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Here we study fluctuations, scaling, and universality in a variety of first-passage
scenarios. First, we explore fluctuations in fixation times in evolutionary dy-
namics. We compute the fixation-time distribution for several models of evo-
lution and determine how the shape of the distribution depends on the fitness
advantage provided by a genetic mutation. Our results reveal an interesting
dichotomy: for neutral mutations the distribution is highly-skewed, while for
non-neutral mutations, two particular distributions arise. In the latter case, de-
pending on population structure the fixation-time distribution is either a Gaus-
sian or the (moderately skewed) Gumbel distribution. Next, we show that the
Gaussian and Gumbel distributions are universal; they arise generically across
a variety of stochastic models of evolution, ecology, epidemiology, and chem-
ical reactions. The distinguishing feature is the decay of the stochastic transi-
tion rates near the absorbing state: lack of decay leads to Gaussian distribu-
tions, while linear decay leads to Gumbel distributions. Distributions resulting
from other power-law decays in the transition rates are also classified. Finally,
we formulate a renormalization group approach and scaling theory for barrier
crossing phenomena near a noisy saddle-node bifurcation, where the barrier
vanishes. We derive the universal scaling behavior and corrections to scaling
for the mean barrier escape time in overdamped systems with arbitrary barrier

height. We also develop an accurate approximation for the fluctuations in es-



cape times, capturing the full distribution of barrier escape times at any barrier
height. This critical theory draws links between barrier crossing in chemistry,

the renormalization group, and bifurcation theory.
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LIST OF TABLES

Asymptotic fixation-time statistics for the Moran Birth-death
and Death-birth processes on the complete graph and the 1D lat-
tice. Together with the mean and variance, the standardized dis-
tributions give a complete statistical description of the fixation
time. The mean and variance given are to leading order in N for
eachcase. . .. ... ... ... ...

Parameter choices for the simulations used to measure
absorption-time distributions shown in Figures 3.1(a)-(c) and
3.3(b). See Section 3.8 for model and parameter definitions. Evo-
lutionary games use well-mixed population structure except in
Figure 3.1(a). In Figure 3.1(c) the relative weighting of the convo-
lution of Gumbel distributions is s = (1 + €% ) /(1 +€/?~D) ~ 0.73
for both sets of parameters. . . . ... ... ... ... L.
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CHAPTER 1
INTRODUCTION

The concept of first passage underlies many physical, chemical and biologi-
cal processes and even arises commonly in daily life. Many readers might recall
asking the question “are we there yet?” on long car rides as a young child. Dur-
ing the incubation of a disease, symptoms onset when the invasive bacteria or
virus first reaches a certain population level. Chemical reactions and magnetic
spin avalanches each involve first-passage escape over an energy barrier sep-
arating metastable and stable states. A molecular motor, walking along actin
tilaments or microtubules to drag cargo across the cell, diffusively searches for
binding sites and binds to those it first encounters. Finally, the extinction of a
species and the eradication of an epidemic both occur when the population (of

animals or of sick individuals) reaches zero.

For each of these examples (many of which we will revisit in this thesis),
reaching a threshold for the first time either triggers a response (e.g., onset of dis-
ease) or terminates the dynamics entirely (e.g., extinction). The key quantity of
interest for studying these processes is the first-passage time 7', how long does it
take to first reach the threshold?! When the underlying dynamics of the system

are stochastic, T is itself a random quantity, with a probability distribution f7(z).

The broad goal of this thesis is to determine how the underlying physics of
a system, which determines the space of possible states and the rates of tran-
sition between these states, influences the statistics of the first-passage time.

For example, the state of the system might be the number of sick individuals

!In the following chapters we will refer to fixation time in the context of evolutionary dynam-
ics, absorption time for Markov chains with an absorbing boundary state, and barrier escape
time for chemical reactions. These are all different examples of first-passage times.
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Figure 1.1: A birth-death Markov chain. The system is composed of a linear
chain of N states, with b,, and d,, designating the transition rates between neigh-
boring states. In this example, the upper boundary m = N is reflecting and the
lower boundary m = 0 is absorbing.

in a population or the positions of all the atoms in a molecule undergoing a
chemical reaction. The transitions between states are respectively determined
by the contact network of the population and the intramolecular forces holding
the molecule together. How do the details of the contact network or molecular

forces influence the shape of the first-passage time distribution fr(f)?

Figure 1.1 shows one of the simplest possible systems: a birth-death Markov
chain, which is composed of a discrete one-dimensional chain of N states with
transitions only between nearest neighbor states occurring at rates b,, and d,,.
Models of this form (and those with absorbing boundaries on both ends of the
chain) will be the focus of Chapters 2 and 3. In Chapter 4, we consider the

analogous continuous system, where the state undergoes diffusive motion.

While these one-dimensional models are simplistic, they often provide ef-
fective coarse-grained descriptions of higher-dimensional phenomena. For ex-
ample, averaging over the configurations of infected individuals in network
models of epidemiology produces effective transition rates b,, and d,, that accu-
rately reproduce the dynamics of the infected population [3, 4]. Even when the
state space is genuinely high-dimensional, the first-passage behavior may still

be well described by the birth-death Markov chain if the dynamics collapse onto



a one-dimensional slow manifold near the absorbing state (which is often the
case in dynamical systems). Similarly, the theory of chemical reactions employs
a coarse-grained one-dimensional reaction coordinate, which parametrizes the
path of least resistance between reactant and product chemical species [5] (also

see Chapter 4 for further discussion).

Much effort has gone toward computing mean first-passage times,

(T) = f tfr(t)dt (1.1)

for simple stochastic models that fall into the birth-death Markov chain class
shown in Figure 1.1, both for specific models and more generally. In particular,
Doering and colleagues obtained asymptotic (N > 1) expressions for the mean
time to hit the absorbing state at 0 for several broad classes of Markov chains

based on generic features of the transition rates b,, and d,, [6, 7].

In this thesis we go beyond the mean to provide an understanding of the
higher-order fluctuations in first-passage times. We develop new analytical ap-
proaches and approximations that enable characterization of the cumulants of

tirst-passage times, «,, defined via the generating function

[Se]

log fr(w) = ) ky(iw)"/n!, (1.2)

n=1
where fr(w) is the Fourier transform of the tirst-passage time distribution. The
first two cumulants are familiar: «; is the mean, while «, is the variance. The
higher-order cumulants characterize the shape of the distribution, for instance
k3/K5'” is the skew. We will answer the following questions in the chapters be-
low: what characteristics of the stochastic transition rates in a system (b,, and
d,, for the birth-death Markov chain) determine the cumulants and hence the

shape of the distribution f7()? How do the mean and higher-order cumulants



scale, for large systems or near a critical transition? Finally, are there universal
features of first-passage processes? Do the same fluctuations and scaling appear

across models and applications?

Chapter 2 focuses on a particular application: evolutionary dynamics. There
we investigate how the fixation time, the time for a genetic mutation to spread
to an entire population via competitive reproductive dynamics and natural se-
lection, depends on the fitness advantage (or lack thereof) conferred by the mu-
tation. We find a striking transition: for neutral fitness the fixation-time distri-
butions are highly skewed, while for non-neutral evolution the distribution is

either Gaussian or Gumbel (depending on the population structure).

The appearance of Gaussian and Gumbel distributions for broad ranges of
titness and across different models of evolution suggests a degree of universal-
ity. In Chapter 3 we classify the birth-death Markov chains (Figure 1.1) that
have Gaussian or Gumbel absorption-time distributions, connecting the result-
ing distribution to basic features of the underlying dynamics. We also identify a
broader family of universal skewed distributions that interpolates between the

Gaussian and Gumbel.

Finally, Chapter 4 analyzes barrier-crossing phenomena in continuous sys-
tems, applicable to chemical reactions and other noise-driven systems with
metastable states. Here we study the scaling of the barrier escape time near
a critical transition: the saddle-node bifurcation where the barrier vanishes. Us-
ing a renormalization group approach inspired by Feigenbaum'’s renormaliza-
tion group for iterated maps [8], we derive the universal scaling near the saddle-
node transition for both the mean and full distribution of barrier crossing times.

The results capture the crossover from high-barrier to barrier-less systems, uni-



tying classical reaction rate theory with dynamical systems theory for the noisy

saddle-node bifurcation.

To conclude, Chapter 5 outlines a number of experimental systems which
may be used to test our predictions of universality and scaling for first-passage
times and their fluctuations. Real-world epidemiological processes as well as
bacterial evolution, single-cell aging, and optoelectronic laboratory experiments
each have underlying first-passage processes, whose measurement provides a
direct test of our results. When the experimental measurements agree with the
predicted first-passage-time distributions or scaling, the theory provides a clear

picture of the underlying physics governing the system.



CHAPTER 2
FITNESS DEPENDENCE OF THE FIXATION-TIME DISTRIBUTION
FOR EVOLUTIONARY DYNAMICS ON GRAPHS

2.1 Introduction?

Reproducing populations undergo evolutionary dynamics. Mutations can en-
dow individuals with a fitness advantage, allowing them to reproduce more
quickly and outcompete non-mutant individuals [9]. Two natural questions
arise: If a single mutant individual is introduced into a population, what is
the probability that the mutant lineage will spread and ultimately take over the
population (an outcome known as fixation)? And if fixation occurs, how much

time does it take?

These questions have been addressed, in part, by evolutionary graph theory,
which studies evolutionary dynamics in structured populations. Thanks to this
approach, fixation probabilities are now well understood for various models on
various networks [10-20]. Less is known about fixation times. Given a model
of evolutionary dynamics, one would like to predict the mean, variance, and

ideally the full distribution of its fixation times.

Of these quantities, the mean is the best understood. Numerical and analyti-
cal results exist for mean fixation times on both deterministic [12, 14, 19-25] and
random [4, 24-26] networks. Yet although mean fixation times are important

to study, the information they provide can be misleading, because fixation-time

This chapter is reproduced from: David Hathcock and Steven H. Strogatz, “Fitness depen-
dence of the fixation-time distribution for evolutionary dynamics on graphs.” Physical Review
E 100, 012498 (2019)



distributions tend to be broad and skewed and hence are not well character-
ized by their means alone [19, 27-30]. Initial analytical results have determined
the asymptotic fixation-time distribution for several simple networks, but only
when the relative fitness of the mutants is infinite [31-33]. For other values of
the relative fitness, almost nothing is known. Preliminary results suggest that
at neutral fitness (when mutants and non-mutants are equally fit), the fixation-

time distribution becomes highly right-skewed [33].

In this chapter we investigate the full fithess dependence of fixation-time
distributions for the Moran process [34, 35], a simple model of evolutionary
dynamics. In the limit of large network size, we derive asymptotically exact
results for the fixation-time distribution and its skew for two network structures
at opposite ends of the connectivity spectrum: the complete graph, in which
every individual interacts with every other individual; and the one-dimensional
ring lattice, in which each individual interacts only with its nearest neighbors

on a ring.

The specific model we consider is the Moran Birth-death (Bd) process?, de-
fined as follows. On each node of the network there is an individual, either
mutant or non-mutant. The mutants have a fitness level r, which designates
their relative reproduction rate compared to non-mutants. When r > 1, the mu-
tants have a fitness advantage, whereas when r = 1 they have neutral fitness. At
each time step we choose a node at random, with probability proportional to its
fitness, and choose one of its neighbors with uniform probability. The first indi-
vidual gives birth to an offspring of the same type. That offspring replaces the

neighbor, which dies. The model population is updated until either the mutant

2We use the convention that capital letters designate a fitness dependent step in the Moran
process (e.g., for the Bd process nodes give birth at a rate proportional to their fitness, but die
with uniform probability). See Ref. [33, Box 2] for a detailed explanation of this nomenclature.



1. Random node gives birth 2. Random neighbor dies 3. Replacement

Figure 2.1: Dynamics of the Moran Birth-death (Bd) process. At each time step
(1) a random node is chosen to give birth, (2) one of its neighbors is chosen to
die, and (3) the new offspring replaces the dying node.

lineage takes over (in which case fixation occurs) or the mutant lineage goes

extinct (a case not considered here). Figure 2.1 illustrates a single step of this

update procedure.

As mentioned above, the distribution of fixation times is often skewed.
The skew emerges from the stochastic competition between mutants and non-
mutants through multiple mechanisms. For instance, when the mutants have
neutral fitness the process resembles an unbiased random walk. We find that the
asymptotic fixation-time distribution for a simple random walk is only skewed
when the walk is unbiased. The lack of bias allows for occasional long recurrent
excursions (that are suppressed in biased walks) during successful runs to fixa-
tion. The fixation-time distribution is strongly skewed because there are many
ways to execute such walks that are much longer than usual, but comparably

few ways for mutants to sweep through the population much faster than usual.

Depending on network structure, the fixation-time skew can also come from

a second, completely separate mechanism, which involves characteristic slow-



downs that arise because individuals do not discriminate between mutants and
non-mutants during the replacement step of the Moran process. For example,
when very few non-mutants remain, the mutants can waste time replacing each
other. These slowdowns are reminiscent of those seen in a classic problem from
probability theory, the coupon collector’s problem, which asks: How long does
it take to complete a collection of N distinct coupons if a random coupon is re-
ceived at each time step? The intuition for the long slowdowns is clear: when
nearly all the coupons have been collected, it can take an exasperatingly long
time to collect the final few, because one keeps acquiring coupons that one al-
ready has. The problem was first solved by Erdés and Rényi, who proved that
for large N, the time to complete the collection has a Gumbel distribution [36]. In
fact, for evolutionary processes with infinite fitness there exists an exact map-
ping onto coupon collection [32, 33]. Remarkably, while this correspondence
breaks down for finite fitness, the coupon collection heuristic still allows us to

predict correct asymptotic fixation-time distributions for non-neutral fitness.

In the following sections we show that for N > 1, the neutral-fitness Moran
process on the complete graph and the one-dimensional ring lattice has highly
skewed fixation-time distributions, and we solve for their cumulants exactly.
For non-neutral fitness the fixation-time distribution is normal on the lattice and
a weighted convolution of Gumbel distributions on the complete graph. These
results are novel; apart from the infinite fitness limit and some partial results at
neutral fitness (noted below), the fitness dependence of these distributions was

previously unknown.

We begin by developing a general framework for computing fixation-time

distributions and cumulants of birth-death Markov chains, and then apply it to



the Moran process to prove the results above. We also consider the effects of
truncation on the process and examine how long it takes to reach partial, rather
than complete, fixation. The fixation-time distributions have rich dependence
on the fitness level and the degree of truncation, with both discontinuities and
regions of universality. To conclude, we discuss extensions of our results to

two-fitness Moran models and to more complicated network topologies.

2.2 General Theory for Birth-Death Markov Processes

For simplicity, we restrict attention to network topologies and initial mutant
populations for which the probability of adding or removing a mutant in a
given time step depends only on the number of existing mutants, not on where
the mutants are located on the network. The state of the system can therefore
be defined in terms of the number of mutants, m = 0,1,...,N, where N is the
total number of nodes on the network. The Moran process is then a birth-death
Markov chain with N + 1 states, transition probabilities b,, and d,, determined
by the network structure, and absorbing boundaries at m = 0 and m = N. In this
section we review several general analytical results for absorbing birth-death
Markov chains, explaining how they apply to fixation times in evolutionary dy-
namics. We also develop an approach, which we call visit statistics, that enables

analytical estimation of the asymptotic fixation time cumulants.

On more complicated networks, the probability of adding or removing a
mutant depends on the configuration of existing mutants. For some of these
networks, however, the transition probabilities can be accurately estimated us-

ing a mean-field approximation [4, 30, 32, 33]. Then, to a good approximation,
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the results below apply to such networks as well.

2.2.1 Eigendecomposition of the birth-death process

Assuming a continuous-time process, the state of the Markov chain described

above evolves according to the master equation,

p() = Q- p@), (2.1)

where p(t) is the probability of occupying each state of the system at time ¢ and
Q is the transition rate matrix, with columns summing to zero. In terms of the

transition probabilities b,, and d,,, the entries of Q are
an = bn(sm,n+1 + dném,n—l - (bn + dn)ém,na (22)

where m and n run from 0 to N, §,, is the Kronecker delta, and by = dy =
by = dy = 0. The final condition guarantees the system has absorbing bound-
aries with stationary states p,, = 9,0 and p, = J,n when the population is
homogeneous. Thus we can decompose the transition matrix into stationary
and transient parts, defining the transient part Q. as in Eq. (2.2), but with
m,n=1,...,N— 1. The transient transition matrix acts on the transient states of
the system, denoted p.(#). The eigenvalues of Q; are real and strictly negative,
since probability flows away from these states toward the absorbing bound-
aries. To ease notation in the following discussion and later applications, we
shall refer to the positive eigenvalues of —Q; as the eigenvalues of the transition

matrix, denoted A,,, wherem =1,...,N — 1.

From the perspective of Markov chains, the fixation time 7T is the time re-

quired for first passage to state m = N, given mj initial mutants, p,,(0) = &, n,- At

11



time ¢, the probability that state N has been reached (i.e., the cumulative distri-
bution function for the first-passage times) is simply ¢, py(1), where g, is the
fixation probability given mj initial mutants. The distribution of first-passage
times is therefore gp,‘ml) pna(t) = go,‘,l(l)bN_l pn-1(t). Since we normalize by the fixation
probability, this is precisely the fixation-time distribution conditioned on reach-

ing N.

The solution to the transient master equation is the matrix exponential
Pu() = exp(Qy?) - pu(0), yielding a fixation-time distribution cp,‘nf)bN_l[exp(Qtrt) .
pe(0)In-1 [37]. If we assume one initial mutant my = 1 this becomes
<pf‘bN_1[exp(Qtrt)]N_1,1. The matrix exponential can be evaluated in terms of
the eigenvalues 4,, by taking a Fourier (or Laplace) transform (for details, see
Ref. [29]). For a single initial mutant, the result is that the fixation time 7 has a
distribution f7(¢) given by

f(r)—NZ1 ﬁ P (2.3)
T(l) = ) oy e . .

Jj=1 \k=1,k#j

This formula holds as long as the eigenvalues A,, are distinct, which for birth-
death Markov chains occurs when b,, and d,, are non-zero (except at the absorb-
ing boundaries) [38]. Generalizations of this result for arbitrarily many initial
mutants have also recently been derived, in terms of eigenvalues of the transi-

tion matrix and certain sub-matrices [29].

The distribution in Eq. (2.3) is exactly that corresponding to a sum of expo-
nential random variables with rate parameters 4,,. The corresponding cumu-
lants equal (n — 1)! ¥V-1(1,)™. As our primary interest is the asymptotic shape
of the distribution, we normalize T to zero mean and unit variance and study
(T — w)/o, where u and o denote the mean and standard deviation of 7. The

standardized distribution is then given by o fr(ot + u). The rescaled fixation

12



time has cumulants
n/2

k,(N)=(n-1)! (Z %)/[Z /%2] , (2.4)

m=1 m=1"m
which, for many systems including those considered below, are finite as N — co.
When the limit exists, we define the asymptotic cumulants by «, = limy_,« &,(N).
In particular, because we have standardized our distribution, the third cumu-
lant k3 is the skew. In practice the limit N — oo is taken by computing the leading
asymptotic behavior of both the numerator and denominator in Eq. (2.4). As we
will see below the scaling of these terms with N depends on both the popula-
tion network structure and the mutant fitness (see also asymptotic analysis in
the Appendix, Sections 2.9.4 & 2.9.5). This approach allows us to characterize
the asymptotic shape of the fixation-time distribution in terms of the constants
ky. Since A, > 0, it is clear from this expression that, for finite N, the skew and all
higher order cumulants must be positive, in agreement with results for random
walks with non-uniform bias [39]. As N — oo this is not necessarily true; in

some cases the cumulants vanish.

The eigendecomposition gives the fixation-time distribution and cumulants
in terms of the non-zero eigenvalues of the transition matrix. In general the
eigenvalues must be found numerically, but in cases where they have a closed
form expression the asymptotic form of the cumulants and distribution can of-

ten be obtained exactly.

2.2.2 Analytical cumulant calculation: Visit statistics

In this section we develop machinery to compute the cumulants of the fixation

time analytically without relying on matrix eigenvalues. For this analysis, we

13



specialize to cases where b,,/d,, = r for all m, relevant for the Moran processes
considered below. These processes can be thought of as biased random walks

overlaid with non-constant waiting times at each state.

It is helpful to consider the Markov chain conditioned on hitting N, with new
transition probabilities b,, and d,, so that the fixation probability ¢,, = 1. If X,
is the state of the system at time ¢, then by =PX, =m — X;py =m+ 1|X = N)
with d,, defined analogously. We derive explicit expressions for b,, and d,, in
the Appendix, Section 2.9.2. Conditioning is equivalent to a similarity transfor-
mation on the transient part of the transition matrix: Q. = SQ,S!, where S
is diagonal with S, = 1 — 1/r". Furthermore, since b,,/d,, = r, we can decom-
pose Q; = QrwD, where D is a diagonal matrix, D,,, = b,, + d,,, that encodes the
time spent in each state and Qg is the transition matrix for a random walk with
uniform bias,

r
[QRW]nm = —6r1z,n+l + 6m,n—l - 6m,n- (25)

1+r 1+r

Applying the results of the previous section and using the fact that the columns
of Q sum to zero, we can write there fixation-time distribution of the condi-
tioned Markov chain as fr(f) = —1€, exp(Qq1)p.(0), where 1 is the row vector

containing all ones. This distribution has characteristic function [37]
P(w) = Elexp(iwT)] = 1Qu(iw + Q) ' pu(0). (2.6)
and the derivatives (-i)"¢"(0) give the moments of T
E[T"] = (-1)"n!1Q,"py(0), (2.7)

in terms of Q! = D™'SQg! S~!. This inverse has a nice analytical form because
S and D are diagonal and Qgw is tridiagonal Toeplitz. We call this approach visit
statistics because the elements V;; of V = =S Q.S ™' encode the average number

of visits to state i starting from state j.
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Each power of Q, in Eq. (2.7) produces products of (b; +d;) that arise in linear
combinations determined by the visit numbers V;;. Therefore, the cumulants of

the fixation time have the general form
it W;lll'z...,'n (l’, NlmO)

Z (bil +di1)(bi2 +di2)'”(bin +din)

i1,0250nsin=1

EowieNmg "
b+ d)(b; +d)

Kk, (N) = , (2.8)

where w"

iip++ip

(r, Nlmy) are weighting factors based on the visit statistics of the bi-
ased random walk, given the initial number of mutants m,. In what follows, we
always assume m( = 1 and suppress the dependence of the weighting factors on
initial condition, writing wi o (N) instead. A detailed derivation of Eq. (2.8)
and explicit expressions for w},(r, N) and w}, (r,N) are given in the Appendix,

Section 2.9.1 below.

To the best of our knowledge this representation of the fixation-time cumu-
lants has not been previously derived, although a similar approach was recently
used to compute mean fixation times for evolutionary dynamics on complex
networks [4]. This expression is equivalent to the well-known recurrence rela-
tions for absorption-time moments of birth-death processes [28, 40] but is eas-
ier to handle asymptotically, and can be useful even without explicit expres-

sions for w’.‘1

i1ip-+iy

(r,N). Estimating the sums in Eq. (2.8) allows us to compute the

asymptotic fixation time cumulants exactly.

2.2.3 Recurrence relation for fixation-time moments

Evaluation of the eigenvalues of the transition matrix for large systems can

be computationally expensive, with the best algorithms having run times
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quadratic in matrix size. Numerical evaluation of the expression given in
Eq. (2.8) is even worse, as it requires summing O(N") elements. If only a finite
number of fixation time cumulants (and not the full distribution) are desired,
there are better numerical approaches. Using standard methods from probabil-
ity theory [41], we derive a recurrence relation that allows numerical moment
computation with run time linear in system size N. For completeness we pro-
vide the full derivation of the reccurence for the fixation-time skew in the Ap-

pendix, Section 2.9.3.

2.24 Equivalence between advantageous and disadvantageous

mutations

In the following applications, we will generally speak of the mutants as having
a fitness advantage, designated by the parameter r > 1. Our results, however,
can be immediately extended to disadvantageous mutations. In particular, the
fixation-time distributions (conditioned on fixation occurring) for mutants of
fitness r and 1/r are identical. When a mutant with fitness 1/r is introduced into
the population (and eventually reaches fixation), the non-mutants are r times as
tit as the mutants. Therefore, this system is equivalent to another system that
starts with N — 1 fitness » mutants which eventually die out (the mutants in the
former system are the non-mutants in the latter). It has been shown that the
times to go from one initial mutant to fixation (m = 1 — m = N) and from N — 1
initial mutants to extinction (m = N — 1 — m = 0) have identical distribution
[29]. Thus indeed, the conditioned fixation-time distributions are identical for

mutants of fitness r and 1/r. Of course the fixation probability is very different
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in the two cases: for the disadvantageous mutations it approaches 0 for large N

[13].

2.3 One-Dimensional Lattice

We now specialize to Moran Birth-death (Bd) processes, starting with the one-
dimensional (1D) lattice. We assume periodic boundary conditions, so that the
N nodes form a ring. The mutants have relative fitness r, meaning they give

birth r times faster, on average, than non-mutants do.

Starting from one mutant, suppose that at some later time m of the N nodes
are mutants. On the 1D lattice, the population of mutants always forms a con-
nected arc, with two mutants at the endpoints of the arc. Therefore, the prob-
ability b,, of increasing the mutant population by one in the next time step is
the probability of choosing a mutant node at an endpoint to give birth, namely
2r/(rm+N—m), times the probability 1/2 that the neighboring node to be replaced
is not itself a mutant. (The latter probability equals 1/2 because there are two
neighbors to choose for replacement: a mutant neighbor on the interior of the
arc and a non-mutant neighbor on the exterior. Only the second of these choices
produces an increase in the number of mutants.) Multiplying these probabilities
together we obtain

1
bp= ——— dym——— (2.9)

rm+N-m’ " rm+N-m’
where the probability d,, of decreasing the mutant population by one is found
by similar reasoning. Note that this derivation fails for m = 1 (m = N — 1) when
the arc of mutants (non-mutants) contains only one node, but one can check

Eq. (2.9) still holds for these cases. These quantities play the role of transition
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probabilities in a Markov transition matrix. The next step is to find the eigen-

values of that matrix.

2.3.1 Neutral fitness

First we work out the eigenvalues for the case of neutral fitness, r = 1. In this
case, the transition probabilities are equal, b,, = d,, = 1/N, and independent of m.
Therefore, the Moran process is simply a random walk, with events occurring
at a rate of 2/N per time step. The associated transition matrix is tridiagonal

Toeplitz, which has eigenvalues given by

2 2 mmu
Ap = — — —cos(—
N N

), m=1,2,... ,N-1. (2.10)
N

Applying Eq. (2.4) and computing the leading asymptotic form of the sums S, =
Zﬁ;i(ﬂm)’” (see Appendix, Section 2.9.4), we find that as N — oo, the fixation-

time distribution has cumulants

2
kn=(n—1)! %, (2.11)

where ¢ denotes the Riemann zeta function. In particular, the skew «;3 =
4+/10/7 ~ 1.807, as previously calculated by Ottino-Loffler et al. [33] via martin-
gale methods. The other cumulants (and characteristic function below) haven’t
previously been computed for the Bd process on the 1D lattice. The largeness
of the skew stems from the recurrent property of the random walk. As N — oo,
long walks with large fixation times become common and the system revisits

each state infinitely often [42].

Knowledge of the cumulants allows us to obtain the exact characteristic
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Figure 2.2: Fixation-time distributions on the 1D lattice obtained from 10° sim-
ulation runs. All distributions are standardized to zero mean and unit variance.
Solid curves are the theoretical predictions. Shown are the fixation-time distri-
butions for (a) a 1D lattice of N = 100 nodes with neutral fitness r = 1 and (b)
a 1D lattice of N = 5000 nodes with mutant fitnesses r = 1.1 and r = 2.0. For
the neutral fitness case, the theoretical distribution was generated by numerical
inverse Fourier transform of the characteristic function (Eq. (2.12)). The r = 1.1
distribution is slightly but visibly skewed due to finite network size.

function of the fixation-time distribution:

9Q!/4 \/(’_L))F(l . 9(01/4 @) ‘ (212)

B(w) = e@)r(1 -
T T

Although we cannot find a simple expression for the distribution itself, we can

efficiently evaluate it by taking the inverse Fourier transform of the character-

istic function numerically. Figure 2.2(a) shows that the predicted fixation-time

distribution agrees well with simulations.

2.3.2 Non-neutral fitness

Next, consider r # 1 with the transition probabilities given by Eq. (2.9). Then the
eigenvalues of the transition matrix are no longer expressible in closed form. If

r is not too large, however, the probabilities b,, and d,, do not vary dramatically
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with m, the number of mutants. In particular, b,, ~ 1/N for all m when N is large.
Therefore, as a first approximation we treat the Bd process on a 1D lattice as a
biased random walk with b,, = r/(1 + r) and d,, = 1/(1 + r). The eigenvalues of

the corresponding transition matrix are

2

A, =1
1+r

cos(%r), m=1,2,...,N—-1. (2.13)

The cumulants again involve sums S, = fo;}(/lm)‘", which can be approximated
in the limit N — oo by,

N (7 1
r— dx.
mJo (1 =2+/r/(1+7r)cosx)

(2.14)

Since the integral is independent of N and converges for r # 1, each of the sums
scales linearly: S, ~ N. Thus, using Eq. (2.4), we see that all cumulants past

second order approach 0,

1 N—>oo

]\W _— O, n Z 3. (2.].5)

Ky ~

Hence the fixation-time distribution is asymptotically normal, independent of

fitness level.

By evaluating the integrals in Eq. (2.14), we can more precisely compute the

scaling of the cumulants. For the skew we find

o~ 24+2r(r+4) 1
VP -D VN

The integral approximation becomes accurate when the first term in the sums

(2.16)

S, becomes close to the value of the integrand evaluated at the lower bound

(x = 0). The fractional difference between these quantities is

B (1-2+/r/(1+ 1))
(1 =2/ + P cos(x/N)"
3 \rnm?

(2.17)
+O(1/NY.
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Then we have A < 1 when N > N, where N, ~ 2r+/n/(r — 1) (assuming r is near

1). For the skew, we require the sums with n = 2 and 3, giving N, ~ 10/(r — 1).

The above calculation fails for r > 1, because when r = oo the transition
probabilities b,, = 1/m have different asymptotic behavior as N — co. In par-
ticular, more time is spent waiting at states with large m. The process still has
normally distributed fixation times [33], but the skew becomes

N-1 N-1 /2
K = 2(2 m*]/(z mz] ~ ¥L«/N (2.18)

m=1 m=1
for large N. Notice that the coefficient is different from that given by the infinite-
r limit of Eq. (2.16), k3 =~ 2/ VN. We conjecture that there is a smooth crossover

between these two scaling laws with the true skew given approximately by

3V3 ]

K3 = K3 [}"_q + T(l - r_q) (219)

for some exponent g, where «;3 is the skew given in Eq. (2.16). For small r this
ansatz has skew similar to that of a random walk, but captures the correct large-
r limit. We do not have precise theoretical motivation for this ansatz, but as

discussed below, it works quite well.

Numerical calculation of the skew for the 1D lattice was performed using the
recurrence relation method discussed in Section 2.2.3. The results are shown in
Figure 2.3 for a few values of r. This calculation confirms our initial hypothesis,
near neutral fitness the waiting times are uniform enough that the process is
well approximated by a biased random walk and the skew approaches 0, scaling
in excellent agreement with Eq. (2.16). When N < N,, the bias is not sufficient
to give the mutants a substantial advantage: the process is dominated by drift
and the fixation-time distribution has large skew «; ~ 1.807, as found in the

preceding section. For N > N,, selection takes over, the cumulants approach 0,
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Figure 2.3: Scaling of the skew of the fixation-time distribution on the 1D lattice
with non-neutral fitness. Data points show numerical calculation of the skew for
various fitness levels. The solid lines are the predicted scaling given in Eq. (2.19)
with exponent g = 1/2 for each value of fitness r. For small N (and small enough
r), the skew is that of a random walk, namely «; = 1.807, as shown by the dashed
line. For large N, the skew «3 ~ 1/ VN with an r-dependent coefficient.

and the distribution becomes normal. A similar crossover appears in the study
of the fixation probability, where a transition from ¢; ~ 1/N to ¢; ~ 1 — 1/r is
seen when N passes a critical system size (that is slightly different than N,). For
large fitness r > 1, the ansatz Eq. (2.19) captures the scaling behavior if we use
an exponent g = 1/2. Direct numerical simulations of the process confirm that,
for any r > 1, the fixation time on the 1D lattice has an asymptotically normal

distribution [Figure 2.2(b)].

The random walk approximation allows us to find the asymptotic scaling
of the fixation-time cumulants, but ignores the heterogeneity of waiting times
present in the Moran process. Using visit statistics we can compute the cumu-

lants exactly with Eq. (2.8) and rigorously prove they vanish as N — oo, ver-
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ifying that the waiting times have no influence on the asymptotic form of the

distribution. Details are provided in the Appendix, Section 2.9.4.

Our analysis of the 1D lattice reveals an intriguing universality property of
its fixation-time distribution. For any value of relative fitness r other than r = 1,
the fixation-time distribution approaches a normal distribution as N — . Thus,
for r # 1 the asymptotic shape of the distribution is universal and independent

of r (though bear in mind, its mean and variance do depend on r).

When r = 1, corresponding to precisely neutral fitness, the unbiased random
walk yields a qualitatively different distribution with considerably larger skew.
This qualitative change as r passes through unity leads to a discontinuous jump

in the skew atr = 1.

As one might expect, the discontinuity stems from passage to the infinite-N
limit. For finite but large N, the distribution varies continuously with r, though
our numerical results indicate that the sharp increase in skew still occurs very
close to r = 1. We will see in the next section that the discontinuity and highly
skewed distribution at neutral fitness persist when we alter the network struc-

ture from a locally connected 1D lattice to a fully connected complete graph.

24 Complete Graph

Next we consider the Moran process on a complete graph, useful for modeling
well-mixed populations in which all individuals interact. By similar reasoning

to above, given m mutants the probability of adding a mutant in the next time
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step is
rm N-m

= . , 2.20
) rm+N-m N-1 ( )

while the probability of subtracting a mutant is

d,=_—N-m . _m (2.21)
rm+N-m N-1

Interestingly, as we will see in this section, these transition probabilities give
rise to a fitness dependent fixation-time distribution, in stark contrast to the

universality of the normal distribution observed on the 1D lattice.

2.4.1 Neutral Fitness

Again we begin with neutral fitness r = 1. Now b,, = d,, = (Nm — m*)/(N* — N).
The eigenvalues of this transition matrix also have a nice analytical form:

ommr ) N1 (2.22)
N(N -1)

The asymptotic form of the sums §, = Zﬁj(ﬂm)‘", can be found by taking the

partial fraction decomposition of (1,,)™ and evaluating each term individually.

The resulting cumulants are

311/2
(7-(2 _ 9)n/2

xC1r ), (2””_ o 1) (¢ (1+ 1) - 1].

Our knowledge of the eigenvalues also allows us to obtain a series expression

ke = (n—1)! (2.23)

for the asymptotic distribution using Eq. (2.3). For N — oo the standardized

distribution is,

Thr(ot+p) = o ) (=D G+ D2j+ 1)
J=1 (2.24)

X exp [j(j + D(cot + 1],
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Figure 2.4: Fixation-time distributions on the complete graph with N = 100
nodes and neutral fitness (r = 1) obtained from 10° simulation runs. The distri-
bution is standardized to zero mean and unit variance. The solid curve is the

theoretical distribution obtained by numerically evaluating the infinite series in
Eq. (2.24) for each value of 1.

where to leading order in N the mean and standard deviation are u = N* and
o = c,N?, with ¢, = \/m This distribution was previously found using
a different approach by Kimura, who also computed the first few fixation-time
moments [43]. We have extended these results, obtaining the cumulants to all

orders. Figure 2.4 shows that the predicted asymptotic distribution agrees well

with numerical experiments.

The numerical value of the fixation-time skew for the Birth-death process on
the complete graph is k3 = 6 V3(10—7%)/(x>~9)*? ~ 1.6711, slightly less than that
for the 1D lattice. This decrease is the result of two competing effects contribut-
ing to the skew. First, since the birth and death transition probabilities are the
same, the process is a random walk, which has a highly skewed fixation-time
distribution, as shown above. The average time spent in each state, however,

varies with m. For instance, whenm = 1or N — 1, b,, — O for large N. But if
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m = aN for some constant 0 < @ < 1 independent of N, then b,, approaches a

constant.

Intuitively, the beginning and end of the mutation-spreading process are
very slow because the transition probabilities are exceedingly small. To start,
the single mutant must be selected by chance to give birth from the N available
nodes, a selection problem like finding a needle in a haystack. Similarly, near
fixation the reproducing mutant must find and replace one of the few remaining

non-mutants, again choosing it by chance from an enormous population.

The characteristic slowing down at certain states is reminiscent of “coupon
collection”, as discussed earlier. Erdés and Rényi proved that for large N, the
normalized time to complete the coupon collection follows a Gumbel distribu-

tion [36], which we denote by Gumbel(e, 8) with density
f@) =g e " exp(—e V), (2.25)

For the Moran process, each slow region is produced by long waits for the ran-
dom selection of rare types of individuals: either mutants near the beginning
of the process or non-mutants near the end. In the next section we show that
the two coupon collection regions of the Bd process on a complete graph lead to
fixation-time distributions that are convolutions of two Gumbel distributions.
In the case of neutral fitness, these Gumbel distributions combine with the ran-

dom walk to produce a new highly skewed distribution with cumulants given

by Eq. (2.23).
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2.4.2 Non-neutral fitness

We saw in Section 2.3.2 that when the average time spent in each state is con-
stant or slowly varying the fixation-time distribution is asymptotically normal.
Birth-death dynamics on the complete graph, however, exhibit coupon collec-
tion regions at the beginning and end of the process, where the transition prob-
abilities vanish. We begin this section with a heuristic argument that correctly
gives the asymptotic fixation-time distribution in terms of independent itera-

tions of coupon collection.

Differentiating b,, with respect to m, we find the slope near m = 0is (r + 1)/N,
while the slope near m = N has magnitude (r + 1)/(rN) for N > 1. The transition
rates approach zero at each of these points, so we expect behavior similar to
coupon collection giving rise to two Gumbel distributions. Since the slope is
greater for m near 0 than for m near N, the Moran process completes its coupon

collection faster near the beginning of the process than near fixation.

This heuristic suggests that the asymptotic fixation time should be equal in
distribution to the sum of two Gumbel random variables, one weighted by r,
which is the ratio of the slopes in the coupon collection regions. Specifically, if

T is the fixation time with mean u and variance 0%, we expect
T—-ua G+rG
- b
o V1 + r?

d . .
where — means convergence in distribution for large N. Here G and G’ de-

(2.26)

note independent and identically distributed Gumbel random variables with
zero mean and unit variance. It is easy to check that the correct distribution is

Gumbel(—y V6/x, V6/7), where v ~ 0.5772 is the Euler-Mascheroni constant.
Let us make this argument more rigorous. Previous theoretical analysis
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Figure 2.5: Fixation-time distributions on the complete graph with N = 5000
nodes and non-neutral fitness (r > 1) obtained from 10° simulation runs. All
distributions are standardized to zero mean and unit variance. Solid curves are
the theoretical predictions obtained by numerical convolution of two Gumbel
distributions, one weighted by r. Distributions are shown for (a) » = 1.1 and
(b) r = 5.0. For larger r, the distribution has larger skew and a slightly sharper
peak.

showed that in the infinite fitness limit, the fixation time has an asymptotically
Gumbel distribution [33]. This result can be recovered within our framework,
since when r = oo it follows that d,, = 0, so the eigenvalues of the transition
matrix are just 4, = b, = (N — m)/(N — 1) and the cumulants can be directly

calculated using Eq. (2.4).

For large (but not infinite) fitness, the number of mutants is monotonically
increasing, to good approximation, since the probability that the next change in
state increases the mutant population is r/(1 + r) = 1. The time spent waiting in
each state, however, changes dramatically, especially near m = 1. Here, b; — 0
for large N, in stark contrast to the infinite fitness system where b, — 1. The
time spent at each state, #,, is an exponential random variable, &(b,, + d,,). In this

approximation each state is visited exactly once, so the total fixation time is a
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sum of these waiting times:

N-1

T ~ Z Eby, + dy). (2.27)

m=1
But this sum of exponential random variables has density given by Eq. (2.3),

with the substitution A,, — b,, + d,,. Thus, the cumulants of (T — u)/o are

1+7" (n—1)(n)
Ky =

=T < zaye (2.28)

which are exactly the cumulants corresponding to the sum of Gumbel random
variables given in Eq. (2.26). In the limit » — oo, the first term in Eq. (2.28)
becomes 1, and the cumulants are those for a single Gumbel distribution, in

agreement with previous results [33].

Remarkably, these cumulants are exact for any r > 1, not just in the large-r
limit. We can see this directly for the skew &3 using the visit statistics approach,
computing the asymptotic form of Eq. (2.8) with the complete graph transition
probabilities, Egs. (2.20) and (2.21). Details of the asymptotic analysis are pro-
vided in the Appendix, Section 2.9.5. Numerical simulations of the Moran pro-
cess corroborate our theoretical results. As shown in Figure 2.5, for r = 1.1 and
r = 5 the agreement between simulated fixation times and the predicted convo-
lution of Gumbel distributions is excellent, at least when N is sufficiently large.
Again, our calculations show a discontinuity in the fixation-time distribution at
r = 1. In particular, the r — 1 limit of the cumulants for non-neutral fitness
in Eq. (2.28) is not the same as the cumulants for neutral fitness found in the

preceding section [Eq. (2.23)].

For smaller networks, it is fascinating to see how the results converge to
the asymptotic predictions as N grows. Figure 2.6 shows how the skew of the

tixation-time distribution depends on r and N for the complete graph. As dis-
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Skew

Figure 2.6: Fitness dependence of fixation-time skew for the Moran Birth-death
process on the complete graph. The skew is shown for r > 0 and is invariant
under r — 1/r. For finite N, the skew does not have a discontinuity, but does
show non-monotonic dependence on fitness r. In particular, for a given N, there
is a certain fitness level with minimum skew. As N — oo, we see non-uniform
convergence to the predicted skew given by «; in Eq. (2.28), leading to the dis-
continuity at r = 1. Moreover, for fixed r, the convergence to the N = co skew is
non-monotonic.

cussed in Section 2.2.4, the fixation-time distributions for these systems are in-
variant under r — 1/r. Therefore we show the skew for all » > 0, to emphasize
the intriguing behavior near neutral fitness, where r = 1. We find that non-
uniform convergence of the fixation-time skew leads to the discontinuity pre-
dicted at r = 1. For finite N, the skew is a non-monotonic function of r and has
a minimum value at some fitness rpin(N). Furthermore, at fixed r, the conver-
gence to the N = co limit is itself non-monotone. Though beyond the scope of
the current study, further investigation of this finite-N behavior would be worth

pursuing.
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2.5 Partial fixation times

In many applications, we may be interested in the time to partial fixation of the
network. For instance, considering cancer progression [44—46] or the incubation
of infectious diseases [33], symptoms can appear in a patient even when a rela-
tively small proportion of cells are malignant or infected. We therefore consider
T,, the total time to first reach aN mutants on the network, where 0 < o < 1.
The methods developed in Section 2.2 apply to these processes as well. For the
eigendecomposition approach we instead use the sub-matrix of Q. containing
the first N rows and columns. In calculations involving the numerical recur-
rence relations or visit statistics, we simply cut the sums off at aN instead of N

and for the latter, replace w;,,.., (r, N) with w; ;... (r, @N).

2.5.1 One-dimensional lattice

Truncating the Moran Bd process on the 1D lattice by a factor @ has no effect
on the asymptotic shape of the fixation-time distributions. In both the neutral
fitness system and the random walk approximation to the non-neutral fitness
system, the transition matrix has no explicit dependence on the state or system
size [aside from proportionality factors that cancel in Eq. (2.4)]. Thus, the eigen-
values are identical to those calculated previously, but correspond to a smaller
effective system size aN. Taking the limit N — oo therefore yields the same

asymptotic distributions found in Section 2.3.
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2.5.2 Complete graph: truncating coupon collection

The complete graph exhibits more interesting dependence on truncation. Since
the transition probabilities have state dependence, the eigenvalues change with
truncation (they don’t correspond to the same system with smaller effective N).
Our intuition from coupon collection, however, lets us predict the resulting dis-

tribution.

First consider non-neutral fitness. Then there are two coupon collection
stages, one near the beginning and another near the end of the process, and
together they generate a fixation-time distribution that is a weighted convolu-
tion of two Gumbel distributions. The effect of truncating the process near its
end should now become clear: it simply removes the second coupon collec-
tion. The truncated process stops before the mutants have to laboriously find
and replace the last remaining non-mutants. Therefore, we intuitively expect
the fixation time for non-neutral fitness to be distributed according to a single

Gumbel distribution, regardless of fitness level.

The only exception occurs if r = oo; then no coupon collection occurs at the
beginning of the process either, as the lone mutant is guaranteed to be selected
to give birth in the first time step, thanks to its infinite fitness advantage. Thus,
when fitness is infinite and the process is truncated at the end, both coupon

collection phases are removed and the fixation times are normally distributed.

Similar reasoning applies to the Birth-death process with neutral fitness. It
also has two coupon collection regions, one of which is removed by truncation.
In this case, however, the random walk mechanism contributes to the skew of

the overall fixation-time distribution, combining non-trivially with the coupon
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Figure 2.7: Variation of fixation-time skew «3; with fitness level r and trunca-
tion factor « for different network structures. (a) The skew of the fixation-time
distribution is plotted versus fitness for the 1D lattice (black solid line), com-
plete graph (red dashed line), and complete graph with truncation (green dot-
ted line). The skew is shown for all » > 0 and is invariant under » — 1/r. When
r # 1 and r < oo, the fixation-time distribution is normal for the 1D lattice,
and hence has zero skew (k3 = 0). The distribution becomes a fitness-weighted
convolution of Gumbel distributions for the complete graph, and a single Gum-
bel distribution for the complete graph with truncation (for any @ < 1). Each
curve jumps discontinuously at r = 1, where the distributions become highly
skewed with «3 > 1.5. The inset shows a blow-up of the neutral fitness results,
specifying the skew for each case. On the complete graph with truncation, the
skew is continuously variable at = 1, taking on an interval of values between
6 V3(10 — 72)/(n* — 9)*% ~ 1.671 when @ = 1, and V3 ~ 1.732 when « = 0. This
range is indicated by the green vertical line. The truncated fixation time on the
complete graph has a second discontinuity at r = co (shown here at r = 0, by
exploiting the r — 1/r invariance). At this discontinuity the functional form of
the distribution jumps from Gumbel to normal. (b) The fixation-time skew for
the complete graph with neutral fitness, plotted versus the truncation factor a.
These points correspond to the green vertical line in panel (a) at r = 1.

collection-like process. We find that the skew of the fixation time depends on
the truncation factor a, varying between 6 V3(10 — 7%)/(x* — 9)*> ~ 1.6711 when
a =1,and V3 ~ 1.732 when a = 0. A derivation of this @ — 0 limit is given in

the Appendix, Section 2.9.5.
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2.5.3 Summary of main results

The main results from Sections 2.3-2.5 are summarized in Figure 2.7, which
shows the asymptotic fithess dependence of fixation-time skew for each net-
work considered in this chapter. We again show the skew for all » > 0 (not
just r > 1) to emphasize the discontinuities at zero, neutral, and infinite fitness.
On the 1D lattice, independent of the truncation factor @, the Bd process has
normally distributed fixation times, except at neutral fitness where the distri-
bution is highly skewed. The complete graph fixation-time distributions are
the weighted convolution of two Gumbel distributions for r # 1, again with a
highly skewed distribution at » = 1. With truncation by a factor a < 1, the dis-
tribution for the complete graph is Gumbel for 1 < r < o0, and normal for r = 0.
With neutral fitness the fixation distribution is again highly skewed, with skew

dependent on the truncation factor «.

2.6 Extensions

It is natural to ask whether our results are generic; do the same fixation-time dis-
tributions appear in other models of evolutionary dynamics? Here we explore
the robustness of our results to various changes in the model update dynamics
and the network topology. The main finding is that our results are insensitive
to these changes, at least qualitatively. The distributions typically remain right-

skewed and even follow the same functional forms derived above.
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2.6.1 Other update dynamics

Two-fitness Moran process

The Moran Bd processes considered above require a single fitness level, desig-
nating the relative reproduction rates between mutants and non-mutants. An-
other common model is the Moran Birth-Death (BD) process, which has a sec-
ond fitness level 7 measuring the resilience of mutants versus non-mutants dur-
ing the replacement step [17]. Taking this into account, when a mutant or non-
mutant is trying to replace its neighbors, mutants are replaced with probability
proportional to 1/7. Taking # = 1 returns to the model used throughout the
preceding sections. The two-fitness model may better capture the complexity
of real-world evolutionary systems but does not generally give rise to qualita-
tively different fixation-time distributions. For brevity, we simply discuss the
resulting fixation-time distributions for the BD model. Details supporting the

results quoted below are provided in the Appendix, Section 2.9.6.

Writing down the transition probabilities for the Moran BD process, we find
that b,,/d,, — ri as N — oo. This motivates the definition of an effective fitness
level, ro¢ = r7. When reg # 1 our results from above translate to this model. On
the 1D lattice the fixation times are normally distributed, while on the complete
graph the fixation time distribution is a weighted convolution of Gumbel distri-
butions G + (r/7)G’, with relative weighting r/7 (instead of r). When r¢ = 1, the
process is asymptotically unbiased and we expect a highly skewed fixation-time
distribution. This is indeed the case, although numerical calculations indicate

there is an entire family of distributions, dependent on r = 1/7.

It is interesting to contrast the above observations with a result in evolu-
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tionary dynamics known as the isothermal theorem. The theorem states that
for 7 = 1, the Moran process on a large class of networks, known as isother-
mal graphs, has fixation probability identical to the complete graph [13]. Recent
work has shown that this breaks down if # # 1; the fixation probability develops
new network dependence [17]. In contrast, even isothermal graphs (including
the complete graph and 1D lattice) have fixation-time distributions that depend
on network structure. The two-fitness BD model breaks the universality in fix-
ation probabilities predicted by the isothermal theorem, but leads to the same

tamily of fixation distributions that arise due to network structure.

The Death-Birth Moran process

A two-fitness Death-Birth (DB) Moran process is also frequently used to study
evolutionary dynamics. In this model, the birth and death events are reversed
in order. At each time step a node is chosen at random, with probability propor-
tional to 1/7, and one of its neighbors is chosen with probability proportional to
r. The first individual dies and is replaced by an offspring of the same type as
the neighbor. The process continues until the mutation either reaches fixation

or goes extinct.

The BD and DB processes obey a duality property [17]. Starting from the BD
transition probabilities, if we swap the two fitness levels r < 7 and substitute
m — N —m (which swaps mutants and non mutants), we obtain the DB transi-
tion probabilities. Therefore, the transition matrix for the DB model is identical
to that for the corresponding dual BD process, but has the main-, super-, and
sub-diagonal entries reversed in order. This leaves the matrix eigenvalues un-

changed, so that the DB process has identical fixation-time distributions to those
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given in the preceding section for the dual BD process.

In principle, the correspondence between DB and BD fixation times could
break down for the truncated process considered in Section 2.5. In practice,
however, the results are again generally identical. For the truncated DB pro-
cess, the fixation times on the 1D lattice remain normally distributed. On the
complete graph, one of two coupon collection regions is removed by truncation

leading to fixation-times following a single Gumbel distribution.

One exception, where the dual models yield different results under trun-
cation, is at infinite fitness. As in Section 2.5, at infinite fitness (r — o) the
BD model performs a single coupon collection near fixation, which is cut off
by truncation, leading to a normal fixation-time distribution. In contrast, in
the dual infinite-fithess DB model (7 — o0) the coupon collection occurs at the
beginning of the process and even under truncation the Gumbel fixation-time
distribution is preserved. This effect was previously observed by Ottino-Loffler

et al. [33].

2.6.2 Other networks: Approximate results via mean-field tran-

sition probabilities

While the 1D lattice and complete graph provide illustrative exactly solvable
models of the fitness dependence of fixation-time distributions, other networks
may be more realistic. On more complicated networks the analytical tools de-
veloped here fail because the transition probabilities (the probability of adding

or subtracting a mutant given the current state) depend on the full configu-
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Figure 2.8: Fixation-time distribution on an Erdés-Rényi random graph with
N = 100 nodes, edge probability p = 1/4, and fitness r = 2, obtained from
10° simulation runs (the same graph is used for each run). The distribution is
standardized to zero mean and unit variance. The solid curve is the theoretical
prediction for the complete graph, obtained by numerical convolution of two
Gumbel distributions, one weighted by r. For these parameters, the random
graph fixation time is captured by the mean field approximation.

ration of mutants, not just the number of mutants. Such systems can still be
modeled as a Markov process, but the state space becomes prohibitively large.
Fortunately, for certain networks the effect of different configurations can be av-
eraged over, giving a mean-field approximation to the transition probabilities.
This approach has been used on a variety of networks to calculate fixation times
[4, 30, 32, 33]. In this section we discuss how such mean-field approaches can
be used to calculate fixation-time distributions for evolution on several different

networks.

Erd6s-Rényi random graph

We start with the Erd6s-Rényi random graph, for which the mean-field tran-

sition probabilities were recently estimated [4]. The result is identical to the
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complete graph probabilities [Egs. (2.20)-(2.21)] up to a constant factor 1 -2/Np,
which depends on the edge probability p for the network. This correction is
important for computing the mean fixation time, but does not affect the shape
of the fixation-time distribution, since proportionality factors cancel in Eq. (2.4).
Therefore we expect the asymptotic fixation-time distribution will be a weighted
sum of two Gumbel distributions. This prediction holds for infinite fitness,
where the fixation time on an Erd8s-Rényi network has a Gumbel distribution

[33].

Preliminary simulations show that the Erd6s-Rényi network has the ex-
pected fixation-time distributions for p = 1/4 and r = 2 (see Figure 2.8). Further
investigation is required to determine the range of fitness and edge probabilities
for which this result holds asymptotically (as N — o). For constant p, the aver-
age degree is proportional to the system size (k) = pN, similar to the complete
graph. It may be, however, that for some p and r the mean-field approximation
is not sufficient to capture the higher-order moments determining the shape of
the distribution. It is also traditional to consider N-dependent edge probabilities
with p(N) chosen, for example, to fix (k). It is unclear whether such graphs will
behave like the ring (due to their sparsity), like the complete graph (due to their
short average path length), or somewhere in between these extreme cases. In the
same vein, which other networks admit accurate mean-field approximations to
the transition probabilities? Do many complex networks have fixation-time dis-

tributions identical to the complete graph?
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Stars and superstars: evolutionary amplifiers

Another nice approximation maps the Moran process on a star graph, a simple
amplifier of selection, onto a birth-death Markov chain [23]. The resulting tran-
sition probabilities exhibit coupon collection regions, similar to the complete
graph. The ratio of slopes near these regions (few mutants or non-mutants),
however, is 2. Our heuristic predicts the fixation-time distribution on the star
is G + r*G’. In addition to amplifying fixation probability, the star increases
tixation-time skew. This raises a broader question: do evolutionary amplifiers
also amplify fixation-time skew? Computing fixation times for evolutionary dy-
namics on superstars (which more strongly amplify selection [13]) remains an

open problem.

Growth of cancerous tumors: evolutionary dynamics on d-dimensional lat-

tices

Mean-field arguments have also been applied to d-dimensional lattices in the
infinite-fitness limit [32, 33]. In this limit the mutant population grows in an
approximately spherical shape near the beginning of the process and the popu-
lation of non-mutants is approximately spherical near fixation. The surface area
to volume ratio of the d-dimensional sphere gives the probability of adding a
mutant. With finite fitness, non-mutants can now replace their counterparts
and the surface of the sphere of growing mutants roughens [44]. For near-
neutral fitness, the configuration of mutants resembles the shape of real cancer-
ous tumors. Perhaps mean-field approaches can draw connections between the
titness-dependent roughness of growing mutant populations and fixation-time

distributions for evolution on lattices.
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Table 2.1: Asymptotic fixation-time statistics for the Moran Birth-death and
Death-birth processes on the complete graph and the 1D lattice. Together with
the mean and variance, the standardized distributions give a complete statistical
description of the fixation time. The mean and variance given are to leading
order in N for each case.

Asymptotic Fixation-Time Statistics

Network Fitness Mean Variance Distribution
1D Lattice r=1  iN° 5 N° Highly Skewed
[Egs. (2.11) & (2.12)]

r+l A72 (r+ (2 +r+1) 73
r>1 2(r—1)N WN N(O, 1)

2

Complete Graph r=1  N? (% - 3) N*  Highly Skewed
[Eqs. (2.23) & (2.24)]

r+l 2r+1)? A2 /
r>1 = NlogN sV G+rG

2.7 Summary

In this chapter we have obtained the first closed-form solutions for the fitness
dependence of fixation-time distributions of the Moran Birth-death process on
the 1D lattice and complete graph. Previous analyses were restricted to the
limit of infinite fitness, with some partial results for neutral fitness. To reit-
erate our new results: There is a dichotomy between neutral and non-neutral
titness. When fitness is neutral, the distribution always exhibits a discontinuity;
whether the graph is complete or a 1D lattice, the skew jumps up discontinu-
ously in either case. On the other hand, when fitness is non-neutral but other-
wise arbitrary, the results depend strongly on network topology. Specifically, on
the complete graph the fixation-time distribution is a fitness-weighted convolu-
tion of Gumbel distributions and hence is always skewed, whereas on the 1D

lattice the distribution is normal and hence is never skewed.
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Together with the mean and variance, the distributions derived here give a
complete statistical description of the asymptotic fixation time (see Table 2.1).
Our analysis revealed that these results are robust in the sense that similar dis-
tributions arise under truncation, in some other models, and in some other net-

work structures, including the Erd6s-Rényi random graph.

2.8 Future Directions

Though the model we have focused on here (the Moran Birth-death model) is
deliberately simplified, we expect our results will be useful in applications. For
instance, the theory should allow a more refined analysis of the rate of evolu-
tion, by extending the seminal work by Kimura, whose neutral theory of evolu-
tion predicted a molecular clock [47]. In his model, neutral mutations become
fixed at a constant rate, independent of population size. This result, with some
refinements, is now used widely in estimating evolutionary time scales [48].
The fixation-time distributions discussed here should allow one to go beyond
Kimura’s classic analysis to capture the full range of evolutionary outcomes,
by providing information about the expected deviations from the constant-rate
molecular clock, as well as how this prediction is affected by population struc-
ture. More generally, it would be interesting to study the implications of these

distributions for rates of evolution at various fitness levels.

Furthermore, our results provide concrete predictions that are testable via
bacterial evolution experiments. Does the same fitness and network structure

dependence of fixation-time distributions arise in real systems?

Future theoretical studies could analyze random networks and lattices more
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deeply, as well as stars and superstars, the prototypical evolutionary amplifiers
[13]. More sophisticated models involving evolutionary games are also of inter-
est. These have skewed fixation-time distributions [29] whose asymptotic form
remains unknown. Finally, we hope that methods developed here will prove
useful in other areas, such as epidemiology [7], ecology [6], and protein folding
[49], where stochastic dynamics may similarly give rise to skewed first-passage

times.

2.9 Appendix

2.9.1 Visit Statistics

In this Appendix we formulate the visit statistics approach. We first provide
further details in the derivation of the series expression for the fixation-time cu-
mulants given in Eq. (2.8), and then explicitly compute the weighting factors
that appear in this expression to third order. This result requires constant selec-
tion, b,,/d,, = r, as is the case for the Moran process. Under constant selection
the transient transition matrix can be written as Q. = QrwD, where D is diago-
nal with elements D,,,, = b,, + d,, and Qg is the transition matrix for a random
walk,

r
[QRW]nm = _6m,n+l + 6m,n—1 - 5m,n' (229)

1+r 1+r

Since we are interested in the fixation-time distribution, we condition on fixation
occurring. As discussed in Section 2.2.2 (see also Section 2.9.2 below), the condi-

tioned transition matrix Q. = S Q.. S !, where S is diagonal with §,,,, = 1 -1/r".
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Combining these results, we have that
Qu =S Qrw S™'D, (2.30)

where we have used the fact that both D and § are diagonal matrices, and there-

fore commute.

We found in Section 2.2.2 that the moments of the fixation time T can be
expressed as,

Wy = E[T"] = (=1)"'n! 1 Q" pe(0), (2.31)

where 1 is a row vector of ones and p(0) is the initial state of the system, with
[Per(0)];n = Omm, for my initial mutants. To compute these moments, we need
the inverse Q;' = D7'S Q.1 S~!. Since Qgy is a tridiagonal Toeplitz matrix, its
inverse has a well-known form [50]:
(r+ D -DE-rh)
: if i<,
ri(r=1N-1)

(—Qrw)i; = , , (2.32)
(r+ D = DN =71

: if i> 7.
dr-nov-1 L7
Hence the matrix V = —§ Q.S ! has elements
i _ 2¢(,-N _ ..j
(r+ D = 1(r r’) if i<

i(r— i — )N —
Vi = r'(r— D7 = 1)V - 1) (233)

r+ D = DN =71
ri(r—=1D@N -1)

The matrix V, sometimes called the fundamental matrix, encodes the visit statis-

if i > .

tics of the conditioned random walk: V;; is the mean number of visits to state
i from state j before hitting the absorbing state N [51]. The Moran process has
the same visit statistics, but on average spends a different amount of time, des-

ignated by (b; + d;)”!, waiting in each state.

While one could now compute the moments y, in Eq. (2.31) directly, we find

that the cumulants yield nicer expressions. Furthermore, the normal and Gum-
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bel fixation-time distributions, predicted by our simulations and approximate
calculations, are more simply described in terms of their cumulants. The non-
standardized cumulants «, are linear combinations involving products of mo-
ments whose orders sum to n. Thus each term in the cumulants has n powers of
D producing n factors of (b;+d;)”! with a weight designated by the visit statistics.
With this observation, it is clear the standardized cumulants «, = «,/ (Ké)”/ 2 have
the form given in Eq. (2.8),

N-1
WZ ineein (r, N|m0)

Z (bil + dil)(biz + diz) e (bin + din)

i150250in=1

1w Nimg) )"
by (b, + d,)(bj + dj)

ky(N) =

, (2.34)

where Wi in(r, N|my) are the weighting factors coming entirely from the visit
statistics of a biased random walk (starting from m; initial mutants). As in the
sections above, we take the initial state to be a single mutant my, = 1, and will
suppress the dependence of the weighting factors on initial condition, writing
wi i (rN) instead. Generalizations to other cases are straightforward and are

discussed briefly below.

We emphasize that even without explicit knowledge of the factors

n
-y

w (r,N), this formulation can be extremely useful. For instance when b; + d;
is constant, these are just the cumulants for the (possibly biased) random walk,
which were computed in Section 2.3 to approximate the Moran process on the
1D lattice. In particular, the sums over weighting factors obtained from setting
bi + d; = 1 in Eq. (2.34) have leading asymptotic form given by Eq. (2.14). This
fact can be used to bound the cumulants even when b; + d; # 1, which in some
cases is sufficient to determine the leading asymptotic behavior. When this is

not possible, the weighting factors must be computed explicitly. We now turn

our focus to derviing wfj(r, N) and w?jk(r, N).
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We can compute the weighting factors by writing out the matrix multiplica-

tion of Q;!. First note that

- V .
-0 = —L-. 2.35
[ tr ]_] bl + dl ( )
Then the first three moments of the fixation time are,
N
Vil
Hr= ; bl‘ + dl' ’
N
ViV

= AL (2.36)

2 )
by (b, + dl)(bj + dj)

EN: ViiVicVia
T (b +d;)(b; + d;)(by + dy)

M3 =6

The corresponding non-standardized cumulants are given by the usual formu-
las, &, = wp — puf and &} = p3 — 3pop; + 243, In terms of the visit numbers the
non-standardized cumulants become

N 2ViVi = VaVy
£ (bi+d)(b; +d))’

/

K~H =

(2.37)

o = i 6ViiViVia =6 Vi;ViiVia + 2V Vi1 Vi

P AT i dby + d) b+ do)
From here we can read off the weighting factors accordingly. For convenience,
we can choose w7,(r, N) and wfjk(r, N) to be symmetric by averaging the numera-
tors in Eq. (2.37) over the permutations of the indices. Then,

1
Wizj(r’ N) = 5 Z 2Veme) Voo = Vean Voo,

oellp

1
W?jk(r ,N) = 6 Z 6 Vo)o) Voo Vodri — 6 Voo Vo)t Vot + 2 Vo Vo) Vesis

O'EH3

(2.38)

where I1, is the set of permutations of {i, j} and I1; are the permutations of {i, j, k}.
We note that these expressions also hold for general initial condition by replac-

ing the subscript 1 with m,. Plugging Eq. (2.33) into this expression for wfj we
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obtain, after some algebra,

(r+ D?(r/ = DN = r)?
riti(r—= 12N = 1)2

wii(r,N) = (2.39)

for i > j. Since we have constructed wl.zj(r, N) to be symmetric, when j > i the
formula is identical with i and j exchanged. Similarly, using Eq. (2.33) together

with the expression for wfjk in Eq. (2.38) leads to

(r+ D3 = 1)@ = DN = )2 (N = 1)
pititk (r _ 1)3(rN _ 1)3 ’

wi(r,N) =2 (2.40)

fori > j > k. Again, the formula for different orderings of the indices i, j, k
is the same with the indices permuted appropriately, so that wfjk is perfectly

symmetric.

This completes the derivation of the visit statistics expression for the
fixation-time cumulants. Together, Eqgs. (2.34), (2.39) and (2.40) give a closed
form expression for the fixation-time skew which is manageable for the purpose
of asymptotic approximations. The diagonal terms in the higher-order weight-
ing factors are also particularly simple, w. .(r, N) = (n — 1)!V". While we will not
explicitly compute them, the off diagonal weights w7, ; (r, N) can be found by
a straightforward generalization of the above procedure. Example applications
of this approach are given in Sections 2.9.4 and 2.9.5, where we show that all cu-

mulants of the fixation time vanish for the Moran process on the 1D lattice and

compute the asymptotic skew for the Moran process on the complete graph.

2.9.2 Birth-death Markov chain conditioned on fixation

For both the numerical recurrence relation and the visit statistics approach, it is

useful to consider the birth-death Markov chain conditioned on hitting N, which
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has an identical fixation-time distribution to the unconditioned process. This
Markov chain has new conditioned transition probabilities denoted b, and d,,. If
X, is the state of the system at time 7, then by =PX,=m — X;1; =m+ 1 X = N)
and d,, is defined similarly. Applying the laws of conditional probability, we

find that

j _ PXii=m+ 1 AND X, =m AND X, = N)
" P(X, = m AND X,, = N)

_ PXeo=NIX,=m+1)

~ P(X, = NIX, = m)

_ PXeo =NIX,=m+1)

T PXo=NX,=m) "

P(X,s1 = m+ 1|X, = m) (2.41)

where b,, is the transition rate in the original Markov chain. Following the same

procedure, we find the backward transition probabilities are related by

7 _PX =N, =m-1)

= . 2.42
P KXo = NIX, = m) (2.42)

The conditioned Markov chain has a few nice properties. First, the fixation prob-
ability in the conditioned system is one, by construction. This is particularly
helpful for accelerating simulations of the Moran process. Conditioning the
transition probabilities also accounts for the normalization of the fixation-time
distribution. Furthermore, this operation only changes the relative probability
of adding versus subtracting a mutant. The probability that the system leaves a
given state is unchanged:

P(X,., =m+ 1 AND X, = m AND X., = N)
P(X, = m AND X., = N)

, PXin=m—1AND X, =m AND X, = N)
P(X, = m AND X., = N)

_ P(Xps =m AND X, = m AND X,, = N) (2.43)
P(X, = m AND X., = N)

=1-PXs1 = mlX;, = m)

by +d, =

=1

=b, +d,.
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This invariance, along with Egs. (2.41) and (2.42), shows that conditioning the
Markov chain is equivalent to a similarity transformation on the transient tran-

sition matrix with a diagonal change of basis:
Qu=59:5"  Sum=PXe=NIX, = m)Spn, (2.44)

where Q, is the birth-death transition matrix with absorbing states removed as

defined in Section 2.2.

For the Moran Birth-death process considered in this chapter, b,,/d,, = r. In
this case, by setting up a linear recurrence it is easy to show that the probability

of fixation, starting from m mutants, is

1-1/r
X = N|X, = = —) 2.4
P( |X; = m) =1/ (2.45)
so that
- | ~ =
b= ——"b,,  d,="—"TLa, (2.46)
rmtl rm—1

Note that we can scale the similarity matrix S by an overall constant, so it is
convenient to choose S,, = (1 — 1/r)d,,,. For the two-fitness Moran Birth-
Death model discussed in Section 2.6.1 fixation probabilities derived by Kaveh
et al. [17] can be used together with Eq. (2.44) to condition the Markov chain on

fixation.

2.9.3 Recurrence relation for fixation-time skew

With the conditioned transition probabilities derived in Section 2.9.2, there is
a reflecting boundary at m = 1, which lets us set up a recurrence relation for

the fixation-time moments. This derivation follows the method described by
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Keilson in Ref. [41]. Let S ,,(?) be the first-passage time densities from state m to

state m + 1. Clearly, S(¢) has an exponential distribution,
S1(t) = bre ™. (2.47)

From m > 1, the state m + 1 can be reached either directly, with exponentially
distributed times, or indirectly by first stepping backwards to m — 1, returning

to m, and then reaching m + 1 at a latter time. Thus, the densities S () satisfy
S (@) = byt 4 g o~ Omtdnt g (1) 5 S (D), (2.48)

where the symbol * denotes a convolution. This equation can be solved by
Fourier transform to obtain

b
m + Jm - Jmsm—l(w) - lw

Sn(w) = (2.49)

We can compute a recurrence relation for the moments of the first-passage
time densities S,(7) by differentiating Eq. (2.49). Let u,, v, and vy, to be the
tirst, second, and third moments of §,,(7) respectively. Using the relations v,, =
—iS"(w = 0), &, = (=)>S"(w = 0), and ¢, = (-)*S"”"(w = 0), we find that

Vi = b (1 + dpyviney),

En = b2 bt +2(1 + dpy 1), (2.50)

ln = b, b dnlny + 6Dy 1 (1 + dyVi1) + 6(1 + dpyVin-1)’],
with boundary conditions vy = & = {y = 0. The recurrence relations in Eq. (2.50)
give the moments of incremental first-passage time distributions S ,(f). The total
fixation time, T is the sum of these incremental first-passage times. Thus, the
cumulants of T are the sum of the cumulants of the incremental times and the

skew of T can be expressed as,

N-1 N-1
k3(N) = Z L — 3V + ZVZJ/[Z &En — vi) . (2.51)
m=1
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Numerical computation of for «3(N) requires calculating the 3N moments and
carrying out the two sums in Eq. (2.51). By bottom-up tabulation of the incre-
mental moments, this procedure can be completed in O(N) time, asymptotically
faster than the eigenvalue decomposition and the exact series solution from visit

statistics.

2.9.4 Asymptotic Analysis for the 1D Lattice
Neutral Fitness

For our detailed asymptotic analysis, we will begin with the neutral fitness
Moran process on a 1D lattice with periodic boundary conditions. In this case,

the eigenvalues of the transition matrix describing the system are,

2 2
A,n:———cos(@), m=1,2,...,N—-1. (2.52)
N N N

From the eigen-decomposition of the Markov birth-death process described Sec-
tion 2.2.1, the standardized fixation-time cumulants are given by

N-1 n/2

K(N) = (n = 1)! (Z %)/[Z %] . (2.53)

m=1
Note that the constant factor 2/N cancels in Eq. (2.53), so we may equivalently
consider rescaled eigenvalues 1,, = 1 — cos(mn/N). To derive the asymptotic
cumulants, we compute the leading asymptotic behavior of sums

N-1

[1- Cos(mn/N)]n (2.54)

m=1
The function (1 — cos x)™ can be expanded as a Laurent series ;2 c;(n)x**™,

which is absolutely convergent for x # 0 in the interval (-2, 27). So the sum §,
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can then be expressed as

N—-1 oo

S, = Z

m=1 k

= 3" N/ P Hy - 20 (2.55)
k=0

— &E;I(ZH)NZ

m 2(k—n)
0 Ck(n)(ﬁ)

n o O(Nl(n—l))

where Hy, = YN_ m™ is the generalized harmonic number and in the last line

we used the asymptotic approximation

{2q) +OWN') ¢ >0,
HN,Zq = (256)

1-2q )
+ O(N~ <0.
2g + 1 ( ) 4=

It is easy to check that cy(n) = 2". Now the cumulants are «,(N) = (n - 1)!S,/S ni2

which for N — oo are

n n/2
= (n— 1)!(2 {(22n))/(22§§4))
Ten T
o (2.57)
= (- 22
(42

as reported in Section 2.3.1.

Non-neutral fitness

For non-neutral fitness, we showed in Section 2.3.2 that in the random walk
approximation the fixation-time distribution is asymptotically normal. Here we
use the visit statistics approach to prove this holds even when the variation in
time spent in each state is accounted for. From the visit statistics formulation,

the standardized cumulants of the fixation time (starting from a single initial
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mutant) can be written as,

N N-1 1112 N (V N) N-1 W%/.(I’, N) n/2
Kn( ) B . Z -1 (b,'l + dil)(btz + dzz) s (b, + d[ ) / — (b[ + d,)(b/ + d/) ’
15025e0ln= n n ij=1 . .
(2.58)

where w! . (r,N) are the weighting factors that depend on the visit statistics

1] l l

of a biased random walk. To prove the fixation-time distribution is normal, we

derive bounds on the sums

N-1
(r,N)
S, = 1”2 hn 2.59
A BT dn B (2

that appear in Eq. (2.58) and show that «,(N) — 0 as N — oo. First, note that
(rnN)=m-1)'Vi>1ifi =i, =--- =i, = i. Furthermore, we claim that

1112 “In
Wi (nN) 20 for all iy, 15,...,i,. If this were not the case, one could construct
a birth-death process with negative fixation-time cumulants by choosing b; + d;
appropriately. But we know the fixation-time cumulants are positive from the
eigen-decomposition, Eq (2.53). With these observations, we can bound S, from
below by the sum over unweighted diagonal elements. Similarly, the sums are

bounded from above by the maximum value of (b; +d,)™ times the sum over the

weighting factors. Putting these together, we obtain

1 n N-1 .
Z(b +dyr "‘(fﬁi’ﬁb +d) XD Wha (). (2.60)

i1,0250msin=1

The Moran process on the 1D lattice has transition probabilities b; + d; =

(1 +r)/(rm+ N —m). Then, as N — oo, the lower bound is

N-1 )
1 Z(rm+N—m)”:l+r+r +'..+’J1N"”+O(N”)
(b + d)” (r+ 1) (n+ D(1 +r) .
(2.61)
For the upper bound, first note that
= — no_ LN n—1
(fﬂi’l‘v b; +di) =[r(N-1)+1]"=r"N"+ O(N"). (2.62)
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The sums over the weighting factors give the (non-standardized) fixation-time
cumulants corresponding to a process with b; +d; = 1 and uniform bias r. This is
exactly the biased random walk model used to approximate the Moran process

in Section 2.3.2. It follows that as N — oo,

N-1 N-1 n
" o 1
D W, 5N = (n 1)!2(1_2 N r———d (2.63)

i1,0250.sin=1 i=1

where the denominators in the second sum are the eigenvalues of the transition
matrix for the biased random walk, A,, = 1 = 2+/r/(r + 1) cos(mn/N). As in Sec-
tion 2.3.2, we can estimate the leading asymptotics of this sum by converting to

an integral,

S N ([ (n—1)!
> Wi (0 = fo T3V 0 s ooy X +HOM: (2.64)

11,025000sin=

Combining the results from Egs. (2.60)—(2.62) and (2.64) we arrive at

N T (n—=1)!
N"'+ON") < S, < f dx+O(N™).
TOWN m Jo (1 =2+r/(1+7)cosx)" FHOW)

l+r+r’+-+1"
(n+ DA +r)

(2.65)
For each n, our upper and lower bounds have the same asymptotic scaling as a
power of N, with different r-dependent coefficients. Using these results together

in Eq. (2.58), it follows that for N > 1, the cumulants to leading order are

(n-2)/2

K (N) = Cn(r)% +O(N™?), (2.66)

where C,(r) is a fitness-dependent constant. Thus, indeed «,(N) — 0 as N — oo.

This result confirms the claim made in Section 2.3.2. Even with heterogeneity
in the time spent in each state, the skew and higher-order cumulants of the
fixation time vanish asymptotically. Therefore, the Moran Birth-death process
on the 1D lattice with non-neutral fitness r > 1 has an asymptotically normal
fixation-time distribution. The normal distribution is universal, independent of

titness level for this population structure.
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2.9.5 Asymptotic Analysis for the Complete Graph
Non-neutral fitness

In Section 2.4.2 we predicted that the asymptotic fixation-time distribution for
the Moran Birth-death process on the complete graph is a convolution of two
Gumbel distributions by applying our intuition from coupon collection. Fur-
thermore, our calculation of the fixation-time cumulants in the large (but finite)
titness limit agrees with this prediction. Surprisingly, numerical calculations
using the recurrence relation formulated above and direct simulations of the
Moran process indicate that this result holds for all » > 1. In this section we
prove, using the visit statistics formulation, that the asymptotic skew of the fix-
ation time for r > 1 is identical to that of a convolution of Gumbel distributions.
Based on our numerical evidence, we conjecture that an analogous calculation
holds to all orders. The below calculation also shows why the coupon collection
heuristic works: the asymptotically dominant terms come exclusively from the
regions near fixation (m = N — 1) and near the beginning of the process when a

single mutant is introduced into the system (m = 1).

As for the 1D lattice, we want to derive the asymptotic behavior of the sums

S Wi iy (V)

i1i2+in

Sp= 5
Z (bi1 +di1)(bi2 + diz)' : '(bi,, + din)

i1,025000in=1

(2.67)

where the transition probabilities b; and d; are those for the Moran process on

the complete graph,
(L PN - )
S R Yoy (2.68)
and the weights wfj(r, N) and w?jk(r, N) are respectively given by
200 AN2( N _ N2
W) = r+ D2 = D2 = 7) 2:69)

ri+i(r = 1)2(rN — 1)?
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fori> jand

S+ D0 = 1207 = D6 = AN~ )

pititk (r _ 1)3(rN _ 1)3 ’

(r,N) = (2.70)

i jk
for i > j > k. The expressions for different orderings of indices are the same
but with the indices permute appropriately so that w7, and wfjk are perfectly

symmetric.

To start, consider the sums Eq. (2.67), but with two indices i; and i, con-

strained to integers from aN to (1 — a)N for 1/2 > @ > 0. This sum may be

written as
(1-)N  N-1 (l" N)
S = ”lz n . 2.71
! 3 iZZ:(YN i “Zi:l (b +d;)(bi, + dp) -~ (bi, +d;,) @.71)

Now we may apply the upper bound in Eq. (2.60), but for the sums restricted
to aN < i,j < (1 — @)N, the maximum of (b; + d;)"! can also be restricted to this
range,

1 n-2 1 2 N
S (1m<13)1$/b +d) X(QNJ;E%)EQ)N bi+dl') X Z utz zn(r N)

i1,02,7 5ip=1

o (YA +a ) lfﬂ (n=1)! a2
=N {(1+r) ((1+r)(1—a)0z) Xn 0 (1—2\/7f/(1+r)c0sx)"dx}+O(N )

(2.72)

In the second line we used the integral approximation from Eq. (2.64) and evalu-
ated the maximum of (b;,+d;)~! over the indicated intervals. Since we constructed
wi, i (r,N) to be symmetric, this upper bound holds for any permutation of the

indices in Eq. (2.71).

We now consider the same sums butwith 1 <i; <aNor(l-a)N <i; <N-1,
aN (1-a)N N-1 (}" N)

Sa,l — 1112 “Iy . 273
" Z_; Z . Z_ (bil +di1)(blz +d12)"'(bi +di ) ( )
i1=1 ip=aN i3, ,i,=1 n n
and
N-1 (I-a)N N-1 ( N)

RPN INDY (bil+dl~l)(b:2+:i,2>---(bin+d,~,,>' @74)

i1=(1-@)N D=aN i3, ,i,=1
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These sums can be estimated using the same upper bound, but without extend-

ing the sum on wi, . (nN)to the entire domain. Specifically,

gl o gl r v or(l—a)+a aN (1-a)N  N-1 ) NP
A (e Il el | Z ;N i} X, Wi O,
(2.75)

Note that the weighting factors fall off exponentially away from the diagonal
elements. This is because the visit numbers in the biased random walk become
only very weakly correlated if the states are far away from each other. Thus,
the sum in Eq. (2.75) over terms away from the diagonal elements converges to
a constant as N — co. We have verified this explicitly for wfj(r, N) and wfjk(r, n).
The series S2~ is similarly bounded, as are all sums of the form Eq. (2.73) or

(2.74) with the indices permuted.

The remaining terms in S, involve all indices in either [1, @N] or [(1 —a)N, N —
1]. If not all indices are in the same interval, the weighting factors are exponen-
tially small: the visit numbers near m = 1 are uncorrelated with those near
m = N — 1. Thus each term in the sum is exponentially suppressed and doesn’t
contribute to S, asymptotically. With this observation only two parts of the sum
remain: those with bounds 1 < iy,i>...i, <aNor (1l —a)N <i,ir...i, <N-1.
We call the sums with these bounds S¢' and S¢* respectively. As we will see be-
low, the sums over these regions have leading order O(N"). Since all the above
terms are order O(N"™!) or smaller, the asymptotic behavior of the cumulants
is entirely determined by these regions near the beginning and end of the pro-
cess, i.e. the coupon collection regions. The fact that we can restrict the sums

to this region allows us to make approximations that do not change the leading

asymptotics, but make the sums easier to carry out. For instance, in §5!, we can
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set ¥ — ' - ¥ and (N - i) — N, since the indices run only up to @N. This gives

N2 aN = 1) aN -1 (ri — 1)2}
gel = — +2 P +O(N)
-1y {; 2r2 ; = ur (2.76)
)
= oo 1p + O(N),

for N > 1. A similar calculation shows S$* = r?N?{(2)/(r — 1)>. For the third

order sums, we find

N? -1 o (= 1)
cl _
S3 - Z(r_ 1)3{2 13},.31 ZZ l] r1+2]
i= i=1 j=1
aN i-1 aN i-1 j-1 ; 2
(r' = 1D = 1)? - -1 )
6 — O(N
+3;; 12]1’2”/ + par e ijkl”+1+k + ( )
N3((3) 2
2
oo O,

(2.77)

for N > 1. Again the other sum, with indices near N — 1, is identical up to a

factor of r*, §§* = 2" N3¢(3)/(r — 1)*. Overall, we have that

NX(1+1r)(2)
(r—1)?

2N3(1 + *)Z(3)

S2= =1

+O(N) and S;3= +ON?). (2.78)

The asymptotic skew is given by

5 3/2 3
201+ )3 /((1 +r2)§(2)) - L+r 203 (2.79)

ANV AN L+ "y
which is exactly the skew corresponding to the convolution of Gumbel distribu-
tions with relative weighting given by the fitness, G + rG’. While evaluating the
series to higher orders is increasingly difficult, our simulations and the large-
fitness approximation suggest this result holds to all orders and that indeed,
the asymptotic fixation-time distribution is a weighted convolution of Gumbel

distributions.
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Neutral fitness with truncation

As discussed in Section 2.5.2, the neutral fithess Moran process on the complete
graph has a fixation-time skew that depends on the level of truncation. That is,
the time T, it takes for the process to reach aN mutants, where 0 < @ < 1, has a
distribution whose skew depends on «. Here we show that the @ — 0 limit of

the fixation-time skew equals V3.

To start, we take the neutral fitness limit of the weighting factors to obtain

472(aN —i)*
fori > jand
16jk*(aN — i)*(aN - j)
wh(LaN) = == / (2.81)

fori > j > k, again with the expressions for other orderings obtained by permut-
ing the indices accordingly. The neutral fitness Moran process on the complete
graph has transition probabilities b; + d; = 2(Ni — i*)/(N* — N). Since we are com-
puting the truncated fixation-time skew, we use Eq. (2.58), but cut the sums off

at aN. In this case, these sums are dominated by the off-diagonal terms, so that

aN 2 aN i-1 . .
wild.aN) Sy saN - i’(N - 1)

S2= = . . — +O(N’
’ Py (bi+d)(b;+d)) H a@2i(N - i)(N - j) (V)
aN -1 . N2
=) % L O (2.82)
=1 =1
a*N* 3

where in the second line we approximated N — i and N — j by N. This approxi-

mation is exact in the limit @ — 0 since the upper limit on the sum, @/, is much
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smaller than N. Using analogous approximations, we find
. aN wfjk(l,a/N)

B ik=1 (Di + d)(b; + d;)(by + dy)

aN i-1 j-1 N . 3
2k(aN —i)“(aN — j)(N - 1) 5
=6 , , , +O(N”)
aN i-1 j-1 ) .
k(aN — -
S ) R
i=1 j=1 k=1 ast
3N6 .
= >t O(N)
The asymptotic fixation-time skew as @ — 0 is therefore
a’N°®/24
K3 = W = ‘/g, (284)

as claimed above. This value agrees perfectly with our numerical calculations,
which show the above approximation breaks down when a ~ 1/2. Above this
threshold, the random walk causes mixing between the two coupon collection
regions, thereby lowering the overall skew of the fixation-time distribution to-

ward the @ = 1 value of k3 = 6 V3(10 — 72)/(n* = 9)*2 ~ 1.6711.

2.9.6 Fixation-time distributions in the two-fitness Moran Pro-

cess

As noted in Section 2.6.1, the two-fitness Birth-Death (BD) Moran process has
the same family of fixation-time distributions as the Birth-death (Bd) process
with only one fitness level. Here we provide further details leading to this con-
clusion. In particular, we give the transition probabilities for the two-fitness
model and describe how the calculations from the sections above generalize to
this system. Here r is the fitness level during the birth step, while 7 is the fitness

level during the death step in the Moran process.
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One-dimensional lattice

On the 1D lattice, the Moran process with fitness at both steps (birth and death),

has new transition probabilities

7 1
by = r T d,=—b,, (2.85)
rm+N-ml+7F 7

for 1 <m < N — 1. The probabilities are different when there is only one mutant
or non-mutant (m = 1 or m = N — 1 respectively). In these cases the nodes on the
population boundary don’t have one mutant and one non-mutant as neighbors,
as is the case for all other m. In the limit N > 1, however, changing these two
probabilities does not affect the fixation-time distribution and we can use the

probabilities given in Eq. (2.85).

The two-fitness Moran BD model on the 1D lattice differs from the previ-
ously considered Bd process in two ways. First, the transition probabilities have
the same functional form as before, but are scaled by a factor #(1 + 7)~'. This fac-
tor determines the time-scale of the process but does not alter the shape of the
tixation-time distribution because it drops out of the expressions for the cumu-
lants, Egs. (2.53) and (2.58). Second, the ratio b,,/d,, = ri shows that the process
is still a random walk, but with new bias corresponding to an effective fitness
level re¢ = r77. With these observations, when r.¢ # 1, our preceding analysis ap-
plies and we predict normally distributed fixation times. If r.¢ = 1, the random

walk is unbiased, and we expect highly skewed fixation-time distributions.
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Complete Graph

On the complete graph, considering fitness during the replacement step leads

to transition probabilities

rm F(N —m)  N-m m
rm+N-m F(N-m)+m—-1 " rm+N-m F(IN-m—-1D+m
(2.86)

In this case, the ratio of transition probabilities is m-dependent, but b,,/d,, — r#
as N — oo, again motivating the definition of the effective fitness level res = r7.
If we take the large (but not infinite) fitness limit r.¢ > 1, so that the mutant
population is monotonically increasing to good approximation, then the fixation
time cumulants are again given by Eq. (2.53) with 4,, = b,, + d,,. As N — oo, the

cumulants become
L+ (n= D)
MR TP

(2.87)

identical to the Moran Bd process on the complete graph, with r — r/7. Numer-
ical calculations (using the moment recurrence relation derived in Section 2.9.3)
again indicate this expression for the cumulants holds for all r, not just in the
large fitness limit. When re = 1, we expect highly skewed fixation distribu-
tions arising from the unbiased random walk underlying the dynamics. This is
indeed the case, though numerics indicate there is an entire family of distribu-

tions dependent on r = 1/F.
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CHAPTER 3
ASYMPTOTIC ABSORPTION-TIME DISTRIBUTIONS IN
EXTINCTION-PRONE MARKOYV PROCESSES

3.1 Introduction?

Modeling extinction-prone dynamics is essential to our understanding of epi-
demics, disease incubation, and evolution. For example, a key goal in epidemi-
ology is to implement control measures (such as social distancing or vaccina-
tion) that push the dynamics toward a state where the disease is eradicated on
a reasonable timescale [2, 52, 53]. Similarly, disease incubation [33, 54] and evo-
lution [9, 13] involve highly fit infectious cells or mutant species outcompeting

their less fit counterparts.

In these fields the distribution of extinction times, rather than just the mean,
is crucial. For example, how long must a patient wait after exposure to a dis-
ease to be sure they are not infected? In the best and worst case scenarios,
how long must epidemiological control measures be imposed to stop an out-
break? Knowledge of the extinction-time distribution provides an answer to
these questions. Incubation period distributions have long been measured em-
pirically to inform treatment regimens or public health initiatives [54]. Simi-
larly, a recent study used a data-driven model of African sleeping sickness in
the Democratic Republic of Congo to predict the distribution of times until the

disease is eradicated [2].

This chapter is reproduced from: David Hathcock and Steven H. Strogatz, “Asymptotic
absorption-time distributions in extinction-prone Markov processes.” Physical Review Letters
128, 218301 (2022).
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In this chapter, we show that two particular extinction-time distributions—
Gaussian and Gumbel distributions—arise generically from basic features of the
stochastic dynamics driving the system. These distributions were found previ-
ously in several models of evolutionary dynamics [1, 32, 33]. We show now that
these same distributions appear in much more general classes of birth-death
Markov chains, along with a family of skewed distributions that include the
Gumbel. Extending the approach introduced in Ref. [1], we provide analytical
criteria that predict when the asymptotic absorption-time distribution is nor-
mal, Gumbel, or a member of the family of skewed distributions. We apply our
results to models of epidemiology [55-57], ecology [58-60], stochastic chemical
reactions [7, 61], and evolutionary games [62], for which the predicted distribu-
tions agree with those measured via simulation. To our knowledge, this is the
tirst calculation of the asymptotic absorption-time distributions for these mod-
els. As an application, we show that the Gumbel distribution closely resembles

eradication-time distributions for African sleeping sickness.

We analyze birth-death Markov processes with a linear chain of states m =
0,1,...,N. For example, m might represent the number of infected individuals
in an epidemic. The system has an absorbing state at m = 0 (where nobody is
infected) and a reflecting state at m = N (the maximum allowed infected popula-
tion). Transitions occur only between neighboring states, i.e., the population can
only increment by 1 in either direction. The dynamics of p,(t), the probability

of occupying state m at time ¢, obey the master equation,

pm(t) = bm—lpm—l(t) + dm+1pm+l(t) - (bm + dm)pm(t)a (31)

where b,, and d,, are respectively the birth and death rates at which the state
increases or decreases from state m. The master equation can also be expressed

as p(7) = Q- p(t), where Q is the transition matrix containing the birth and death
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rates. Since the state at m = 0 is absorbing and the state m = N is reflecting, we
have by = by = 0. For simplicity we assume the system starts in an initial state
m = N, i.e. p,(0) = 6,,n, but our results apply more broadly (see Section 3.6.3).
The quantity we are interested in is the first-passage time T to the absorbing
state m = 0; here we focus on obtaining the probability distribution about the

mean.

3.2 Exact expression for the absorption-time cumulants

Building on our results in Chapter 2 and Ref. [1], we develop an approach to
determine the absorption-time distributions for general classes of birth-death
Markov chains in the limit of large system size. The key insight is to introduce
a change of variables, D,, = b,, + d,, and r,, = b,,/d,,. If the system is in state m,
it waits on average a time D, before increasing or decreasing. The probabili-
ties of the next step being forward or backward are r,,/(1 + r,,) and 1/(1 + r,)
respectively; r,, is the ratio of these probabilities. Thus, our coordinate change
separates the random-walk portion of the Markov process, which describes the
relative probabilities of stepping forward or backward at each state, from the
times spent waiting in each state. This change of variables leads to a transition
matrix decomposition, Q = QgyD, where D is diagonal with elements D,, and
Qrw is the transition matrix for a biased random walk. The number of times the
system visits each state depends only on the random-walk portion of the pro-
cess. The elements V;; of V = —Qy;, encode the average number of visits to state

i before absorption, starting from state j.

To characterize the asymptotic distributions, we compute the cumulants
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k,(N) of the absorption time 7', which describe the shape of the distribution.
For instance, k; is the mean, «, is the variance, and «3/ K;/ ? is the skew. Following
Ref. [1] we use the matrix decomposition above to derive the cumulants (gener-

alizing the previous result to non-constant r;):

_ Wzr‘lliz---in({rj})
rh Ny = > ORI (3.2)

Here w"

i1ip+ip

({r;}) are weighting factors that depend only on the visit statistics
of the random walk; for example, w]({r;}) = V. Section 3.2.1 below provides a
derivation of this formula and explicit expressions for the first few weighting
factors, each of which are polynomials of the visit numbers V;;. Equation (3.2) is
equivalent to well known recursive relations for absorption time moments [63],

but this form enables the asymptotic analysis leading to the results below.

3.2.1 Derivation of the absorption-time cumulants

In this section we derive the general formula for the absorption-time cumulants,
Eq. 3.2. This derivation follows Ref. [1], but we generalize to Markov chains
where the ratio r,, = b,,/d,, is non-constant. We start from the master equation,
Eq. (3.1) above, and restrict our attention to the transient (non-absorbing) states,
m > 0, since these determine the time it takes to reach absorption. The master
equation for these states can be expressed as p(r) = Q - p(¢t), where Q is the

transient transition matrix with elements
an = bllém,n+l + dném,n—l - (bn + dn)(sm,n (33)

torm,n =1,..., N and p(z) is the vector of transient state occupancy probabilities.

The entire first-passage process can be characterized in terms of the transi-

tion matrix Q. In fact, the first-passage distribution p(#) can be written in terms
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of an element of the matrix exponential, p(f) = d,[exp(Q21)]; y and the moments
of T are

= E[T"] = (=1)"'n!11Q7"p(0), (3.4)

where 1 is a row vector containing all 1’s and E denotes expected value.

As noted above, to proceed it is useful to introduce the following decom-
position of the transition matrix: Q = QgwD, where D is a diagonal matrix

D, = b, +d, and

T 1
Q mn — — mp+1 T —6mn— - 6m ns 3.5
[ RW] 1+r 6 n+1 1+r n—1 N ( )

n n

with r, = b,/d,. The rates D,,, determine how long the system waits in state m
before taking a step and r,, is the relative probability of stepping forward versus
backward along the chain. Defining V = —Qp;,, the elements V;; are the average

number of visits to state i before absorption starting from an initial state j.

With the above decomposition we can easily invert the transition matrix,

V..
Q.. = —Y_
[-Q7]; b+ d’ (3.6)
where visit numbers V;; are given by
min(i,j) i—1
Vi=+r) > | [ (3.7)
n=1 m=n
Then, using Eq. (3.4) the moments can be expressed as
Y Vi Viis - Vi i Vi
Ly = n! Z iz Vi In-1ln ¥ inN (3.8)

(bi, +d;))(bi, +d;,)---(b;, + di,l).

i1,0,...Iy=1
To compute the cumulants, we use the standard conversion formulas: «; = y,
Ky = o —3, k3 = i3 — 3oy +247, and so on. Since the relation between cumulants

and moments is polynomial, if we collect terms with common denominators it
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follows that the cumulants have the form quoted above,

_ W?liz---in({rj})
Kn({rj}, N) - Z (bl'] I dl-l) T (bl-n n din). (39)

where the weights w" depend on the visit numbers V;; (and hence are functions
of only the ratios {r;}). Note that we sum over i; < i, < --- < i, so that each
product in the denominator of Eq. (3.9) appears exactly once. The weights are
determined using Eq. (3.8) and the moment-cumulant conversion formulas. For
example, the second and third cumulants are
o = 3 2ViVi = ViV
= (b; +d;)(b; +dj)

(3.10)

u 6ViiViVin = 6Vi;VinVin + 2VinVin Viw
(b; +d;)(b; + d;)(by + dy)

(3.11)

K3 =
i,j,k=1

From here we can read off the weights w": they are simply the numerators in
the above expressions, summed over distinct permutations of the indices (since

these terms have the same denominators). Carrying out the sum we obtain,

wh = Z 2V, 02 Vorun = Voriw Viray (3.12)
oell,

Wl = Z 6Verr0 Verrors Vot = 6Vir 00 Vo Vet + 2V i Vot Vs (3.13)
oell3

where II, is the set of distinct permutations of indices {i, j} and I1; is the set of

distinct permutations of {i, j, k}.

3.2.2 Properties of the weighting factors

The weighting factors have some convenient properties. First, they are non-
negative: w! . . ({r;}) > 0 and increasing functions of each r;. Second, the weight-

i1ip-ip

ing factors appear to fall off exponentially away from the diagonal. For constant
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rj = r, this exponential decay can be shown explicitly [1]. We conjecture that
the same decay holds for arbitrary transition probabilities {r;}. The intuition is
that the visits to state i are uncorrelated with those to state j (for N > 1 and

i — j = O(N)), due to the Markov property.

Here we will show the non-negativity and monotonicity explicitly up to or-
der n = 4 and conjecture these properties hold for all orders. To proceed, we use
the fact that V; = V;; for any i < j. This is easy to see from Eq. (3.7), but also
has an intuitive physical interpretation. Since the system is eventually absorbed
at the boundary state 0, if it starts from a state j > i it must visit i before ab-
sorption. After the first visit, the statistics of the random walk are identical to a
walk initialized in state i. Using this property the sum over permutations above

dramatically simplifies. For i < j we have

wi; = QViVin = VivVin + 2ViVin = VinViw) (3.14)

= 2VﬁV,'N.
Similarly, after simplification we find

W?jk =31 (Vi;ViVin + ViiVinVin) (3.15)
W?jkl =4! (VlkajVj,-ViN + V[kaiVl'NVjN + VljvjiViNVkN (316)

+ ViiVinViiVin + ViiVinViiVin + ViVin Vin Vin)

when i < j < k < . When some indices are identical, these results still hold,
but they must be divided by the number of permutations of the identical in-
dices, e.g., wi = V;;Viy (notice this differs from Eq. (3.14) by a factor of 2). The
important feature of these expressions is that they are positive sums of products
of the visit numbers V;;. We conjecture that the weights at every order can also

be written as a positive sums of products of the visit numbers (though we omit
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the expressions here, we have checked this is true up to order n = 6). If this is
the case, it immediately follows that the weights w" are positive and increasing
functions of each r; because the visit numbers, Eq. (3.7), themselves also have

these properties.

3.3 Gaussian Universality Class

The first universality class of birth-death Markov chains we consider have nor-
mally distributed absorption times. As an instructive special case, consider the
process b,, = 0, d,, = d, which visits each state exactly once before absorp-
tion, waiting a time d~' on average at each. The time to absorption is simply
T = 3, Eu(d) where E,,(d) is an exponential random variable. Since T is a sum
of identical random variables we expect it to be normally distributed by the cen-
tral limit theorem. Alternatively, the cumulants of T are «, = N/d". In units of
the standard deviation the higher order cumulants vanish: «,/ K;/ 2= N2 50

as N — co. Hence the distribution is asymptotically normal.

We might also expect this asymptotic normality to hold for transition rates
with mild state dependence: if b,, + d,, does not vary too much (we will give a
precise condition below), the absorption time is a sum of nearly identical expo-
nential random times. Similarly, for r,, = b,,/d,, > 0, the system randomly walks
back and forth, but as long as r,, < 1 the average number of visits to each state
is finite. Under either of these generalizations the distribution is asymptotically

normal.

To characterize more precisely which Markov chains lead to normally dis-

tributed absorption times, we compute the asymptotic form of the cumulants in
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Eq. (3.2) by introducing two auxiliary Markov chains. These have the same b;+d;
as the original system, but b; and d; are adjusted so that the ratios are r; = 7y Or
rj = Imin, Where rp, = limy_, max <oy 7; and ryin = limy_,e min,;y r;. In other
words, we construct two Markov chains where the time spent waiting in each

state is identical to that for the original system, but the odds of moving toward

the absorbing state are increased or decreased to be uniform.

Above we noted that the weighting factors w" in Eq. (3.2) are increasing func-
tions of r;. Thus, we can bound the cumulants in our system by those for the
auxiliary Markov chains, «,(7min, N) < k,({r;}, N) < Ky(rmax, N). The asymptotic
form of «,(r, N) (where r is constant across states) was computed in Ref. [1]; we
utilize this result in the asymptotic analysis given in the Appendix, Section 3.9.1.
To nail down the asymptotics of «,(r, N) we require the waiting times to be ‘flat’

in the following sense:

N
1
N Z; Iy~ C Imax L, (3.17)

where t,, = (b,,+d,,)"" is the mean waiting time at state m and c is a constant inde-
pendent of N. In other words, the mean waiting time (t,,) across all states is the
same asymptotic order as the maximum waiting time: the process fluctuates at
an approximately uniform rate across the entire Markov chain, without spend-
ing a disproportionate amount of time in any one state. Gaussian absorption
times have also been found in the continuum limit via the linear-noise approxi-
mation, which removes state dependence from the noise [64]. This approxima-
tion is similar to the condition (3.17), which requires the noise amplitude b,, + d,,

to vary only mildly across states.

If Eq. (3.17) holds, then «,(r, N) ~ ¢,(r) f(N)'N, where f(N) ~ max;<;<y(bi+d) .

Since these asymptotics hold for r = ryin and r = rya, it follows that «,({r;}, N) ~
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Figure 3.1: Absorption-time distributions for (a) the random transition matrix
model (large black circles) and the evolutionary game on a ring (small red cir-
cles), (b) SIS model (large black circles), logistic model (small red circles), and
autocatalytic chemical reaction model (cyan triangles), (c) the well-mixed evo-
lutionary game, and (d) the process b,, = rd,, = rm”, for r = 0 and p = 0.3 (blue),
p = 0.75 (orange), p = 1 (green), and p = 1.8 (red). The r = 0.8 distributions
are indicated by dotted lines (when they differ from the r = 0 counterparts). See
Section 3.8 for models and parameters. We used system sizes (a-b) N = 500 and
(c-d) N = 1000 and simulated (a) 5 x 10*, (b-c) 10°, and (d) 10° trials to measure
the distributions, which have been standardized to have zero mean and unit
variance. In (c) the distributions are a convolution of Gumbel distributions with
relative weighting s ~ 0.73. Deviations from predicted normal and Gumbel
distributions in (a-c) are due to finite system size.

c,({r;)f(N)'N as well.

With the asymptotic form of the cumulants established, we analyze the
shape of the distribution using the standardized cumulants &, = Kn/K;/ Zforn>?2

(which are rescaled so that the variance k, = 1). Using the asymptotic form ob-
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tained above, we find &, ~ &,N'™2. In particular, 8, - 0 as N — oo for n > 2, so
that the distribution becomes Gaussian for large N (the cumulants past second

order vanish for normal distributions).

For finite N, the dominant correction to the normal distribution comes from
the non-zero skew &3 ~ &/ VN. The coefficient in this scaling depends on the
ratios r;; in the Appendix, Section 3.9.1 we compute a bound on this coefficient,
which is useful for estimating the rate of convergence in applications. The ratio
of the standard deviation K;/ % to the mean «; also scales like Ké/ 2/k; ~ &/ VN,
similar to the skew. As the distribution converges to the Gaussian, the relative
width of the distribution narrows at the same rate. To summarize, any birth-
death Markov chain that satisfies the ‘flatness” condition, Eq. (3.17), and has an
absorbing state toward which the system flows on average (r; < 1) will have

asymptotically Gaussian distributed absorption times.

Our first example of a Markov chain with normally distributed absorption
times is a toy model with random transition probabilities. Here we select b,, + d,,
uniformly at random between 0.1 and 2 and r,, uniformly at random between
0 and 0.9, which satisfies the conditions described above. This example shows
that the transition rates need not be smooth in m; systems with disordered tran-

sition rates still belong to this universality class.

Next we study evolutionary game dynamics on a one-dimensional ring [19,
65]. Mutant and wild-type individuals compete via the following dynamics:
an individual is chosen randomly, proportional to its (frequency dependent)
titness. The selected individual gives birth to an offspring of the same type,
which in turn replaces a random neighbor. The model runs until the mutation

spreads to the entire population.
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Figure 3.1(a) shows simulation results for the random transition system and
the evolutionary game. Both display the expected normal distribution. Inter-
estingly, for the evolutionary game, the normal distribution appears for a wide
range of parameters, while the mean absorption time and absorption probabil-

ity depend more intricately on parameters [19, 65].

3.4 Gumbel Universality Class

Gumbel distributions, known for their role in extreme value theory [66], also
arise generically in absorption processes. This second universality class is
closely related to the ‘coupon collector” problem in probability theory, which
asks the following: if there are N distinct coupons and we are given a random
one (with replacement) at each time step, how long does it take to collect all
N coupons? The collection process displays a characteristic slowdown: when
nearly all coupons have been collected, it takes a long time to acquire the final
few because duplicates keep getting selected. Erdds and Rényi showed that for

large N the time to complete the collection follows a Gumbel distribution [36].

The coupon collector problem can be modeled using Markov chains. Let m
be the number of coupons missing from the collection of N total coupons. The
probability of obtaining a new coupon (thereby decreasing m) is m/N and the
number of missing coupons never increases. Thus, the coupon collection pro-
cess is described by birth-death dynamics with b,, = 0 and d,, = m/N. The linear
decay of the transition probability d,, near the absorbing boundary is the key fea-
ture that gives rise to the characteristic slowdown. For this case the cumulants

can be computed exactly, &, = (n—1)!£(n)/{(2n)"?, and match those for a Gumbel
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distribution. Similar to the Gaussian class above, we find that the Gumbel distri-
bution is preserved for non-zero r,, < 1 and nonlinear transition rates as long as
the linear decay is dominant near 0. Specifically, if b,, + d,, = f(N)m[1 + O(m/N)],
with boy +d,n of order at least O(Nf(N)) for any 0 < a < 1, and if r,, = r + O(m/N)

for large N, then the absorption-time distribution is asymptotically Gumbel 2.

By bounding the cumulants (3.2), we show (Section 3.9.2) their leading order
behavior for N > 1 is dominated by the states near 0, where the approximations

by +d, =~ f(N)m and r,, = r become asymptotically exact, so that

n

1 Wi1i2~--in(r)
k. ({rj}, N) ~ Ny Z m (3.18)

The factors f(N)" set the timescale of the process but do not affect the shape
of the distribution (they cancel in k, = «, /K;’/ 2). Thus, we have shown that the
cumulants are asymptotic to those for a process with b,, + d,, = m and b,,/d,, = r.
The absorption-time distribution for this process can be computed exactly (see
Ref. [59, Appendix B]) and approaches a Gumbel distribution as N — oo (see
Section 3.9.2). Therefore, any system with transition rates vanishing linearly
and ratios r; that approach a constant near the absorbing boundary will fall into

the Gumbel universality class.

As in the Gaussian class, the relative width of the Gumbel distributions be-
comes small for N > 1. In this case, however, the standard deviation-to-mean
ratio scales like K;/ 2/k; ~ C;/InN. On the other hand, the deviations from the
Gumbel cumulants decay like 6k, = &, — k$*™! ~ C,N'InN (see Appendix,
Section 3.9.2). Thus the distribution narrows very slowly compared to the con-

vergence to the Gumbel shape. Therefore, in applications we expect to see the

ZMore generally it is sufficient to have b,, + d,, = f(N)m[1 + O(m/g(N)] for any function g(N)
that diverges for N — co. If g(N) grows linearly or sublinearly, deviations in the cumulants scale
like 6%, ~ Cy,[In g(N)]/g(N). Otherwise, 6%, ~ C,,/N
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Gumbel distribution appear before the fluctuations become negligible.

Finally, if the transition rates vanish near the initial condition N, scaling
like b, + d, = f(N)Y(N — m) + O(N — m)?), there will be another coupon-
collection slowdown at the beginning of the process. An identical analysis to
that above shows that the contributions from the two coupon collection re-
gions simply add together to give the cumulants. The resulting absorption-time
distribution is therefore a convolution of two Gumbels, with one weighted by

s = limye FIN)/F(N).

To illustrate the Gumbel universality class we use the susceptible-infected-
susceptible (SIS) model of epidemiology [57], the logistic model from ecology
[58], and an autocatalytic chemical reaction model [7, 61] (model details in Sec-
tion 3.8). In each case the transition rates decrease linearly near the absorbing
state. For example, in the SIS model, b,, = Am(1 — m/N) and d,, = m, where A is

the infection rate.

Our simulations show that these models each have the expected Gumbel
distribution [Figure 3.1(b)]. The distribution is also insensitive to parameter

choices (e.g., a Gumbel appears in the SIS model for any A < 1).

If we study the aforementioned evolutionary game in a well-mixed popula-
tion, the transition rates vanish linearly as m — 0 and m — N (see Section 3.8.1
and Ref. [67]) . As discussed above, we expect a convolution of Gumbel distri-
butions with relative weighting s given by the ratio of the linear coefficients at
these two boundaries. Figure 3.1(c) shows that this prediction is borne out in

simulations.
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Figure 3.2: Absorption-time skew for the process b,, = rd,, = rm” with r = 0
(blue circles) and r = 0.8 (red squares), plotted as a function of the power-law
exponent p. Skews were numerically computed for N = 10° using the recurrence
relation approach described in Ref. [1]. The black line shows the asymptotic
skew 2.(3p)/L(2p)*? for r = 0. The curves cross at p = 1 where the distribution
is Gumbel, independent of r. For p < 0.5 the skew approaches zero and the
distribution is Gaussian. The numerical skew is slightly larger than expected
for p < 0.6 due to finite size effects.

3.5 Absorption-time distributions for power-law processes

In addition to Gumbel and Gaussian classes, other absorption-time distributions
arise if the transition rates have power-law decay: b,, +d,, = f(N)m?[1+O(m/N)].
For p < 1/2, the decay is sufficiently slow that the normal distribution is main-
tained: the system still fluctuates at an approximately uniform rate across states.
On the other hand, if p > 1/2 we find a generalized coupon collection phe-
nomenon giving rise to a family of skewed distributions. Slowdown near the
boundary dominates the absorption process and the distribution is asymptotic
to that for the minimal model b,, = rd, = rm” (rigorous asymptotics given
in Section 3.9.3). When r = 0 the cumulants can be computed analytically:
k, = (n — D¢ (np)/L(2p)"* [32, 33]. Figure 3.1(d) shows the resulting distribu-
tions for a few values of p. Interestingly for p # 1, the shape of the distribution

depends subtly on r. Figure 3.2 shows the skew of these distributions as a func-
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Figure 3.3: Generalizations to high-dimensional models and Markov chains

with internal sinks. (a) Extinction-time distributions for sleeping sickness pre-
dicted using a 17-dimensional compartmental model that was fit to case data
from the Mosango (large black circles) and Kwamouth (small red circles) regions
of the Democratic Republic of Congo (data from Ref. [2]). Mean extinction times
(measured from 2016) are approximately 9.5 and 31 years for the Mosango and
Kwamouth regions respectively, with standard deviations of 4.8 and 7.9 years.
Disease eradication times approximately follow a Gumbel distribution (fit us-
ing the mean and variance). (b) Simulations of the SIS, logistic, reaction, and
well-mixed evolutionary game models have exponential absorption-time distri-
butions (standardized to zero mean and unit variance) if parameters are chosen
so that the dynamics have an internal sink state. For each case, we used N = 50
and simulated 10° trials. See Section 3.8 for model details and parameters.

tion of p, elucidating the transition from normal distributions to the skewed

family.

3.6 Extensions

3.6.1 High-dimensional models

Beyond simple one-dimensional Markov processes, the eradication-time distri-
butions for African sleeping sickness predicted by a 17-dimensional data-driven

model [2] closely resemble the Gumbel [Figure 3.3(a)]. This result suggests that

78



the Gumbel distribution is also generic in higher dimensions if the dynamics
collapse onto a one-dimensional slow manifold near absorption. Crucially, al-
though the distributions have converged to the Gumbel shape, the fluctuations
still matter: the probable extinction times span years. The ratio between the
standard deviation and the mean is approximately 0.5 and 0.25 for the Mosango
and Kwamouth regions respectively. Similar results hold for a variety of high-
dimensional systems. Their dynamics are accurately approximated by birth-
death processes with transition rates that vanish as a power-law m” near the
boundary. Examples include evolutionary dynamics on D-dimensional lattices

(p = 1-1/D) and complex networks [4, 32, 33] as well as epidemics on networks

[3].

3.6.2 Transition matrix spectrum

So far, we have characterized universality classes for absorption times in birth-
death Markov chains. While our results are formulated in terms of the transition
rates b; and d;, we can also connect the shape of the absorption-time distribution
to the spectrum of the transition matrix. In the following sections, we discuss
the classes of transition matrix spectra that give rise to either Gaussian or Gum-

bel absorption-time distributions.

Eigenvalue spectrum for the Gaussian class

If Eq. (3.17) is satisfied with b; + d; replaced by the eigenvalues A; of the nega-
tive transition matrix —Q, the absorption-time distribution will be Gaussian. To

show this, we use the spectral representation of the absorption-time cumulants
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[1,67],
N
ko= (=11 Y A7 (3.19)
i=1

If Eq. (3.17) is satisfied for the eigenvalues, we have

N
Z Il ~e, (max /ll-_l) N, (3.20)

Z 1<i<N
i=1

Since the left-hand side of this expression is exactly the cumulant «, (up to
the constant (n — 1)!), it immediately follows that x, ~ ¢,g(N)"N where g(N) ~
max;c<y ;' as N — oo. This scaling implies that the standardized cumulants
vanish for large N: &, ~ ¢,N'™/? and the distribution is asymptotically Gaus-

sian.

More generally, the distribution approaches a Gaussian as long as k, — 0 as
N — oo. This condition with Eq. (3.19) describes a broader class of eigenvalue
spectra that give rise to Gaussian absorption-time distributions. Specifically, we

need

N N n/2
(Z A;") / (Z A;Z) =0, (3.21)
i=1 i=1

While this condition is difficult to interpret, we consider two examples that il-
lustrate the type of spectra that can give rise to Gaussian absorption-time distri-
butions. First, if A,, = m?, the above condition is satisfied for p < 1/2. This result
is related to the emergence of Gaussian distributions for the systems consid-
ered in Section 3.5, which have transition rates that decay as a power-law with
p < 1/2. Also, if 4,, = P(m)/Q(m) for some polynomials P and Q, the condition is

satisfied when the degree of Q is greater than that of P.
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Figure 3.4: The eigenvalues of the transition matrix for the canonical model
by = rm, d,, = m with N = 2000 and r = 0.05, 0.5, and 0.95 plotted on a log-log
scale. The black lines show (1 — r)m for each value of r. The eigenvalues closely
follow this linear relation up to a cut-off m, that is dependent on r. Since the
leading eigenvalues are linear the absorption-time distribution is Gumbel.

Eigenvalue spectrum for the Gumbel class

The Gumbel distribution arises if the transition matrix eigenvalues decay lin-
early. For instance, suppose 4,, = bm. Then, using Eq. (3.19) and taking N — oo,

we have that

s 0 n/2
R, = [(n — 1! Z:;(bm)_") / (Zl(bm)_z] =(n- 1)!4%;’”)/2, (3.22)

which are precisely the cumulants for a standardized Gumbel distribution. The
result is unchanged if the dominant eigenvalues are approximately linear, i.e.
A, =~ bm for m < aN where a is a constant 0 < @ < 1. In this case, the stan-
dardized cumulants are still &, = (n — 1)!£(n)/£(2)"* with the larger eigenvalues

contributing O(1/N) corrections that vanish asymptotically.

This second case appears to be what happens in practice: for N > 1 the

eigenvalues become linear up to a cutoff. We have carried out numerical cal-
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culations of the spectrum for the canonical model, b,, = rm, d,, = m for a few
values of r < 1. As shown in Figure 3.4, the leading eigenvalues in the spectrum
become equally spaced: 4,, ~ (1 — r)m for indices below a cutoff m,. Numerical
tests indicate m, is approximately a constant proportion of N, i.e. m. = a(r)N,
where 0 < a(r) < 1. Above this cutoff the eigenvalues grow super-linearly.
The above calculation illustrates how the Gumbel absorption-time distribution

arises in this model from the perspective of the eigenvalue spectrum.

3.6.3 Distributions are robust to changes in initial and bound-

ary conditions

In this chapter we specialize to Markov chains with a finite state space of
size N, a reflecting upper boundary, and initial condition at the maximal state
pm(0) = 6,,n. Our asymptotic absorption-time distributions, however, should
be robust to changes in initial and boundary conditions. Because the dynam-
ics are extinction-prone, the system quickly progresses toward the absorbing
state, spending negligible time near the reflecting boundary. Therefore, if the
initial condition my is sufficiently large (mo ~ N for large N), corrections due to
variation in the initial condition will be sub-dominant as N — co. By the same
argument, we expect the same asymptotic distributions to occur for infinite sys-
tems with free boundary conditions and no maximal state N, but large initial
condition. On the other hand, if the upper boundary is absorbing, our result
describes the absorption-time distribution, given that the absorbing state at 0 is
reached (i.e. if we ignore all trajectories that are absorbed at the upper bound-

ary) [1]. Finally, our results can also be used to determine the first-passage-time
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distribution to an arbitrary state m, since the first-passage problem can be solved

by making the target state absorbing [61].

3.7 Future Directions

Future work might focus on characterizing additional universality classes be-
yond those studied here. For example, simulations [Figure 3.3(b)] show that
exponential absorption-time distributions arise frequently in systems with an
internal sink state, toward which transitions are more likely [68]. The emergence
of the exponential distribution makes sense intuitively: the system quickly set-
tles into a quasiequilibrium mode around the sink, whose slow exponential de-
cay dominates the absorption process [69]. To our knowledge, however, there is
no rigorous classification of this case. It would also be fascinating to investigate
whether there is a universal crossover between different members of our family
of absorption-time distributions. For example, how do the distributions change
if the transition rates have mixed decay m” + em?? Understanding the crossover
scaling between these cases will enable the classification for an even broader

class of extinction-prone Markov chains.

3.8 Example models

To conclude this chapter, we provide details of the evolutionary game, SIS, lo-
gistic, and autocatalytic chemical reaction models, each of which exhibit Gaus-
sian, Gumbel, or exponential absorption-time distributions in different parame-

ter regimes. Parameters used for the simulations presented above are provided
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Table 3.1: Parameter choices for the simulations used to measure absorption-
time distributions shown in Figures 3.1(a)-(c) and 3.3(b). See Section 3.8 for
model and parameter definitions. Evolutionary games use well-mixed popula-
tion structure except in Figure 3.1(a). In Figure 3.1(c) the relative weighting of
the convolution of Gumbel distributions is s = (1 + #¢9)/(1 + €#*~9) ~ 0.73 for
both sets of parameters.

Figure Model Parameters
3.1(a) 1D Evolutionary Game B=1,a=2,b=4,c=1,d=0.1
SIS Model A=05
3.1(b) Logistic Model B=05K=1
Chemical Reaction Model ki=1,k =0.75k; =1.25
3.1(c) Evolutionary Game (black) pB=1,a=1,b=0.5,c=0.8,d=0.1
' Evolutionary Game (red) S=2,a=03,b=1.3,c=0.06,d=1.2
SIS Model A=14
3.3(b) Logistic Model B=14,K=1
) Chemical Reaction Model ki =1,k =1.35,k; =0.14
Evolutionary Game B=1l,a=1,b=15,c=12,d=1
in Table 3.1.

3.8.1 Evolutionary games

In the preceding sections, we present absorption-time distributions measured
via simulations of a two-strategy evolutionary game. In this game, two types
of individuals, mutants (M) and wild-types (W), compete and have frequency de-
pendent fitness, which means that an individual’s fitness depends on the identity

of its neighbors. This dependence is encoded by the payoff matrix,

M W
M| a b (3.23)
W\ c d

For example, a mutant (M) with 2 mutant neighbors and 3 wild-type neighbors

will have payoff 7 = 2a + 3b. The fitness is then exp(8r), where the parameter
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B, the selection intensity, controls how strongly payoff influences fitness. This
choice is known as the exponential fitness mapping [67]; we note that other fit-
ness mappings do not change the qualitative behavior discussed below. The
dynamics of the model are as follows: an individual is chosen randomly, pro-
portional to their fitness. The selected individual gives birth to an offspring of
the same time (M or W) which replaces a random neighbor (selected uniformly).
We will let m denote the number of wild-types in the population. Thus, when
m = 0, the mutants have taken over the population (in the jargon, the mutation
becomes fixed). We focus on cases in which the mutation becomes fixed, ig-
noring those when the mutation dies out (which have infinite absorption time).
We consider evolution in two types of network populations: a one-dimensional
(1D) ring of individuals and a well-mixed (complete graph) population. Each

exhibits different absorption-time behavior.

1D ring population structure

First we consider individuals connected in a 1D periodic ring [19]. Assuming a
single initial mutant, the mutant population grows as a connected chain. Any
changes in the population must occur at the boundary between mutants and
wild-types. The boundary mutants and wild-types have payoff a + b and ¢ + d
respectively (they have one of each type as a neighbor). Thus the probability b,

of removing a mutant, and the probability d,, of adding a mutant, are given by
by =HIFE, d, = L IF,, forl<n<N-1, (3.24)
where F,, is the average fitness:

F,, = 25 + (N —m — 2)éP* + 25 4 (m — 2)ePX. (3.25)
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The rates are slightly different for m = 1 and m = N — 1 [19]. For example, when

m = 1 there is a single wild-type with two mutant neighbors. These transition

rates are:
S2c eﬁ(a+b)
b, = c . d = - (3.26)
2eB@+h) 4 (N — 3)eP2a 4 P2 2eP@+h) 4 (N — 3)eP2a 4 P2
PPle+d) oP2b
by_1 dy_1 (3.27)

" &P 4 2P 4 (N — 3)eb " & 4 2P 1 (N — 3)eP”

For large N, however, these changes to the transition rates do not affect the
absorption-time distribution. One can check that these transition rates satisfy

the requirements of the Gaussian universality class if (a + b) > (c + d).

Well-mixed population

If the population is well-mixed, every individual has contact with every other,
and hence their fitness depends simply on the fraction of mutants in the pop-
ulation. The payoffs (per contact) for mutants and wild-types respectively are
ay=aN-m—-1)/(N-1)+bm/(N-1)and nry = ¢c(N-m)/(N-1)+d(m—1)/(N —1),
where again g, b, ¢, and d are elements of the payoff matrix Eq. (3.23) and m is
the number of wild-types in the population. The rates at which the wild-type

population increases or decreases are [67]

m eP™v (N —m) J (N — m) P m

by = 5 m = .
mePv + (N —m)efm N —1 mePv + (N —m)ePrv N — 1

(3.28)

For the birth (death) rate the first fraction represents the probability of choosing
a wild-type (mutant) to give birth, while the second fraction is the probability

of the offspring replacing a mutant (wild-type) in the populations.

Probability flows toward the absorbing state (r,, < 1) if b > d and a > c¢. From

the transition probabilities it is clear b,, + d,, decays linearly near both m = 0
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and m = N. Expanding around these points, b, + d,, = f(N)N — m) + O(m)
and b, + d, = f(NY(N — m) + O(N — m)*). Our theory predicts the distri-
bution will be a convolution of Gumbel distributions with relative weight-
ing s = limy_,e f(N)/ F(N). Taking this limit for the transition probabilities in

Eq. (3.28) we find
] + flca)

3.8.2 SIS model

The stochastic susceptible-infected-susceptible (SIS) model of epidemiology [57]
describes the spread of an infectious disease through a population. The pop-
ulation is broken into two groups, those susceptible to the disease and those
currently infected. This model describes diseases that do not confer immunity
following recovery (or the immunity lasts only for a short time compared to the
time scale on which the disease spreads). The rate per contact at which the dis-
ease is transmitted between individuals is A/N, and we set the time-scale so that
the recovery rate is 1. Letting m represent the number of infected individuals,
there are m(N — m) contacts between infected and susceptible people in a well-
mixed population. The m infected individuals each recover at rate 1. Thus the

rates at which the infected population increases and decreases are respectively
b,, = Am(1 —m/N), d, = m. (3.30)

This system has the vanishing transition probabilities near m = 0, indicating
coupon collection behavior (it is also straightforward to explicitly check it satis-
fies our requirements for the universality class as long as A < 1). Our simula-
tions show that it has the expected Gumbel distribution of times for the infection

to die out (Figure 3.1(b) above).

87



3.8.3 Logistic model

The stochastic logistic model describes the dynamics and fluctuations of an eco-
logical population [58]. The model assumes a constant birth rate B per individ-
ual as well as a constant death rate (which we set to 1 by choosing the appropri-
ate time scale) when the population is sparse. For higher populations, compe-
tition between individuals increases the death rate quadratically. The transition
rates are

b,, = Bm, d,, = m+ Km*|N, (3.31)

where the parameter K controls how strongly competition influences death rates
(this parameter is related to the carrying capacity of the ecosystem). Again the
transition rates vanish linearly near m = 0 and this model belongs to the Gumbel

universality class as long as B < 1.

3.8.4 Autocatalytic chemical reaction model

Our final example model describes a stochastic autocatalytic chemical reaction

[7],

k
X+A=3X, Xx22p (3.32)
ko

where k; are the reaction rates. The concentrations of species A and B are fixed
at saturation levels and we want to describe the dynamics and fluctuations of
m, the number of particles of species X. This is a variation of the Schlégl model
where the reaction X — B is irreversible and the reactions cease when no parti-
cles of X remain. Applying our results to this model we will classify the distri-
bution of reaction times: how long does the reaction proceed before the supply

of X is exhausted.
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The birth-death transition rates for the reaction given above are

ki ka
bm: Nm(m—l), dm:ﬁ

m(m — 1)(m —2) + kym. (3.33)
Again, the transition rates decay linearly near the absorbing boundary at m = 0,
indicating the Gumbel universality class; it is straightforward to check that the
required expansions hold. The conditions that guarantee r,, = b,,/d, < 1 are
more intricate. In particular, if k3 > k,, then r,, < 1 aslong as k; < k, + k3. On
the other hand, if k3 < k, we need k, < 2 vVk:k;. With either of these conditions
satisfied the autocatalytic reaction times will be Gumbel distributed. Note that
this model has an infinite state space: the number of X particles can be any
positive integer. We expect our results to apply to this class of models as long

as the initial condition is large. The simulation shown in Figure 3.1(b) indicates

this expectation is indeed borne out.

3.9 Appendix

3.9.1 Asymptotic analysis for the Gaussian Universality Class
Cumulant bounds

To estimate the asymptotics of the cumulants we start from Eq. (3.2) derived
above. Since the weights w" are increasing functions of the r;, we argued in
Section 3.3 that

Kn(rmin’ N) < Kn({rj}’ N) < Kn(rmax’ N)’ (334)

where rpx = limy_e Max cjey 7; and rpin = limy_,o min; .y 7;. The cumulants

Kn(Fmax> N) and k,(rmin, N) correspond to auxiliary Markov chains where b; + d; is
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unchanged, but r; = riay OF 1j = i, respectively.

Following Ref. [1], we provide asymptotic bounds on «(r, N) that lead to an
analytic criterion for the Gaussian universality class. Since the diagonal ele-
ments of the weights w" are greater than 1, we can bound the cumulant «, from
below by a sum of the unweighted diagonal elements (b; + d;)™". To bound from
above we can take the maximum value of (b; +d;)™ times the sum of the weight-

ing factors. The sum over weighting factors w’, . (r) is precisely the n™ cumu-

lant for a biased random walk (with b; + d; = 1 and uniform r). This sum can be
computed exactly using eigenvalues of the transition matrix [1]. In particular,
the sum is O(N) for any 7 as long as r < 1 and asymptotically can be represented
in the integral form given below. Note that r,x < 1 as long as r; < 1 — € for

all j and some € > 0: this condition was the first requirement for the Gaussian

universality class quoted in Section 3.3. Altogether we have,

)" N (7 (n—1)!

N
1 1

——— < k,(r,N) S(max X — X

; (bi + dy) 1sisN b; + d; nJo (1=2+/r/(1 +7r)cosx) (

3.35)

) X O(N).

= (max

1<i<N b,‘ + d;

We can now read off the second condition for the Gaussian universality class.
To nail down the asymptotics of «,(r, N) we want the upper and lower bounds

in Eq. (3.35) to have the same scaling for large N. Specifically, we require

1 i 1 ) (3.36)
N 2d hx e Cn|MAx , '
N & i + i) 1<i<N b; + d;

for some N-independent constant c,. Setting n = 1 in this equation leads to the

condition Eq. (3.17). We can make this simplification because when Eq. (3.36)
is satisfied for n = 1, it is also satisfied for n > 1. To see this fact, first note that
((b; + d)™) < max;(b; + d;)™" trivially. Furthermore, we can write the left hand

side of Eq. (3.36) as N'||(b + d)7'||l, where || - ||, is the p-norm and (b + d)™' is
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the vector containing elements (b; + d;)'. Using p-norm inequalities, we have
N7 B +d) Yy < NY|(b + d)7!|, for n > 1. Then if ¢ - max;(b; + d;)™' < {(b; +d))™")
as N — oo for some constant ¢, it follows that ¢" max;(b; + d;)™ < {(b; + d;)™) in
this limit as well. Thus, it is sufficient to check Eq. (3.36) holds for n = 1, since

this implies the condition holds for all n > 1.

As discussed previously, the condition Eq. (3.36) can be interpreted as the
waiting times being ‘flat” in the following sense: all (or at least a significant
fraction) of the (b; + d;)”! are the same order as their maximum value. If this
condition holds, then for large N we have that «,(r, N) ~ ¢,(r)f(N)'"N where
f(N) ~ max;<n(b; + d;)™' as N — co. Since these asymptotics hold for both
r = Imin @nd 7 = rp,y, it follows from Eq. (3.34) that «,({r;}, N) ~ c,({r;})f(N)'N
as well, possibly with a different constant ¢,(rmin) < ¢,({r;}) < cu(rmax). These
asymptotics imply that the higher-order cumulants are dominated by the vari-
ance and hence the distribution looks normal for large N, i.e. the standardized

cumulants k,, = Kn/K;’/2 — 0as N — .

Leading correction to the Gaussian

The leading correction to the Gaussian distribution for finite N comes from the
skew, k3 = &/ VN. Here we will give a bound on the magnitude of the skew,
that can be used to predict when finite systems will have a nearly Gaussian

absorption-time distribution. First, define

, 1 51
Ko = I N Zl i +dy e

where f(N) ~ max,<y(b; + d;)™' as N — oo as above. Then from Eq. (3.35) that

k2, > KoN f(N)?. Evaluating the integral in Eq. (3.35) we have k3 < 2f(N)*N(rmax +
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(s

+ 4rmax + 1)/(1 = rnay)’. Putting these together,
_ 2(Fmax + 1)3(1”12nax +4rmx + 1) 1
K3 <

(1 - rmax)sl(;/2 \/N

The convergence is slowest (i.e. the coefficient of 1/ VN is large), when the con-

(3.38)

ditions for the universality class are pushed to their limits: if the system is barely
extinction-prone, rm,x = 1, or the waiting times are not very uniform, K, < 1
(the sum in Eq. (3.36) is nearly dominated by the maximal term). Finally, we
note that this is a rough upper bound; in many cases the convergence is much
faster, e.g., if only a few r; = 1 but the rest are very small. Replacing . with
the average r; in Eq. (3.38) may often give a better estimate of the actual skew

for a given system, even if it does not give a strict upper bound.

3.9.2 Asymptotic analysis for the Gumbel Universality Class
Cumulant bounds

For the Gumbel universality class we require b,, + d,, = f(N)m[1 + O(m/N)], bon +
d.n be of order at least O(Nf(N)) for any 0 < @ < 1, and r,, = r + O(m/N) for
large N. These properties are sufficient to guarantee that the absorption-time
cumulants are asymptotic to those for an exactly solvable canonical model (for
which the above equalities hold exactly, not just to leading order). Following
Ref. [1], we restrict two of the indices in Eq. (3.2) to be O(N) away from the
absorbing state, aN < i,_; < i, < N. With this restriction we can bound the sums,

wi o (rih) 1 )
Z | (biy +d;,)--- (b, +d;) < f(N)N? Z W,-l,-z,_,[n(r). (3.39)

1<i1<ip <+ <ip—
aN<i,_1<i,<N

In the previous section, we established that the sum over the weighting factors

is O(N), so this portion of the sum is O(f(N)™N~"). We now consider indices
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1 <ij<aNand aN <i, <N,

wi i (drih) 1 )
Z (i, +d;y) -+~ (b;, + d;,) = f(Ny'N Z Wi igewiy (1)- (3.40)

i1<ip<-<iy i1<ip<--<iy
1<ii<aN<i,<N 1<ii<aN<i,<N

Since the weighting factors decay exponentially away from the diagonal ele-
ments, the sum on the right hand side of Eq. (3.40) is O(1) and this portion of the

sum is also O(f(N)™"N7").

Since the same bounds also apply for any other pair of the indices, the only
remaining portion of the cumulant sum Eq. (3.2) is that where all indices are
near 0. Here the approximations that b,, + d,, is linear and r,, is constant become

asymptotically exact so that,

er'l,iz...in({rj}) 1 Wzr'lliz---i,,(r)
Z i +di) (b +di)  fFN) Z PO (3.41)

In

The right hand side of Eq. (3.41) is at least O(f(N)™) and therefore this region
of the cumulant sum dominates asymptotically compared to the O(f(N)™"N~!)
terms estimated above. In other words, the absorption process is entirely domi-
nated by the coupon collection behavior near the absorbing state. Furthermore,
we can freely extend the upper limit of the sum to N (instead of aN) since
this will only add subdominant terms. Finally, we obtain the result quoted in

Eq. (3.18),

1 Wiiyiy ()
ku({rj}, N) ~ Ny Z m (3.42)

Thus, for any Markov chain satisfying the conditions at the beginning of this

section, the cumulants are asymptotic to those for the “canonical model” with
by +d, = f(N)m and r,, = r exactly. In Section 54.C we show this model has an

asymptotically Gumbel absorption-time distribution.
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Leading correction to the Gumbel

The leading correction ¢k, to the standard deviation comes from the quadratic

term in the transition rates, b,,+d,, = f(N)m(1+m/N). Plugging this into Eq. (3.42)

for one set of rates in the denominator and using the partial fraction decompo-
sition 1/i(j + j?/N) = 1/ij + 1/i(j + N) leads to

0Ky ~ ﬁ Z

1<i<j<aN

21 — )2 = 2(1 = piy?

f(zlwz Z T +rN)) "2 Z 2 <1(1—+r)201+ Nr>)

where in the second line we make use of the fact that r,, = r is approximately

wl.z,j(r)
i(j+N)

(3.43)

constant to write the explicit expression for wi/. (obtained from Egs. (3.7) and
(3.14)). The sums in the second line can be evaluated explicitly in terms of spe-
cial functions, including harmonic numbers and the Lerch transcendent. The
tirst sum is asymptotically dominant, leading to dk, ~ f(N)2N~'In(N). More
generally, the asymptotics above hold if b, + d,, = f(N)m(1 + m/g(N)) as long
as the function g(N) — o0 as N — oo. An analogous calculation shows that
for this case 6k, ~ [Ing(N)l/g(N)f(N)*. If g(N) grows superlinearly, however,
[Ing(N)]/g(N)f(N)* is dominated by the corrections due to Eq. (3.39) and (3.40)

computed above, leading to ok, ~ f(N) 2N~

The higher-order cumulants can be analyzed in similar fashion. Since the
weights decay exponentially away from the diagonal, the terms with i; = i, =

- = I, = i is asymptotically dominant. For these elements Wi l({r]}) =

(n-1)!V? and it is straightforward to show that 6k, ~ N~ f(N)™. for the standard-

3/2

ized cumulants &, = «,/k,’", the factors of f(N) in the asymptotics cancel and

we are left with O(N~!1In N) corrections from the standard deviation. In other

words, the deviations from the Gumbel cumulants scale like 6%, = &, — k5"l ~
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C,N'InN for large N. For the more general case, where the quadratic term in
the rates is suppressed by g(N), the scaling is ¢k, ~ C,[In g(N)]/g(N) for sublinear
g(N) and «, ~ C, /N otherwise.

Large-N limit for the canonical model

The canonical Markov model with coupon-collection behavior has b,, + d,, =
f(N)m and r,, = r. Note that f(N) simply sets the time scale for the process
and does not affect the shape of the absorption-time distribution. Therefore, for
convenience, we will rescale time t — #(r + 1)/ f(N) so that b,, = rm and d,, = m.
For this system, the absorption-time distribution p(f) has been computed exactly
using generating functions [59, Appendix B],

NevtVZ
(evt _ 1)2(1 + eW‘L_])N-Fl

pt) = (3.44)

where v = 1 — r. To derive the asymptotic form of the distribution we standard-
ize to zero mean and unit variance. The standardized distribution is simply
op(ot + ), where 1 ~ (InN + Inv + y)/v and o ~ /v V6 are the mean and stan-
dard deviation of the absorption time. Here y ~ 0.5772 is the Euler-Mascheroni

constant. Plugging in this transformation and taking N — oo, we find

op(ot + u) Now, T exp (—y —at/ N6 — e ‘/6) , (3.45)

V6

which is precisely the standardized Gumbel distribution.

3.9.3 Asymptotic Analysis for the power-law processes

In this section we generalize the Gumbel criteria discussed above. Consider

Markov processes with transition rates that satisty b, +d,, = f(N)m”[1+O(m/N)].
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Moreover, suppose that b,y +d,y is of order at least O(N? f(N)) forany 0 < @ < 1,
and r,, = r + O(m/N) for large N. In other words, this process has transition rates
that vanish as a power-law m” near the boundary. In Section 3.5 we claimed that
p < 1/2 gives rise to Gaussian absorption times, while p > 1/2 leads to a skewed
family of distributions (whose shape depends on the parameters p and r). We

rigorously justify these claims in the following subsections.

Skewed family for p > 1/2

When p > 1/2 the transition rates decay quickly enough that the process is dom-
inated by slowdown near the boundary (similar to coupon collection), giving
rise to skewed distributions. To analyze this case, we can apply similar asymp-
totic analysis to that given in Section 54.A for the Gumbel class. Repeating the

bounds in Egs. (3.39) and (3.40) for the power-law process, we find that

Wi i, A7) 3 )
lSilSizzS;-Sinl (i, +d;) -+~ (b;, + d;,) = O YN (340

aN<iy,_1<i,<N

wio (drih) Ol 647)
Z (bil + dil) te (bi,, + d,-n) - (f( ) ) :

11<ip<--<iy
1<i<aN<i,<N

As long as p > 1/2, these terms are each asymptotically dominated by the in-

dices near 0,

W?lizmi,,({rj}) - 1 W?liz"'in(r) (3 48)
1<i) <iz<<ip<aN iy +di)) -+~ by, + ;) f(N)" 1<i) < <<ip<aN Il)llZ) sy

which are at least of order O(f(N)™). Similar to the Gumbel class, the absorp-
tion process is dominated by the slow behavior near the absorbing state, where
the transition rates decay. Extending the upper limit on the sum from aN to N

(which only adds subdominant terms), we find that the cumulants «, satisfy

ky({r}, N) ~ ! W—(r) (3.49)
! JNY! 1<ii <ip<<in<N ifig sy
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Notice that this asymptotic formula for the cumulants is identical to Eq. (3.42),
but with the denominator (i;i,---i,) raised to the power p. Thus, we have
shown the absorption-time cumulants for a general Markov process, with
by +d, = f(N)m”[1 + O(m/N)], are asymptotic to those for the minimal model
by = rd, = rm? (after rescaling t