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Here we study fluctuations, scaling, and universality in a variety of first-passage

scenarios. First, we explore fluctuations in fixation times in evolutionary dy-

namics. We compute the fixation-time distribution for several models of evo-

lution and determine how the shape of the distribution depends on the fitness

advantage provided by a genetic mutation. Our results reveal an interesting

dichotomy: for neutral mutations the distribution is highly-skewed, while for

non-neutral mutations, two particular distributions arise. In the latter case, de-

pending on population structure the fixation-time distribution is either a Gaus-

sian or the (moderately skewed) Gumbel distribution. Next, we show that the

Gaussian and Gumbel distributions are universal; they arise generically across

a variety of stochastic models of evolution, ecology, epidemiology, and chem-

ical reactions. The distinguishing feature is the decay of the stochastic transi-

tion rates near the absorbing state: lack of decay leads to Gaussian distribu-

tions, while linear decay leads to Gumbel distributions. Distributions resulting

from other power-law decays in the transition rates are also classified. Finally,

we formulate a renormalization group approach and scaling theory for barrier

crossing phenomena near a noisy saddle-node bifurcation, where the barrier

vanishes. We derive the universal scaling behavior and corrections to scaling

for the mean barrier escape time in overdamped systems with arbitrary barrier

height. We also develop an accurate approximation for the fluctuations in es-



cape times, capturing the full distribution of barrier escape times at any barrier

height. This critical theory draws links between barrier crossing in chemistry,

the renormalization group, and bifurcation theory.
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with N = 100 nodes, edge probability p = 1/4, and fitness r = 2,
obtained from 106 simulation runs (the same graph is used for
each run). The distribution is standardized to zero mean and
unit variance. The solid curve is the theoretical prediction for
the complete graph, obtained by numerical convolution of two
Gumbel distributions, one weighted by r. For these parameters,
the random graph fixation time is captured by the mean field
approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xi



3.1 Absorption-time distributions for (a) the random transition ma-
trix model (large black circles) and the evolutionary game on a
ring (small red circles), (b) SIS model (large black circles), logis-
tic model (small red circles), and autocatalytic chemical reaction
model (cyan triangles), (c) the well-mixed evolutionary game,
and (d) the process bm = rdm = rmp, for r = 0 and p = 0.3 (blue),
p = 0.75 (orange), p = 1 (green), and p = 1.8 (red). The r = 0.8
distributions are indicated by dotted lines (when they differ from
the r = 0 counterparts). See Section 3.8 for models and parame-
ters. We used system sizes (a-b) N = 500 and (c-d) N = 1000 and
simulated (a) 5 × 104, (b-c) 105, and (d) 106 trials to measure the
distributions, which have been standardized to have zero mean
and unit variance. In (c) the distributions are a convolution of
Gumbel distributions with relative weighting s ≈ 0.73. Devia-
tions from predicted normal and Gumbel distributions in (a-c)
are due to finite system size. . . . . . . . . . . . . . . . . . . . . . 72

3.2 Absorption-time skew for the process bm = rdm = rmp with r = 0
(blue circles) and r = 0.8 (red squares), plotted as a function
of the power-law exponent p. Skews were numerically com-
puted for N = 105 using the recurrence relation approach de-
scribed in Ref. [1]. The black line shows the asymptotic skew
2ζ(3p)/ζ(2p)3/2 for r = 0. The curves cross at p = 1 where the
distribution is Gumbel, independent of r. For p ≤ 0.5 the skew
approaches zero and the distribution is Gaussian. The numerical
skew is slightly larger than expected for p ≲ 0.6 due to finite size
effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Generalizations to high-dimensional models and Markov chains
with internal sinks. (a) Extinction-time distributions for sleep-
ing sickness predicted using a 17-dimensional compartmental
model that was fit to case data from the Mosango (large black cir-
cles) and Kwamouth (small red circles) regions of the Democratic
Republic of Congo (data from Ref. [2]). Mean extinction times
(measured from 2016) are approximately 9.5 and 31 years for the
Mosango and Kwamouth regions respectively, with standard de-
viations of 4.8 and 7.9 years. Disease eradication times approx-
imately follow a Gumbel distribution (fit using the mean and
variance). (b) Simulations of the SIS, logistic, reaction, and well-
mixed evolutionary game models have exponential absorption-
time distributions (standardized to zero mean and unit variance)
if parameters are chosen so that the dynamics have an internal
sink state. For each case, we used N = 50 and simulated 106

trials. See Section 3.8 for model details and parameters. . . . . . . 78

xii



3.4 The eigenvalues of the transition matrix for the canonical model
bm = rm, dm = m with N = 2000 and r = 0.05, 0.5, and 0.95 plotted
on a log-log scale. The black lines show (1 − r)m for each value
of r. The eigenvalues closely follow this linear relation up to a
cut-off mc that is dependent on r. Since the leading eigenvalues
are linear the absorption-time distribution is Gumbel. . . . . . . 81

4.1 Typical potentials in the high barrier Arrhenius limit (solid
curve) and at the renormalization group fixed point (dashed
curve). Kramers’ theory utilizes a two point series expansion
at xmin in the potential well and at xmax, the top of the barrier. For
our renormalization group approach the natural description is
in terms of a single expansion at the origin parameterizing per-
turbations away from the fixed point potential V∗(x) ∝ −x3. Also
shown is the noise amplitude g(x), which generically has spatial
dependence (dotted curve). . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Comparison of the universal scaling function T (α) (solid curve)
to the Arrhenius (dotted curve) and deterministic (dashed curve)
limits. Also shown are the mean escape times for 500 simulations
of the barrier escape process. For the simulations we fixed g0 =

1 while varying ϵ0 and used boundary conditions x f = −xi =

25. Agreement with our analytic expression for T (α) is excellent.
The insets show snapshots of the barrier crossing simulations for
ϵ0 = ±1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 The scaling forms Λn(α) for the first seven eigenvalues. For large
positive α the eigenvalues are approximately evenly spaced. For
large negative α the leading eigenvalue approaches 0 and the
gap to the second eigenvalue grows. The scaling form for the
leading eigenvalue Λ0(α) ≡ Λα used in our approximation to the
distribution of escape times is shown in red. . . . . . . . . . . . . 114

4.4 The barrier crossing time distributions obtained using our
evenly spaced eigenvalue approximation Eq. (4.29) (lines) and
from direct simulation of the Fokker-Planck equation (symbols)
for (a) α = −2, (b) α = 0, (c) α = 2, and (d) α = 7. In all cases
agreement between the theory and simulations is excellent. In
the large barrier limit (a) the distribution is approximately expo-
nential and in the strongly sloped potential (d) it is nearly Gaus-
sian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xiii



CHAPTER 1

INTRODUCTION

The concept of first passage underlies many physical, chemical and biologi-

cal processes and even arises commonly in daily life. Many readers might recall

asking the question “are we there yet?” on long car rides as a young child. Dur-

ing the incubation of a disease, symptoms onset when the invasive bacteria or

virus first reaches a certain population level. Chemical reactions and magnetic

spin avalanches each involve first-passage escape over an energy barrier sep-

arating metastable and stable states. A molecular motor, walking along actin

filaments or microtubules to drag cargo across the cell, diffusively searches for

binding sites and binds to those it first encounters. Finally, the extinction of a

species and the eradication of an epidemic both occur when the population (of

animals or of sick individuals) reaches zero.

For each of these examples (many of which we will revisit in this thesis),

reaching a threshold for the first time either triggers a response (e.g., onset of dis-

ease) or terminates the dynamics entirely (e.g., extinction). The key quantity of

interest for studying these processes is the first-passage time T , how long does it

take to first reach the threshold?1 When the underlying dynamics of the system

are stochastic, T is itself a random quantity, with a probability distribution fT (t).

The broad goal of this thesis is to determine how the underlying physics of

a system, which determines the space of possible states and the rates of tran-

sition between these states, influences the statistics of the first-passage time.

For example, the state of the system might be the number of sick individuals

1In the following chapters we will refer to fixation time in the context of evolutionary dynam-
ics, absorption time for Markov chains with an absorbing boundary state, and barrier escape
time for chemical reactions. These are all different examples of first-passage times.
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Figure 1.1: A birth-death Markov chain. The system is composed of a linear
chain of N states, with bm and dm designating the transition rates between neigh-
boring states. In this example, the upper boundary m = N is reflecting and the
lower boundary m = 0 is absorbing.

in a population or the positions of all the atoms in a molecule undergoing a

chemical reaction. The transitions between states are respectively determined

by the contact network of the population and the intramolecular forces holding

the molecule together. How do the details of the contact network or molecular

forces influence the shape of the first-passage time distribution fT (t)?

Figure 1.1 shows one of the simplest possible systems: a birth-death Markov

chain, which is composed of a discrete one-dimensional chain of N states with

transitions only between nearest neighbor states occurring at rates bm and dm.

Models of this form (and those with absorbing boundaries on both ends of the

chain) will be the focus of Chapters 2 and 3. In Chapter 4, we consider the

analogous continuous system, where the state undergoes diffusive motion.

While these one-dimensional models are simplistic, they often provide ef-

fective coarse-grained descriptions of higher-dimensional phenomena. For ex-

ample, averaging over the configurations of infected individuals in network

models of epidemiology produces effective transition rates bm and dm that accu-

rately reproduce the dynamics of the infected population [3, 4]. Even when the

state space is genuinely high-dimensional, the first-passage behavior may still

be well described by the birth-death Markov chain if the dynamics collapse onto

2



a one-dimensional slow manifold near the absorbing state (which is often the

case in dynamical systems). Similarly, the theory of chemical reactions employs

a coarse-grained one-dimensional reaction coordinate, which parametrizes the

path of least resistance between reactant and product chemical species [5] (also

see Chapter 4 for further discussion).

Much effort has gone toward computing mean first-passage times,

⟨T ⟩ =
∫

t fT (t) dt (1.1)

for simple stochastic models that fall into the birth-death Markov chain class

shown in Figure 1.1, both for specific models and more generally. In particular,

Doering and colleagues obtained asymptotic (N ≫ 1) expressions for the mean

time to hit the absorbing state at 0 for several broad classes of Markov chains

based on generic features of the transition rates bm and dm [6, 7].

In this thesis we go beyond the mean to provide an understanding of the

higher-order fluctuations in first-passage times. We develop new analytical ap-

proaches and approximations that enable characterization of the cumulants of

first-passage times, κn, defined via the generating function

log f̃T (ω) =
∞∑

n=1

κn(iω)n/n!, (1.2)

where f̃T (ω) is the Fourier transform of the first-passage time distribution. The

first two cumulants are familiar: κ1 is the mean, while κ2 is the variance. The

higher-order cumulants characterize the shape of the distribution, for instance

κ3/κ
3/2
2 is the skew. We will answer the following questions in the chapters be-

low: what characteristics of the stochastic transition rates in a system (bm and

dm for the birth-death Markov chain) determine the cumulants and hence the

shape of the distribution fT (t)? How do the mean and higher-order cumulants
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scale, for large systems or near a critical transition? Finally, are there universal

features of first-passage processes? Do the same fluctuations and scaling appear

across models and applications?

Chapter 2 focuses on a particular application: evolutionary dynamics. There

we investigate how the fixation time, the time for a genetic mutation to spread

to an entire population via competitive reproductive dynamics and natural se-

lection, depends on the fitness advantage (or lack thereof) conferred by the mu-

tation. We find a striking transition: for neutral fitness the fixation-time distri-

butions are highly skewed, while for non-neutral evolution the distribution is

either Gaussian or Gumbel (depending on the population structure).

The appearance of Gaussian and Gumbel distributions for broad ranges of

fitness and across different models of evolution suggests a degree of universal-

ity. In Chapter 3 we classify the birth-death Markov chains (Figure 1.1) that

have Gaussian or Gumbel absorption-time distributions, connecting the result-

ing distribution to basic features of the underlying dynamics. We also identify a

broader family of universal skewed distributions that interpolates between the

Gaussian and Gumbel.

Finally, Chapter 4 analyzes barrier-crossing phenomena in continuous sys-

tems, applicable to chemical reactions and other noise-driven systems with

metastable states. Here we study the scaling of the barrier escape time near

a critical transition: the saddle-node bifurcation where the barrier vanishes. Us-

ing a renormalization group approach inspired by Feigenbaum’s renormaliza-

tion group for iterated maps [8], we derive the universal scaling near the saddle-

node transition for both the mean and full distribution of barrier crossing times.

The results capture the crossover from high-barrier to barrier-less systems, uni-
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fying classical reaction rate theory with dynamical systems theory for the noisy

saddle-node bifurcation.

To conclude, Chapter 5 outlines a number of experimental systems which

may be used to test our predictions of universality and scaling for first-passage

times and their fluctuations. Real-world epidemiological processes as well as

bacterial evolution, single-cell aging, and optoelectronic laboratory experiments

each have underlying first-passage processes, whose measurement provides a

direct test of our results. When the experimental measurements agree with the

predicted first-passage-time distributions or scaling, the theory provides a clear

picture of the underlying physics governing the system.
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CHAPTER 2

FITNESS DEPENDENCE OF THE FIXATION-TIME DISTRIBUTION

FOR EVOLUTIONARY DYNAMICS ON GRAPHS

2.1 Introduction1

Reproducing populations undergo evolutionary dynamics. Mutations can en-

dow individuals with a fitness advantage, allowing them to reproduce more

quickly and outcompete non-mutant individuals [9]. Two natural questions

arise: If a single mutant individual is introduced into a population, what is

the probability that the mutant lineage will spread and ultimately take over the

population (an outcome known as fixation)? And if fixation occurs, how much

time does it take?

These questions have been addressed, in part, by evolutionary graph theory,

which studies evolutionary dynamics in structured populations. Thanks to this

approach, fixation probabilities are now well understood for various models on

various networks [10–20]. Less is known about fixation times. Given a model

of evolutionary dynamics, one would like to predict the mean, variance, and

ideally the full distribution of its fixation times.

Of these quantities, the mean is the best understood. Numerical and analyti-

cal results exist for mean fixation times on both deterministic [12, 14, 19–25] and

random [4, 24–26] networks. Yet although mean fixation times are important

to study, the information they provide can be misleading, because fixation-time

1This chapter is reproduced from: David Hathcock and Steven H. Strogatz, “Fitness depen-
dence of the fixation-time distribution for evolutionary dynamics on graphs.” Physical Review
E 100, 012498 (2019)
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distributions tend to be broad and skewed and hence are not well character-

ized by their means alone [19, 27–30]. Initial analytical results have determined

the asymptotic fixation-time distribution for several simple networks, but only

when the relative fitness of the mutants is infinite [31–33]. For other values of

the relative fitness, almost nothing is known. Preliminary results suggest that

at neutral fitness (when mutants and non-mutants are equally fit), the fixation-

time distribution becomes highly right-skewed [33].

In this chapter we investigate the full fitness dependence of fixation-time

distributions for the Moran process [34, 35], a simple model of evolutionary

dynamics. In the limit of large network size, we derive asymptotically exact

results for the fixation-time distribution and its skew for two network structures

at opposite ends of the connectivity spectrum: the complete graph, in which

every individual interacts with every other individual; and the one-dimensional

ring lattice, in which each individual interacts only with its nearest neighbors

on a ring.

The specific model we consider is the Moran Birth-death (Bd) process2, de-

fined as follows. On each node of the network there is an individual, either

mutant or non-mutant. The mutants have a fitness level r, which designates

their relative reproduction rate compared to non-mutants. When r > 1, the mu-

tants have a fitness advantage, whereas when r = 1 they have neutral fitness. At

each time step we choose a node at random, with probability proportional to its

fitness, and choose one of its neighbors with uniform probability. The first indi-

vidual gives birth to an offspring of the same type. That offspring replaces the

neighbor, which dies. The model population is updated until either the mutant

2We use the convention that capital letters designate a fitness dependent step in the Moran
process (e.g., for the Bd process nodes give birth at a rate proportional to their fitness, but die
with uniform probability). See Ref. [33, Box 2] for a detailed explanation of this nomenclature.
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1. Random node gives birth 2. Random neighbor dies 3. Replacement

Figure 2.1: Dynamics of the Moran Birth-death (Bd) process. At each time step
(1) a random node is chosen to give birth, (2) one of its neighbors is chosen to
die, and (3) the new offspring replaces the dying node.

lineage takes over (in which case fixation occurs) or the mutant lineage goes

extinct (a case not considered here). Figure 2.1 illustrates a single step of this

update procedure.

As mentioned above, the distribution of fixation times is often skewed.

The skew emerges from the stochastic competition between mutants and non-

mutants through multiple mechanisms. For instance, when the mutants have

neutral fitness the process resembles an unbiased random walk. We find that the

asymptotic fixation-time distribution for a simple random walk is only skewed

when the walk is unbiased. The lack of bias allows for occasional long recurrent

excursions (that are suppressed in biased walks) during successful runs to fixa-

tion. The fixation-time distribution is strongly skewed because there are many

ways to execute such walks that are much longer than usual, but comparably

few ways for mutants to sweep through the population much faster than usual.

Depending on network structure, the fixation-time skew can also come from

a second, completely separate mechanism, which involves characteristic slow-
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downs that arise because individuals do not discriminate between mutants and

non-mutants during the replacement step of the Moran process. For example,

when very few non-mutants remain, the mutants can waste time replacing each

other. These slowdowns are reminiscent of those seen in a classic problem from

probability theory, the coupon collector’s problem, which asks: How long does

it take to complete a collection of N distinct coupons if a random coupon is re-

ceived at each time step? The intuition for the long slowdowns is clear: when

nearly all the coupons have been collected, it can take an exasperatingly long

time to collect the final few, because one keeps acquiring coupons that one al-

ready has. The problem was first solved by Erdős and Rényi, who proved that

for large N, the time to complete the collection has a Gumbel distribution [36]. In

fact, for evolutionary processes with infinite fitness there exists an exact map-

ping onto coupon collection [32, 33]. Remarkably, while this correspondence

breaks down for finite fitness, the coupon collection heuristic still allows us to

predict correct asymptotic fixation-time distributions for non-neutral fitness.

In the following sections we show that for N ≫ 1, the neutral-fitness Moran

process on the complete graph and the one-dimensional ring lattice has highly

skewed fixation-time distributions, and we solve for their cumulants exactly.

For non-neutral fitness the fixation-time distribution is normal on the lattice and

a weighted convolution of Gumbel distributions on the complete graph. These

results are novel; apart from the infinite fitness limit and some partial results at

neutral fitness (noted below), the fitness dependence of these distributions was

previously unknown.

We begin by developing a general framework for computing fixation-time

distributions and cumulants of birth-death Markov chains, and then apply it to
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the Moran process to prove the results above. We also consider the effects of

truncation on the process and examine how long it takes to reach partial, rather

than complete, fixation. The fixation-time distributions have rich dependence

on the fitness level and the degree of truncation, with both discontinuities and

regions of universality. To conclude, we discuss extensions of our results to

two-fitness Moran models and to more complicated network topologies.

2.2 General Theory for Birth-Death Markov Processes

For simplicity, we restrict attention to network topologies and initial mutant

populations for which the probability of adding or removing a mutant in a

given time step depends only on the number of existing mutants, not on where

the mutants are located on the network. The state of the system can therefore

be defined in terms of the number of mutants, m = 0, 1, . . . ,N, where N is the

total number of nodes on the network. The Moran process is then a birth-death

Markov chain with N + 1 states, transition probabilities bm and dm determined

by the network structure, and absorbing boundaries at m = 0 and m = N. In this

section we review several general analytical results for absorbing birth-death

Markov chains, explaining how they apply to fixation times in evolutionary dy-

namics. We also develop an approach, which we call visit statistics, that enables

analytical estimation of the asymptotic fixation time cumulants.

On more complicated networks, the probability of adding or removing a

mutant depends on the configuration of existing mutants. For some of these

networks, however, the transition probabilities can be accurately estimated us-

ing a mean-field approximation [4, 30, 32, 33]. Then, to a good approximation,
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the results below apply to such networks as well.

2.2.1 Eigendecomposition of the birth-death process

Assuming a continuous-time process, the state of the Markov chain described

above evolves according to the master equation,

ṗ(t) = Ω · p(t), (2.1)

where p(t) is the probability of occupying each state of the system at time t and

Ω is the transition rate matrix, with columns summing to zero. In terms of the

transition probabilities bm and dm, the entries of Ω are

Ωmn = bnδm,n+1 + dnδm,n−1 − (bn + dn)δm,n, (2.2)

where m and n run from 0 to N, δm,n is the Kronecker delta, and b0 = d0 =

bN = dN = 0. The final condition guarantees the system has absorbing bound-

aries with stationary states pm = δm,0 and pm = δm,N when the population is

homogeneous. Thus we can decompose the transition matrix into stationary

and transient parts, defining the transient part Ωtr as in Eq. (2.2), but with

m, n = 1, . . . ,N − 1. The transient transition matrix acts on the transient states of

the system, denoted ptr(t). The eigenvalues of Ωtr are real and strictly negative,

since probability flows away from these states toward the absorbing bound-

aries. To ease notation in the following discussion and later applications, we

shall refer to the positive eigenvalues of −Ωtr as the eigenvalues of the transition

matrix, denoted λm, where m = 1, . . . ,N − 1.

From the perspective of Markov chains, the fixation time T is the time re-

quired for first passage to state m = N, given m0 initial mutants, pm(0) = δm,m0 . At
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time t, the probability that state N has been reached (i.e., the cumulative distri-

bution function for the first-passage times) is simply φ−1
m0

pN(t), where φm0 is the

fixation probability given m0 initial mutants. The distribution of first-passage

times is therefore φ−1
m0

ṗN(t) = φ−1
m0

bN−1 pN−1(t). Since we normalize by the fixation

probability, this is precisely the fixation-time distribution conditioned on reach-

ing N.

The solution to the transient master equation is the matrix exponential

ptr(t) = exp(Ωtrt) · ptr(0), yielding a fixation-time distribution φ−1
m0

bN−1[exp(Ωtrt) ·

ptr(0)]N−1 [37]. If we assume one initial mutant m0 = 1 this becomes

φ−1
1 bN−1[exp(Ωtrt)]N−1,1. The matrix exponential can be evaluated in terms of

the eigenvalues λm by taking a Fourier (or Laplace) transform (for details, see

Ref. [29]). For a single initial mutant, the result is that the fixation time T has a

distribution fT (t) given by

fT (t) =
N−1∑
j=1

 N−1∏
k=1,k, j

λk

λk − λ j

 λ je−λ jt. (2.3)

This formula holds as long as the eigenvalues λm are distinct, which for birth-

death Markov chains occurs when bm and dm are non-zero (except at the absorb-

ing boundaries) [38]. Generalizations of this result for arbitrarily many initial

mutants have also recently been derived, in terms of eigenvalues of the transi-

tion matrix and certain sub-matrices [29].

The distribution in Eq. (2.3) is exactly that corresponding to a sum of expo-

nential random variables with rate parameters λm. The corresponding cumu-

lants equal (n − 1)!
∑N−1

m=1(λm)−n. As our primary interest is the asymptotic shape

of the distribution, we normalize T to zero mean and unit variance and study

(T − µ)/σ, where µ and σ denote the mean and standard deviation of T . The

standardized distribution is then given by σ fT (σt + µ). The rescaled fixation
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time has cumulants

κn(N) = (n − 1)!

N−1∑
m=1

1
λn

m

 / N−1∑
m=1

1
λ2

m

n/2

, (2.4)

which, for many systems including those considered below, are finite as N → ∞.

When the limit exists, we define the asymptotic cumulants by κn = limN→∞ κn(N).

In particular, because we have standardized our distribution, the third cumu-

lant κ3 is the skew. In practice the limit N → ∞ is taken by computing the leading

asymptotic behavior of both the numerator and denominator in Eq. (2.4). As we

will see below the scaling of these terms with N depends on both the popula-

tion network structure and the mutant fitness (see also asymptotic analysis in

the Appendix, Sections 2.9.4 & 2.9.5). This approach allows us to characterize

the asymptotic shape of the fixation-time distribution in terms of the constants

κn. Since λm > 0, it is clear from this expression that, for finite N, the skew and all

higher order cumulants must be positive, in agreement with results for random

walks with non-uniform bias [39]. As N → ∞ this is not necessarily true; in

some cases the cumulants vanish.

The eigendecomposition gives the fixation-time distribution and cumulants

in terms of the non-zero eigenvalues of the transition matrix. In general the

eigenvalues must be found numerically, but in cases where they have a closed

form expression the asymptotic form of the cumulants and distribution can of-

ten be obtained exactly.

2.2.2 Analytical cumulant calculation: Visit statistics

In this section we develop machinery to compute the cumulants of the fixation

time analytically without relying on matrix eigenvalues. For this analysis, we
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specialize to cases where bm/dm = r for all m, relevant for the Moran processes

considered below. These processes can be thought of as biased random walks

overlaid with non-constant waiting times at each state.

It is helpful to consider the Markov chain conditioned on hitting N, with new

transition probabilities b̃m and d̃m so that the fixation probability φm0 = 1. If Xt

is the state of the system at time t, then b̃m = P(Xt = m → Xt+1 = m + 1|X∞ = N)

with d̃m defined analogously. We derive explicit expressions for b̃m and d̃m in

the Appendix, Section 2.9.2. Conditioning is equivalent to a similarity transfor-

mation on the transient part of the transition matrix: Ω̃tr = S Ωtr S −1, where S

is diagonal with S mm = 1 − 1/rm. Furthermore, since bm/dm = r, we can decom-

pose Ωtr = ΩRWD, where D is a diagonal matrix, Dmm = bm + dm, that encodes the

time spent in each state andΩRW is the transition matrix for a random walk with

uniform bias,

[ΩRW]nm =
r

1 + r
δm,n+1 +

1
1 + r

δm,n−1 − δm,n. (2.5)

Applying the results of the previous section and using the fact that the columns

of Ω sum to zero, we can write there fixation-time distribution of the condi-

tioned Markov chain as fT (t) = −1Ω̃tr exp(Ω̃trt)ptr(0), where 1 is the row vector

containing all ones. This distribution has characteristic function [37]

ϕ(ω) B E[exp(iωT )] = 1Ω̃tr(iω + Ω̃tr)−1ptr(0). (2.6)

and the derivatives (−i)nϕ(n)(0) give the moments of T

E[T n] = (−1)nn!1Ω̃−n
tr ptr(0), (2.7)

in terms of Ω̃−1
tr = D−1SΩ−1

RWS −1. This inverse has a nice analytical form because

S and D are diagonal and ΩRW is tridiagonal Toeplitz. We call this approach visit

statistics because the elements Vi j of V = −SΩ−1
RWS −1 encode the average number

of visits to state i starting from state j.
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Each power of Ω̃tr in Eq. (2.7) produces products of (bi+di) that arise in linear

combinations determined by the visit numbers Vi j. Therefore, the cumulants of

the fixation time have the general form

κn(N) =

N−1∑
i1,i2,...,in=1

wn
i1i2···in

(r,N|m0)

(bi1 + di1)(bi2 + di2) · · · (bin + din)N−1∑
i, j=1

w2
i j(r,N |m0)

(bi + di)(b j + d j)


n/2 , (2.8)

where wn
i1i2···in

(r,N|m0) are weighting factors based on the visit statistics of the bi-

ased random walk, given the initial number of mutants m0. In what follows, we

always assume m0 = 1 and suppress the dependence of the weighting factors on

initial condition, writing wn
i1i2···in

(r,N) instead. A detailed derivation of Eq. (2.8)

and explicit expressions for w2
i j(r,N) and w3

i jk(r,N) are given in the Appendix,

Section 2.9.1 below.

To the best of our knowledge this representation of the fixation-time cumu-

lants has not been previously derived, although a similar approach was recently

used to compute mean fixation times for evolutionary dynamics on complex

networks [4]. This expression is equivalent to the well-known recurrence rela-

tions for absorption-time moments of birth-death processes [28, 40] but is eas-

ier to handle asymptotically, and can be useful even without explicit expres-

sions for wn
i1i2···in

(r,N). Estimating the sums in Eq. (2.8) allows us to compute the

asymptotic fixation time cumulants exactly.

2.2.3 Recurrence relation for fixation-time moments

Evaluation of the eigenvalues of the transition matrix for large systems can

be computationally expensive, with the best algorithms having run times
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quadratic in matrix size. Numerical evaluation of the expression given in

Eq. (2.8) is even worse, as it requires summing O(Nn) elements. If only a finite

number of fixation time cumulants (and not the full distribution) are desired,

there are better numerical approaches. Using standard methods from probabil-

ity theory [41], we derive a recurrence relation that allows numerical moment

computation with run time linear in system size N. For completeness we pro-

vide the full derivation of the reccurence for the fixation-time skew in the Ap-

pendix, Section 2.9.3.

2.2.4 Equivalence between advantageous and disadvantageous

mutations

In the following applications, we will generally speak of the mutants as having

a fitness advantage, designated by the parameter r > 1. Our results, however,

can be immediately extended to disadvantageous mutations. In particular, the

fixation-time distributions (conditioned on fixation occurring) for mutants of

fitness r and 1/r are identical. When a mutant with fitness 1/r is introduced into

the population (and eventually reaches fixation), the non-mutants are r times as

fit as the mutants. Therefore, this system is equivalent to another system that

starts with N − 1 fitness r mutants which eventually die out (the mutants in the

former system are the non-mutants in the latter). It has been shown that the

times to go from one initial mutant to fixation (m = 1 → m = N) and from N − 1

initial mutants to extinction (m = N − 1 → m = 0) have identical distribution

[29]. Thus indeed, the conditioned fixation-time distributions are identical for

mutants of fitness r and 1/r. Of course the fixation probability is very different
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in the two cases: for the disadvantageous mutations it approaches 0 for large N

[13].

2.3 One-Dimensional Lattice

We now specialize to Moran Birth-death (Bd) processes, starting with the one-

dimensional (1D) lattice. We assume periodic boundary conditions, so that the

N nodes form a ring. The mutants have relative fitness r, meaning they give

birth r times faster, on average, than non-mutants do.

Starting from one mutant, suppose that at some later time m of the N nodes

are mutants. On the 1D lattice, the population of mutants always forms a con-

nected arc, with two mutants at the endpoints of the arc. Therefore, the prob-

ability bm of increasing the mutant population by one in the next time step is

the probability of choosing a mutant node at an endpoint to give birth, namely

2r/(rm+N−m), times the probability 1/2 that the neighboring node to be replaced

is not itself a mutant. (The latter probability equals 1/2 because there are two

neighbors to choose for replacement: a mutant neighbor on the interior of the

arc and a non-mutant neighbor on the exterior. Only the second of these choices

produces an increase in the number of mutants.) Multiplying these probabilities

together we obtain

bm =
r

rm + N − m
, dm =

1
rm + N − m

, (2.9)

where the probability dm of decreasing the mutant population by one is found

by similar reasoning. Note that this derivation fails for m = 1 (m = N − 1) when

the arc of mutants (non-mutants) contains only one node, but one can check

Eq. (2.9) still holds for these cases. These quantities play the role of transition
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probabilities in a Markov transition matrix. The next step is to find the eigen-

values of that matrix.

2.3.1 Neutral fitness

First we work out the eigenvalues for the case of neutral fitness, r = 1. In this

case, the transition probabilities are equal, bm = dm = 1/N, and independent of m.

Therefore, the Moran process is simply a random walk, with events occurring

at a rate of 2/N per time step. The associated transition matrix is tridiagonal

Toeplitz, which has eigenvalues given by

λm =
2
N
−

2
N

cos
(mπ

N

)
, m = 1, 2, . . . ,N − 1. (2.10)

Applying Eq. (2.4) and computing the leading asymptotic form of the sums S n =∑N−1
m=1(λm)−n (see Appendix, Section 2.9.4), we find that as N → ∞, the fixation-

time distribution has cumulants

κn = (n − 1)!
ζ(2n)
ζ(4)n/2 , (2.11)

where ζ denotes the Riemann zeta function. In particular, the skew κ3 =

4
√

10/7 ≈ 1.807, as previously calculated by Ottino-Löffler et al. [33] via martin-

gale methods. The other cumulants (and characteristic function below) haven’t

previously been computed for the Bd process on the 1D lattice. The largeness

of the skew stems from the recurrent property of the random walk. As N → ∞,

long walks with large fixation times become common and the system revisits

each state infinitely often [42].

Knowledge of the cumulants allows us to obtain the exact characteristic
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Figure 2.2: Fixation-time distributions on the 1D lattice obtained from 106 sim-
ulation runs. All distributions are standardized to zero mean and unit variance.
Solid curves are the theoretical predictions. Shown are the fixation-time distri-
butions for (a) a 1D lattice of N = 100 nodes with neutral fitness r = 1 and (b)
a 1D lattice of N = 5000 nodes with mutant fitnesses r = 1.1 and r = 2.0. For
the neutral fitness case, the theoretical distribution was generated by numerical
inverse Fourier transform of the characteristic function (Eq. (2.12)). The r = 1.1
distribution is slightly but visibly skewed due to finite network size.

function of the fixation-time distribution:

ϕ(ω) = e−
√

5
2ω Γ

(
1 −

901/4√ω

π

)
Γ

(
1 +

901/4√ω

π

)
. (2.12)

Although we cannot find a simple expression for the distribution itself, we can

efficiently evaluate it by taking the inverse Fourier transform of the character-

istic function numerically. Figure 2.2(a) shows that the predicted fixation-time

distribution agrees well with simulations.

2.3.2 Non-neutral fitness

Next, consider r , 1 with the transition probabilities given by Eq. (2.9). Then the

eigenvalues of the transition matrix are no longer expressible in closed form. If

r is not too large, however, the probabilities bm and dm do not vary dramatically

19



with m, the number of mutants. In particular, bm ∼ 1/N for all m when N is large.

Therefore, as a first approximation we treat the Bd process on a 1D lattice as a

biased random walk with bm = r/(1 + r) and dm = 1/(1 + r). The eigenvalues of

the corresponding transition matrix are

λm = 1 −
2
√

r
1 + r

cos
(mπ

N

)
, m = 1, 2, . . . ,N − 1. (2.13)

The cumulants again involve sums S n =
∑N−1

m=1(λm)−n, which can be approximated

in the limit N → ∞ by,

S n ≈
N
π

∫ π

0

1
(1 − 2

√
r/(1 + r) cos x)n

dx. (2.14)

Since the integral is independent of N and converges for r , 1, each of the sums

scales linearly: S n ∼ N. Thus, using Eq. (2.4), we see that all cumulants past

second order approach 0,

κn ∼
1

N(n−2)/2

N→∞
−−−−→ 0, n ≥ 3. (2.15)

Hence the fixation-time distribution is asymptotically normal, independent of

fitness level.

By evaluating the integrals in Eq. (2.14), we can more precisely compute the

scaling of the cumulants. For the skew we find

κ3 ≈
2 + 2r(r + 4)

(r + 1)
√

(r2 − 1)

1
√

N
. (2.16)

The integral approximation becomes accurate when the first term in the sums

S n becomes close to the value of the integrand evaluated at the lower bound

(x = 0). The fractional difference between these quantities is

∆ =

∣∣∣∣∣ (1 − 2
√

r/(1 + r))n

(1 − 2
√

r/(1 + r) cos(π/N))n
− 1

∣∣∣∣∣
=

√
rnπ2

(
√

r − 1)2N2
+ O(1/N4).

(2.17)

20



Then we have ∆ ≪ 1 when N ≫ Nc where Nc ≈ 2π
√

n/(r − 1) (assuming r is near

1). For the skew, we require the sums with n = 2 and 3, giving Nc ≈ 10/(r − 1).

The above calculation fails for r ≫ 1, because when r = ∞ the transition

probabilities bm = 1/m have different asymptotic behavior as N → ∞. In par-

ticular, more time is spent waiting at states with large m. The process still has

normally distributed fixation times [33], but the skew becomes

κ∞3 = 2

N−1∑
m=1

m3

 / N−1∑
m=1

m2

3/2

≈
3
√

3
2

1
√

N
, (2.18)

for large N. Notice that the coefficient is different from that given by the infinite-

r limit of Eq. (2.16), κ3 ≈ 2/
√

N. We conjecture that there is a smooth crossover

between these two scaling laws with the true skew given approximately by

κ̃3 = κ3

r−q +
3
√

3
4

(1 − r−q)
 (2.19)

for some exponent q, where κ3 is the skew given in Eq. (2.16). For small r this

ansatz has skew similar to that of a random walk, but captures the correct large-

r limit. We do not have precise theoretical motivation for this ansatz, but as

discussed below, it works quite well.

Numerical calculation of the skew for the 1D lattice was performed using the

recurrence relation method discussed in Section 2.2.3. The results are shown in

Figure 2.3 for a few values of r. This calculation confirms our initial hypothesis,

near neutral fitness the waiting times are uniform enough that the process is

well approximated by a biased random walk and the skew approaches 0, scaling

in excellent agreement with Eq. (2.16). When N ≪ Nc, the bias is not sufficient

to give the mutants a substantial advantage: the process is dominated by drift

and the fixation-time distribution has large skew κ3 ≈ 1.807, as found in the

preceding section. For N ≫ Nc, selection takes over, the cumulants approach 0,
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Figure 2.3: Scaling of the skew of the fixation-time distribution on the 1D lattice
with non-neutral fitness. Data points show numerical calculation of the skew for
various fitness levels. The solid lines are the predicted scaling given in Eq. (2.19)
with exponent q = 1/2 for each value of fitness r. For small N (and small enough
r), the skew is that of a random walk, namely κ3 = 1.807, as shown by the dashed
line. For large N, the skew κ3 ∼ 1/

√
N with an r-dependent coefficient.

and the distribution becomes normal. A similar crossover appears in the study

of the fixation probability, where a transition from φ1 ∼ 1/N to φ1 ∼ 1 − 1/r is

seen when N passes a critical system size (that is slightly different than Nc). For

large fitness r ≫ 1, the ansatz Eq. (2.19) captures the scaling behavior if we use

an exponent q = 1/2. Direct numerical simulations of the process confirm that,

for any r > 1, the fixation time on the 1D lattice has an asymptotically normal

distribution [Figure 2.2(b)].

The random walk approximation allows us to find the asymptotic scaling

of the fixation-time cumulants, but ignores the heterogeneity of waiting times

present in the Moran process. Using visit statistics we can compute the cumu-

lants exactly with Eq. (2.8) and rigorously prove they vanish as N → ∞, ver-
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ifying that the waiting times have no influence on the asymptotic form of the

distribution. Details are provided in the Appendix, Section 2.9.4.

Our analysis of the 1D lattice reveals an intriguing universality property of

its fixation-time distribution. For any value of relative fitness r other than r = 1,

the fixation-time distribution approaches a normal distribution as N → ∞. Thus,

for r , 1 the asymptotic shape of the distribution is universal and independent

of r (though bear in mind, its mean and variance do depend on r).

When r = 1, corresponding to precisely neutral fitness, the unbiased random

walk yields a qualitatively different distribution with considerably larger skew.

This qualitative change as r passes through unity leads to a discontinuous jump

in the skew at r = 1.

As one might expect, the discontinuity stems from passage to the infinite-N

limit. For finite but large N, the distribution varies continuously with r, though

our numerical results indicate that the sharp increase in skew still occurs very

close to r = 1. We will see in the next section that the discontinuity and highly

skewed distribution at neutral fitness persist when we alter the network struc-

ture from a locally connected 1D lattice to a fully connected complete graph.

2.4 Complete Graph

Next we consider the Moran process on a complete graph, useful for modeling

well-mixed populations in which all individuals interact. By similar reasoning

to above, given m mutants the probability of adding a mutant in the next time
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step is

bm =
rm

rm + N − m
·

N − m
N − 1

, (2.20)

while the probability of subtracting a mutant is

dm =
N − m

rm + N − m
·

m
N − 1

. (2.21)

Interestingly, as we will see in this section, these transition probabilities give

rise to a fitness dependent fixation-time distribution, in stark contrast to the

universality of the normal distribution observed on the 1D lattice.

2.4.1 Neutral Fitness

Again we begin with neutral fitness r = 1. Now bm = dm = (Nm − m2)/(N2 − N).

The eigenvalues of this transition matrix also have a nice analytical form:

λm =
m(m + 1)
N(N − 1)

, m = 1, 2, . . .N − 1. (2.22)

The asymptotic form of the sums S n =
∑N−1

m=1(λm)−n, can be found by taking the

partial fraction decomposition of (λm)−n and evaluating each term individually.

The resulting cumulants are

κn = (n − 1)!
3n/2

(π2 − 9)n/2 (2.23)

× (−1)n
n∑

k=1

(
2n − k − 1

n − 1

) [
ζ(k)

(
1 + (−1)k

)
− 1

]
.

Our knowledge of the eigenvalues also allows us to obtain a series expression

for the asymptotic distribution using Eq. (2.3). For N → ∞ the standardized

distribution is,

σ fT (σt + µ) = cσ
∞∑
j=1

(−1) j+1 j( j + 1)(2 j + 1)

× exp
[
j( j + 1)(cσt + 1)

]
,

(2.24)
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Figure 2.4: Fixation-time distributions on the complete graph with N = 100
nodes and neutral fitness (r = 1) obtained from 106 simulation runs. The distri-
bution is standardized to zero mean and unit variance. The solid curve is the
theoretical distribution obtained by numerically evaluating the infinite series in
Eq. (2.24) for each value of t.

where to leading order in N the mean and standard deviation are µ = N2 and

σ = cσN2, with cσ =
√
π2/3 − 3. This distribution was previously found using

a different approach by Kimura, who also computed the first few fixation-time

moments [43]. We have extended these results, obtaining the cumulants to all

orders. Figure 2.4 shows that the predicted asymptotic distribution agrees well

with numerical experiments.

The numerical value of the fixation-time skew for the Birth-death process on

the complete graph is κ3 = 6
√

3(10−π2)/(π2−9)3/2 ≈ 1.6711, slightly less than that

for the 1D lattice. This decrease is the result of two competing effects contribut-

ing to the skew. First, since the birth and death transition probabilities are the

same, the process is a random walk, which has a highly skewed fixation-time

distribution, as shown above. The average time spent in each state, however,

varies with m. For instance, when m = 1 or N − 1, bm → 0 for large N. But if
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m = αN for some constant 0 < α < 1 independent of N, then bm approaches a

constant.

Intuitively, the beginning and end of the mutation-spreading process are

very slow because the transition probabilities are exceedingly small. To start,

the single mutant must be selected by chance to give birth from the N available

nodes, a selection problem like finding a needle in a haystack. Similarly, near

fixation the reproducing mutant must find and replace one of the few remaining

non-mutants, again choosing it by chance from an enormous population.

The characteristic slowing down at certain states is reminiscent of “coupon

collection”, as discussed earlier. Erdős and Rényi proved that for large N, the

normalized time to complete the coupon collection follows a Gumbel distribu-

tion [36], which we denote by Gumbel(α, β) with density

f (t) = β−1e−(t−α)/β exp(−e−(t−α)/β). (2.25)

For the Moran process, each slow region is produced by long waits for the ran-

dom selection of rare types of individuals: either mutants near the beginning

of the process or non-mutants near the end. In the next section we show that

the two coupon collection regions of the Bd process on a complete graph lead to

fixation-time distributions that are convolutions of two Gumbel distributions.

In the case of neutral fitness, these Gumbel distributions combine with the ran-

dom walk to produce a new highly skewed distribution with cumulants given

by Eq. (2.23).
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2.4.2 Non-neutral fitness

We saw in Section 2.3.2 that when the average time spent in each state is con-

stant or slowly varying the fixation-time distribution is asymptotically normal.

Birth-death dynamics on the complete graph, however, exhibit coupon collec-

tion regions at the beginning and end of the process, where the transition prob-

abilities vanish. We begin this section with a heuristic argument that correctly

gives the asymptotic fixation-time distribution in terms of independent itera-

tions of coupon collection.

Differentiating bm with respect to m, we find the slope near m = 0 is (r + 1)/N,

while the slope near m = N has magnitude (r + 1)/(rN) for N ≫ 1. The transition

rates approach zero at each of these points, so we expect behavior similar to

coupon collection giving rise to two Gumbel distributions. Since the slope is

greater for m near 0 than for m near N, the Moran process completes its coupon

collection faster near the beginning of the process than near fixation.

This heuristic suggests that the asymptotic fixation time should be equal in

distribution to the sum of two Gumbel random variables, one weighted by r,

which is the ratio of the slopes in the coupon collection regions. Specifically, if

T is the fixation time with mean µ and variance σ2, we expect

T − µ
σ

d
−→

G + rG′
√

1 + r2
, (2.26)

where
d
−→ means convergence in distribution for large N. Here G and G′ de-

note independent and identically distributed Gumbel random variables with

zero mean and unit variance. It is easy to check that the correct distribution is

Gumbel(−γ
√

6/π,
√

6/π), where γ ≈ 0.5772 is the Euler-Mascheroni constant.

Let us make this argument more rigorous. Previous theoretical analysis

27



4 2 0 2 4
t

0.0

0.2

0.4

0.6

D
en

si
ty

 (a) r= 1.1

 G+ rG ′

(T−µ)/σ

4 2 0 2 4
t

0.0

0.2

0.4

0.6

D
en

si
ty

 (b) r= 5.0

G+ rG ′

(T−µ)/σ

Figure 2.5: Fixation-time distributions on the complete graph with N = 5000
nodes and non-neutral fitness (r > 1) obtained from 106 simulation runs. All
distributions are standardized to zero mean and unit variance. Solid curves are
the theoretical predictions obtained by numerical convolution of two Gumbel
distributions, one weighted by r. Distributions are shown for (a) r = 1.1 and
(b) r = 5.0. For larger r, the distribution has larger skew and a slightly sharper
peak.

showed that in the infinite fitness limit, the fixation time has an asymptotically

Gumbel distribution [33]. This result can be recovered within our framework,

since when r = ∞ it follows that dm = 0, so the eigenvalues of the transition

matrix are just λm = bm = (N − m)/(N − 1) and the cumulants can be directly

calculated using Eq. (2.4).

For large (but not infinite) fitness, the number of mutants is monotonically

increasing, to good approximation, since the probability that the next change in

state increases the mutant population is r/(1 + r) ≈ 1. The time spent waiting in

each state, however, changes dramatically, especially near m = 1. Here, b1 → 0

for large N, in stark contrast to the infinite fitness system where b1 → 1. The

time spent at each state, tm is an exponential random variable, E(bm + dm). In this

approximation each state is visited exactly once, so the total fixation time is a
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sum of these waiting times:

T ≈
N−1∑
m=1

E(bm + dm). (2.27)

But this sum of exponential random variables has density given by Eq. (2.3),

with the substitution λm → bm + dm. Thus, the cumulants of (T − µ)/σ are

κn =
1 + rn

(1 + r2)n/2 ×
(n − 1)!ζ(n)
ζ(2)n/2 , (2.28)

which are exactly the cumulants corresponding to the sum of Gumbel random

variables given in Eq. (2.26). In the limit r → ∞, the first term in Eq. (2.28)

becomes 1, and the cumulants are those for a single Gumbel distribution, in

agreement with previous results [33].

Remarkably, these cumulants are exact for any r > 1, not just in the large-r

limit. We can see this directly for the skew κ3 using the visit statistics approach,

computing the asymptotic form of Eq. (2.8) with the complete graph transition

probabilities, Eqs. (2.20) and (2.21). Details of the asymptotic analysis are pro-

vided in the Appendix, Section 2.9.5. Numerical simulations of the Moran pro-

cess corroborate our theoretical results. As shown in Figure 2.5, for r = 1.1 and

r = 5 the agreement between simulated fixation times and the predicted convo-

lution of Gumbel distributions is excellent, at least when N is sufficiently large.

Again, our calculations show a discontinuity in the fixation-time distribution at

r = 1. In particular, the r → 1 limit of the cumulants for non-neutral fitness

in Eq. (2.28) is not the same as the cumulants for neutral fitness found in the

preceding section [Eq. (2.23)].

For smaller networks, it is fascinating to see how the results converge to

the asymptotic predictions as N grows. Figure 2.6 shows how the skew of the

fixation-time distribution depends on r and N for the complete graph. As dis-

29



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
r

0.75

1.00

1.25

1.50

1.75

S
k
ew

(
3
)

N
10
20

100
1000
∞

Figure 2.6: Fitness dependence of fixation-time skew for the Moran Birth-death
process on the complete graph. The skew is shown for r ≥ 0 and is invariant
under r → 1/r. For finite N, the skew does not have a discontinuity, but does
show non-monotonic dependence on fitness r. In particular, for a given N, there
is a certain fitness level with minimum skew. As N → ∞, we see non-uniform
convergence to the predicted skew given by κ3 in Eq. (2.28), leading to the dis-
continuity at r = 1. Moreover, for fixed r, the convergence to the N = ∞ skew is
non-monotonic.

cussed in Section 2.2.4, the fixation-time distributions for these systems are in-

variant under r → 1/r. Therefore we show the skew for all r > 0, to emphasize

the intriguing behavior near neutral fitness, where r = 1. We find that non-

uniform convergence of the fixation-time skew leads to the discontinuity pre-

dicted at r = 1. For finite N, the skew is a non-monotonic function of r and has

a minimum value at some fitness rmin(N). Furthermore, at fixed r, the conver-

gence to the N = ∞ limit is itself non-monotone. Though beyond the scope of

the current study, further investigation of this finite-N behavior would be worth

pursuing.
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2.5 Partial fixation times

In many applications, we may be interested in the time to partial fixation of the

network. For instance, considering cancer progression [44–46] or the incubation

of infectious diseases [33], symptoms can appear in a patient even when a rela-

tively small proportion of cells are malignant or infected. We therefore consider

Tα, the total time to first reach αN mutants on the network, where 0 < α < 1.

The methods developed in Section 2.2 apply to these processes as well. For the

eigendecomposition approach we instead use the sub-matrix of Ωtr containing

the first αN rows and columns. In calculations involving the numerical recur-

rence relations or visit statistics, we simply cut the sums off at αN instead of N

and for the latter, replace wi1i2···in(r,N) with wi1i2···in(r, αN).

2.5.1 One-dimensional lattice

Truncating the Moran Bd process on the 1D lattice by a factor α has no effect

on the asymptotic shape of the fixation-time distributions. In both the neutral

fitness system and the random walk approximation to the non-neutral fitness

system, the transition matrix has no explicit dependence on the state or system

size [aside from proportionality factors that cancel in Eq. (2.4)]. Thus, the eigen-

values are identical to those calculated previously, but correspond to a smaller

effective system size αN. Taking the limit N → ∞ therefore yields the same

asymptotic distributions found in Section 2.3.
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2.5.2 Complete graph: truncating coupon collection

The complete graph exhibits more interesting dependence on truncation. Since

the transition probabilities have state dependence, the eigenvalues change with

truncation (they don’t correspond to the same system with smaller effective N).

Our intuition from coupon collection, however, lets us predict the resulting dis-

tribution.

First consider non-neutral fitness. Then there are two coupon collection

stages, one near the beginning and another near the end of the process, and

together they generate a fixation-time distribution that is a weighted convolu-

tion of two Gumbel distributions. The effect of truncating the process near its

end should now become clear: it simply removes the second coupon collec-

tion. The truncated process stops before the mutants have to laboriously find

and replace the last remaining non-mutants. Therefore, we intuitively expect

the fixation time for non-neutral fitness to be distributed according to a single

Gumbel distribution, regardless of fitness level.

The only exception occurs if r = ∞; then no coupon collection occurs at the

beginning of the process either, as the lone mutant is guaranteed to be selected

to give birth in the first time step, thanks to its infinite fitness advantage. Thus,

when fitness is infinite and the process is truncated at the end, both coupon

collection phases are removed and the fixation times are normally distributed.

Similar reasoning applies to the Birth-death process with neutral fitness. It

also has two coupon collection regions, one of which is removed by truncation.

In this case, however, the random walk mechanism contributes to the skew of

the overall fixation-time distribution, combining non-trivially with the coupon
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Figure 2.7: Variation of fixation-time skew κ3 with fitness level r and trunca-
tion factor α for different network structures. (a) The skew of the fixation-time
distribution is plotted versus fitness for the 1D lattice (black solid line), com-
plete graph (red dashed line), and complete graph with truncation (green dot-
ted line). The skew is shown for all r ≥ 0 and is invariant under r → 1/r. When
r , 1 and r < ∞, the fixation-time distribution is normal for the 1D lattice,
and hence has zero skew (κ3 = 0). The distribution becomes a fitness-weighted
convolution of Gumbel distributions for the complete graph, and a single Gum-
bel distribution for the complete graph with truncation (for any α < 1). Each
curve jumps discontinuously at r = 1, where the distributions become highly
skewed with κ3 > 1.5. The inset shows a blow-up of the neutral fitness results,
specifying the skew for each case. On the complete graph with truncation, the
skew is continuously variable at r = 1, taking on an interval of values between
6
√

3(10 − π2)/(π2 − 9)3/2 ≈ 1.671 when α = 1, and
√

3 ≈ 1.732 when α = 0. This
range is indicated by the green vertical line. The truncated fixation time on the
complete graph has a second discontinuity at r = ∞ (shown here at r = 0, by
exploiting the r → 1/r invariance). At this discontinuity the functional form of
the distribution jumps from Gumbel to normal. (b) The fixation-time skew for
the complete graph with neutral fitness, plotted versus the truncation factor α.
These points correspond to the green vertical line in panel (a) at r = 1.

collection-like process. We find that the skew of the fixation time depends on

the truncation factor α, varying between 6
√

3(10 − π2)/(π2 − 9)3/2 ≈ 1.6711 when

α = 1, and
√

3 ≈ 1.732 when α = 0. A derivation of this α → 0 limit is given in

the Appendix, Section 2.9.5.
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2.5.3 Summary of main results

The main results from Sections 2.3–2.5 are summarized in Figure 2.7, which

shows the asymptotic fitness dependence of fixation-time skew for each net-

work considered in this chapter. We again show the skew for all r > 0 (not

just r > 1) to emphasize the discontinuities at zero, neutral, and infinite fitness.

On the 1D lattice, independent of the truncation factor α, the Bd process has

normally distributed fixation times, except at neutral fitness where the distri-

bution is highly skewed. The complete graph fixation-time distributions are

the weighted convolution of two Gumbel distributions for r , 1, again with a

highly skewed distribution at r = 1. With truncation by a factor α < 1, the dis-

tribution for the complete graph is Gumbel for 1 < r < ∞, and normal for r = ∞.

With neutral fitness the fixation distribution is again highly skewed, with skew

dependent on the truncation factor α.

2.6 Extensions

It is natural to ask whether our results are generic; do the same fixation-time dis-

tributions appear in other models of evolutionary dynamics? Here we explore

the robustness of our results to various changes in the model update dynamics

and the network topology. The main finding is that our results are insensitive

to these changes, at least qualitatively. The distributions typically remain right-

skewed and even follow the same functional forms derived above.
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2.6.1 Other update dynamics

Two-fitness Moran process

The Moran Bd processes considered above require a single fitness level, desig-

nating the relative reproduction rates between mutants and non-mutants. An-

other common model is the Moran Birth-Death (BD) process, which has a sec-

ond fitness level r̃ measuring the resilience of mutants versus non-mutants dur-

ing the replacement step [17]. Taking this into account, when a mutant or non-

mutant is trying to replace its neighbors, mutants are replaced with probability

proportional to 1/r̃. Taking r̃ = 1 returns to the model used throughout the

preceding sections. The two-fitness model may better capture the complexity

of real-world evolutionary systems but does not generally give rise to qualita-

tively different fixation-time distributions. For brevity, we simply discuss the

resulting fixation-time distributions for the BD model. Details supporting the

results quoted below are provided in the Appendix, Section 2.9.6.

Writing down the transition probabilities for the Moran BD process, we find

that bm/dm → rr̃ as N → ∞. This motivates the definition of an effective fitness

level, reff = rr̃. When reff , 1 our results from above translate to this model. On

the 1D lattice the fixation times are normally distributed, while on the complete

graph the fixation time distribution is a weighted convolution of Gumbel distri-

butions G + (r/r̃)G′, with relative weighting r/r̃ (instead of r). When reff = 1, the

process is asymptotically unbiased and we expect a highly skewed fixation-time

distribution. This is indeed the case, although numerical calculations indicate

there is an entire family of distributions, dependent on r = 1/r̃.

It is interesting to contrast the above observations with a result in evolu-
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tionary dynamics known as the isothermal theorem. The theorem states that

for r̃ = 1, the Moran process on a large class of networks, known as isother-

mal graphs, has fixation probability identical to the complete graph [13]. Recent

work has shown that this breaks down if r̃ , 1; the fixation probability develops

new network dependence [17]. In contrast, even isothermal graphs (including

the complete graph and 1D lattice) have fixation-time distributions that depend

on network structure. The two-fitness BD model breaks the universality in fix-

ation probabilities predicted by the isothermal theorem, but leads to the same

family of fixation distributions that arise due to network structure.

The Death-Birth Moran process

A two-fitness Death-Birth (DB) Moran process is also frequently used to study

evolutionary dynamics. In this model, the birth and death events are reversed

in order. At each time step a node is chosen at random, with probability propor-

tional to 1/r̃, and one of its neighbors is chosen with probability proportional to

r. The first individual dies and is replaced by an offspring of the same type as

the neighbor. The process continues until the mutation either reaches fixation

or goes extinct.

The BD and DB processes obey a duality property [17]. Starting from the BD

transition probabilities, if we swap the two fitness levels r ↔ r̃ and substitute

m → N − m (which swaps mutants and non mutants), we obtain the DB transi-

tion probabilities. Therefore, the transition matrix for the DB model is identical

to that for the corresponding dual BD process, but has the main-, super-, and

sub-diagonal entries reversed in order. This leaves the matrix eigenvalues un-

changed, so that the DB process has identical fixation-time distributions to those
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given in the preceding section for the dual BD process.

In principle, the correspondence between DB and BD fixation times could

break down for the truncated process considered in Section 2.5. In practice,

however, the results are again generally identical. For the truncated DB pro-

cess, the fixation times on the 1D lattice remain normally distributed. On the

complete graph, one of two coupon collection regions is removed by truncation

leading to fixation-times following a single Gumbel distribution.

One exception, where the dual models yield different results under trun-

cation, is at infinite fitness. As in Section 2.5, at infinite fitness (r → ∞) the

BD model performs a single coupon collection near fixation, which is cut off

by truncation, leading to a normal fixation-time distribution. In contrast, in

the dual infinite-fitness DB model (r̃ → ∞) the coupon collection occurs at the

beginning of the process and even under truncation the Gumbel fixation-time

distribution is preserved. This effect was previously observed by Ottino-Löffler

et al. [33].

2.6.2 Other networks: Approximate results via mean-field tran-

sition probabilities

While the 1D lattice and complete graph provide illustrative exactly solvable

models of the fitness dependence of fixation-time distributions, other networks

may be more realistic. On more complicated networks the analytical tools de-

veloped here fail because the transition probabilities (the probability of adding

or subtracting a mutant given the current state) depend on the full configu-
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Figure 2.8: Fixation-time distribution on an Erdős-Rényi random graph with
N = 100 nodes, edge probability p = 1/4, and fitness r = 2, obtained from
106 simulation runs (the same graph is used for each run). The distribution is
standardized to zero mean and unit variance. The solid curve is the theoretical
prediction for the complete graph, obtained by numerical convolution of two
Gumbel distributions, one weighted by r. For these parameters, the random
graph fixation time is captured by the mean field approximation.

ration of mutants, not just the number of mutants. Such systems can still be

modeled as a Markov process, but the state space becomes prohibitively large.

Fortunately, for certain networks the effect of different configurations can be av-

eraged over, giving a mean-field approximation to the transition probabilities.

This approach has been used on a variety of networks to calculate fixation times

[4, 30, 32, 33]. In this section we discuss how such mean-field approaches can

be used to calculate fixation-time distributions for evolution on several different

networks.

Erdős-Rényi random graph

We start with the Erdős-Rényi random graph, for which the mean-field tran-

sition probabilities were recently estimated [4]. The result is identical to the
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complete graph probabilities [Eqs. (2.20)-(2.21)] up to a constant factor 1−2/N p,

which depends on the edge probability p for the network. This correction is

important for computing the mean fixation time, but does not affect the shape

of the fixation-time distribution, since proportionality factors cancel in Eq. (2.4).

Therefore we expect the asymptotic fixation-time distribution will be a weighted

sum of two Gumbel distributions. This prediction holds for infinite fitness,

where the fixation time on an Erdős-Rényi network has a Gumbel distribution

[33].

Preliminary simulations show that the Erdős-Rényi network has the ex-

pected fixation-time distributions for p = 1/4 and r = 2 (see Figure 2.8). Further

investigation is required to determine the range of fitness and edge probabilities

for which this result holds asymptotically (as N → ∞). For constant p, the aver-

age degree is proportional to the system size ⟨k⟩ = pN, similar to the complete

graph. It may be, however, that for some p and r the mean-field approximation

is not sufficient to capture the higher-order moments determining the shape of

the distribution. It is also traditional to consider N-dependent edge probabilities

with p(N) chosen, for example, to fix ⟨k⟩. It is unclear whether such graphs will

behave like the ring (due to their sparsity), like the complete graph (due to their

short average path length), or somewhere in between these extreme cases. In the

same vein, which other networks admit accurate mean-field approximations to

the transition probabilities? Do many complex networks have fixation-time dis-

tributions identical to the complete graph?
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Stars and superstars: evolutionary amplifiers

Another nice approximation maps the Moran process on a star graph, a simple

amplifier of selection, onto a birth-death Markov chain [23]. The resulting tran-

sition probabilities exhibit coupon collection regions, similar to the complete

graph. The ratio of slopes near these regions (few mutants or non-mutants),

however, is r2. Our heuristic predicts the fixation-time distribution on the star

is G + r2G′. In addition to amplifying fixation probability, the star increases

fixation-time skew. This raises a broader question: do evolutionary amplifiers

also amplify fixation-time skew? Computing fixation times for evolutionary dy-

namics on superstars (which more strongly amplify selection [13]) remains an

open problem.

Growth of cancerous tumors: evolutionary dynamics on d-dimensional lat-

tices

Mean-field arguments have also been applied to d-dimensional lattices in the

infinite-fitness limit [32, 33]. In this limit the mutant population grows in an

approximately spherical shape near the beginning of the process and the popu-

lation of non-mutants is approximately spherical near fixation. The surface area

to volume ratio of the d-dimensional sphere gives the probability of adding a

mutant. With finite fitness, non-mutants can now replace their counterparts

and the surface of the sphere of growing mutants roughens [44]. For near-

neutral fitness, the configuration of mutants resembles the shape of real cancer-

ous tumors. Perhaps mean-field approaches can draw connections between the

fitness-dependent roughness of growing mutant populations and fixation-time

distributions for evolution on lattices.
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Table 2.1: Asymptotic fixation-time statistics for the Moran Birth-death and
Death-birth processes on the complete graph and the 1D lattice. Together with
the mean and variance, the standardized distributions give a complete statistical
description of the fixation time. The mean and variance given are to leading
order in N for each case.

Asymptotic Fixation-Time Statistics

Network Fitness Mean Variance Distribution

1D Lattice r = 1 1
6 N3 1

90 N6 Highly Skewed
[Eqs. (2.11) & (2.12)]

r > 1 r+1
2(r−1) N

2 (r+1)(r2+r+1)
3(r−1)3 N3 N(0, 1)

Complete Graph r = 1 N2
(
π2

3 − 3
)

N4 Highly Skewed
[Eqs. (2.23) & (2.24)]

r > 1 r+1
r−1 N log N π2(r+1)2

6(r−1)2 N2 G + rG′

2.7 Summary

In this chapter we have obtained the first closed-form solutions for the fitness

dependence of fixation-time distributions of the Moran Birth-death process on

the 1D lattice and complete graph. Previous analyses were restricted to the

limit of infinite fitness, with some partial results for neutral fitness. To reit-

erate our new results: There is a dichotomy between neutral and non-neutral

fitness. When fitness is neutral, the distribution always exhibits a discontinuity;

whether the graph is complete or a 1D lattice, the skew jumps up discontinu-

ously in either case. On the other hand, when fitness is non-neutral but other-

wise arbitrary, the results depend strongly on network topology. Specifically, on

the complete graph the fixation-time distribution is a fitness-weighted convolu-

tion of Gumbel distributions and hence is always skewed, whereas on the 1D

lattice the distribution is normal and hence is never skewed.
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Together with the mean and variance, the distributions derived here give a

complete statistical description of the asymptotic fixation time (see Table 2.1).

Our analysis revealed that these results are robust in the sense that similar dis-

tributions arise under truncation, in some other models, and in some other net-

work structures, including the Erdős-Rényi random graph.

2.8 Future Directions

Though the model we have focused on here (the Moran Birth-death model) is

deliberately simplified, we expect our results will be useful in applications. For

instance, the theory should allow a more refined analysis of the rate of evolu-

tion, by extending the seminal work by Kimura, whose neutral theory of evolu-

tion predicted a molecular clock [47]. In his model, neutral mutations become

fixed at a constant rate, independent of population size. This result, with some

refinements, is now used widely in estimating evolutionary time scales [48].

The fixation-time distributions discussed here should allow one to go beyond

Kimura’s classic analysis to capture the full range of evolutionary outcomes,

by providing information about the expected deviations from the constant-rate

molecular clock, as well as how this prediction is affected by population struc-

ture. More generally, it would be interesting to study the implications of these

distributions for rates of evolution at various fitness levels.

Furthermore, our results provide concrete predictions that are testable via

bacterial evolution experiments. Does the same fitness and network structure

dependence of fixation-time distributions arise in real systems?

Future theoretical studies could analyze random networks and lattices more
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deeply, as well as stars and superstars, the prototypical evolutionary amplifiers

[13]. More sophisticated models involving evolutionary games are also of inter-

est. These have skewed fixation-time distributions [29] whose asymptotic form

remains unknown. Finally, we hope that methods developed here will prove

useful in other areas, such as epidemiology [7], ecology [6], and protein folding

[49], where stochastic dynamics may similarly give rise to skewed first-passage

times.

2.9 Appendix

2.9.1 Visit Statistics

In this Appendix we formulate the visit statistics approach. We first provide

further details in the derivation of the series expression for the fixation-time cu-

mulants given in Eq. (2.8), and then explicitly compute the weighting factors

that appear in this expression to third order. This result requires constant selec-

tion, bm/dm = r, as is the case for the Moran process. Under constant selection

the transient transition matrix can be written as Ωtr = ΩRWD, where D is diago-

nal with elements Dmm = bm + dm and ΩRW is the transition matrix for a random

walk,

[ΩRW]nm =
r

1 + r
δm,n+1 +

1
1 + r

δm,n−1 − δm,n. (2.29)

Since we are interested in the fixation-time distribution, we condition on fixation

occurring. As discussed in Section 2.2.2 (see also Section 2.9.2 below), the condi-

tioned transition matrix Ω̃tr = S Ωtr S −1, where S is diagonal with S mm = 1−1/rm.
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Combining these results, we have that

Ω̃tr = S ΩRW S −1D, (2.30)

where we have used the fact that both D and S are diagonal matrices, and there-

fore commute.

We found in Section 2.2.2 that the moments of the fixation time T can be

expressed as,

µn B E[T n] = (−1)nn! 1 Ω̃−n
tr ptr(0), (2.31)

where 1 is a row vector of ones and ptr(0) is the initial state of the system, with

[ptr(0)]m = δm,m0 for m0 initial mutants. To compute these moments, we need

the inverse Ω̃−1
tr = D−1S Ω−1

RWS −1. Since ΩRW is a tridiagonal Toeplitz matrix, its

inverse has a well-known form [50]:

(−ΩRW)−1
i j =


(r + 1)(ri − 1)(rN − r j)

r j (r − 1)(rN − 1)
if i ≤ j,

(r + 1)(r j − 1)(rN − ri)
r j (r − 1)(rN − 1)

if i > j.

(2.32)

Hence the matrix V = −S Ω−1
RWS −1 has elements

Vi j =


(r + 1)(ri − 1)2(rN − r j)
ri (r − 1)(r j − 1)(rN − 1)

if i ≤ j,

(r + 1)(ri − 1)(rN − ri)
ri (r − 1)(rN − 1)

if i > j.

(2.33)

The matrix V , sometimes called the fundamental matrix, encodes the visit statis-

tics of the conditioned random walk: Vi j is the mean number of visits to state

i from state j before hitting the absorbing state N [51]. The Moran process has

the same visit statistics, but on average spends a different amount of time, des-

ignated by (bi + di)−1, waiting in each state.

While one could now compute the moments µn in Eq. (2.31) directly, we find

that the cumulants yield nicer expressions. Furthermore, the normal and Gum-

44



bel fixation-time distributions, predicted by our simulations and approximate

calculations, are more simply described in terms of their cumulants. The non-

standardized cumulants κ′n are linear combinations involving products of mo-

ments whose orders sum to n. Thus each term in the cumulants has n powers of

D producing n factors of (bi+di)−1 with a weight designated by the visit statistics.

With this observation, it is clear the standardized cumulants κn = κ
′
n/(κ

′
2)n/2 have

the form given in Eq. (2.8),

κn(N) =

N−1∑
i1,i2,...,in=1

wn
i1i2···in

(r,N|m0)

(bi1 + di1)(bi2 + di2) · · · (bin + din)N−1∑
i, j=1

w2
i j(r,N |m0)

(bi + di)(b j + d j)


n/2 , (2.34)

where wn
i1i2···in

(r,N|m0) are the weighting factors coming entirely from the visit

statistics of a biased random walk (starting from m0 initial mutants). As in the

sections above, we take the initial state to be a single mutant m0 = 1, and will

suppress the dependence of the weighting factors on initial condition, writing

wn
i1i2···in

(r,N) instead. Generalizations to other cases are straightforward and are

discussed briefly below.

We emphasize that even without explicit knowledge of the factors

wn
i1i2···in

(r,N), this formulation can be extremely useful. For instance when bi + di

is constant, these are just the cumulants for the (possibly biased) random walk,

which were computed in Section 2.3 to approximate the Moran process on the

1D lattice. In particular, the sums over weighting factors obtained from setting

bi + di = 1 in Eq. (2.34) have leading asymptotic form given by Eq. (2.14). This

fact can be used to bound the cumulants even when bi + di , 1, which in some

cases is sufficient to determine the leading asymptotic behavior. When this is

not possible, the weighting factors must be computed explicitly. We now turn

our focus to derviing w2
i j(r,N) and w3

i jk(r,N).
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We can compute the weighting factors by writing out the matrix multiplica-

tion of Ω̃−1
tr . First note that

[−Ω̃−1
tr ]i j =

Vi j

bi + di
. (2.35)

Then the first three moments of the fixation time are,

µ1 =

N∑
i=1

Vi1

bi + di
,

µ2 = 2
N∑

i, j=1

Vi jV j1

(bi + di)(b j + d j)
,

µ3 = 6
N∑

i, j,k=1

Vi jV jkVk1

(bi + di)(b j + d j)(bk + dk)
.

(2.36)

The corresponding non-standardized cumulants are given by the usual formu-

las, κ′2 = µ2 − µ
2
1 and κ′3 = µ3 − 3µ2µ1 + 2µ3

1. In terms of the visit numbers the

non-standardized cumulants become

κ′2 =

N∑
i, j=1

2 Vi jV j1 − Vi1V j1

(bi + di)(b j + d j)
,

κ′3 =

N∑
i, j=1

6 Vi jV jkVk1 − 6 Vi jV j1Vk1 + 2 Vi1V j1Vk1

(bi + di)(b j + d j)(bk + dk)
.

(2.37)

From here we can read off the weighting factors accordingly. For convenience,

we can choose w2
i j(r,N) and w3

i jk(r,N) to be symmetric by averaging the numera-

tors in Eq. (2.37) over the permutations of the indices. Then,

w2
i j(r,N) =

1
2

∑
σ∈Π2

2 Vσ(1)σ(2)Vσ(2)1 − Vσ(1)1Vσ(2)1,

w3
i jk(r,N) =

1
6

∑
σ∈Π3

6 Vσ(1)σ(2)Vσ(2)σ(3)Vσ(3)1 − 6 Vσ(1)σ(2)Vσ(2)1Vσ(3)1 + 2 Vσ(1)1Vσ(2)1Vσ(3)1,

(2.38)

whereΠ2 is the set of permutations of {i, j} andΠ3 are the permutations of {i, j, k}.

We note that these expressions also hold for general initial condition by replac-

ing the subscript 1 with m0. Plugging Eq. (2.33) into this expression for w2
i j we
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obtain, after some algebra,

w2
i j(r,N) =

(r + 1)2(r j − 1)2(rN − ri)2

ri+ j (r − 1)2(rN − 1)2 , (2.39)

for i ≥ j. Since we have constructed w2
i j(r,N) to be symmetric, when j > i the

formula is identical with i and j exchanged. Similarly, using Eq. (2.33) together

with the expression for w3
i jk in Eq. (2.38) leads to

w3
i jk(r,N) = 2

(r + 1)3(rk − 1)2(r j − 1)(rN − ri)2(rN − r j)
ri+ j+k (r − 1)3(rN − 1)3 , (2.40)

for i ≥ j ≥ k. Again, the formula for different orderings of the indices i, j, k

is the same with the indices permuted appropriately, so that w3
i jk is perfectly

symmetric.

This completes the derivation of the visit statistics expression for the

fixation-time cumulants. Together, Eqs. (2.34), (2.39) and (2.40) give a closed

form expression for the fixation-time skew which is manageable for the purpose

of asymptotic approximations. The diagonal terms in the higher-order weight-

ing factors are also particularly simple, wn
ii···i(r,N) = (n− 1)!Vn

ii . While we will not

explicitly compute them, the off diagonal weights wn
i1i2···in

(r,N) can be found by

a straightforward generalization of the above procedure. Example applications

of this approach are given in Sections 2.9.4 and 2.9.5, where we show that all cu-

mulants of the fixation time vanish for the Moran process on the 1D lattice and

compute the asymptotic skew for the Moran process on the complete graph.

2.9.2 Birth-death Markov chain conditioned on fixation

For both the numerical recurrence relation and the visit statistics approach, it is

useful to consider the birth-death Markov chain conditioned on hitting N, which
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has an identical fixation-time distribution to the unconditioned process. This

Markov chain has new conditioned transition probabilities denoted b̃m and d̃m. If

Xt is the state of the system at time t, then b̃m B P(Xt = m→ Xt+1 = m + 1|X∞ = N)

and d̃m is defined similarly. Applying the laws of conditional probability, we

find that

b̃m =
P(Xt+1 = m + 1 AND Xt = m AND X∞ = N)

P(Xt = m AND X∞ = N)

=
P(X∞ = N|Xt = m + 1)
P(X∞ = N|Xt = m)

P(Xt+1 = m + 1|Xt = m)

=
P(X∞ = N|Xt = m + 1)
P(X∞ = N|Xt = m)

bm,

(2.41)

where bm is the transition rate in the original Markov chain. Following the same

procedure, we find the backward transition probabilities are related by

d̃m =
P(X∞ = N|Xt = m − 1)
P(X∞ = N|Xt = m)

dm. (2.42)

The conditioned Markov chain has a few nice properties. First, the fixation prob-

ability in the conditioned system is one, by construction. This is particularly

helpful for accelerating simulations of the Moran process. Conditioning the

transition probabilities also accounts for the normalization of the fixation-time

distribution. Furthermore, this operation only changes the relative probability

of adding versus subtracting a mutant. The probability that the system leaves a

given state is unchanged:

b̃m + d̃m =
P(Xt+1 = m + 1 AND Xt = m AND X∞ = N)

P(Xt = m AND X∞ = N)

+
P(Xt+1 = m − 1 AND Xt = m AND X∞ = N)

P(Xt = m AND X∞ = N)

= 1 −
P(Xt+1 = m AND Xt = m AND X∞ = N)

P(Xt = m AND X∞ = N)

= 1 − P(Xt+1 = m|Xt = m)

= bm + dm.

(2.43)
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This invariance, along with Eqs. (2.41) and (2.42), shows that conditioning the

Markov chain is equivalent to a similarity transformation on the transient tran-

sition matrix with a diagonal change of basis:

Ω̃tr = S Ωtr S −1 S mn = P(X∞ = N |Xt = m)δm,n, (2.44)

where Ωtr is the birth-death transition matrix with absorbing states removed as

defined in Section 2.2.

For the Moran Birth-death process considered in this chapter, bm/dm = r. In

this case, by setting up a linear recurrence it is easy to show that the probability

of fixation, starting from m mutants, is

P(X∞ = N |Xt = m) =
1 − 1/rm

1 − 1/rN , (2.45)

so that

b̃m =
rm+1 − 1
rm+1 − r

bm, d̃m =
rm − r
rm − 1

dm. (2.46)

Note that we can scale the similarity matrix S by an overall constant, so it is

convenient to choose S mn = (1 − 1/rm)δm,n. For the two-fitness Moran Birth-

Death model discussed in Section 2.6.1 fixation probabilities derived by Kaveh

et al. [17] can be used together with Eq. (2.44) to condition the Markov chain on

fixation.

2.9.3 Recurrence relation for fixation-time skew

With the conditioned transition probabilities derived in Section 2.9.2, there is

a reflecting boundary at m = 1, which lets us set up a recurrence relation for

the fixation-time moments. This derivation follows the method described by
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Keilson in Ref. [41]. Let S m(t) be the first-passage time densities from state m to

state m + 1. Clearly, S 1(t) has an exponential distribution,

S 1(t) = b̃1e−b̃1t. (2.47)

From m > 1, the state m + 1 can be reached either directly, with exponentially

distributed times, or indirectly by first stepping backwards to m − 1, returning

to m, and then reaching m + 1 at a latter time. Thus, the densities S m(t) satisfy

S m(t) = b̃me−(b̃m+d̃m)t + d̃me−(b̃m+d̃m)t ∗ S m−1(t) ∗ S m(t), (2.48)

where the symbol ∗ denotes a convolution. This equation can be solved by

Fourier transform to obtain

S m(ω) =
b̃m

b̃m + d̃m − d̃mS m−1(ω) − iω
. (2.49)

We can compute a recurrence relation for the moments of the first-passage

time densities S m(t) by differentiating Eq. (2.49). Let µm, νm and γm to be the

first, second, and third moments of S m(t) respectively. Using the relations νm =

−iS ′(ω = 0), ξm = (−i)2S ′′(ω = 0), and ζm = (−i)3S ′′′(ω = 0), we find that

νm = b̃−1
m (1 + d̃mνm−1),

ξm = b̃−2
m [b̃md̃mξm−1 + 2(1 + d̃mνm−1)2],

ζm = b̃−3
m [b̃2

md̃mζm−1 + 6b̃md̃mξm−1(1 + d̃mνm−1) + 6(1 + d̃mνm−1)3],

(2.50)

with boundary conditions ν0 = ξ0 = ζ0 = 0. The recurrence relations in Eq. (2.50)

give the moments of incremental first-passage time distributions S m(t). The total

fixation time, T is the sum of these incremental first-passage times. Thus, the

cumulants of T are the sum of the cumulants of the incremental times and the

skew of T can be expressed as,

κ3(N) =

N−1∑
m=1

ζm − 3ξmνm + 2ν3
m

 / N−1∑
m=1

ξm − ν
2
m

3/2

. (2.51)
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Numerical computation of for κ3(N) requires calculating the 3N moments and

carrying out the two sums in Eq. (2.51). By bottom-up tabulation of the incre-

mental moments, this procedure can be completed in O(N) time, asymptotically

faster than the eigenvalue decomposition and the exact series solution from visit

statistics.

2.9.4 Asymptotic Analysis for the 1D Lattice

Neutral Fitness

For our detailed asymptotic analysis, we will begin with the neutral fitness

Moran process on a 1D lattice with periodic boundary conditions. In this case,

the eigenvalues of the transition matrix describing the system are,

λm =
2
N
−

2
N

cos
(mπ

N

)
, m = 1, 2, . . . ,N − 1. (2.52)

From the eigen-decomposition of the Markov birth-death process described Sec-

tion 2.2.1, the standardized fixation-time cumulants are given by

κn(N) = (n − 1)!

N−1∑
m=1

1
λn

m

 / N−1∑
m=1

1
λ2

m

n/2

. (2.53)

Note that the constant factor 2/N cancels in Eq. (2.53), so we may equivalently

consider rescaled eigenvalues λm = 1 − cos(mπ/N). To derive the asymptotic

cumulants, we compute the leading asymptotic behavior of sums

S n =

N−1∑
m=1

1
[1 − cos(mπ/N)]n . (2.54)

The function (1 − cos x)−n can be expanded as a Laurent series
∑∞

k=0 ck(n)x2(k−n),

which is absolutely convergent for x , 0 in the interval (−2π, 2π). So the sum S n

51



can then be expressed as

S n =

N−1∑
m=1

∞∑
k=0

ck(n)
(
πm
N

)2(k−n)

=

∞∑
k=0

ck(n)(N/π)2(n−k)HN−1,2(n−k)

=
c0(n)ζ(2n)

π2n N2n + O(N2(n−1))

(2.55)

where HN,q =
∑N

m=1 m−q is the generalized harmonic number and in the last line

we used the asymptotic approximation

HN,2q =


ζ(2q) + O(N1−2q) q > 0,

N1−2q

2q + 1
+ O(N−2q) q ≤ 0.

(2.56)

It is easy to check that c0(n) = 2n. Now the cumulants are κn(N) = (n − 1)!S n/S
n/2
2 ,

which for N → ∞ are

κn = (n − 1)!
(
2nζ(2n)
π2n

) / (
22ζ(4)
π4

)n/2

= (n − 1)!
ζ(2n)
ζ(4)n/2 ,

(2.57)

as reported in Section 2.3.1.

Non-neutral fitness

For non-neutral fitness, we showed in Section 2.3.2 that in the random walk

approximation the fixation-time distribution is asymptotically normal. Here we

use the visit statistics approach to prove this holds even when the variation in

time spent in each state is accounted for. From the visit statistics formulation,

the standardized cumulants of the fixation time (starting from a single initial
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mutant) can be written as,

κn(N) =

 N−1∑
i1,i2,...,in=1

wn
i1i2···in

(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)

 /
N−1∑

i, j=1

w2
i j(r,N)

(bi + di)(b j + d j)


n/2

,

(2.58)

where wn
i1i2···in

(r,N) are the weighting factors that depend on the visit statistics

of a biased random walk. To prove the fixation-time distribution is normal, we

derive bounds on the sums

S n =

N−1∑
i1,i2,...,in=1

wn
i1i2···in

(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)
(2.59)

that appear in Eq. (2.58) and show that κn(N) → 0 as N → ∞. First, note that

wn
i1i2···in

(r,N) = (n − 1)! Vn
ii ≥ 1 if i1 = i2 = · · · = in ≡ i. Furthermore, we claim that

wn
i1i2···in

(r,N) ≥ 0 for all i1, i2, . . . , in. If this were not the case, one could construct

a birth-death process with negative fixation-time cumulants by choosing bi + di

appropriately. But we know the fixation-time cumulants are positive from the

eigen-decomposition, Eq (2.53). With these observations, we can bound S n from

below by the sum over unweighted diagonal elements. Similarly, the sums are

bounded from above by the maximum value of (bi+di)−n times the sum over the

weighting factors. Putting these together, we obtain

N−1∑
i=1

1
(bi + di)n ≤ S n ≤

(
max
1≤i<N

1
bi + di

)n

×

N−1∑
i1,i2,...,in=1

wn
i1i2···in(r,N). (2.60)

The Moran process on the 1D lattice has transition probabilities bi + di =

(1 + r)/(rm + N − m). Then, as N → ∞, the lower bound is

N−1∑
i=1

1
(bi + di)n =

1
(r + 1)n

N−1∑
m=1

(rm + N − m)n =
1 + r + r2 + · · · + rn

(n + 1)(1 + r)n Nn+1 + O(Nn).

(2.61)

For the upper bound, first note that(
max
1≤i<N

1
bi + di

)n

= [r(N − 1) + 1]n = rnNn + O(Nn−1). (2.62)
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The sums over the weighting factors give the (non-standardized) fixation-time

cumulants corresponding to a process with bi+di = 1 and uniform bias r. This is

exactly the biased random walk model used to approximate the Moran process

in Section 2.3.2. It follows that as N → ∞,
N−1∑

i1,i2,...,in=1

wn
i1i2···in(r,N) = (n − 1)!

N−1∑
i=1

(
1

1 − 2
√

r/(r + 1) cos(mπ/N)

)n

, (2.63)

where the denominators in the second sum are the eigenvalues of the transition

matrix for the biased random walk, λm = 1 − 2
√

r/(r + 1) cos(mπ/N). As in Sec-

tion 2.3.2, we can estimate the leading asymptotics of this sum by converting to

an integral,
N−1∑

i1,i2,...,in=1

wn
i1i2···in(r,N) =

N
π

∫ π

0

(n − 1)!
(1 − 2

√
r/(1 + r) cos x)n

dx + O(1). (2.64)

Combining the results from Eqs. (2.60)–(2.62) and (2.64) we arrive at

1 + r + r2 + · · · + rn

(n + 1)(1 + r)n Nn+1+O(Nn) ≤ S n ≤
Nn+1

π

∫ π

0

(n − 1)!
(1 − 2

√
r/(1 + r) cos x)n

dx+O(Nn).

(2.65)

For each n, our upper and lower bounds have the same asymptotic scaling as a

power of N, with different r-dependent coefficients. Using these results together

in Eq. (2.58), it follows that for N ≫ 1, the cumulants to leading order are

κn(N) = Cn(r)
1

N(n−2)/2 + O(N−n/2), (2.66)

where Cn(r) is a fitness-dependent constant. Thus, indeed κn(N)→ 0 as N → ∞.

This result confirms the claim made in Section 2.3.2. Even with heterogeneity

in the time spent in each state, the skew and higher-order cumulants of the

fixation time vanish asymptotically. Therefore, the Moran Birth-death process

on the 1D lattice with non-neutral fitness r > 1 has an asymptotically normal

fixation-time distribution. The normal distribution is universal, independent of

fitness level for this population structure.
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2.9.5 Asymptotic Analysis for the Complete Graph

Non-neutral fitness

In Section 2.4.2 we predicted that the asymptotic fixation-time distribution for

the Moran Birth-death process on the complete graph is a convolution of two

Gumbel distributions by applying our intuition from coupon collection. Fur-

thermore, our calculation of the fixation-time cumulants in the large (but finite)

fitness limit agrees with this prediction. Surprisingly, numerical calculations

using the recurrence relation formulated above and direct simulations of the

Moran process indicate that this result holds for all r > 1. In this section we

prove, using the visit statistics formulation, that the asymptotic skew of the fix-

ation time for r > 1 is identical to that of a convolution of Gumbel distributions.

Based on our numerical evidence, we conjecture that an analogous calculation

holds to all orders. The below calculation also shows why the coupon collection

heuristic works: the asymptotically dominant terms come exclusively from the

regions near fixation (m = N − 1) and near the beginning of the process when a

single mutant is introduced into the system (m = 1).

As for the 1D lattice, we want to derive the asymptotic behavior of the sums

S n =

N−1∑
i1,i2,...,in=1

wn
i1i2···in

(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)
, (2.67)

where the transition probabilities bi and di are those for the Moran process on

the complete graph,

bi + di =
(1 + r)i(N − i)

(N − 1)(ri + N − i)
(2.68)

and the weights w2
i j(r,N) and w3

i jk(r,N) are respectively given by

w2
i j(r,N) =

(r + 1)2(r j − 1)2(rN − ri)2

ri+ j (r − 1)2(rN − 1)2 (2.69)
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for i > j and

w3
i jk(r,N) = 2

(r + 1)3(rk − 1)2(r j − 1)(rN − ri)2(rN − r j)
ri+ j+k (r − 1)3(rN − 1)3 , (2.70)

for i > j > k. The expressions for different orderings of indices are the same

but with the indices permute appropriately so that w2
i j and w3

i jk are perfectly

symmetric.

To start, consider the sums Eq. (2.67), but with two indices i1 and i2 con-

strained to integers from αN to (1 − α)N for 1/2 > α > 0. This sum may be

written as

S α
n =

(1−α)N∑
i1,i2=αN

N−1∑
i3,··· ,in=1

wn
i1i2···in

(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)
. (2.71)

Now we may apply the upper bound in Eq. (2.60), but for the sums restricted

to αN < i, j < (1 − α)N, the maximum of (bi + di)−1 can also be restricted to this

range,

S α
n ≤

(
max
1<i<N

1
bi + di

)n−2

×

(
max

αN<i<(1−α)N

1
bi + di

)2

×

N∑
i1,i2,··· ,in=1

wn
i1i2···in(r,N)

= Nn−1

( r
1 + r

)n−2
(

r(1 − α) + α
(1 + r)(1 − α)α

)2

×
1
π

∫ π

0

(n − 1)!
(1 − 2

√
r/(1 + r) cos x)n

dx

 + O(Nn−2).

(2.72)

In the second line we used the integral approximation from Eq. (2.64) and evalu-

ated the maximum of (bi+di)−1 over the indicated intervals. Since we constructed

wn
i1i2···in

(r,N) to be symmetric, this upper bound holds for any permutation of the

indices in Eq. (2.71).

We now consider the same sums but with 1 < i1 < αN or (1−α)N < i1 < N−1,

S α,1
n =

αN∑
i1=1

(1−α)N∑
i2=αN

N−1∑
i3,··· ,in=1

wn
i1i2···in

(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)
. (2.73)

and

S α,2
n =

N−1∑
i1=(1−α)N

(1−α)N∑
i2=αN

N−1∑
i3,··· ,in=1

wn
i1i2···in

(r,N)

(bi1 + di1)(bi2 + di2) · · · (bin + din)
. (2.74)
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These sums can be estimated using the same upper bound, but without extend-

ing the sum on wn
i1i2···in

(r,N) to the entire domain. Specifically,

S α,1
n ≤ Nn−1

{( r
1 + r

)n−1
(

r(1 − α) + α
(1 + r)(1 − α)α

)}
×

αN∑
i1=1

(1−α)N∑
i2=αN

N−1∑
i3,··· ,in=1

wn
i1i2···in(r,N) + O(Nn−2).

(2.75)

Note that the weighting factors fall off exponentially away from the diagonal

elements. This is because the visit numbers in the biased random walk become

only very weakly correlated if the states are far away from each other. Thus,

the sum in Eq. (2.75) over terms away from the diagonal elements converges to

a constant as N → ∞. We have verified this explicitly for w2
i j(r,N) and w3

i jk(r, n).

The series S α,2
n is similarly bounded, as are all sums of the form Eq. (2.73) or

(2.74) with the indices permuted.

The remaining terms in S n involve all indices in either [1, αN] or [(1−α)N,N−

1]. If not all indices are in the same interval, the weighting factors are exponen-

tially small: the visit numbers near m = 1 are uncorrelated with those near

m = N − 1. Thus each term in the sum is exponentially suppressed and doesn’t

contribute to S n asymptotically. With this observation only two parts of the sum

remain: those with bounds 1 ≤ i1, i2 . . . in ≤ αN or (1 − α)N ≤ i1, i2 . . . in ≤ N − 1.

We call the sums with these bounds S c1
n and S c2

n respectively. As we will see be-

low, the sums over these regions have leading order O(Nn). Since all the above

terms are order O(Nn−1) or smaller, the asymptotic behavior of the cumulants

is entirely determined by these regions near the beginning and end of the pro-

cess, i.e. the coupon collection regions. The fact that we can restrict the sums

to this region allows us to make approximations that do not change the leading

asymptotics, but make the sums easier to carry out. For instance, in S c1
2 , we can
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set rN − ri → rN and (N − i)→ N, since the indices run only up to αN. This gives

S c1
2 =

N2

(r − 1)2

 αN∑
i=1

(ri − 1)2

i2r2i + 2
αN∑
i=1

i−1∑
j=1

(r j − 1)2

i j ri+ j

 + O(N)

=
N2ζ(2)
(r − 1)2 + O(N),

(2.76)

for N ≫ 1. A similar calculation shows S c2
2 = r2N2ζ(2)/(r − 1)2. For the third

order sums, we find

S c1
3 = 2

N3

(r − 1)3

{ αN∑
i=1

(ri − 1)3

i3r3i + 3
αN∑
i=1

i−1∑
j=1

(r j − 1)3

i j2ri+2 j

+ 3
αN∑
i=1

i−1∑
j=1

(ri − 1)(r j − 1)2

i2 jr2i+ j + 6
αN∑
i=1

i−1∑
j=1

j−1∑
k=1

(r j − 1)(rk − 1)2

i jk ri+ j+k

}
+ O(N2)

= 2
N3ζ(3)
(r − 1)3 + O(N2),

(2.77)

for N ≫ 1. Again the other sum, with indices near N − 1, is identical up to a

factor of r3, S c2
3 = 2r3N3ζ(3)/(r − 1)3. Overall, we have that

S 2 =
N2(1 + r2)ζ(2)

(r − 1)2 + O(N) and S 3 =
2N3(1 + r3)ζ(3)

(r − 1)3 + O(N2). (2.78)

The asymptotic skew is given by

κ3 =
2(1 + r3)ζ(3)

(r − 1)3

/ (
(1 + r2)ζ(2)

(r − 1)2

)3/2

=
1 + r3

(1 + r2)3/2 ×
2ζ(3)
ζ(2)3/2 , (2.79)

which is exactly the skew corresponding to the convolution of Gumbel distribu-

tions with relative weighting given by the fitness, G + rG′. While evaluating the

series to higher orders is increasingly difficult, our simulations and the large-

fitness approximation suggest this result holds to all orders and that indeed,

the asymptotic fixation-time distribution is a weighted convolution of Gumbel

distributions.
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Neutral fitness with truncation

As discussed in Section 2.5.2, the neutral fitness Moran process on the complete

graph has a fixation-time skew that depends on the level of truncation. That is,

the time Tα it takes for the process to reach αN mutants, where 0 ≤ α ≤ 1, has a

distribution whose skew depends on α. Here we show that the α → 0 limit of

the fixation-time skew equals
√

3.

To start, we take the neutral fitness limit of the weighting factors to obtain

w2
i j(1, αN) =

4 j2(αN − i)2

α2N2 (2.80)

for i ≥ j and

w3
i jk(1, αN) =

16 jk2(αN − i)2(αN − j)
α3N3 (2.81)

for i ≥ j ≥ k, again with the expressions for other orderings obtained by permut-

ing the indices accordingly. The neutral fitness Moran process on the complete

graph has transition probabilities bi + di = 2(Ni − i2)/(N2 − N). Since we are com-

puting the truncated fixation-time skew, we use Eq. (2.58), but cut the sums off

at αN. In this case, these sums are dominated by the off-diagonal terms, so that

S 2 =

αN∑
i, j=1

w2
i j(1, αN)

(bi + di)(b j + d j)
= 2

αN∑
i=1

i−1∑
j=1

j(αN − i)2(N − 1)2

α2i(N − i)(N − j)
+ O(N3)

= 2
αN∑
i=1

i−1∑
j=1

j(αN − i)2

α2i
+ O(N3)

=
α2N4

12
+ O(N3),

(2.82)

where in the second line we approximated N − i and N − j by N. This approxi-

mation is exact in the limit α→ 0 since the upper limit on the sum, αN, is much
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smaller than N. Using analogous approximations, we find

S 3 =

αN∑
i, j,k=1

w2
i jk(1, αN)

(bi + di)(b j + d j)(bk + dk)

= 6
αN∑
i=1

i−1∑
j=1

j−1∑
k=1

2k(αN − i)2(αN − j)(N − 1)3

α3i(N − i)(N − j)(N − k)
+ O(N5)

= 12
αN∑
i=1

i−1∑
j=1

j−1∑
k=1

k(αN − i)2(αN − j)
α2i

+ O(N5)

=
α3N6

24
+ O(N5).

(2.83)

The asymptotic fixation-time skew as α→ 0 is therefore

κ3 =
α3N6/24

(α2N4/12)3/2 =
√

3, (2.84)

as claimed above. This value agrees perfectly with our numerical calculations,

which show the above approximation breaks down when α ≈ 1/2. Above this

threshold, the random walk causes mixing between the two coupon collection

regions, thereby lowering the overall skew of the fixation-time distribution to-

ward the α = 1 value of κ3 = 6
√

3(10 − π2)/(π2 − 9)3/2 ≈ 1.6711.

2.9.6 Fixation-time distributions in the two-fitness Moran Pro-

cess

As noted in Section 2.6.1, the two-fitness Birth-Death (BD) Moran process has

the same family of fixation-time distributions as the Birth-death (Bd) process

with only one fitness level. Here we provide further details leading to this con-

clusion. In particular, we give the transition probabilities for the two-fitness

model and describe how the calculations from the sections above generalize to

this system. Here r is the fitness level during the birth step, while r̃ is the fitness

level during the death step in the Moran process.
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One-dimensional lattice

On the 1D lattice, the Moran process with fitness at both steps (birth and death),

has new transition probabilities

bm =
r

rm + N − m
r̃

1 + r̃
, dm =

1
rr̃

bm, (2.85)

for 1 < m < N − 1. The probabilities are different when there is only one mutant

or non-mutant (m = 1 or m = N − 1 respectively). In these cases the nodes on the

population boundary don’t have one mutant and one non-mutant as neighbors,

as is the case for all other m. In the limit N ≫ 1, however, changing these two

probabilities does not affect the fixation-time distribution and we can use the

probabilities given in Eq. (2.85).

The two-fitness Moran BD model on the 1D lattice differs from the previ-

ously considered Bd process in two ways. First, the transition probabilities have

the same functional form as before, but are scaled by a factor r̃(1+ r̃)−1. This fac-

tor determines the time-scale of the process but does not alter the shape of the

fixation-time distribution because it drops out of the expressions for the cumu-

lants, Eqs. (2.53) and (2.58). Second, the ratio bm/dm = rr̃ shows that the process

is still a random walk, but with new bias corresponding to an effective fitness

level reff = rr̃. With these observations, when reff , 1, our preceding analysis ap-

plies and we predict normally distributed fixation times. If reff = 1, the random

walk is unbiased, and we expect highly skewed fixation-time distributions.
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Complete Graph

On the complete graph, considering fitness during the replacement step leads

to transition probabilities

bm =
rm

rm + N − m
·

r̃(N − m)
r̃(N − m) + m − 1

, dm =
N − m

rm + N − m
·

m
r̃(N − m − 1) + m

.

(2.86)

In this case, the ratio of transition probabilities is m-dependent, but bm/dm → rr̃

as N → ∞, again motivating the definition of the effective fitness level reff = rr̃.

If we take the large (but not infinite) fitness limit reff ≫ 1, so that the mutant

population is monotonically increasing to good approximation, then the fixation

time cumulants are again given by Eq. (2.53) with λm → bm + dm. As N → ∞, the

cumulants become

κn =
1 + rn/r̃n

(1 + r2/r̃2)n/2 ·
(n − 1)!ζ(n)
ζ(2)n/2 , (2.87)

identical to the Moran Bd process on the complete graph, with r → r/r̃. Numer-

ical calculations (using the moment recurrence relation derived in Section 2.9.3)

again indicate this expression for the cumulants holds for all r, not just in the

large fitness limit. When reff = 1, we expect highly skewed fixation distribu-

tions arising from the unbiased random walk underlying the dynamics. This is

indeed the case, though numerics indicate there is an entire family of distribu-

tions dependent on r = 1/r̃.
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CHAPTER 3

ASYMPTOTIC ABSORPTION-TIME DISTRIBUTIONS IN

EXTINCTION-PRONE MARKOV PROCESSES

3.1 Introduction1

Modeling extinction-prone dynamics is essential to our understanding of epi-

demics, disease incubation, and evolution. For example, a key goal in epidemi-

ology is to implement control measures (such as social distancing or vaccina-

tion) that push the dynamics toward a state where the disease is eradicated on

a reasonable timescale [2, 52, 53]. Similarly, disease incubation [33, 54] and evo-

lution [9, 13] involve highly fit infectious cells or mutant species outcompeting

their less fit counterparts.

In these fields the distribution of extinction times, rather than just the mean,

is crucial. For example, how long must a patient wait after exposure to a dis-

ease to be sure they are not infected? In the best and worst case scenarios,

how long must epidemiological control measures be imposed to stop an out-

break? Knowledge of the extinction-time distribution provides an answer to

these questions. Incubation period distributions have long been measured em-

pirically to inform treatment regimens or public health initiatives [54]. Simi-

larly, a recent study used a data-driven model of African sleeping sickness in

the Democratic Republic of Congo to predict the distribution of times until the

disease is eradicated [2].
1This chapter is reproduced from: David Hathcock and Steven H. Strogatz, “Asymptotic

absorption-time distributions in extinction-prone Markov processes.” Physical Review Letters
128, 218301 (2022).
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In this chapter, we show that two particular extinction-time distributions—

Gaussian and Gumbel distributions—arise generically from basic features of the

stochastic dynamics driving the system. These distributions were found previ-

ously in several models of evolutionary dynamics [1, 32, 33]. We show now that

these same distributions appear in much more general classes of birth-death

Markov chains, along with a family of skewed distributions that include the

Gumbel. Extending the approach introduced in Ref. [1], we provide analytical

criteria that predict when the asymptotic absorption-time distribution is nor-

mal, Gumbel, or a member of the family of skewed distributions. We apply our

results to models of epidemiology [55–57], ecology [58–60], stochastic chemical

reactions [7, 61], and evolutionary games [62], for which the predicted distribu-

tions agree with those measured via simulation. To our knowledge, this is the

first calculation of the asymptotic absorption-time distributions for these mod-

els. As an application, we show that the Gumbel distribution closely resembles

eradication-time distributions for African sleeping sickness.

We analyze birth-death Markov processes with a linear chain of states m =

0, 1, . . . ,N. For example, m might represent the number of infected individuals

in an epidemic. The system has an absorbing state at m = 0 (where nobody is

infected) and a reflecting state at m = N (the maximum allowed infected popula-

tion). Transitions occur only between neighboring states, i.e., the population can

only increment by 1 in either direction. The dynamics of pm(t), the probability

of occupying state m at time t, obey the master equation,

ṗm(t) = bm−1 pm−1(t) + dm+1 pm+1(t) − (bm + dm)pm(t), (3.1)

where bm and dm are respectively the birth and death rates at which the state

increases or decreases from state m. The master equation can also be expressed

as ṗ(t) = Ω · p(t), where Ω is the transition matrix containing the birth and death
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rates. Since the state at m = 0 is absorbing and the state m = N is reflecting, we

have b0 = bN = 0. For simplicity we assume the system starts in an initial state

m = N, i.e. pm(0) = δm,N , but our results apply more broadly (see Section 3.6.3).

The quantity we are interested in is the first-passage time T to the absorbing

state m = 0; here we focus on obtaining the probability distribution about the

mean.

3.2 Exact expression for the absorption-time cumulants

Building on our results in Chapter 2 and Ref. [1], we develop an approach to

determine the absorption-time distributions for general classes of birth-death

Markov chains in the limit of large system size. The key insight is to introduce

a change of variables, Dm = bm + dm and rm = bm/dm. If the system is in state m,

it waits on average a time D−1
m before increasing or decreasing. The probabili-

ties of the next step being forward or backward are rm/(1 + rm) and 1/(1 + rm)

respectively; rm is the ratio of these probabilities. Thus, our coordinate change

separates the random-walk portion of the Markov process, which describes the

relative probabilities of stepping forward or backward at each state, from the

times spent waiting in each state. This change of variables leads to a transition

matrix decomposition, Ω = ΩRW D, where D is diagonal with elements Dm and

ΩRW is the transition matrix for a biased random walk. The number of times the

system visits each state depends only on the random-walk portion of the pro-

cess. The elements Vi j of V = −Ω−1
RW encode the average number of visits to state

i before absorption, starting from state j.

To characterize the asymptotic distributions, we compute the cumulants
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κn(N) of the absorption time T , which describe the shape of the distribution.

For instance, κ1 is the mean, κ2 is the variance, and κ3/κ
3/2
2 is the skew. Following

Ref. [1] we use the matrix decomposition above to derive the cumulants (gener-

alizing the previous result to non-constant r j):

κn({r j},N) =
∑

1≤i1≤i2≤···≤in≤N

wn
i1i2···in

({r j})

(bi1 + di1) · · · (bin + din)
. (3.2)

Here wn
i1i2···in

({r j}) are weighting factors that depend only on the visit statistics

of the random walk; for example, w1
i ({r j}) = Vii. Section 3.2.1 below provides a

derivation of this formula and explicit expressions for the first few weighting

factors, each of which are polynomials of the visit numbers Vi j. Equation (3.2) is

equivalent to well known recursive relations for absorption time moments [63],

but this form enables the asymptotic analysis leading to the results below.

3.2.1 Derivation of the absorption-time cumulants

In this section we derive the general formula for the absorption-time cumulants,

Eq. 3.2. This derivation follows Ref. [1], but we generalize to Markov chains

where the ratio rm = bm/dm is non-constant. We start from the master equation,

Eq. (3.1) above, and restrict our attention to the transient (non-absorbing) states,

m > 0, since these determine the time it takes to reach absorption. The master

equation for these states can be expressed as ṗ(t) = Ω · p(t), where Ω is the

transient transition matrix with elements

Ωmn = bnδm,n+1 + dnδm,n−1 − (bn + dn)δm,n (3.3)

for m, n = 1, . . . ,N and p(t) is the vector of transient state occupancy probabilities.

The entire first-passage process can be characterized in terms of the transi-

tion matrix Ω. In fact, the first-passage distribution p(t) can be written in terms
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of an element of the matrix exponential, p(t) = d1[exp(Ωt)]1,N and the moments

of T are

µn B E[T n] = (−1)nn!1Ω−np(0), (3.4)

where 1 is a row vector containing all 1’s and E denotes expected value.

As noted above, to proceed it is useful to introduce the following decom-

position of the transition matrix: Ω = ΩRW D, where D is a diagonal matrix

Dmm = bm + dm and

[ΩRW]mn =
rn

1 + rn
δm,n+1 +

1
1 + rn

δm,n−1 − δm,n, (3.5)

with rn = bn/dn. The rates Dmm determine how long the system waits in state m

before taking a step and rm is the relative probability of stepping forward versus

backward along the chain. Defining V = −Ω−1
RW , the elements Vi j are the average

number of visits to state i before absorption starting from an initial state j.

With the above decomposition we can easily invert the transition matrix,

[−Ω−1]i j =
Vi j

bi + di
, (3.6)

where visit numbers Vi j are given by

Vi j = (1 + ri)
min(i, j)∑

n=1

i−1∏
m=n

rm. (3.7)

Then, using Eq. (3.4) the moments can be expressed as

µn = n!
N∑

i1,i2,...in=1

Vi1i2Vi2i3 · · ·Vin−1inVinN

(bi1 + di1)(bi2 + di2) · · · (bin + din)
. (3.8)

To compute the cumulants, we use the standard conversion formulas: κ1 = µ1,

κ2 = µ2−µ
2
1, κ3 = µ3−3µ2µ1+2µ3

1, and so on. Since the relation between cumulants

and moments is polynomial, if we collect terms with common denominators it
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follows that the cumulants have the form quoted above,

κn({r j},N) =
∑

1≤i1≤i2≤···≤in≤N

wn
i1i2···in

({r j})

(bi1 + di1) · · · (bin + din)
. (3.9)

where the weights wn depend on the visit numbers Vi j (and hence are functions

of only the ratios {r j}). Note that we sum over i1 ≤ i2 ≤ · · · ≤ in, so that each

product in the denominator of Eq. (3.9) appears exactly once. The weights are

determined using Eq. (3.8) and the moment-cumulant conversion formulas. For

example, the second and third cumulants are

κ2 =

N∑
i, j=1

2Vi jV jN − ViNV jN

(bi + di)(b j + d j)
(3.10)

κ3 =

N∑
i, j,k=1

6Vi jV jkVkN − 6Vi jV jNVkN + 2ViNV jNVkN

(bi + di)(b j + d j)(bk + dk)
. (3.11)

From here we can read off the weights wn: they are simply the numerators in

the above expressions, summed over distinct permutations of the indices (since

these terms have the same denominators). Carrying out the sum we obtain,

w2
i j =

∑
σ∈Π2

2Vσ1σ2Vσ2N − Vσ1NVσ2N (3.12)

w3
i jk =

∑
σ∈Π3

6Vσ1σ2Vσ2σ3Vσ3N − 6Vσ1σ2Vσ2NVσ3N + 2Vσ1NVσ2NVσ3N , (3.13)

where Π2 is the set of distinct permutations of indices {i, j} and Π3 is the set of

distinct permutations of {i, j, k}.

3.2.2 Properties of the weighting factors

The weighting factors have some convenient properties. First, they are non-

negative: wn
i1i2···in

({r j}) ≥ 0 and increasing functions of each r j. Second, the weight-

ing factors appear to fall off exponentially away from the diagonal. For constant
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r j = r, this exponential decay can be shown explicitly [1]. We conjecture that

the same decay holds for arbitrary transition probabilities {r j}. The intuition is

that the visits to state i are uncorrelated with those to state j (for N ≫ 1 and

i − j = O(N)), due to the Markov property.

Here we will show the non-negativity and monotonicity explicitly up to or-

der n = 4 and conjecture these properties hold for all orders. To proceed, we use

the fact that Vii = Vi j for any i < j. This is easy to see from Eq. (3.7), but also

has an intuitive physical interpretation. Since the system is eventually absorbed

at the boundary state 0, if it starts from a state j > i it must visit i before ab-

sorption. After the first visit, the statistics of the random walk are identical to a

walk initialized in state i. Using this property the sum over permutations above

dramatically simplifies. For i < j we have

w2
i j = (2Vi jV jN − ViNV jN + 2V jiViN − V jNViN) (3.14)

= 2V jiViN .

Similarly, after simplification we find

w3
i jk = 3! (Vk jV jiViN + VkiViNV jN) (3.15)

w4
i jkl = 4! (VlkVk jV jiViN + VlkVkiViNV jN + Vl jV jiViNVkN (3.16)

+ Vl jV jNVkiViN + VliViNVk jV jN + VliViNVkNViN)

when i < j < k < l. When some indices are identical, these results still hold,

but they must be divided by the number of permutations of the identical in-

dices, e.g., w2
ii = ViiViN (notice this differs from Eq. (3.14) by a factor of 2). The

important feature of these expressions is that they are positive sums of products

of the visit numbers Vi j. We conjecture that the weights at every order can also

be written as a positive sums of products of the visit numbers (though we omit
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the expressions here, we have checked this is true up to order n = 6). If this is

the case, it immediately follows that the weights wn are positive and increasing

functions of each r j because the visit numbers, Eq. (3.7), themselves also have

these properties.

3.3 Gaussian Universality Class

The first universality class of birth-death Markov chains we consider have nor-

mally distributed absorption times. As an instructive special case, consider the

process bm = 0, dm = d, which visits each state exactly once before absorp-

tion, waiting a time d−1 on average at each. The time to absorption is simply

T =
∑

m Em(d) where Em(d) is an exponential random variable. Since T is a sum

of identical random variables we expect it to be normally distributed by the cen-

tral limit theorem. Alternatively, the cumulants of T are κn = N/dn. In units of

the standard deviation the higher order cumulants vanish: κn/κ
n/2
2 = N1−n/2 → 0

as N → ∞. Hence the distribution is asymptotically normal.

We might also expect this asymptotic normality to hold for transition rates

with mild state dependence: if bm + dm does not vary too much (we will give a

precise condition below), the absorption time is a sum of nearly identical expo-

nential random times. Similarly, for rm = bm/dm > 0, the system randomly walks

back and forth, but as long as rm < 1 the average number of visits to each state

is finite. Under either of these generalizations the distribution is asymptotically

normal.

To characterize more precisely which Markov chains lead to normally dis-

tributed absorption times, we compute the asymptotic form of the cumulants in
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Eq. (3.2) by introducing two auxiliary Markov chains. These have the same bi+di

as the original system, but bi and di are adjusted so that the ratios are r j = rmax or

r j = rmin, where rmax = limN→∞max1< j<N r j and rmin = limN→∞min1< j<N r j. In other

words, we construct two Markov chains where the time spent waiting in each

state is identical to that for the original system, but the odds of moving toward

the absorbing state are increased or decreased to be uniform.

Above we noted that the weighting factors wn in Eq. (3.2) are increasing func-

tions of r j. Thus, we can bound the cumulants in our system by those for the

auxiliary Markov chains, κn(rmin,N) ≤ κn({r j},N) ≤ κn(rmax,N). The asymptotic

form of κn(r,N) (where r is constant across states) was computed in Ref. [1]; we

utilize this result in the asymptotic analysis given in the Appendix, Section 3.9.1.

To nail down the asymptotics of κn(r,N) we require the waiting times to be ‘flat’

in the following sense:
1
N

N∑
m=1

tm ∼ c max
1≤m≤N

tm, (3.17)

where tm = (bm+dm)−1 is the mean waiting time at state m and c is a constant inde-

pendent of N. In other words, the mean waiting time ⟨tm⟩ across all states is the

same asymptotic order as the maximum waiting time: the process fluctuates at

an approximately uniform rate across the entire Markov chain, without spend-

ing a disproportionate amount of time in any one state. Gaussian absorption

times have also been found in the continuum limit via the linear-noise approxi-

mation, which removes state dependence from the noise [64]. This approxima-

tion is similar to the condition (3.17), which requires the noise amplitude bm+dm

to vary only mildly across states.

If Eq. (3.17) holds, then κn(r,N) ∼ cn(r) f (N)nN, where f (N) ∼ max1≤i≤N(bi+di)−1.

Since these asymptotics hold for r = rmin and r = rmax, it follows that κn({r j},N) ∼
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Figure 3.1: Absorption-time distributions for (a) the random transition matrix
model (large black circles) and the evolutionary game on a ring (small red cir-
cles), (b) SIS model (large black circles), logistic model (small red circles), and
autocatalytic chemical reaction model (cyan triangles), (c) the well-mixed evo-
lutionary game, and (d) the process bm = rdm = rmp, for r = 0 and p = 0.3 (blue),
p = 0.75 (orange), p = 1 (green), and p = 1.8 (red). The r = 0.8 distributions
are indicated by dotted lines (when they differ from the r = 0 counterparts). See
Section 3.8 for models and parameters. We used system sizes (a-b) N = 500 and
(c-d) N = 1000 and simulated (a) 5 × 104, (b-c) 105, and (d) 106 trials to measure
the distributions, which have been standardized to have zero mean and unit
variance. In (c) the distributions are a convolution of Gumbel distributions with
relative weighting s ≈ 0.73. Deviations from predicted normal and Gumbel
distributions in (a-c) are due to finite system size.

cn({r j}) f (N)nN as well.

With the asymptotic form of the cumulants established, we analyze the

shape of the distribution using the standardized cumulants κ̃n = κn/κ
n/2
2 for n ≥ 2

(which are rescaled so that the variance κ̃2 = 1). Using the asymptotic form ob-
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tained above, we find κ̃n ∼ c̃nN1−n/2. In particular, κ̃n → 0 as N → ∞ for n > 2, so

that the distribution becomes Gaussian for large N (the cumulants past second

order vanish for normal distributions).

For finite N, the dominant correction to the normal distribution comes from

the non-zero skew κ̃3 ∼ c̃3/
√

N. The coefficient in this scaling depends on the

ratios r j; in the Appendix, Section 3.9.1 we compute a bound on this coefficient,

which is useful for estimating the rate of convergence in applications. The ratio

of the standard deviation κ1/2
2 to the mean κ1 also scales like κ1/2

2 /κ1 ∼ c̃1/
√

N,

similar to the skew. As the distribution converges to the Gaussian, the relative

width of the distribution narrows at the same rate. To summarize, any birth-

death Markov chain that satisfies the ‘flatness’ condition, Eq. (3.17), and has an

absorbing state toward which the system flows on average (r j < 1) will have

asymptotically Gaussian distributed absorption times.

Our first example of a Markov chain with normally distributed absorption

times is a toy model with random transition probabilities. Here we select bm + dm

uniformly at random between 0.1 and 2 and rm uniformly at random between

0 and 0.9, which satisfies the conditions described above. This example shows

that the transition rates need not be smooth in m; systems with disordered tran-

sition rates still belong to this universality class.

Next we study evolutionary game dynamics on a one-dimensional ring [19,

65]. Mutant and wild-type individuals compete via the following dynamics:

an individual is chosen randomly, proportional to its (frequency dependent)

fitness. The selected individual gives birth to an offspring of the same type,

which in turn replaces a random neighbor. The model runs until the mutation

spreads to the entire population.
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Figure 3.1(a) shows simulation results for the random transition system and

the evolutionary game. Both display the expected normal distribution. Inter-

estingly, for the evolutionary game, the normal distribution appears for a wide

range of parameters, while the mean absorption time and absorption probabil-

ity depend more intricately on parameters [19, 65].

3.4 Gumbel Universality Class

Gumbel distributions, known for their role in extreme value theory [66], also

arise generically in absorption processes. This second universality class is

closely related to the ‘coupon collector’ problem in probability theory, which

asks the following: if there are N distinct coupons and we are given a random

one (with replacement) at each time step, how long does it take to collect all

N coupons? The collection process displays a characteristic slowdown: when

nearly all coupons have been collected, it takes a long time to acquire the final

few because duplicates keep getting selected. Erdős and Rényi showed that for

large N the time to complete the collection follows a Gumbel distribution [36].

The coupon collector problem can be modeled using Markov chains. Let m

be the number of coupons missing from the collection of N total coupons. The

probability of obtaining a new coupon (thereby decreasing m) is m/N and the

number of missing coupons never increases. Thus, the coupon collection pro-

cess is described by birth-death dynamics with bm = 0 and dm = m/N. The linear

decay of the transition probability dm near the absorbing boundary is the key fea-

ture that gives rise to the characteristic slowdown. For this case the cumulants

can be computed exactly, κ̃n = (n−1)!ζ(n)/ζ(2n)n/2, and match those for a Gumbel
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distribution. Similar to the Gaussian class above, we find that the Gumbel distri-

bution is preserved for non-zero rm < 1 and nonlinear transition rates as long as

the linear decay is dominant near 0. Specifically, if bm + dm = f (N)m[1 +O(m/N)],

with bαN +dαN of order at least O(N f (N)) for any 0 < α ≤ 1, and if rm = r+O(m/N)

for large N, then the absorption-time distribution is asymptotically Gumbel 2.

By bounding the cumulants (3.2), we show (Section 3.9.2) their leading order

behavior for N ≫ 1 is dominated by the states near 0, where the approximations

bm + dm ≈ f (N)m and rm ≈ r become asymptotically exact, so that

κn({r j},N) ∼
1

f (N)n

∑
1≤i1≤i2≤···≤in≤N

wn
i1i2···in

(r)

i1i2 · · · in
. (3.18)

The factors f (N)n set the timescale of the process but do not affect the shape

of the distribution (they cancel in κ̃n = κn/κ
n/2
2 ). Thus, we have shown that the

cumulants are asymptotic to those for a process with bm + dm = m and bm/dm = r.

The absorption-time distribution for this process can be computed exactly (see

Ref. [59, Appendix B]) and approaches a Gumbel distribution as N → ∞ (see

Section 3.9.2). Therefore, any system with transition rates vanishing linearly

and ratios r j that approach a constant near the absorbing boundary will fall into

the Gumbel universality class.

As in the Gaussian class, the relative width of the Gumbel distributions be-

comes small for N ≫ 1. In this case, however, the standard deviation-to-mean

ratio scales like κ1/2
2 /κ1 ∼ C1/ ln N. On the other hand, the deviations from the

Gumbel cumulants decay like δκ̃n = κ̃n − κ̃
Gumbel
n ∼ CnN−1 ln N (see Appendix,

Section 3.9.2). Thus the distribution narrows very slowly compared to the con-

vergence to the Gumbel shape. Therefore, in applications we expect to see the

2More generally it is sufficient to have bm + dm = f (N)m[1 + O(m/g(N)] for any function g(N)
that diverges for N → ∞. If g(N) grows linearly or sublinearly, deviations in the cumulants scale
like δκ̃n ∼ Cn[ln g(N)]/g(N). Otherwise, δκ̃n ∼ Cn/N
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Gumbel distribution appear before the fluctuations become negligible.

Finally, if the transition rates vanish near the initial condition N, scaling

like bm + dm = f̃ (N)(N − m) + O((N − m)2), there will be another coupon-

collection slowdown at the beginning of the process. An identical analysis to

that above shows that the contributions from the two coupon collection re-

gions simply add together to give the cumulants. The resulting absorption-time

distribution is therefore a convolution of two Gumbels, with one weighted by

s = limN→∞ f (N)/ f̃ (N).

To illustrate the Gumbel universality class we use the susceptible-infected-

susceptible (SIS) model of epidemiology [57], the logistic model from ecology

[58], and an autocatalytic chemical reaction model [7, 61] (model details in Sec-

tion 3.8). In each case the transition rates decrease linearly near the absorbing

state. For example, in the SIS model, bm = Λm(1 − m/N) and dm = m, where Λ is

the infection rate.

Our simulations show that these models each have the expected Gumbel

distribution [Figure 3.1(b)]. The distribution is also insensitive to parameter

choices (e.g., a Gumbel appears in the SIS model for any Λ < 1).

If we study the aforementioned evolutionary game in a well-mixed popula-

tion, the transition rates vanish linearly as m → 0 and m → N (see Section 3.8.1

and Ref. [67]) . As discussed above, we expect a convolution of Gumbel distri-

butions with relative weighting s given by the ratio of the linear coefficients at

these two boundaries. Figure 3.1(c) shows that this prediction is borne out in

simulations.
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Figure 3.2: Absorption-time skew for the process bm = rdm = rmp with r = 0
(blue circles) and r = 0.8 (red squares), plotted as a function of the power-law
exponent p. Skews were numerically computed for N = 105 using the recurrence
relation approach described in Ref. [1]. The black line shows the asymptotic
skew 2ζ(3p)/ζ(2p)3/2 for r = 0. The curves cross at p = 1 where the distribution
is Gumbel, independent of r. For p ≤ 0.5 the skew approaches zero and the
distribution is Gaussian. The numerical skew is slightly larger than expected
for p ≲ 0.6 due to finite size effects.

3.5 Absorption-time distributions for power-law processes

In addition to Gumbel and Gaussian classes, other absorption-time distributions

arise if the transition rates have power-law decay: bm+dm = f (N)mp[1+O(m/N)].

For p < 1/2, the decay is sufficiently slow that the normal distribution is main-

tained: the system still fluctuates at an approximately uniform rate across states.

On the other hand, if p > 1/2 we find a generalized coupon collection phe-

nomenon giving rise to a family of skewed distributions. Slowdown near the

boundary dominates the absorption process and the distribution is asymptotic

to that for the minimal model bm = rdm = rmp (rigorous asymptotics given

in Section 3.9.3). When r = 0 the cumulants can be computed analytically:

κ̃n = (n − 1)!ζ(np)/ζ(2p)n/2 [32, 33]. Figure 3.1(d) shows the resulting distribu-

tions for a few values of p. Interestingly for p , 1, the shape of the distribution

depends subtly on r. Figure 3.2 shows the skew of these distributions as a func-
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Figure 3.3: Generalizations to high-dimensional models and Markov chains
with internal sinks. (a) Extinction-time distributions for sleeping sickness pre-
dicted using a 17-dimensional compartmental model that was fit to case data
from the Mosango (large black circles) and Kwamouth (small red circles) regions
of the Democratic Republic of Congo (data from Ref. [2]). Mean extinction times
(measured from 2016) are approximately 9.5 and 31 years for the Mosango and
Kwamouth regions respectively, with standard deviations of 4.8 and 7.9 years.
Disease eradication times approximately follow a Gumbel distribution (fit us-
ing the mean and variance). (b) Simulations of the SIS, logistic, reaction, and
well-mixed evolutionary game models have exponential absorption-time distri-
butions (standardized to zero mean and unit variance) if parameters are chosen
so that the dynamics have an internal sink state. For each case, we used N = 50
and simulated 106 trials. See Section 3.8 for model details and parameters.

tion of p, elucidating the transition from normal distributions to the skewed

family.

3.6 Extensions

3.6.1 High-dimensional models

Beyond simple one-dimensional Markov processes, the eradication-time distri-

butions for African sleeping sickness predicted by a 17-dimensional data-driven

model [2] closely resemble the Gumbel [Figure 3.3(a)]. This result suggests that
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the Gumbel distribution is also generic in higher dimensions if the dynamics

collapse onto a one-dimensional slow manifold near absorption. Crucially, al-

though the distributions have converged to the Gumbel shape, the fluctuations

still matter: the probable extinction times span years. The ratio between the

standard deviation and the mean is approximately 0.5 and 0.25 for the Mosango

and Kwamouth regions respectively. Similar results hold for a variety of high-

dimensional systems. Their dynamics are accurately approximated by birth-

death processes with transition rates that vanish as a power-law mp near the

boundary. Examples include evolutionary dynamics on D-dimensional lattices

(p = 1−1/D) and complex networks [4, 32, 33] as well as epidemics on networks

[3].

3.6.2 Transition matrix spectrum

So far, we have characterized universality classes for absorption times in birth-

death Markov chains. While our results are formulated in terms of the transition

rates bi and di, we can also connect the shape of the absorption-time distribution

to the spectrum of the transition matrix. In the following sections, we discuss

the classes of transition matrix spectra that give rise to either Gaussian or Gum-

bel absorption-time distributions.

Eigenvalue spectrum for the Gaussian class

If Eq. (3.17) is satisfied with bi + di replaced by the eigenvalues λi of the nega-

tive transition matrix −Ω, the absorption-time distribution will be Gaussian. To

show this, we use the spectral representation of the absorption-time cumulants
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[1, 67],

κn = (n − 1)!
N∑

i=1

λ−n
i . (3.19)

If Eq. (3.17) is satisfied for the eigenvalues, we have

N∑
i=1

λ−1
i ∼ cn

(
max
1≤i≤N

λ−1
i

)
N, (3.20)

Since the left-hand side of this expression is exactly the cumulant κn (up to

the constant (n − 1)!), it immediately follows that κn ∼ cng(N)nN where g(N) ∼

max1≤i≤N λ
−1
i as N → ∞. This scaling implies that the standardized cumulants

vanish for large N: κ̃n ∼ c̃nN1−n/2 and the distribution is asymptotically Gaus-

sian.

More generally, the distribution approaches a Gaussian as long as κ̃n → 0 as

N → ∞. This condition with Eq. (3.19) describes a broader class of eigenvalue

spectra that give rise to Gaussian absorption-time distributions. Specifically, we

need  N∑
i=1

λ−n
i

 /  N∑
i=1

λ−2
i

n/2
N→∞
−−−−→ 0. (3.21)

While this condition is difficult to interpret, we consider two examples that il-

lustrate the type of spectra that can give rise to Gaussian absorption-time distri-

butions. First, if λm = mp, the above condition is satisfied for p ≤ 1/2. This result

is related to the emergence of Gaussian distributions for the systems consid-

ered in Section 3.5, which have transition rates that decay as a power-law with

p ≤ 1/2. Also, if λm = P(m)/Q(m) for some polynomials P and Q, the condition is

satisfied when the degree of Q is greater than that of P.
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Figure 3.4: The eigenvalues of the transition matrix for the canonical model
bm = rm, dm = m with N = 2000 and r = 0.05, 0.5, and 0.95 plotted on a log-log
scale. The black lines show (1 − r)m for each value of r. The eigenvalues closely
follow this linear relation up to a cut-off mc that is dependent on r. Since the
leading eigenvalues are linear the absorption-time distribution is Gumbel.

Eigenvalue spectrum for the Gumbel class

The Gumbel distribution arises if the transition matrix eigenvalues decay lin-

early. For instance, suppose λm = bm. Then, using Eq. (3.19) and taking N → ∞,

we have that

κ̃n =

(n − 1)!
∞∑

m=1

(bm)−n

 /  ∞∑
m=1

(bm)−2

n/2

= (n − 1)!
ζ(n)
ζ(2)n/2 , (3.22)

which are precisely the cumulants for a standardized Gumbel distribution. The

result is unchanged if the dominant eigenvalues are approximately linear, i.e.

λm ≈ bm for m < αN where α is a constant 0 < α < 1. In this case, the stan-

dardized cumulants are still κ̃n = (n − 1)!ζ(n)/ζ(2)n/2 with the larger eigenvalues

contributing O(1/N) corrections that vanish asymptotically.

This second case appears to be what happens in practice: for N ≫ 1 the

eigenvalues become linear up to a cutoff. We have carried out numerical cal-
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culations of the spectrum for the canonical model, bm = rm, dm = m for a few

values of r < 1. As shown in Figure 3.4, the leading eigenvalues in the spectrum

become equally spaced: λm ≈ (1 − r)m for indices below a cutoff mc. Numerical

tests indicate mc is approximately a constant proportion of N, i.e. mc ≈ α(r)N,

where 0 < α(r) < 1. Above this cutoff the eigenvalues grow super-linearly.

The above calculation illustrates how the Gumbel absorption-time distribution

arises in this model from the perspective of the eigenvalue spectrum.

3.6.3 Distributions are robust to changes in initial and bound-

ary conditions

In this chapter we specialize to Markov chains with a finite state space of

size N, a reflecting upper boundary, and initial condition at the maximal state

pm(0) = δm,N . Our asymptotic absorption-time distributions, however, should

be robust to changes in initial and boundary conditions. Because the dynam-

ics are extinction-prone, the system quickly progresses toward the absorbing

state, spending negligible time near the reflecting boundary. Therefore, if the

initial condition m0 is sufficiently large (m0 ∼ N for large N), corrections due to

variation in the initial condition will be sub-dominant as N → ∞. By the same

argument, we expect the same asymptotic distributions to occur for infinite sys-

tems with free boundary conditions and no maximal state N, but large initial

condition. On the other hand, if the upper boundary is absorbing, our result

describes the absorption-time distribution, given that the absorbing state at 0 is

reached (i.e. if we ignore all trajectories that are absorbed at the upper bound-

ary) [1]. Finally, our results can also be used to determine the first-passage-time
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distribution to an arbitrary state m, since the first-passage problem can be solved

by making the target state absorbing [61].

3.7 Future Directions

Future work might focus on characterizing additional universality classes be-

yond those studied here. For example, simulations [Figure 3.3(b)] show that

exponential absorption-time distributions arise frequently in systems with an

internal sink state, toward which transitions are more likely [68]. The emergence

of the exponential distribution makes sense intuitively: the system quickly set-

tles into a quasiequilibrium mode around the sink, whose slow exponential de-

cay dominates the absorption process [69]. To our knowledge, however, there is

no rigorous classification of this case. It would also be fascinating to investigate

whether there is a universal crossover between different members of our family

of absorption-time distributions. For example, how do the distributions change

if the transition rates have mixed decay mp + ϵmq? Understanding the crossover

scaling between these cases will enable the classification for an even broader

class of extinction-prone Markov chains.

3.8 Example models

To conclude this chapter, we provide details of the evolutionary game, SIS, lo-

gistic, and autocatalytic chemical reaction models, each of which exhibit Gaus-

sian, Gumbel, or exponential absorption-time distributions in different parame-

ter regimes. Parameters used for the simulations presented above are provided
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Table 3.1: Parameter choices for the simulations used to measure absorption-
time distributions shown in Figures 3.1(a)-(c) and 3.3(b). See Section 3.8 for
model and parameter definitions. Evolutionary games use well-mixed popula-
tion structure except in Figure 3.1(a). In Figure 3.1(c) the relative weighting of
the convolution of Gumbel distributions is s = (1 + eβ(c−a))/(1 + eβ(b−d)) ≈ 0.73 for
both sets of parameters.
Figure Model Parameters
3.1(a) 1D Evolutionary Game β = 1, a = 2, b = 4, c = 1, d = 0.1

3.1(b)
SIS Model Λ = 0.5

Logistic Model B = 0.5, K = 1
Chemical Reaction Model k1 = 1, k2 = 0.75, k3 = 1.25

3.1(c) Evolutionary Game (black) β = 1, a = 1, b = 0.5, c = 0.8, d = 0.1
Evolutionary Game (red) β = 2, a = 0.3, b = 1.3, c = 0.06, d = 1.2

3.3(b)

SIS Model Λ = 1.4
Logistic Model B = 1.4, K = 1

Chemical Reaction Model k1 = 1, k2 = 1.35, k3 = 0.14
Evolutionary Game β = 1, a = 1, b = 1.5, c = 1.2, d = 1

in Table 3.1.

3.8.1 Evolutionary games

In the preceding sections, we present absorption-time distributions measured

via simulations of a two-strategy evolutionary game. In this game, two types

of individuals, mutants (M) and wild-types (W), compete and have frequency de-

pendent fitness, which means that an individual’s fitness depends on the identity

of its neighbors. This dependence is encoded by the payoff matrix,

M W

M a b

W c d

(3.23)

For example, a mutant (M) with 2 mutant neighbors and 3 wild-type neighbors

will have payoff π = 2a + 3b. The fitness is then exp(βπ), where the parameter
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β, the selection intensity, controls how strongly payoff influences fitness. This

choice is known as the exponential fitness mapping [67]; we note that other fit-

ness mappings do not change the qualitative behavior discussed below. The

dynamics of the model are as follows: an individual is chosen randomly, pro-

portional to their fitness. The selected individual gives birth to an offspring of

the same time (M or W) which replaces a random neighbor (selected uniformly).

We will let m denote the number of wild-types in the population. Thus, when

m = 0, the mutants have taken over the population (in the jargon, the mutation

becomes fixed). We focus on cases in which the mutation becomes fixed, ig-

noring those when the mutation dies out (which have infinite absorption time).

We consider evolution in two types of network populations: a one-dimensional

(1D) ring of individuals and a well-mixed (complete graph) population. Each

exhibits different absorption-time behavior.

1D ring population structure

First we consider individuals connected in a 1D periodic ring [19]. Assuming a

single initial mutant, the mutant population grows as a connected chain. Any

changes in the population must occur at the boundary between mutants and

wild-types. The boundary mutants and wild-types have payoff a + b and c + d

respectively (they have one of each type as a neighbor). Thus the probability bm

of removing a mutant, and the probability dm of adding a mutant, are given by

bm = eβ(c+d)/Fm , dm = eβ(a+b)/Fm , for 1 < n < N − 1, (3.24)

where Fm is the average fitness:

Fm = 2eβ(a+b) + (N − m − 2)eβ2a + 2eβ(c+d) + (m − 2)eβ2d. (3.25)
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The rates are slightly different for m = 1 and m = N − 1 [19]. For example, when

m = 1 there is a single wild-type with two mutant neighbors. These transition

rates are:

b1 =
eβ2c

2eβ(a+b) + (N − 3)eβ2a + eβ2c d1 =
eβ(a+b)

2eβ(a+b) + (N − 3)eβ2a + eβ2c (3.26)

bN−1 =
eβ(c+d)

eβ2b + 2eβ(c+d) + (N − 3)eβ2d dN−1 =
eβ2b

eβ2b + 2eβ(c+d) + (N − 3)eβ2d . (3.27)

For large N, however, these changes to the transition rates do not affect the

absorption-time distribution. One can check that these transition rates satisfy

the requirements of the Gaussian universality class if (a + b) > (c + d).

Well-mixed population

If the population is well-mixed, every individual has contact with every other,

and hence their fitness depends simply on the fraction of mutants in the pop-

ulation. The payoffs (per contact) for mutants and wild-types respectively are

πM = a(N −m−1)/(N −1)+bm/(N −1) and πW = c(N −m)/(N −1)+d(m−1)/(N −1),

where again a, b, c, and d are elements of the payoff matrix Eq. (3.23) and m is

the number of wild-types in the population. The rates at which the wild-type

population increases or decreases are [67]

bm =
m eβπW

m eβπW + (N − m) eβπM

(N − m)
N − 1

, dm =
(N − m) eβπM

m eβπW + (N − m) eβπM

m
N − 1

. (3.28)

For the birth (death) rate the first fraction represents the probability of choosing

a wild-type (mutant) to give birth, while the second fraction is the probability

of the offspring replacing a mutant (wild-type) in the populations.

Probability flows toward the absorbing state (rm < 1) if b > d and a > c. From

the transition probabilities it is clear bm + dm decays linearly near both m = 0
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and m = N. Expanding around these points, bm + dm = f (N)(N − m) + O(m)

and bm + dm = f̃ (N)(N − m) + O((N − m)2). Our theory predicts the distri-

bution will be a convolution of Gumbel distributions with relative weight-

ing s = limN→∞ f (N)/ f̃ (N). Taking this limit for the transition probabilities in

Eq. (3.28) we find

s =
1 + eβ(c−a)

1 + eβ(b−d) . (3.29)

3.8.2 SIS model

The stochastic susceptible-infected-susceptible (SIS) model of epidemiology [57]

describes the spread of an infectious disease through a population. The pop-

ulation is broken into two groups, those susceptible to the disease and those

currently infected. This model describes diseases that do not confer immunity

following recovery (or the immunity lasts only for a short time compared to the

time scale on which the disease spreads). The rate per contact at which the dis-

ease is transmitted between individuals isΛ/N, and we set the time-scale so that

the recovery rate is 1. Letting m represent the number of infected individuals,

there are m(N − m) contacts between infected and susceptible people in a well-

mixed population. The m infected individuals each recover at rate 1. Thus the

rates at which the infected population increases and decreases are respectively

bm = Λm(1 − m/N), dm = m. (3.30)

This system has the vanishing transition probabilities near m = 0, indicating

coupon collection behavior (it is also straightforward to explicitly check it satis-

fies our requirements for the universality class as long as Λ < 1). Our simula-

tions show that it has the expected Gumbel distribution of times for the infection

to die out (Figure 3.1(b) above).
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3.8.3 Logistic model

The stochastic logistic model describes the dynamics and fluctuations of an eco-

logical population [58]. The model assumes a constant birth rate B per individ-

ual as well as a constant death rate (which we set to 1 by choosing the appropri-

ate time scale) when the population is sparse. For higher populations, compe-

tition between individuals increases the death rate quadratically. The transition

rates are

bm = Bm, dm = m + Km2/N, (3.31)

where the parameter K controls how strongly competition influences death rates

(this parameter is related to the carrying capacity of the ecosystem). Again the

transition rates vanish linearly near m = 0 and this model belongs to the Gumbel

universality class as long as B < 1.

3.8.4 Autocatalytic chemical reaction model

Our final example model describes a stochastic autocatalytic chemical reaction

[7],

2X + A
k1
−⇀↽−
k2

3X, X
k3
−⇀ B, (3.32)

where ki are the reaction rates. The concentrations of species A and B are fixed

at saturation levels and we want to describe the dynamics and fluctuations of

m, the number of particles of species X. This is a variation of the Schlögl model

where the reaction X → B is irreversible and the reactions cease when no parti-

cles of X remain. Applying our results to this model we will classify the distri-

bution of reaction times: how long does the reaction proceed before the supply

of X is exhausted.
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The birth-death transition rates for the reaction given above are

bm =
k1

N
m(m − 1), dm =

k2

N2 m(m − 1)(m − 2) + k3m. (3.33)

Again, the transition rates decay linearly near the absorbing boundary at m = 0,

indicating the Gumbel universality class; it is straightforward to check that the

required expansions hold. The conditions that guarantee rm = bm/dm < 1 are

more intricate. In particular, if k3 > k2, then rm < 1 as long as k1 < k2 + k3. On

the other hand, if k3 < k2 we need k2 < 2
√

k2k3. With either of these conditions

satisfied the autocatalytic reaction times will be Gumbel distributed. Note that

this model has an infinite state space: the number of X particles can be any

positive integer. We expect our results to apply to this class of models as long

as the initial condition is large. The simulation shown in Figure 3.1(b) indicates

this expectation is indeed borne out.

3.9 Appendix

3.9.1 Asymptotic analysis for the Gaussian Universality Class

Cumulant bounds

To estimate the asymptotics of the cumulants we start from Eq. (3.2) derived

above. Since the weights wn are increasing functions of the r j, we argued in

Section 3.3 that

κn(rmin,N) ≤ κn({r j},N) ≤ κn(rmax,N), (3.34)

where rmax = limN→∞max1< j<N r j and rmin = limN→∞min1< j<N r j. The cumulants

κn(rmax,N) and κn(rmin,N) correspond to auxiliary Markov chains where b j + d j is
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unchanged, but r j = rmax or r j = rmin respectively.

Following Ref. [1], we provide asymptotic bounds on κ(r,N) that lead to an

analytic criterion for the Gaussian universality class. Since the diagonal ele-

ments of the weights wn are greater than 1, we can bound the cumulant κn from

below by a sum of the unweighted diagonal elements (bi + di)−n. To bound from

above we can take the maximum value of (bi+di)−n times the sum of the weight-

ing factors. The sum over weighting factors wn
i1i2···in

(r) is precisely the nth cumu-

lant for a biased random walk (with bi + di = 1 and uniform r). This sum can be

computed exactly using eigenvalues of the transition matrix [1]. In particular,

the sum is O(N) for any n as long as r < 1 and asymptotically can be represented

in the integral form given below. Note that rmax < 1 as long as r j < 1 − ϵ for

all j and some ϵ > 0: this condition was the first requirement for the Gaussian

universality class quoted in Section 3.3. Altogether we have,

N∑
n=1

1
(bi + di)n ≤ κn(r,N) ≤

(
max
1≤i≤N

1
bi + di

)n

×
N
π

∫ π

0

(n − 1)!
(1 − 2

√
r/(1 + r) cos x)n

dx

=

(
max
1≤i≤N

1
bi + di

)n

× O(N).

(3.35)

We can now read off the second condition for the Gaussian universality class.

To nail down the asymptotics of κn(r,N) we want the upper and lower bounds

in Eq. (3.35) to have the same scaling for large N. Specifically, we require

1
N

N∑
i=1

1
(bi + di)n ∼ cn

(
max
1≤i≤N

1
bi + di

)n

, (3.36)

for some N-independent constant cn. Setting n = 1 in this equation leads to the

condition Eq. (3.17). We can make this simplification because when Eq. (3.36)

is satisfied for n = 1, it is also satisfied for n > 1. To see this fact, first note that

⟨(bi + di)−n⟩ < maxi(bi + di)−n trivially. Furthermore, we can write the left hand

side of Eq. (3.36) as N−1||(b + d)−1||
p
p, where || · ||p is the p-norm and (b + d)−1 is
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the vector containing elements (bi + di)−1. Using p-norm inequalities, we have

N−1||(b+ d)−1||1 < N−1/n||(b+ d)−1||n for n > 1. Then if c ·maxi(bi + di)−1 < ⟨(bi + di)−1⟩

as N → ∞ for some constant c, it follows that cn maxi(bi + di)−n < ⟨(bi + di)−n⟩ in

this limit as well. Thus, it is sufficient to check Eq. (3.36) holds for n = 1, since

this implies the condition holds for all n > 1.

As discussed previously, the condition Eq. (3.36) can be interpreted as the

waiting times being ‘flat’ in the following sense: all (or at least a significant

fraction) of the (bi + di)−1 are the same order as their maximum value. If this

condition holds, then for large N we have that κn(r,N) ∼ cn(r) f (N)nN where

f (N) ∼ max1≤i≤N(bi + di)−1 as N → ∞. Since these asymptotics hold for both

r = rmin and r = rmax, it follows from Eq. (3.34) that κn({r j},N) ∼ cn({r j}) f (N)nN

as well, possibly with a different constant cn(rmin) < cn({r j}) < cn(rmax). These

asymptotics imply that the higher-order cumulants are dominated by the vari-

ance and hence the distribution looks normal for large N, i.e. the standardized

cumulants κ̃n = κn/κ
n/2
2 → 0 as N → ∞.

Leading correction to the Gaussian

The leading correction to the Gaussian distribution for finite N comes from the

skew, κ̃3 = c̃3/
√

N. Here we will give a bound on the magnitude of the skew,

that can be used to predict when finite systems will have a nearly Gaussian

absorption-time distribution. First, define

K2 = lim
N→∞

1
N f (N)2

N∑
i=1

1
(bi + di)2 , (3.37)

where f (N) ∼ max1≤i≤N(bi + di)−1 as N → ∞ as above. Then from Eq. (3.35) that

κ2 ≥ K2N f (N)2. Evaluating the integral in Eq. (3.35) we have κ3 ≤ 2 f (N)3N(rmax +
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1)3(r2
max + 4rmax + 1)/(1 − rmax)5. Putting these together,

κ̃3 ≤
2(rmax + 1)3(r2

max + 4rmax + 1)

(1 − rmax)5K3/2
2

1
√

N
. (3.38)

The convergence is slowest (i.e. the coefficient of 1/
√

N is large), when the con-

ditions for the universality class are pushed to their limits: if the system is barely

extinction-prone, rmax ≈ 1, or the waiting times are not very uniform, K2 ≪ 1

(the sum in Eq. (3.36) is nearly dominated by the maximal term). Finally, we

note that this is a rough upper bound; in many cases the convergence is much

faster, e.g., if only a few r j ≈ 1 but the rest are very small. Replacing rmax with

the average r j in Eq. (3.38) may often give a better estimate of the actual skew

for a given system, even if it does not give a strict upper bound.

3.9.2 Asymptotic analysis for the Gumbel Universality Class

Cumulant bounds

For the Gumbel universality class we require bm + dm = f (N)m[1+O(m/N)], bαN +

dαN be of order at least O(N f (N)) for any 0 < α < 1, and rm = r + O(m/N) for

large N. These properties are sufficient to guarantee that the absorption-time

cumulants are asymptotic to those for an exactly solvable canonical model (for

which the above equalities hold exactly, not just to leading order). Following

Ref. [1], we restrict two of the indices in Eq. (3.2) to be O(N) away from the

absorbing state, αN ≤ in−1 ≤ in ≤ N. With this restriction we can bound the sums,∑
1≤i1≤i2≤···≤in−1
αN≤in−1≤in≤N

wn
i1i2···in

({r j})

(bi1 + di1) · · · (bin + din)
≤

1
f (N)nN2

∑
1≤i1≤i2≤···≤in≤N

wn
i1i2···in(r). (3.39)

In the previous section, we established that the sum over the weighting factors

is O(N), so this portion of the sum is O( f (N)−nN−1). We now consider indices
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1 < i1 < αN and αN < in < N,

∑
i1≤i2≤···≤in

1≤i1≤αN≤in≤N

wn
i1i2···in

({r j})

(bi1 + di1) · · · (bin + din)
≤

1
f (N)nN

∑
i1≤i2≤···≤in

1≤i1≤αN≤in≤N

wn
i1i2···in(r). (3.40)

Since the weighting factors decay exponentially away from the diagonal ele-

ments, the sum on the right hand side of Eq. (3.40) is O(1) and this portion of the

sum is also O( f (N)−nN−1).

Since the same bounds also apply for any other pair of the indices, the only

remaining portion of the cumulant sum Eq. (3.2) is that where all indices are

near 0. Here the approximations that bm + dm is linear and rm is constant become

asymptotically exact so that,

∑
1≤i1≤i2≤···≤in≤αN

wn
i1i2···in

({r j})

(bi1 + di1) · · · (bin + din)
∼

1
f (N)n

∑
1≤i1≤i2≤···≤in≤αN

wn
i1i2···in

(r)

i1i2 · · · in
. (3.41)

The right hand side of Eq. (3.41) is at least O( f (N)−n) and therefore this region

of the cumulant sum dominates asymptotically compared to the O( f (N)−nN−1)

terms estimated above. In other words, the absorption process is entirely domi-

nated by the coupon collection behavior near the absorbing state. Furthermore,

we can freely extend the upper limit of the sum to N (instead of αN) since

this will only add subdominant terms. Finally, we obtain the result quoted in

Eq. (3.18),

κn({r j},N) ∼
1

f (N)n

∑
1≤i1≤i2≤···≤in≤N

wn
i1i2···in

(r)

i1i2 · · · in
. (3.42)

Thus, for any Markov chain satisfying the conditions at the beginning of this

section, the cumulants are asymptotic to those for the “canonical model” with

bm + dm = f (N)m and rm = r exactly. In Section S4.C we show this model has an

asymptotically Gumbel absorption-time distribution.
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Leading correction to the Gumbel

The leading correction δκ2 to the standard deviation comes from the quadratic

term in the transition rates, bm+dm ≈ f (N)m(1+m/N). Plugging this into Eq. (3.42)

for one set of rates in the denominator and using the partial fraction decompo-

sition 1/i( j + j2/N) = 1/i j + 1/i( j + N) leads to

δκ2 ∼
1

f (N)2

∑
1≤i≤ j≤αN

w2
i, j(r)

i( j + N)

=
1

f (N)2

αN∑
i=1

(1 + r)2(1 − ri)2

(1 − r)2i(i + N)
+ 2

j−1∑
i=1

αN∑
j=1

r j−i(1 + r)2(1 − ri)2

(1 − r)2i( j + N)

(3.43)

where in the second line we make use of the fact that rm ≈ r is approximately

constant to write the explicit expression for w2
i, j (obtained from Eqs. (3.7) and

(3.14)). The sums in the second line can be evaluated explicitly in terms of spe-

cial functions, including harmonic numbers and the Lerch transcendent. The

first sum is asymptotically dominant, leading to δκ2 ∼ f (N)−2N−1 ln(N). More

generally, the asymptotics above hold if bm + dm ≈ f (N)m(1 + m/g(N)) as long

as the function g(N) → ∞ as N → ∞. An analogous calculation shows that

for this case δκ2 ∼ [ln g(N)]/g(N) f (N)2. If g(N) grows superlinearly, however,

[ln g(N)]/g(N) f (N)2 is dominated by the corrections due to Eq. (3.39) and (3.40)

computed above, leading to δκ2 ∼ f (N)−2N−1.

The higher-order cumulants can be analyzed in similar fashion. Since the

weights decay exponentially away from the diagonal, the terms with i1 = i2 =

· · · = in ≡ i is asymptotically dominant. For these elements wn
i1i2···in

({r j}) =

(n−1)!Vn
ii and it is straightforward to show that δκn ∼ N−1 f (N)−n. for the standard-

ized cumulants κ̃n = κn/κ
3/2
2 , the factors of f (N) in the asymptotics cancel and

we are left with O(N−1 ln N) corrections from the standard deviation. In other

words, the deviations from the Gumbel cumulants scale like δκ̃n = κ̃n − κ̃
Gumbel
n ∼
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CnN−1 ln N for large N. For the more general case, where the quadratic term in

the rates is suppressed by g(N), the scaling is δκ̃n ∼ Cn[ln g(N)]/g(N) for sublinear

g(N) and κn ∼ Cn/N otherwise.

Large-N limit for the canonical model

The canonical Markov model with coupon-collection behavior has bm + dm =

f (N)m and rm = r. Note that f (N) simply sets the time scale for the process

and does not affect the shape of the absorption-time distribution. Therefore, for

convenience, we will rescale time t → t(r + 1)/ f (N) so that bm = rm and dm = m.

For this system, the absorption-time distribution p(t) has been computed exactly

using generating functions [59, Appendix B],

p(t) =
Neνtν2

(eνt − 1)2(1 + ν
eνt−1 )N+1 (3.44)

where ν = 1 − r. To derive the asymptotic form of the distribution we standard-

ize to zero mean and unit variance. The standardized distribution is simply

σp(σt + µ), where µ ∼ (ln N + ln ν + γ)/ν and σ ∼ π/ν
√

6 are the mean and stan-

dard deviation of the absorption time. Here γ ≈ 0.5772 is the Euler-Mascheroni

constant. Plugging in this transformation and taking N → ∞, we find

σp(σt + µ)
N→∞
−−−−→

π
√

6
exp

(
−γ − πt/

√
6 − e−γ−πt/

√
6
)
, (3.45)

which is precisely the standardized Gumbel distribution.

3.9.3 Asymptotic Analysis for the power-law processes

In this section we generalize the Gumbel criteria discussed above. Consider

Markov processes with transition rates that satisfy bm+dm = f (N)mp[1+O(m/N)].
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Moreover, suppose that bαN +dαN is of order at least O(N p f (N)) for any 0 < α < 1,

and rm = r +O(m/N) for large N. In other words, this process has transition rates

that vanish as a power-law mp near the boundary. In Section 3.5 we claimed that

p ≤ 1/2 gives rise to Gaussian absorption times, while p > 1/2 leads to a skewed

family of distributions (whose shape depends on the parameters p and r). We

rigorously justify these claims in the following subsections.

Skewed family for p > 1/2

When p > 1/2 the transition rates decay quickly enough that the process is dom-

inated by slowdown near the boundary (similar to coupon collection), giving

rise to skewed distributions. To analyze this case, we can apply similar asymp-

totic analysis to that given in Section S4.A for the Gumbel class. Repeating the

bounds in Eqs. (3.39) and (3.40) for the power-law process, we find that∑
1≤i1≤i2≤···≤in−1
αN≤in−1≤in≤N

wn
i1i2···in

({r j})

(bi1 + di1) · · · (bin + din)
= O( f (N)−nN1−2p) (3.46)

∑
i1≤i2≤···≤in

1≤i1≤αN≤in≤N

wn
i1i2···in

({r j})

(bi1 + di1) · · · (bin + din)
= O( f (N)−nN−p). (3.47)

As long as p > 1/2, these terms are each asymptotically dominated by the in-

dices near 0,∑
1≤i1≤i2≤···≤in≤αN

wn
i1i2···in

({r j})

(bi1 + di1) · · · (bin + din)
∼

1
f (N)n

∑
1≤i1≤i2≤···≤in≤αN

wn
i1i2···in

(r)

ip
1 ip

2 · · · i
p
n
, (3.48)

which are at least of order O( f (N)−n). Similar to the Gumbel class, the absorp-

tion process is dominated by the slow behavior near the absorbing state, where

the transition rates decay. Extending the upper limit on the sum from αN to N

(which only adds subdominant terms), we find that the cumulants κn satisfy

κn({r j},N) ∼
1

f (N)n

∑
1≤i1≤i2≤···≤in≤N

wn
i1i2···in

(r)

ip
1 ip

2 · · · i
p
n
. (3.49)
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Notice that this asymptotic formula for the cumulants is identical to Eq. (3.42),

but with the denominator (i1i2 · · · im) raised to the power p. Thus, we have

shown the absorption-time cumulants for a general Markov process, with

bm + dm = f (N)mp[1 + O(m/N)], are asymptotic to those for the minimal model

bm = rdm = rmp (after rescaling time so that f (N) = r + 1). The absorption-time

distributions for the minimal model were explored numerically in Figures 3.1(d)

and 3.2. For p > 1/2, we find a family of distributions that become more skewed

as p increases. The shape of the distributions depends subtly on r except when

p = 1, where the distribution is Gumbel, as revealed by our analysis above.

Gaussian distributions for p ≤ 1/2

To show the normality of the absorption-time distribution for p ≤ 1/2, we show

that the variance κ2 diverges at least as fast as the higher-order cumulants. Using

the asymptotic estimate from the previous section, we have that

κn({r j},N) ∼
1

f (N)n

∑
1≤i1≤i2≤···≤in≤N

wn
i1i2···in

(r)

ip
1 ip

2 · · · i
p
n
+ O( f (N)−nN1−2p). (3.50)

As noted above, when p < 1/2, we can not guarantee that the first term

is dominant. If the second term is dominant than the cumulants scale like

κn ∼ cn f (N)−nN1−2p. Then the standardized cumulants asymptotically vanish,

κ̃n = κn/κ
n/2
2 ∝ N(2−n)(1−2p)/2 → 0 as N → ∞. Hence, the absorption-time distribu-

tion is asymptotically normal. On the other hand, if the first term in Eq. (3.50)

is dominant, we can show the distribution is still Gaussian. Since the weight

factors fall off exponentially away from the diagonal, the diagonal terms are

asymptotically dominant. Using the fact that wn
i1i2···in

({r j}) = (n − 1)!Vn
ii ≥ 1, when
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i1 = i2 = · · · = in ≡ i together with Eq. (3.7), we have

κn({r j},N) ∼
(1 + r)n

(1 − r)n f (N)n

N∑
i=1

(1 − ri)n

inp . (3.51)

Notice that when p = 1/2, the sum in this expression diverges as N → ∞ for

the variance (n = 2), but converges for the higher-order cumulants (n > 2).

More generally, for any p ≤ 1/2, it is straightforward to show that the sum in

Eq. (3.51) always diverges faster with N for the variance than for the higher-

order cumulants. As above, this scaling leads to κn/κ
n/2
2 → 0 for large N, so

that the distribution asymptotically approaches a Gaussian. Figures 3.1(d) and

3.2 show this result is confirmed in numerical simulations: the distribution for

p ≤ 1/2 looks approximately normal and the skew approaches 0.
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CHAPTER 4

REACTION RATES AND THE NOISY SADDLE-NODE BIFURCATION:

RENORMALIZATION GROUP FOR BARRIER CROSSING

4.1 Introduction1

In this chapter, we investigate deep connections between barrier crossing, the

renormalization group, and the noisy saddle-node bifurcation. In particular, we

show that Kramers’ reaction rates can be understood as an asymptotic limit of

the universal scaling near the continuous transition between high-barrier and

barrier-less regimes. Applying methods from stochastic processes theory we

derive an analytical expression for the universal scaling function for the mean

barrier escape time near the critical point, giving the crossover between high

and low barrier limits. The renormalization group provides a framework within

which this result can be understood and systematically improved by perturba-

tive calculations of corrections to scaling, some of which we give explicitly.

Barrier crossing arises in applications across physics, chemistry, and biology.

In 1940, Kramers computed the barrier crossing rate for particles in both over-

damped and underdamped regimes [70]. This result and others [71–73] pro-

vided the theoretical explanation for the Arrhenius equation describing chemi-

cal rate coefficients k ∼ exp(−Eb/kBT ), where Eb is the energy barrier for activa-

tion [74]. More recent efforts have established the escape rate at arbitrary damp-

ing, giving the crossover between the low- and high-damping limits [75, 76],

and have accounted for the effects of state-dependent [77, 78], non-Gaussian

1This chapter is reproduced from: David Hathcock and James P. Sethna, “Reaction rates and
the noisy saddle-node bifurcation: renormalization group for barrier crossing.” Physical Review
Research 3, 013156 (2021).
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[79–81], and colored [81–83] noise, anharmonic corrections [84, 85], and fluctu-

ating barriers [83, 86].

Most transition-state calculations assume a large barrier limit. This means

the barrier escape is a rare event, with a separation of time scales between the

relaxation into a quasi-equilibrium state and the escape from that state [5]. In

the limit of vanishing barrier, however, there is a qualitative change in behav-

ior. Particles instead slide down a monotonic potential, spending the most time

near its inflection point. To capture the low barrier escape rate, extensions to

Kramers’ theory have been developed (e.g., incorporating anharmonic correc-

tions), but these have significant errors when the barrier and thermal energy are

comparable (Eb ≈ kBT ) [84].

Finite barrier escape problems have garnered increasing theoretical interest

over the past decade, with several studies contributing further low barrier re-

finements of existing theories [87, 88, 88–92] or focusing directly on the saddle-

node bifurcation where the barrier vanishes [93, 94]. Such escape processes

are relevant to certain high precision measurements. For instance, force spec-

troscopy experiments apply a force on a single bond in a biomolecule until it

breaks [88, 95]. For typical molecules, the critical force, at which the energy bar-

rier for breaking vanishes and Kramers’ theory breaks down, is now well within

the reach of atomic force microscopy and optical tweezers [95]. Another exciting

application is in micro- and nano-electromechanical devices, which sensitively

switch oscillation amplitude in response to an input signal by operating near

the barrier-less critical point [93, 96]. Here, an analytical theory of low barrier

crossing would help to distinguish between noise and signal activated switch-

ing.
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We develop a critical theory for barrier crossing with a renormalization

group approach that gives a complete scaling description of the noisy saddle-

node bifurcation. We are inspired by previous work on the ‘intermittency’ 2

route to chaos [97–99], where the renormalization group coarse-grains in time,

then rescales the system to fix a certain term in the potential. In chaos theory,

this procedure involves iterating and rescaling a discrete map [98, 99], leading

to a different fixed point for the same renormalization group equations used by

Feigenbaum to study period doubling [8]. We take the continuous time limit,

reducing the renormalization group to a series of elementary rescalings and

yielding a simplified description applicable to barrier escape problems. Our

procedure organizes what amounts to dimensional analysis, providing an ele-

gant renormalization-group framework that unifies Kramers’ theory for Arrhe-

nius barrier crossing with the dynamical systems theory of a noisy saddle-node

bifurcation.

Why do we frame our analysis in terms of the renormalization group, if

the scaling form can be justified using dimensional analysis and the analytical

methods we use are drawn from more traditional stochastic analysis? On the

one hand, this forms a wonderful case study, unifying and illuminating bifur-

cation theory, the renormalization group, and chemical reaction theory. Second,

barrier crossing forms the solvable limiting case of much more complex phe-

nomena: coupling to colored-noise heat baths, nucleation of abrupt phase tran-

sitions, and depinning transitions in disordered systems (see Section 4.5). The

scale invariance of random walks does not demand a renormalization group

proof of the central limit theorem, and the one-dimensional Ising model can be

2In this chapter ‘intermittency’ refers to the chaotic dynamical intermittency studied in
Refs. [97–99] that emerges in discrete maps via a tangency bifurcation. We use this term spar-
ingly to avoid confusion with intermittency in fluid dynamics and other areas.
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solved without the machinery of flows in Hamiltonian space. But framing the

problems in terms of the renormalization group provide excellent pedagogical

exercises, and the natural framework for extensions to self-avoiding random

walks and Ising models in higher dimensions.

Using our scaling theory as an organizing framework, we derive an analyti-

cal expression for the scaling form of the mean escape time near the saddle-node

bifurcation. We also compute corrections to scaling due to anharmonicity in the

potential and finite initial or final position. Going beyond the mean, we develop

an accurate approximation to the scaling form for the full distribution of escape

times by assuming the eigenvalues of the Fokker-Plank operator are equally

spaced.

As a starting point, we consider the equation of motion for an overdamped

particle in a general potential V(x) and driven by spatially dependent white

noise,

ẋ = f (x) + g(x) ξ(t). (4.1)

Here f (x) = −η−1 dV/dx is the force exerted on the particle (divided by the damp-

ing coefficient η) and g(x) is the spatially varying noise amplitude (with the

damping absorbed). The noise ξ(t) has zero mean, ⟨ξ(t)⟩ = 0 and is uncorre-

lated in time, ⟨ξ(t)ξ(t′)⟩ = δ(t − t′). With barrier crossing phenomena in mind,

we consider potentials with boundary conditions V(x) → ∞ as x → −∞ and

V(x) → −∞ as x → ∞. The potential either has a single barrier or is monoton-

ically decreasing (e.g., Figure 4.1). The quantity of interest is the mean barrier

crossing time τ, defined as the time particles take to reach +∞ from an initial

position at −∞.

Besides the experimental systems discussed above, this model also serves as
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the natural description for a general chemical reaction, involving the transition

between metastable species A and B. These species are points in a 3N dimen-

sional configuration space defined by the locations of N reaction constituents.

As derived by Hänggi et al. this system can be reduced to the one-dimensional

model we study [5]. They coarse-grain to a one dimensional reaction coordi-

nate, which parametrizes the minimal gradient path between the states A and

B, neglecting effects of memory friction and noise correlations, and taking the

overdamped limit produces Eq. (4.1). The effective potential along the reaction

coordinate has a barrier separating species A and B.

4.2 Renormalization Group and Scaling Theory

To begin, we parameterize Eq. (4.1) by the Taylor coefficients of g(x) and f (x),

dx
dt
=

∞∑
n=0

ϵnxn + ξ(t)
∞∑

n=0

gnxn. (4.2)

The renormalization group defines a flow in this space of systems described by

a single reaction coordinate x. Near the renormalization group fixed point, the

behavior is most effectively described by a single Taylor expansion at the origin.

In contrast, for large barriers in Kramers’ theory, the escape time is characterized

by two expansions, capturing the harmonic oscillations in the potential well and

at the top of the barrier. These two equivalent schemes are shown in Figure 4.1.

Given the later expansion at the two extrema, the expansion at the origin can be

reconstructed via a two-point Padé approximation [100].

As discussed above, the discrete renormalization group coarse-grains by it-

erating a map, evolving the equations forward in time. Ignoring the noise for

the moment, we consider a discrete approximation to Eq. (4.1), xn+1 = xn +
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δt f (xn) ≡ h(xn). References [97–99] study this discrete equation using the Feigen-

baum renormalization group transformation. This transformation iterates the

map and rescales space, inducing a flow in function space, T [h](x) = ah(h(x/a)),

where a is the rescaling factor. The renormalization fixed point is the function

h(x) that obeys T [h] = h for a particular rescaling a. We simplify this calculation

by taking a continuum limit. Expanding the renormalization group to first or-

der in δt, T [h](x) = x + 2δt(a f (x/a)). Thus, in the continuous time limit, the RG

iteration becomes a simple rescaling of time and space. We will use this below

to derive our scaling theory for barrier crossing near a saddle-node bifurcation.

Within the context of the renormalization group for singular perturbations

developed by Goldenfeld, Oono, and others [101, 102], our problem can be un-

derstood as having zero anomalous dimension. For our calculations in the fol-

lowing sections we do not need to use the traditional renormalization-group

machinery; instead we assemble a variety of tools from probability theory and

Markov processes, to express the mean and distributions of escape times as uni-

versal scaling functions near the transition where the barrier vanishes. The scal-

ing theory provides a powerful and elegant structure which organizes our un-

derstanding barrier crossing.

Following the above expansion of the discrete renormalization group, we

‘coarse grain’ the system in time by scaling, t̂ = t/b. As the time-scale shrinks,

the noise is amplified, ξ̂(t̂) = b1/2ξ(t) (the exponent 1/2 follows from the units of

the correlation function). Our goal is to understand the scaling properties near

the critical point, where a qualitative change in behavior occurs. For a generic

analytic potential this happens when the barrier vanishes and V(x) = −x3 is

locally a perfect cubic. Therefore, we rescale our system to fix the coefficient ϵ2,
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corresponding to the cubic term in the potential. The correct rescaling defines

a new spatial coordinate x̂ = bx. After both coarse graining and rescaling, we

arrive at
dx̂
dt̂
=

∞∑
n=0

ϵnb2−n x̂n + ξ̂(t̂)
∞∑

n=0

b3/2−ngn x̂n. (4.3)

We can then read off how the parameters flow under the renormalization group,

ϵ̂n = b2−nϵn and ĝn = b3/2−ngn. These flows and exponents exactly match those

found under the discrete-time renormalization group [98, 99], indicating that the

scaling of the ’intermittency route to chaos’ is also non-anomalous [102]. Taking

the coarse graining factor to be close to 1, b = (1+dℓ), we obtain continuous flow

equations,
dϵn

dℓ
= (2 − n)ϵn,

dgn

dℓ
= (3/2 − n)gn. (4.4)

The eigenfunctions of the renormalization group in our continuum theory

are the monomials xn and noisy monomials ξ(t)xn. If the right hand side of

Eq. (4.2) is an eigenfunction, it is scaled by a constant factor under the action

of the renormalization group. These eigenfunctions are the much simpler con-

tinuous time limit of those for the discrete-time renormalization group [99]. In

particular, the cubic potential V(x) ∝ −x3 (without noise) is the fixed point. At

the fixed point, particle trajectories x(t) ∼ 1/t exhibit scale invariance in time as

they approach the cubic inflection point at x = 0. Perturbations away from the

fixed point lead to dynamics with non-power law decay to a locally stable state

or over the inflection point.

The mean barrier crossing time is a function of the potential shape and the

noise correlation, encoded through the expansion coefficients ϵn and gn. Thus,

the escape time can be expressed as τ({ϵn}, {gn}), where n ≥ 0. If we coarse-grain
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V (x)

g(x)

V ∗(x)

Eb

−
∞∑

n=0

εnx
n+1

n+1

V0 + Eb −
∞∑

n=2

Ṽn(x− xmax)n

V0 +

∞∑

n=2

Vn(x− xmin)n

Figure 4.1: Typical potentials in the high barrier Arrhenius limit (solid curve)
and at the renormalization group fixed point (dashed curve). Kramers’ theory
utilizes a two point series expansion at xmin in the potential well and at xmax, the
top of the barrier. For our renormalization group approach the natural descrip-
tion is in terms of a single expansion at the origin parameterizing perturbations
away from the fixed point potential V∗(x) ∝ −x3. Also shown is the noise ampli-
tude g(x), which generically has spatial dependence (dotted curve).

until g0(ℓ∗) = 1, we find that the escape time has the form

τ = g−2/3
0 T

(
{ϵn/g

2(2−n)/3
0 }, {gn/g

1−2n/3
0 }

)
, (4.5)

where T is a universal scaling function, with n ≥ 1 for the second term in brack-

ets.

While the scaling form Eq. (4.5) could have been written down using di-

mensional analysis, the renormalization group approach provides the natural

structure and motivation for our approach. The parameter space flows indicate

that, with a fixed quadratic force, the constant and linear force and noise terms

{ϵ0, ϵ1, g0, g1} are relevant, growing under coarse graining and dominant on long

time scales. Other variables are irrelevant and can be incorporated perturba-
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tively. Of the relevant variables, the linear force coefficient ϵ1 can be set to zero

by placing the origin at the inflection point of the potential. The spatial depen-

dence of the noise (including the relevant linear term g1) can also be removed

by a change of coordinates x→ x̃ with x̃ defined by [103]

x =
∫ x̃ g0

g(y)
dy, (4.6)

producing a system with constant noise g̃(x̃) = g0 and force f̃ (x̃) = f (x̃)/g(x̃)

(hence g1 was relevant before we removed it, because it contributes to the linear

term in the expansion of f̃ ).

Systems near enough to the critical point therefore can be modeled as a cu-

bic potential with a linear perturbation V(x) = −x3/3− ϵ0x and constant noise g0.

This is the ‘normal form’ used in bifurcation theory for the saddle-node transi-

tion, and might have been anticipated from Taylor’s theorem. The escape time

scaling form becomes,

τ = g−2/3
0 T (ϵ0/g

4/3
0 ). (4.7)

Thus, the problem asymptotically reduces to finding the universal function of a

single variable T (α), where α = ϵ0/g
4/3
0 . The limiting form of the scaling function

T (α) must give the known solutions. In the limit α → −∞ the barrier is large

compared to the noise, so the Kramers approximation [70] applies, so

T (α) ∼
π

|α|1/2
e

8
3 |α|

3/2
, α→ −∞. (4.8)

For our choice of parameters, the energy barrier is given by Eb/kBT = 8/3|α|3/2.

In the opposite limit α → ∞, the potential is downward sloping with gradient

much larger than the noise level. The passage of particles over the inflection

point occurs even in the absence of noise (in contrast to the Kramers limit, which

requires noise for barrier escape). Therefore, the crossing time approaches that
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for a deterministic particle in the cubic potential. One can easily show that the

limiting scaling form is

T (α) ∼
π

α1/2 , α→ ∞. (4.9)

4.3 Mean Escape Time

4.3.1 Analytical escape time for relevant variables

We now turn our focus to obtaining an exact analytical expression for T (α) that

is valid for all α. To this end, we study the trajectories of particles injected at

position xi and time ti into a general potential V(x) with noise g0 and compute

the mean first-passage time to x f , following the standard approach [5, 97, 104].

Let P(x, t) be the distribution of particles over positions x at time t, with P(x, ti) =

δ(x − xi). The probability that a particle has not reached x f at time t is

P(t) =
∫ x f

−∞

P(x, t) dx. (4.10)

Note that P(0) = 1 and P(t) → 0 as t → ∞ as long as there is noise driving the

system, which guarantees particles reach x f . The distribution of first-passage

times is p(t) = −dP/dt so that the mean first-passage time is

τ(xi|x f ) =
∫ ∞

0
t p(t) dt =

∫ ∞

0
P(t) dt, (4.11)

where we integrate by parts for the second equality. To derive a differential

equation for τ(xi|x f ), we start from the Kolmogorov backward equation for dis-

tribution P(x, t) with initial condition xi [105],

−
dP(x, t)

dti
= −V ′(xi)

dP(x, t)
dxi

+
1
2

g2
0
d2P(x, t)

dx2
i

. (4.12)

108



To write this equation in terms of the mean first-passage time τ, we multiply

both sides by t and integrate over x and t. Using the relations in Eqs. (4.10) and

(4.11) and the identity dP(x, t)/dti = −dP(x, t)/dt, we arrive at

1
2

g2
0τ
′′(xi|x f ) − V ′(xi)τ′(xi|x f ) = −1. (4.13)

This gives an ordinary differential equation for the first-passage time from xi

to x f of particles in potential V(x) and constant noise with amplitude g0. The

boundary conditions are τ(x f |x f ) = 0 and τ′(−∞|x f ) = 0, which encode absorb-

ing and reflecting boundaries respectively. Writing the solution to Eq. (4.13) in

integral form, we arrive at the result obtained in Refs. [5, 97, 104],

τ(xi|x f ) =
2
g2

0

∫ x f

xi

dy
∫ y

−∞

dz e
− 2

g2
0
[V(z)−V(y)]

, (4.14)

which satisfies the boundary conditions as long as V ′(x) → ∞ as x → −∞. For

large barriers, it is known that Eq. (4.14) reproduces Kramers escape rate for-

mula via a saddle point approximation that expands the potential around the

maximum and the minimum (as shown in Figure 4.1) to second order [5].

Our renormalization group analysis allows us to restrict our focus to the

relevant variables. For the cubic potential (systems on the unstable manifold

of the renormalization group fixed point), the escape time can be computed

analytically using Eq. (4.14) in the limit x f = −xi → ∞. We find that τ = g−2/3
0 T (α)

with the universal scaling function given by

T (α) = 21/3π2
[
Ai2(−22/3α) + Bi2(−22/3α)

]
, (4.15)

where Ai(x) and Bi(x) are the first and second Airy functions and α = ϵ0/g
4/3
0 as

above. This solution is shown in Figure 4.2, along with the Arrhenius and de-

terministic limits given in Eqs. (4.8) and (4.9) respectively and the mean barrier

crossing times from direct simulations of the Langevin process [Eq. (4.1)]. The

109



universal scaling function T (α) reproduces the two known limits when the bar-

rier is large or the potential is strongly downward sloping and agrees excellently

with the numerical results.

Kramers’ escape rate for the cubic potential follows from Eq. (4.15) and the

asymptotic form of the second Airy function. As α→ 0, however, contributions

from the first Airy function become important so that Kramers’ theory and ex-

tensions involving anharmonic corrections break down. The difference between

Eqs. (4.8) and (4.15) is also related to the narrowing of the spectral gap of the

barrier crossing Fokker-Plank operator (which has been measured numerically

[106] and is discussed below in Section 4.4).

4.3.2 Corrections to scaling

Finite launching and absorbing positions

One limitation of our result Eq. (4.15) is that we assume initial and final states

at infinity. In a real chemical or mechanical system, the transition of interest

generally occurs between states with finite coordinates. For systems with large

barriers, the escape time is exponentially large compared to the time it takes to

settle into a metastable state in the well. Thus, the scaling function Eq. (4.15)

is universal: independent of initial and final conditions. When the potential

is downward sloping, the barrier crossing time is still dominated by the time

spent near the inflection point and we can systematically compute corrections

to scaling due to the finite initial and final positions.

Working in terms of scaling variables α = ϵ/g4/3
0 , χ− = xi/g

2/3
0 , and χ+ = x f /g

2/3
0 ,
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4/3
0
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g
2/

3
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τ

21/3π2
[
Ai2(−22/3α) + Bi2(−22/3α)

]
π

α1/2

π

|α|1/2e
8
3 |α|3/2 T (α)

Deterministic

Arrhenius

Simulations

Figure 4.2: Comparison of the universal scaling function T (α) (solid curve)
to the Arrhenius (dotted curve) and deterministic (dashed curve) limits. Also
shown are the mean escape times for 500 simulations of the barrier escape pro-
cess. For the simulations we fixed g0 = 1 while varying ϵ0 and used boundary
conditions x f = −xi = 25. Agreement with our analytic expression for T (α)
is excellent. The insets show snapshots of the barrier crossing simulations for
ϵ0 = ±1.

we can write the barrier crossing time for the cubic potential with arbitrary ini-

tial and final conditions as τ = g−2/3
0 T (α, χ−, χ+) with the scaling function,

T (α, χ−, χ+) = T (α) − T−(α, χ−) − T+(α, χ+). (4.16)

Here T±(α, χ±) are the universal corrections for finite final and initial conditions

respectively. These have integral representations,

T−(α, χ−) = 2
∫ χ−

−∞

dy
∫ y

−∞

dz e−2(y3/3+αy−z3/3−αz) (4.17)

and

T+(α, χ+) = 2
∫ ∞

χ+

dy
∫ y

−∞

dz e−2(y3/3+αy−z3/3−αz). (4.18)
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Assuming χ− < 0 and χ+ > 0 these can be expanded in powers of 1/χ±,

T±(α, χ±) =|α|−1/2 tan−1(|α|1/2/|χ±|)

+
1
χ4
±

(
1
4
−

α

2χ2
±

+
3α2

4χ4
±

)
±

1
χ7
±

(
5

14
−

13α
9χ2
±

)
+ O(χ−10

± ).

(4.19)

The first term, which we can compute exactly, is simply the correction due to the

deterministic trajectory in the cubic potential between χ± and ±∞. The higher

order terms describe the influence of noise on the corrections due to finite initial

conditions. These terms appear to have the form χ
−1−3 j
± f j(α/χ2

±) for integers j

and some functions f j. The expansions of f1 and f2 are given in parenthesis in

the expression above.

Our corrections to scaling for finite launching and absorbing positions are

universal if the initial conditions are sufficiently close to the cubic inflection

point so that anharmonic corrections are small. Thus, for an arbitrary poten-

tial, the universal escape time near a saddle-node bifurcation is the given by

Eq. (4.15) corrected using Eq. (4.19). In the following section we will separately

treat the anharmonic corrections to scaling. The interplay between corrections

to scaling due to anharmonicity and initial conditions will be an interesting sub-

ject for future studies.

Anharmonic corrections

The scaling function Eq. (4.15) also serves as a starting point from which the

theory can be systematically improved by computing anharmonic corrections

to scaling. The higher order terms in the potential are irrelevant variables under

the renormalization group flows and hence can be treated perturbatively. For
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instance, consider a quartic perturbation δV(x) = −ϵ3x4/4 and let β = ϵ3g2/3
0 . In

the Kramers regime, α → −∞, we have that T (α, β) ≈ T (α) + β2T3(α) to leading

order, where

T3(α)
α≪0
−−−→ π

√
|α|e

8
3 |α|

3/2
(8|α|3/2 + 11)/8. (4.20)

In the deterministic regime, α→ ∞, we also add a quintic term as a regulator on

the boundary conditions of the potential, δV(x) = −ϵ3x4/4 − ϵ4x5/5, with ϵ4 > 0

and sufficiently large so that the potential remains monotonically decreasing.

To quadratic order in β and γ = ϵ4g4/3
0 , the universal scaling function is 3

T (α, β, γ)
α≫0
−−−→

π
√
α
− β2

(
15
8
π
√
α −

3π
4
√
γ

)
(4.21)

−π
√
γ +

3
2
π
√
αγ −

5
2
παγ3/2 +

35
8
πα3/2γ2.

The term π/
√
α is just the deterministic limit of the scaling form for the cubic

potential and β2T3(α) = −15π
√
αβ2/8 comes from the quartic perturbation to the

inflection point. Other terms arise from quintic corrections or global changes in

the potential. Here γ is a dangerous irrelevant variable [107, Sections 3.6, 5.4, &

5.6], which has a pole 3πβ2/4
√
γ in the expansion about 0, because it is needed

to keep the potential monotonic (for β , 0).

4.4 Approximating the distribution of escape times

To completely characterize the escape times, we require their distribution,

which captures the full range of outcomes we might expect from the stochas-

tic dynamics of the Langevin equation. For high barriers (the Arrhenius limit)

the escape is dominated by the decay of a single (quasi-equilibrium) mode in
3Here and in Eq. 4.20 we could have avoided branch cuts in our scaling functions by using

the variables
√
α,
√
β, and

√
γ. We choose our convention to avoid complex valued scaling

variables and imaginary numbers in Eq. 4.20.
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Figure 4.3: The scaling forms Λn(α) for the first seven eigenvalues. For large
positive α the eigenvalues are approximately evenly spaced. For large negative
α the leading eigenvalue approaches 0 and the gap to the second eigenvalue
grows. The scaling form for the leading eigenvalue Λ0(α) ≡ Λα used in our
approximation to the distribution of escape times is shown in red.

the bottom of the potential well, so the distribution is exponential with rate pa-

rameter given by 1/τ. On the other hand, for small barriers or sloping potentials

many modes contribute and the mean may not be representative of the escape

times in general. In this section, we develop an approximation to the distribu-

tion of escape times which is accurate for all α (i.e. any cubic potential). The

approximate distribution is given as an analytical scaling form parameterized

by two variables which are computed numerically for a given α.

4.4.1 First-passage distributions in Markov processes

To study the distribution, we borrow a result from the theory of Markov pro-

cesses. Consider a birth-death process, i.e. a Markov chain with a one dimen-

sional state space and hopping only between nearest neighbor states, that has

one reflecting boundary and one absorbing boundary. This is precisely what we
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would obtain by discretizing space in the Langevin equation Eq. (4.1), which

has a one dimensional state space with a reflecting boundary for large negative

x values and an absorbing boundary for large positive x values. For Markov sys-

tems initialized near the reflecting boundary, the distribution of times to reach

the absorbing state can be characterized completely in terms of the eigenvalues

of the transition matrix. In particular the distribution, p(t) = −dP(t)/dt (using

the notation from the preceding section) can be shown to be a convolution of

exponentials [29],

p(t) = E(λ0) ∗ E(λ1) ∗ · · · ∗ E(λN), (4.22)

where λn are the negative eigenvalues of the Markov transition matrix, E(λn) are

exponential distributions, and ∗ denotes a convolution. As we will see below,

it is useful consider the Fourier transform p̃(ω) of the distribution p(t) and the

cumulant generating function

log p̃(ω) =
∞∑

m=1

κm(iω)m/m! (4.23)

since the cumulants κm are easily expressed in terms of the eigenvalues of the

Markov matrix,

κm = (m − 1)!
N∑

n=0

1
λm

n
. (4.24)

Note that the first cumulant κ1 is just the mean barrier crossing time τ, which

was the focus of the previous section.

4.4.2 Spectra of the Fokker-Planck operator

When the state space becomes continuous, the process is generated by the

Fokker-Planck operator rather than a finite transition matrix. Thus we want
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to understand the spectra of the right hand side of the Fokker-Planck equation,

∂P(x, t)
∂t

=
∂

∂x
(
V ′(x)P(x, t)

)
+

1
2

g2
0
∂2P(x, t)
∂x

. (4.25)

For numerical evaluation of the eigenvalues is convenient to change variables

so that the differential operator is Hermitian. To do this we rescale P(x, t) by

the square root of the Boltzmann factor, defining σ(x, t) = P(x, t)/ exp(−V(x)/g2
0).

Then σ(x, t) satisfies

∂σ(x, t)
∂t

=

{
g2

0

2
∂2

∂x2 +
1
2

V ′′(x) −
1

2g2
0

(
V ′(x)

)2
}
σ(x, t), (4.26)

which has the form of a Schrödinger equation with imaginary time. Impor-

tantly, even in the limit of continuous space, the spectrum of the Fokker-Plank

operator is discrete. This is easy to see from Eq. (4.26), because the ‘effective

quantum potential’ (V ′(x))2/2g2
0 − V ′′(x)/2 is bounded from below for the cubic

potential as well as any polynomial potential that diverges super-linearly as

x→ ±∞.

Within the scaling theory developed in Section 4.2, if we specialize to the

cubic potential (i.e. relevant variables of the renormalization group) the eigen-

values have scaling forms

λn = g2/3
0 Λn(α), (4.27)

written in terms of the RG-invariant quantity α = ϵ/g4/3
0 . This also implies a

scaling form for the cumulants κm = g−2m/3
0 Km(α). The scaling forms Λn(α) are

plotted in Figure 4.3 for the first several eigenvalues. These curves describing

the α-dependence of the Fokker-Planck spectra are universal for systems near a

saddle-node bifurcation (where α is the only relevant variable). For large posi-

tive α, the eigenvalues are approximately evenly spaced, while for large nega-

tive α, a single slowly decaying mode with eigenvalue very close to 0 dominates

the behavior.
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4.4.3 Evenly spaced eigenvalue approximation

To develop an approximation to the distribution of barrier escape times for the

cubic potential, we assume the eigenvalues are equally spaced, Λn(α) = Λα+n∆α,

where Λα ≡ Λ0(α) is the decay rate of the slowest decaying eigenmode. This

approximation becomes exact in the limit α → ∞, for which the effective po-

tential in Eq. (4.26) becomes harmonic. Though we can see in Figure 4.3 that

this approximation is clearly not correct for α → −∞, the behavior in this limit

is dominated by the vanishing leading eigenvalue Λα. For instance, the cumu-

lants in Eq. (4.24) are insensitive to ∆α when ∆α ≫ Λα and Λα → 0. Thus, this

approximation will produce a family of distributions which correctly captures

the behavior for both large negative and positive α. As we will see below, the

approximation is also quite accurate over the full range of α.

One caveat of the equal spacing approximation is that the mean escape time

T = K0 =
∑∞

n=1Λ
−1
n always diverges. Therefore, we must fix the mean to the

value derived in Section 4.3.1. On the other hand, the higher order cumulants,

which determine the shape of the distribution, always converge.

To proceed, we sum Eq. (4.24) using our eigenvalue ansatz. For m ≥ 2 the

result is,

Km(α) = (−1)mψ
(m−1)(Λα/∆α)
∆m
α

, (4.28)

where ψ(m)(x) is the polygamma function of order m. Neglecting the mean, we

can sum the series Eq. (4.23), then exponentiate and inverse Fourier transform

to obtain the distribution p(t). Writing the distribution in terms of its universal

scaling function, p(t, ϵ, g0) = g2/3
0 ρ(s, α) with s = (t − τ)/g2/3

0 and α = ϵ/g4/3
0 , the
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final result is

ρ(s, α) =
∆α

Γ(Λα/∆α)
exp

(
eψ

(0)(Λα/∆α)−∆α s − Λαs

+
Λα

∆α
ψ(0)(Λα/∆α)

)
.

(4.29)

To use this family of distributions, we compute the leading eigenvalue Λα using

a shooting method on the right hand side of Eq. (4.26). The effective ∆α is chosen

so that the second cumulant K2 (i.e. the variance) is exact. To do this, we follow

the same approach used in Section 4.3.1 to write an integral expression for the

variance. The result is K2 = τ2 − τ
2 with

τ2(xi|x f ) =
2
g2

0

∫ x f

xi

dy
∫ y

−∞

dz τ(z|x f ) e
− 2

g2
0
[V(z)−V(y)]

, (4.30)

where τ(z|x f ) is the mean given in Eq. (4.14). After evaluating these integrals nu-

merically to obtain the variance, we solve K2 = ψ
(1)(Λα)/∆2

α to fix the eigenvalue

spacing ∆α.

In Figure 4.4 we compare the approximate distribution Eq. (4.29) to those

obtained by direct numerical simulation of the Fokker-Plank equation. Our ap-

proximation captures the shape of the distributions remarkably well for the full

range of α.

We can also show analytically that this distribution reproduces the correct

large α limits. For large negative α, taking the ∆α → ∞ limit of Eq. (4.29), gives

the expected exponential distribution, ρ(s, α) → Λαe−sΛα−1 (shifted to have zero

mean). For large positive we can estimate Λα and ∆α using the harmonic ap-

proximation to the potential in Eq. (4.26). We find Λα ∼ α2 and ∆α ∼
√
α so that

the cumulants scale like Km(α) ∼ α3(1−m)/2 for α → ∞. In particular, the ratio

Km/K
m/2
2 → 0 for m > 2, i.e. the higher order cumulants are small compared

to the variance and the distribution approaches a Gaussian for large α. This
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Figure 4.4: The barrier crossing time distributions obtained using our evenly
spaced eigenvalue approximation Eq. (4.29) (lines) and from direct simulation
of the Fokker-Planck equation (symbols) for (a) α = −2, (b) α = 0, (c) α = 2, and
(d) α = 7. In all cases agreement between the theory and simulations is excellent.
In the large barrier limit (a) the distribution is approximately exponential and
in the strongly sloped potential (d) it is nearly Gaussian.

prediction is born out in direct simulation of the Fokker-Plank equation (see

Figure 4.4d).

The distribution Eq. (4.29) combined with our analytical understanding of

the mean escape time provides a complete description of the barrier crossing

process. Our procedure allows for accurate approximations to the distribu-

tion by evaluating just the two universal scaling forms Λα and ∆α. Knowledge

of these quantities allows for evaluation of the distribution of barrier crossing
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times for any system near a saddle-node bifurcation.

4.5 Discussion

We expect our results will be directly applicable to barrier crossing processes

in which thermal fluctuations are comparable to the energy barrier including

the aforementioned experimental systems, narrow escape problems in cellular

biology [108], and downhill protein folding scenarios [109, 110]. Our approxi-

mation to the distribution of barrier escape times, combined with our analytical

results for the mean, provides an accurate and complete characterization of the

barrier crossing process for systems near a saddle-node bifurcation.

A more thorough analysis of incorporating perturbative corrections from ir-

relevant variables into Eq. (4.14) would be both theoretically interesting and

useful in applications. The interplay between anharmonic corrections and finite

initial conditions is also important. Computing these corrections will extend the

applicability of our theory to systems in which the boundary conditions corre-

spond to positions with non-negligible anharmonicity. It will be interesting to

test the accuracy of our evenly spaced eigenvalue approximation to the barrier

escape time distribution when irrelevant variables are incorporated. We conjec-

ture that, at least perturbatively, Eq. (4.29) will still accurately parameterize the

distributions if Λα and ∆α are corrected to account for the irrelevant variables.

Our analysis directly translates to higher order cuspoid catastrophes [111,

Section 36.2], which form their own universality classes with different expo-

nents (in fact, these have already been analyzed for the discrete iterated map

[98, 99]). For these bifurcations, the fixed point potential will be a higher order
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monomial and our analysis can be used to identify the relevant variables and

develop a scaling theory for quantities like the barrier crossing time mean and

distribution.

More generally, it would be useful to study the applicability of our renor-

malization group and scaling analysis to systems with colored noise, multiple

dimensions, or in other damping regimes. The effects of colored noise are en-

coded in the correlation function ⟨ξ(t)ξ(t′)⟩ = G(x, t − t′). The renormalization

group transformation can be adapted to act on the Fourier transform of this

quantity G̃(x, ω), giving flows of the colored noise under coarse-graining (for

example, barrier crossing between two symmetric wells – a noisy pitchfork bi-

furcation – coupled to an Ohmic heat bath leads in the quantum limit to a criti-

cal point in the same universality class as the Kondo problem [112]). We expect

short-range correlations will be irrelevant under coarse-graining, while those

with power-law decay will give rise to new anomalous scaling. For some re-

actions, an underdamped model or multi-dimensional reaction coordinate may

be required for an accurate description. Renormalization group scaling will pro-

vide a natural organizing framework for these studies.

Nucleation of abrupt phase transitions (e.g., raindrop formation) is also de-

scribed by Arrhenius rates. Here the noiseless bifurcation underlying critical

droplet theory is the spinodal line. This line – a discredited mean-field boundary

between nucleation and spontaneous phase separation – could play the role of

our renormalization-group fixed point in a future generalization of this work to

higher spatial dimensions.

Finally, the saddle-node bifurcation is the simplest example of a depinning

transition. One anticipates studying how adding noise would affect depinning
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of earthquakes, vortices in superconductors, plastic flow in crystals, raindrops

on windshields, coffee soaking into napkins, and other depinning phenomena.

Each of these has anomalous exponents and RG treatments [113] even without

added noise. Our work provides a stepping stone toward understanding the

universal scaling near noisy depinning transitions in these more sophisticated

systems as well.
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CHAPTER 5

CONCLUSIONS

The results of the preceding chapters lay out a series of universality classes

and scaling laws that arise in a broad range of first-passage processes. Chap-

ters 2 and 3 found that a few common absorption-time distributions arise in

discrete stochastic systems and connected these resulting distributions to ba-

sic features of the underlying dynamics. Chapter 4 characterized the universal

scaling in barrier escape times and distributions near the critical saddle-node

transition.

While these results are quite compelling, it remains to be seen whether and

to what extent they arise in practice: do observed first-passage times in real-

world systems follow a Gumbel distribution, Gaussian distribution or another

member of the skewed family of distributions classified in Chapter 3? Are the

metastable lifetimes for systems operating near a saddle-node bifurcation cap-

tured by the scaling law derived in Chapter 4? To conclude this thesis, this chap-

ter will discuss a number of experimental systems in which our predictions can

be tested to answer these questions. We also mention a few broad future theo-

retical directions that will likely need to be explored to capture the behavior of

experiments that break the universality or scaling predicted by our work.

Since first-passage processes are so ubiquitous, there is a broad range of con-

texts in which our theoretical predictions can be tested: from epidemiological

field data to bacterial evolution, single-cell aging, and optical laboratory exper-

iments. In each of these examples (discussed further below), if the theoretically

predicted scaling or fluctuations are observed, we can use this agreement to

extract information about the physics underlying the system. For instance, the
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shape of an absorption-time distribution might imply linear or power-law decay

of transition rates. Similarly the distribution and mean lifetime of a metastable

state can be used to infer energy barrier heights and the proximity to a saddle-

node bifurcation. On the other hand, experimental results that break our univer-

sality classes or scaling laws will help inform future theoretical work outlined

in the following section.

The first potential experimental test of our results was briefly mentioned in

Chapter 3: eradication of African sleeping sickness. There we found that the

eradication times measured in simulations of a high-dimensional model [2] of

the disease that was fit to case data from different regions of the Democratic Re-

public of Congo (DRC) followed the Gumbel distribution predicted by our one-

dimensional theory. In the coming years, tracking the time to eradicate sleeping

sickness in the 168 endemic health-zones in the DRC will enable a more direct

comparison between the predicted Gumbel distribution and the epidemiologi-

cal data.

A similar study might be possible for COVID-19, for which an abundance

of case data is available on county, state, and country scales [114]. In this case,

mutation complicates the disease dynamics: rather than the epidemic dying out

entirely, new outbreaks involving mutated variants of the disease emerge [115].

Perhaps, however, the outbreak duration (the time between a peak and trough

in case loads before emergence of a new variant) follows similar statistics to the

epidemic duration in the absence of mutations. Does the Gumbel distribution

explain the variability in outbreak durations between different locations?

Our results can also be tested in a variety of laboratory experiments. For ex-

ample, large scale bacteria evolution experiments enable tracking of the abun-
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dance of genetic mutations and associated fitness levels over many generations

[116, 117]. Starting with a genetically homogeneous population and measur-

ing the time for new mutations to become fixed would directly test the pre-

dictions made in Chapter 2. For example, we expect a fixation-time distribution

that becomes more skewed for mutations that provide larger fitness advantages.

Longer term evolution experiments [117] can also be used to test whether our

results are robust to heterogeneity in the evolving population.

Aging and death can be thought of as a first-passage process. Both mam-

malian species [118, 119] as well as yeast and other single-cell organisms [118]

are known to follow the Gompert-Makeham mortality law, which describes

how the mortality rate increases as a function of age. It turns out the Gom-

pertz distribution is closely related to the Gumbel distribution, which arose as

a universal absorption-time distribution in our theory. It would be exciting to

test whether the distribution of lifetimes in single-cell aging experiments fol-

lows a Gumbel distribution. Perhaps the slowdown in reproduction rates near

death in yeast [120] is analogous to the coupon-collection slowdowns that lead

to Gumbel absorption-times.

Finally, optical systems provide a particularly effective medium for testing

the scaling-laws near the noisy saddle-node bifurcation obtained in Chapter 4.

Optoelectronic systems have previously been used to observe complex dynam-

ical states, including chimeras [121] and laminar chaos [122, 123]. Laser optics

enable nonlinear dynamics, which are necessary to undergo a saddle-node bi-

furcation, and noise can be introduced to the system in a well controlled way.

Beyond tests of our results, the scaling laws in Chapter 4 may prove useful

for design of signal detectors [93, 96] and controllable magneto-elastic machines
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[124], which both operate in the vicinity of a saddle node bifurcation. The life-

time of a metastable state determines the detector’s sensitivity and the machines

stability to perturbations.

Inevitably, many experimental systems will go beyond the universality

classes discussed in the chapters of this thesis. Such experiments might display

new and interesting behaviors that arise, for example, due to higher dimension-

ality, finite size effects, corrections to scaling, or non-Markovian noise. Building

on the results of this thesis and modeling each of these effects will further ex-

pand our understanding of fluctuations and scaling in first-passage processes.
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