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This thesis covers three topics involving Meissner effects and the resulting
defect structures. The first is a study of Meissner effects in superconductiv-
ity and in systems with broken translational symmetry. The Meissner effect
in superconductors is a rigidity against external magnetic field caused by the
breaking of the gauge symmetry. Other condensed matter systems also exhibits
rigidities like this: The breaking of the translational symmetry in a cubic-liquid;
crystal causes the system to expel twist deformations and the breaking of the
translational symmetry in a nematic liquid crystal gives it a tendency to expel
twist and bend deformations. In this thesis, we study these generalized Meissner

effects in detail.

The second is a study of the quasiparticle states bound to the vortex defect
in superconductors. Scanning-tunneling-microscope measurements by Harald
Hess et al. of the local density of states in a vortex core show a pronounced
peak at small bias. These measurements contradict with previous theoretical
calculations. Here, we solve the Bogoliubov equations to obtain the local density
of states in the core and satisfactorily explain the experimental observations. We
also predicted additional structure in the local density of states which were later

observed in experiments.

The third is a study of vortex dynamics in the precense of disorder. A mean
field theory is developed for the recently proposed normal to superconducting
vortex glass transition. Using techniqﬁes developed to study the critical dynam-
ics of spin glasses, we calculate the mean field vortex glass phase boundary and
the critical exponents. We also explain the experimentally observed magnetic

field induced transition broadening.
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Chapter 1

Introduction

This thesis covers three of the topics I worked on in collaboration with various
people during my graduate study at Cornell. It involves Meissner effects and the
resulting defect structures. We first study the Meissner effect in superconductivity
and similar rigidities in other systems in condensed matter physics. We next study
the quasiparticle states bound to the vortex defect in superconductors. We will
~ calculate the local density of states in a vortex core in an effort to explain a recent
scanning-tunneling-microscope measurement. Lastly, we use the vortex glass model
to describe the mixed state properties of the high temperature superconductors
and study the mean field critical properties of the normal to vortex glass phase

transition.

1.1 Meissner Effects

The Meissner effect is perfect diamagnetism: A weak magnetic field cannot pen-
etrate into the interior of a superconductor. This expulsion of magnetic field can
also be seen as a rigidity caused by a broken gauge symmetry. Effects like this
occur in other areas of condensed matter physics too. A cubic-liquid-crystal phase
with a nearest neighbor bond orientational order but no translational order will
develop a rigidity against rotational twist deformations as the translational sym-
metry is broken. The resulting crystal expels twist deformations from its interior.
Similarly, a nematic liquid crystal with a molecular rotational orientational order

will also tend to expel molecular rotational deformations (although not perfectly,
1



2
as we shall see) when the liquid crystal further breaks the translational symmetry

and becomes a smectic liquid crystal.

The mathematical formulations of these rigidities are analogous: A system with
a certain order has an elasticity like free energy representing the cost of energy due
to deformations of the order: (6 X 1)2 represents the magnetic energy in a normal
metal, (V x 8)2 and (V - §)2 represent the energy costs of rotational deformations
of the orientational order of the nearest neighbor bonds in a cubic-liquid-crystal
phase with bond orientation represented by a rotation angle 6, and (V x )2 and
(V - )2 represent the energy costs of the molecular rotational deformations of the
molecular orientational order, where 7 represents the molecular orientation. As
the system breaks a symmetry (gauge symmetry for superconductors and trans-
lational symmetry for crystals and smectic liquid crystals), it develops a new free
energy term describing the energy cost of deformations of the new order. This
new term couples the new order parameter to the old order parameter in order
to satisfy a general invariance principle (gauge invariance for superconductors and
space rotational invariance for crystals and smectic liquid crystals). This coupling
causes the system to be rigid with respect to deformations of the old order. There-
fore, superconductors expel magnetic field, crystals ekpel twist deformations, and
smectic liquid crystals have (as we shall see) an imperfect expulsion of twist and

bend deformations. We generally refer to these effects as Meissner effects.

In chapter 2, we will study the Meissner effect in superconductors by comparing
it to the analogous Higgs mechanism in particle physics. In chapter 3, we will study
how the breaking of the translational symmetry in a cubic-liquid-crystal can cause
the system to expel twist deformations. In chapter 4, we will study the rigidity of

a smectic liquid crystal with respect to twist and bend deformations as a result of
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the broken translational symmetry and discuss some special properties of smectic

liquid crystals that lead to the faslure of complete expulsion of twist and bend.

1.2 Vortex Core States

According to the BCS theory of superconductivity, a homogeneous superconductor
has an energy gap for excitations, and expels small external magnetic fields. If
the superconductor is type II, a larger field will penetrate into the bulk of the
superconductor as a series of vortex lines. This also affects the superconducting
gap: a vortex is like a small normal region, and there are local excitations bound
to it with small energies. Recently, Harald Hess et al. performed a scanning-
tunneling-microscope measurement on a NbSes superconductor and measured the
local density of states of an isolated vortex. The measurement showed a large peak
in the local density of states at zero bias at the center of the vortex — a larger
density of states than one would find in a normal region. This result is different

from a previous theoretical calculation, which gave local states but no peak.

In chapter 5, we will study this problem in detail and show that a careful
calculation within BCS theory can explain the experimental measurement. We
also predicted double peak structures in the local density of states away from the

center of the vortex. This prediction was later observed in experiments.



1.3 Vortex Glass Phase Transition

Recently discovered high temperature superconductors have several unusual mixed
state properties that include an “irreversibility” line in the H — T phase diagram
and a magnetic field induced broadening of the resistive transition. To explain these
observations, Matthew P. A. Fisher proposed a vortex glass model to describe the
mixed state properties of the high temperature superconductors. In the vortex
glass phase, the vortices are frozen by impurities into a “spin glass” like order, and
the linear resistivity is zero. In chapter 6, we study the normal to vortex glass
phase transition. Within a mean field theory, we calculate the vortex glass phase
boundary, the mean field critical exponents, and the vortex glass order parameter
susceptibility. We will also explain the magnetic field induced transition broadening

within this model.



Chapter 2

The Higgs Mechanism and Superconductivity

2.1 Introduction

- The phenomenon of symmetry breaking occurs when the ground state of a system
does not possess the full symmetry of the Hamiltonian. It is very frequently en-
countered in condensed matter physics : the crystalline lattice breaks translational
symmetry; the Heisenberg ferromagnetic ground state breaks rotational symme-
try; superﬂuidity (including superconductivity as superfluidity with charged fluids)
breaks gauge symmetry, and so on. In quantum field theories, however, since one
does not know beforehand what the full symmetry of the laws of nature is, it is
not clear whether there exists any broken symmetry. On the other hand, we are
curious to know if all the symmetries of the laws of nature have been revealed to
us through vacuum states (and their excitations - particles) that do not break any
symmetry of the laws of nature, or if there exists some hidden symmetries that we

do not know of since the vacuum states have broken them.

In quantum field theory, Goldstone et al.}*2 have shown, at first through a
model Lagrangian of a complex boson field with U(1) symmetry and then through
a general theorem, that an ordinary* field theory with a vacuum state breaking a
continuous internal symmetry necessarily implies the existence of a massless spin-
less boson (the Goldstone boson). One might simply conclude that no symmetry

is broken from the fact that no massless spinless boson has been observed. That

Meaning a field theory obeying the usual axioms (Lorentz invariance, locality,
Hilbert space with positive-definite inner product, etc.)

5



6
this simple conclusion is wrong was pointed out by Higgs® who, as shown later,
extended the U(1) symmetry group of the Lagrangian of two scalar fields studied
by Goldstone to a local U(1) symmetry group (local gauge invariance) by coupling
a vector gauge field of photons to the scalar fields. By doing this, he was able to
show that the Goldstone boson and the photon field degrees of freedom combined
to give a massive vector meson —the photon acquires a mass. No Goldstone boson
is implied by a broken continuous symmetry in this theory. This process of gauging
away the Goldstone boson and of the photon becoming heavy is called the Higgs
mechanism. The Higgs mechanism is important in quantum field theory because
it can be used to construct theories that have broken symmetries but do not have

Goldstone bosons (which are not observed in the real world of high energy physics).

In condensed matter physics, as we will show later, the Higgs mechanism can
be used to explain how a superconductivity theory with a broken gauge symmetry
does not have the usual Goldstone mode (gapless excitations associated with the
broken continuous symmetry in the ground state). Instead, it has a longitudinal
plasma mode with a ﬁnité energy excitation gap analogous the the finite mass of the
vector meson. This effect is due to coupling of the order parameter of the broken
symmetry to the electromagnetic field. This coupling of the electromagnetic field
to the order parameter is an effective way of describing the long range electromag-
netic interactions between electrons. In this way, the photon in superconductivity
acquires a mass. The Meissner effect follows naturally: the electromagnetic fields
from sources outside a bulk superconductor cannot propagate far into the bulk
since the propagation of the electromagnetic fields in the sﬁperconductor is carried
out by massive photons and is thus short-ranged, just as the propagation of nuclear

force fields by massive pions (in Yukawa’s model) is short-ranged. Therefore, the



7
Higgs mechanism can provide a very simple understanding of the electromagnetic

properties of superconductivity.

2.2 The Higgs mechanism in field theory

In this section, we will briefly review the Higgs mechanism in quantum field the-

4, we will discuss the Higgs phenomenon in classical field

ory. Following Coleman
theory (while using quantum field theory terms) since the basic features of the

phenomenon are still the same when the field is quantized.

We start out with a model Lagrangian density for a complex scalar field with
U(1) symmetry*,
1
L =28u9")(9%4) = U(|¥]) - (2.1)

If one writes ¢ = |1)|€'?, then the fact that Lagrangian is independent of 4 indicates
the U(1) symmetry, i.e., the Lagrangian is invariant under the transformation

¥ — tpei. The corresponding energy density is,
1 9 1 9
= Z100¥l" + S IV + U([%]) - (2.2)

From equation (2.2), it is easily seen that the vacuum is a state with ¢ = ¢ =
constant, and U(I‘lﬁl)lmin = U(|g|). If g = |ho|e?0 # 0, then the vacuum state

has broken the U(1) symmetry by choosing a fixed value of ¢.

If one writes the Lagrangian density in terms of |¢| and ¢,

£ =3[ ulwlolul + [wPau85%8] - U (), (23)

Notation : the signature of the metric tensor is (+ — ——); 9, = 8/9z# = (%—%, v);
summation over repeated indices is always implied.
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one immediately recognizes that the particle represented by ¢ is massless (the
Goldstone boson) since there is no mass term like m? #° in the Lagrangian density.
On the other hand, the mass for the particle represented by [¢| (or ¢/ = [¢| - |¢])

is proportional to v I(|¢0|) and can be taken to be finite in our model.

To eliminate the Goldstone boson, one can enlarge the U(1) symmetry to a local
U(1) symmetry. The new Lagrangian should be invariant under the transformation
¥ — $e®(=*), For an infinitesimal transformation, 68,9 = 13,160 + 1163,0, the
second term indicates that the original Lagrangian (2.1) is not invariant under a
local gauge transformation. But if one couples to ¢ a gauge field A, that transforms
according to

54, = -%au (60) (2.4)

in the form

L= .;.(auw +ieA, %) (0 + ieAMy) — U(4]) (2.5)

one obtains a Lagrangian that is gauge invariant. The constant e is defined as the
strength of the coupling. Furthermore, to make the gauge field a true dynamical
variable, one can add the simplest gauge-invariant dynamical term FEV to the

Lagrangian density,
1 1 o .
L= —ZFEU + E(autﬁ* +1eAu )(8%9 +ieAFy) — U(|¢]) , (2.6)

where Fyp = 0y Ay—09yAy. This is just the usual Lagrangian density of minimally-
coupled electromagnetism with the usual physical interpretations of charged bosons

(¢ field) and massless photons (A, field).

We can again write the Lagrangian in terms of ¢/ and ¢,

L= —i—F,’;’, + ;[(a,,w'w + (8 + 002 (Bud + e4u)? | U +[wol) . (27)
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Since d,¢ appears only in the form d,¢ + eA,, one can change variables,
ay = Ay +e 19,9, (2.8)
then we have,
L= —%(ayau — 8ya,)? + -e;(d»’ + [vol)%a2 + %(«%nﬁ’)'2 U +|tol) . (2.9)

Now we can readily recognize that the zero mass ¢ field combines with the A, field
to give a massive vector meson field a;, with mass given by 62|¢v0|2. The Goldstone

boson has disappeared. It is eaten by the photon and the latter becomes heavy.

2.3 The Goldstone mode in a neutral superfluid

The ideas of the Goldstone boson and the Higgs phenomenon play important roles
in condensed matter physics too. One only has to change the names: vacuum
states in field theory correspond to ground states in condensed matter physics; the
fields representing bose particles correspond to order parameters; and the mass
corresponds to the excitation energy gap. Thus, a Goldstone boson in field theory
is called a Goldstone mode (a gapless excitation above the ground state due to a
broken continuous symmetry) in condensed matter physics. Phonons in crystals,
spin waves in ferromagnets and sound-wave-like collective modes in superfluids are

all Goldstone modes.

In this section, we will show that a Bose-condensed neutral superfluid (e.g.
Helium IT) has a ground state with a broken gauge symmetry and, as a result of
the broken gauge symmetry, a Goldstone mode (phonon mode) exists. We will
derive its dispersion relation. Finally, we will write down a Lagrangian density

that gives the same physics as above so that we can draw some analogies with the
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Goldstone boson in field theory and build up a basis upon which we can develop a

Lagrangian formulation for a charged superfluid.

Penrose and Onsager® have shown that a superfluid of Bose particles (like He-

lium IT) can be defined as a state in which the density matrix p(r,r') can factorize:
p(r,¥') = (BB = 6 ()(E) + ' (r 1) (2.10)

with p'(r,r') — 0 as |r — r'| = oco. Following the work of Beliaev® who showed
that the factorization can be extended to the time-dependent Green’s function,
Anderson” further emphasized that one can take the definition of a superfiuid as a
fluid in which the particle field operator % has a macroscopic mean value (superfluid
order parameter),

(B(r,1)) = b(r,t) = [ple'® . (2.11)

He then pointed out that one can deal with |¢| and ¢ as though they are thermo-
dynamic variables of the system and one can also define coarse-grained averages of
them just as one deals with usual thermodynamic variables. The ground state is
one in which ¢(r,?) is constant throughout the whole system. Furthermore, unlike

[, ¢ is also a dynamical variable with the number operator N as its conjugate,

[6,N] =i, (2.12)
with the operator equivalences
N = —i9/3¢, ¢ =19/0N . (2.13)
Thus we have,
ihN = ¥, N] = i% : (2.14)
ihd = [N, 0] = —iX | (2.15)

oON
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One can take N and ¢ as the operators for the whole system as well as for a piece of
the system while ¥ is always interpreted as the Hamiltonian for the whole system.
From (2.14), the number conservation for the whole system (N = 0) implies that
the system has a U(1) symmetry (global gauge symmetry) 0¥ /3¢ = 0. The fact
that the ground state of superfluid has constant ¢ means that the gauge symmetry
is broken. It also means that for a small static variation of the ¢ field, the energy

density should be a quadratic function of V¢ as

K o o
E = ns:—(Ve)?, (2.16)

where n; is a arbitrary parameter and should be the number density of particles
in the system at absolute zero temperature in a perfectly homogerneous system.
Combining (2.14) and (2.16) (while treating N and ¢ as operators for small pieces

in the system), one finds that the particle flow current is,

s =nstvg . (2.17)
m

Therefore, we can treat Vs = %Vq& as the superfluid velocity for a homogeneous

system (with very dilute or no impurities) at zero temperature.
Equation (2.15) will then give an acceleration equation of the superfluid. Tak-
ing the gradient of (2.15) gives,

0

where u is the chemical potential. In terms of V§, one has,

Vs |
m—= = -Vu. (2.19)

As one might have observed, equation (2.19) is not Galilean invariant. This is

because we have chosen a reference frame in which the ground state has Vg =0
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and we can thus ignore the V2 term in the equation for small variations of the ¢

field.

Now we are ready to study the excitations associated with small variations of
the ¢ field. Differentiating (2.19) with respect to ¢ gives,

326V ]

MG = Taplv oM
du 86p
3 At

_ %’fpV(v 5Vs)

aP
= v :
5,7 Vs (2.20)

where p is the particle number density. Through the derivations we have used the

relations

VxVsxVxVs=0, (2.21)
3]
af +V.(pVs)=0. (2.22)

We can then easily obtain the dispersion relation from (2.20),

w = cpk , (2.23)

where ¢p = %%}3 This is just the Goldstone mode related to a periodic variation

of the ¢ field in space and time. It is the phonon mode (for small k) first predicted

by Landau for Helium II.

We can also describe the dynamics of the ¢ field with a Lagrangian formulation
while understanding that we use the Lagrangian in a classical field theory sense :
the field equations (Euler-Lagrange equations) are all the physical content we can
get from them. We can easily construct

2
L=n -"—[ciz(f;f) - (V9] (2.24)
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to describe the ¢ field, where n; is a constant representing the equilibrium number
density and ¢ will be able to describe density fluctuations. The Lagrangian (22)
will give the correct field equation for ¢, % - cgv2¢ = 0, and thus the right
dispersion relation (2.23). To compare the Lagrangian (2.24) and the Lagrangian
(2.3) in Goldstone’s complex scalar field model, we see that the degree of freedom
represented by ¢ in (2.24) is closely analogous to that represented by ¢ in (3). Both
have U(1) symmetry and lead to an excitation mode without an excitation gap.
One minor difference is that the Lagrangian (2.24) is not Lorentz covariant simply
because ¢p, which gives the correct dynamics of the ¢ field in (2.24), is not equal
to the speed of light ¢. This will only affect the dispersion relations, especially (as

we shall soon see) when the ¢ field is coupled to a vector gauge field.

Before finishing this section, we want to point out that it is much easier to
construct a Lagrangian formulation for a pure system at zero temperature than for
a system at finite temperature due to the absence of dissipation in the zero temper-
ature case. It is especially difficult to extend this formalism to study the dynamic
properties of the order parameter field at finite temperature, since a theory with
a Lagrangian formulation necessarily implies the time reversal symmetry which a
superfluid at finite temperature does not have due to dissipation. On the other
hand, it is relatively easy (and thus conventional) to study dissipative systems by
directly setting up the equations of motion of the order parameters. The extension
of Lagrangian formulation for a dissipative system has been studied at length by
various people (see e.g. Caldeira and Leggett® for the study of quantum tunneling
in dissipative systems). For our purpose here, we are more interested in obtain-
ing dispersion relations for excitation modes than in discussing the propagation
of them. Thus we will restrict our discussions to the non-dissipative case which

should be a good approximation for clean systems at very low temperature.
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2.4 Higgs mechanism in superconductivity

We have just shown that a neutral superfluid has a broken gauge symmetry and a
Goldstone mode in close analogy with the broken U(1) symmetry and the Goldstone
boson in Goldstone’s complex scalar field model. In this section, we will show that
the extension of the theory for neutral superfiuids to a theory of superconductors
produces an analogy to the Higgs mechanism; the phonon mode of the neutral
superfluid is lifted to a plasma mode, photons become massive, and the Meissner

effect follows as a consequence.

We can readily extend the previous discussion to superconductors, i.e., charged
superfluids. Gor’kov® showed that for superconductivity the order parameter
should be defined as the mean value of the electron pair field operator ¢(r,t) =
(tﬁl(r)tﬁT(r)). Thus equations (2.12) — (2.15) should still hold if one takes an
electron pair as a superfluid “particle”. On the other hand, equation (2.16) cannot
be right since V¢ does not have physical meaning: a local gauge transformation
can change V¢ without producing any physical change. One can easily cure this

by writing

B2 (Vo + il A)? (2.25)
2m* he ’ )

where e* = 2|e|, m* = 2m,, and n; is the equilibrium density of electron pairs.

E=ns

Consequently, one finds the electron pair velocity and charge current:
Ve= v+ La) (2.26)
ST me he )
Js = ns(—'e*)Vs . (2-27)
With (g%r) = p — e*®, where & is the electrostatic potential, the acceleration
equation (2.19) becomes
dVs e* JA
*__ — _V — *Q —
m*— (p. e*d) + .

=—-Vu—-¢€e'E (2.28)
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for charged superfluids. The extra electric field term (—e*)E will provide a finite
restoring force even for very large wavelengths of variation of the ¢ field and give

an excitation gap for the dispersion relation (B = 0 for longitudinal mode):

_.9%Ve _ o ,OE

= ?9—1:V25Vs — 47nge*26Vs . (2.29)

The dispersion relation for this longitudinal mode (longitudinal photon) is,

2., 9
w? = wy + cz‘,lc2 , (2.30)

where wp = (47nge*?/ m*)l/ 2 is the plasma frequency.

We can also obtain London’s equation from (2.26) and (2.27),

nse*‘Z '
VxJs=— B. 2.31
X s m*c ( )
Combining this with the Maxwell equations
VXxE+ -l-a—B =0
¢ gt (2.32)
10E 4=,
VxB—=-——=—j
c ot c

will give dispersion relation for the transverse modes (transverse photons),
w? =wl 432, (2.33)

For the static situation (w —» 0),E — 0, k — 1 ECP-, we get the Meissner effect with

the London penetration depth A; = wc—p.

We have observed that by attaching electric charge to superfluid particles, one
has to formulate a theory with local gauge symmetry. After doing this, one finds
that the original Goldstone mode due to the global gauge symmetry (equation

(2.23)) is lifted to have a gap (equation (2.30)). The additional transverse mode
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(2.33) can be thought of as the modification of the transverse electromagnetic field

propagation due to the presence of the charged superfluid.

One can see a closer analogy between this phenomenon and the Higgs mech-
anism in field theory by formulating a Lagrangian description with local gauge

symmetry extended from the global gauge symmetry U(1) of equation (2.24):

2 * 2 * 2
L= n,% [Zlg (%it{’ - %@) - (V¢ + %A) } - mian" , (2.34)
where the FEU term provides the dynamics for the gauge field A# = (®, A). This
general form for the Lagrangian agrees with the time-dependent Ginsburg-Landau
equation for superconductivity at zero temperature (see Appendix 2A). We can
briefly show that this Lagrangian indeed gives results consistent with what we

obtained before.

We can conveniently combine the ¢ and A* degrees of freedom into

e*

B— AW _
@ fic

0“4 . (2.35)
Then the Lagrangian in terms of the a# fields is,

£= (2 a2) - L (a0 - 8y0,)’ 6
—m gao—a —m( nQy — Vau) . (2.3)

The Lagrangian (2.36) has the same structure with the Lagrangian (2.9) for the
a, fields and thus one can readily conclude that the Goldstone mode in a neutral
superfluid has combined with the massless photons (the two transverse electromag-
netic field degrees of freedom) to become massive photons. The Goldstone mode
is lifted to become the longitudinal photon (plasma mode) and the two transverse
photons also acquire the same mass (fiwp). But (2.36) is not Lorentz covariant,
as indicated by the fact that the Lagrangian distinguishes between the time and
spatial components of the a, field. We can briefly show that this leads to different

- dispersion relations for the transverse and longitudinal photons.
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The Euler-Lagrange equations for the a, fields are,

aL 1 BV Ay _
m—z;ay(a c d’c )—0 . (2.37)

Operating with d,, upon (2.37) gives,
c‘)
108  ‘py.a=g. (2.38)

The explicit form of (2.37) separates out into time and space parts as,

2
w 10
Baoa — B -— Ky =
aua ap c%a()'*'cat(a#a) 0,

(2.39)

o

9,0"a — g’-a +V(8ua") =0.
Straightforward calculations by combining (2.38) and (2.39) can then show that
the dispersion relations are just as in (2.30) and (2.33), and that the difference
between longitudinal and transverse modes is due to this separation of space and
time component behaviors of the field. Ultimately, the difference is due to the
fact that the Lagrangian is not covariant, since a Lorentz invariant theory cannot
separate transverse modes from a longitudinal mode and thus has to give the same

dispersion relations for them.

The main result is that, except for the minor difference caused by the prob-
lem of Lorentz invariance, the Higgs mechanism in field theory and the photon’s
acquisition of mass in superconductivity can indeed be formulated in the same

manner.
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2.5 Discussions and conclusions

The discussions for superconductivity in the last section all seem very simple. So
it is necessary here for us to comment about their validity and about the approxi-

mations we have made throughout the discussions.

The method we used above to obtain collective excitation modes of supercon-
ductivity can be thought of as a mean field approximation. Strictly speaking, one
would have to consider the residual interactions between all electron pairs and
solve the equations of motion for this many-body system to obtain exact results,
where residual interactions (including the long range part of the Coulomb inter-
action) represent those interactions between electrons that have not been taken
into account during the pairing of electrons. This problem is very similar to the
electron gas problem. In fact, our dispersion relations (2.30) and (2.33) are very
similar to those of plasmons in the electron gas. For the electron gas problem,
Bohm and Pines!? showed (using the Random Phase Approximation) that for low
momentum modes (with wavelength larger than the neighboring electron separa-
tion), the many-body electron-electron interactions can be well described by letting
each electron interact with the well defined collective field modes (plasma modes).
These plasma modes (with electrons moving coherently) have tra.nsverse.dispersion
like (2.33) and a longitudinal dispersion relation w = wyp. The random motion of
electrons (as opposed to the coherent motion with the plasma field) gives another
effective restoring term (v2)k2 for the longitudinal mode through the interactions
between the electrons and the collective field. This effect of the random motion
of electrons (with a restoring term (v)k?) is of the same physical nature as the
effect of pressure (with a restoring term cf,k:' in (2.30)) in our fluid model. Clas-
sically, it simply means that when we reduce a Boltzmann description with both

real space and momentum space distributions of particles into a fluid model de-
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scription (the one we have here) with only a real space distribution of particles,
we can effectively represent the effects of velocity randomness by the concepts of
pressure P and the force VP associated with any non-uniform spatial distribution.
Thus for our superconductivity problem, one would expect (2.30) and (2.33) to be
reasonable for weak electromagnetic fields and for wavelengths larger than the pair
correlation length. The validity of the acceleration equation (2.28) requires that
the total effective electromagnetic field be weak, and the validity of the definition of
the course-grained average of the ¢ field requires that our discussion be restricted
to phenomena with length scales much larger than the electron pair correlation

length.

It is also interesting to compare our results with results that have been already
established through more rigorous calculations. Historically, the search for collec-
tive modes in superconductivity is related to the fact that the original BCS theory
does not give a gauge invariant description of the electromagnetic response of a

11 made the first attempt to obtain a gauge invariant

superconductor. Anderson
theory of superconductivity by going beyond the Hartree-Fock-like approximation
in the original BCS theory. He used the Random Phase Approximation to set up
a time dependent Hartree-Fock-like approximation scheme. He was able to prove
that in addition to the single particle excitation spectrum correctly given by BCS
theory, there also exist longitudinal collective excitations. These longitudinal waves
have a velocity vp{3[1L — 4N (0) [V (]}1/2 for a neutral Fermi superfluid and become
the plasma oscillations in the charged case. Following Anderson’s work and the
improvement by Rickayzen,!? Ambegaokar and Kadanoff!® gave a clear calcula-
tion of the gauge invariant response of superconductors to weak electromagnetic

fields and also obtained results similar to Anderson’s. They showed that in the

long wavelength limit the collective mode can be described as a state in which the
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phase ¢ of the order parameter ) = |1)|e’® varies periodically in space and time
while |¢| remains fixed. Our approach gives the same description. Here we can
also use our Lagrangian formulation (2.34) to derive the electromagnetic response

of superconductors and show that they agree with the results given by Ambegaokar

and Kadanoff.

In equation (2.34), from & -33 = 0, one has Bu a 5 = 0. Since local gauge
invariance is always related to local charge conservation, we expect the four current

7# to be proportional to W_T’ and indeed one has,

o oL
h 3(9,9)

— et (  (%-%5), (vos ;;A)) (2.40

8ujt =0. (2.41)

and

For long wavelength effects, we can Fourier transform equation (2.40) and
(2.41) and solve for §¢(w, k) = $(w, k) — 9. We have,

e* cw@(w,k) - c2k Afw, k)

hc — c~ T2 (2.42)

§p(w,k) =

Substituting (2.42) into (2.40) then gives the correct gauge invariant electromag-

netic response of superconductors,

[ k2<I>(w,k) — wk- A(w,k)J

(P(w,k)) =

w? — c2k?
(2.43)

(5w, K)) = _nget? c2k[k - A(w,k)] —cwk@(w,k)]

—res [A(w,k] + — 5
These agree with the results obtained by Ambegaokar and Kadanoff.

In conclusion, we have shown that the theory of superconductivity develops

from the theory of neutral superfluids in a way closely analogous to the Higgs
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mechanism in quantum field theory. The Lagrangian formulation we give pro-
vides a mathematical structure upon which analogies with Higgs mechanism can
be drawn explicitly. Photons in superconductivity thus acquire a mass and the
Meissner effect can be understood naturally in a gauge-invariant way. One still
needs to do many-body calculations!!12:13 to understand the microscopic origin of
the broken symmetry and the temperature and material dependent properties of
superconductors. But with broken symmetry as the only basic starting point, one
is able to understand both the basic features and the electromagnetic response of

superconductors.



Appendix 2A

Connection with the Ginzburg-Landau Theory

We will now very briefly discuss the connection between our Lagrangian for-

mulation and the Ginsburg-Landau theory.

One can expand the Lagrangian for the ¢ order parameter (2.34) into a La-

grangian for ¢ = |¢:|ei¢ with a local gauge symmetry. A natural way to do so is to

190 ¢* 2 1 e*
(o= %2) ¥ ~|(57 5 »

It is easy to check that upon defining n*|4)|*> = ns, one would obtain the same

write

K |1
P *-—_ ——
L=n 2m* [c%

9

U(lvl) - 3u
(2A1)

Lagrangian for the ¢ field as that of (2.34). For a time-independent description,
dropping the (z F —h—@) ¥ term, one finds that £ is the same as the original
Ginsburg-Landau free energy except for an overall minus sign and for the detailed
form of U(|¢|) in the Ginsburg-Landau free energy. Furthermore, from the work
of Abrahams and Tsuneto,!* we know that for a pure superconductor (or a su-
perconductor with very dilute impurities) at zero temperature the time-dependent
generalization of the Ginsburg-Landau theory for small space and time variations

of 1 can be formulated with a Lagrangian density

2 _ v 2
%N(O)[(M 3 'f"' )’ +E <hV+——A) 1;/)
_|(ro ) [ EEE
1 Ot o 8r

which agrees with our general form of (2.42). Comparing (2.42) and (2.43) one
has,

I . T

P73 m*N(0)
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Chapter 3

Meissner Effects in Solids: Expulsion of Twist Distortions

Many physical systems display certain rigidity when a symmetry is broken:
A superconductor expels magnetic field when gauge symmetry is broken and the
superconducting order parameter is nonzero; a smectic liquid crystal expels twist
and bend distortions under appropriate boundary conditions when the translational
symmetry of a nematic liquid crystal is broken and the nematic liquid crystal
becomes a smectic liquid crystal. In this chapter, we will show that a cubic-
liquid-crystal phase — an intermediate phase between liquid and solid, with a
translational symmetry but a broken rotational symmetry for the nearest neighbor
bonds — will start to expel certain bond rotational distortions such as twist when
the translational symmetry is also broken and the cubic-liquid-crystal becomes a
solid. This is a rigidity associated with the broken translational symmetry. We
will then explain that this special rigidity against twist distortions is a result of
the expulsion of any distortions in which the local average nearest neighbor bond
direction is not parallel to the direction of lines connecting nearest peaks of local

density.

We study this effect in the context of Landau’s theory of phase transitions.
Following Nelson and Toner!, we _ﬁrst construct a free energy density valid for the
cubic-liquid-crystal to solid phase transition. In the cubic-liquid-crystal phase, the
rotational symmetry of the liquid has already been broken, and the system can be
characterized by a local set of rotation angles 8(7), measured from a preferred or-
thonormal triad. Density fluctuations leading to a crystal can be characterized by
the Fourier transform of density at a discrete set of minimal reciprocal-lattice vec-
tors {G,} with a fixed orientation relative to the preferred triad. The rotationally

24
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invariant free energy density describing the phase transition is,

2

1 3 a

2

1 B . a2
+§Bza:{Ga-(V.—zGa xT)og, | +§s;’péa

1 e | = =
t s ps pa 0L )+ K|V X0 P +2Ky(V-6)>
+t Y PG pc, T 0L )+ 5 KalY X 8+ SE(V-0)?
Loaby_
Ga+Gﬂ+G7=0
(3.1)
where s is assumed to decrease linearly with decreasing temperature, and ¢ is a

constant. For sufficiently small s, taking into consideration the cubic p term, and

if necessary, the quartic p terms, we can have

(g, ) #0. (3.2)

A solid phase is therefore formed and A and B are then related to the elastic
constants of the solid. The A and B energy terms represent the energy cost for
the new solid phase to have non-ideal spacing and direction between nearest peaks
of density maxima. The Frank constants K, and K p are stiffness intrinsic to the

cubic-liquid-crystal phase.

In the cubic-liquid-crystal phase, with (p G—-a) = 0, the twist distortion (6-07 # 0)
is distributed uniformly throughout the system when the cubic-liquid-crystal is
under external twist stress. As the system enters into the solid phase with a
broken translational symmetry with (p@a) # 0, the system starts to expel twist
distortions, and external twist perturbations can only penetrate a finite length
(penetration depth) into the system. We will show this effect explicitly using free

energy (3.1) and making a few mathematical simplifications.

For mathematical convenience and without influencing the physical results of

the argument, we make the following simplifications. First, we assume the set of
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minimal reciprocal lattice vectors {G,} form a simple cubic lattice. This in turn
gives t = 0. Second, we assume that the transition into the solid phase is either
second order or weekly first order, so that the density fluctuations can be well
described by the density Fourier transform at the three minimal reciprocal vectors.
Third, we let B = A for mathematical convenience. The resulting simplified free

energy density is

=—A Z ’ —zGaxﬂ
a=z,y,z (3.3)

1, s =92 1
+ 5 KalV x 0 K + 5 Ko

<
AT
g

We write

pg, = |,,éa|e"<¢"0(ﬂ , (3.4)

where ¢o (F) = Gq - Z(f) and u(F) represents the phonon displacement of the solid,
i.e., the displacement of the points of maximum density away from their ideal
positions. In the solid phase, to the lowest order of twist perturbations, we can
assume |pc—;~a| to be constant at a given temperature. Then the Euler-Lagrange
equations for the g-perturbation and the density fluctuation phase perturbation

= G - © can be shown to be,

240z _|*Gl (o—-vXu)+KavX(V?xo‘)—KbV(v.o“)=o, (3.5)
and

Vx§+VE=0. (3.6)

We can now easily understand the behavior of twist distortions in a solid with
a weakly broken translational symmetry. Taking the divergence of equation (3.5),

we have
1

VUV .§) -
A

(V-)=0, (3.7)
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Ap = —K”)—ﬁ (3.8)
24lps, GG

is the penetration depth for twist perturbations. It can be shown quite generally?

where

from equation (3.7) that twist deformations (with V-8 # 0) exist only within length
Ay, of the boundary of the solid and they decay exponentially (with decay length
Ap) into the bulk of the system. (For completeness, we have briefly summarized the
proof in Appendix 3A.) Therefore the broken translational symmetry represented
by order parameter PG, # 0 effectively expels the twist deformations from the bulk
of the solid. This process of rotational rigidity due to the breaking of translational

symmetry is indeed analogous to the Meissner effect in superconductors.

But the twist distortion is not the only physical quantity that is expelled from
the bulk of the system when a cubic-liquid-crystal phase makes a transition into a
solid phase. In fact, the expulsion of twist is a natural result of the expulsion of a

large class of distortions which we will define and discuss in the following.

As we discussed earlier, the local orientati;)n of the cubic-liquid-crystal is de-
fined through the direction of the nearest neighbor bonds and these bonds tend
to be parallel to a preferred orthonormal triad. As the system further breaks the
translational symmetry, it forms non-uniform density with nonzero density Fourier
components at vectors Go (@ = z,y,2.). The directions of lines connecting the
nearest peaks of density maxima tend to be parallel to another preferred orthonor-
mal triad with a fixed orientation relative to the preferred triad of the cubic-liquid-
crystal nearest neighbor bonds. (For symmetry reasons, these two preferred triad
should be the same.) Due to fluctuations, the local nearest neighbor bond direc-
tions in a cubic-liquid-crystal can be away from its preferred orthonormal triad

and the difference can be represented by a local set of rotation angle §(7). In the
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same way, the directions of local lines connecting nearest peaks of density can be
also away from its preferred triad and the angular difference can be easily shown
to be {;6 X # for small phonon displacements. Due to rotational invariance, the

difference between the above two small rotations, i.e.,

£=6--Vxa, . (3.9)

o] b=

is the real physical quantity that describes by how much the local average nearest
neighbor bond directions are not parallel to the directions of lines connecting the
nearest peaks of density maxima. This quantity is expelled from the bulk of the
system, it decays exponentially away from the surface, and its expulsion causes

twist to be expelled from the bulk of the system.

We can easily prove the above statements by first establishing the following

relations:
V-£€=V.0, (3.10)
and
Vx(ﬁx@:ﬁx(ﬁxé}—%ﬁx[ﬁx(ﬁxi)]
=\7x(§x(§)+%v‘zﬁxa‘ (3.11)
L. .

=_-Vx(Vx§),

where we used equation (3.6) for the last step of derivation. Putting these two

relations back into the Euler-Lagrange equation (3.5), we obtain an equation for 5

field:
257 ’\:},) S 1 -
VE-(1-)V(V-§ - =&=0, (3.12)
A3 A
where
K,
Aa = ——“2; : (3.13)
Alpg I°GE
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We can decompose é‘ field into a curl-free part f'd and a divergence-free part &.
Then by choosing éj and & appropriately®, the ¢ field equation (3.12) can be
written into two equations:

5 - 1 -
szd“/\_gfd=0?
b (3.14)

We see that the curl-free part of £ field fd decays into the bulk with penetration
depth Ay, while the divergence-free part of the £ field &; decays into the bulk with
penetration depth Aa. The £ field is therefore excluded from the bulk of the solid.
In the bulk of the system, the nearest neighbor bond angle distortions g is then
locked with phonon displacement via

§=-Vxiu. (3.15)

[ ST

And this is why in the normal description of a solid, the phonon # field completely

describes the distortions.

The twist distortions of the nearest neighbor bonds exist only due to a nonzero
E field, and it decays with the same penetration depth as that of the decay of a
curl-free £ field. We should notice that this twist is not the same as the “twist
distortion” of a solid caused by, e.g., twisting a solid rod. Once we can use phonon

field @ to completely describe a solid, the local rotation of bonds away from its

=

preferred triad is %6 X @ and it is always twist-free because ¥V - 3V x @ = 0.

In summary, we have shown that the breaking of translational symmetry in
a system with broken rotational symmetry causes the system to expel certain
rotational distortions such as twist. The resulting solid with broken translational
and rotational symmetry is rigid against twist perturbations. This is analogous to

the Meissner effect in superconductors. Furthermore, for the cubic-liquid-crystal to



30
solid transition, the twist distortion is just one of the distortions that are expelled
from the bulk of the system. In general, any distortions in which the nearest
neighbor bonds are not parallel to the lines connecting the nearest peaks of density

are expelled from the bulk of the solid.



Appendix 3A

General Proof of the Meissner Expulsion

In this appendix, we consider a physical system in which a physical quantity »

satisfies the following equation:
Viu—pg’u=0. (3A1)

We will prove that the solutions of this equation always show the property of
decaying very rapidly toward the interior of the system with =1 as the decay

length. (See Ref. 2 for the origin of this proof.)

We start from Green’s theorem

/// uv2v—vvudv // ug—Z-u5 ds , (3A2)

for any two functions u and v which, as well as their first derivatices, are finite
and continuous with a region of volumn V. Here v is the direction normal to the
boundary S of the volumn V and pointing toward outside. If we suppose further
that v and v satisfy equation (3A1), then the left-hand side of equation (3A2)

disappears. Let us choose v to be

e APl . (3A3)

Then v satisfies equation (3A1) everywhere except at the point P, where it has
a singularity. In order to apply equation (3A2), we have to exclude this point
from the volumn V' over which we integrate. We do this by cutting out a spherical
region of a small radius ¢ around the point P. We further confine the column with
another sphere surface S of a larger radius R centered at P and located entirely
in the interior of out system.

31
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Apply the Green’s theorem to u and the chosen v within the above chosen

volumn V, and let ¢ — 0, we have,

¢—BR
47ru(fp) = —// u(1+ GR) + %ER}dS . (3A4)

Since we can also choose

eIl (3A5)

—

IF—TP

as a solution of equation (3A1) with the same singularity at P, we obtain another

representation of u(Fp) by exchanging 8 with —f:

4ru(Fp) = ";—f //51 {u(l —BR) + %R}ds . (3A6)

Multiplying (3A4) by SR and (3A6) by e~?% and subtracting, we obtain

u(Fp) = PR s
sinhR 1’

~ (3A7)

where

1
g, = —— dsS 3A8
51 47rR2//:g1u (348)

is the mean value of u on the sphere of radius R around P. Equation (3A7) is
true for all points P and for all spheres located entirely within the system. This
result indicates that the u field always decays exponentially into the interior of the
system with #~1 as the decay length. The u field can only penetrate §~! into the

bulk of the system.
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gy = Ed + Vo ;
d (3A9)
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where ¢ field satisfies V2p = 0. It is then easy to show that with this freedom,

we can decompose é‘ field appropriately so that we can decompose the E field

equation (3.12) into equations (3.14).
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cylindrical coordinates r = (r,4, z), the order parameter is of the form A(r) =
exp(—10)A(r) with A(r) real. By taking advantage of the cylindrical symmetry,

the quasiparticle amplitudes may be written as®

+
(un(r) ) = eiklzeil‘oe_igl’o/?- (gn ) > . (5.22)
vn(r) g7 (r)

(The o’s are the usual Pauli matrices.) The Bogoliubov equations then take the

form

LD S X (1+6A9r>21_k2 (r)
omy | @ rar FTT\2T T A (5.23)

where §,, is a two component spinor. We have assumed different effective masses
m| in the plane and m; along the z direction, and defined a radial wavenumber

% b 2.2
Hek 2,2
_,,=EF_hlc:
2m”

: 5.24
. (5.24)

Since NbSey is an extreme type Il superconductor, the vector potential in Eq. (5.23)
may be ignored in subsequent calculations. In terms of these g, spinors, the pair

potential A(r) is to be determined self consistently from

Alr) = Uy Y g (r)gn (r)[1 — 2f(en)] (5.25)

and the local density of states is

N(w,r) = ) _llg3 (r)*6(w = en) + |97 ()6 (w + en)]. (5.26)
n
In these last two equations the summation includes an integration over the scat-
tering states.

The numerical procedure that Joel Shore used determines the eigenvalues by a

“shooting” method. We first factor out the asymptotic oscillatory behavior of the
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wavefunctions g, (r), and then solve the resulting differential equation for a fixed
p and k, by integrating far from the vortex axis to the axis. The requirement
that the wavefunctions be well-behaved at the axis determines the eigenvalues and

corresponding eigenfunctions. For the pair potential, we choose the form
A(r) = Agtanh(d r/§). (5.27)

We initially guess a value for d, and after the wavefunctions are determined we can
then solve for A(r) from Eq. (5.25) in order to obtain a better estimate of d, if we
assume that the shape of A(r) is accurately determined by only the bound states.

This allows us to obtain an approximately self-consistent solution.

We want to point out here that although we did not perform a fully self-
consistent calculation that would require the inclusion of the scattering states (with
€ > Ap), as mentioned by Gygi and Schluter!”, we believe the physical results we
obtained here are correct for the following reason. The local density of states for
energies less than Ag can be correctly calculated without considering the scattering
states once we are given a value of d. Full self-consistency means that we have to
include all the bound states and the scattering states to self-consistently determine
d. But our calculated local density of states turns out to be remarkably insensitive
to the value of d. For example, even changing d by a factor 5 or 10 does not
change the results much (and certainly does not change the qualitative behavior).
So whether or not we have included the scattering states for a full self-consistent

calculation does not matter much.

The numerical results are shown in Figs. 5.3-5.5. We have assumed an
isotropic three-dimensional material (m” = m;) and chosen parameters appro-
priate to NbSeg.ll8 The results for the local density of states are also remarkably

insensitive to the values of these parameters. The eigenvalues for small 4 and &k,
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agree to better than 1% with the results of Caroli et al.5 (See their Eq. (10), valid
in the limit g << Ep/A¢ and small k,.) Figure 5.4 shows the local density of
states at r =0 and r = £”, while Figure 5.5 shows the thermally broadened local
density of states (which is proportional to the experimentally measured differential
conductance dI/dV’) at a temperature of 1.9 K. The thermal broadening is due to
the finite temperature of the STM tip and the NbSes sample, and is determined
by convoluting the results in Figure 5.4 with the absolute value of the derivative
of the fermi function as in equation (5.3). Note that at r = 6“, the local density of
states displays considerable structure, but that this structure is smeared into one
large peak once we account for the broadening. We do find that at somewhat lower
temperatures or further from the vortex center, a double peak (with a dip in the
differential conductance at zero-bias) persists after thermal broadening (although
at large distances it will be washed out by the thermal broadening of the scattering
states into the gap region). This prediction was later verified by a new experiment
by Hess et al.!2, and we have displayed their experimental measurement in Figure

5.6.

Our results for the differential conductance are in satisfactory agreement with
the experimental results of Hess et al., although the peaks we obtain are about 2.5
times higher and somewhat narrower than theirs. We believe this discrepancy has
two sources: (1) Intrinsic effects, e.g., pair-breaking and dirt effects in the sample.
(Hess et al. do find some sample dependence in the height of the peaks1®.) Rough
calculations by Klein2? and Joel Shore?! show that a little dirt goes a long way in
broadening the local density of states. So even though NbSes is in the clean limit,
dirt could probably account for most of the broadening. (2) Probe resolution, e.g.,
the spatial resolution of the tip, and uncertainty in the tip temperature due to lack

of tip equilibration with the bath. We could imagine accounting for broadening
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# = 105

lu(r)[®

ﬂ u = 405

0 1 2
r/§

Figure 5.3 Quasiparticle amplitude |u(r)|? vs. the distance r from
the vortex center for two different values of angular momentum g,
demonstrating that the first peak in the amplitude occurs further
away from the center for larger p (and hence larger energy). The
parameters used here are k;, = 0, Ep/A( = 250 and d = 1.0 (see Eq.

(6)).

due to probe resolution by using an effective tip temperature of 3.5 K, which is
obtained by fitting the energy width of the experimental peak at r = 0. Using this

effective temperature would reduce the peaks in Figure 5.5 by about 40%.

Muzikar?? pointed out that the assumption of the é-function local attraction
between electrons in the Bogoliubov equation formalism may also make the theo-
retical density of states peak sharper than it would be in a calculation that includes

the Debye energy cutoff for electron-electron interactions. But a simple estimate
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Figure 5.4 Calculated local electron density of states vs. energy,
normalized by the fermi-level density of states in the normal metal,
for r = 0 and r = 6”. For r = 0, the peak is at N(E,r) ~ 180
(offscale). The parameters are £p/Ag = 250 and d = 1.0. These
parameter values yield a nearly self-consistent result for A(r) when
T =19K.

can show that this assumption should not matter too much in the weak coupling
limit. The BCS form of the phonon-mediated electron-electron attraction has the

form of (with the Fermi energy set at zero)

_ ) =Up, for e, €0 <wp;
Vg = {0, otherwise. (5.28)

The width of the momentum space cutoff roughly introduces a real space finite
range R of the electron-electron interactions:

1 hvp Ap
A — A —— Ay — . 5.29
R AR Fap "7 D€0 < o (5.29)
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Figure 5.5 The same data shown in figure 3 after convolution with
the derivative of the fermi function for a temperature of 1.9 K, in order
to simulate the differential conductance that would be observed in the
experiment. Note that in this and the previous figure, £“ has been
set so that the spatial width of the peak at zero bias approximately
matches that seen in the experiment.

Since the interation range is much less than the superconductor correlation length
in the weak coupling limit, it is safe to assume a é-function local electron-electron

interaction in the Bogoliubov equation formalism.

Furthermore, we can make a stronger statement about this assumption con-
cerning the local density of states at the center of the vortex. Even with a non-local
electron-electron interaction, we can still apply the generalized Hartree-Fock ap-

proximation to the problem and then diagonalize the new effective Hamiltonian
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Voltage (mV)

Figure 5.8 Data of Hess et al. from Ref. 12. Explicit dI/dV curves
from the STM measurement on a NbSes sample. The normalized
value of 1 corresponds to a metallic tunneling conductance of 5 x 10~9.
The 563 A curve has been shifted up by 0.75 and successive ones are
each shifted by 0.25 normalized units of conductance. The bottom
trace shows the spectra at zero magnetic field. The data clearly show
that double peak structures were observed at locations away from the
center of the vortex.
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using the unitary transformation (5.9). It can be shown and understood easily
that the quasiparticle wavefunctions uy,(r) and v, (r) can still be labelled as angu-
lar momentum eigenstates and they are all zero at the center of the vortex except
for the one with the lowest energy. Therefore, with a finite-range interaction be-
tween electrons, the local density of states at the center of the vortex will still be

sharply peaked just as in the case with local eletron interactions.

In conclusion, we have discussed the discrepancy between previous theoretical
calculations of the vortex core local density of states and a recent STM measure-
ment by Hess et al. on a superconducting NbSeo sample. We have shown tha.tv the
Bogoliubov equation formalism can be used to study this problem. We derived
the local density of states in terms of the solutions to the Bogoliubov equations.
We also solved the Bogoliubov equations numerically for the quasiparticle bound
state energies and wavefunctions in the core of a vortex, and have found that the
local density of states from our calculation can satisfactorily explain the zero bias
tunneling peak seen by Hess et al.. We find additional structure in the local den-
sity of states, and on the basis of this, we predict that if the tunneling experiment
is performed at lower temperatures, the zero-bias peak will split into a double
peak (with a dip at zero bias) as the STM tip is moved away from the vortex
center. This prediction was indeed verified by new experiment performed at lower
temperatures!2. Through the above discussions and calculations, we conclude that
the recent STM experimental observation by Hess et al. of the local density of

states of a vortex core is in agreement with the BCS superconductivity theory.



Appendix 5A

Tunneling Currents and Density of States

In a scanning-tunneling-microscope (STM) measurement, the electron tunnel-
ing occurs at the STM tip. So we expect the tunneling current to be related to
the local density of states at the neighborhood of the tip position. We first define
N (w,r) as the density of states at energy w reached by adding an electron to
the system at r, and N<(w,r) as the density of states at energy (~w) reached by
removing an electron from the system at r. Then on intuitive grounds, when the
left side of the tunnel junction is biased at a potential V' greater than the right side
(e = 1), we can write the tunneling currents from left to right as (see reference 1

for detailed discussion of assumptions involved here},
o0
Iy .p= A/ dw|T|? [Nf(w - V)Ng(w) = N (w - V)Ng (w)] ,  (5A1)
—00

where A is a constant of proportionality, V' is the applied voltage, and T is the
tunneling matrix element which we will assume to be constant for small energy
variations. By definition, the density of states N~ (w,r) and N<(w,r) can be
written as
N3 (@F) = Y ([l (0) | m) [ 6(En — B - ) ;
n,m

\ (5A2)
NS @,5) =Y pm(n[a(x)|m)| 6(En - Bm +w),

n,m

where a represents electron spin and p,, is the statistical weight of state m defined
in equation (5.2). The density of states NJ (w,r) and NS (w,r) are very simply re-
lated. By exchanging the summation index n and m in the expression of N5 (w,r),

we have

(m Y (@) 7] 6(Em — En — w)

Ng(w,r) = an
n,m
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=) e"""ﬂmkﬂ [ (x)| m)| 8(En — Em — w)

=e N> (w,r) . (5A3)
We now define the usual density of states as

No(w,r) = NJ (w,r) + N5 (w,r)
= (14 e PN (w,1)

= (1+e ) Y o[ b ()| m)[ 6(Bn - B —w) . (5A9)

and we then have

{ Ng (w,r) = Na(w,r)[1 - f(w)] ;
(5A5)

NS (w,r) = No(w,r)f(w) -
For a normal-superconductor STM tunnel junction with a voltage V applied, the
STM tunneling current is
2 o o]
I =~ A|T| / dwNp(w — V)Ns(w)[flw = V) = f(w)], (5A6)
—0o0
where N, and N denote normal and superconductor density of states, respectively.

Assuming that the normal STM tip density of states remains roughly constant for

energy variation of size A, the differential conductance is then

5]

o AITEN /oo dwNs(w + V)[
EV— n oo s -

(5A7)

The derivative —a—fai‘:i) is a sharply peaked function with width kgT and total

integral 1. For kgT <« V, we can treat —% as a 6-function, and we have

dI
7 ® A|T|> Ny - Ns(V) . (5A8)

This equation is good only with an energy resolution kgT. For temperatures
comparable to energy V, one should always use the thermally smeared density of

states in equation (5A7) to calculate the differential conductance.
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Chapter 6

Dynamics of the normal to vortex-glass transition: mean field theory

6.1 Introduction

In 1957, Abrikosov! showed that a type II superconductor allows partial penetra-
tion of magnetic flux in the form of vortices when the external magnetic field is
between H.; and H,9. In this mized state, the vortices form a triangular lattice.
Later studies showed that the mixed state is not a superconducting state and dis-
sipation of energy occurs when there is an electric current. Two models? were
introduced to study the transport properties of the mixed state. The flux flow
model assumes that the dissipation in a homogeneous type II superconductor is
caused by the electric currents flowing through the normal vortex cores drifting
under the influence of the Lorentz force. The flux creep model by Anderson and
Kim3 assumes that in an inhomogeneous type II superconductor bundles of vortices
can jump between pinning points due to thermal fluctuation and the net flow of
vortices transverse to the applied current causes the dissipation of energy. These
early transport theories of the mixed state agreed reasonably well with experi-
mental studies on conventional superconductors. But the recently discovered high
temperature superconductors have several unusual mixed state properties. These
include (1) the existence of an “irreversibility” line in the H-T phase diagram,*®
which has the form T, ~ Tg — H 2/3  reminiscent of spin glass behavior; and (2)
an anomalous magnetic field induced broadeﬁing of the resistive transition,5:78

- which appears to scale as H 2/3, These new experimental observations demand an

explanation based on a thorough study of the dynamics of the mixed state.
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Understanding the dynamic properties of the mixed state in type-II super-
conductors is theoretically challenging due to the competition between collective
intervortex interactions, which favor a triangular lattice structure, and vortex pin-
nings by dirts, which favor a pinned disordered vortex structure. As first discussed
by Larkin and Ovchinnikov,? pinning destroys the translational long range order of
the Abrikosov flux lattice. Recently, Matthew P. A. Fisher!? argued that pinning
and collective effects conspire to produce a vortex glass phase at sufficiently low
temperatures. In this phase the vortices are frozen into an equilibrium configura-
tion characterized by a type of “spin glass” order, rather than the translational long
range order of the flux lattice.!! As a result, the linear resistance Ry = lim;_oV/I
is identically zero in this phase, in contradistinction to the Anderson-Kim model
of flux creep,3 which only considers the effects of pinning and predicts that R L #0
throughéut the entire mixed state. Following this, Fisher, Fisher, and Huse!2 de-
veloped a scaling theory for the normal to vortex glass phase transition. Tentative
experimental evidence for the vortex glass phase in the high temperature super-
conductor YBCO has been given by Koch et al.,!3 and Gammel et al.,1* who have
used the proposed scaling theory of the conductivity!? to interpret the nonlinear
I-V characteristics in terms of the vortex glass model. Theoretical evidence for the
transition consists of the existence of a vortex glass phase in a two dimensional
toy model of a vortex glass,'%12 and numerical simulations on a simplified three
dimensional model of a vortex glass.!> What remains to be done is a full calcula-
tion of the phase boundary, scaling functions, and the critical exponents, which we
attempt to study in the following. The work was done in collaboration with Alan

T. Dorsey and Matthew P. A. Fisher.16

In this chapter we consider a mean field theory for the dynamics of the normal

to superconducting vortex glass transition. This allows us to calculate the mean
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field phase boundary for a realistic model of a vortex glass in three dimensions. In
addition, we determine the mean field static and dynamic critical exponents for the
transition by calculating the vortex glass order parameter susceptibility. We will
also compare the magnetic field induced transition broadening calculated in our
mean field theory with that observed in the experiments. Our work draws heavily

on studies of the critical dynamics of spin glasses.!?:18

6.2 The Model

Following Fisher!?, we use for our model the Ginzburg-Landau free energy func-

tional for a superconductor in an external magnetic fleld H =V x A
1 : na b
= /dr {EEKV —1e* A + [a + ay (v) |9 + §|¢1|4 — h*y — th*} . (6.1)

where m is the mass of a Cooper pair (assumed to be isotropic), e* is the electric
charge of a Cooper pair, A = ¢ = 1, h and h* are conjugate fields which are
introduced to generate response and correlation functions, and where the terms for
the magnetic field energy have been droppéd. For simplicity we ignore fluctuations
in the electromagnetic field. The quenched disorder has been incorporated by
defining a random T (a = a¢(T — Tj)), which is assumed to have Gaussian white
noise correlations, so that

ay(r) =0;

(6.2)

ai(r)a;(r') = 44A6(r - 1),
where the overbar denotes an ensemble average over disorder (as throughout the
rest of the chapter). This spatial variation in 7. simulates vortex pinning since

regions of the sample which have a locally lower T, and consequently a higher

free energy, will tend to attract the normal cores of the vortices. As argued by
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M. P. A. Fisher,0 at low enough temperatures, the superconductor in an external
magnetic field should be in a vortex glass phase with a nonzero Edwards-Anderson

order parameter!! as
ave = [{($(r)}?, (6.3)

where the angular brackets denote a thermal noise average (as throughout the

remainder of the chapter).

We are interested in the dynamic properties of the vortex glass phase in order
to understand the transport properties of the mixed state. For the dynamics of
the disordered Ginzburg-Landau model, we assume relaxational dynamics for the

nonconserved order parameter (model A),1?

oX

Ty (e ) = ~gpry

+¢(r,t) , (6.4)

where the thermal noise ¢(r,?) is assumed to be a Gaussian white noise:

2kpT

T 6(r—r)6(t—-t) . (6.5)

(¢*(r,t)c(r',t")) =

Equations (6.1) and (6.4) combine to define our model.
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6.3 The mean field theory

As Sompolinsky and Zippelius!? did with the spin glass dynamics, we use the
Martin-Siggia-Rose formalism2? of writing dynamics models into functional inte-

grals to formulate our mean field theory. The resulting generating function is
21,1, by k] = / DYDY DYDY [, v*)eE | (6.6)
where
L=CLo+Lp+ Ly, (6.7)

with
Lo = /dtdr{l¢* + I+ hp* — R~ T

—§*[Iy'e; - é%(v —1eA)% + aly (6.8)

- 1 . .
+ 90510y ~ —(V +ieA)? + a]¢*} ,

tr= [ draiw){ [ abur - i}, (6:9)
£r= [ auar s{duriul - droiwl?} (6.10)
J,9*) = exp{I‘O / dtdr&fb?;*} , (6.11)

where ¢ and ¢* were introduced to obtain a quadratic L. The normalization

condition is

Z[0,0,0,0] =1, | (6.12)

and the thermal average of a general function of the % field and its derivatives can

be calculated from the generating function as

a 0 "
<f(¢,¢*,5,;,5;)> = (f@.v" =97
o 8 4

O 7 1 b h
=G 3w g 201 R

I=l*=h=h*=0 .
(6.13)
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It is useful to introduce the response function and the correlation function for the

¥ field:
R(r,t;r',t) = 5_‘5(}:”(3—:,))) = <¢(r,t)¢3* o, t) > ; (6.14)
C(r,t;r',t) = (y(r,t)p*(r',t)) . (6.15)

These are the response and correlation functions for a particular realization of the
disorder; the disorder averaged response and correlation functions will be denoted
by R and C.

It is very difficult to calculate the generating function Z with the Lagrangian

terms (6.7) — (6.10). Here we will make the following mean field approximations.

We average over the disorder term L p and obtain the following quartic terms
Lp= % / o / dtydts ()97 (2)B@)w* (1) + §* ()(2)5 (2)p(1)
| - 23" (@ @)()]

where 1 and 2 denote (r;,t;) and (ro,ty) respectively. We then apply the mean

(6.16)

field Hartree approximation to the new [ p term and the quartic interaction term

L. We have

Lw g [ dratidns[RE,1E @0) - B2 DI () - CW2P Q)]
(6.17)

and

Ly~ / drdt b[C(xt, 1) {rt)" (zt) - O(et,rt)b* (re)b(rt)] (6.18)
Putting these two equations back into the generating function, and reverse the
procedure of the Martin-Siggia-Rose formalism, we obtain the new effective mean
field equation of motion for the field ¢(rt)

rglat¢(rt)-2im(v — ieA)2(xt) + [a + bC(rt, xt) | (rt)

_ % dt'R(xt, vt} (rt') = n(xt) + h(rt) ,

(6.19)
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where the new effective noise n(rt) is no longer a white noise. Instead, the disorder

in the system makes it a noise with time memory:

2kgT
To

6(r—r)6(t~t) + %

(n(rt)n*(¥'t)) = C(rt,rt)é(r —1') . (6.20)

Notice that the effective equation of motion is linear, we can therefore write
W(rt) = / dr'dt' R(ct, f't)n(c't!) + h(r't))] , (6.21)

and we can establish a relation between the disorder averaged correlation function

C(rt,x't') and the response function R(rt,r't') as follows,

= 2kgT _ _
C(rt,r't") =ri/drldth(rt,rltl)R*(r’t',rltl)
0

A " _ ~
+—‘i—/drldtldth(rt,rltl)R*[r’t’,rth)C(rltl,rltg)

+/drldtldrgdtgl?(rt,rltI)R*(r't',rgt-g)(h(rltl)h*(rg,tg)) .
(6.22)
We can now calculate the vortex glass order parameter susceptibility xy¢.
Following the dynamics approach of the spin glass theory by Sompolinsky and
Zippelius, we can write the Edwards-Anderson order parameter of the vortex glass

phase as the time persistent part of the correlation function C:
qvg = (¥(rt)) (p*(rt’))

|t—t!|—o0

= lim Cf(rt,rt').

|t=t!|—o0
As in the case of a spin glass!!, we can also define the vortex glass susceptibility as
the response of the vortex glass order parameter with respect to a small random

staggered time persistent source field A (rt) which satisfies

[h(l'l,tl)h*(rztz)] = h2é(r; —ra) (6.24)

S
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where the square brackets with subscript s denote the average over the random
source field. We can then calculate the vortex glass susceptibility using equation

(6.22), and we get

G !
XVG = = ——, (6.25)
hr 1 - TI
where
I= /d(r—r1)|R(r,r1;w —0)2. (6.26)

We can generalize this vortex glass susceptibility derivation for w # 0 and k # 0
by assuming a small random source term with a space and time dependent average
as

[h(rl,tl)h*(rgtg)]s = h2ek Tt ~2)g(r) — ry) . (6.27)
When the time period of the variation of the source term is much larger than the
relaxation time 7 of the vortex glass system, we can define the vortex glass order

parameter as

qvG = lim C(rt,rt') , (6.28)
rft—t' |« /w

and we obtain

I(k,w)
xvelk,w) = ————, (6.29)
1~ SI(k,w)
where
I(kw) = / d(r — rp)e= =T R(r, rpsw) 2 . (6.30)

The normal to the vortex glass phase transition boundary is then determined by

1- %I(k —0,w=0;T,) =0, (6.31)

where Ty is the vortex glass transition temperature. In the following, we will first
calculate the shape of the phase boundary T;(H). We will then calculate all the
critical exponents of the normal to vortex glass transition within the mean field

theory and express the vortex glass susceptibility in a scaling form.
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6.4 The Phase Boundary

The normal to vortex glass transition boundary Ty(H) can be calculated from
equation (6.31). To do so, we need to go back to the effective equation of motion
(6.19) to calculate the response function. Using the definition of the response
function (6.14) and doing Fourier transform of equation (6.19), we obtain the self-
consistent equations for the response function R:

[~ir5 - -2—;-(v ~ieA) + | R(r,¥sw) = 8(c ) ; (6.32)

@ =a+bkgTR(r,r;w =0) + bkpTqy(r) — %—R(r r;w), (6.33)

where @ is the renormalized value of a. In arriving at the above equations, we have

rewritten C(rt,rt) as follows. We first define the physical correlation function with

qvg 7 0 as

C(rt,r't") = ([(rt) — (p(rt))[P*('7) - ($*(r'?))]) , (6-34)

from which we have

C(rt,rt) = C(rt,rt) + qye(r) . (6.35)

Using the fluctuation-dissipation theorem, we have

C(rt,rt) = kgTR(rt,rt) + kgTqyc(r) . (6.36)

We now derive an identity that is useful in determining /(¥ = 0,w = 0). Taking

the derivative with respect to @ in equation (6.32), one can easily show

dR(r,r;w = 0)

= (6.37)

I(k =0,w=0) = /dr1|R(r,r1;w =0)* =-

We can explicitly express R(r,r;w = 0) in terms of & by solving equation (6.32).

We obtain
m3/2uq N

2f7r =0

1 ~]—1/2

R(r,r;w=0) = [( + -2—)w0 +a , (6.38)
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where wg = eH/m and N is a cutoff. The phase boundary can then be determined
by solving the following two equations simultaneously to determine Ty (H):

N

an1—3/2
Z [n + . + ﬁ} / = 16v276 ; (6.39)
n= 2 (JJO
. A m3/2wé/2 Al 1 ag1-1/2

where ¢y = a(Ty —Tp), ¢ is @ evaluated at the vortex glass transition temperature

T,(H), and § is a dimensionless parameter defined as

(6.41)

These two equations are rather difficult in general, however in the limit of high
magnetic fields, i.e., § > 1, we need to keep only the lowest Landau level (n = 0).

In this limit, we obtain,

(6.42)

1 (kaT 3) (m3/2Aw0)2/3 .
A 8

ag+§woz— .

The mean field T.o(H) for the transition from the normal state to the Abrikosov

flux lattice state is given by a.9 + wg/2 = 0, so that the difference is

ag —aco = o|Ty(H) — Teo(H))
_ bkpT 3\ (m3/2Awg\2/3
- ‘( A 5)( )
x —H*3 . (6.43)

n

Thus, in the limit of high magnetic fields, the difference between the mean field
vortex glass phase boundary and the mean field Abrikosov phase boundary scales
as H2/3. This field dependence is reminiscent of the “irreversibility line” in YBCO
which has been discussed by several authors.#® Although our calculated phase

boundary Ty(H) — Tea(H) ~ —H?/3 is different from the experimental phase
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boundary T, — Ty ~ —H 2/ 3 our calculation may still be able to explain the shape
of the experimental irreversibility line if the Abrikosov phase transition tempera-

ture Tco(H) does not change too much within the experimental range of variation

of the field H.

6.5 The Mean Field Critical Exponents

We now turn to the critical dynamics in the mean field theory. Since we are
primarily interested in the long wavelength, low frequency response near the tran-
sition, we can expand the vortex glass susceptibility (6.29) for small k,w, and
9 = (T — T,)/T,;. The expansion can be done by solving equations (6.32) and

(6.33) self-consistently. We began by writing the response function as
R(r,r';w,8) = R(r,r’;0,0) + ¢(r,r';w,0) . (6.44)

Putting this back into equations (6.32) and (6.33), expanding €(r,r';w,0) in the

lowest non-trivial order of w, k, and 8, we obtain

k]

e(r ¥ 30,0) ~ —() /202 — i ] V% L Rlrn;0, O Rer, 730,0)

TyA(H) [ dry|R(r,r;;0,0)|2
(6.45)
where # is a constant defined as
a'ZT’ZA.'}
= —2"9 6.46
T Te? (6.46)
and A(H) is defined as
A(H) =/drldrgl?(r,rl;0,0)R(rl,rg;0,0)R(rg,r;0,0)
(6.47)

N -
__ 8 3 -32 1, &)—%/2
T lever 0 Z[(”+2)+w0] ;

n=0
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Inserting the response function expansion into the vortex glass susceptibility equa-
tion (6.29), we finally obtain the scaling function of the vortex glass susceptibility:
42 1
xvelk.w) = <A3/2{,1/2) A(H)8

1 (6.48)

1/2 /B m(k%+k§)+alk~2 ,
RPN A(H)9

X

2
1 1 e
[ +\/ + rgﬁ?A(H)lo‘l
where we have assumed that the external magnetic field is in the z-direction, q

and a; are lengths defined as
2 215 . 2 21 B . 2
a” =/d1‘1($ - Il) IR(rrrhO’Ol = / drl(y - yl) JR(I‘,I'I,0,0' ’ (6‘49)

and

aﬁ_ = /drl(z - 21)2|R(r,r1;0,0|2 . (6.50)
We see that the vortex glass susceptibility satisfies the following scaling form:
xvG « 07T X (k€ wE’) (6.51)

with
Ex 7. (6.52)

Comparing this scaling form with equation (6.48), we obtain the following mean

field critical exponents:

1
v=—-;

2
Ny=1; (6.53)
z2=4,

For the critical exponent 8, we need to study the temperature region Tg‘ . Let
the random source term hZ = 0 in equation (6.22), taking the limit of [t —t/| — oo,
we obtain

avell - %I(k,w)] ~0. (6.54)
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Since gy # 0 below the transition temperature T, we again have
A
1-—I(k,w) =0. (6.55)

But here we have to solve equation (6.32) self-consistently while keeping the qy

order parameter term. We obtain
qyg = —kgab -0, (6.28)

from which we have

B=1. (6.56)

Not surprisingly, all the static and dynamic mean field critical exponents turn
out to be the same as those of the spin glass transition. The critical behavior of the
normal to vortex glass transition is indeed very similar to that of the paramagnetic

phase to spin glass transition.
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6.6 Field Induced Transition Width Broadening

As discussed earlier, experimental observations have found®"® a magnetic field
induced broadening of the resistive transition that appears to scale as H 23, 1f
we assume that the low temperature phase in the experiment is indeed the vortex
glass phase, we can reasonably explain the field induced broadening within our

mean field theory.

The vortex glass susceptibility with w =k =01s

1

(6.57)
The vortex glass transition width is clearly proportional to A(H )“1. We now esti-
mate the field dependence of A(H) in order to estimate the field induced broadening
in our mean field theory. Let us go back to the expression of A(H) in equation
(6.47). Notice that the rescaled @4 also depends on wg = eH/m, so we need to
couple this equation with the phase boundary conditions (6.39) and (6.40). In the
high magnetic field limit 6 = \/%; > 1, we can keep only the lowest La.ndau

level (n=0) in the summations. Using the result in equation (6.42), we have
A T
A(H) o wo(@g + Swo) 52

x wo(__ms/ “Au2/3(-5/2)

~2/3
X (4.)0

o« H-2/3 (6.58)
So the vortex glass transition width scales as
A(H)! « H3 (6.59)

which agrees with the experimental observations.b7-8
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6.7 Conductivity

With the mean field value of the dynamic critical exponent z = 4, we can now
determine the critical behavior of the conductivity in a normal to vortex glass
transition. Fisher, Fisher, and Huse!? developed a scaling theory for the vortex
glass transition and their scaling form of the electric conductivity above the tran-

sition temperature Ty is
o(w) ~ £ 1S (we?) . (6.60)
The conductivity should then diverge as

as the superconductor approaches the vortex glass transition temperature Ty from
the normal phase. This result does not agree well with the experimental measure-
ment which roughly gives!3

Oexp ~ g—+8 (6.62)
We believe that the discrepancy is due to the fact that the YBCO sample is in
the critical regime so the mean field exponents are not expected to be correct. In
order to compare well with the experiments, we need to use the renormalization
group method to calculate all the critical exponents. We leave this topic to future

research.

6.8 Conclusion

In summary, we have formulated a mean field dynamic theory for the normal to
vortex glass transition. We obtained all the mean field critical exponents of the
transition and determined the phase boundary. We also successfully explained the

experimentally observed magnetic field induced transition broadening.
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