≡ dri/dθj. (The cost we consider

(Equation A.1) is a sum of squared residuals: C(θ) = 1
2

∑
i ri(θ)

2). The Jacobian

is useful for understanding which parameters impact which features of the fit and

116

for clustering parameters into redundant sets [58].

Finally, the Hessian H is the second derivative matrix of the cost: Hi,j ≡

dC(θ)/dθidθj. If calculated at a minimum of the cost, the Hessian describes the

local shape of the cost basin. This makes it useful for importance sampling when

building an ensemble (Section A.1.9). Note, however, that Hessian calculation

relies on finite-difference derivatives, which can be difficult to calculate reliably.

For our least-squares cost functions, a very useful approximation to the Hessian is

JTJ , which can be calculated as:

j = m.Jacobian_log_params_sens(log(params))

jtj = dot(transpose(j), j)

The approximation becomes exact when the model fits the data perfectly.

A.1.9 Ensembles

To explore the full nonlinear space of parameters that are statistically consistent

with the model and the data, we build a Bayesian ensemble where the relative

likelihood of any parameter set θ is:

P (θ) ∝ exp (−G(θ, T)/T) . (A.3)

Here G(θ, T) is the free energy, which is the cost plus a possible contribution due to

fluctuations in scale factors. The temperature T controls how much we’re willing

to let the free energy deviate from the optimum. For strict statistical correctness,

it should be one, but there are situations in which it is useful to adjust user larger

values [10].

The ensemble is built using Ensembles.ensemble_log_params, using an

importance-sampled Markov-Chain Monte-Carlo algorithm [84]. This algorithm

builds the ensemble by taking a random walk through parameter space which,

eventually, will converge to the correct probability distribution.

117

0 50 100 150 200

Attempted steps

-0.5

0.0

0.5

1.0

A
u
to

c
o
rr

e
la

ti
o
n

Figure A.1: Shown are autocorrelation functions functions for the cost (blue) and
the logarithm of a particular parameter (green) in an ensemble built for the small
JAK-STAT example model (Section A.2). The correlation time for both is about 25
steps, suggesting that parameter sets 25 steps apart are statistically independent.

A.1.9.1 Assessing and Speeding Convergence

‘Eventually’ is a key word in describing ensemble convergence. Because we are

taking a walk through parameter space, subsequent members of the ensemble are

highly correlated. Generating a thoroughly converged ensemble that independently

samples the distribution of parameters many times can be quite computationally

intensive for large models.

There are several ways to assess convergence. Most thorough (but computation-

ally expensive) is to start several ensembles from very different initial parameters

and see that they give identical answers for your predictions.

Given a single ensemble, one can check for convergence using the auto-

correlation function of the cost and logarithms of the parameter values using

Ensembles.autocorrelation. Figure A.1 shows example autocorrelation func-

tions for a small model. The number of independent samples in an ensemble is

approximately the length of the ensemble divided by the longest correlation time

of any parameter in the ensemble. Scaling arguments suggest that, for the default

ensemble parameters, the number of steps in one autocorrelation time is at least

118

the square of the number of parameters (Section 3.5).

If the correlation time for your ensemble is much longer than the square of

the number of parameters, your cost basin is probably substantially curved. For

advice on how to deal with this, see Section 6.3.

A.1.9.2 Predicting from an Ensemble

Once your ensemble has converged, you’re ready to make predictions. As a first

step, you’ll probably want to prune your ensemble. As mentioned previously,

consecutive members of the ensemble are not independent, and it is independent

samples that matter for predictions. Once you’ve estimated the longest correlation

time (corr_steps), the ensemble can be pruned simply by taking one member per

correlation time: ens_pruned = ens[::corr_steps].

To calculate uncertainties for any quantity over the ensemble, simply calcu-

late its value for each member of your pruned ensemble and note the spread in

values. SloppyCell includes a few functions to make this easier in some common

cases. Ensembles.ensemble_trajs will integrate a Network for a fixed set of

times over all members of an ensemble. Ensembles.traj_ensemble_quantiles

will calculate quantiles over those integrations, to show, for example, what

the 95% confidence bounds are on the trajectory prediction. Similarly,

Ensembles.traj_ensemble_stats will return trajectories containing the mean

and standard deviation of each integration quantity over an ensemble.

A.1.10 Plotting

SloppyCell’s plotting functionality is built upon matplotlib [93], also known as

pylab; a nice tutorial is available at http://matplotlib.sourceforge.net/

tutorial.html. SloppyCell’s Plotting module adds several routines that are

119

convenient for analyzing fits, ensembles, and Hessians. For example, Figure A.3

shows a plot of the best fit for our example model (Section A.2) with no additional

tweaking.

A.1.11 KeyedLists

Numerical algorithms are generally designed to work with arrays of values, while

users don’t want to remember which parameter was number 97. To solve both

issues, SloppyCell uses a custom data type called a KeyedList which has properties

of both Python lists and dictionaries. Like a normal list, values can be accesses

using [<index>] notation. Additionally, each entry is associated with a key, so

that values can be added and accessed using get and set methods like a Python

dictionary.

A.1.12 Input and Output

SloppyCell’s IO module includes several functions to facilitate import and export

of useful representations of Networks.

IO.from_SBML_file and IO.to_SBML_file allow importing and exporting of

SBML files. (Note that SloppyCell will not preserve annotations of an SBML

network that has been imported.) IO.net_DOT_file generates dot files which

can be fed to Graphviz (http://www.graphviz.org/) to generate basic network

diagrams as seen in Figure A.2. Finally, IO.eqns_TeX_file will export a tex file

that can be used with LATEXto generate nicely-formatted equations. These are

useful both for inclusion in publications and for debugging models.

120

R

RmT1_formation

alpha^{GDP}

aGDP_unbinding

aGDP__bg_binding

betagamma

aGTP__bg_binding

GTP

a__GTP_binding

ExchangeOnRmT1

alpha^{(,)}

a_degredation

GDP

alpha^{GTP}

alpha^{GDP}betagamma

aGDP__bg_unbinding

alpha^{GTP}betagamma

aGTP__bg_unbinding

RT

RmT1_dissolution

fluorescent totalAlpha

Figure A.2: Shown is a SloppyCell-generated network diagram for the G protein
model discussed in Chapter 3. Black ovals denote species and red boxes denote
reactions between them.

121

A.1.13 Miscellaneous Utilities

To conveniently save results for future analysis, you can use Utility.save and

Utility.load. Note that these rely on Python’s binary ‘pickle’ format, so there is

a slight danger that upgrades to Python or SloppyCell will render them unreadable.

For more robust but less space-efficient saving, dump results to text files using, for

example, scipy.io.write_array.

A.1.14 Parallelization

SloppyCell implements a relatively simple parallelization paradigm [88] over MPI,

using the PyPar (http://sourceforge.net/projects/pypar/) interface. Two

major tasks have been parallelized. (1) If evaluating the cost of a Model involves

integrating several Networks, those integrations can be spread across several pro-

cessors. (2) In Dynamics.integrate_sensitivity, the integrations for different

parameters can be distributed across processors. Parallel execution is enabled by

a simple import:

import SloppyCell.ReactionNetworks.RunInParallel as Par.

Anything in the script beyond this import will be run only by the

master, who can send commands to the slaves. The slaves can

be directly controlled using using methods in Par. For example,

Par.statement_to_all_workers("print ’I am processor’, my_rank") will

cause each processor to print a message giving its rank.

A.2 JAK-STAT Example

Here we consider an example application using the JAK-STAT model of Swameye

et al. [85], which was also used as an example by the SBML Parameter Estimation

122

Toolkit (SBML-PET) [81].

Using the script shown in Listing A.2, we’ll fit the model, build an ensemble,

and then estimate some prediction uncertainties, reproducing most of Figure 4.1.

(This script is also found in the Examples/JAK-STAT directory of the SloppyCell

source distribution.)

Lines 1 through 3 import code from the Python packages we’ll use this session:

matplotlib, SciPy, and SloppyCell.

On line 5 we load the model network from the SBML file. (Note that this file has

been modified from the one included with SBML-PET to fix some bugs in it and

to define the species ’data1’ and ’data2’ which correspond to the measurements

we’ll fit.) Given the space constraints for listings here, the Experiment object is

defined in another file, which we import on line 8. We use that Experiment, along

with our previously created Network, to create the Model object on the following

line.

Our initial parameters are defined as a KeyedList starting on line 11. We could

have specified them as a simple list, without the names, but we find things are

much clearer when the names are visible as well.

A couple of priors need to be defined to keep model parameters from drifting

too far. The prior on ’r3’ (line 14) constrains it (within 95% probability) to lie

between 10−4 and 104, while the prior on ’tao’ constrains it to lie between 1

and 16.

The initial cost is about 560, which is very high given that we only have 32

data points. Thus we run several iterations of Levenberg-Marquardt on line 20.

(We limit the number of iterations here merely for expediency. This number gets

us very close to the actual minimum.) The final cost should be about 18.2. For a

perfectly fitting model, we expect a cost of 1/2 the number of data points, so this

123

from pylab import ∗ #

from s c ipy import ∗
from SloppyCel l . ReactionNetworks import ∗ #

5 net = IO . from SBML fi le (’JAK−STAT SC. xml ’ , ’ net1 ’) #

net . s e t v a r i c (’ v1 ’ , ’ v1 0 ’) # Won’ t be needed once i n i t i a l ass ignments work . #

import JAK expt #

m = Model ([JAK expt . expt] , [net])

10

params = KeyedList ([(’ r1 ’ , 0 . 5) , (’ r3 ’ , 2) , (’ tao ’ , 6 . 0) , #

(’ r 4 0 ’ , 1 . 3 5) , (’ v1 0 ’ , 1 . 1 9)])

r e s = Res idua l s . Pr iorInLog (’ r 3 p r i o r ’ , ’ r3 ’ , 0 , s q r t (l og (1 e4))) #

15 m. AddResidual (r e s)

r e s = Res idua l s . Pr iorInLog (’ t a o p r i o r ’ , ’ tao ’ , l og (4) , s q r t (l og (4)))

m. AddResidual (r e s) #

print ’ I n i t i a l c o s t : ’ , m. co s t (params) #

20 params = Optimizat ion . lm log params (m, params , maxiter=20, d i sp=False) #

print ’ Optimized co s t : ’ , m. co s t (params)

print ’ Optimized parameters : ’ , params

Plot our opt imal f i t .

25 f i g u r e ()

P l o t t i ng . p l o t mod e l r e s u l t s (m) #

j = m. j a cob i an l og pa rams s en s (l og (params)) #

j t j = dot (t ranspose (j) , j) #

30

print ’ Beginning ensemble c a l c u l a t i o n . ’

ens , gs , r = Ensembles . ensemble log params (m, asar ray (params) , j t j , #

s t ep s =7500)

print ’ F in i shed ensemble c a l c u l a t i o n . ’

35

pruned ens = asar ray (ens [: : 2 5]) #

f i g u r e ()

h i s t (l og (pruned ens [: , 1]) , normed=True) #

40

t imes = l i n s p a c e (0 , 65 , 100)

t r a j s e t = Ensembles . en s emb l e t r a j s (net , times , pruned ens) #

lower , upper = Ensembles . t r a j e n s emb l e quan t i l e s (t r a j s e t , (0 . 0 25 , 0 . 9 75))

45 f i g u r e ()

p l o t (times , lower . g e t v a r t r a j (’ f r a c v3 ’) , ’ g ’)

p l o t (times , upper . g e t v a r t r a j (’ f r a c v3 ’) , ’ g ’)

p l o t (times , lower . g e t v a r t r a j (’ f r a c v4 ’) , ’ b ’)

p l o t (times , upper . g e t v a r t r a j (’ f r a c v4 ’) , ’ b ’)

50

show ()

Listing A.2: This script reproduces some of the results from Chapter 4. For
detailed comments see Section A.2.

124

0 10 20 30 40 50 60 70
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

data1 in net1 for expt1

data2 in net1 for expt1

Figure A.3: Plotted is the optimal fit for our example model, generated using
Plotting.plot_model_results(m) in Listing A.2.

cost indicates a good fit. On line 26 we generate Figure A.3, which compares our

best fit with the data.

Our group’s philosophy is, however, not to trust solely in the best fit, so we’d

like to build an ensemble of parameters. Before we can build an ensemble, we need

to build a matrix to guide the sampling. Here we use the JTJ approximation to the

Hessian, which we calculate on lines 28 and 29. (As an aside, the eigenvalues and

eigenvectors of this JTJ are ‘sloppy’, as with the models discussed in Chapter 2.)

On line 32 we build a parameter ensemble. We only build a 7500 step ensemble

because the model is quite small and well-constrained; with 5 parameters the cor-

relation time should be only about 25 steps. Also, we cast the params KeyedList

to an array in the call; this makes our returned ens be composed of arrays rather

than KeyedLists, which is more memory efficient. Calculating a 7500 member en-

semble for this model takes approximately 15 minutes on a modern PC. On line 36

we prune the ensemble; using slicing notation to take every 25th element (25 being

the correlation time). We also convert to an array, so that we can use the more

powerful slice syntax of arrays.

125

-1 0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure A.4: Shown is a histogram of log ’r3’ for the JAK-STAT ensemble. Note
that the value of ’r3’ is bounded from below at about 100, but the upper end is
only bounded by the prior.

What does the ensemble actually look like? On line 39, we use matplotlib’s

hist function to build a histogram of the logarithm of ’r3’ over the ensemble.

The result is shown in figure A.4. Note that the upper bound on ’r3’ is set by

the prior we added, while the lower bound is constrained by fitting the data.

Once we have our ensemble, we can make some predictions. On line 42 we

calculate trajectories for net over our pruned ensemble, and on the following line

we generate lower and upper trajectories that bound the central 95% of the values

for each variable. We then plot these bounds for the variables ’frac_v3’ and

’frac_v4’, which have been defined to be ’2*v3/v1’ and ’2*v4/v1’ respectively.

These are the fractions of total STAT that are involved in cytoplasmic and nuclear

dimers. Figure A.5 shows the resulting figure. Note the relatively large uncertainty

of the cytoplasmic dimers (green), which gets very close to zero.

Finally, we end our script with a call to show(). This pylab command ensures

that the plots pop up. It may be unnecessary if you’re running the script from

within an IPython session started with the -pylab command-line option.

126

0 10 20 30 40 50 60 70
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure A.5: In green is the 95% uncertainty bound on cytoplasmic dimers, while
blue is the 95% bound on nuclear dimers, given the model and data that have been
fit.

A.2.1 Other Examples

The JAK-STAT example presented here covers the most basic of SloppyCell’s

functionality. More extensive examples can be found in the Examples directory of

the source distribution.

A.3 Installation

A.3.1 Required Dependencies

Python version 2.4 or higher

Available from http://python.org/.

NumPy version 1.0.2 or higher

Available from http://scipy.org/

SciPy version 0.5.2 or higher

Available from http://scipy.org/

127

matplotlib version 0.90.0 or higher

Available from http://matplotlib.sourceforge.net/

A.3.2 Optional Dependencies

libSBML version 2.3.4

Available from http://www.sbml.org/software/libsbml/.

If libSBML is installed, SloppyCell will be able read and write files encoded

in the Systems Biology Markup Language [55]. See section A.1.12.

IPython Available from http://ipython.scipy.org/.

IPython is a dramatic improvement over the standard python shell and we

highly recommended it for interactive work.

C compiler For speed, SloppyCell by default generates C versions of the network

equations, and this requires a C compiler. If a C compiler is not installed,

SloppyCell will run with Python versions of the network equations, which

may be up to a factor of 30 slower. This capability has been tested only with

the compiler gcc, but it should work with others.

Pypar Available from http://sourceforge.net/projects/pypar/.

With Pypar installed, SloppyCell can run several common calculations in

parallel over MPI. See section A.1.14 (As of August 21, 2007 the alpha version

of Pypar 2.0 is required for compatibility with NumPy.)

A.3.3 On Linux

Installation on a Linux system should be straightforward, as Linux machines are

generally well-equipped with the proper compilers.

1. Install the required dependencies

128

2. Unpack the tarball containing the SloppyCell code.

(tar xzf SloppyCell-XXX.tar.gz)

3. Descend into the SloppyCell-XXX directory. (cd SloppyCell-XXX)

4. Run the installation script to build SloppyCell. (python setup.py build).

Depending on your system, this may fail due to difficulties with For-

tran compilation. The available Fortran compilers can be found with

python setup.py config_fc --help_fcompiler, and if you contact us we

can help with this step.

5. Run the installation script to install. (python setup.py install).

If you prefer to use SloppyCell from the current directory rather

than installing it elsewhere, use the --install-lib option,

python setup.py install --install-lib=.. . You will have to ad-

just your PYTHONPATH environment variable to include the directory the

SloppyCell directory is contained within. This installation option is

particularly convenient for staying up-to-date with the CVS repository.

A.3.4 OS X

Note that installation of libsbml with python bindings on Intel macs currently

requires some work-arounds. Hopefully these will be resolved soon by the libsbml

maintainers. If you’re having difficulties, please contact us.

A.3.4.1 Pre-built binary

Binary mpkgs are available from the Sourceforge download site. These have been

built against the framework builds of Python available from http://www.python.

org on OS X 10.4 (‘Tiger’).

129

A.3.4.2 From source code

Fortran compilers for OS X are available at http://hpc.sf.net. Once you’ve

installed such a compiler, follow the instructions for installing on Linux.

A.3.5 Windows

Installing gcc on Windows requires some effort, but is highly suggested as it will

dramatically speed up SloppyCell.

In our experience, the easiest way to get gcc is to install MinGW. To install it,

run MinGW-5.1.3.exe from http://sourceforge.net/projects/mingw/. Tell

the installer you want g77 and g++ in addition to the defaults.

Unfortunately, there is an issue with MinGW-5.1.3 that will cause compilation

problems. To fix them, you will need to find libgcc.a and run the following

command: ar dvs libgcc.a __main.o [154]. On our test system libgcc.a was

in c:\mingw\lib\gcc\mingw32\3.4.2.

A.3.5.1 Pre-built binary

Pre-built binaries are available for Python 2.4 and Python 2.5.

A.3.5.2 From source code

Given that you installed g77 along during the MinGW install, you should be able

to follow the Linux install instructions.

A.3.6 Testing the Installation

The SloppyCell source code includes a large package of test routines. To access

them: download and unpack SloppyCell-XXX.tar.gz or SloppyCell-XXX.zip,

130

descend into the SloppyCell-XXX directory (cd SloppyCell-XXX), and run

cd Testing; python test.py. This will run an extensive series of tests, both

with and without C-compilation.

A.4 Troubleshooting

A.4.1 Failing Integrations

Optimization or ensemble construction may explore regions of parameter

space for which the model equations become very difficult to integrate, lead-

ing to many daeint exceptions being raised. One possible solution is to

check the ‘typical’ values that are being assumed for each variable, acces-

sible via net.get_var_typical_vals(). These are used to help set the

absolute tolerances of the integrations, and if they are very different from

the values the variable actually attains, the inconsistency can cause prob-

lems. The solution is then to set them to more reasonable values using

net.set_var_typical_val(<variable id>, <value>).

APPENDIX B

SLOPPYCELL DEVELOPER DOCUMENTATION

The primary reference for developers is the code itself. This document serves

to outline design decisions or particularly tricky parts of the code.

B.1 Test Suite

First, the importance of a good test suite cannot be over-emphasized. When large

changes are made to the codebase (for example, incorporating C right-hand-side

functions) comprehensive tests make it straightforward to crush many bugs before

they effect end users.

SloppyCell’s test suite is based on the Python unittest framework. The idea

of a unit-test is that each test is small and self-contained, testing only a single

aspect of the code. This makes it easier to track failures to their source. The

Testing/test.py file agglomerates all the tests and runs them both with and

without C-compilation. Developers should run the test suite with verbose error

messages (python test.py -v). Make sure your CVS commits don’t break the

tests! Every CVS commit should be preceded by a run of the test suite.

The test suite is, unfortunately, incomplete. We didn’t begin automated testing

until much of the code was written, particularly at the Model level. Nevertheless,

all new features should have unit-tests to ensure correctness, and adding new tests

to old features is a very valuable contribution.

test_Misc.py is a home for tests of bugs that aren’t related to specific features.

Ideally, if a bug is squashed, a test should be added in this file if it doesn’t fit

elsewhere.

131

132

B.2 Logging

Rather than littering the code with print statements, the Python logging module

should be used, as it allows for much finer control of messaging.

Every module begins by defining a logger object which is used for

output from that module. Debugging messages should be logged by

logger.debug("My message"). These will become visible when that module’s

logger is set to DEBUG mode:

module.logger.setLevel(module.logging.DEBUG).

The output of all loggers can be dumped to a file by starting any SloppyCell script

as:

python my_scipy.py --debugSC=output_file.log.

Logging messages sent through logger.warn or logger.critical will be visible

to the user. They should be used sparingly.

If a set of logger.debug statements is useful for tracking down bugs in general,

it’s fine to leave them in the final commit, as long as they aren’t in an inner loop

where they will impact performance.

B.3 Integrator

For integration, SloppyCell uses the differential-algebraic equation solver

DASKR [94, 95]. DASKR is written in Fortran while the vast majority of Sloppy-

Cell is in Python. To interface with between the two languages, we use f2py, which

has recently become part of NumPy. The Python interface to DASKR is specified

in ddaskr.pyf.

One subtlety in the interface is the use of the variable ipar. When using

DASKR from Fortran, ipar would be used to pass extra integer arguments to

user-supplied functions. In our wrapper, we use ipar to store (1) the dimension of

133

the system we’re solving and (2) the dimension of rpar, the array used for passing

extra double precision arguments to user-supplied functions. These entries in ipar

must be set to the proper values by the user of the Python interface. This usage

of ipar is necessary because the interface code f2py builds between Python and

Fortran needs to have the dimension of all arrays specified.

B.4 ExprManip

Many important features in SloppyCell are enabled by the included ExprManip

package, which includes a slew of methods for manipulating strings represent-

ing Python math expressions. These manipulations including extracting all the

variables, making substitutions, and taking analytic derivatives. All of these op-

erations begin by building an Abstract Syntax Tree (AST) using the compiler

module. This tree (a list of lists of lists. . .) is then manipulated, often recursively.

One caveat with these methods is that they are relatively slow. Perhaps sur-

prisingly, the bottleneck is not in recursively descending the AST, but rather in

generating the AST itself. Given that the AST is generated by the standard

compiler module, it may be difficult to speed this up. Thus it is important to

minimize the number of redundant ASTs that are built. A first round of such

optimization cut the time to compile large networks by a factor of five to ten.

B.5 Dynamic Functions

To integrate or otherwise analyze a specific Network, SloppyCell dynamically gen-

erates a number of functions. When possible, C versions of these functions are

built and compiled, with Python versions used as a fall-back.

134

B.5.1 Compilation

The Python and C codes for all the dynamic functions are generated upon a

call to net.compile. To ensure that the dynamic functions are up-to-date with

the structure of the Network, compile is called before every integration. Gen-

erating the code for the dynamic functions is, however, quite slow, so compile

first checks whether the structure of the Network has changed (as defined by

net._get_structure()) before generating new code.

If compile decides it is necessary to regenerate the dynamic functions, all the

methods in Network._dynamic_structure_methods are called in order. These

methods should fill the KeyedList net._dynamic_funcs_python with the Python

code for all the desired dynamic functions. Similarly, these methods can fill

self._prototypes_c and self._dynamic_funcs_c with the function prototypes

and code for all the functions that should be compiled in C. Thus to add a new dy-

namic function to the Network class, one simply writes a method in Network that

will add entries to the appropriate _dyamic_funcs lists and adds that method to

Network._dynamic_structure_methods. If the added function has a C version,

the file f2py signatures.pyf will need to be updated with an appropriate inter-

face signature. (Note, because Networks are often modified solely by adding or

removing events, generating the dynamic functions relating to events is handled

separately but similarly.)

B.5.2 Execution

The final step in net.compile is to call net.exec_dynamic_functions, which will

execute all the dynamic function code into callable functions.

First net.exec_dynamic_functions checks a cache to see whether it really

needs to re-create all the functions. If it does, it first constructs Python functions

135

from all the code in net._dynamic_funcs_python. To construct the functions, we

exec the code for each function and attach the resulting object to the Network

self. Note that these are functions, not methods; they don’t take an implicit self

argument and can’t access attributes of the Network they are attached to. This is

primarily for consistency with the C versions, which cannot be sensibly made into

methods.

One additional wrinkle exists for large models. It turns out that

Python has an in-built limit to the complexity of a module it can

import (or, equivalently, string it can exec). The resulting error is

SystemError: com_backpatch: offset too large. Including logical control

statements (if, for, while) in our dynamic functions is thus dangerous [155].

This is why the current versions generates individual functions for ∂y/∂p rather

than using a large if statement as in previous versions.

To construct C functions net.exec_dynamic_functions writes .c and .pyf

files containing the code and interface for all the C dynamic functions. To help

ensure uniqueness the base filenames are assigned based on current system time

and the MPI rank of the current node. These files are compiled into an python

module by spawning an external f2py process. The resulting module is imported

and stored in the cache, and the dynamic functions in that module are assigned

to the appropriate attributes of the Network, overwriting the Python versions.

(Generating the module with a unique name circumvents the fact that C extension

modules cannot be reloaded. If a network is changed many times during program

execution, however, the import of all these modules may cause excessive memory

usage, as the garbage collector cannot free unused imported C modules.)

In general the C code for a dynamic function is a straightforward translation

of the Python code. One important difference is that functions that are passed

136

to DASKR should take in the full argument list expected by DASKR, even if the

f2py wrapper hides some of them. By passing a ._cpointer from the function to

DASKR we can then get direct C to Fortran communication, avoiding any Python-

induced overhead. The other subtlety is that ostensibly two-dimensional arrays are

passed in from Fortran functions as flat one-dimensional arrays, so indexing is more

complicated. (One can cast a one-dimensional array to a two-dimensional array in

C via double (*arr2d)[N] = (double(*)[N])(&arr1d);. In testing this seemed

to cause problems when interfacing with DASKR.)

B.6 Sensitivity Integration

Much of our research revolves around how changes in parameter values affect the

dynamics y(t; p) of a network, thus we are often interested in the sensitivities

dy(t;p)
dp

of those dynamics. Such sensitivities can be obtained via finite-difference

derivatives as

dy(t; p)

dp
=
y(t; p+ ∆p)− y(t; p)

∆p
. (B.1)

This procedure is, however, not very well-behaved numerically. We can do much

better using SloppyCell’s ability to take analytical derivatives of Python math

expressions.

In a normal integration, we’re evaluating:

y(t; p) =

∫ t

0

dy

dt′
dt′. (B.2)

If we take d/dp of this equation, we obtain

dy(t; p)/dp =

∫ t

0

[
∂

∂p

dy

dt′
+
∑
y′

∂

∂y′
dy

dt′
dy′

dp

]
dt′. (B.3)

Essential to this procedure is the fact that analytic Python math expressions for

∂
∂p

dy
dt′

and ∂
∂y′

dy
dt′

can be obtained using the analytic differentiation capabilities of

137

the ExprManip module (Section B.4). This set of equations must be integrated

simultaneously with normal right-hand-side (Equation B.2), so our system now

has twice as many equations. This does slow down the integration somewhat, but

our experience suggests that calculating sensitivities this way is not much slower

than calculating them via finite differences and is much better behaved.

In SloppyCell, the right-hand-side function for the sensitivity integration for

a Network object is net.sens_rhs. The optimizable variable to return deriva-

tives with respect to is specified by the last entry in the constants argument to

sens_rhs.

B.6.1 Handling Events

Perhaps the trickiest part of the sensitivity integration is dealing correctly with

the SBML event model. The SBML event model is relatively complex and perhaps

not intuitive. An event fires when the function defining its triggering function T

transitions from False to True. At that firing time tf new values are calculated for

all variables with event assignments. The effects of the event may delayed by some

time td which may be a function D of the variables at the firing time. The event

thus executes at a time te = tf + td, and the values calculated when the event fired

are assigned to the appropriate variables.

B.6.1.1 Time Sensitivities

First we calculate the derivative of the event firing time with respect to p. The

event fires when T(y(tf , p), p, tf) = 0, and taking the derivative yields:

d

dp
T(y(tf , p), p, tf) =

∂ T

∂p
+
∑
y

∂ T

∂y

dy

dp
+
∂ T

∂t

dtf
dp

+
∑
y

∂ T

∂y

dy

dt

dtf
dp

= 0. (B.4)

138

Solving for
dtf
dp

we obtain

dtf
dp

=

∂ T
∂p

+
∑

y
∂ T
∂y

dy
dp

∂ T
dt

+
∑

y
∂ T
∂y

dy
dt

. (B.5)

All quantities in this derivative are, of course, evaluated at the time the event fires.

One subtlety with
dtf
dp

is that events may be chained ; the execution of one event

may cause the firing of another event. In that case
dtf
dp

of the fired event is equal

to dte
dp

of the event whose execution caused the current event to fire.

Next we need the derivative of the delay time td which may be calculated by a

function D(y(tf), p, tf). This is straightforward to calculate as:

dtd
dp

=
∂D

∂p
+
∑
y

∂D

∂y

dy

dp
+
∂D

∂t

dtf
dp

+
∑
y

∂D

∂y

dy

dt

dtf
dp
, (B.6)

where again all variables are evaluated at the firing time.

Finally, the sensitivity of the event execution time is just

dte
dp

=
dtf
dp

+
dtd
dp
. (B.7)

B.6.1.2 Variable Sensitivities

Now let us calculate the sensitivities of variables after event execution. First

consider a variable y whose value is not changed by the event. Note that dy
dt

may be different before and after the event executes because of changes to other

variables. Then the perturbation to its sensitivity dy
dp

is given by

dy

dp

∣∣∣∣
>te

=
dy

dp

∣∣∣∣
<te

+
dy

dt

∣∣∣∣
<te

dte
dp

+
dy

dt

∣∣∣∣
>te

dte
dp
, (B.8)

where |<te denotes values prior to event execution and |>te denotes values after

event execution. The additional terms involving dy
dt

can be thought of as changes

in y that do or do not happen because of the shift execution time.

139

Now let y be a variable whose value is changed by the event, as determined by

the function A. The sensitivity of y after event execution is:

dy

dp

∣∣∣∣
>te

=
dA

dp

∣∣∣∣
tf

− dy

dt

∣∣∣∣
>te

dte
dp
, (B.9)

where |tf is a reminder of the fact that A is calculated at the firing time, so only

the variable values at that time can matter for that term. The sensitivity of the

assigned value is

dA

dp
=
∂ A

∂p
+
∑
y

∂ A

∂y

dy

dp
+
∂ A

∂t

dtf
dp

+
∑
y

∂ A

∂y

dy

dt

dtf
dp
, (B.10)

where all variables are evaluated at the time the event fires.

B.6.1.3 Implementation

To calculate all the sensitivities, we need dy
dt

∣∣
tf

, dy
dt

∣∣
<te

, dy
dt

∣∣
>te

, dy
dp

∣∣∣
tf

, and dy
dp

∣∣∣
<te

.

In particular, note that we need dy
dt

∣∣
>te

which is a quantity only available after the

event executes. To deal with this, each sensitivity integration begins with a normal

integration of the network. The resulting trajectory stores a list of event_info

objects under traj.events_occurred, and the relevant quantities are available

as attributes of these objects. For example, if e is an event_info object, then

e.yp_pre_exec holds dy
dt

∣∣
<te

.

During sensitivity integration a copy of normal trajectory’s events_occurred

list is made, and the event_info objects are updated with the necessary

sensitivity information (e.g. dy
dp

∣∣∣
tf

) as the network is integrated. All com-

putations related to events and sensitivities outlined above are performed in

Network_mod.executeEventAndUpdateSens. Chained events are handled by stor-

ing a reference to the event_info object prior to the current event in the chain.

140

B.6.2 Adjoint Method

The above sensitivity analysis requires solving 2Ne equations for each parameter,

where Ne is the number of equations in a normal integration of the model. For

calculating a Jacobian this many integrations is probably be unavoidable. In opti-

mization, however, we’re often interested in the gradient of a single function of the

model variables, the cost. So-called ‘adjoint’ sensitivity methods are designed for

just this case, where we’re interested in the derivative of one or a few quantities

with respect to many variables [156, 157]. Essentially, an adjoint calculation in-

volves two integrations, one forward and one backward, of an augmented systems

of equations. Importantly, the size of this augmented system does not depend on

the number of parameters one is considering.

An early version of SloppyCell included adjoint calculation of the gradient of

the cost. Performance was somewhat disappointing; the method was not faster

than calculating the forward sensitivities as above. This was not, however, a

failure of the method itself, but rather our implementation. As mentioned above,

the adjoint method requires an integration backwards in time which must refer

to values calculated on the forward integration. To access those values we used

the SciPy’s spline interpolation routines, and it was calls to these routines that

killed performance. An implementation that had direct access to the forward

integration’s approximation to the trajectory could be much faster.

Additionally, we did not work out how to propagate the adjoint system across

events. As seen above, this can be quite complicated even in forward sensitivity

analysis.

141

B.7 Parallel Execution

For communication between nodes in a parallel job, SloppyCell uses PyPar, a

relatively Pythonic wrapper for MPI. To minimize code complexity (particularly

in exception handling), SloppyCell uses a simple master/slave architecture enabled

by Python’s object serialization and dynamic code execution capabilities [88].

Upon import of RunInParallel.py, all nodes with rank != 0 enter a while

loop and wait for commands. The master node sends commands of the form

(command, args). command is a string specifying the command to execute, while

args is a dictionary mapping names of arguments to the appropriate objects. The

slave evals the command and sends the return value back to the master. If an

exception is raised during the function evaluation, the slave instead sends back

the exception object. This architecture ensures that the execution path is very

simple on the slaves, minimizing difficulties in synchronization. It does markedly

increase the communication overhead, but many of our common calculations can

be parallelized into large, coarse operations.

The arguments and return values sent between nodes can be any Python

object that can be “pickled”, serialized into a string representation. This re-

quires some finesse for our Network objects, as dynamically generated functions

cannot themselves be pickled. When pickled, an object returns its state as a

dictionary from self.__getstate__. When unpickled that dictionary is used

by self.__setstate__ to restore the object. To enable pickling (and copying)

of Network objects, they overload the default __getstate__ and __setstate__

methods. In Network.__getstate__ all dynamic functions are removed from the

return dictionary, and in Network.__setstate__ self.exec_dynamic_functions

is called to recreate them. (The code for the dynamic functions is pickled with the

Network, so it need not be regenerated.)

142

One source of danger in the current implementation is that it will fail if the

slaves call some function that is itself parallelized, as all parallelized functions

assume they are being called on the master. Bypassing this limitation may be

difficult, as messages can only be sent to workers who are in the ‘receive’ state. As

more parts of the code our parallelized, we may need options to choose a which

level parallelization happens.

BIBLIOGRAPHY

[1] Baltimore D (2001) Our genome unveiled. Nature 409:814–816.

[2] Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends
Microbiol 15:45–50.

[3] Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology.
Nat Rev Mol Cell Biol 2:908–916.

[4] Lazebnik Y (2002) Can a biologist fix a radio?—Or, what I learned while
studying apoptosis. Cancer Cell 2:179–182.

[5] Yates FE (1978) Good manners in good modeling: mathematical models
and computer simulations of physiological systems. Am J Physiol 234:R159–
R160.

[6] Cumming G, Fidler F, Vaux DL (2007) Error bars in experimental biology.
J Cell Biol 177:7–11.

[7] Brown KS, Sethna JP (2003) Statistical mechanical approaches to models
with many poorly known parameters. Phys Rev E 68:021904.

[8] Brown KS, Hill CC, Calero GA, Myers CR, Lee KH, et al. (2004) The statis-
tical mechanics of complex signaling networks: nerve growth factor signaling.
Phys Biol 1:184–195.

[9] Brodersen R, Nielsen F, Christiansen JC, Andersen K (1987) Characteri-
zation of binding equilibrium data by a variety of fitted isotherms. Eur J
Biochem 169:487–495.

[10] Frederiksen SL, Jacobsen KW, Brown KS, Sethna JP (2004) Bayesian en-
semble approach to error estimation of interatomic potentials. Phys Rev Lett
93:165501.

[11] Waterfall JJ, Casey FP, Gutenkunst RN, Brown KS, Myers CR, et al. (2006)
Sloppy-model universality class and the Vandermonde matrix. Phys Rev Lett
97:150601.

[12] Casey FP, Baird D, Feng Q, Gutenkunst RN, Waterfall JJ, et al. (2007) Op-
timal experimental design in an epidermal growth factor receptor signalling
and down-regulation model. IET Syst Biol 1:190–202.

143

144

[13] Kuczenski RS, Hong KC, Garćıa-Ojalvo J, Lee KH (2007) PERIOD-
TIMELESS interval timer may require an additional feedback loop. PLoS
Comput Biol 3:e154.

[14] Buckheit JB, Donoho DL (1995) Wavelets in statistics, Springer-Verlag,
chapter WaveLab and Reproducible Research. pp. 55–82.

[15] Dobzhansky T (1964) Biology, molecular and organismic. Am Zool 4:443–
452.

[16] Dobzhansky T (1973) Nothing in biology makes sense except in the light of
evolution. Am Biol Teach 35:125–129.

[17] Shalizi CR, Tozier WA (1999). A simple model for the evolution of simple
models of evolution. arXiv:adap-org/9910002.

[18] Baxter SM, Day SW, Fetrow JS, Reisinger SJ (2006) Scientific software de-
velopment is not an oxymoron. PLoS Comput Biol 2:e87.

[19] Kitano H (2002) Computational systems biology. Nature 420:206–210.

[20] Locke JCW, Southern MM, Kozma-Bognr L, Hibberd V, Brown PE, et al.
(2005) Extension of a genetic network model by iterative experimentation
and mathematical analysis. Mol Syst Biol 1:0013.

[21] Voit E, Neves AR, Santos H (2006) The intricate side of systems biology.
Proc Natl Acad Sci USA 103:9452–9457.

[22] Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochem-
ical modelling of cell signalling pathways. Nat Cell Biol 8:1195–1203.

[23] Ingram PJ, Stumpf MPH, Stark J (2006) Network motifs: structure does
not determine function. BMC Genomics 7:108.

[24] Mayo AE, Setty Y, Shavit S, Zaslaver A, Alon U (2006) Plasticity of the
cis-regulatory input function of a gene. PLoS Biol 4:e45.

[25] Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal
protein-signaling networks derived from multiparameter single-cell data. Sci-
ence 308:523–529.

145

[26] Maerkl SJ, Quake SR (2007) A systems approach to measuring the binding
energy landscapes of transcription factors. Science 315:233–237.

[27] Minton AP (2001) The influence of macromolecular crowding and macro-
molecular confinement on biochemical reactions in physiological media. J
Biol Chem 276:10577–10580.

[28] Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, et al.
(2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the
constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329.

[29] Mendes P, Kell D (1998) Non-linear optimization of biochemical pathways:
applications to metabolic engineering and parameter estimation. Bioinfor-
matics 14:869–883.

[30] Jaqaman K, Danuser G (2006) Linking data to models: data regression. Nat
Rev Mol Cell Biol 7:813–819.

[31] Cho KH, Shin SY, Kolch W, Wolkenhauer O (2003) Experimental design in
systems biology, based on parameter sensitivity analysis using a Monte Carlo
method: A case study for the TNFα-mediated NF-κB signal transduction
pathway. Simulation 79:726–739.

[32] Rodriguez-Fernandez M, Mendes P, Banga JR (2006) A hybrid approach for
efficient and robust parameter estimation in biochemical pathways. Biosys-
tems 83:248–265.

[33] Fell D (1997) Understanding the Control of Metabolism. Ashgate Publishing,
300 pp.

[34] Wiback S, Famili I, Greenberg HJ, Palsson BØ (2004) Monte Carlo sampling
can be used to determine the size and shape of the steady-state flux space.
J Theor Biol 228:437–447.

[35] Famili I, Mahadevan R, Palsson BØ (2005) k-Cone analysis: determining
all candidate values for kinetic parameters on a network scale. Biophys J
88:1616–1625.

[36] Bailey JE (2001) Complex biology with no parameters. Nat Biotechnol
19:503–504.

146

[37] Faller D, Klingmuller U, Timmer J (2003) Simulation methods for optimal
experimental design in systems biology. Simulation 79:717–725.

[38] Zak DE, Gonye GE, Schwaber JS, Doyle FJ III (2003) Importance of input
perturbations and stochastic gene expression in the reverse engineering of
genetic regulatory networks: insights from an identifiability analysis of an in
silico network. Genome Res 13:2396–2405.

[39] Gadkar KG, Varner J, Doyle FJ III (2005) Model identification of signal
transduction networks from data using a state regulator problem. IEEE
Syst Biol 2:17–30.

[40] Tyson JJ (1991) Modeling the cell division cycle: cdc2 and cyclin interac-
tions. Proc Natl Acad Sci USA 88:7328–7332.

[41] Zwolak JW, Tyson JJ, Watson LT (2005) Globally optimised parameters
for a model of mitotic control in frog egg extracts. Syst Biol (Stevenage)
152:81–92.

[42] Goldbeter A (1991) A minimal cascade model for the mitotic oscillator in-
volving cyclin and cdc2 kinase. Proc Natl Acad Sci USA 88:9107–9111.

[43] Vilar JMG, Kueh HY, Barkai N, Leibler S (2002) Mechanisms of noise-
resistance in genetic oscillators. Proc Natl Acad Sci USA 99:5988–5992.

[44] Edelstein SJ, Schaad O, Henry E, Bertrand D, Changeux JP (1996) A kinetic
mechanism for nicotinic acetylcholine receptors based on multiple allosteric
transitions. Biol Cybern 75:361–379.

[45] Kholodenko BN (2000) Negative feedback and ultrasensitivity can bring
about oscillations in the mitogen-activated protein kinase cascades. Eur
J Biochem 267:1583–1588.

[46] Lee E, Salic A, Krüger R, Heinrich R, Kirschner MW (2003) The roles of
APC and axin derived from experimental and theoretical analysis of the Wnt
pathway. PLoS Biol 1:e10.

[47] Leloup JC, Goldbeter A (1999) Chaos and birhythmicity in a model for
circadian oscillations of the PER and TIM proteins in drosophila. J Theor
Biol 198:445–459.

147

[48] von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity
network is a robust developmental module. Nature 406:188–192.

[49] Ueda HR, Hagiwara M, Kitano H (2001) Robust oscillations within the in-
terlocked feedback model of Drosophila circadian rhythm. J Theor Biol
210:401–406.

[50] Curto R, Voit EO, Sorribas A, Cascante M (1998) Mathematical models of
purine metabolism in man. Math Biosci 151:1–49.

[51] Chassagnole C, Noisommit-Rizzi N, Schmid JW, Mauch K, Reuss M (2002)
Dynamic modeling of the central carbon metabolism of Escherichia coli.
Biotechnol Bioeng 79:53–73.

[52] Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, et al. (2004)
Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell
15:3841–3862.

[53] Sasagawa S, Ozaki Y, Fujita K, Kuroda S (2005) Prediction and validation
of the distinct dynamics of transient and sustained ERK activation. Nat Cell
Biol 7:365–373.

[54] Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, et al. (2006)
BioModels Database: a free, centralized database of curated, published,
quantitative kinetic models of biochemical and cellular systems. Nucleic
Acids Res 34:D689–691.

[55] Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, et al. (2003) The
systems biology markup language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics 19:524–531.

[56] Gutenkunst RN, Casey FP, Waterfall JJ, Atlas JC, Kuczenski RS, et al.
SloppyCell. http://sloppycell.sourceforge.net.

[57] Mehta ML (2004) Random Matrices. Academic Press, 3rd edition.

[58] Waterfall JJ (2006) Universality in Multiparameter Fitting: Sloppy Models.
Ph.D. thesis, Cornell University.

[59] Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (2002) Identification of
G protein-coupled receptor genes from the human genome sequence. FEBS
Lett 520:97–101.

148

[60] Wise A, Gearing K, Rees S (2002) Target validation of G-protein coupled
receptors. Drug Discov Today 7:235–46.

[61] Park PH, Filipek S, Wells J, Palczewski K (2004) Oligomerization of G
protein-coupled receptors: past, present, and future. Biochemistry 43:15643–
15656.

[62] Levitzki A, Klein S (2002) G-protein subunit dissociation is not an integral
part of G-protein action. Chembiochem 3:815–818.

[63] Preininger AM, Hamm HE (2004) G protein signaling: insights from new
structures. Sci STKE 2004:re3.

[64] Ceruso MA, Periole X, Weinstein H (2004) Molecular dynamics simulations
of transducin: interdomain and front to back communication in activation
and nucleotide exchange. J Mol Biol 338:469–481.

[65] Oldham WM, Eps NV, Preininger AM, Hubbell WL, Hamm HE (2006)
Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins.
Nat Struct Mol Biol 13:772–777.

[66] Majumdar S, Ramachandran S, Cerione RA (2004) Perturbing the linker
regions of the α-subunit of transducin: a new class of constitutively active
GTP-binding proteins. J Biol Chem 279:40137–40145.

[67] Pereira R, Cerione RA (2005) A switch 3 point mutation in the α subunit
of transducin yields a unique dominant-negative inhibitor. J Biol Chem
280:35696–35703.

[68] Majumdar S, Ramachandran S, Cerione RA (2006) New insights into the role
of conserved, essential residues in the GTP binding/GTP hydrolytic cycle of
large G proteins. J Biol Chem 281:9219–9226.

[69] Pugh ENJ, Lamb TD (2000) Handook of Biological Physics, Elsevier, vol-
ume 3, chapter Phototransduction in Vertebrate Rods and Cones: Molecular
Mechanisms of Light Amplification, Recovery and Light Adaptation. pp.
183–255.

[70] Arshavsky VY, Lamb TD, Pugh EN (2002) G proteins and phototransduc-
tion. Annu Rev Physiol 64:153–187.

[71] Ramachandran S, Cerione RA A conserved threonine in the switch 1 region of

149

large G-proteins plays important roles in the GTP-binding/GTP hydrolytic
cycle. In preparation.

[72] Skiba NP, Bae H, Hamm HE (1996) Mapping of effector binding sites of
transducin α-subunit using Gαt/Gαi1 chimeras. J Biol Chem 271:413–24.

[73] Phillips WJ, Cerione RA (1988) The intrinsic fluorescence of the α sub-
unit of transducin. Measurement of receptor-dependent guanine nucleotide
exchange. J Biol Chem 263:15498–505.

[74] Guy PM, Koland JG, Cerione RA (1990) Rhodopsin-stimulated activation-
deactivation cycle of transducin: kinetics of the intrinsic fluorescence re-
sponse of the α subunit. Biochemistry 29:6954–64.

[75] Jones E, Oliphant T, Peterson P, et al. (2001–). SciPy: open source scientific
tools for Python. http://www.scipy.org/.

[76] Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9:10–
20.

[77] Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795.

[78] Schmidt H, Jirstrand M (2006) Systems Biology Toolbox for MATLAB:
a computational platform for research in systems biology. Bioinformatics
22:514–515.

[79] Bergmann FT, Sauro HM (2006) SBW—a modular framework for systems
biology. In: WSC ’06: Proceedings of the 38th conference on Winter simu-
lation. Winter Simulation Conference, pp. 1637–1645.

[80] Hoops S, Sahle S, Gauges R, Lee C, Pahle J, et al. (2006) COPASI—a COm-
plex PAthway SImulator. Bioinformatics 22:3067–3074.

[81] Zi Z, Klipp E (2006) SBML-PET: a Systems Biology Markup Language-
based parameter estimation tool. Bioinformatics 22:2704–2705.

[82] Gutenkunst RN, Casey FP, Waterfall JJ, Myers CR, Sethna JP (2007) Ex-
tracting falsifiable predictions from sloppy models. In: Stolovitsky G, Cali-
fano A, Collins J, editors, Reverse Engineering Biological Networks: Oppor-
tunities and Challenges in Computational Methods for Pathway Inference.
New York Academy of Sciences. In press, arXiv:0704.3049.

150

[83] Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to in-
verse problems. J Geophys Res 100:12431–12447.

[84] Chib S, Greenberg E (1989) Understanding the Metropolis-Hastings algo-
rithm. Amer Statistician 49:327–335.

[85] Swameye I, Muller TG, Timmer J, Sandra O, Klingmuller U (2003) Identi-
fication of nucleocytoplasmic cycling as a remote sensor in cellular signaling
by databased modeling. Proc Natl Acad Sci USA 100:1028–1033.

[86] Machné R, Finney A, Müller S, Lu J, Widder S, et al. (2006) The SBML
ODE Solver Library: a native API for symbolic and fast numerical analysis
of reaction networks. Bioinformatics 22:1406–1407.

[87] Gunawan R, Taylor SR, Doyle FJ III (2005) Sensitivity analysis in biological
modeling: an application in the model development of staphylococcal en-
terotoxin B pre-apoptotic pathways. In: Proceedings of the AIChE Annual
Meeting.

[88] Myers CR, Gutenkunst RN, Sethna JP (2007) Python unleashed on systems
biology. Comput Sci Eng 9:34–37.

[89] Olivier BG, Rohwer JM, Hofmeyr JHS (2002) Modelling cellular processes
with Python and Scipy. Mol Biol Rep 29:249–254.

[90] Olivier BG, Rohwer JM, Hofmeyr JHS (2005) Modelling cellular systems
with PySCeS. Bioinformatics 21:560–561.

[91] Poolman MG (2006) ScrumPy: metabolic modelling with Python. IEE Proc
Syst Biol 153:375–378.

[92] Pérez F, Granger BE (2007) IPython: a system for interactive scientific
computing. Comput Sci Eng 9:21–29.

[93] Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng
9:90–95.

[94] Brown PN, Hindmarsh AC, Petzold LR (1994) Using Krylov methods in the
solution of large-scale differential-algebraic systems. SIAM J Sci Comput
15:1467–1488.

151

[95] Brown PN, Hindmarsh AC, Petzold LR (1998) Consistent initial condition
calculation for differential-algebraic systems. SIAM J Sci Comput 19:1495–
1512.

[96] Gillespie DT (1977) Exact stochastic simulation of coupled chemical reac-
tions. J Phys Chem-US 81:2340–2361.

[97] Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) CellDesigner:
a process diagram editor for gene-regulatory and biochemical networks.
BIOSILICO 1:159–162.

[98] Kutschera U, Niklas KJ (2004) The modern theory of biological evolution:
an expanded synthesis. Naturwissenschaften 91:255–276.

[99] Orr HA (2005) Theories of adaptation: what they do and don’t say. Genetica
123:3–13.

[100] Orr HA (2005) The genetic theory of adaptation: a brief history. Nat Rev
Genet 6:119–127.

[101] Elena SF, Lenski RE (2003) Evolution experiments with microorganisms:
the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469.

[102] Gillespie JH (1984) Molecular evolution over the mutational landscape. Evo-
lution 38:1116–1129.

[103] Gumbel EJ (1958) Statistics of Extremes. Columbia University Press.

[104] Orr HA (2002) The population genetics of adaptation: the adaptation of
DNA sequences. Evolution 56:1317–1330.

[105] Orr HA (2003) A minimum on the mean number of steps taken in adaptive
walks. J Theor Biol 220:241–247.

[106] Rokyta DR, Joyce P, Caudle SB, Wichman HA (2005) An empirical test of
the mutational landscape model of adaptation using a single-stranded DNA
virus. Nat Genet 37:441–444.

[107] Kassen R, Bataillon T (2006) Distribution of fitness effects among benefi-
cial mutations before selection in experimental populations of bacteria. Nat
Genet 38:484–488.

152

[108] Fisher RA (1930) The genetical theory of natural selection. Oxford Univ
Press.

[109] Kimura M (1983) The neutral theory of molecular evolution. Cambridge
Univ. Press.

[110] Orr HA (1998) The population genetics of adaptation: the distribution of
factors fixed during adaptive evolution. Evolution 52:935–949.

[111] Orr HA (1999) The evolutionary genetics of adaptation: a simulation study.
Genet Res 74:207–214.

[112] Hartl DL, Taubes CH (1998) Towards a theory of evolutionary adaptation.
Genetica 102-103:525–533.

[113] Poon A, Otto SP (2000) Compensating for our load of mutations: freezing
the meltdown of small populations. Evolution 54:1467–1479.

[114] Orr HA (2000) Adaptation and the cost of complexity. Evolution 54:13–20.

[115] Welch JJ, Waxman D (2003) Modularity and the cost of complexity. Evolu-
tion 57:1723–1734.

[116] Tenaillon O, Silander OK, Uzan JP, Chao L (2007) Quantifying organismal
complexity using a population genetic approach. PLoS ONE 2:e217.

[117] Martin G, Elena SF, Lenormand T (2007) Distributions of epistasis in mi-
crobes fit predictions from a fitness landscape model. Nat Genet 39:555–560.

[118] Orr HA (2006) The distribution of fitness effects among beneficial mutations
in Fisher’s geometric model of adaptation. J Theor Biol 238:279–285.

[119] Clarke B, Arthur W (2000) What constitutes a ‘large’ mutational change in
phenotype? Evol Dev 2:238–240.

[120] Orr HA (2001) The “sizes” of mutations fixed in phenotypic evolution: a
response to Clarke and Arthur. Evol Dev 3:121–3.

[121] Arthur W (2001) Why imperfect steps in the right direction attract criticism.
Evol Dev 3:125–126.

153

[122] Fong SS, Marciniak JY, Palsson BØ (2003) Description and interpretation of
adaptive evolution of Escherichia coli K-12 MG1655 by using a genome-scale
in silico metabolic model. J Bacteriol 185:6400–6408.

[123] Franois P, Hakim V (2004) Design of genetic networks with specified func-
tions by evolution in silico. Proc Natl Acad Sci USA 101:580–585.

[124] Adam GC, Sorensen EJ, Cravatt BF (2002) Proteomic profiling of mecha-
nistically distinct enzyme classes using acommon chemotype. Nat Biotech
20:805–809.

[125] Hillig KW, Mahlberg PG (2004) A chemotaxonomic analysis of cannabinoid
variation in Cannabis (Cannabaceae). Am J Bot 91:966–975.

[126] Zubova S, Ivanov A, Prokhorenko I (2007) Relations between the chemotype
of Rhodobacter capsulatus strains and the cell electrophoretic properties.
Microbiology 76:177–181.

[127] Peck JR, Barreau G, Heath SC (1997) Imperfect genes, Fisherian mutation
and the evolution of sex. Genetics 145:1171–1199.

[128] Martin G, Lenormand T (2006) The fitness effect of mutations across envi-
ronments: a survey in light of fitness landscape models. Evolution 60:2413–
2427.

[129] Waxman D, Welch JJ (2005) Fisher’s microscope and Haldane’s ellipse. Am
Nat 166:447–457.

[130] Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of
new mutations. Nat Rev Genet 8:610–618.

[131] Perfeito L, Fernandes L, Mota C, Gordo I (2007) Adaptive mutations in
bacteria: high rate and small effects. Science 317:813–815.

[132] Rozen DE, de Visser JAGM, Gerrish PJ (2002) Fitness effects of fixed ben-
eficial mutations in microbial populations. Curr Biol 12:1040–1045.

[133] Sella G, Hirsh AE (2005) The application of statistical physics to evolution-
ary biology. Proc Natl Acad Sci USA 102:9541–9546.

[134] Waxman D (2007) Mean curvature versus normality: a comparison of two
approximations of Fisher’s geometrical model. Theor Popul Biol 71:30–36.

154

[135] Bloom JD, Romero PA, Lu Z, Arnold FH (2007) Neutral genetic drift can
alter promiscuous protein functions, potentially aiding functional evolution.
Biol Direct 2:17.

[136] Landry CR, Lemos B, Rifkin SA, Dickinson WJ, Hartl DL (2007) Genetic
properties influencing the evolvability of gene expression. Science 317:118–
121.

[137] Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Gene regu-
lation at the single-cell level. Science 307:1962–1965.

[138] Wood TE, Burke JM, Rieseberg LH (2005) Parallel genotypic adaptation:
when evolution repeats itself. Genetica 123:157–170.

[139] Pelosi L, Khn L, Guetta D, Garin J, Geiselmann J, et al. (2006) Parallel
changes in global protein profiles during long-term experimental evolution in
Escherichia coli. Genetics 173:1851–1869.

[140] Imhof M, Schlotterer C (2001) Fitness effects of advantageous mutations in
evolving escherichia coli populations. Proc Natl Acad Sci USA 98:1113–
1117.

[141] Barrett RDH, MacLean RC, Bell G (2006) Mutations of intermediate effect
are responsible for adaptation in evolving Pseudomonas fluorescens popula-
tions. Biol Lett 2:236–238.

[142] Abramowitz M, Stegun IA (1964) Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover, 10th edition.

[143] Mezey JG, Houle D (2005) The dimensionality of genetic variation for wing
shape in Drosophila melanogaster. Evolution 59:1027–1038.

[144] Griswold CK, Logsdon B, Gomulkiewicz R (2007) Neutral evolution of multi-
ple quantitative characters: a genealogical approach. Genetics 176:455–466.

[145] Gruner SM, Bilderback D, Bazarov I, Finkelstein K, Krafft G, et al. (2002)
Energy recovery linacs as synchrotron radiation sources. Rev Sci Intrum
73:1402–1406.

[146] Hoffstaetter GH, Bazarov IV, Bilderback D, Billing M, Gruner S, et al. (2004)
ERL upgrade of an existing X-ray facility: CHESS at CESR. In: Proceedings
of the European Particle Accelerator Conference. pp. 497–499.

155

[147] Sagan D, Smith J (2005) The TAO accelerator simulation program. In:
Proceedings of the Particle Accelerator Conference. pp. 4159–4161.

[148] Urban J, Fields L, Sagan D (2005) Linear accelerator simulations with Bmad.
In: Proceedings of the Particle Accelerator Conference. pp. 1937–1939.

[149] Berman GJ, Wang ZJ (2007) Energy-minimizing kinematics in hovering in-
sect flight. J Fluid Mech 582:153–168.

[150] Sethna JP (2006) Statistical Mechanics: Entropy, Order Parameters and
Complexity. Oxford University Press.

[151] Rosenbrock HH (1960) An automatic method for finding the greatest or least
value of a function. Computer J 3:175–184.

[152] Desai MM, Fisher DS, Murray AW (2007) The speed of evolution and main-
tenance of variation in asexual populations. Curr Biol 17:385–394.

[153] Lutz M, Ascher D (2003) Learning Python. O’Reilly, 2nd edition.

[154] Smith D (2005). Re: [Mingw-users] EH FRAME BEGIN - a simpler
demonstration of the problem. Mingw-users mailing list, March 13.

[155] Reedy T (2006). Re: Too many if statements? comp.lang.python newsgroup,
Feb 10.

[156] Errico RM (1997) What is an adjoint model? B Am Meteorol Soc 78:2577–
2591.

[157] Cao Y, Li S, Petzold L, Serban R (2002) Adjoint sensitivity analysis for
differential-algebraic equations: the adjoint DAE system and its numerical
solution. SIAM J Sci Comput 24:1076–1089.

