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Hysteresis loops are often seen in experiments at first-order phase transformations, when the system goes
out of equilibrium. They may have a macroscopic jumpughly as in the supercooling of liquidsr they may
be smoothly varyingas seen in most magngtsVe have studied the nonequilibrium zero-temperature random-
field Ising-model as a model for hysteretic behavior at first-order phase transformations. As disorder is added,
one finds a transition where the jump in the magnetizateamresponding to an infinite avalangtdecreases
to zero. At this transition we find a diverging length scale, power-law distributions of f@is¢anches and
universal behavior. We expand the critical exponents about mean-field theory drdiénensions. Using a
mapping to the pure Ising model, we Borel sum theebexpansion toO(e®) for the correlation length
exponent. We have developed a method for directly calculating avalanche distribution exponents, which we
perform to O(€). Our analytical predictions agree with numerical exponents in two, three, four, and five
dimensiong Perkovicet al., Phys. Rev. Lett75, 4528(1995]. [S0163-182696)05118-1

[. INTRODUCTION happening on microscales, in many systems they can become
monstrously large so that we—in spite of being large, slow
The modern field of disordered systems has its roots irtreatures—can actually perceive them directly without tech-
dirt. An important effect of disorder is the slow relaxation to nical devices. This reminds one of the behavior observed
equilibrium seen in many experimental systehiis paper near continuous phase transitions, where critical fluctuations
is an attempt to uneartiniversal, nonequilibriuncollective  do attain human length and time scales if a tunable parameter
behavior buried in the muddy details of real materials ands close enough to its critical value. Correspondingly one
inherently due to their tendency to remain far from equilib- might expect to find universal features when the sizes and
rium on experimental time scales. In particular, we focus ortimes of the avalanches get large compared to microscopic
two distinctly nonequilibrium effects(a) the avalanche re- scales. Interesting questions concerning digribution of
sponse to an external driving force aflg the internal his- avalanche sizes arise. Many experiments show power-law
tory dependence of the systdimysteresis distributions over several decades. For example, experiments
Systems far from equilibrium often show interesting measuring Barkhausen pulses in an amorphous alloy, in iron,
memory effects not present in equilibrium systems. Far fronand in alumel revealed several decades of power-law scaling
equilibrium, the system will usually occupy some metastableor the distribution of pulse areas, pulse durations, and pulse
state that has been selected according to the history of trenergies>=2*Similarly, Field, Witt, and No#? recorded su-
system. Jumps over large free-energy barriers to reach @erconductor vortex avalanches in NTiss, in the Bean
more favorable state are unlikely. The system will movestate as the system was driven to the threshold of instability
through the most easily accessible local minima in the freeby the slow ramping of the external magnetic field. The ava-
energy landscape as an external driving field is ramped, bdanche sizes ranged from 50 to l¢bllectively moving vor-
cause it cannot sample other, probably lower-lying minimatices. The corresponding distribution of avalanche sizes re-
from which its current state is separated by laf@ee- vealed about three decades of power-law scaling. Numerous
energy barriers. The complexity of the free-energy land- other hysteretic systems show similar power-law scaling
scape is usually greatly enhanced by the presence of disobehavior?>=28
der. It is well knowri~" that disorder can lead to diverging ~ Why should there be avalanches of many sizes? In this
barriers to relaxation and consequent nonequilibrium behavyaper we propose that the large range of observed avalanche
ior and glassiness. sizes in these systems might be a manifestation of a nearby
(a) Avalanches. In some systems, collective behavior ircritical point with both disorder and external magnetic field
the form of avalanches is found when the system is pusheds tunable parameters. We have modeled the long-
by the driving field into a region of descending slope in thewavelength, low-frequency behavior of these systems using
free-energy surface. In experiments avalanches are often afe nonequilibrium zero-temperature random-field Ising
sociated with crackling noises as in acoustic emission andhodel (RFIM). Some of our results have been published
Barkhausen nois&!! There are other nonequilibrium sys- previously?**°In contrast to some other hysteresis models,
tems where no such collective behavior is seen. Bending kke the Preisach mod& and the Stoner-Wohlfarth modl,
copper bar, for example, causes a sluggish, creeping ravhere interactions between the individual hysteretic units
sponse due to the entanglement of dislocation lines. In conigraing are not included and collective behavior is not an
trast, wood snaps and crackles under stress due to “avassue, in the RFIM the intergrain coupling is the essential
lanches” of fiber breaking® ingredient and cause for hysteresis and avalanche effects.
Although avalanches are collective events of processesuning the amount of disorder in the system we find a
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second-order critical point with an associated diverging—d, whered is the dimension of the system adg=6 is the
length scale, measuring the spatial extent of the avalanchegper critical dimension of the transition. Note that the
of spin flips. A power-law distribution with avalanchesalf  expansion is an asymptotic expansion in terms of a quite
sizes is seen only at the critical value of the disorder. Howunphysical parameter. Nevertheless it has proven very suc-
ever, our numerical simulatioh$ indicate that the critical cessful for mathematical extrapolations. In this paper we
region is remarkably large: almost three decades of powershall apply its basic ideas to our problem and refer the reader
law scaling in the avalanche size distribution remain wherfor further details to excellent reviews in the existing
measured 40% away from the critical point. At 2% away, weliterature>®=*
extrapolate seven decades of scaliffhe size of the critical The calculation turns out to be interesting in its own right.
region is nonuniversal and will therefore vary with the physi-In contrast to RG treatments of equilibrium critical phenom-
cal system.One reason for this large critical range is trivial: €na, a calculation for our hysteresis problem has to take into
avalanche sizes are expressed in terms of volumes rathagcount the entire history of the system. It reveals formal
than lengths, one decade of length scales translates to thréinilarities  to  related single interface depinning
decades of sizéor less if the avalanches are not compact,transitions’®=>° Although our problem deals with the seem-
i.e., if the Hausdorff dimension is less than threBome  ingly more complex case ahanyinteracting advancing in-
experiments that revealed three decades of power-law scderfaces or domain walf®>°the calculation turns out to be
ing have been interpreted as being spontaneously self-simil&ather simple, much simpler in fact than in the single inter-
(“self-organized critical).*3?%32 Our model suggests that face depinning problem. The simplicity of the RG calcula-
many of the samples might just have disorders within 40% ofion in fact allowed us to develop a method to calculate the
the critical value. Tuning the amount of disorder in theseavalanche exponents directly in tleexpansion, which, to
systems might reveal a plain old critical point rather thanour knowledge, so far has not been possible in depinning
self-organized criticality. transitions. The method involves replicas of the system in a
(b) Hysteresis. At the critical disorder we also find a tran-very physical way. We have used it to calculate the ava-
sition in the shape of the associated hysteresis loops: Sy#nche exponents to first order ia The techniques em-
tems with low disorder relative to the coupling strength, haveployed here are likely to be applicable to other nonequilib-
rectangle-shaped hysteresis loops and a (Bigrkhausep rium systems as well.
discontinuity, while systems with large disorder relative to  This paper is organized as follows: The model is intro-
the coupling show smooth hysteresis loops without macroduced in Sec. Il and a summary of our results is given in Sec.
scopic jumps. At the critical disordé, separating these two IlI. In Sec. IV the RG description is set up using the Martin-
regimes, the size of the jump seen in the low disorder hysSiggia-Rose formalism, and a description of the perturbative
teresis loops shrinks to a point at a critical magnetic fieldexpansion of the critical exponents is given in Sec. V. Sec-
H.(R.), where the magnetization cund(H) has infinite  tion VI contains a formal discussion of the mapping of our
slope. The power law with which it approaches this point is6—¢€ expansion to the corresponding-6 expansion for the
universal. Initial experimental results in thin magnetic films equilibrium or thermal RFIM. We extract corrections to
seem to show the same kind of crossotief! The disorderin ~ O(€®) for most of the exponents and show a comparison
these systems was changed by annealing the samples at vdietween the Borel resummation of teeexpansion and nu-
ous temperatures. Detailed discussions of Barkhausemerical results. The mapping does not, however, render the
experiment§,4_21 and related experiments in nonmagnetic exponents governing the avalanche size distribution. In Sec.
avalanching systems(in shape memory alloys®°> VIl a new method to calculate avalanche exponents directly
supercondutoré;=° liquid helium in Nucleporé! and oth-  in an e expansion is described and performedQge). Fi-
ers, and a quantitative comparison with our theory is givennally, in Sec. VIIl we compare the results to extensive nu-
in forthcoming publication$:>":38 merical simulations in two, three, four, and five dimensibns.
(c) Results. The main point of this paper is to report a Some of the details of the mean-field calculation are given
history-dependent renormalization-grodRG) description in Appendix A. Details on the implementation of the history
for the nonequilibrium zero-temperature random-field Isingin the RG calculation are given in Appendix B. The behavior
model. One of the triumps of the RG is to show from firstnear the infinite avalanche line in systems with less than
principles that near the critical point the interesting long-critical randomness is discussed in Appendix C. Appendix D
wavelength properties are given bypmogeneous functions renders details on the calculation of the avalanche exponents
with respect to a change of length scale in the system. ThiBy the use of replicas. Some related problems and the stabil-
observation leads to Widom scaling forms for the variousity of the universality class against changes in the model are
macroscopic quantities. The main motivation of the workdiscussed in Appendix E.
presented here is then to provide a formal justification of the
scaling ansatz used in the data analysis and an explanation
for the broad universality of the observed critical exponents.
We would like it to be viewed as the ultimate justification for ~ As is well known from equilibrium phenomena, behavior
the attempt to extract useful predictions about real complexn long length scales can often be well described by simple
materials from an extremely simple caricature of the micro-microscopic models that only need describe a few basic
scopic physics. properties correctly, such as symmetries, interaction range,
In particular, we have used the RG description to deriveand effective dimensions. This notion has been successfully
an expansion for the critical exponents around their meanapplied in particular to equilibrium magnetic systems: the
field values in powers of the dimensional parameterd,  scaling behavior found in some pure anisotropic ferromag-

Il. THE MODEL
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nets near the Curie temperature is mimicked reliably by the

regular Ising modei®®® At each sitei in a simple cubic hef=—2 Jjs—H-T;, (4)
lattice there is a(spin variable s;= =1 5% which interacts )

with its nearest neighboig on the lattice through a “ferro- and the local dynamics remains otherwise unchanged. We
magnetic” exchange interactiod;;=J/z. z is the coordina- assume a Gaussian distributip(f;) of standard deviatioR

tion number of the lattice and is a positive constant. The for the fieldsf;, which is centered af;=0:

Hamiltonian of the system is

1 p( fZ
. p(f)= exp — -
k75—_; ‘Jijsisj_HEi S;, (1) ! >R 2R2

where it is understood that the sum runs over nearest\S We Will show, the critical exponents do not depend on the
neighbor pairs of spins on sitésandj andH is a homoge- €xact shape of the distribution of random fields. To pick a
neous external magnetic field. To model nonequilibrium ef-Gaussian is a standard choice, whidhe to the central limit
fects we now impose a straightforward local dynamicstheorem(Ref. 63] is also more likely to be found in some
assuming that each spin will always be aligned with the real —experiments than, for —example, rectangular
total effective field at its site distributions:

. (5

hef=— 35— H. @ Ill. RESULTS
J

The nonequilibrium model of Eq3) can be solved in the
We find that the resulting magnetization curve at zero temmean-field approximation where every spin interacts equally
perature becomes history dependent. The system will typistrongly with every other spin in the system. The coupling is
cally be in some metastable state rather than the ground sta®. size J;;=J/N, whereN is the total number of sping.e.,
The upper branch of the rectangular shaped hysteresis cur@d spins act as nearest neighbor¥he Hamiltonian then
corresponds to the case where the external magnetic field tgkes the form

lowered monotonically and adiabatically, starting fréds=

+_oo, yvherelall spins were pointing up. At the n_egativ_e coer- = _E (IM+H+f)s, (6)

cive field H,= —2dJ;;=—J all spins flip down in a single i

system spanning event or “avalanche.” Similarly, for in- i.e., just as in the Curie-Weiss mean-field theory for the Ising

creasing gxtefr.n%*rDigzr:jetlc_fleld, Ithsy all flip ulp at Lhe phos"model, the interaction of a spin with its neighbors is replaced
tive coercive fieldH = 2dJ; = +J. It becomes clear that the 1o interaction with the magnetization of the system.

underlying cause for hysteresis in this model is the interac-~ ; s out that the mean-field theory already reflects

tion between th? SpINs. . , most of the essential qualitative features of the long-length
_ In real materials there will usually also be inhomogene-gc4je phehavior of the system in finite dimensions: Sweeping
ities and disorder(defects, grain b_oundarles, l_mpu_rlt)es the external field through zero, the model exhibits hysteresis.
leading to random crystal anisotropies and varying interaCag gisorder is added, one finds a continuous transition where
tion strengths in the system. Consequently not all spins will,, jump in the magnetizatiofcorresponding to an infinite
flip at the same value of the external magnetic field. Instead,, 5janchp decreases to zero. At this transition power-law
they will flip in avalanches of various sizes that can be bro-isyrihutions of nois¢avalanchesand universal behavior are
ken up or stopped by strongly “pinned” spins or clusters of ghserved. As we will show later in a RG description of the

previo_usly flipped s_pins. L model, the critical exponents describing the scaling behavior
A simple way to implement a certain kind of uncorrelated, near the critical point are correctly given by mean-field

quenched disorder is by introducing uncorrelated randomy,qqry for systems in six and higher spatial dimensions. The
fields into the model. In magnets the random fields mightx aj10ws us to calculate their values i®—¢) dimensions

model frozen-in magnetic clusters with net magnetic Moy, 5 nower-series expansion &0 around their mean-field

ments that remain fixed even if the surrounding spins changg, | es ate=0. In the following we briefly present the results

their orientation. In contrast to random anisotropies theWrom mean-field theory, from the expansion and from nu-

break time-reversal invariance by coupling to the order pay,grica| simulations in three dimensions. More details will be
rameter (rather than its squareln shape memory alloys, %iven in later sections

ramping temperature, the random fields can be thought of a
concentration fluctuations that prefer martensite over the aus- o

tenite phasé? In the martensitic phase, ramping stress, they A. Results on the magpenzanon curve .

model strain fields that prefer one martensitic variant over Figure 1 shows the hysteresis curve in mean-field theory
anotheff? (Other kinds of disorder are discussed in Appen-at various values of the disord&<R.= \(2/m)J, R=R.,

dix E.) Including the random fields, the energy function be-8nd R>R.. For R<R., where the coupling is important
comes relative to the amount of disorder in the system, the hyster-

esis curve displays a jump due to an infinite avalanche of
spin flips, which spans the system. Clos&tahe size of the
= _Z Jiisisj_zi: (H+fp)s;. (3 jump scales ad M ~r3, with r = (R,— R)/R, and 8=1/2 in
! mean-field theory. Using a mapping to the pure Ising model,
The total effective field becomes we find in 6- e dimension®
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Hard-spin mean-field magnetization curve
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FIG. 1. Mean-field magnetization curves for the nonequilibrium
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B6=3/2+0.0833454>— 0.0841566°+ 0.223194*
—0.69259°+ O(€°). (8)

Numerical simulations in three dimensions yigh+0.036
+0.036 andBs=1.81+0.367

For R>R, the disorder can be considered more important
than the coupling. Consequently there are no system span-
ning avalanchesfor infinite systems sizeand the magneti-
zation curve is smooth.

Note that the hard-spin mean-field theory does not show
any hysteresis foR=R.. This is only an artifact of its par-
ticularly simple structure and not a universal feature. In finite
dimensions the model does show hysteresis for all values of
R. Also, an analogous soft-spin model, which is introduced
for the RG description in Sec. 1V, has the same critical ex-
ponents and shows hysteresis at all disordgrseven in
mean-field theory as seen in Fig. 2.

Close toR; and H.(R.) the magnetization curve is de-
scribed by a scaling form:

M—M(H(R))=m(r,h)~rB 7 . (hirh?), 9

where.7 .. is a universal scaling functiof- refers to the
sign of r). It is computed in mean-field theory in Appendix
A.%® Perturbative corrections to the mean-field equation of
state in 6-€ dimensions are given t®(e?) in Sec. VI.

B. Results on the mean-field phase diagram

Figure 3 shows the phase diagram for the lower branch of
the hysteresis curve as obtained from the simple hard-spin
mean-field theory, defined through E). The bold line
with the critical endpoinfR; ,H.(R;)) indicates the function
HZ(R) for the onset of the infinite avalanche for the history
of an increasing external magnetic field. The dashed line
describesH'C(R) for a decreasingexternal magnetic field.
The three dotted vertical lines markéa), (b), and (c) de-
scribe the paths in parameter space which lead to the corre-
sponding hysteresis loops shown in Fig. 1. Figures 2 and 4
show the corresponding results for the soft-spin model.

C. Results on scaling near the onsetl .(R)
of the infinite avalanche line (R<R,)

The mean-field magnetization curve scales near the onset
of the infinite avalanche as

[M—=M(H(RDI~[H-H(R)]¢ (10

zero-temperature random-field Ising model at various values of th#/ith {=1/2. [H.(R) stands, respectively, foH;(R) or

disorderR=0.6J<R. (a), R=R.=(2/7)J=0.798] (b), andR

=J>R; ().

B=1/2— €/6+0.00617685°— 0.035198°%+ 0.0795382*

—0.24611E°+0O(€°).

At R=R,

the magnetization curve scales &l
—M(H(R.)~h® whereh=H—H¢(R,) andH(R,) is

H'C(R) for the history of an increasing or decreasing external
magnetic fieldl Curiously we do not observe this scaling
behavior in numerical simulations with short-range interac-
tions in two, three, four, and five dimensions. Indeed, the RG
description suggests that the onset of the infinite avalanche
would be an abrupt‘first-order” type) transition for all di-
mensiongi<8 (see Appendix ¢ and a continuous transition
for d>8. Our initial numerical simulations in seven and nine

the (nonuniversal magnetic field value at which the magne- dimensions for system size< @nd 5 at less than critical
tization curve has infinite slope. In mean-field theorydisorders do in fact seem to confirm the RG predicfidn.

H.(R:.) =0, and M(H.(R.))=0, and B6=3/2. In 6-¢
dimension®&

the following we will mostly focus on the critical endpoint at
(R.,H.(Ry)), where the mean-field scaling behavior is ex-
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Soft-spin mean-field magnetization curve
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FIG. 2. Mean-field magnetization curves for the soft-spin ver-
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FIG. 3. Mean-field phase diagram for the nonequilibrium zero-
temperature random-field Ising model. The critical point studied in
this paper is aR=R., H=H.(R.), with H.(R.)=0 in the hard-
spin mean-field theory. There are two relevant directioag R,
—R)/R andh=H—H(R.) near this critical point. The bold line
indicates the threshold fielth(R) for the onset of the infinite
avalanche upon monotonically increasing the external magnetic
field. The dashed line describeﬁc(R) for a decreasing external
magnetic field. The three dotted vertical lines marked (b), and
(c) describe the paths in parameter space which lead to the corre-
sponding hysteresis loops shown in Fig. 1.

is kept constant. Figure 5 shows histogra®&S,r) of all
avalanche sizeS observed in mean-field systems at various
disorders when sweeping through the entire hysteresis loop.
For smallr the distribution roughly follows a power law
D(S,r)~S (""F9 yp to a certain cutoff sizeSyay
~|r| Y which scales to infinity as is taken to zero.

Phase Diagram in Mean-Field Theory
(soft-spin model)

sion of the zero-temperature random-field Ising model at various

values of

the disorderR=1.31<R; (a),

R=R,=2kJ/[(k

—J)27]=1.6] (see Appendix A B (b), andR=2I>R. (c).

pected to persist in finiténore than two spatial dimensions

with slightly changed critical exponents.

D. Results on avalanches

FIG. 4. Mean-field phase diagram for the soft-spin version of
the nonequilibrium zero-temperature random-field Ising model. The
diagram is plotted analogously to Fig. 3. Magnetic field sweeps
along the lineqa), (b), and(c) lead to the corresponding soft-spin
hysteresis curves shown in Fig. 2. Note that here, in contrast to the
hard-spin model, the value of the critical fidit}(R;) does depend
on the history of the system: for monotonically increasing external
magnetic fieldH(R.) =H{(R,) =k—J, and for monotonically de-

Magnetization curves from simulations of finite-size sys-creasing external magnetic fieldy(R.)=HL(R.)=—(k—J) (see
tems are not smooth. They display steps of various sizef\ppendix A 6. This implies that in contrast to the hard-spin mean-
Each step in the magnetization curve corresponds to an avéeld theory of Fig. 3, the soft-spin mean-field theory displays hys-
lanche of spin flips during which the external magnetic fieldteresis forall finite disorder values, i.e., even BE=R;.
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10° . , relative distance through an avalanche of spin flips. Close
to the critical point and for large the functionG(x,r,h)
scales as

G(x,r,h)~1/x372" 75 (x/&(r,h)), (12)

10* t ; where 7 is called “anomalous dimension” and’.. is a uni-
versal scaling function. The correlation lengitr,h) is the
important (macroscopig length scale of the system. At the
b critical point, where it diverges, the correlation function
a G(x,0,0) decays algebraically—there will be avalanches on
10° - . all length scales. Close to the critical point the correlation

10 10 10 length scales as
Avalanche size (S)

Dint (Svr)

E(r,h)~r ="y (hIrPo), (13

FIG. 5. Mean-field avalanche size distribution integrated overwhere 77 is the corresponding scaling function. From the
the hysteresis loop for systems with 1 000 000 spins at various disexpansion one obtaifis
order valueR>R.=0.798): (a) R=1.46) (averaged over ten dif-
ferent configurations of random fie)ds(b) R=1.069 (averaged 1/v=2—€/3—0.1173%+0.124%3— 0.307*+ 0.951¢°
over five different configuration of random fiejdsand (c)

R=0.912) (averaged over ten different configurations of random +O(66)' (14
fields). Each curve is a histogram of all avalanche sizes found as thg g

magnetic field is raised from-° to +o, normalized by the number

of spins in the system. For smah=|R.—R|/R the distribution 7=0.0185185%+0.0186%3— 0.00832876*
roughly follows a power lawD(S,r)~S (""9£9 yp to a certain

cutoff size Sy~ |r| ¥ which scales to infinity as is taken to +0.0256&°+ O( ). (15

zero. The straight line above the three data curves in the figureh ical val in th di : _
represents an extrapolation to the critical pd¥st R; in an infinite The numerical values in three dimensions are=1.704

— 2
system, where one expects to see a pure power-law distribution oy 0.085 and,=0.79+0.29:

all length scale®(S,r)~S~("+7£9 with the mean-field values of o _

the corresponding exponents ¢35=2.25. 2. Spin-spin (“cluster”) correlations

Another correlation function measures correlations in the
In Appendix A we derive a scaling form for the avalanche fluctuations of the spin orientation at different sites. It is

size distribution for systems near the critical point: Letrelated to the probability that two spirg ands; at two

D(S,r,h) denote the probability of finding an avalanche of different sites andj, that are distanced by, have the same

sizeSin a system with disorderat external magnetic field ~ value® It is defined as

upon increasindp by an infinitesimal amounéh. For largeS
one finds Cx,rh)={(si— (s o) (s;— (1) (16)

where ( ); indicates the average over the random fields.
D(S,r,h)~1/S"Z. (S h/rk?). (11)  From the RG description we find that for largdt has the
scaling form
The scaling form forD(S,r) of the histograms in Fig. 5 is _
obtained by integratin®(S,r,h) over the entire range of the C(X,r,h)~x" @42z (x/&(r,h)), 17)
external magnetic field-oo<h<+o,
In mean-field theory we fing=1/2 andr=3/2. In 6—¢
dimensions we obtain from the RG calculatian=1/2
— €/12+ O(€?). Numerical simulations in three dimensions
rendere=0.238+0.017 andr=1.60+0.08>

where &(r,h) scales as given in Eq13) and 7. is a uni-
versal scaling function. At the critical poif(x,0,0) decays
algebraically—there will be clusters of equally oriented spins
on all length scales. The expansion rendet3

7=0.018518%2+0.0186%°— 0.00832876"

E. Results on correlations near(R;,H.(R
(Re.He(R) +0.02566°+ O(€°), (18)

With the mean-field approximation we have lost all infor-
mation about length scales in the system. The RG descripthich is in fact the same perturbation expansion asfor
tion, which involves a coarse-graining transformation to longto all orders ine. (The two exponents however do not have
length scales, provides a natural means to extract scaling be equal beyond perturbation theory, see also, Refs. 37

forms for various correlation functions of the system. and 38.
1. Avalanche correlations F. Results on avalanche durations
The avalanche correlation functioB(x,r,h) measures Avalanches take a certain amount of time to spread, be-

the probability for the configuration of random fields in the cause the spins are flipping sequentially. The further the ava-
system to be such that a flipping spin will trigger another atanche spreads, the longer it takes till its completion. The RG
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treatment suggests that there is a scaling relation between the 1. Exponent equalities

durationT of an avalanche and its linear extent The exponents introduced above are related by the follow-

ing exponent equalities:

T(H~I*% (19
i — 3y 67 ;
with z=2+27% to O(€°),”" i.e., B—Bo=(1—2)lo i <2, (23
z=2+0.03703%%+0.0373&°+ O(€*). (20
Our numerical result in three dimensions is1.7+0.3 (2—n)v=B56—-23, (24

(While we expect the 6 € results for the static exponents

S, v, ;, ;, T, 0, etc. to agree with our hard-spin simulation

results close to six dimensions, this is not necessarily so for B=3(d—4+7), (25

the dynamical exponemt There are precedences for the dy-

namics being sensitive to the exact shape of the potential,

sometimes only in mean-field the6f#*%8 and sometimes an

even in thee expansiorf®®9 The fractal dimension for the

biggest avalanch ~r Yo gllov) g — —
9 S ¢ 5=(d—2n+7/(d—4+7). (26)

Afracta= U(ov), (21

(The latter three equations are not independent and are also

so that the timé& for the biggest finite avalanch&g,,, Scales valid in the equilibrium random-field Ising mod®™3

asT(Spa) ~ mg('
G. Results on the area of the hysteresis loop 2. Incorrect exponent equalities

In some analogy to the free-energy density in equilibrium C;ﬂn%ur system there are two different violations of hyper-

systems, one can extract the scaling of the area of the hy§ o
teresis loop for this system near the critical endpdifiis is () In Refs. 37_ and 38, we show that the_ connec_:ﬂvny
hyperscaling relation #/=dv— 8 from percolation is vio-

the energy dissipated in the loop per unit volunf&om the . . '
fact that the singular part of the magnetization curve scalekﬁ1ted in our system. There is a new exponéniefined by

asm(h,r)~r? 7. (hir??% [Eq. (9)] we conjecture that the
singular part of the area scalesb§ng~fm(h,r)dh~r2*“
with 2—a=B+B4. (The scaling form for the total aref
will also have an analytical pieceA,;=Co+Cqr+---
e+ -+ Agng; near critical point the terms with ith gy=1/2—€/6+O(e?) and v=0.021=0.021 in three
n<2—qa are dominan.In mean-field theoryx=0. Numeri-  dimensiong. ¢ is related to the number of system spanning
cal and analytical results can be derived from the results fOévajancheS observed during a sweep through the hysteresis
B and ﬁ5 qUOtEd earlier. |00p (See abov)a
(2) As we will discuss in Sec. VI there is a mapping of the
H. Results on the number of system-spanning avalanches perturbation theory for our problem to that of the equilibrium
at the critical disorder R=R, random-field Ising model to all orders & From that map-
ing we deduce the breakdown of an infamd@tenergy” )-
yperscaling relation

lo=(d—-0)v— g8, 27

In percolation in less than six dimensions, there is at mosﬁ
one infinite cluster present at any value of the concentration
parametep, in particular also at its critical valup,.” In
contrast, in our system at the critical poRt R, the number

N, of “infinite avalanches” found during one sweep B+ po=(d=0)v, (28
through the hysteresis loop, diverges with system size as
; : : 37,38 . e
N..~L?in all dimensionsd>2. _ with a new exponend, which has caused much controversy
The e expansion for our system yields in the case of thequilibrium random-field Ising mode

In Refs. 37 and 38 we discuss the relation of the exponent
‘9 to the energy output of the avalanches. hexpansion
Numerical simulations show clearly th@=0 in four and yields =2 to all orders ine. Nonperturbative corrections are
five dimensions. In three dimensions one fingis=0.021 expected to lead to deviations éfrom 2 as the dimension is
+0.021 and§=0.015+0.0152 lowered. The same is true in the case of the equilibrium
RFIM.3"% The numerical result in three dimensions is

L List of lati ?=L5i0.5? (In the three-dimensional equilibrium RFIM
. List o exponent relations i'[ iS Heq:1'5i0.4.71,715

Ov=1/2— €l6+ O(€?). (22

In the following sections we list various exponent rela-  Another strictly perturbative exponent equality, which is
tions, for which we give detailed arguments in Refs. 37 andalso obtained from the perturbative mapping to the random-
38. field Ising-model”*is given by
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7: 7. (29) t_ii .\i(si) with minima at the “discrete” spin values;=
It, too, is expected to be violated by nonperturbative correc-
tions below six dimensions. k/2(si+1)? for s<0O

V(s)= (32

. - ki2(s;—1)% for s>0.
3. Exponent inequalities

In Refs. 37 and 38 we give argumefitéor the following To guarantee that the system takes a finite magnetization at
two exponent-inequalitie§from the normalization of the @ny magnetic field, one neeés-0 andk/J>1. The Hamil-

avalanche size distributioB(s,r,h), see Eq.(11), follows tonian of the soft-spin model is then given by
that 7=>1]:

vIB6=20, (30)

which is formally equivalent to the “Schwartz-Soffer” in-
equality, <2, first derived for the equilibrium random-

== Jysisi— 2 [fis+Hs—V(s)]. (33
ij I

A spin flip in this model corresponds to a spin moving from
the “down” (s<0) to the “up” (s>0) potential well, after

field Ising modef,® and which point the spin slides to the bottom of the new potential
»=2/, (31) well (6s=2). We impose purely relaxational dynamics

which is a weaker bound than E@O) so long asBs=1, as (1T o) 8ssi(t) = — 8.7 8s(1), (34

appears to be the case both theoretically and numerically at

least ford=3. wherel’ is a “friction constant.”

This model shows qualitatively similar behavior to real
magnets: As the external magnetic field is ramped, we ob-
serve spin flips, which correspond to irreversible domain-

J. Results on the upper critical dimension wall motions. The linear relaxation between the spin flips
of the critical endpoint (R¢,H:(R.)) corresponds to the reversible domain-wall motion.

The consistency of the mean-field theory exponents for 1he Soft-spin mean-field theory, where every spin inter-
d=6 can be shown by a Harris-criterion-type argurmnt, acts equally with every other spin yields the same static criti-

which also leads to Eq30).38 Approaching the critical point cal exponents as we have obtained earlie_r for the_ hard-spin
along ther’ =0 line, one finds a well-defined transition point model.. We have also checked that replacing the linear cusp
only if the fluctuationssh’ in the critical fieldH. due to potgnnal by the more common,_smooﬂ;ﬁ QOubIe-weII po-
fluctuations in the random fields are always small compare{fntial does not change the static mean-field exporiénts.

to the distancdn’ from the critical point, i.e.sh’/h’<1 as

h’—0. With sh’~&7 92 and &~(r') "f.(h'/(r")P°) A. Formalism

~(h")~"(B%) at r'=0, one obtainssh’/h’ ~ ¢~ Y2/~ Bdlv
<1, orv/B6=2/d. This inequality is fulfilled by the mean-
field exponents)=1/2 andB6=3/2 only if d=6, i.e.,d=6 is
the upper critical dimension.

In equilibrium systems one usually calculates the en-
semble averaged correlation functions from a partition func-
tion which is the sum over the thermal weights or probabili-
ties of all possible spin states of the system. Here we use the
formalism introduced by Martin, Siggia, and R&5éwhich
is similar to the Bausch-Janssen-Wagner methdd define
an analogous quantity for a dynamical system. The partition
function for the disorder-averaged dynamical system is the

Our system is at zero temperature and far from equilibsum over the probabilities of all possibfeths (i.e., spin
rium. For a given configuration of random fields, the systemstates as functions of time as the external magnetic field is
will follow a deterministic path through the space of spin slowly increasegiwhich the system follows for different con-
microstates as the external magnetic field is raised adiabatiigurations of the disorder. To calculate the path probability
cally. Systems with different configurations of random fieldsdistribution one first assigns &function weight to thelde-
will follow different paths. It seems plausible to introduce terministig path for a given, fixed configuration of random
time t into the otherwise adiabatic problem and to apply RGfields and then averages this weight-function over all pos-
methods developed for dynamical systems. We wid{g) sible configurations of random fields. The emerging expres-
=Hy+Qt, whereH, is the magnetic field at time=0, and  sion is the analog of the probability distribution for the pos-
0>0 is the sweeping rate for a monotonically increasingsible states in equilibrium systems. The analog of ensemble
external magnetic field. We write down an equation of mo-averaging for equilibrium systems is random-field averaging
tion for each spin such that the resulting set of coupled difin our system. The sum over all possible paths weighted by
ferential equations has a unique solution which correspondtheir corresponding probability then plays the role of a par-
to the correct path which the system takes for a given histition function Z for our nonequilibrium system from which
tory. The sweeping frequendy is taken to zero in the end. we can derive the various response and correlation functions.
For convenience we introduce soft spins that can take values We start by calculating before random-field averaging:
ranging from—c to +co. This will allow us later to replace it is given by integral over a product @ functions(one for
traces over all possible spin configurations by path integralseach spii each of which imposes the equation of motion at
We assume that each spin is moving in a double-well potenall times on its particular spiff

IV. ANALYTICAL DESCRIPTION
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1zz=f [ds)7TsII] 6(asi/To+ 6.718s). (35 W=i, fdt §(D[as;(1)/T o+ 871 85(1)]
i J
[ds] denotes the path integral over all spins in the lattice at . ~
all times, and7Ts] is the necessary Jacobian, which fixes =i fdt S(t) 5tSj(t)/To—§|: Jjis—H—f;
the measures of the integrations over whesuch that the .
integral over eacld function yields oné® One can show that
J1s] merely cancels the equal time response +6VIds | (38)
functions?8:80:81

In order to writeZ in an exponential form in analogy to  We can express correlation and response functions of
the partition function in equilibrium problems, we expresss;(t) as path integrals in terms &V, because solely the
the 5 functions in their Fourier representation, introducing anunique deterministic path of the system for the given con-
unphysical auxiliary fields;(t): figuration of random fields makes a nonzero contribution to

8(8,IT osi(t) + 671 55i(t) )~ 1/2wf ds exp( i Z 5(t)
]

(36)

Absorbing any constants intg|s], this yields for the(not
yet random-field averaggedenerating functiondin continu-
ous time:

1:z=f f [ds][d5].7Ts]exp(W), (37)

with the action

the path integral ovefds] in Eq. (37). For example the
value of spins; at timet’ is given by

sj(t’)=Z_1ff[ds’][d?s’].ﬂs’]sj’(t’)exr(W), (39)

and the correlation function is given by

sj(t’)sk(t”)=Z‘1ff[ds’]

X[ds']7Ts']s{ (t")sy(t")expW). (40)

To calculate the response sf at timet’ to a perturbative
field Je,(t',t") switched on at sité at timet”, we add the
perturbation to the magnetic field at sike such that the
action becomes

W=i> fdt §j(t)<&tsj(t)/F0—2 Jj,sl—H—fj+5V/5sj)
1#k 1

+if dt :Ck(t)(ﬁtsk(t)ll“o—z Jusi—H—f,+ 5V/5sk—Jek(t,t")). (41)

Taking the derivative with respect tde, and the limit
e,— 0 afterwards one obtains

5Sj(t’)/55k(t”)=(—i)Z_1ff[ds][d%]

X 7Ts]si(t")sk(t")expW), (42

to calculate thémore complicatedaverage of IrZ. One ob-
tains for the random-field-averaged correlation functions

<Sj(t')5k(t")>f=f f [ds][dS]s;(t")s(t"){expW))r,
(43

and similarly

S0S acts as a “response field.” Henceforth we shall suppress

J1s], keeping in mind that its only effect is to cancel equal

time response functiorfS.

SinceZ=1, independent of the random fields, we could

have left out thez™! factors in Egs.(39), (40), and (42).

(0 oe ) =(5)8( = | [ [asiia

X sj(t)S (1) {exp(W))y, (44)

This greatly facilitates averaging over the random fields: The

average response and correlation functions are generated by It is not obvious how to E;alculat{eexp(\/\/))f directly, since
averagingZ directly over the random fields. Unlike in equi- W involves terms likeJ;;s;s; which couple different sites.
librium problems with quenched disorder it is not necessaryrollowing Sompolinsky and Zippelit, and Narayan and
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Fisher?® we can circumvent this problem by performing a the mean-field magnetization and the different sites become
change of variables from the spirss to local fields J7; decoupled. A saddle-point expansion becomes possible, be-
=3;Ji;s;. (We introduce the coefficient on the left-hand cause the coefficients in the expansion can be calculated in
side to keep the dimensions righ#t the saddle point of the mean-field theory—they are also the same for all sjtes
associated action the new variablgs(for all j) are given by ~ Formally we insert intZ the expression

, (49)

1=1/2wff[d%][d?;]ﬂ;]ex;{i; fdt%(t)(sj(t)—Ei JileTyi(t))

where.7] 7] stands for the suitable Jacobian, which is simply a constant and will be suppressed henceforth. Integrating out the

auxiliary fields7/j , one recovers that the expression in ) is the integral over a product @ functions which impose the
definitionsJ7%;(t)=2,;J;;s;(t) at all times for alli.

After some reshuffling of terms and introducing some redefinitions that are motivated by the attempt to separate the
nonlocal from the local terms, one obtains

- | | (eIl 27, 5] exp[— | dt%,—(t)(Z Jﬁﬁ.(t))} 46)

wherez_["ﬁj,"ﬁj] is alocal functional

Z,[7%, ,%j]:ff[dsj][d§1]<exp[rlj dt[ﬁ},—(t)s,—(t)+iéj(t)(atsj(t)/ro—ﬁ;j(t)—H—f,—+W/asj)]]> (47)

f

(we have absorbed a factoin the definition of?;j). In short [ 6Sert/ on 15 ?,‘3,]920 (5D
this can also be written as
and
2= | @7 Iexn S @8) [l 715 050=0. 52

. . L~ ) With Egs.(47) and(49) we find the saddle-point equations:
with the effective actiorS.;, now expressed in terms of the
“local field” variables 7 and7

(—i)<§i>|'§70'~no—; 33,5 9=0, (53)
Seit=— f dt; ’%,»(t)Z 35 and

+3 Iz 7%.7,). 49 (shome=2 3377 {=0. (54
]

The notation ( ), 7050 here denotes docal average,

Physically we can interpret the functional obtained from thdocal partition functionz;, after having

fixed 7 and 7; to their stationary-point solutiong} 0
= = and7 2. Equation(53) and(54) have the self-consistent so-
a(71= | [d7lexrBon o and7 . Equation(53) and (54
as the random-field-averaged probability distribution for the 29
possible paths the system can take through the “local field” 7i(1)=0, (55
(J"r}j) configuration space as the external magnetic field isand
slowly increasedZ is the integral of thignormalized prob-
ability distribution over all possible paths of the system and ~ 0 X
is therefore equal to 1. 7 (D)=M()=(si(t)) 500, (56)

The stationary poinf7 ?’;7 ?] of the effective action is whereM(t) is the random-field average of the solution of the
given by mean-field equation of moti&h
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dy Sj(1)/To=J7 X(t)+H+ = 5V/ 5s; . (57) z=f f (dnlld7]exnSun) 58

We can now expand the effective actiégﬁ in the variables

n=m-7 ?) andy;=(7;—7 ?), which corresponds to an with an effective actionexpressed in the new variables
expansion around mean-field theory: and7):

. = 1 - .
Seff:_; fdt‘]jll‘]nj(t)nl(t)"'; m%O Wf dtl"'dtm+num,n(tla---ytm+n)77](t1)'"nj(tm)nj(tm+1)'"77j(tm+n)-

(59
Here, as seen by inspection from E¢49) and (47)
Lo [Nz u7n)]
m,n (97]J(tm+1) (97]J(tm+n) 5A77](t1)5'\77](tm) 00
0
T Oe(tme1)  d€(tmsn) ([s(ty) = 7°(t) ] -[S(tm) = 7°(tm) D1 30, 50, (60)

i.e., the coefficients,,, are equal to the locdl), connected than one might have expected. Instead of dealing with the
responses and correlations in mean-field theory. Adagal  entire effective action which involveall field valuesH, it
(I) mean#® that we do not vary the local field;? in the  suffices in the adiabatic limit to calculate all coefficients
mean-field equation Umn in Eq. (59) at one single fixed magnetic fiekd, and then

to coarse grain the resulting acti®g(H)=S, .

1 (?tsj(t)=J77]-°(t)+ Htf oV LIt (6D) Physically this corresponds to the statement that increas-

Ty Ss;(t) ing the magnetic field within an infinite ranged modelean-
] o field theory and then tuning the elastic coupling to a short-
when we perturb with the infinitesimal forcke(t). ranged form (RG) would be equivalent to the physical
relevant critical behavior, which actually correspondéirtst
B. Source terms tuning the elastic coupling to a short-ranged form ameh

Correlations ofs and can be related to correlations gf ~ increasing the force within a short-range motfeln their
and ;]_48 If we introduce the source terms related calculation for charge-density way€HW'’s) below

the depinning thresholtf, Narayan and Middleton give an
- . argument that this approach is self-consistent for their prob-
f dt[s;(O1(t) —isj()I;(t)] (62 |em. In the Appendix B we first show that their argument
. applies to our system as well, and then discuss the consis-
into the action, we can write the correlationsofinds as  tency of the magnetic field decoupling within the RG treat-

functional derivatives with respect foand| at1=1=0. A ment of the entire history for separated time scales.
shift in the variablesy and 7 by | andl, respectively, leads Note that the values of the coefficients, at fieldH are
to a source term for the fields and 7 from still history dependentin the way the mean-field solution
R . is). Also, causality must be observed by the coarse-graining
IO =L =101, (63 transformation, so that even in the adiabatic limit the intrin-

— . ~ . sic history dependence of the problem does not get lost.
so that derivatives with respect toand| give correlation y dep P g

functions of7 and 5. For low momentum behavior the factor
JJ1 can be replaced by one singeJ;; 1=J"1 i i i
ij p y ij . D. Calculating some of theu,,,, coefficients at fieldH

In Appendix B we show thatl,,, basically assume their
static values in the adiabatic limit. In this section we will

Up to here the effective actioB.z manifestly involves the  briefly outline their derivation and quote the relevant results.
entire magnetic-field range *<H< +. As we discuss in We have to be consistent with the history of an increasing
Appendix B it turns out, however, that in the adiabatic limit external magnetic field, when expanding around the “mean-
a separation of time scales emerges. The relaxation raféeld path” 7°(t). This implies that for calculating responses
kI'o in response to a perturbation is fast compared to thérom Eq. (60) we must only allow a perturbing forcée(t)
driving rate Q/k of the external magnetic field. The static thatincreaseswith time in Eq.(61). For example, fou, ; we
critical exponents can then be extracted self-consistentlpdd a forceJe(t)=Je®(t—t’) in Eq. (61), where O(t
from a RG calculation performed at a single, fixed valile —t") is the step function, and solve f¢8(t)|y ¢t - The
of the external magnetic field. The analysis is much simpletocal response function is then given by the derivative of

C. Implementing the history
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”mEﬂO{[(S(t)|H+Je(t)>f_<s(t)|H>f]/€} with respect to terms_in the action become I_e_ss imp_ortant on longer Ien_gth
(—t'). The higher response functions are calculated corretand timg scales. Near the critical point, where the behavior
spondingly.(See also Appendix B.One obtains in the low- is dominated by fluctuations on long-length scales, the sys-
frequency approximation for the first few terms of the effec-tem is then well described by the quadratic parts of the ac-
tive action of Eq.(59) at fieldH tion, and the calculation of correlation and response func-
tions amounts to the relatively simple task of solving
B C1qn - Gaussian integrals. It should come as no surprise that the
SH= _%: f dt J; J”i(t)"'(t)_zj: f dt 7(O[ad/To  hean-field exponents are recovered, since the quadratic parts
of the action represent the lowest-order terms in the saddle-

. sta 1A 3 point expansion around mean-field theory.
Ullk]m(t)ﬂL; f dt 5 uzm;(t)(»;(1) In our problem the actio, of Eq. (64) has the quadratic
part
+; f dtlf dt, 3 Upom;(ty) 7(t2), (64)
with Q(n,%)=—§ Jdt J,-TlJ%;(t)m(t)—; fdt 7;(t)
= —_ 0—
uP=23p(—In°—H+k)+J/K, (66) o
+a 3 [ dt [ duit it @0
w=—23%p"(—JIn°—H+k), (67) ]
— 3 nme__ 0__
u=2J%p"(=Jn"=H+k), €8) In the long-wavelength limit we can writd~1(q)=14
and +J,02.% Rescalingy, o, andq we can replace the constants
. J»J anda by 1. The low-frequency part of th@» term in
Uy o= R2/k2+4 f*H*r] +kp(h)dh) Q(?],n) is then given by
P dn)
-4 f p(h) —Jddqfdt (=D ITO+ 02— x4 (a,0),
—H-7%k (71)
—4 f (h/k)p(h)dh|. (69
where

Equation(69) implies thatu, =0 for any normalized distri-
bution p(f).
X 1=3(usR-1)=232p(—IM—H+k)— I(k—J)/K
V. PERTURBATIVE EXPANSION (72)

A. The Gaussian theory ford>d,:

Response and correlation functions is the negative static response to a monotonically increasing

One can shoWw*? that for systems with dimensiod  external magnetic field, calculated in mean-field theory.

above the upper critical dimensiot.,, the nonquadratic In frequency spac@(#,7) can be written as
— 1203 66(w) (—io/To+a?—x" )\ | 7(d,®)
A darng, o ,
QUr.i== [ do [ ala-a.-orm-a-a| ;L2 . T
(73

Inverting the matri®® one obtains for the response and and
correlation function at fieldH to lowest order

G;(d,0)=(n(—q,—w)n(q,»))

~ i 2_ .1 2

~1U(—iwlTy+q%—x"J) (74 The &w) in Eq. (75 is a consequence of the underlying
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separation of time scales. It will lead to an essentially statigy" =0 we have£5;7,7(q,w=0)~q2"7 with »=0 and
character of the RG analysis of the problem. This may hav@nn(q,w:0)~q4* 7 with »=0 at lowest order in perturba-
been expected, since the critical phenomena we set out tion theory. One can Fourier transform the correlation func-
describe are essentially static in nature. At the critical pointions back to time

G;m(q't,t’)5<?z(q,t)n(—q,t’»:{go ?;f[t_,iot(qz_x*l/”(t’—t)} for t'>t 7
and
Gv,,(q,t,t’)=f dtlf dt,G;, [0, — (t' =)+t +t5]uy G5, (A, t) =Up /(92— x )2 7
|
B. The RG analysis parameters,~1=0 andw#0 corresponds to a system with

In dimensiond< d. the nonquadratic parts of the action less than critical randomne&<R; at the onset field of the
become important near the critical point. One obtains correcinfinite avalanche. In Appendix C we show how to extract
tions to the mean-field behavior. The Wilson-Fisher coarsethe mean-field exponents for the infinite avalanche line from
graining procedure is an iterative transformation to calculatéhe scaling above eight dimensions and that the RG treatment
the effective action for the long-wavelength and low-suggests a first-order transition for the same systems in less
frequency degrees of freedom of the system. Fixed pointthan eight dimensions.
under the coarse-graining transformation correspond to criti- In systems where the bare valuevofs zero at the critical
cal points where no finitécorrelation length determines the fixed point with y“1=0, all nonquadratic terms are irrel-
long-wavelength behavior and the system is self-similar orevant abovel.=6 dimensions. As can be seen from Appen-
all length scales. In each coarse-graining $tép*®84%one  dix A, this case constitutes the interesting “critical end-
integrates out high momentum modes aif frequencies point” at R=R; andH=H.(R.), which we have discussed
7(9,0») and 7(q,w), with g in a momentum shell in the introduction. Alsow=0 implies that the bare vertex
[A/b,A], b>1, and afterwards rescales according go x 1~ (R.—R)/R. Ford<s, the vertexu; ;= u becomes rel-
—b1q’, w=b le’, 7(q,0)=b%%(qw),and 7(qw) €vant while aI'I highe'r vertiqes remain irrelevan't. We are left
=b®%7’(q,w). As usual, the field rescaling, andc, are with the effective action which includes all vertices relevant

chosen such that the quadratic parts of the action at the critfor @n expansion around six dimensions:
cal point(xy~*=0) remain unchanged, so that the rescaling
of the response and the cluster correlation function under ~ g . s
coarse graining immediately gives their respective power- S:_f d qJ dtn(—q,0)[0/To+a°—x I]n(q,t)
law dependence on momentufie., this is an appropriate
choice of the scaling unitsWithout loop correlations to the
mean-field theory this implies thatz=2, 7(x,t)
=b~ 927237 (x,t) and (x,t) =b~ 92725 (x,1).

Performing one coarse-graining step for the expansion for A -
S, of Eq. (64) yields a coarse grained action which can be +(1/2); f dtlf dtz7(t2) 7;(t2)Uzo. (79
written in the original form, with “renormalized” vertices
Umn- Without loop corrections, the vertices of the coarse-we will perform the coarse-graining transformation in per-
grained action are simply rescalings of the original verticesturbation theory iru. At the fixed point, in 6-€ dimensions,
which can be easily read off using the rescalingiofv, 7 u will be of O(e). The perturbation series for the parameters
and ». Taking into account that each/JSe(t) involves a in the action and thus also for the critical exponents, be-
derivative with respect to time, and therefore another factotomes a perturbation series in powers:ofFrom the form of

REE) f i (0 (m,()u

b~? under rescaling, we arrive ak( ')’ =b?%y~* and the action one can derive Feynman rulsse Appendix B
which enable us to write down the perturbative corrections in
U p=bl-(mem*2ldzezn, (78 a systematic scheme. Examples of their derivation for the

4 H 40,42
. . . . . model are given elsewhe?&?*
This shows that above eight dimensions all vertices that arg g

coefficients of terms of higher than quadratic order in the
fields, shrink to zero under coarse graining and are therefore VvI. MAPPING TO THE THERMAL RANDOM-FIELD
“irrelevant” for the critical behavior on long length scales ISING MODEL
and at low frequencies.

Below eight dimensions the vertex u;,=w
=2Jp'(—In°—H+K) is the first coefficient of a nonqua- In this section we will show that the expansion for our
dratic term to become relevant. An action with the originalmodel is the same as theexpansion for thesquilibrium

A. Perturbative mapping and dimensional reduction
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random-field Ising model to all orders i Once this G (X, 1) = —T o[ = V2h(X,t) +T gb(X,1) + 1/6go3(X,1)

equivalence is established, we can use thatfhee) expan-

sion of theequilibrium random-field Ising has been mapped —hr(X) —hr(x,1)]. (80)

to all orders ine to the corresponding expansion of the regu-h.(x) represents spatially uncorrelated quenched random

lar Ising model in two lower dimensiof§2 fields distributed according to a Gaussian of widthand
The easiest way to recognize that thexpansion for our mean zeroh;(x,t) is the thermal noise field, which is taken

model and for theequilibrium RFIM should really be the to be Gaussian with vanishing mean value and the variance

same is by comparing the corresponding effective actions. In L , ,

a dynamical description of thequilibrium RFIM at zero (hr(x,Ohr(X", 1)) =2KTITo8(x—x") 5(t=t"). (81

external magnetic field the following effective Langevin The corresponding Martin-Siggia-Rose generating functional

equation of motion for the spin-fiele(r,t) was usef is

Zhemes f [d] f [d¢]exp{— f d’q f dté(—a,) (0 /To+a?+ro)b(d,) + f d’x f dt ¢(x,t)(— 1/6go) p(x,1)°

+f ddxf dt &(x,t)[hR(x)JrhT(x,t)]]. (82)

Since agairZ}_',‘srmalzl, we can average the partition function directly over the random fteidsnd the thermal noisbk; :

‘Sthermal_ /- therma
zZiema (zhema,

(83

The average over the random fields at eadnd over the thermal noise fields at eachndt yields, (after completing the
square:

zZfjermel f [d¢] f [d¢]exp[— f d%q f dtd(—a,)(a/To+a?+10)B(q,) + f dx f dt (0 (~ § Go) H*(X,1)

+f ddxf dtlf dt2&>(x,t1),?b(x,t2m2/z+f ddxf dt ;{)z(x,t)(ZkT)/Fo]. (84)

With the identificationsro=—x"*(Ho), u=—1/6go, 7=0.0185185%+0.0186%°— 0.00832876*+ 0.02566°
uzyozA2 and T=0, we see that the argument of the expo- 5
nential function is the same action as the effective action for +0(e), (86)
our zero-temperature, nonequilibrium model in Ey). Set-
ting T to zero in the action for the equilibrium RFIM does B=1/2— €/6+0.00617685°—0.035198>+0.0795382*
not change the expansion for the static behavior, since it
turns out that corrections involving temperature are negli- ~0.24611E°+0(€%), (87
gible compared to those involving the random magnetic
field®”8"#8 _the temperaturedependence is irrelevant in the B6=3/2+0.0833454"—0.084156@°+0.223194*
thermal RFIM and theti_me dependen(;e is irrellevant in our —0.6925@5+ O(%). (88)
zero-temperaturdynamicalRFIM, leaving us with the same
starting point for the calculation. This equivalence implies g and 5 have been calculated fromand » using the pertur-
that in 6-¢ dimensions we should obtain the same criticalpative relations: = (v/2)(d—4+7%) and d=(d—27
exponents to all orders iafor our model, as were calculated +7)y/(d—4+7) (see Sec. Il 1 1, with =7 to all orders in
for the thermal random-field Ising model, which in turn are ¢ 87
the same as those of the pure equilibrium Ising modekira 4
dimension$®87
This observation is rather convenient, since it provides us
with results from the regular Ising model @(€°) for free. By the same mapping we obtain the universal scaling
In 6— e dimensions we read &f function for the magnetization t@(€?).8%% Since the cor-
responding calculation has been explained in great detail for
the equation of state of the Ising model irr 4 dimensions in
1Ypr=2—€/3—0.117%2+ 0.1245%3— 0.307c*+ 0.9515 the article by Wallace in Ref. 90, we will only briefly outline
the main steps and quote the result for the scaling function in
+0(€), (850  the end.

B. Perturbative mapping of the equation of state
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Following the Wallace article one expands the actiongther:  h/k=—h,,, 2Jr/(N27R)=—t,, 233%"(0)=

around thetrue (note mean-field magnetization7°=Muse  —(ug),,, m=—m,,. We have denoted the quantities in Wal-
and expands the bare vertices in terms of the deviations |ace’s article by an index w.” ]

=H-H(R;), r =(R.—R)/R, andm=M,e— M of the pa- One obtains the following result:

rameterd, R, andM,,.from their values at the mean-field

critical point {H.(Ry)=k—J, R.=2kJ/[(27)(k—J)], h=m?f(x=r/m"P) (89)

andM.= +1, as given in Appendix A One obtains to low-
est orde® uyo=h/k+2J/(v27R)rm+(23%/3!)p"(0)m*
S X*1=—2Jr/(JER)+1/2um243r--- [see Eq.(72)],
w=um+--- [see Eq(67)], andu=2J°p"(0)+--- [see Eq. _ 1=

(68)], where -+ denotes higher orders ih, m, andr, and fo=1 t-1=0. (0
p"(f) is the second derivative of the distribution of random The expansion to second order éris then

fields with respect to its argument.

Calculating loop corrections in the expansion of the f(x)=1+x+ef1(x) + €f5(x) (9D
equation of state is then completely analogous to the calcu- ith
lation described by Wallace for the Ising model in two lower "
dimensions. For details on solving the loop integrals, etc. we 1 _
refer the reader to Ref. 90, especially Eg.35. [In fact, F100=5[(x+3)In0x+3) = 3(x+1)In3+2x In 2] 92)
with the following formal identifications, the resulting equa-
tions of state in the two systems can be mapped onto eacmd

in which the renormalizations of and the universal scaling
functionf are chosen such that

fo(x)=[1514[6 In 2—9 In 3][3(x+ 3)In(x+3)+6x In 2—9(x+1)In 3]+ 3(x+1)[In?(x+3) —In?3]
+ 36 In?(x+3)— (x+1)In?3+x In?2]—54 In In(x+3)+x In 2—(x+1)In 3]
+25 (x+3)In(x+3)+2x In 2—3(x+1)In 3]}. (93

The scaling functiorf(x) has actually been calculated up ~ The agreement is rather good near six dimensions. How-
to order €2.*3 As it stands the expressiof91) meets the ever the apparent dimensional reduction through the pertur-
Griffith analyticity requirement® only within the framework ~ bative mapping to the Ising exponents in two dimensions
of the e expansion, but not explicitly. These subtleties can begradually loses its validity at lower dimensions. It is after all
avoided by writing it in a parametric forfif,which can then only due to the equivalence of two asymptotic series, both of
be compared directly with our numerical results for the uni-which have radius of convergence zero. Table | shows a
versal scaling function oiM/dH in five, four, three, and comparison between the numerical exponents for our model
two dimensions. We will present the results in a forthcomingand for the equilibrium RFIM in three dimensions.
paper’

The dynamic exponent cannot be extracted from the
mapping to the regular Ising model. It was calculated sepa-
rately to O(€) for the equilibrium RFIM (Ref. 67 and The mapping of the: expansion for the thermal random-
found to be given to this order bifgquation(94) is only a  field Ising model to the expansion for the Ising model in two
perturbative result foz which does not reveal the presence lower dimensions caused much controversy when discov-
of diverging barrier heights that lead to the observed slowered. The problem was that it had to break down at the lower
relaxation towards equilibriuth®>~"-"* Nonperturbative cor- critical dimension, where the transition disappears. There is
rections are expected to be important in the equilibriumno transition in the pure Ising model oh=1, but the equi-
random-field Ising modé]. librium RFIM is known rigorously to have a transition in
d=323%The same is true for our model: numerical simula-
tions indicaté? that the lower critical dimension is lower
than three—probably equal to 2.

In the case of the equilibrium random-field Ising model it
Because of the perturbative mapping of our model to thevas finally agreett®’ that this breakdown might be due to
equilibrium RFIM, Eq.(94) also gives the result farin our  nonperturbative corrections. The point is that proving a rela-
nonequilibrium hysteretic system. tion to all orders ine does not make it true. In the equilib-

We have performed a Borel resummafforf of the cor-  rium RFIM there are at least two sources of nonperturbative
rections toO(€°) for 7, v, and the derived exponepts (see  corrections:

Sec. Il 1'1). The exponeniB is then given throughB=846 (@ The “embarrassing” correction:lt was found that
—(2—n)v [EQ. (24)]. Figure 6 shows a comparison with our there was a calculational error in tf@&-€) expansion for the
numerical results in three, four, and five dimensions. RFIM. The perturbation series was tracing over many un-

C. Nonperturbative corrections

z=2+27=2+0.03703%%+0.0373&3+ O(e*). (94
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TABLE |. Numerical results for the critical exponents in three dimensions for our hysteresis (Redel
1 and 2 and for the equilibrium zero-temperature random-field Ising modefs. 71 and 119 The break-
down of hyperscaling expone#itis calculated for the hysteresis model from the relaganss=(d— 6)v (see
Sec. Il 1 2 and Refs. 38 and 37The values of the critical exponents of the two models remain within each
other’s error bars; their equality was conjectured by Marégal. (Ref. 9. This may not be so surprising,
if one remembers that the-& expansion is the same for all exponents of the two models. Nevertheless there
is always room for nonperturbative corrections, so that the exponents might still be different in three dimen-
sions(see Sec. VI € Physically the agreement is rather unexpected, since the nature of the two models is
very different. While the hysteresis model is far from equilibrium, occupying a history dependent, metastable
state, the equilibrium RFIM is always in the lowest free-energy state. One may speculate, however, about a
presumably universal crossover from our hysteresis model to the equilibrium random-field Ising model as
temperature fluctuations and a finite field-sweeping frequéheye introducedsee Appendix E R

Hysteresis loofgRef. 2

in three dimensions Equilibrium RFIM (Ref. 120
Exponents (courtesy Olga Perkovjc in three dimensions
v 1.42+0.17 0.97, 1.30, 1.050.1 (Ref. 119
B 0.0+0.43 -0.1, 0.05
Bo 1.81+0.36 1.6,1.904
7 0.79+0.29 0.25, 0.50.5
0 1.5+0.5 1.45, 1.50.45
R. (Gaussiah 2.16+0.03 2.3t0.2 (Ref. 119
H.(R.) 1.435+0.004 0(by symmetry

physical metastable states of the system, instead of just tak- At this point, the e expansion for our model is on no
ing into account the ground state, which the system occupiesorse formal footing than that for the ordinary Ising model.
in equilibrium. There were indications that this error leads toWe believe, the asymptotic expansion is valid for both mod-
nonperturbative corrections, which would destroy the dimenels, despite the fact that their critical exponents are different:
sional reduction outside of perturbation thedfy. the exponents for the Ising model &4—d and the expo-

In our calculation we have avoided the embarrassindgients for our model ine=6—d are different analytic func-
source of nonperturbative corrections found in the equilib-ions with the same asymptotic expansion. eexpansion
rium random-field Ising problem. Given the initial conditions €annot be used to decide whether the lower critical dimen-
and a historyH(t), the set of coupled equations of motion SION IS ate=3 or ate=4. _ , _
for all spins will have only one solution. In the Martin- We conclude that because of instanton corrections the di-

Siggia-RoseMSR) formalism, the physical state is selected :senvig?a;;e?gft'gﬂrbf:ﬁs ?Jﬁ\l'g?"jcr:: thc?e'?eqrtrjrlwlilr?irs“tji::n ?;I(;\fl
as the only solution that obeys causality, there are no un; q ’

hvsical metastable states coming in. Therefore we be"ev_emperature RFIM. In addition there is another “embarrass-
phy g m. %g” source of nonperturbative corrections in the equilibrium

our results should also apply to systems below the critica FIM, which we do not have in our problem. There is no
randomness, at least before the onset of the infinite avgg,gon to expect our exponents to be the same as those of the
lanche. , _ ~ equilibrium RFIM® though the perturbation series can be
(b) Instanton correctionsEven without the embarrassing mapped. There might actually be three different underlying
correction, there is no reason why a perturbative mapping ofunctions for the same expansion for any exponent: one for
the expansions about the upper critical dimensions shoulghe pure Ising model, one for the equilibrium random-field
lead to a mapping of the lower critical dimensions also. Thesing model, and one for our model, so that the exponents in

€ expansion is only an asymptotic expansion—it has radiugl| three models would still be different although theiex-
of convergence zero. As we discuss in Refs. 38 and 92, thefgansions are the same.

is no known reason to assume that thexpansion uniquely

determines an underlying function. It leaves room for func-
tions subdominant to the asymptotic power series: If the seVIl. € EXPANSION FOR THE AVALANCHE EXPONENTS

ries 2fyz* is asymptotic to some functiof(z) in the com- The exponents whoseexpansion we have calculated so
plex pla.ne ag—0, thenitis also gsymptotlc to any function ¢4, using the mapping to the equilibrium RFIM are 7, 7,
which d|ff%rls fLomf(ﬁ) by afurz;tlong(zo) J?Zt tends tol zerfo B, B8, 8, andz Unfortunately, we cannot extract the ava-
more rapidly than all powers of asz—0." An example of e exponents, 1/o, and @ from this mapping. The two

such a subdominant function would lggz) =exp(-1/2). exponent relations involving these exponents
While some asymptotic expansions can be proven to
uniquely define the underlying function, this has not been

shown for thee expansiof-*2—not for our problem, nor for T=2=0pB(1-9) (95
the equilibrium pure Ising model, nor for the equilibrium

thermal random-field Ising model. and
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lo=(d-6)v—p (96) A2=(5"(t,X0)8"(t1,X1)8(t2,%0) % (t3,%3) )1
are not enough to determine all three exponents from the _ [ 98" (txy) 85(t3,%3) (101)
information already obtained. 5€%(tg,Xg) S€P(t5,Xg) f’

In the following we will computer and o directly in ane
expansion. The method employed makes use of the scalirgnce
of the higher moments of the avalanche size distribution.
They are being calculated usimgeplicas of the system for
the nth moment. — =0, (102

A. The second moment of the avalanche-size distribution and

When calculatingy and v we have already used all infor-
mation from the scaling behavior of the first momeés} of 5P
the avalanche size distribution: It is easy to>8ebat (S) on.
scales as the spatial integral over the avalanche-response- €
correlation function, which in turn scales as the “upward . n .
susceptibility” dM/dh calculated consistently with the his- _ Similarly for thenth moment(S") of the avalanche-size

tory of the system. In the Martin-Siggia-Rose formalism it is diStribution one would use replicas of the system. In Ap-
given by’ pendix D we make this argument more precise and derive the

scaling relation betwee(S?) andA,

(103

<S>~j dtOJ ddX<§(t0,X0)S(t,X)>f <Sz>f~j dtlf dtadtﬁddxaddx[;(ga(taixo)

:f dtof d9x(8s(t,x)/ Se(tg,Xo) ) - (97) X $%(to,Xq) 8" (tg,%0) P (11, X))t - (104

In the following we generalize the RG treatment from previ-
The second momeK&?) of the avalanche size distribution is ous sections to the case of two replicas, and extract the scal-
the random-field average of the squared avalanche responsgg behavior of<52> from Eq. (104 near the critical point.
Note that it is not simply the square of the expression in EqQwe will compare the result to the scaling relation
(97) for the first moment—the product rule for taking deriva-
tives gets in the way: A quantity such as

<52>=J SZD(S,r,h)dSvf SIS . (S hirB%)dsS

(5(tg,Xg)S(ty,X1)S(t2,X0)S(t3,X3) )y =A+B, (98 (300 2) 1y 9). (109

not only contains the term which we need 2 . . ) . )
Wheref(i) is the corresponding scaling function, and obtain

the missing information to compute the exponentnd o.

(99

< 85(t1,X1) s(t3,X3) >
f

Se(tg,Xg) de(ts,Xg) B. Formalism for two replicas

The generalization of the MSR generating functional to
but also the terms two replicas is rather straightforward. The equation of mo-
tion for each spin is the same in both replicas

B:< 523(tllxl)

Belty Xg) 5ty Xg) U3 *X3)> f 9T o— 87(s%)] 8= 0 (106
5%s(t3,X3) and

0€(tp,Xo) O€(t2,Xo)

+<s(t1,x1) > ., (100
f

oSPIT o— 6.97(sP)1 8sP =0, (107
which are not related t6S?). To separaté andB we intro-
duce a second replica of the system with the identical conwhere the HamiltoniarZ is given by Eq.(33).
figuration of random fields, the same initial conditions, and The new generating functional is a double path integral
the same history of the external magnetic field. One can theaver two  functions which impose the equations of motion
calculate the response in each of the two replicas separateligr both replicas. Again we can write th&functions in their
multiply the results and afterwards take the average over th&ourier” representation by introducing two auxiliary fields
random fields. Denoting the quantities in the first replicas® ands?.
with superscripte and those in the second replica with su- One obtains simply the square of the generating func-
perscript3 one obtains tional from Eq.(35), expressed in terms of two replicas:
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Zaﬁ:f f [dsa][d‘sa]f j [dsﬂ][d‘sﬂ]a[sa]a[sﬂ]exp(iz fdt (O[T,
J

—67%(3“)/6sf‘(t)])exr{i2 f dt E‘Jﬁ(t)[ﬁtsf(t)/ro—5,7Z(Sﬁ)lﬁsjﬁ(t)]). (108
]

We note that the two replicas do not interact before the average over the random fields is takeA=Simee can again
averageZ directly over the random fields.

We rewrite the action using the same kinds of transformations to the Iocalﬁéld%“, 7P, and";'yﬁ which we introduced
previously[see Eq(46)], i.e.,

z°P= f (a7 7 a7 711 2,05 7% ,’?“zﬁexp{ - f dt, %m)(; J;la’fﬂ(t))

- j dt> %ﬁ(t)(E J;)J’?zﬁ(t))], (109
i 7
|
S rsa Sasp =B . solved self-consistently by the replica symmetric mean-field
whereZ[ ", ny"n;", 7y 1 is a local functional solution, which we found earlier when studying just one rep-
_ ~ ~ lica:
Zj[nf‘,n?nf,mﬁ]:f [ds*][d5*][ds’][d¥"] ~
B 7 6=0, (112
X (exp Sgf)s (110 -
7 5=0, (113
and
1 76=(s%1, (114
~01B_ - :’af a raa a 1Y f. —
Ve 1 ~ . Analogously to befor€ we will now expand around the
t 5 ] + jf dt{JnjB(t)Sjﬁ(t)Jrisjﬁ(t) asf(t) mean-field solutiony §, 7 5 [J7 & and J7 § denote the
J

local-field configurations about which the log of the inte-
VB grand in Eq.(109 is stationary. Introducing shifted fields
—Jﬂjﬁ—H—fjJrQ)}- (111 n*=7"=75 so that(y*)=0, and ?7“5_7;“ (and corre-
! spondingly forz?, and %), leaves one with the generating
Here V* and V# are given by the linear cusp potentidl functional
defined in Eq(32), to be understood as a functionf and o
sP, respectively. Z:f [d7*][d7*][d7?][d7Plexp(S*F) (116
Again, we expand the action around its stationary point. It
is specified by four coupled equations, which turn out to bewith an effective action

1
-0 minlp!q!

saﬁ:—; fdt JjTlJ;yf‘(t)nf‘(t)—; f dt JjTlJ;ij(t)mB(t)—l-; mn;q
Xf dtl"'dtm+n+p+qU%€1pq(tla---vtm+n+p+q);7jq(t1)'";7ja(tm)77f1(tm+1)“'77ja(tm+n)
X A”]jl;(tm+n+1)' o A77jﬂ(tm+n+ p) 77]'8(tm+n+p+1)’ o n{g(tm+n+p+q)- (117

Here, theuss ,, are the derivatives of IE[_JF’B with respect to the field$", », % and »{ and thus are equal to the local,
connected responses and correlations in mean-field theory:

J J Jd
af .. .. a ...g S ...qB
u =— = s*(ty)---s%(t,)sF(t ).+ -sP(t ) .
mnpq Je (tm+1) Je (tm+n) (76ﬁ(tm+n+p+1) &Gﬁ(tm+n+p+q) < ( ! ( m ( m+n+l ( m+n+p >f,|,c( )
118
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As before, locd® (I) means that we do not vary the local E. Results
field (77g); in the mean-field equation We have seen that
f sVe o Uo=zv+(2— n)v+0(e?)=2+€l3+O(€?). (123
oS ()=J(n §)i()+H+f— ——+Je*(t) (11
S (=307 6);(1) bos](t) €t (19 If one inserts this into the relation—2=03(1— ), one ob-
tains

when we perturb the replica with the infinitesimal force

Je, (1) (and correspondingly for replicg). The indexc to 7=3/2+0(€?). (124
the average in Eql1g is a reminder that these aoon- From the violated hyperscaling relatioro® (d— 6)v— 8 one
nectedcorrelation and response functions. In the same way, o

as we discussed in Sec. IV D the forde*(t) is only al-

lowed toincreasewith time consistently with the history we Ov=1/2— e/6+ O(€?). (125
have chosen. From E(L18) one sees thaty, =0 if n+0,

Umnog=0 if g#0, andugnoq=0, just as we hadig,=0 in  This concludes the perturbative approach to the problem.
our earlier calculation for just one replica.

VIlIl. COMPARISON WITH NUMERICAL SIMULATIONS
C. Coarse-graining transformation IN TWO, THREE, FOUR, AND FIVE DIMENSIONS

The coarse-graining transformation is defined in the same Figures 6 and 7 show a comparison between the theoreti-
way as in the single replica case. In Appendix D we give thecal predictions for various exponents and their values as ob-
Feynman rules for loop corrections, and derive the canonicdrined from numerical simulations in two, three, four, and
dimensions of the various operators in the action. five dimensiong.A complete list of the numerical exponents
that were measured in the simulations, and a detailed de-
scription of the algorithm that allowed to simulate systems
with up to 1008 spins is given in a forthcoming
publication? A quantitative comparison of the results to ex-

In order to find the scaling dimension ¢8%) from Eq.  periments can be found in Refs. 1, 38, and 37. Some first
(104) we need to know how results and conjectures about the behavior in two dimen-

sions, which is likely the lower critical dimension of our
(§“(ta,Xo)S“(to,Xa)gﬁ(tﬁ,xo)sﬁ(tl,xﬁ)h (120 qritical point, are presented elsewhéreAs ?s seen in the
figure, the agreement between the numerics and the results

scales under coarse graining. The topology of the diagramféom the e expansion is surprisingly good, even down to

- . . 6: .
permits noO(e) loop corrections to the corresponding vertex . . . .
function. Since the anomalous dimensions of the external The numerical values in three dimensions far 53, v,
legs(i.e., Greens functionsn the two replicas are also zero
at O(e) it is sufficient to use the plain field rescalings to

D. The scaling of the second moment
of the avalanche size distribution

extract the scaling behavior dfs*sPs*s?) under coarse 8.0 — ' '
graining. As shown in Appendix D one obtains N 85
o 20t ST A
(898PssPy~ AL2d+2D)—4] (121 % R S %/,/’
Z £ R =
ﬁ ///
whereA is the cutoff in the momentum shell integrals. %’ 1.0 ¢ W &
Inserting this result into Eq104) along with the canoni- & %( -
cal dimensions of the various timfg~A ~Z and coordinates i - \\\ﬂ
[x]~A"1, one obtains 0.0 | n it S -
()~ A4+, (122
-1.0 -
3 4 5 6

[Formally including the anomalous dimensiong=7
=0+0(e?), one obtains (to first order in ¢ (S?

~ A2+ 2] gimilarly, one finds for the higher moments » S
<Sn>~A7[(n71)z+(27 n)n]] FIG. 6. Borel resummed critical exponents and simulation re-

Its. Shown are the numerical values of the exponentszil/and
On the other hand, from Eq105 we know that(S? sy i . . e
~r(T’3)’”.7(+2)(h/rB‘s). If we us(}a tf?;tr has scaling<un>its Bé=v(d—n)/2 (triangles, diamonds, and circles, respectiyely

I three, four, and five dimensions and in mean-field thedignen-
A", and thatr—2=0B(1-0) (see Sec. lll|, and Refs. 37 4y g ang highér The error bars denote systematic error in finding

and 38, we find by comparison with Eq122) that /=2 ihe exponents from collapses of curves at different values of disor-
+(2—n)v to first order ine. One gets the same result from gerR Statistical errors are smaller. The dashed lines are the Borel
comparing the dimensions for tmh moment, which scales sums to fifth order ire for the same exponents, using the method of
as (S ~r (7= (T 1o AN (/B Refs. 116 and 117see also Ref. 92

Dimension (d)
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three, four, and fiye dimen§ions. Thg empty symbols are values for APPENDIX A:

th_ese exp_onent; in mean-figdimension 6. Note that th_e value of HARD-SPIN AND SOFT-SPIN MEAN-FIELD THEORY

7in two dimensions was not measured. The empty diamond repre-

sents the expected val@Refs. 1 and 3} The numerical results are 1. Hard-spin mean-field theory

courtesy of Olga PerkoVi(Refs. 1 and 2from simulations of sizes

up to 7008, 1006, 80%, and 56 spins, where for 32) for example,

more than 700 different random-field configurations were mea

Dimension (d)

In this appendix we derive the scaling forms near the
critical point for the magnetization and the avalanche-size
sured. The long-dashed lines are thexpansions to first order for distribution in the hard-spin mean-field theory. At the end we
the exponents+a8, 7, ovz, and av. They arer+oB5=32—é8, briefly discuss changes of nonuniversal quantities for the

=3+0(), and ovz=3+0(e?), and v=3+0(e) wheree=6—-d  SOft-spin mean-field theory. _ o
andd is the dimension. The short-dashed lines are the Borel sums We start from the hard-spin mean-field Hamiltonian:
(Ref. 22 [92,119 for 1/v to fifth order in e. The lowest is the
variable-pole Borel-sum from LeGuiIIoet_ al. (Ref. 92, the middle T=— 2 (IM+H+f)s,, (A1)
uses the method of Vladimiroet al. to fifth order, and the upper i

uses the method of LeGuilloet al. (but without the pole and with . . . .
the correct fifth-order terjin The other exponents can be obtained where the interaction with the nearest neighbors from the

from exponent equalitietsee Sec. Il | in the text The error bars ~ Short-range model Eq3) has been replaced by an interac-

denote systematic errors in finding the exponents from collapses dfon With the average spin value or magnetizatid

curves at different values of disorde®. Statistical errors are = (ZSj)/N. This would be the correct Hamiltonian if every

smaller. spin would interact equally strongly with every other spin in
the lattice, i.e., for infinite range interactions.

and » seem to have overlapping error bars with the corre-

sponding exponents of the equilibrium RFI(dee Table )L 2. Mean-field magnetization curve

Maritan et al”® conjectured that the exponents might be |nitially, at H=—oc, all spins are pointing down. The
equal in a comment to our first publicatfSron this system.  field is slowly increased to some finite valie Each spin
Why this should be is by no means obvious. The physicak, flips, when it gains energy by doing so, i.e., when its local
states probed by the two systems are very different. Whilgyfective ﬁe|dhiefr:\],v|+HJrfi changes sign. At any given

the equilibrium RFIM will be in the lowest free-energy state, field H all spins Withhieff<0 will still be pointing down, and

our system will be in a history-dependent metastable statey, spins withh®™>0 will be pointing up. Self-consistency
Nevertheless, as we have seen, the perturbation expansions

for the critical exponents can be mapped onto another to alFaures that = p(f)sdf. One obtains

orders ine. In Appendix E 2 we discuss possible connections —JIM-H o
between the two models that might become clear if tempera- M=(— 1)J p(f)df+ j p(f)df
ture fluctuations are introduced in our zero-temperature ava- ’°° —IM—H
lanche model. _IM—H
=1—2J p(f)df. (A2)
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sults of this paper compare favorably. Furthermore we thanknagnetic fieldH.(R;)=0 where the magnetization curve
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M(H) has diverging slope. FAR<R; and H between the R as given in Eq(A4) remind us of the scaling results of
two branching fieldS—|L(R) andHY(R) there are two stable the Curie-Weiss mgan-ﬂeld theory for the equilibrium Ising
and one unstable solution ff (H). Unlike equilibrium sys- Model near the Curie temperatufie=Tc). ForT<Tc, how-
tems, which will always occupy the solution with the lowest V€I the equilibrium model has a discontinuity in the mag-
overall free energy, our nonequilibriuizero-temperatuje ~ N€tization atH=0, while for R<R. our model displays a
system is forced by the local dynamics to stay in the currenfdMP in the magnetization at a history-dependent nonzero
local energy minimum until it is destabilized by the externalMagnetic fieldH(R), where the corresponding metastable
magnetic field. For increasinglecreasingexternal magnetic  Solution becomes unstable. Our infinite avalanche line
field this implies that the system will always occupy the Hc(R) is in fact similar to the spinodal line in spinodal

metastable state with the lowgstighesj possible magneti-
zation. One obtains a hysteresis loop kb¢H) with a jump,
or “infinite avalanche,” and with diverging slopg@M/dH at
the upper and lower coercive fields:(R) and H'C(R), re-
spectively(see Fig. 1L From Eq.(A2) follows thatdM/dH
=2p(X)/[1-2Jp(X)] (with x=—-JIM—H) diverges if

2Jp(—JIM—H)=1. Expanding around such a point one ob-

tains

dM/dH=x=[—p(Xc) JI{I[p" (Xc) (X—X¢)
+1/20" (Xe) (X—Xc)?+ -+ ]} (A3)
with x.=—JM(H.(R))—H(R). [H.(R) meansH{(R) or
H'C(R) depending on the histotyFor a general analytic dis-

tribution of random fieldg(x) with one maximum with non-
vanishing second derivatiVieo”(x.) <0], this suggests two

decompositiorf? Note also that this mean-field theory does
not show any hysteresis fét=R_ (see Fig. 1L As was ex-
plained earlier, this is only an artifact of its particularly
simple structure and not a universal feature.

3. Mean-field avalanche-size distribution

As we have already discussed in the main text, one finds
avalanches of spin flips as the external field is raised adia-
batically. Due to the ferromagnetic interaction a flipping spin
may cause some of its nearest neighbors to flip also, which
may in turn trigger some of their neighbors, and so on. In
mean-field theory, where aM spins of the system act as
nearest neighbors with couplirigN, a spin flip changes the
effective field ofall other spins by 2/N. For largeN, the
average number of secondary spins that will be triggered to
flip in response to this change in the effective local field is

different scaling behaviors corresponding to the casegen given bynyig=2Jp(—IM—H). If nge<1, any ava-

p'(Xe)=0 andp’(x¢)#0.

a. The “critical endpoint” (R, H.(R.))

Consider the casp’(x;)=0 first. For a Gaussian distri-
bution of widthR=R; with zero mean this implies that.
—JIM(H,) —H.=0, p(xo) = 1/(y2mR.) = 1/(2J) and con-
sequentlyR.=+/2/7J. This is in fact the largest possible
value of R for which M(H) has a point of diverging slope.
Integrating Eq(A3) leads to a cubic equation fod and the
leading-order scaling behavior

M(r,h)~|r|2.7Z.(hl|r|A%), (A4)

for smallh=H—-H_.(R;) andr =(R.— R)/R, with the mean-
field critical exponentg=1/2 andé=3.. 7. is given by the
smallest real rooy).-(y) of the cubic equation

12 122
o+ ;Q—WYZQ (A5)

where = refers to the sign of.

b. The “infinite avalanche line” H.(R) for R<R,

The other cas¢p(x;)=1/(2J) andp’(x;) #0] is found
for distributions withR<R_. Integrating Eq.(A3) with X,
=—-JM(H.(R))—H.(R) yields a quadratic equation for the
magnetization and the scaling behavior

M=M(H(R)~[H-H(R)* (AB)

with {=1/2 for H close to H.(R). From Eq.(A2) and
2Jp(Xc) —1=0 one findsH(R,) =0, H,(R)~<*r#? for
smallr>0, andH.(R=0)= =J (= indicates the two mono-

lanche will eventually peter out, and even in an infinite sys-
tem all avalanches will only be of finite size. if;;=1, the
avalanche will be able to sweep the whole system, since each
flipping spin triggers on average one other spin. This hap-
pens when the magnetic field takes a value at the infinite
avalanche lindH=H.(R), with R<R..

Considering all possible configurations of random fields,
there is a probability distribution for the numb8rof spins
that flip in an avalanche. It can be estimated for avalanches
in large systems, i.e., f0B<N: For an avalanche of siz®
to happen, given that the primary spin has random ffeld
it is necessanthat there are exactl$—1 secondary spins
with corresponding random fields in the intervif;,
fi+2(J/N)S]. Assuming that the probability density of ran-
dom fields is approximately constant over this interval, the
probability P(S) for a corresponding configuration of ran-
dom fields is given by the Poisson distribution, with the av-

erage value A\=2JS(—JM—H)=95(t+1), where t
=2Jp(—JIM—-H)—-1:
A(S—D
P(S)=meXF(—7\). (A7)

This includes cases in which the random fields ofglspins

are arranged in the intervpf; ,f;+2S(J/N)] in such a way
that they do not flip in one big avalanche, but rather in two
separate avalanches triggered at slightly different external
magnetic fields. Imposing periodic boundary conditions on
the interval[ f;,f;+2S(J/N)] one can see that for any ar-
rangement of the random fields in the interval there is ex-
actly one spin which can trigger the rest in one big ava-
lanche. In 1% of the cases, the random field of this particular

tonic histories. The corresponding phase diagram wasspin to trigger the avalanche will be the one with the lowest

shown in Fig. 3. Note that the scaling results Rrclose to

random field, as desired. Therefore we need to multiply
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P(S) by 1/S to obtain the probabilityD(S,t) for an ava-

lanche of sizeS starting with a spin flip at random fielfi

=—-JM-H
D(St)=

SS2/(S—1)1(t+1)S Ve Sttt (A8)

With Stirling’s formula we find for larges the scaling form

D(St)~ exp(—St/2). (A9)

\/_ 3/2

To obtain the scaling behavior near the two different critical

points, we will insert into the expression in EGA9) the
expansion ot(x) aroundx,.

4. Avalanches near the critical endpoint

Near the critical point(R;,H.(R.)), wherex.=0 and
p'(Xc)=0 we obtaint=2Jp(0)—1+Jp"(0)(—IM—H)?,
which implies

t~r[1F 1/4mg. (h/|r|#%)?] (A10)

[see Egs(A4) and((A5)]. With Eg. (A9) we then obtain the
scaling form for the avalanche-size distribution:

D(S,r.h)~ST7Z.(S|r|"¥,h/[r|#),  (ALD)

with the mean-field results=3/2, 0=1/2, 86=3/2, and the
mean-field scaling function

1
[ e_
2

D (X,y)= (A12)

T 2
X 1:Zg¢<y>2] 12

5. Mean-field avalanche-size distribution
near the «-avalanche line(“spinodal line” )

For R<R. one has'(x;)#0, so that the expansion for
becomes

t=2Jp" (Xc)(X—Xc)+ -+
=2Jp"' (X {=IM—=M(H(R)]-[H—H(R)]}+---
(A13)

Following the steps that led to EGA6) we arrive at

t= _ZJJP,(XC)(H_HC(R))

+higher orders in[H—-H.(R)], (A14)

so that forH close to the onset to infinite avalancheith
H<H{(R) for increasing fieldd andH= H'C(R) for decreas-
ing field]

D{S[H-H(R) ]}~ 271783/26><|0{—2[p’(—JM
—H)JJSH—H(R)|}.  (A15)
or
D[S,H—H(R)]~US"7(SIH—H(R)|¥%), (A16)
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with k=1 and 7=3/2 in mean-field theory, and” is the
corresponding mean-field scaling function.

6. Modifications for the soft-spin mean-field theory
a. The static case

In Sec. IV we have, for calculational convenience,
switched from the hard-spin model, where each spitould
only take the valuest1, to a soft-spin model, wherg can
take any value betweer«~ and +«. In realistic systems
these soft spins can be considered as coarse-grained versions
of the elementary spins. The corresponding Hamiltonian
with the newly introduced double-well potential

ki2(s+1)?
k/2(s;—1)?

to mimic the two spin states of the hard-spin model, was
given in Eg.(33). In the mean-field approximation, where
the coupling term—Jj;s;s; is replaced by—=;JMs with
M=Z2;s;/N, we obtain

for s<0,

V(si)= for s>0,

(A17)

T=— 2 {(IM+H+f)s,—V(s)}. (A18)

For adiabatically increasing external magnetic field the local
dynamics introduced earlier implies that each spin will be
negative so long as the “down” well Hamiltonian

H_=K2As+1)*=(H+IM+f)s  (A19)

does have a local minimum witld7/55=0 for negative
s;. This implies thats; <0 if

S

55, [ki2(si+1)2— (H+f;+IM)s;1s—0=0, (A20)
elses; will be stable only at the bottom of the positive po-
tential well, where

5 )
— "%*:E [k/2(s;—1)2—(H+JM+f;)s;]=0.
i

6Si
(A21)
We conclude that for the given history
<0 for fi<s—JIM—-H+Kk,
s>0 for f;>—JIM—H+k. (A22)
From the self-consistency condition
<Si>EJ p(f)sdfi=M (A23)
we derive forincreasingexternal magnetic field:
—JIM—H+k
MU(H)=(k+H)/(k—J)—2k/(k—J)f p(f)df,
(A24)
and fordecreasingexternal magnetic field:
JM—H-k
M,(H)=(k+H)/(k—J)—2k/(k— J)J p(f)df.
(A25)
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Figure 2 shows the corresponding hysteresis loops in the 7P =M(t) =M gaHo) + (Q/T)P2f,(H)t
three disorder regimeR<R.= y2/7J[k/(k—J)], where the o )
hysteresis loop has a jumR=R., where the jump has +(Q/Tg)P2f(Ho)t"+ -+ (A29)

shrunk to a single point of infinite slopgM/dH, and R
>R., where the hysteresis loop is smooth. In contrast to th
hard-spin model, this model displays hysteresis everRfor
=R,.

The critical magnetic field#l(R) and H'C(R) where the
slope of the static magnetication cunégM/dH~1/7 di-
verges are given by the zeroes of

with 0<p;<p,<--- . Thep,; depend on whethdR<R, or
F’F?zRC. Mgia{ Hp) is the solution of the static mean-field
theory equation(A24) for the given history. If the series
converges forQ—0, it follows that °(t) approaches the
constantmagnetizatiorM 4,(Hg) in the adiabatic limit. This
is certainly expected foH, away from the critical field
H.(R), where the static magnetization is non-singularQas
_ tends to zero the time-dependent magnetizakitit)y simpl
X 1=22p(=IMsa H+K) = I(k=J)/k.  (A26) lags less and less behing the static ?/aMgta(H(t)). Tph)é
To find the scaling behavior near the critical point one canmagnetizationM(t) can be expanded a§l(t)=Ms{Ho)
expand Eq.(A24) aroundHY(R), and correspondingly Eq. T[dM/dH]y Qt+--- and converges towardd s;,(Ho) as
(A25) aroundH}(R). For increasing external magnetic field 2—0, as long as all derivativel"M i,/ dH"]y are well
the critical point R=R;, H=H{(R,), and M=M, defined and finite. This argument, however, does not obvi-
=M (HY(R.)) is characterized by '=0 andp’(—JM, ously hold at the critical fieldH,=H.(R) with R<R,
—H.+k)=0, i.e., —IJM,—H.+k=0. It follows that R, = WheredMg,/dH and all higher derivatives diverge. Using
=(1/\/ﬂ)[2kJ/k—J]. From Egq.(A24) one obtainsM! bpundary Iayer theory one can shwhat even a.t thgsg
=1 andHY(R,=k—J. Similarly for a decreasing external Singular points M(t) converges toward its static limit
magnetic field one ﬁndsH'C(RC)= —(k-J) and MIC M(HF(R)) as Q—_>0, thoggh with power laws smaller thgn
=M, (H(R.))=— 1. The corresponding modified phase dia- one in Q as indicated in EQ(A29). This convergence is
gram is depicted in Fig. 4, withl'(R=0)=+k andH'c(R reassuring, since we usé..(H,) as the foundation for our

~0)=—k € expansion.
Expanding Eqs(A24) and (A25) aroundM., H., and
R, yield a cubic equation for the magnetization and one ob- APPENDIX B:
tains the same scaling behavior near the critical point as we =~ SOME DETAILS OF THE RG CALCULATION
derived earlier for the hard-spin model. The same is true for 1. Calculating someu,, coefficients

the scaling of the avalanche-size distribution near the critical . ) .
point. In fact, it turns out that none of the universal scaling N Sec. IV Ain Eq.(60) we have given an expression for
features we discussed for the hard-spin model is changed fép€ coefficientsun, in the expansion around mean-field
the soft-spin model(A “spin-flip” in the hard-spin model  theory:
corresponds to a spin moving from the “down” to the “up” 5 5
potential well in the soft-spin model. _ _ .0

U= ety | ety (L) T 7 (]ISt

b. The dynamic mean-field theory 0
at finite sweeping frequenc{2 =7 (tm) 1,30, 70 (B1)

In Sec. IV A, Eg.(61), we have derived the following wheres;(t) is the solution of thdocal mean-field equation
equation of motion for each spin in the dynamical soft-spin
mean-field theory, as the external magnetic fidlit) =H, 1/(Tok) d;sj(t) = —sj(t)+J77?(t)/k+ H(t)/k+f;/k

+Qt is slowly increased
+sgr(sj) +Je(t)/k. (B2)

1 atsj(t)an?(t)+ H+f— é—V+Je(t). (A27) _ _
o Js;(t) In order to calculate the higher response and correlation
functionsu,,, as given in Eq.(B1) one needs to insert the
solution for °(t) from Appendix A 6 into Eq.(B2). As is
explained in Appendix A 67°(t) can be expanded in terms
1T k) dysj(t) = — (1) +J77?(t)/k+ H(t)/k+f; Ik ﬁ'f (()R[)?t least foR=R, and forR<R, before the jump up to

c :

With the definition of the potentiaV from Eg. (32) this
becomes

+sgr(s)) +Je(t)/k. (A28)
7°(t)=M(Hg)+ QPt+---, (B3)

From Eq.(54) we know that°(t) =(s)=M(t) is the time-
dependent mean-field magnetization of the system. It can be
calculated by taking the random-field average of E&R8)  whereM (H,) is the static magnetizatiop>0, and--- im-
and solving the resulting equation of motion fg?(t). One  plies higher orders irf). Inserting this expansion into Egs.
can show that for driving rateQ/k small compared to the (B2) and (B1) allows us to calculate the coefficients,,
relaxation ratekl", of the system, for all values dfl, the  perturbatively in(2. Only the lowest order remains &—0.
solution °(t) can be expanded in terms of)(I'y) in the  The calculation is rather straightforward, some details are
form given in Ref. 38. One obtains
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Uy o(t) =(s;()}— n°()=0 (B4)
by construction. The vertex functiam(t4,t,) is given by
IimQHO[aftl(Iimeeo<s(t2)|H(t2)+Je¢9(t27tl)

_S(tz)lH(t2)>f/E)]l (B5)

14 895
Iimeﬂ0<5i(t2)|H(t2+\]56’(t27t1)_Si(t2)|H(t2)>f/€
=J/k+2Jp[ — I°(t,) —H(t,) +Kk] (B10)
up to dynamical corrections of the form

[exp(—AHTI'4/Q)], which are negligible a§)—0. Conse-
qguently, the derivative with respect to-¢;) in Eq. (B5)

whered(x) is the Heavyside step function. In the correspond-Yiélds zero in this limit. There is no contribution to the action
ing term in the action the above expression is multiplied by_from these cases and the result converges to the expressions

7(t,) and7(t,) and integrated ovetdt, anddt,. After some

algebra and integration by partstinone obtains two terms:

in Egs.(B6) and(B7) as()—0.
The coefficientsu; , and u, ; at field H are calculated

the boundary term which has a purely static integrand an&imilarly. Qne obtaips fo_r th_e terms in the action correspond-
leaves only one time integral, and a time-dependent transiefft9 t0 U1 2 in the adiabatic limit:

part with two time integrals. The static term contributing to

the action is

+
- | dt - k- 23,011 = - 350- HeH01
(B6)
The dynamical part can be written as

f T, f A0 (-t it [0y ()]

X p(—=In°—H+K). (B7)

In the low-frequency approximation this becomes

| dtta, mt)r - 31k a3p(- 39— H+ k01T k)

- | auita, s, ®9

with
a=[J/k+4Jp(—In°—H+Kk)]/k.

ISR1]

Equation(B8) contributes to the i'w
expressed in frequency space.

The above results were computed for the cébg,)
=H(t,). If instead one keephl(t,) —H(t;)=AH=#0 fixed
as)—0 (i.e.,t,—t;—»), one obtains

(B9)

term in the propagator

UZ,O(tl ,t2) = RZ/k2+

—oo

which is positive(or zerg for any normalized distribution
p(f).

2. Feynman rules

In the following discussion we denote with,,, the static
part of Uy,n(ty...tmen). 1.€., the part which(for n#0, after

_ _ .0
f H(tp)~ 7 (t2)+kp(h)dh)(4—4f

_4U”“2)”O“z”"(h/k)p(h)dh>—2<f

—H(ty)— 7%ty +k

—H(ty)— 72ty +k —H(ty)— 7%ty +k
(t) =7ty + p(h)dh)—4U (2=
—H(tp)— 7%(tp) +k

—H(ty)— 7%ty +k

f ddeMdt %(x,t)(w[ n(x,t)]?
t
+f_xdtza(t-tzatz)f?tzﬂ(xatz)

t ty
+f7 dtZJ’, dtla(t,tl,tz)ﬁtzﬂ(x,tz)ﬁtlﬂ(x,tl) .

(B11)

Here,w=—2J3%p'(f;=—J7n°—H+Kk), anda(t,t;,t,) is a
transient function due to the relaxational dynamics of the
system. It consists of terms proportional to expf(t
—t)} or exp{—Ty(t—ty)}. The transient terms propor-
tional toa(t,tq,t,)} turn out to be irrelevant for the critical
behavior observed on long length scales.

The static and the transient terms in the action contributed
by u, 3 are calculated similarly. Again, only the static part
turns out to be relevant for the calculation of the exponents
below the upper critical dimension. It is given by

+ o
f dde dt up(x,H[ 7(x,1)13, (B12)
with u=23%p"(f;=—J7°—H+Kk).

Finally, the vertexu, ((t;,t,) =(si(t1)si(tp)) is a local
correlation function. The timelg andt, can be infinitely far
apart, i.e., even foH (t;) # H(t,) the vertexu, g is still non-
zero. One obtains

2

— o0

(h/k)p(h)dh), (B13)

taking the time derivative and integrating by paris not
multiplied by any time derivative of the fields. This is usu-
ally the only part of the vertex which is not irrelevant under
coarse grainindexcept for the propagator term, which also
has a contribution proportional iw).

In our Feynman diagrams for the perturbation expansion a
vertexu, , is denoted by a dot witm outgoing arrowgone
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gram that violates causality and is therefore forbidden. Ex-

ternal(loose ends in a diagram correspond to operators that
(a) (b) are not integrated out, i.e., modes of momentqriA/b
u outside of the momentum shell. Each internal line carrying
momentum contributes a factor

1U(g%—x~ ). (B15)
Uy, In each diagram, momentum conservation requires that ver-
\.’/ u tices should be connected by loops rather than a single, dead
R (C) (d) u _ end propagator line. Figurd® shows an example of a dia-
¢ ¢ gram that is zer8? The entire loop in diagram(8) contrib-

utes to the integral

FIG. 8. Feynman diagrams. The perturbative expansion about R
mean-field theory is presented here by Feynman diagrdays. _ d d 2 12
Graph for the vertexs. Incoming arrows denote fields, outgoing h= fA/bd q/(2m)"1Q" = x 1) (B16)
arrows denotey fields. (b) Example of a diagram which violates
causality and is therefore forbiddeft) Graph for the vertexi, . (integration over time is already performedimilarly the
(d) Example of a diagram that is zero due to momentum conservaloop diagram in Fig. @) yields the integral
tion (Ref. 84.

A

for eachy operatoy andn incoming arrows(one for eachy 2= JA,bddq/(ZW)dll(qz_X H3)>. (B17)
operatoy. Figure &a) shows the graph for the vertex Fig-
ure 8c) shows the graph for the vertax ;. The black el-  After each integration step we also have to rescale momenta,
lipse connects the two parts of the vertex that are taken dtequencies and fields. The recursion relationsyfot/J and
different times. From the integration over the short-u including the lowest-order corrections become
wavelength degrees of freedofof all frequenciesone ob-
tains loop corrections to various vertices. Figuréa) &nd
9(b) show the corrections tg ! andu which are important
for an O(e) calculation.

We consider theyz term in the action as propagator and and
all other terms as vertices. An internal line in a diagram
corresponds to the contraction u’'=b¢

7 lt - ,t,
tranm ety (There are no loop corrections tg ,=u,,.) The integrals
Foexp{—To(q?—x YA (t'—t)} for t'>t, I, andl, have to be computed in-6¢ dimensions in the
~lo for t'st usual way*®
(B14)

with q in the infinitesimal momentum shelA/b<q ) ) )

<A (b>1) over which is integrated. This expression can As we have mentioned in Sec. IV C it turns out that on

be approximated byS(t—t') in the low-frequency long length scales different magnetic fields decouple and the
approximatiorf® Note, however, that causality must be Static critical exponents can be extracted from a

value of the external magnetic fieltl, due to a separation of

time scales. In the following paragraph we will show that
this statement is self-consistent using an argument by

u u
() - (b) . Narayan and Middleton in the context of the CDW depinning
transition®®
An expansion around mean-field theory in the way per-
. formed here correspondsfiest increasing the magnetic field

H within an infinite ranged model arttientuning the elastic
coupling to a short-ranged form, while the actual physical
behavior coresponds first tuning the elastic coupling to a
(c) short-ranged form anthen increasing the force within the
short-ranged model. The concern is that in the presence of
many metstable states the critical behavior of the two ap-
proaches might not be the same. For example, spins might
FIG. 9. Feynman diagrams. The relevant corrections to first orfend to flip backwards upon reduction of the interaction
der in e=6—d for the constant part iry~%/J in the propagatofa), ~ range in the expansion around mean-field theory. Although
and for the vertexu (b). (c) shows an example for a diagram for- there will of course always bsomespins for which this is
bidden by causality. the case, no such effects are expected on long length scales

u u
(X—l/J)'=b2(X—1/J+2L!'°§6|1) (B18)

u uz‘o
3121

u 2
ﬁ} 36|2). (B19)

3. Implementation of the history




53 HYSTERESIS, AVALANCHES, AND DISORDER-INDUCE. . . . 14 897
since the susceptibility is actualiypore divergent near the grals extend from-oo to «. The constant coefficients of the
critical point for d<6 than in mean-field theory. Near the g, term and theg? term have been rescaled to(dee Sec.
critical point we have VA).

(dm/dh),_g~r "7 (B20) APPENDIX C: INFINITE AVALANCHE LINE

In most of this paper we have focused on the critical
endpoint(R. ,H:(R;)), in particular as it is approached from
R=R,. Our € expansion can be applied to the entire line

and

(dmvdh),_y~h¥o-1, 821 Hc(R), R<R at which the infinite avalanche occutaith
some reservations which we will discuss latén mean-field
Since the numerical and analytical analysis render theory the approach to this line is continuous with a power-

law divergence of the susceptibilify~dM/dH and precur-
_ _ . sor avalanches on all scalésee Appendix A From Eq.
y(in d<6)>y(in mean-field theory)  (B22)  (B24) [or equivalently Eq(64)] and from the rescaling of the

vertices given in Eq(78)
and

urfnyn:b[*(m+n)+2]d/2+2num'n, (Cl)

(1=1/6)(in d<6)>(1~1/§)(in mean-field theory one sees that on long length scales the effective action is

(B23)  purely quadratic above eight dimensions. This suggests that

one expects that on long length scales spins tend tddiip  there is acontinuoustransition [as H approachesH(R)]
ward rather than backward uponreduction of the couplingWith mean-field critical exponents and a diverging correla-
range. This is consistent with the corresponding assumptiorf®n length £(x~*) with the scaling behavioré(x ™)
we have made for our expansion around mean-field theoryrb&(b%x 1), i.e., é~(x Y2 Since " ~[H—H.(R)]
for a monotonic history of an increasiridecreasingexter-  (see Appendix A it follows that é~|H—H¢(R)|™" with
nal magnetic field. v,=1/4 for d>8%8
Reassured by this self-consistency argument we now For d=8—¢ (e>0) the vertexw in the actionS, be-
briefly discuss the formal decoupling of the different mag-comes relevant. In contrast to the critical endpoint where
netic fields within the RG description for separated timex =0 andw=0, the infinite avalanche line is characterized
scales. As discussed in Appendix B 1 the response functioldy the ‘“bare values” y '=0 and w=-2Jp’
Upn(ty,....the1) with fixed H(t;) # H(t;) with j#1 tend to [ —IM(H(R))—H(R)+k]#0. With the Feynman rules of
zero in the adiabatic limit. However, the original actiBiof ~ Appendix B 2 the recursion relation to the same order be-
Eq. (59) also contains terms of the form, o(H;,H,) which ~ comes
do couple different fields even &—0. These “multifield”
vertices however do not contribute to the renormalization of
the vertices evaluated atsinglevalue of the external mag- w'/2=Dp(~42+4)
netic field, because in the adiabatic limit the propagator does
not couple different field valueslt turns out that the multi- A
field vertices are alsdrrelevant on long length scales. For Xj dqll(qz_Xl/\])4]- (C2
the vertexu, o(H, ,H,) this can be seen from a calculation of Alb
the corresponding corrections to second order in epsilon foperforming the integral over the momentum shgbh<qg<A
random-field disorde?® However, even if that would not be 4 writing b~ 92+ )= (<2 =1 +Z/2 In b we find
the case these terms would not feed into the calculation pre-
sented here for the reasons discussed abdvueerefore, if -
we leave out all the terms in the action that are zero or  W'/2=W/2+(W/2)(€l2+up dw/2)%4[(4m)* In b).
irrelevant atd=6—¢, the different magnetic fields are com- (C3
pletely decoupled, and the critical expor_le_(ftsr R=R, at  gince U,o>0, this equation has only two fixed points"
Iea_s) can .be extracteq frpm coarse graining the followingith w’=w for ©>0: eitherw* =0 or w* =, Any system
action at fixed magnetic field,: with bare valuev+0 will have effectively largew on longer
length scales. The system flows to the strong-coupling limit.
_ We interpret this as an indication that in perturbation theory
Su,= —J dqu dt 7(—q,t)(LT e+ %= x~HI) n(q,t) the transition is of first-order type below eight dimensions.
There are some questions as to whether in an infinite sys-
R tem the onset of the infinite avalanche would be abrupt in
+1/6f ddxf dt 7(x,t) n(x,t)%u anyfinite dimension due to large rare preexisting clusters of
flipped spins which provide a preexisting interface that might
d - - be able to advanckeforethe perturbatively calculated criti-
+1/2f d xf dtlf dtauz om(X,ty) 7(X,t2) (B24) cal field H,(R) is reached. These large rare fluctuations
might be nonperturbative contributions which are not taken
where all vertices are evaluated at fi¢lg). The time inte- into account by oule expansion. The progression of a pre-

W/2+ (Upo2)(W/2)38/(41)*




14 898 KARIN DAHMEN AND JAMES P. SETHNA 53

existing interface has been studied previously in the frame-

work of depinning transition®*-*®Our numerical simula- <52>f~f dtlf dt,dtgd?x,d%

tion, however, does suggest a smooth onset of the infinite

avalanche in nine dimensions and an abrupt onset in two,

three, four, five, and seven dimensidras predicted by the X (5%(t 4 ,X0) S (1o, X4)SP(t 5, X0)SP (11, Xp) )t ,
RG calculation.

APPENDIX D: DETAILS FOR THE € EXPANSION OF where a and B specify the corresponding replica that have
THE AVALANCHE EXPONENTS identical configurations of random fields and are exposed to
o the same external magnetic figf{t) =Hy+ Qt, with Q—0.
1. The second moment of the avalanche-size distribution A heristic justification of this was given in Sec. VI together
In this section we show that the second momgth; of  with an explanation of why replicas are necessary.
the avalanche-size distributidd(S,r,h) scales in the adia- We start by computing thénot yet random-field aver-
batic limit as aged expression

Jdtaddxadtﬁddxﬁ{éa(ta,xo)s“(to,xa)éﬁ(tlg,xo)sﬂ(tl,xﬁ)}

= f dt,d%,{8%(t, ,xo)s“(to,xa)}f dtgd?x5{8P(t5,%0)SP(t1,Xp)}, (D2)
where{ } stands for the path integral over the product with &feinction weight inZ that singles out the correct path through

the space of possible states for the given configuration of random fields and the given historyD2)BQe two replicas are
uncoupled since we have not yet averaged over the random fields. As we have seen in Appendix B

- Ja
(AS/AH)aEf dtaddxa{sa(taIXO)Sa(tO’Xa)}:f dt,d®, S IImAHHO[Sa(tO;Xa)|Hio(to):H(to)JrAH@(tOfta)

—Sa(to,Xa)|Hjo(t0):H(t0)]/AH (D3)

is the response of replica to a perturbing pulse of ampli- point of diverging avalanche size and time to avoid trigger-
tude AH applied at fieldH(t,) at sitex, integrated over the ing a new avalanche before the previous one has come to a

entire system. halt. This is consistent with our computer simulations at fi-
If no spin flips in response to the perturbation, the totalnite system sizes where avalanches occur only sequentially.
response will be Without loss of generality let us assume thd{t,)
=H(ty). First we discuss the case that there is an avalance
(AS/IAH)=ASmond AH=C, (D4) S, triggered by the perturbation of amplitudéH in replica

a at fieldHy. We further assume thaf is much bigger than
whereC, is a constant that depends only on the parametert, such thatd;=Hy+AH. In this case the response to the
k, J, and the coordination numberof the lattice. pulse in replicag will be substantially different from the

If, on the other hand, the perturbation triggers an aval€Sponses, in replicaa. The spins that are pushed over the
lanche of spin flips from the “down” to the “up” potential brink by the perturbationat field H in replica a, will in
well, AS=Sy,=S, will be of the order of the number of replica B be triggered by the increased external magnetic
spins participating in the avalancfi@ (see also Appendix field beforeit reaches the bigger valug; at which the re-
B1). sponse is measured. Fé¥/T'y, AH, and H;—Hy small

The expression in Eq(D2) is the product of the total €enough, the response in repligat fieldH, will then be just
response to the same perturbation at sjteneasured in rep- the harmonic response, or adifferentavalanche. If it is the
lica a at timet, and in replicas at timet; . At finite sweep- harmonic response, the expression in @) takes the form
ing rate Q)/k the corresponding valuegAS),/AH] and
[(AS)z/AH] do not have to be the same, since the responses (AS/AH)(AS/IAH) g=(S,/AH)C;. (D5)
are measured at potentially different values of the external
magnetic field[Hy=H(ty) and H;=H(t;), respectively. Similarly one might imagine scenarios in which there is an
(We only consider the adiabatic case, in which the sweepingvalanches, triggered only in replicas, i.e.,
rate()/k is small compared to the relaxation rdtgk, so that
the magnetic field can be assumed to be constant during the (AS/AH) (ASIAH) = (Sg/AH)C5, (D6)
course of an avalanche. We take the adiabatic {xit0 at
finite correlation lengthé, before approaching the critical or where there is no avalanche happening at either field value



53 HYSTERESIS, AVALANCHES, AND DISORDER-INDUCE. . . 14 899

\ The last three terms in E¢D11) approach a constants as
AH—0, sincePy;,~AH. We will now analyze the first term,

which is proportional to{S?) in more detail. The function

multiplying (S?); is sharply peaked arourtdl,=H, (see Fig.

1 4 10. SincePy;,~AH itis proportional toPﬁi"pth/AH. From Eq.

(D10) we have

P both )

flip

Ho+AH

f dH,PEAH=1 (D12

Ho—AH

independent oAH. The same integral applied to the other

terms in Eq.(D11) yields contributions of orde©O(AH)

which are negligible compared to the first term & is

chosen small. Withd,=Hy+ Qt we can express the integral
FIG. 10. The functionP" defined in Eq.(D10), plotted as a  in terms of time

function of H;. In the figure,dH denotes the amplitude which is

: AH/Q
calledAH in the text. f thlpﬁiopth/AH =1 (D13)
10

| B,
T —_—

H,-dH H, H+dH H,

—-AH
(AS/AH) (AS/IAH) 3= (C))2. (D7)

It is also possible that twdifferentavalanches are triggered
in the two replicas:

We then obtain

. . AH/IQ AS AS —
iMool o '\ 3m, am, /=G
(AS/IAH),(ASIAH)z=(S,/AH)(Sg/AH)  (D8) —AHIQ o gl

(D14)
with S,#S;.
o B . . . .
We are interested however in contributions due to the/Vith Ed. (D3) this leads to the scaling relation
same avalancheesponse in both replicas
s? ~fdt fdtadt ddx,d% 4(5%(t,, ,x
(ASIAH)(AS/AH) 5=(S,/AH)(Sz/AH) (DY) (S ! b (S (ta o)
with S,=S;. As we have seen, a necessary condition is that Xs“(to,xa)éﬁ(tﬁ ,xo)sﬁ(tl,xﬁ»f (D15

Ho—AH<H;<H,+AH. We denote with Pyj,=coAH
+0((AH)?) (with ¢, a constant in the critical regimehe
fraction of all possible configurations of random fields in
which a local perturbation of amplitud&H at field H, ap-
plied at sitex,, causes at least one spin to flip. Fdrand
AH small enough the fraction of all possible configurations
of random fields in which the local perturbation will lead to 2. Feynman rules for two replicas
the same initial spin flip triggering the same avalan&ha We study the behavior d8*# of Eq. (117) under coarse
replica @ and replicag, is to leading order iMH propor-  graining analogously to the calculation done before for just
tional to the size of the overlapg?" of the two intervals  one replica, with the difference that instead of two, there are
[Ho,Ho+AH] and[H4,H;+AH], multiplied by Pg;,, with now four fields to be consideretivo for each replica In the
both following section we briefly describe the associated Feyn-
Piip =[1-0(|Hi—Ho| = AH)J(AH—[H;—Ho|)/AH man rules. This section may be skipped by the reader unin-
(D10)  terested in the details, since it turns out that there are no loop
(see Fig. 1) We can now compute the random-field averagecorrections ta(e) to (S%). In Sec. VII B we already derived
of the expression in EqD2), denoted by ); to leading the appropriate partition function. Here we use the same no-

which was to be shown. In this notation we have suppressed
the factor() and the various limits for clarity. The integrals
over time extend from-c to +o with an infinitesimal as-
sociated change in magnetic field.

order inAH tation.
In the Feynman graphs for the loop corrections, the fields
AS AS\  — (S _om of the a replica are symbolized by arrows on full lines,
AH,, A_HB f_ 1°AH? Piip Prip whereas those for thg replica are symbolized by arrows on

dashed lines. A vertew,,,qhas themm outgoing arrows on
full lines, n incoming arrows on full linesp outgoing arrows
on dashed lines, anglincoming arrows on dashed lines. In
this notation, the fact thalip,,q=0 if N#0, Uype=0 if g
+(S,Sg) (AH)?PE,(1— PR, #0 andugnoq=0, which we discussed in Sec. VII B, means
that any vertex with incoming arrows of a certain replica
(D11 4

must have at least one outgoing arrow of the same type of
where(S?); is the mean-square avalanche size, &8 is  replica, i.e., there are no “sinks,” with only incoming lines
the mean avalanche size, a@g andC, are constants in the of a certain replica. Furthermore, since the spins from differ-
critical regime. The last term accounts for cases in which twent replica do not interact directly, and sinag ;o
different avalancheS, # Sg are triggered in the two replicas. =u; o0:=0, there are only two kinds of propagators, one for

—(S)s
+C AH (1- Pﬁiopth)lz’f|ip+(Cz)2
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each replica. In any diagram, an outgoing line can be coneorresponding average correlation functions. In the end
nected only to an incoming line of the same replica. the source fields are taken to zero again, since usually they
Using the above rules and causality, one finds that corrediave no physical significance. In our case the following three
tions to vertices with lines of only one replica, can only source terms are neededfd‘qfde L(q,w)7(q,w),
receive corrections from vertices of teamereplica. There [d%fdw L(q,)7(q,®), and the term needed for the cal-
are no contributions from diagrams that also involve theculation of the(spatially composite operator ifiS?);, given
other replicas. That means that our results for the magnetby
zation and other quantities that can be calculated using only

one replica, are unaffected by the introduction of a second
repllcap y j dqu' dwlf deLZ(qvwlva)
“Pure” (or one-replica vertices which depend on more
than one time usually have several different contributions. Xf d% (.0 (D—d. o D1
For example the vertem, At;,t,,t3,t;) has two main con- A7) 7(p=8.wz). (b1

tributiong that are obtained_by pa”‘f”" integrat'ion of the cory [ andL, are the respective source fields: the correspond-
responding term in the action as discussed in Appendix B'rn,g 7canonica| dimensions aréL(q,®)]~A %22, and
One contribution is derived froma, (t;,t,,t3,t4) and has [8/6L(q w)]~A(d’Z*Z)A(*d*Z%A*d;Z*Z*Z Sir’nilarly
t,=t; andt,=t, . The other contribution is derived from [L(q w)j~A‘d’2‘Z and [5/58(q w)]~A‘.d’2 And also

Up (t1,t2,t3,t4) and hast,=t5 anc_itl=tzl. In the case of [Lz(F,J,wl,wz)]~A(,d—2Z), o [,5/5L2(p,w1:w2)]~[\0.

two repllcas.there are cprrespondmg “mixed” ve_rtldmth From Eq.(D1) and the fact that Green’s functions in the
legs from different replicag. With ‘“corresponding” we fields » and 7 scale in the same way as those in terms of

mean that the times associated with the different legs of thgndé(see Sec. IV B we then findwithout loop corrections
mixed vertex, are assigned in the same way to the legs of tht (

: : fhat(S?);~ A ~(4*2. Below the upper critical dimension, the
corresponding part of the corresponding pure vertex. Th%anonical dimensions of the fields(q, ) and 7(q, o) are
part of the pure vertexu,, formally corresponding to — ' : —

(n/2) (n=nl2) i ithn=
Up;1q, for example, is given by that contribution to ;:r(())rr:]ecttheed r?w)gAin t?)n?h/(\e ure,Isrﬁspergg\c{feélﬁlén\{evngl;]tai;]s
Up At1,t2,t3,t), Which hast;=t; andt,=t, . Conversely ping P g ;

2\ __A—(z+(2-72) <imi .
the part of the pure verten, , corresponding tau; ;4 ¢is [O(e)] {S7)~A . Similarly, one finds for the

i n\ __ A —[(n—=1)z+(2—n)n]
given by that contribution tai, ,(t;,t5,t5,t4), which hast; higher momentgs i~ A to .O(f)' In Sec.
5 + . i . VII D this result is compared to the scaling behavior of
=t; andt;=t, . (Notice that in any mixed vertex all legs

2 . . _ .
carrying a certain time labgbne outgoing and any number (S°) as obtained from the scaling form of the avalanche-size

of incoming arrowy must belong to the same relig&lotice distribution

that each mixed vertex has the sabwre value as its pure (SZ)~r(T‘3)/"S(+2)(h/rB‘3) (D18)
counterpart, since both are obtained in the same way from -

mean-field theory. (with the appropriate scaling functid®. ) to extract the re-

The loop corrections to mixed vertices formally look the sults for 14 and 7. One obtains
same as those the corresponding parts to the pure vertices.
For each loop correction to a mixed vertex there is a match- 1o =2+ €l3+0(€) (D19
ing correction to the correspondirgart of the pure vertex
and vice versa. The combinatoric factors are also the same.
This implies in particular that choosing the same spin rescal- 7=3/2+ 0(€?). (D20)
ing for both replicas as we did before in the case of only one

replica, renders marginal not only; , and ugo, but also APPENDIX E: RELATED PROBLEMS

U1,0,1,0
There exist several studies of related hysteresis models
3. Scaling of the second moment and depinning transition®efs. 64, 99, 102, 103, 104-109
of the avalanche-size distribution which we discuss in more detail in Refs. 37 and 38.

We need to find the scaling behavior of the “Green’s
function” 1. Conjectures about other models

in the same universality class

(8(ta X0)S"(to. Xo) (15 X0) S (t1. Xg))s  (D16) Recently Viveset al. found®® that the numerical expo-
from its behavior under coarse graining. The topology of thenentsv, 8, 7, andz in the nonequilibrium zero-temperature
diagrams permits n®(e) loop corrections to the correspond- RFIM and the random-bond Ising model with positive mean
ing vertex function. bond strengtRBIM) have very similar values in two and

One finds the canonical dimensions of the fiéldwhere  three dimensions. In two dimensions, the exponents for the
“dimension of” is denoted by f]” and A is the upper random-field Blume-Emery-Griffiths modéf seem to be
cutoff in momentunt [ 7(p,w)]=A"92"272 [3(p,w)] similar also. In this interesting paper the authors suggest that
~AT92, these models might actually be in the same universality

For calculating Green's functions one introducesclass. Admiring their work, we have some concerns how-
source terms in the action. From tlfeinctiona) derivative  ever, as to whether their critical exponents will remain un-
with respect to the source fields, one obtains thechanged for larger system size: they used systems of linear
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size up toL=100; we used much larger systems, up to 7000 random-bond problem would be in the same universality
and 806 for the RFIM, and found that finite-size effects are class also, as numerical simulations seem to corififnn
actually quite prominent and lead to shifted results for thefact, initial analytic calculations for nonzero, positive mean
exponents. Nevertheless, symmetry arguments and prelimi-of the distribution of random bonds arti,#0 lead to the
nary RG calculations which we discuss below, suggest thagame effective action as for the random-field case. One finds
their conjecture about a shared universality class still appliesthe same RG description with the same fixed point and uni-
There is a precedent: it is knowh?>! for example, that the versality class. For zero mean of the distribution of random
nonequilibriumsingle interface depinningransitions of the bonds however, the term correspondingig appears to be
RFIM and the RBIM do have the same critical exponentszero, leading to a different RG description. In this case one
although theequilibriumversions of the same models are not expects a different behavior on long length scales. This may
in the same universality class. have been anticipated since in this case there is no relative
In the following section we will discuss some symmetry energy scale present in the system, which qualitatively
arguments, that do indeed speak in favor of the conjecture athanges the problem.
Vives et al. and would even suggest that the universality Random anisotropiesRealistic models of Barkhausen
class of our model extends far beyond just the RFIM andhoise in polycrystalline magnets usually involve random
RBIM. A large universality class would also explain the sur-anisotropies rather than random fields. On symmetry grounds
prisingly good agreement with experiments discussed in Sedt appears plausible that a nonequilibriud{n) model with
VIIl and Ref. 1. Generally one may ask how robust the uni-random anisotropiés'*'*?may be in the same universality
versality class of our model is against the introduction ofclass as the nonequilibrium RFIM also. The external mag-
other kinds of disorder, other symmetries for the order panetic driving field breaks the rotational symmetry and time-
rameter, long-range interactions, different dimensions, andeversal invariance. Again, spins that do not flip in the criti-
altered dynamicsThe variation with dimension has already cal region may act as random fields for the spins
been discussed at the appropriate places in this p@eer;, participating in avalanches near the critical point, so that the
for example, Sec. VII) If a new kind of disorder in an essential features are the same as in our model, and one may
otherwise unaltered system changes neither the symmetriemxpect to see the same critical exponefitsmay be that in
nor the interaction range, nor the dynamics, nor the relevargome strong-coupling limit the system will lose the ability to
dimensions, we may be hopeful that it does not lead to avalanche and all spins will smoothly rotate from down to up
different universality class. as the external magnetic field is increased. Our discussion
Random fields and random bonddncorrelated fluctua- here refers to the case where the coupling is weaker and
tions in the nearest-neighbor coupling strengthendom  avalanches do occur, as of course they do experimentally.
bonds in the presence of random field disorder do not breakr’he O(n) model with random anisotropies is very similar to
any new symmetries. Our random-field Ising model fulfills a continuous scalar spin model with random couplings to the
two Harris criteriav/g6=2/d and »=2/d. Adding random- external magnetic fieldrandom ‘g factors™). The mean-
bond disorder cannot destroy the fixed point in the Harrisfield theory for the randong-factor model turns out to have
criterion sense through added statistical fluctuations, becauslee same critical exponents as our random-field Ising model.
the random-field disorder has already broken the relevanthere are no new terms generated in the RG description of
(translational symmetry. It then seems plausible that sys-this model either, it is therefore expected to be in the same
tems with random bonds and random fields are in the sameniversality class as our model.
universality class as systems with random fields only. The By symmetry we would expect neither any change in the
ultimate justification for this conjecture may be drawn from exponents if there was randomness added through a distribu-
the renormalization-group picture. If the change in the gention in the soft-spin potential well curvatur&g§see our defi-
erating functional due to the added new disorder turns out taition of the soft-spin potentiaV/(s;) in Eq. (32)], nor a
be irrelevant under coarse graining, it will not affect the criti- change if random bonds are added to the system, as may be
cal behavior on long length scales. Some preliminary studiethe case in real experimental systems.
seem to indicate that this would indeed be the case for ran- The RG formalism developed in this paper can be used as
dom bonds in the presence of random fields. a convenient tool to verify these conjectures. One can write
Random bonds onhSimilarly one might expect systems down the most general generating functional and see for each
with random bonds only to be in the same universality clas®f these models whether on long length scales the same
also. Because the critical magneticatih=M(H.(R.)) is  terms become important or irrelevant as in our model.
nonzero, the time-reversal invariance will be broken at the Long-range interactionsThe question about the effect of
critical point, just as it is broken in the case of random fields.long-range interactions is of equal importance. Depending on
The symmetries of the random-field model and the randomthe sample shape, dipole-dipole interactions can lead to long-
bond model would then be the same. Also, in a soft-spirrange, antiferromagnetic interaction forces which are the rea-
model the same relaxational dynamics could be used. Onson for the breakup of the magnetization into Weiss domains
would then expect to see the same critical behavior on longn conventional magnefst!!in the case of martensites there
length scales. In fact, in the random-bond model one maywre long-range antiferroelastic strain fields pres&ft.in
consider the spins that flip outside the critical region to act afkefs. 37 and 38 we note that a critical exponent in a system
random fields for the spins that participate in the large avawith long-range elastic forcdérom avalanche duration mea-
lanches near the critical point. We have already suggesteslirements in martensitésappears to be quite different from
that random bonds in the presence of random fields do ndahe corresponding exponents in our model, perhaps due to
change the critical behavior. It then seems plausible that ththe long-range elastic forces. On the other hand, measure-



14 902 KARIN DAHMEN AND JAMES P. SETHNA 53

ments of Barkhausen-noise distributions in magnets in the b. The nonequilibrium random-field Ising model

presence of long range demagnetizing f@ldxaem to yield We have studied this hysteresis in the zero-temperature
a critical exponent quite close to the corresponding exponengndom-field Ising model, far from equilibrium and in the
in our model. absence of any thermal fluctuations. We found a critical
In a recent papét Urbach, Madison, and Markert study a point, at which the shape of the hysteresis loGpagnetiza-
model for asinglemoving domain wall without overhangs in tion versus magnetic fieJdchanges continuously from dis-
the presence of infinite range antiferromagnetic interactionplaying a jump in the magnetization to a smooth curve. The
and quenchedrandom-field disorder. In an infinite system nonequilibrium critical exponents associated with the univer-
their model self-organizé¥® without necessary parameter sal behavior near this point id=3 dimensions seems to
tuning to the same critical state seen in the absence of the@atch those obtained from three-dimensional simulations of
infinite range interactions right at the interface depinningthe equilibrium phase-transition point approximately within
threshold? An analysi$* of our ferromagnetic RFIM in the the error bar¥ (see Table )L This is surprising, since the
presence of infinite range antiferromagnetic interactionghysical starting points of the two systems are very different.
leads to an unchanged critical behavior except for a tilt of thd-urthermore, our perturbations expansior#6—d for non-
entire magnetization curve in thdi(H) plane: here too it €duilibrium critical exponents can be mapped onto the ex-
does not change the critical properties. It would be interestP@nsion for the equilibrium problem to all orders énOur
ing to see how these results would change for more physic&XPansion stems from a dynamical systems description of a
long-range interactions. Dipole-dipole interactions decayin eterministic process, which takes into account the history of

Lo ' . the system and is designed to single out the correct meta-
\;Vt'éh distance as &, for example, might be more appropri stable state, while the calculation for the equilibrium prob-

lem involves temperature fluctuations and no history depen-

] dence at all.
2. Thermal fluctuations

_ ) . c. The crossover
a. The equilibrium random-field Ising model ) ) ] )
It would be interesting to see if there is actually a deeper

The equilibrium properties of the random-field Ising connection between the nonequilibrium and equilibrium
model, in particular, the phase transition from paramagnetigritical points, and whether the calculation for the nonequi-
to ferromagnetic(long-range-ordergdbehavior, have been |iprium model could be used to resolve long-standing diffi-
the subject of much controversy since the 1978She rea-  culties with the perturbation expansion for the equilibrium
son is intriguing: experimental and theoretical studies of thanodel. The idea is to introduce temperature fluctuations in
approach to equilibrium show that near the critical temperathe nonequilibrium calculation, and at the same time a finite
ture there seems to appear a “glassy” regime where relaxsweeping frequency for the external driving force. The lower
ation to equilibrium becomes very slow. Activated by ther-the sweeping frequenc{) at fixed temperature, the more
mal fluctuations the system tumbles over free-energy barriersquilibrated the system and the longer the length scale above
to lower and lower valleys in the free-energy landscape, untilvhich nonequilibrium behavior emerges. Tunifigwould
it has reached the lowest possible state, the equilibrium oallow one to explore the whole crossover region between the
ground state. The higher those barriers are compared to theo extreme cases that are found in the literattiae from
typical energy of thermal fluctuations, the longer the relax-and close to equilibrium Contrary to previous treatments of
ation process takes. At low temperatures, due to the effect aoklaxation, the history dependence that is so essential in ex-
disorder, some of these barriers are so lddieerging in an  perimental realizations, emerges naturally from this ap-
infinite systen), that the system gets stuck in some meta-proach. At fixed temperature, but for progressively lower
stable state and never reaches true equilibrium on measursweeping frequencies, one expects to see smaller hysteresis
ment time scales. On long length scalesd experimental loops, asymptotically attaining a universal shape at low
time scalesthermal fluctuations become irrelevant and col-enough frequencies. The tails of these hysteresis loops will
lective behavior emerges. When driven by an external fieldmatch the equilibrium magnetization curve. In the limit of
the system moves through a local valley in the free-energgero frequency, the hysteresis loop shrinks to a point, and
landscape, and collective behavior in the form of avalanchesquilibrium is expected at all values of the external magnetic
is found when the system reaches a descending slope in tlield. On the other hand, taking temperature to zero first,
free-energy surface. The present state of the system depensisould yield nonequilibrium behavior as seen in our recent
on its history—a phenomenon commonly observed as hyswork. The prospect of relating equilibrium and nonequilib-
teresis. rium crossover regime is an exciting challenge.
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