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systems, especially when the time needed to implement the
algorithm is included, the scaling of time and memory with
system size becomes crucial for larger simulations.

In our studies of hysteresis and avalanches in the zero-
temperature random-field Ising model, a simple model of mag-
netism, we often have had to do very large simulations. Pre-
vious simulations were usually limited to relatively small sys-
tems (up to 9002 and 1283),1,2 although there have been
exceptions.3 In our simulations, we have found that larger
systems (up to a billion spins) are crucial to extracting accu-
rate values of the critical exponents and understanding im-
portant qualitative features of the physics.

In this column, we will show three algorithms for simulat-
ing these large systems. The first uses the brute-force method,
which is the standard method for avalanche-propagation
problems. This algorithm is simple but inefficient. We have
developed two efficient and relatively straightforward algo-
rithms that provide better results. The sorted-list algorithm de-
creases execution time, but requires considerable storage. The
bits algorithm has an execution time that is similar to that of
the sorted-list algorithm, but it requires far less storage.

The zero-temperature random-field Ising model
This model is defined by the energy function

, (1)

where the spins si = ± 1 sit on a D-dimensional hypercubic

lattice with periodic boundary conditions. The spins inter-
act ferromagnetically with their z nearest neighbors with
strength J, and experience a uniform external field H(t) and
a random local field hi. We choose units such that  J = 1. The
random local field is distributed according to the Gaussian
distribution ρ(h) of width R:

. (2)

The external field is increased arbitrarily slowly from −∞ to +∞.
The model’s dynamics includes no thermal fluctuations:

each spin flips deterministically when it can gain energy by
doing so. That is, it flips when its local field

(3)

changes sign. This change can occur in two ways: a spin can
be triggered when one of its neighbors flips (by participat-
ing in an avalanche) or when the external field increases
(starting a new avalanche).

H. Ji and Mark Robbins introduced the zero-temperature
random-field Ising model to study fluid invasion in porous
media and front propagation in disordered systems.3 We have
used this model4 in a different way to model noise in hystere-
sis loops in disordered materials. In particular, we wish to un-
derstand Barkhausen noise in magnetic materials with
quenched disorder.5 Researchers have found that when an ex-
ternal field is gradually applied, many materials magnetize not
continuously, but in a noisy way, with jumps (avalanches) of all
sizes. (You can hear the noise by wrapping the magnetizing
material in a coil of wire and amplifying the signal into a
speaker. The signal makes a crackling noise when a permanent
magnet is brought close, quite similar to the crackling noises
heard in fires, crisped rice cereals, and crumpled paper. See,
for example, http://SimScience.org/crackling/.) In the steepest
part of the hysteresis loop, these avalanches have a power-law
distribution of sizes with an exponent τ < 1.5 and a power-law
distribution of avalanche times with an exponent α < 2. Power
laws are also found in the power spectrum.
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This model is interesting because, as in the disordered mag-
netic materials it attempts to model, the avalanches can have a
broad range of sizes. If all the avalanches were small, under-
standing them would be straightforward and not very inter-
esting. Indeed, at large disorder R, the chance that a spin that
has just flipped will trigger one of its z neighbors scales roughly
as zJ/R. If this quantity is smaller than unity (large disorder),
all avalanches will be small: the noise will be a series of small
pops of about the same size. This behavior is uninteresting not
because it is simple, but because the behavior depends strongly
on the details of the model at short distances, where the model
is at best a caricature of a real material.

It is also easy to understand the system in the small disor-
der regime zJ/R >> 1, where almost all the spins flip over in
one infinite avalanche. In many systems (for example, frac-
ture and first-order phase transitions), a single nucleation
event leads to the release of the stored energy in a single cat-
astrophic event.

We focus on the crossover between these two limiting cases,
where the system exhibits crackling noise with avalanches of
all sizes. For a particular value of the disorder R = Rc, a spin that
has just flipped will on average flip exactly one neighbor as the
external field H(t) increases to a particular value Hc. The
avalanches at Rc, Hc (the critical point) are finely balanced be-
tween stopping and growing forever. They advance in fits and
starts (see Figures 1 and 2) and come in all sizes (see Figures 3
and 4), with a probability that decreases as a power law of the
number of spins in the avalanche.

At Hc, the distribution of avalanche sizes decays with an
exponent of τ < 1.6 (quite close to the experimental results),
and integrated over all H, the distribution decays with an ex-
ponent . Below the critical disorder Rc, an infinite
avalanche flips a nonzero fraction of the spins in the system
even as the system size goes to infinity. Very large avalanches
occur even for disorders far above the critical disorder. In
3D, two decades of power law still scale 50% above the crit-
ical point. However, the convergence to the expected as-
ymptotic power law is very slow (see Figure 3).

This behavior means that we see critical scaling even if we
do not fine-tune R to Rc, but we must use very large systems
to get close enough to Rc to obtain a convincing power law.
In practice, we need simulations of approximately a billion
spins to understand the physics in 3D.7–9 Two dimensions
remains a challenge because the proper scaling is not clear
even for 30,0002 spins.7–10

The basics: brute force
This method is the easiest to implement and is competitive
for system sizes up to approximately 10,000 spins. We store
a spin direction and a random field for each site of the lattice.
We proceed by measuring the magnetization at specific pre-
determined values of H. We start with magnetization M = 
−N and a large negative field H0 and then increment to H1,
check all spins in the lattice, and flip those spins in a positive
local field. Then we check the neighbors of the flipped spins
again to see if their local fields are now positive. This proce-
dure continues until we have checked all the neighbors of
flipped spins. We then repeat the procedure for a new field
H2, and so on. This approach gives the correct magnetiza-
tion at the fields Hn: the order in which spins flip does not in-

τ̃ ≈ 2
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Figure 1. A 3D view from one side of an avalanche of 282,785
spins in a 200 × 200 × 200 system at R = 2.3 (within 6% of the
critical disorder Rc). The avalanche generally grew from left to
right. It has many branches and holes; the large avalanches in
3D probably have a fractal dimension a little less than three.
On the right, several dark red spots poke through the middle
of the light green area. The green area stopped growing, but
other parts of the avalanche later filled in the holes.
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Figure 2. A time series showing the number of spins that
flipped in each shell of the avalanche in Figure 1.6 The
avalanche is a series of bursts: near the critical point, the
avalanche is always on the verge of halting, so it proceeds in
fits and starts.
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fluence the final state.4,11,12 However, unless the increments
in H are very small, several avalanches might occur in a given
increment, and all information about single avalanches (such
as histograms of avalanche sizes) will be distorted.

The time for the brute-force method scales as O(NXT),
where X is the number of fields Hn at which the magnetiza-
tion is measured, and T is the average time needed to check
the neighbors of the flipped spins, measured in units of shells
of neighbors.

A variation on this approach propagates one avalanche at
a time (see Figure 5):

1. Find the triggering spin for the next avalanche by
checking through the lattice for the unflipped site with
the largest internal field

.

2. Increment the external field so that it is just large
enough to flip the site, and push the spin onto a first-in,
first-out (FIFO) queue (see Figure 5, right).

3. Pop the top spin off the queue.
4. If the spin has not been flipped, flip it and push all un-

flipped neighbors with positive local fields heff onto the
queue. You will need to check if the spin is flipped after
popping it off the queue as well as before installing it!
Spins can be put onto the queue several times.

5. While there are spins on the queue, repeat from Step 3.
6. Repeat from Step 1 until all the spins are flipped.

This method is related to the propagation of cluster flips
in the Wolff algorithm.13 Using a queue instead of recursion
has two advantages. First, recursion is slower and more
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Figure 4. A 30,000 × 30,000 simulation with disorder R = 0.65,
where each pixel represents a 30 × 30 square, and each ava-
lanche is a different color. There are avalanches of all sizes,
with many smaller avalanches and fewer large ones.
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Figure 3. The distribution of avalanche sizes for different val-
ues of the disorder R in 3D. Some avalanches remain large
(hundreds of spins) for R a factor of two above the critical
value Rc , 2.16, where we expect a pure power law. The
avalanches are enormous (millions of spins) when the system
is still 4% away from the critical point, so we need large sys-
tems. The inset is a scaling collapse of the data: the thin lines
in the main figure show the scaling prediction for the ava-
lanche sizes stemming from the scaling collapse.7–9 The scal-
ing predictions already work well at R = 4. The pure asymp-
totic power-law behavior does not yet appear at R = 2.25,
when six decades of scaling have occurred. 1 2 3 4 5
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Figure 5. Using a queue to propagate an avalanche. The col-
ored spins are spins that either have flipped or will flip in the
current avalanche. Spin 13 triggered the avalanche; then, the
light gray spins (14, 8, 12) were put on the queue as the first
shell. As they flipped, the second shell—the blue spins (15, 19,
7, 11, 17)—were put on the queue. As the first blue spins (15,
19, 7) flipped, the dark red spins (10, 20, 20, 18, 6) were added
to the queue as the start of the third shell. The next spin to flip
is on the queue’s left. When this spin flips, its neighbors will be
checked, and the neighbors that are ready to flip will be added
to the queue’s right. The small numbers below the spins in the
queue indicate which neighbor caused the spin to be put on
the queue. Different neighbors can cause a spin (such as spin
20) to be put on the queue more than once. We must be care-
ful to flip the spin only once.
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memory-intensive, because each recursive call must push all
local variables and all registers onto the system stack (which
usually has a preallocated limit). If we use our own queue,
we need only to push the next spin’s coordinate on the queue
each time, and we can make the queue as large as necessary.

Second, to produce a natural spin-flip order, we want to
flip all spins that are ready to flip at a given time before we
flip the spins that they cause to flip. If we put spins that are
ready to flip on a FIFO queue, we correctly achieve this or-
der. This procedure corresponds to doing a breadth-first
search. Recursion, which is the same as putting the spins on
a last-in, first-out (LIFO) stack, would explore all possible
consequences of flipping the first neighbor it looks at before
it considers the second neighbor. This depth-first search
produces an unnatural spin-flip order (although the final
state after the avalanche is unchanged4,11,12). The dynamics
during the avalanche of Figure 2 assumes one shell of spins
flipped during each time slice, which is easy to determine by
placing markers on a FIFO spin queue, as Figure 5 shows.
Each time the marker is popped off the queue, a new shell is
started and the marker is put back on the end of the queue.

Doing the brute-force algorithm one avalanche at a time is
very inefficient except at very low disorders. Sweeping through
the entire lattice for each avalanche takes O(N) time per
avalanche. Because there are O(N) avalanches, the total run-
ning time scales as O(N2). A hybrid approach, finite steps in
field followed by internal propagation of avalanches, could be
quite efficient if the magnetization at those fields is the sole
quantity of interest. A brute-force method is probably neces-
sary when simulating systems with long-range interactions.14

Time efficiency: sorted lists
The brute-force method is very inefficient at locating the
next avalanche’s origin, which immediately leads us to think
of storing the several largest local fields in each sweep. The
logical conclusion of this thinking is to store a list of all the
spins in the system, sorted according to their random fields.

Unfortunately, life is complicated by the fact that spins ex-
perience not only their local random fields but also fields
from their neighbors. To find the next avalanche’s origin, we
use the sorted-list algorithm:

1. Define an array nextPossible[n↑], n↑ = 0, 1, … z, which
points to the location in the sorted list of the next spin
that would flip if it had n↑ neighbors. Initially, all the el-
ements of nextPossible[n↑] point to the spin with the
largest local random field, hi.

2. From the z + 1 spins pointed to by nextPossible, choose

the one with the largest internal field,

. 

(Do not check values of n↑ for which the pointer has
fallen off the end of the list. You will want a variable
stopNUp.)

3. Move the pointer nextPossible[n↑] to the next spin on
the sorted list. If you have fallen off the end of the list,
decrement stopNUp. (It is obvious that you can move
to the next spin if the current spin is flipped or if it starts
a new avalanche. If it has too few neighbors up, you can
also pass it by. Why?)

4. If the spin with the largest has n↑ up neighbors,
flip it, increment the field, and start an avalanche.
Otherwise, go back to step 2.

Figure 6 shows an example of the sorted list and the point-
ers from nextPossible.

The spins can be sorted in O(NlogN) time. Storage with
this algorithm is N × sizeof(int) for the sorted array (if we re-
duce the D-dimensional coordinates to one number), and N
× (sizeof(spin) + sizeof(double)) for the lattice. Various other
compromises between execution speed and storage are pos-
sible, but all leave the running time O(NlogN). The sorted-
list algorithm is fast: the largest system sizes we can store on
a reasonable workstation execute 1,0002 and 1003 spins in a
few seconds. It is the method of choice for these small sys-
tems or when you are interested in the behavior for non-
monotonically increasing fields.

Space efficiency: one bit per spin
The combination of the rapid execution of the sorted-list al-
gorithm and large finite-size effects led us to develop the bits
algorithm, which is optimized for memory efficiency. The
key is to recognize that we need never generate the random
fields! In invasion percolation15 (and in the interface prob-
lem3 analogous to ours), the random fields are generated
only on sites along the growing cluster’s boundary. For our
problem, we extend this idea: for each change in a spin’s lo-
cal field given by Equation 3, we generate only the proba-
bility that it will flip. Storing the random fields is unneces-
sary because the external field, the configuration of the spin’s
neighbors, and the knowledge that the spin has not yet
flipped give us all the information we need to determine the
probability that the spin will flip. The only quantity that we
must store for each site of the lattice is whether the spin is
up or down. Thus, we can store each site of the lattice as a
computer bit, saving large amounts of memory.

h ni
int

↑[ ]

h n n n h n z hi i i
int

↑ ↑ ↓ ↑[ ] = − + = − +2
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For a monotonically increasing external field, the condi-
tional probability that a spin flips before its nonrandom lo-
cal field, Hnr ≡ H + (2n↑ − z), reaches Hnr + ∆Hnr, given that
it has not flipped by Hnr, is

, (4)

where P↓(Hnr) is the probability that a spin points down
when the local field is Hnr. A spin with local field Hnr will

point down if its random field hi satisfies hi + Hnr ≤ 0. This
condition implies that the probability that a spin with n↑ up
neighbors points down is

(5)

. (6)

(Writing P↓ in terms of the erfc function removed some
problems with rounding at large negative fields H.) Figure
7 illustrates these probabilities.

Finding the next avalanche is subtle when the random
fields are not stored: changing the external field H intro-
duces a probability that any unflipped spin in the lattice
might flip. Inspired by the continuous-time Monte-Carlo
algorithm,16,17 we keep track of Nn↑

, the number of down
spins that have n↑ up neighbors. Given the probabilities that
spins with n↑ up neighbors will flip, we calculate both the
change in the external field ∆H needed to flip the next spin
and the probability that the next spin to flip has n↑ up neigh-
bors. We then randomly choose n↑ and randomly search
through the lattice for a spin with n↑ up neighbors. The time
the search takes is the part of the algorithm that scales worst
for large N. If Nn↑

spins are left, this search will take
O(N/Nn↑

) average time. Summing over Nn↑
and n↑ yields a

bound of order zNlogN. In one of our programs, we use a
tree structure to do this search more efficiently; this com-
plication decreases the running time by 40% for a 5002 sys-
tem at R = 1.

How do we calculate ∆H? From Equation 4, the proba-
bility that a single spin with n↑ neighbors up has not flipped
in the range ∆H is 1 − Pflip(n↑ , H, ∆H) = P↓(n↑ , H +
∆H)/P↓(n↑ , H). The probability that no spin with n↑ up
neighbors has flipped in this range is

. (7)

The probability that no spin has flipped between H and H +
∆H is

. (8)
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Figure 7. The probability that a spin will not have flipped by
the time its local field reaches L is the probability that the ran-
dom field is less than −L. The shaded area of the Gaussian rep-
resents this probability. The area of the darker region divided
by the area of the shaded region represents the probability
that the spin will flip before the field reaches −(L + ∆L).
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Figure 6. Using a sorted list to find the next spin in the ava-
lanche. The colors indicate spins that have already flipped. In
the sorted list, the arrows to the right indicate the nextPossi-
ble[n↑] pointers—the first spin that would not flip with n↑
neighbors up. The spins pointed to are the next avalanche’s
possible starting locations. Some pointers point to spins that
have already flipped, meaning that these spins have more
than n↑ neighbors up. In a larger system, the unflipped spins
will not all be contiguous in the list.
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To find ∆H, we choose a random number r uniformly distrib-
uted between zero and one, and set ∆H so that Pnone(∆H) = r.

Unfortunately, we cannot solve for ∆H analytically; we
must find a numerical solution. To do this efficiently, we
need a good initial guess. Analogous with nuclear decay, if
spins flip with a constant rate Γ, we expect the probability
that no spins have yet flipped to be e−Γ∆H. For a first approx-
imation of ∆H, we assume that the spin-flip rate Γ is a con-
stant leading to

, (9)

where Γ(H) is given by

. (10)

We can make a better second guess by looking at the error
in our first guess. If the error is ∆r = Pnone(∆H) − r, we can
make an improved second guess for ∆H by aiming for r − ∆r:

. (11)

We can then use these two guesses as input into a root-
finding routine. Although these guesses are usually very
good for small |H| and lead to quick solutions, they can be
very bad for large |H|. If the guesses for ∆H are very large,
choosing two arbitrary guesses might be better. In our code,
if ∆H1 > 20, we use ∆H1 = 0 and ∆H2 = 20 for the two guesses.

Our algorithm for finding the next avalanche can be sum-
marized in the following steps:

1. Choose a random number r uniformly distributed be-
tween zero and one.

2. Precalculate the values of P↓(n↑ , H) using Equation 6.
These values will be used repeatedly in solving for ∆H.

3. Calculate guesses for ∆H using Equations 9 and 11, and
use them as input to a root-finding routine to find the
exact solution for ∆H.

4. Increment H by ∆H.
5. Calculate the array probFlip[n↑] for use in the remain-

der of the avalanche, where probFlip[n↑] is the proba-
bility at the current field H that a spin will flip when its
number of up neighbors changes from n↑ to n↑ +1 (see
Equation 4).

6. Calculate the rates for flipping spins for each n↑ at the
current field H = Hold + ∆H:

, (12)

and calculate the total rate

.

7. Choose a random number uniformly distributed be-
tween zero and Γ, and use it to select n↑.

8. Search randomly in the lattice for an unflipped spin with
n↑ up neighbors.

9. Start the avalanche at that spin. During an avalanche, the
algorithm is essentially the same as the brute-force 
algorithm.

10. Push the first spin onto the queue.
11. Pop the top spin off the queue.
12. If the spin is unflipped, flip it, find n↑, and decrease 

by one. Otherwise, skip to step 14.
13. Look at all unflipped neighbors. For each unflipped

neighbor, find the current number of up neighbors, n↑;
decrease by one, and increase by one. Push
the spin on the queue with probability probFlip[n↑ − 1],
as calculated in Step 5.

14. If any spins are left in the queue, repeat from Step 11.
15. If any spins are unflipped, repeat from Step 1.

This algorithm is about half as fast in practice as the
sorted-list algorithm, but faster than we expected. The over-
head for solving for ∆H is presumably compensated by the
time saved not shifting data in and out of cache. Systems of
109 spins take a few days of CPU time on a reasonable work-
station; 30,0002 systems take less than 15 hours on a 266-
MHz Pentium II.

Calculating histograms and correlations
Characterizing the critical properties of our model requires
several functions. The simplest function is the magnetization,
M, as a function of the external field, H. We also calculate dis-
tributions of avalanche sizes (see the inset in Figure 3) and
correlation functions. Some care must be taken to make sure

Nn↑
Nn↑ −1

Nn↑

  
Γ ΓH n H

n

z( ) = ( )↑=↑
∑ ,

0

  
Γ n H N H n H P n Hn nr↑ ↑ ↓ ↑( ) = ( )( ) ( )

↑
, , ,ρ

  
∆

∆
Γ

H
r r
H2 = −
−( )

( )
log

  

Γ
∆

∆
∆

∆

Γ

H
d P H

d H

N
d P n H H

d H

N
H n H

P n H
n H

n
n

z

n
n

z

n

z

( ) = −
=( )( )

= −
+( )( )

=
( )( )

( ) ≡ ( )

↑

↑

↑

↑ ↑

=

↓ ↑

=

↑

↓ ↑
↑

=

∑

∑ ∑

log

log ,

,

,
,

none

nr

0

0

0 0

ρ

  
∆

Γ
H

r
H1 = − ( )

( )
log

C O M P U T E R  S I M U L A T I O N S



JULY/AUGUST 1999 79

that the calculation of these functions does not dramatically
increase the simulation’s runtime or memory requirements.

When doing calculations with a billion spins, we cannot
output any quantity that scales linearly with the system size.
Instead of computing H(M) at each avalanche (approxi-
mately 1 Gbyte of data, which would rapidly fill our disk),
we are forced to compute H(Mn) at prechosen points.

The characteristic feature of the critical point is the ap-
pearance of an infinite avalanche. An infinite avalanche’s
equivalent in a finite system is an avalanche that spans the
entire system in at least one dimension. To tell whether we
are above or below the critical point, we need to detect these

spanning avalanches. In three and higher dimensions, the
number of spanning avalanches as a function of R is also 
interesting to study. The obvious way of detecting spanning
avalanches is to mark each row as a spin flips in it, and check
at the end of the avalanche to see if all the rows contain
flipped spins. However, this method requires O(N1/D) oper-
ations per avalanche. Because there are many small ava-
lanches, this method is unacceptable. A preferable method
is to keep track of the 2 × D boundaries of the avalanche as
it grows. If a pair of boundaries meet, the avalanche is a
spanning avalanche. We must take care to treat the periodic
boundary conditions properly.

Suggestions for further study

C++ source code implementing all three algorithms is avail-
able at www.lassp.cornell.edu/sethna/hysteresis/code/. Each al-
gorithm is in a separate, well-documented class. There are
classes for detecting spanning avalanches, measuring ava-
lanche size distributions, and measuring correlation func-
tions. There are also both a Microsoft Windows and a com-
mand-line interface to the code. The command-line interface
should be portable to any computer with a C++ compiler and
an implementation of the Standard Template Libraries. We
have also compiled executables for Windows 95/NT, Linux,
and several other flavors of Unix. The running times in Figure
8 in the main article all come from the code compiled under
Linux.

Phase transitions in the loop’s shape
Download our program from our Web site. Also download
DynamicLattice and xmgr if you are using Unix. Under Win-
dows, press OK in the opening dialog box to run a simulation
with the default parameters. Under Unix, type run at the
>>> prompt. (More detailed instructions are on our Web
site.) Try the other two algorithms. For smaller systems, brute
force works acceptably, but for L = 500 it is rather slow.

You should see an animation of the avalanches as the ex-
ternal field is ramped upward and the spins flip. After the
simulation ends, you should obtain a graph of M(H), the
avalanche size distribution D(S), and the correlation function
G(x, R). The M(H) curve shows the bottom half of the hys-
teresis loop: it should consist of many jumps of various sizes.
The top half is pretty much the same shape, −M(−H), but the
details of the jumps are different.

The avalanche size distribution, D(S), measures the num-
ber of jumps as a function of size, S. It should look like a fairly
good power law and be a straight line on a log-log plot.

A log-log plot of the correlation function looks much less
linear. At small distances, the correlation function decreases
as a power law, but the power-law behavior bends over after

only a decade or so. This behavior is a symptom of R not be-
ing quite at the critical disorder, Rc.

1. According to our scaling theory,1–4 near the critical point,
D(S,Rc)~S–τ~. What is your best estimate for the exponent at
the default value, R = 1.0?

2. Do a simulation at a smaller value of disorder, say R = 0.8.
Does the behavior of G(x, R) remain a power law over larger
values of x?

3. Do a simulation with D = 3, L = 50, and R = 2.5. What is 
in 3D? (To obtain better data, do several runs and use the
averaging option.) Consider R = 2.1. Does the M(H) curve’s
shape look qualitatively different? We believe that the
power-law distributions occur for Rc , 2.16. At this value,
the hysteresis loop first develops a macroscopic jump (the
infinite avalanche). You obtain power laws and scaling at the
phase transition in the shape of the hysteresis loop, between
smooth loops and ones with an infinite avalanche.

Space, time, and bits
We have a local, somewhat older supercomputer with 4
Gbytes of RAM. How large a system could we run in this
memory using the three algorithms we discussed? Ignore all
the memory requirements except those that scale linearly
with the number of spins, N; the rest are negligible. Assum-
ing the time spent in bits continues to grow as NlogN after
the last data point in Figure 8, how long will the largest pos-
sible bits simulation take to complete?

Programming
To do the following problems, you’ll need our program’s
source code and a C++ compiler that supports the Standard
Template Libraries. The source code, details on how to work
with it, and links to compilers supporting these libraries are
on our Web page.

Run the simulation described in the first problem to test

τ̃

τ̃
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Another useful function is the avalanche size distribution,
D(S), defined as the number of avalanches that flip S spins
during the simulation, divided by the total number of spins.
Like the M(H) curve, the avalanche size distribution scales
linearly with the system size. Thus, we need bins up to size
N, the size of the largest possible avalanche. Logarithmic
binning is the obvious solution, with bin n including all sizes

. We have chosen ba from 1.01 to 1.1. Large
bins are preferable for lower statistical noise. This choice is
particularly important in the tail of very large avalanches,
where small bins would contain few avalanches. However,
very large bins will systematically alter the shape of the scal-
ing functions (although they will not change the critical ex-
ponents). It is important to divide the final population in
each bin by the number of integers in the bin (and not just
the bin width). We should also ignore the early bins that do
not contain any integers.

We calculate the correlation function G(x, R) in an
avalanche, where G(x, R) gives the probability that the first
spin in an avalanche will cause a spin a distance x away to flip
in that avalanche. At the beginning of each avalanche, we
record the coordinates of its first spin. Then, for each sub-
sequent spin in the avalanche, we calculate the distance x to
the first spin and add one to the appropriate bin. Logarith-
mic binning is not necessary for the correlation function, be-
cause the correlation function’s size is proportional to the
system’s length, not the total number of spins. Thus, we use
a fixed bin size bc = 1. At the end of the simulation, each bin
should be normalized by the number of spins that are be-
tween x − bc/2 and x + bc/2 from the origin.

The only tricky part of calculating G(x, R) comes from the
periodic boundary conditions. If the avalanche crosses a

boundary, two points at opposite ends of the avalanche can
come close together. Because we do not calculate G(x, R) for
spanning avalanches, we know that at least one row in every
dimension will be untouched by the avalanche. To calculate
separations, we use the periodicity of the lattice and the con-
tinuity of the avalanche to shift the coordinates so that they
are all on one side of these empty rows. Because we are al-
ready keeping track of the avalanche’s boundaries for the de-
tection of spanning avalanches, finding an empty row is easy.

Figure 8 shows the running times of the three algorithms
as a function of system size. The brute-force algorithm can
be useful when you care only about M(H) at a few points
but is otherwise too slow for large systems. The sorted-list
algorithm is the fastest algorithm, but a 128-Mbyte ma-
chine can handle system sizes of only up to six million
spins. The bits algorithm is almost as fast as the sorted-list
algorithm, and asymptotically uses only one bit of memory
per spin.

W orking on hysteresis, avalanches, and noise with our
model has been very rewarding. The simulations

are beautiful and entertaining in themselves. Developing
faster, more space-efficient algorithms was amazingly satis-
fying: each new method not only eased our lives and our
computer budgets but also opened a whole new window on
the model’s behavior. Developing new ways of measuring
what was happening in the simulations was also fun: watch-
ing the spins flip and measuring the avalanche size distribu-
tion was only the beginning. We have written a few exercises
that we hope will entertain and inform you as they did us
(see the “Suggestions for further study” sidebar).

b S ba
n

a
n− < <1

that the program works. Then try these problems:

• We have designed our code so that adding new types of mea-
surements is easy. One quantity that experimentalists measure
is the change in magnetization with time. In our code, we
record the time series of the whole run, with each avalanche
represented as a single point. Each avalanche also has an in-
teresting structure (see Figure 2 in the main article). Add a
new class to the program that records the time series within
the largest avalanche.

• Implement the brute-force algorithm. You can either replace
the BruteForceHysteresisSimulation class or imple-
ment it from scratch.

• Implement the sorted-list algorithm by replacing the Sort-
edListHysteresisSimulation class.

• Implement the bits algorithm.

More information on how to write your own Brute-
ForceHysteresisSimulation, SortedListHystere-

sisSimulation, and BitsHysteresisSimulation
classes is on our Web site.
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6. J.P. Sethna, O. Perković , and K.A. Dahmen, in Scale Invariance and Be-
yond, B. Dubrulle, F. Graner, and D. Sornette, eds., Springer-Verlag,
Berlin, 1997, p. 87. In this reference, Figure 1 (right) is incorrect: it
shows dM/dt for the whole hysteresis loop, not just one avalanche.
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Figure 8. The running times for the three algorithms for 2D
systems with R = 1.0 on a 266-MHz Pentium II with 128
Mbytes of memory. The brute-force running time grows qua-
dratically; the sorted-list algorithm and the bits algorithm
have run times that grow approximately linearly (the logN is
not visible). The largest bits simulation was 64 times larger
than the largest sorted-list simulation.


