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Abstract

We discuss Barkhausen noise in magnetic systems in terms of avalanches near a disorder-induced critical point, using
the hysteretic zero-temperature random-"eld Ising model and recent variants. As the disorder is decreased, one "nds
a transition from smooth hysteresis loops to loops with a sharp jump in magnetization (corresponding to an in"nite
avalanche). In a large region near the transition point the model exhibits power-law distributions of noise (avalanches),
universal behavior and a diverging length scale. Universal properties of this critical point are reported that were obtained
using renormalization group methods and numerical simulations. Connections to other experimental systems such as
athermal martensitic phase transitions (with and without &bursts') and front propagation are also discussed. � 2001
Elsevier Science B.V. All rights reserved.
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Many physical systems that are far from thermal equi-
librium show hysteresis in response to an external force
or "eld (&the response lags the force'). A subset of these
systems responds with collective or &cracking' noise to
a change in the driving force, just like wood snaps and
crackles under an external load. A famous example is
magnetic hysteresis accompanied by Barkhausen noise.
In magnetic tapes, for example, the barriers to equilibra-
tion are so high, that on experimental time scales the
system remains far from equilibrium, and as an external
magnetic "eld is ramped up and down, the magnetization
shows hysteretic response. The accompanying Bark-
hausen noise can be understood as the manifestation of
&avalanches' of reorientations of the magnetic moments,
leading to magnetic domain wall motion and magnetic
domain nucleation [1]. Similar behavior has been

observed in ferroelastic materials, such as shape memory
alloys or martensites [2]. A martensitic transformation is
a di!usionless "rst-order phase transformation where the
lattice distortion is mainly described by a homogeneous
shear. Many metals and alloys with a BCC structure will
upon cooling (or under strain) undergo this transition to
a low-temperature close-packed structure. In athermal
martensites, such as Cu}Zn}Al, thermal #uctuations do
not play any relevant role * temperature acts as an
external driving "eld. Similar to ferromagnets ramping
magnetic "eld, the martensitic transition takes place as
a sequence of avalanches in a broad temperature range.
The analog of Barkhausen noise is the so-called acoustic
emission due to elastic waves in the ultrasonic range,
generated by propagating domain walls during the ava-
lanches. Other examples of driven disordered systems
showing hysteresis and avalanche response are supercon-
ducting vortices in the Bean state [3,4], #uids exiting
from porous media [5}7], and even strike slip faults in
the earth, where earthquakes can be considered as collec-
tive response to external stress on the fault [8].

One amazing feature that all these system have in
common is that the observed distributions of avalanche
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� In this paper, we consider a lattice of classical spins. For an
illustrative quantum mechanical description of magnetic mo-
ments in an external magnetic "eld see Ref. [20].

sizes, times, energies, etc. are all very broad, in fact,
following a power law over several decades. Moreover, the
characteristic power laws for these various distributions
seem to be universal, i.e. they are the same for entire
classes of materials that have the same symmetries and
dimensions. For Barkhausen noise, for example, roughly
the same exponents have been obtained from experi-
ments with a wide variety of materials [9}13]. The expo-
nents found in Barkhausen noise measurements are
di!erent, however from, say, the corresponding expo-
nents found acoustic emission measurements in Marten-
sitic systems. Immediately several questions arise: (1)
Why should there be broad distributions of avalanche
sizes, times etc. rather than, for example, a Gaussian
distribution with a well-de"ned mean avalanche size,
time etc.? (2) Why does the same power law occur for
a variety of di!erent materials, independent of the under-
lying microscopic details? (3) Can we establish certain
&universality classes', which predict exactly how &univer-
sal' these scaling exponents are, and explain why they are
di!erent for some systems? (4) Are there other universal
quantities, except for these power-law exponents, that
one can predict and measure?

Power-law scaling is a well-known feature in conden-
sed matter physics. It is found, for example, at second-
order phase transitions, at which systems become self-
similar on all length scales. This self-similarity is re#ected
in the power-law scaling behavior of correlation func-
tions and many other quantities at the critical point.
Originally, phase transitions were observed in equilib-
rium systems, such as the liquid gas transition or the
ferromagnetic paramagnetic phase transition in magnetic
materials [14]. Non-equilibrium systems, too, can show
phase transitions with associated universal power-law
scaling behavior. Two main scenarios have been sugges-
ted to explain the observed universal power-law ava-
lanche size distributions seen in so many experimental
systems: either (1) there is an underlying phase transition,
which implies that there is a tunable parameter, and only
near the critical (phase transition) value of that para-
meter one "nds power-law scaling behavior, or (2) the
system is self-organized critical, i.e. one does not need to
tune any parameter in order to "nd power-law scaling
behavior on all length scales (up to the system size).
Instead, special boundary conditions naturally force the
system to operate near a critical point.

In this paper we address some of these issues using the
non-equilibrium zero-temperature random-"eld Ising
model and recent variants. The paper is organized as
follows: we begin by introducing a general form of the
model in paragraph a and then summarize the results in
paragraphs b and c. The same paragraphs also contain
initial comparisons with Barkhausen noise experiments
quoted in the literature and speci"c suggestions for ex-
periments suited to test some of the ideas presented here.
Finally, paragraph d contains conclusions and out look.

(a) The model: Recently, hysteresis and avalanches in
disordered magnetic materials have been modeled using
several variants of the non-equilibrium, zero-temperature
random-"eld Ising model (RFIM), which is one of the
simplest models of magnetism, with applications far be-
yond magnetic systems (for a recent review, see Ref. [15]
and also Refs. [11}13,16}18]). In contrast to some other
hysteresis models, like the Preisach model [19] and the
Stoner}Wohlfarth model [1], where interactions be-
tween the individual hysteretic units (grains) are not
included and collective behavior in the form of ava-
lanches is not an issue, in the RFIM the intergrain
coupling is an essential feature and cause for hysteresis
and avalanche e!ects. The zero-temperature nonequilib-
rium RFIM also shows the &return point memory', or
&wiping out property', [17,18], which is a special (sub-
loop-closure related) memory e!ect seen for example in
martensites, charge density waves and many other dy-
namical systems, as well as the Preisach model. We have
identi"ed three su$cient conditions for the return point
memory. (These conditions are indeed ful"lled by our
model [17,18]). The equilibrium RFIM was originally
introduced to study disordered magnetic materials in
thermal equilibrium. We study the nonequilibrium ver-
sion. To model is simply a caricature of the microscopic
details in a magnet, near the critical point it correctly
describes the long length scale behavior of systems with
the same general properties such as symmetries, dimen-
sions, interaction ranges and dynamics [11}13], as fol-
lows from renormalization group arguments.

In the RFIM, to each site i in a simple cubic lattice is
assigned a variable s

�
, a so-called &spin', which can take

two di!erent values, s
�
"#1 (&up') or s

�
"!1

(&down').� (This corresponds to a real magnet where
a crystal anisotropy prefers the magnetic moments or
elementary domains that are represented by the spins to
point along a certain easy axis.) Each spin interacts with
its nearest neighbors on the lattice through a positive
exchange interaction, J

��
, which favors parallel align-

ment. (For the behavior on long length scales, the exact
range of the microscopic interaction is irrelevant, so long
as it is "nite.) Some variations of the RFIM also include
long-range interactions due to the demagnetizing "eld
and the dipole}dipole interactions. A general form of the
Hamiltonian can be written as [15]
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Fig. 1. Three hysteresis loops in our model, for systems at
di!erent amounts of disorder R. Each magnetization curve ac-
tually consists of many little steps, that are due to avalanches of
spin #ips. These avalanches are the analog of Barkhausen noise
in real magnets. At disorders below a critical value R

�
"2.16 J

��
(in the simulations we actually set J

��
"1), the hysteresis loops

have a macroscopic jump in the magnetization M, which scales
to zero as �MJ(R!R

�
)�. At R

�
, the magnetization has

a power law form (H(M)!H
�
)J(M!M

�
)�.

where H is the homogeneous external magnetic driving
"eld, h

�
is a local, uncorrelated random "eld, that models

the disorder in the system, J
���

is the strength of an
in"nite range demagnetizing "eld, N is the total number
of spins in the system, and J

���	
�
is the strength of the

dipole}dipole interactions. The power laws are indepen-
dent of the particular choice for the distribution �(h

�
) of

random "elds, for a large variety of distributions. Usu-
ally, a Gaussian distribution of random "elds is used,
with a standard deviation (&disorder') R. In a "rst approx-
imation, the model is studied at zero temperature, far
from equilibrium, to describe materials with su$ciently
high barriers to equilibration, so that temperature #uctu-
ations are negligible on experimental time scales. As the
magnetic "eld is adiabatically slowly raised from
H"!R to H"#R (or lowered from H"#R

to H"!R) two di!erent local dynamics have been
considered:

(1) in the "rst (&bulk') dynamics, each spin s
�
#ips when

it decreases it own energy by doing so. We have
studied this dynamics for the original RFIM
without any long-range interactions, i.e. for
J
���

"J
���	
�

"0 [17,18,11}13]. This dynamics
allows for domain nucleation (when a spin s

�
sur-

rounded by equal-valued spins #ips in the opposite
direction), and for domain wall motion, (when a spin
#ips on the surface of a preexisting cluster of uni-
form spins in a sea of opposite valued spins). A spin
#ip can trigger neighboring (or more generally,
coupled) spins to #ip as well, leading to an avalanche
of spin #ips, analogous to a real Barkhausen pulse.
During an avalanche the external "eld is kept con-
stant until the avalanche is "nished, in accordance
with the adiabatic limit in which we are interested.
The model is completely deterministic } two success-
ive sweeps through the hysteresis loop produce the
exact same sequence of avalanches (since the tem-
perature is set to zero). This dynamics may be ap-
propriate to describe, for example, hard magnetic
materials with strong anisotropies.

(2) The second dynamics is a &front propagation dy-
namics' in which only the spins on the edge of an
existing front (interface between up and down spins)
#ip if that decreases their energy. This dynamics can
be used to model soft magnetic materials with
a single or several noninteracting advancing domain
walls and negligible new domain nucleation. The
front propagation model without long range inter-
actions (J

���
"J

���	
�
"0) was originally introduced

to model #uids invading porous media [21].

(b) Results for bulk dynamics: In this paper we mostly
focus on the "rst dynamics where spins anywhere in the
bulk are allowed to #ip. In the following discussion, we
have neglected the long-range interactions, setting
J
���

"J
���	
�

"0, which is appropriate for certain sample

geometries [22,23]. We have simulated the model with
up to a billion spins, averaging over many disorder
realizations. The scaling analysis methods used to extract
the critical exponents and an analytic renormalization
group calculation to compute the exponents in 6!�
dimensions are reported elsewhere [17,18,11}13]. Here
we brie#y summarize the results and then discuss sugges-
tions for experiments to test these predictions.

Fig. 1 shows the associated hysteresis loops for di!er-
ent disorders R. Above a critical disorder R

�
"2.16J

��
the hysteresis curve looks smooth, but it really consists of
many little steps that are not resolved in the "gure. Each
of these steps corresponds to a "nite avalanche of spin
#ips during which the magnetic "eld is kept "xed. Below
the critical disorder the hysteresis loop has a macro-
scopic jump corresponding to an in"nite avalanche
sweeping through the system, thereby #ipping a "nite
fraction of the system. The jump in the magnetization
scales to zero as �M&(R!R

�
)�, where �K0.018 is

a universal prediction of the model for three-dimensional
magnets [17,18]. At R

�
the magnetization is described

by a power law of the form M(H)!M
�
(H!H

�
)���,
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Fig. 2. Avalanche size distribution in the 3d zero temperature
RFIM for several values of the disorder R for simulations with
320� spins, using the simulation code for the nonequilibrium
RFIM that is available on the web. For a fun and instructive
numerical simulation (with source code) of the non-equilibrium
zero temperature RFIM, see http://www.lassp.cornell.edu/
sethna/hysteresis/code. As the critical disorder R

�
"2.16 J

��
is

approached the correlation length (and thus the cuto! to the
power-law scaling of the distribution) diverges. Disorder aver-
aged data of simulations with up to a billion spins and scaling
collapses are presented in Refs. [17,18,24].

where � is another universal prediction for experiments
(��K1.8 in three dimensions [17,18]), and H

�
"

1.435J
��

and M
�
"0.19 are nonuniversal constants.

Note that the apparent dependence of the coercive "eld
on the disorder is also not one of the universal predictions
for experiments. Only the critical scaling exponents and
certain scaling functions obtained near the critical dis-
order are expected to be universal predictions that can be
compared to experiments.

Fig. 2 shows the distributions D
���

(S, R) of avalanche
sizes S obtained for hysteresis curves at several disorders
above the critical disorder R'R

�
. These curves corres-

pond to the distributions of pulse areas in Barkhausen
measurements (i.e. S is proportional to the integral of the
voltage signal of the pulse over time) expected for sam-
ples with di!erent amounts of quenched (structural or
compositional) disorder. D

���
(S, R) is proportional to

a histogram of avalanche sizes observed during a sweep
through the entire hysteresis curve. (Measurements over
small windows of the magnetic "eld range lead to similar
results, although with di!erent (related) critical expo-
nents, see [17,18]). At the critical disorder R

�
the ava-

lanche size distribution is described by a power law
D

���
(S, R)&S��	 with the universal exponent 
	 K2.03 in

three dimensions. (In the literature the exponent 
	 is also
referred to as 
#��� [17,18].)

Above the critical disorder R
�
, the general scaling

form is

D
���

(S, R)&S��	DM ���
�

(S�(R!R
�
)), (2)

where 1/�"4.20 is a universal exponent, and DM ���
�

is
a universal scaling function of the "tted form [17,18]

DM ���
�

(X)"e���	
�����

�(0.021#0.0002X#0.531X�

!0.266X�#0.261X�). (3)

As the critical disorder is approached from above, the
avalanche size distribution D

���
(S, R) shows more and

more decades of self-similar (power-law) scaling behav-
ior, up to an exponential cuto! size which grows as
S
��

&(R!R
�
)����, and reaches the system size near the

critical point. The scaling behavior of the cuto! re#ects
the fact that there is a correlation length in the system
that diverges at R

�
, as is expected at a second-order

phase transition [14]. Physically, this correlation length
can be understood as the diameter of the largest ava-
lanche of the power-law distribution. Interestingly, our
numerical simulations indicate that the &critical region' is
remarkably large: almost three decades of power-law
scaling in the avalanche size distribution remain when
measured at a disorder R that is 40% away from the
critical point. At 2% away, we extrapolate seven decades
of scaling [17,18]. This may explain why in many experi-
ments it does not even seem to be necessary to tune the
disorder to see the critical power-law scaling over several
decades: the used samples may just fall into this large
critical region.

There are many related quantities that show similar
scaling behavior near the critical point, for example ava-
lanche durations, power spectra, various correlation
functions, and the magnetization curve itself. The corre-
sponding predictions for a set of critical exponents from
Barkhausen noise experiments quoted in the literature
are given in Refs. [24,15,11}13]. Generally, we found that
the model predictions from simulations with up to a bil-
lion spins lie well within the error bars of the experi-
mentally observed scaling exponents [17,18], although
controlled experiments with tuned disorder to systemati-
cally test these ideas are still to be done. All Barkhausen
noise experiments that quote power-law scaling expo-
nents are typically done at a single value of the disorder
R. Our model suggests that much more accurate in-
formation could be obtained from a series of measure-
ments for samples with diwerent disorders that allows for
scaling collapses, and the comparison not only of critical
exponents but also of universal scaling functions. Also,
only a series of measurements at di!erent disorders
would be able to establish whether there is an underlying
phase transition with disorder as the relevant tuning
parameter at all.
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�Vives et al. [31] studied random-bond systems of sizes up to
40�40 and mixed random-"eld random-bond systems up to
100�100.

�Blossey et al. [32] studied the prewetting transition with our
model using the e$cient form of the brute-force algorithm
described in Ref. [35], on systems up to 900�900.

Since the tuning parameter for the predicted disorder-
induced phase transition is really R/J

��
, tuning the

ferromagnetic interaction strength in experiments is
expected to be equivalent to tuning the disorder (small
coupling corresponds to large disorder and vice versa). In
experiments, the disorder could possibly be tuned by
annealing a sample with structural disorder at di!erent
annealing temperatures. In fact, initial measurements of
M(H) curves of a thin magnetic "lm whose structural
disorder is reduced in steps through annealing at a num-
ber of di!erent annealing temperatures, have lead to
a sequence of hysteresis loops similar to Fig. 1 [22].
Moreover, experiments on Ni}Fe wires show that an-
nealing the sample can indeed change the cuto! to the
power-law scaling regime in the Barkhausen pulse area
distribution [23], as suggested by our model. A quantit-
ative scaling analysis along the lines presented here
would be very interesting.

Introducing dislocations into the material by deforma-
tions may also correspond to tuning an e!ective disorder
parameter. In that case, the e!ective disorder is probably
correlated in space. Another way to change the disorder
is by adding impurities to the sample, or by changing the
grain size of the magnetic sample. It is known from
nondestructive testing measurements that grain size in-
deed has an in#uence on the distribution of Barkhausen
pulse times and areas. It would be interesting to see
a systematic study of the e!ect of the grain size on the
cuto! in the Barkhausen pulse area distribution. If ava-
lanches can extend across grain boundaries and the indi-
vidual grains do not act like single domains, one might
expect the grain size to play a role similar to the disorder
parameter R in our model. In martensitic systems
a crossover from hysteresis loops with a jump or &burst'
to smooth hysteresis loops (ramping the temperature) has
been observed by Olsen and Cohen [25], as they reduced
the grain size of macroscopic, polycrystalline specimen of
an Fe}Ni}C alloy. It seems clear that one should look for
critical #uctuations near the crossover that would pro-
mote an interpretation of the grain size as the analog of
the disorder parameter R.

Other experimental systems to which these ideas may
apply, include superconducting vortex avalanches [3],
the dynamics of ultrathin granular superconducting "lms
in a parallel magnetic "eld [26], and #uid exiting in
avalanches from porous media (speci"cally liquid He-
lium pumped out of Nuclepore) [5}7,27}29]. In some of
these systems the symmetries and interaction ranges dif-
fer from our model, so that the values of the correspond-
ing critical exponents might be di!erent, but we still
expect that the physics in these systems will be similar,
with an analogous underlying non-equilibrium phase
transition. Remarkably, our renormalization group stud-
ies show that the universality class of our critical point is
actually very large: di!erent kinds of disorder like ran-
dom anisotropies, random bonds and random bonds

with random "elds are all expected to lead to the same
critical scaling exponents [11}13,30] (see also Refs. [31]�
and [32]�).

(c) Results for front propagation dynamics: Robbins,
Cieplak, Ji, and Koiller originally introduced the RFIM
without long-range forces (J

���
"J

���	
�
"0) with the

front propagation dynamics, to study #uids invading
porous media, or more generally, the propagation of
a single domain wall in disordered systems [21]. They
found that below a critical disorder (R(R��	��

�
) there is

a second-order &depinning' transition of the interface as
the magnetic "eld is increased to a critical xeld
and the advancing interface or domain wall is self-a$ne,
i.e. it has no overhangs on long length scales.
At the critical depinning "eld one "nds power law distri-
butions of avalanche sizes and times. The associated
critical power-law exponents are di!erent from the expo-
nents of our RFIM that allows cluster nucleation any-
where in the system. At the critical disorder R"R��	��

�
,

one "nds yet another set of power-law scaling exponents.
Above the critical disorder (R'R��	��

�
), the interface has

overhangs and looks like the boundary of a percolation
cluster.

At low disorders there are interesting connections be-
tween the self-a$ne propagating interface of Robbin's
model and the in"nite avalanche seen in the hysteresis
model with bulk dynamics discussed in the last para-
graph: the macroscopic jump in the hysteresis loop at low
disorders, R(R

�
, corresponds to an in"nite avalanche

sweeping through the system. We consequently expect
that in the hysteresis model with bulk dynamics it would
be possible to observe the interface critical exponents at
the onset of the in"nite avalanche in large enough sys-
tems. If the system is big enough, there will somewhere be
a rare large cluster of #ipped spins, even at relatively low
magnetic "elds. As the "eld is slowly raised, the surface of
such a cluster is expected to act as a preexisting interface
analogously to Ji and Robbins system. The small clusters
that are #ipped ahead of the interface in the hysteresis
model with bulk dynamics are probably negligible on
long length scales and are not expected to change the
critical exponents associated with the interface
progression. The onset "eld for the in"nite avalanche
in an in"nite system should then correspond to
the threshold "eld at which a preexisting interface gets
depinned in Ji and Robbins system. Suggestions for
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experiments designed to test these ideas are given
in Refs. [11}13].

In soft magnetic materials, long-range demagnetiz-
ation "elds are typically very important, and the Bar-
khausen noise is expected to be mostly due to the
propagation of preexisting domain walls, without signi"-
cant new domain nucleation. Interestingly, Urbach et al.
[9,10] and Zapperi et al. [33] showed that at low
disorders in the presence of inxnite range demagnet-
ization "elds, the single domain wall (without overhangs)
will via self-organization experience an e!ective
driving "eld that is close to the depinning threshold,
resulting in power law scaling behavior of the avalanche
size distributions and other quantities (&SOC').
This is true even if in addition to the in"nite range
demagnetization "elds, the magnetic dipole}dipole
interactions are included in the model (although
they change the critical exponents in three dimensions
to mean-"eld exponents according to [33,34].
The associated (SOC) single interface critical
exponents are again di!erent from the ones associated
with the disorder-induced critical point discussed
in this paper.

(d) Summary: In summary, we have discussed the non-
equilibrium RFIM with bulk dynamics as a model for
hysteresis and avalanches in disordered systems. The
model predicts a non-equilibrium phase transition from
hysteresis loops with a macroscopic jump to smooth
hysteresis loops as the disorder is tuned beyond a critical
value. At the critical disorder the system has a diverging
correlation length, and within a remarkably large sur-
rounding critical region one "nds associated universal
power-law scaling of the noise (avalanches), the correla-
tion functions, and the magnetization curve. While this
model may be most appropriate for hard ferromagnets
and rare earth materials, where strong local anisotropies
prevent the formation of straight domain walls, in the
low-disorder regime there are interesting connections to
related single domain wall models with and without
long-range demagnetization "elds. It would certainly be
most interesting to see results of controlled experiments
on Barkhausen noise measured in a series of samples at
di!erent disorders. Similar disorder-induced critical
points may also exist in other hysteretic systems with
avalanches.
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