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Information loss under coarse graining: A geometric approach
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We use information geometry in which the local distance between models measures their distinguishability
from data to quantify the flow of information under the renormalization group. We show that information about
relevant parameters is preserved with distances along relevant directions maintained under flow. By contrast,
irrelevant parameters become less distinguishable under the flow with distances along irrelevant directions
contracting according to renormalization group exponents. We develop a covariant formalism to understand the
contraction of the model manifold. We then apply our tools to understand the emergence of the diffusion equation
and more general statistical systems described by a free energy. Our results give an information-theoretic
justification of universality in terms of the flow of the model manifold under coarse graining.
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I. INTRODUCTION

Microscopically diverse systems often yield to surprisingly
simple effective theories. The renormalization group (RG)
describes how system parameters change as the scale of obser-
vation grows and gives a precise explanation for this emergent
simplicity. On coarse graining and rescaling, most parameter
combinations are found to be irrelevant, and their importance
decreases as the RG proceeds. Effective theories are thus
determined by a small number of relevant parameters whose
importance grows with increasing scale. Although the RG was
initially used to understand systems with spatial symmetry, it
has found applicability in a wide range of theories including
avalanches [1], turbulence [2], differential equations [3], the
central limit theorem [4,5], period doubling [6], and quasiperi-
odic systems [7,8].

Here we use information geometry [9] to reformulate
the RG as a statement about how the distinguishability of
microscopic parameters depends on the scale of observation.
The emergence of simple laws of the macroscopic behavior
corresponds to a loss of information about the microscopics.
A reformulation of the RG in the language of information
geometry allows us to make a more precise statement about
this correspondence. Relevant variables are distinguished as
those for which there is no loss of information under coarse
graining. Hence, the underlying complexity is hidden because
information about the irrelevant variables is lost under coarse
graining.

Information geometry uses the Fisher information matrix
(FIM) as a Riemannian metric on parameter space. The result-
ing model manifold describes a space where local distance is
an intrinsic measure of the distinguishability of nearby models
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(see Refs. [10–12] for discussions of this and related ther-
modynamic metrics). The FIM is defined for a parametrized
statistical model P ({x}|�θ ) giving the probability P for a state
{x} and parameters θμ as

gμν = −
∑

x

P (x|�θ )
∂2 ln[P (x|�θ )]

∂θμ∂θν
, (1)

= −
∑

x

P (x|�θ )
∂ ln P (x|�θ )

∂θμ

∂ ln P (x|�θ )

∂θν
, (2)

where ds2 = gμνδθ
μδθν defines the distinguishability of

models that differ by δ �θ from data {x}. The FIM is the natural
metric for the space of probability distributions in which our
model manifold is embedded.

Our paper builds on previous studies showing that in
models from systems biology and elsewhere this metric has
a characteristic sloppy distribution with eigenvalues spanning
many orders of magnitude [13,14]. It was recently shown that
renormalizable models become sloppy but only after their data
{x} is coarsened [15] by decimation in the Ising model and
blurring in time for diffusion. Although that paper was mostly
numerical, we found that (1) relevant directions of the FIM do
not grow but instead are almost unaffected by coarsening and
(2) irrelevant directions contract at a rate given by their RG
exponent.

In this paper, we address this question analytically and
develop a covariant formalism to describe the flow of the
model manifold. Past studies have considered the connection
of the RG to geometry [16–18] but not to information theory.
Here we use the RG to calculate the flow of the model
manifold as the observation scale changes and connect it to
the distinguishability of parameters. We show that as coarse
graining proceeds relevant directions are exactly maintained
whereas irrelevant directions contract. Our results quantify
the irreversibility of RG transformations: Models which differ
only in irrelevant directions rapidly become indistinguishable
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FIG. 1. A cartoon figure of a section of the model manifold
with one relevant (t) and one irrelevant (u) direction. The RG
makes an initial patch (green) stay the same in the relevant direction
but compress in the irrelevant directions. Information is preserved
in relevant directions and lost in irrelevant directions. Finding an
embedding to visualize the manifold is nontrivial [21].

as the observation scale increases. Our results also clarify
that information about relevant directions is contained in large
scale observables since these directions do not contract as the
observation scale increases. This striking feature that relevant
directions are preserved in the space of predictions is distinct
from the usual way the RG is thought about where relevant
directions grow in parameter space under coarse graining.
This is represented pictorially in Fig. 1.

In Ref. [19], the connection between the information ge-
ometry and the RG was discussed. The geometric meaning of
scale invariance implies that the β functions in the RG should
be homothetic vectors. Those authors calculated the form of
the metric by assuming that distances are preserved under
geometric flow determined by the β functions. As we show,
this gives an essentially correct approximation to the metric
only for relevant parameter combinations, but this argument
misses contributions to the metric whose form is not preserved
under coarsening but which dominate the metric along irrele-
vant directions. This comes about because the scaling given in
Ref. [19] is only true for the singular part of the metric which
diverges as the critical point is approached. An additional
nonuniversal part, given by contributions to the metric which
are analytic in the critical region, dominates along irrelevant
parameter combinations. These contributions are central for
the interpretation of coarse graining that we offer below. In
particular, information about irrelevant components is lost
precisely because it is dominated by the analytic part of the
metric.

Our approach is inspired by information theory. Rather
than deriving the form of the metric from the symmetries of
the problem, we look at the evolution of the Fisher informa-
tion metric under coarse graining to see how information is
lost. We first describe our formalism, apply it to the diffusion

equation, and then apply it to coarse-graining classical statis-
tical systems [20] described by a free energy.

II. FORMALISM

To understand how coarse graining loses information about
parameters, we consider an infinitesimal RG transformation
of the form dθμ/db = βμ describing the flow of parameters
by β functions �β = {βμ} as the shortest length scale b is
increased. Sometimes, RG transformations are constructed to
give exact Hamiltonians for macroscopic degrees of freedom.
However, macroscopic measurements cannot infer all param-
eters that primarily influence the microscopics. It is this loss
of information that we wish to quantify. Because information
about microscopic degrees of freedom is discarded as the flow
proceeds, there is no guarantee that a forward RG flow can be
uniquely reversed. However, the irreversibility of the RG is
difficult to quantify through the RG equations alone. Instead,
we turn to the metric tensor of Eq. (1), a local measure of
how hard it is to discriminate between models which differ
by small changes in parameters [22]. We can quantify the loss
of information in parameter space as microscopic information
is discarded by asking how the metric tensor changes under
an infinitesimal RG transformation. Since the metric is a two-
tensor and the transformation is a flow given by a vector field,
the answer is given by the Lie derivative L �β which defines the
derivative of a covariant tensor carried along flow field �β.

Because the FIM quantifies the observability of parameters
from a fixed amount of data, we consider an RG procedure
which takes place on a large but finite system, whose physical
size is fixed so that the observed system length L shrinks
during the RG according to dL/db = −L. As L is not a
parameter, we must add an additional term to the usual Lie
derivative defining L̄�β = L�β − L∂L. This additional term ac-
counts for the reduction in the number of data points because
of the coarse graining. The Fisher information, through its
definition in Eq. (1), is linear in the amount of uncorrelated
data. So coarse graining by itself shrinks the metric tensor by
L∂L as it reduces the system size. [For systems of dimension
d, if g = g0L

d is constant per unit volume and has no RG flow,
then ∂g/∂b = −L∂Lg = −L(dLd−1)g0 = −dg, so g(b) =
g0 exp(−db) = g0L

d .] This choice is more natural from our
information theory perspective because coarse graining can-
not increase information about any parameter combination.
The change in the metric is then given by

L̄�βgμν = βα∂αgμν + gαμ∂νβ
α + gαν∂μβα − L∂Lgμν. (3)

This modified Lie derivative L̄�β is written as the sum of four
terms. The first term is the directional derivative of the metric
along the �β function, which keeps track of how the metric
changes as the parameters flow. The next two terms come from
the change in the parameter space distance between nearby
points under flow. The last term describes the change in the
metric due to the shrinking of the effective system size. As
long as the system is large enough to ignore the effects of the
boundaries, the metric tensor gμν ∝ Ld so that the first term
can be written −dgμν . Together, these terms describe how the
metric changes under coarse graining. Since we are working
in a fixed parametrization, the change in the metric reflects a
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change in the proper distance between nearby systems and is
an invariant quantity.

To interpret this equation further, we consider the RG in
its linearized form with eigenvalues λ(μ) so that βμ = λ(μ)θμ

and we use the notation that the summation convention is not
to be used if the indices are in parentheses. With ∂μθα = δα

μ,
this yields a simplified equation,

L̄�βgμν = λ(α)θα∂αgμν + gμν (λ(μ) + λ(ν) ) − L∂Lgμν. (4)

The RG is often performed as a discrete operation rather
than a continuous one in which θμ flow to θμ̃ in one discrete
iteration. In this case the new metric in the new parameters
is given by g̃μ̃ν̃ = 〈∂ν̃∂μ̃ ln P (x̃)〉. The usual goal of RG is
to find an effective theory with renormalized parameters for
macroscopic degrees of freedom. Our goal is to see how infor-
mation about the original parameters transforms after coarse
graining, but we do sometimes find these renormalized param-
eters a useful intermediate, and when we use them we denote
them with a ∼. To write the metric in bare parameters we sim-
ply change parameters according to g̃μν = g̃μ̃ν̃

∂θ μ̃

∂θμ
∂θ ν̃

∂θν . Hence,

the new metric is given by g̃νμ = 〈∂ν̃∂μ̃ ln P (x̃)〉 ∂θμ̃

∂θμ
∂θ ν̃

∂θν .

III. DIFFUSION

We illustrate this formalism by first considering the RG
flow of a generalized hopping model of diffusion. Consider
a particle undergoing stochastic motion according to a kernel
Kτ (x) so that

P [x(t + τ )|x(t )] = Kτ [x(t + τ ) − x(t )].

We assume that Kτ has a finite second moment. How
well can we infer the shape of Kτ by measuring time se-
ries �x = {x(0), x(τ ), x(2τ ), . . . , x(mτ )}? We can choose to
parametrize the kernel in different ways. A convenient way
to parametrize probability distributions close to a Gaussian
distribution is to use Hermite polynomials. Let θμ parametrize
an arbitrary kernel Kτ and Hμ be the μth Hermite polynomial.
For notational convenience, we define H̄μ = Hμ(y)

μ!(θ2 )μ/2 . The
kernel is then given by

Kτ (x) = 1√
2π (θ2)

exp (−y2/2)

[
1 +

∑
μ�3

θμH̄μ(y)

]
, (5)

where y = (x − θ1)/(θ2)1/2.
The probability of a time series �x is given by P (�x) =∏m

i=1 Kτ {x(iτ ) − x[(i − 1)τ ]} and the FIM near θμ = 0 for
μ > 2 is

g(0)
μν = mδμν

μ!(θ2)μ
, (6)

where the (0) denotes a microscopic measurement. In typical
measurements, the scale of observation is much larger than the
natural timescale τ . How would the slowness of a measuring
apparatus influence the ability to infer Kτ ? One means to
address this is to consider the renormalized kernel arising
from the composition of n time steps. For example, after two
steps,

K2τ (x) =
∫

dx ′Kτ (x ′)Kτ (x − x ′). (7)

After n steps, the kernel can be recast into the form
of Eq. (5) provided parameters are renormalized to θμ̃(n) =
n1−μ/2θμ where the spatial coordinate is rescaled according to
y (n) = n−1/2y. The continuous limit here gives dθμ/d ln n =
(1 − μ/2)θμ so that βμ = (1 − μ/2)θμ. The kernel after n

steps becomes

Knτ (x)= 1√
2π (θ2)

e−[(y (n) )2/2]

[
1+

∑
μ�3

n1−(μ/2)θμH̄μ(y (n) )

]
.

(8)

We are interested in the case where observations occur at
a scale much larger than τ . In addition, for a fixed trajectory,
the number of data points reduce by a factor of n, rescaling
the metric in the discrete contribution corresponding to the
third term in Eq. (4). In the case of diffusion, the metric
depends only on θ2 which is itself invariant under the RG
operation. Hence, the first term in Eq. (4) is zero so that the
parameter dependence of the metric does not contribute to its
change in rescaling. This is, in part, because of our choice
of parameters. In a different parametrization, this term could
contribute to the change in the metric since the individual
terms in Eq. (4) are not covariant. However, the Lie derivative
as a whole is covariant so that the total change in the metric
transforms covariantly under a change in parameters. Finally,
the contribution of the second term in Eq. (4) is given in a
straightforward way with the eigenvalues λ(μ) = (1 − μ/2),
and the new metric near the Gaussian fixed point the new
metric is given by

g̃(n)
μν = n1−μg(0)

μν . (9)

For diffusion, the mean θ (1) is the only relevant variable
in the sense of having RG exponent >0, and its correspond-
ing FIM eigenvalue is exactly preserved under this coarse-
graining procedure. This makes sense: The mean drift is given
by the two end points, unchanged under coarse graining.
Our main prediction is that this is also true for the relevant
variables in general statistical mechanical systems.

The standard deviation is the next most distinguishable pa-
rameter, marginal in the RG sense, and under coarse graining
it becomes harder to see as quantified by the decreasing value
of g

(n)
22 as n increases. All other parameters become even more

indistinguishable at late times. This framework quantifies the
irreversibility of the RG through the inability to distinguish
irrelevant variables at long times or length scales.

Our approach emphasizes that the total information de-
pends on the total amount of data. An alternative approach,
more in line with statistical physics, would be to define a
Fisher information density which is independent of the system
size. Relevant directions would then spread out under coarse
graining with an exponent equal to the dimension of the
system d but not to their RG exponent. This intensive metric
is discussed in Ref. [21]. Using the total information is not
only more natural from an information-theoretic point of view,
but also results (here and in the next section) correspond
more to intuition: The information about relevant directions
is preserved under coarse graining.
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IV. STATISTICAL MECHANICS

The diffusion equation is a simple example where ev-
erything can be analytically calculated. We now apply our
formalism in more generality to statistical systems with a free
energy. Consider a Boltzmann distribution for a microstate
x, P (x) = exp[−H (x)]/Z with a Hamiltonian of the form
H = ∑

μ θμ�μ(x), where �μ(x)’s are functions of the mi-
crostate x and where θμ’s are parameters. Typically, �’s will
be sums or integrals over space, such as

∫
V φ2 in Landau the-

ory or
∑

i xixi+1 in the Ising model. Because the Hamiltonian
is in an exponential family and linear in its parameters, the
FIM can be written as [see Eq. (1)] [15],

gμν = ∂μ∂ν ln(Z) = 〈�μ�ν〉 − 〈�μ〉〈�ν〉. (10)

A renormalization group operation typically involves coarse
graining by tracing over some degrees of freedom (such as in
our previous example for diffusion). Let x̃[n] = C[n](x) be the
coarse-grained state observed when the bare microstate is x.
This coarse graining could involve removing high momentum
states or decimating over alternate spins (see Ref. [15] for an
example). For our purposes, it is only important that the coarse
graining acts as a map from bare microstates to coarse-grained
ones. We can define the restricted partition function Z̃(x̃[n] ) =∑

x δ[C[n](x), x̃[n]]e−H (x) in terms of which the probability of
being in coarse-grained state x̃ is p(x̃) = Z̃(x̃)/Z. We choose
our convention so that the renormalized Hamiltonian has the
same form as the old one with renormalized parameters with
any additional constant written separately,

H̃ (θμ̃) − G(θμ) = H (θμ). (11)

We can define the Fisher metric on the bare parameter space,
but for coarse-grained observables x̃ using Eq. (1),

g̃b
μν = ∂μ∂ν ln Z − 〈∂μ∂ν ln Z̃b(x)〉. (12)

To calculate derivatives of ln Z̃b it is helpful to define the
expectation value of an operator �(x) defined at the bare
microstate, conditioned on coarse graining to coarsened state
x̃[n] as [15]

{�(x)}x̃[n] = 1

Z̃(x̃[n] )

∑
x

δ[C[n](x), x̃[n]]�(x)e−H (x). (13)

We define correlation functions of these operators in the
natural way 〈{�1}x̃[n]{�2}x̃[n]〉 = ∑

x̃[n] p(x̃[n] ){�1}x̃[n]{�2}x̃[n] .
In this notation the reduction of the metric on coarsening is
given by

〈∂μ∂ν ln Z̃b(x)〉 = 〈{�μ�ν}x̃[n] − {�μ}x̃[n]{�ν}x̃[n]〉, (14)

which is positive definite, demonstrating that coarsening re-
duces the FIM in all directions. This form also contains
intuition for our result derived below—that FIM components
are almost preserved on coarsening for relevant directions,
whose metric eigenvalues diverge near critical points. The
divergence in these eigenvalues can be understood as arising
due to the diverging range of correlations in the fields within
the correlation functions in Eq. (10). (Each � is an integral
over space.) However, the coarsened ensembles defined here
are conditioned on fixing long wavelength modes or a subset
of degrees of freedom, effectively screening correlations at

lengths larger than the coarsening scale b. As such corre-
lations are absent at long scales so that 〈∂μ∂ν ln Z̃b〉 must
remain nonsingular even as correlations in the uncoarsened
fields diverge near the critical point. The full coarsened FIM
is given by

g̃n
μν = 〈{�μ}x̃[n]{�ν}x̃[n]〉 − 〈�μ〉〈�ν〉. (15)

To see the origin of the loss of information, we can directly
calculate g̃μν = 〈−∂μ∂νH̃ 〉 + ∂μ∂νZ. Now, from Eqs. (11)
and (10), we get g̃μν = gμν − ∂μ∂νG. The change in the
Fisher information metric is a consequence of the analytic
constant that gets added during the coarse-graining transfor-
mation. By exponentiating Eq. (11) and taking a trace, we
can write this as exp[−F (θμ)] = exp[G(θμ)] exp[−F (θμ̃)],
where F is the free energy. As is common, we find it useful
to divide the total free energy into a singular and an analytic
piece F = F (s) + F (a). Using our definition of the metric
in Eq. (12), we can correspondingly write the metric gμν =
g(a)

μν + g(s)
μν . The singular part of the free energy is conserved

along the flow. This can be written as

βγ ∂γ F (s) = L
∂

∂L
F (s). (16)

Taking two derivatives of this equation and assuming linearity
of the β functions,

L̄�βg(s)
μν = 0. (17)

That is, metric components of the singular part of the metric
are preserved along the flow. The relevant components of the
metric are dominated by the singular part of the free energy,
and hence information about them is preserved along the
flow. This is reflected in the divergence of quantities, such
as the specific heat and susceptibility at the critical point.
The irrelevant components of the metric are dominated by
the analytic part of the free energy. To see this, consider a
typical scaling form of the free energy of an Ising model with
one irrelevant component u, F = Ldtd/λtF (ut (−λu/λt ) ). If we
assume F is analytic, we can take two derivatives to find the
component of the metric g(s)

uu = Ldt [(d−2λu )/λt ]F ′′(ut (−λu/λt ) ).
Since λu is negative, this expression goes to 0 at the critical
point and is very small near it. Away from the critical point,
this has some finite value but is still small yielding well known
corrections to scaling.

We can calculate how the analytic part of the metric
changes by going back to the transformation for the free
energy F (a)(θμ̃) = F (a)(θμ) + G(θμ). The change in the an-
alytic part of the metric, after n coarse grainings, is given by
�g(a)

μν (θμ̃(n) ) = −∑n−1
i=1 ∂μ∂νG(bmλαθα ). This can be simpli-

fied to

�g(a)
μν (θ α̃(n) ) = −

n−1∑
m=1

bm(λμ+λν )∂μ̃∂ν̃G(θ α̃ ), (18)

where ∂μ̃∂ν̃G(θ α̃ ) is a positive definite quantity (as can be
explicitly checked when calculation is possible, such as in
the two-dimensional Ising model on a triangular lattice [23]).
Hence, the analytic part of the free energy decreases with each
coarse graining. In this case, since the metric is analytic, the
change in the metric because of the curvature [corresponding
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to the partial derivative in Eq. (4)] is less significant and the
irrelevant components of the metric contract under the flow.

One can write down a partial differential equation de-
scribing the flow of the singular part of the metric by the
requirement that L̄g(s)

μν = 0,

βα∂αg(s)
μν + g(s)

αμ∂νβ
α + g(s)

αν ∂μβα = dg(s)
νμ. (19)

This equation determines the components of the metric
in the relevant direction which can be obtained by solving
this equation. Such equations have recently been solved for
different kinds of RG flows near critical points in Ref. [19].
The change in the analytic part of the metric close to the
critical point should be dominated by the change in parameter
space distance in Eq. (4) (with higher order corrections).
Together, this allows us to predict the scaling of the metric
for linear β functions with correlation length ξ and coarse-
graining length b,

g(s)
μμ ∼ Ldξ−(d−2λμ ), (20)

g(a)
μμ ∼ Ldb−(d−2λμ ). (21)

We note that this is a nontrivial result. It says that on ignoring
some degrees of freedom in an Ising spin system (not ob-
serving them experimentally), one should be able to measure
the temperature and magnetic field equally well from the
coarsened system. The argument in statistical mechanics is
somewhat technical, but our confidence in the result comes
from the numerical work in Ref. [15] which foreshadowed the
argument above.

V. CONCLUSION

To summarize, we have shown [Eqs. (17) and (20)] that
information about the relevant components, contained in the
singular part of the metric is preserved under RG flow whereas
information about the irrelevant components, contained in the
analytic part of the metric, reduces [Eq. (21)]. This is the
information theoretic meaning of universality. The RG can
be understood as a flow of the model manifold under which
irrelevant components of theory becomes harder and harder
to distinguish and can hence be ignored in a description of a
theory at long lengths or timescales.

We note some assumptions that have gone into the analysis.
We have assumed the �β functions that determine the RG flows

are linear. In typical cases, it is possible to make analytic co-
ordinate changes that make the �β functions linear. The Fisher
information will then no longer be given by Eq. (10) because
the Hamiltonian will not be linear in the new variables. It
should be possible to incorporate these corrections. In other
cases, the �β functions are inherently nonlinear [24] which
leads to logarithmic and other corrections. It will be interest-
ing to examine the significance of these inherent nonlinearities
for information theory.

Universal scaling behavior typically comes with analytic
and singular corrections to scaling. It is possible that such
corrections can be organized by relevance using information
theory by systematically including them in the free energy.
With the FIM as a metric, the scalar curvature is small in the
thermodynamic limit, scaling, such as ξd/Ld with ξ as the
correlation length, quantifying the intrinsic non-Gaussianity
of fluctuations. By using the Fisher information density, the
divergence of the Ricci curvature can be identified with the
divergence of the correlation length as occurs near critical
points [11,25,26].

We expect that our information theoretic understanding of
coarse graining can help to identify relevant parameters of
models even where explicit RG procedures are not available.
In Ref. [27], unimportant directions were identified as thin
directions of the model manifold and were systematically
removed. Here we find that relevant and irrelevant directions
in parameter space behave differently under coarsening in
a reparametrization invariant way, which can be seen even
without an explicit parameter space flow. This suggests that
relevant directions for more general coarsening procedures
can be identified with FIM eigendirections which do not
contract under coarsening.
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