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Decay of isolated surface features driven by the Gibbs-Thomson effect
in an analytic model and a simulation
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A theory based on the thermodynamic Gibbs-Thomson relation is presented that provides the framework for
understanding the time evolution of isolated nanoscale featueesislands and pijon surfaces. Two limiting
cases are predicted, in which either diffusion or interface transfer is the limiting process. These cases corre-
spond to similar regimes considered in previous works addressing the Ostwald ripening of ensembles of
features. A third possible limiting case is noted for the special geometry of “stacked” islands. In these limiting
cases, isolated features are predicted to decay in size with a power-law scaling iltiftg:-t)", where
A is the area of the featurég, is the time at which the feature disappears, ard2/3 or 1. The constant of
proportionality is related to parameters describing both the kinetic and equilibrium properties of the surface. A
continuous-time Monte Carlo simulation is used to test the application of this theory to generic surfaces with
atomic scale features. A method is described to obtain macroscopic kinetic parameters describing interfaces in
such simulations. Simulation and analytic theory are compared directly, using measurements of the simulation
to determine the constants of the analytic theory. Agreement between the two is very good over a range of
surface parameters, suggesting that the analytic theory properly captures the necessary physics. It is anticipated
that the simulation will be useful in modeling complex surface geometries often seen in experiments on
physical surfaces, for which application of the analytic model is not straightfoni@0d.63-1827)03803-4

I. INTRODUCTION stage of island nucleation. This is a special case of a more
general situation in which small clusters of a condensed
Real surfaces of crystalline materials below their roughsphase of material, which are of dimensionali?y, exist in
ening temperature, even of crystals with essentially perfecan environment of a vapor phase, which is of dimensionality
ordering, are generally not in equilibrium. More typically D, . Relaxation towards equilibrium in many such systems
they have features such as irregular step edges, excess indiscurs through the diffusion of atoms between the clusters,
vidual adatoms or vacancies, or clusters of adatoms or van a behavior known as Ostwald ripenifaiso called coars-
cancies, which we call islands and pits. Since all these feaening. Greenwoodand Lifshitz and Slyozdi/ first consid-
tures have an associated free-energy cost but are not requireted the cas®.=D,=3 under the simplifying assumptions
by the macroscopic orientation of the surface, their existencthat the intercluster mass flow is limited by the diffusion
indicates that the surface is not at a free-energy minimumprocess, and that the total amount of the condensed phase is
Such surfaces will therefore tend to relax towards equilib-small. Wagnetextended the theory to include the possibility
rium. that the transfer of adatoms between the phases could be a
The way in which this relaxation takes place has been dimiting process. Further extensions by Chakravernd
subject of interest for many years. In processes that tend tother§~® applied the theory to the case of clusters on sur-
produce nonequilibrium features, such as epitaxial growth ofaces(i.e., D,=2, D.=2 or 3. References 10 and 11 in-
surface sputtering, the relaxation may be important in deterelude reviews of this material.
mining the time evolution of the surface both during and All of these treatments and many experimental
subsequent to deposition or irradiation. Surface relaxationvestigation§*=%! have concentrated on quantities, such as
will also be of particular interest in the future for the field of average cluster radius and cluster density, which are en-
nanofabrication. As artificially created structures approactsemble properties. This is because the clusters involved are
the nanometer scale, it becomes important to understangsually very small, so that their properties are most readily
whether these structures, once made, will be relatively stablestudied by techniques, such as diffraction, that sample large
Stability of such features is crucial to the success of elechumbers of clusters. With the advent of atomic scale mi-
tronic interconnects or information recording applications. croscopies such as scanning tunneling micros¢gmM), it
One of the most studied situations is a surface populatetlas become practical to study the behavior of individual sur-
by an ensemble of islands of various sizes, as might béace features, either within an ensemble or in isolation. By
found, for instance, in a growth experiment after the initialobserving the behavior of individual features, the fundamen-
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tal mechanisms responsible for stability and decay can bthe mass transfer between different clusters or between a
studied without the complications that result from the inter-cluster and a nearly straight step edge.

actions between the clusters of an ensemble system. In addi- For a two-dimensional, incompressible condensed phase,
tion, the behavior of an individual feature may be the quanthe boundary of which has a radius of curvaturén contact

tity of interest in certain applications, as in nanofabrication.with a two-dimensional, noninteracting vapor, the GT rela-
Some studies have focused on the evolution of individuation is*

features, either experimentaify®’ or theoretically?®%° For

instance, we have found that, on the(ALl) surface in air,

isolated islands decay in size such that the island area de- Q
pends roughly linearly on tim&. A similar study of islands = pi“exr{ )
on the Ad111) surface in ultrahigh vacuuth observed is-

land areas to be proportional to time raised to an average

exponent of 0.54. _ wherepfYis the pressure at which the vapor will be in equi-
In this work we present an extension of the ensemblgjyi,;m with the condensed phage? is the equilibrium va-
theories to consider the decay of isolatiedividual two- por pressure for a straight boundany=), v is the edge
d|men_3|onal |_slands on surfe_lceI§1(=DC=2). In Sec. Il an free energy(which is assumed to be isotropic and indepen-
analytic continuum model is presented that accounts for

three possible rate limiting steps in island decay. This mode‘Fent of curvaturk, and() is the area occupied by one atom in

provides a connection between the observed behavior &pe condensed phase. When working With, a lattice, itis more
such features and the parameters describing atomic procesdidura! to_;:on5|der the vapor concentratipnmeasured in
on the surface. Section Il discusses limiting cases in thig!nits ofa” = wherea is the lattice constant. Because Eg).
model that are relevant to physical systems. Specifically, w@&Ssumes that the vapor is noninteracting, the pressure will be
find “interface-transfer-limited” and “diffusion-limited”  Proportional to the vapor concentration. Thus we can substi-
cases that are direct corollaries of similar limits of Ostwaldtute p for p in Eq. (1).
ripening®1° Specific surface geometries lead to cases that are Note that the same relation continues to hold for a con-
unigue to individual islands. Islands completely surroundedlensed phase with a concave boundary. In that case, the
by a step-down or step-up edge can lead to the “outerboundary is described as having a negative radius of curva-
boundary-limited” and “island in a pit” cases. Villain has ture. For example, the adatom density inside a monolayer
considered the first of these geometries in Ref. 28, usingeep pit will be reduced relative to the density in equilibrium
assumptions which lead to the diffusion-limited case. with a flat boundary.
Because the evolution of a single surface feature involves If the vapor is interacting, as is the case for adatoms on a
a relatively small area of the surface, it is feasible to performsurface, we have reported elsewHenhat at vapor concen-
atomic-scale simulation studies to test the analytic modeltrations as low apf% 10 2a~2 there can be significant cor-
Section IV presents such a computer simulation study ofections to this equation. However, by including a correction
island decay for a generic surface with one particular geomfactor in the exponent an equation of the same functional
etry. In Sec. V we discuss how to obtain the parameters foform as Eq. (1) continues to satisfactorily describe the
the continuum model that are appropriate to describing th&ibbs-Thomson vapor enhancement in our system, as will be
atomistic simulation. Using these parameters, we find in Sedliscussed further in Sec. IV.
VI that comparison between the simulations and the analytic The Gibbs-Thomson relation is sufficient to anticipate the
model is very good, showing that the analytic model capturegeneral behavior of a system. Features with the highest cur-
the key physics for describing feature evolution on a generizvature will have the largest equilibrium adatom vapor con-
surface. We anticipate that this simulation technique willcentrations. On a surface with islands of different sizes as
provide an additional tool for analyzing the observed behavwell as step edges, a concentration gradient will be estab-
ior of physical surfaces, because it can be used to moddished whereby adatoms diffuse away from high curvature
complex geometries that are often observed, e.g., in STMeatures and toward low curvature features. For instance,
studies, but that are not easily treated with the analytidarge islands will grow as small islands shrink and disappear.
model. We now consider in more detail the specific case of an
isolated circular island on a surface with an adatom concen-
tration below the island’s equilibrium value. We shall use
Il. THEORY FOR DECAY OF ISOLATED to denote the radius of the island, ando denote the radial
SURFACE FEATURES distance from the center of the island. The GT equation de-
scribes the equilibrium properties, but in order to calculate
the decay rate of an isolated island we must consider the
At the heart of each of the treatments cited above is thdinetics of the surface. In the following sections, we will
Gibbs-Thomson(GT) relation. The pressure of a vapor that describe the three processes involved in the flow of atoms
is in equilibrium with its condensed phase depends on thérom the island: interface transfér,diffusion® and incorpo-
curvature of the interface between the phases. For a conveation at the outer boundary. These three processes are illus-
condensed phase the pressure is enhanced relative to ttiated in Fig. 1. We make the assumption throughout this
pressure in equilibrium with a flat boundary. The GT relationtreatment that these processes are slow on the time scale of
expresses this dependence. The increased vapor pressurelasal equilibration in the vapor, so that the system may be
sociated with a curved boundary is the driving force behinddescribed by a steady-state solution at any point in time.

rkT @

A. The driving force for surface mass flow
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(3b) because there can be no attachment unless an adatom

interface transfer

//% vapor is present. If the coefficients are well behaved we can
7 eq . drop terms of higher than linear order. Under equilibrium
z e P, et eq
Z2 , _ conditions, wherp(r)=p," the rate of detachment and at-
= mcorporauon
ZE at outer tachment are equal:
2‘5 \»bounda;%
Z =4
2;/}/ ______ _ 33r)+ 34(r)pf=35(r) pf. @
/ / 7 The total current; is determined by the current densities,
r R which simplifies through Eq4),
FIG. 1. A schematic representation of the adatom vapor density Li=2mr[Jg(r,p) —Ja(r,p)]
near a small island of radiuson a surface. The equilibrium vapor
densities for the islandpf® and for the mean-field environment at =2mr[J(r) =351 pso—p(r)]. (5)

radiusR (pr) are indicated by dashed lines. The actual density
profile p(r) lies between these limits, determined by the relative Comparison with Eq(2) yields an expression fdf;,
rates of the three processes of decay indicated by arrows.
— 1/ ' 1
B. The interface transfer process Ki=Ja(r) = Jg(r)=Ja(r), ©
As the island decays, there must be a net detachment ¥fhere we have used the fact that in general we expect the

atoms from the island. If the deviation of the density of at-detachment ratd to have little dependence on the vapor
oms just outside the island(f=r) from the equilibrium concentration, i.e.|J|<|Js|. Equation(6) gives a clearer
density given by the GT relation is sufficiently small, then meaning to the assumption thigf is independent of curva-
the current of atoms leaving the islahdwill depend linearly ~ ture; it is equivalent to the assumption thH{(r) (qualita-
on that deviation. Further, if the curvature of the interfacetively the rate at which an atom will attach to the island if it
does not significantly influence the manner in which atomds already one step away, i.e., a rate per adatom derisity
leave the island then the current will be proportional to theindependent of . This assumption is plausible; for instance,

interface length, so that if we have an ideal gas in an enclosure, the number of gas
atoms hitting a given area of the enclosure wall is indepen-
lLi=27rKi[p{%p(1)], (2)  dent of its curvature. However, this assumption should be

. - L justified for any particular system under study.
where we introduce the coefficieKt , which is assumed to Justh y particu y ! udy

be independent af. The subscript is chosen to identify the -
net detachment current as tierface transfercurrent of C. The diffusion process
atoms out of the island. Once the atoms have detached from a decaying island,
Further insight into the coefficierk; can be obtained they must diffuse away across the terrace. Under our as-
from a detailed balance argument. In the remainder of thisumption of quasi-steady state, the rate at which they diffuse
subsection we explore how this coefficient arises from theaway is governed by the two-dimension&D) time-
microscopic dynamics, thus clarifying the assumptions madéndependent radial diffusion equation. The general solution
above and forming a basis for predicting the behavior ofof this equation diverges logarithmically at large distances. It
physical systems in Sec. lll B. In order for an atom to attachis therefore necessary to specify a boundary condition far
to or detach from the island, it must overcome some energftom the island. Rather than specify the island’s environment
barrier at the island-vapor interfag¢ehich depends on the in detail, we apply a generic boundary condition that the
particular microscopic atomic moyeLet J4 be the detach- vapor concentration is somgr =R) at a radiusR>r, where
ment current density at the interface, i.e., the rate per uniR may vary in time. This outer boundary may be a physical
length of perimeter at which atoms detach from the islandsurface feature, or it may be a conceptual boundary for a
edge. Similarly, letJ, denote the interface attachment cur- mean-field treatment of the surrounding surface features. We
rent density. Both of these will, in general, depend on thewill consider some particular examples below. The current of
interface curvature and the vapor concentration. If we asadatoms is then given by the usual solution to the steady-
sume that bottp(r) and pt® are <1a~2 [an assumption state 2D radial diffusion equation:
more stringent than required for E(), but frequently sat-
isfied] then we may proceed by Taylor expanding the current D
densities inp(r), obtaining |D:ZWM(T”[P(Y)—P(R)]:ZWKD[P(f)—P(R)],

3o p(1) =330 + 350 p(r) + 234 [p(1) 2+ - - -, (73
D

(33
Ja(r,p(1)=34(N)p(r) + 335N [p(N ]+, (3b) o= inRin) (7

wherng(r) is the detachment current density with no vapor,where we introduce the coefficiefty . D is the collective
and the prime indicates partial derivative with respecpto (or chemica) diffusion coefficient of the vapor on a step-free
evaluated ap=0. Note that there is no constant term in Eq. terrace. The subscrif is chosen to denotdiffusion
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D. The process of incorporation at the outer boundary [ll. LIMITING CASES OF THE ANALYTIC MODEL

Finally, the adatoms must leave the vapor by crossing the A. Simplifying mathematical limits
outer boundary, thus becoming incorporated into the envi- . .
ronment. Since we have left unspecified the nature of the. The form of Eqs.(10) and (11) is quite complex, espe-

outer boundary, this process may limit the rate at which at_claIIy in their dependence an In order to better understand

oms can leave. We may reason in a manner similar to th%‘seirr? It 'Sh ussi?:gfll torgggghdaebrlzma:plI%Qi?nrgt%:im\?\}lec?/llilllln}ztr?d
case of interface transfer, as discussed above. There will ti 9 phy y PP '

some concentratiopg such that ifp(R)=pg then the net Imits in which th_e Qecaying i_slgnd size obeys a s_imple
current across the outer boundary vanishep(R) does not power law. That is, in these limits the area of the island

Cn . ; )
vary much frompe, then the current across the outer bound-yu =YE S ) AT T TE S0 MR SIR SRS
ary will be proportional to their difference, PP :

the exponenh may take the values of 2/3 or 1.
Two approximations must be satisfied in order to achieve
lp=27RKy[p(R) —pr]. (8)  either of the power-law limits. The first approximation is that
(i) the equilibrium adatom density at the outer boundary is
This equation introduces the rate coefficié, where the close to the equilibrium density for a straight step edge,
subscriptb is chosen to denote the outaoundary Note the .~ 9. We expect this to be valid if the island edge has a
similarity between Eqs(8) and (2). much higher curvature than other nearby surface features, so
In contrast to treatments of Ostwald ripening, we will tht |pS%= p&9>|pr—pS9. We will thus label this as the
assume thaPy is constant in time. This is because we are« .y gpproximation.
considering the case in which the idland is changing much The second approximation required is tffig} the argu-

more quickly than the surrounding surface features. ment of the exponential in E10b) must be much less than
1, so that the exponential may be approximated by the con-
E. The tota| mass ﬂOW and island decay rate Stant and |Ineal’ tel’mS fl’0m |tS Tay|0l’ eXpanS'on Th|S ap'

Eroximation we will label as the “GT expansion.” It is also
As commented at the end of Sec. Il A, we assume that thgeqently physically reasonable. For instance, for a surface
system is in a steady state. Therefore the three atom currentsiiy y=0.117 eVA (see Sec. Iy at room temperature, ap-
which are in series, mu;t be equal._ Equating Eg5. (73, proximation (i) is good to within 10% for islands of size
and (8) gives the following expressions for the concentra-, — 53, This approximation is not always valid, however:
tions of adatoms at the boundaries and for the net detacly, jnsiance, it seems to fail for island decay observed by
ment current in terms of equilibrium concentration values: Morgenstern, Rosenfeld, and Contéa

Using these first two approximations, Ed.0b) may be
rewritten

1 1 1
=r)=| —+ — ey
p(F=1) (KbR+KD C(Np™ ( Clpr, (90

Q
|~270(r)p§qryk—T. (12)

1 1 1
= = — eq _— —_—
p(r=R) KbRC(f)pr+ KD+Kir)C(r)pR, (9b)

In order to get a power-law decay of the island size, a third
required approximation is thaii ) C(r) must be constant or
proportional to a power of. This can be realized in two
ways. (Physical realizations of the following approximations
will be discussed in SecllIB

o 02 PR In one limit (iii-a) C(r) may be approximated to be a
=27C(r)p.] ex kT oS constaniCy. This can occur, for instance, if the third term of

- (10b) Eq. (11) is much larger than the first two, i.e.,

Ky,R<min(Kir, Kp), and if R is constant in time. This we
call the “constantC” approximation. The adatom current
gives the time rate of change for the island area, so that in
this case we have

I =27C(r)(p;*pRr), (103

where

C —( to )l 11
(r)— Kir KD KbR ' ( ) dr dA 79
2mt o= e =—10=-2m0CopS = (133

In Eq. (10b), the GT relation has been substituted f8f. In

Eq. (11) the coefficients of the individual current equations This may be directly integrated to obtain
add together as conductances. Ti(s) is the overall con-
ductance relating the adatom current to the driving force pro-
vided by an imbalance in equilibrium densities. Note that
p(r) and p(R) are intermediate between the equilibrium
concentrationg; % and pg (see Fig. 1 In this way a driving Acx(to—t)", n=2/3. (139
force is present for all three processes in the mass flow away

from the island. This will be referred to as then'=2/3 mathematical limit.”

pSyQ?

kT

1/3
r= ( 3C, ) (to— 1), (13b)
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In the other limit(iii-b ) of Eq. (11) that can lead to power- corporation process described in Sec. IID does not signifi-
law behavior,C(r) is approximately proportional to. This  cantly affect the island decay, so that the third term in Eq.
we call the “linearC” approximation. This can occur, for (11) is negligible. If the curvature of the island edge is higher
instance, if the first term of Eq11) is much larger than the than that of other surface features, i.e., if the island is small,
last two. Expressing the dependence o€C(r) explicitty  then the approximatiofi)(R>r) remains valid. The island

with C(r)=Cyr, analogously to Eqg13) we have must be larger than the length scale set by the step free
energy, so that the approximati¢in) (GT expansiohis also
o ﬂ: d_A: 0= —270C eqﬂ (148 valid. The choice of a mean-field outer bound&ys prob-
dt dt Wee T lematic (it still enters the problem through). If it is very

difficult for atoms to cross from the condensed phase to the

P02 12 " vapor phase and vice versa at the island edge, then the first
r:(zcl?> (to— )™ (14D term of Eq. (11) dominates the others. In this way
C(r)=K;r, so that the outer boundary is totally removed
Ax(to—t)", n=1. (140  from the problem. The approximatidjii-b) (linear C) and

) ) o ) Egs. (14) apply. This is called the “interface-transfer-
In this “n=1 mathematical limit,” the island area scales |imjted” case, and falls into th@=1 mathematical limit.

linearly with time. o _ , If, on the other hand, the isolated island is in a system
Note that in both of these limits, the velocity of the inter- \yhere diffusion is very slow, then we have the “diffusion-
facedr/dt diverges as the island approaches the vanishingmited” case, for which the second term of EQ.1) domi-
point at timet,. If a high enough velocity is reached, then the p5eg. SinceC(r)~Kp depends on the outer boundary
assumption that the system is in a quasi-steady state will fa'{hrough Eq.(7b), further assumptions must be made. The
In practice, the velocity is limited by the fact that the island ¢|assic treatment of this regifhassumes that the weak loga-
cannot be smaller than one atom, so that the breakdown ¢finmic dependence oKy on r and R may be neglected.
quasi-steady state might not occur. » This is equivalent to assuming that there is a vapor phase
The formalism presented above for describing the deca)écreening lengtli= (A — 1)r. This screening length leads to
of islands via adatom diffusion may also be applied to theg, uter boundary that goes aR=Ar, so that
decay of pits in the surfacevacancy clustejsvia vacancy C(r)~Kp=D/In(\) is constant. Thus the approximation
diffusion. These pits may be the source of vacancies thgjj_5) (constantC) and Eqs.(13) apply, and the diffusion-
diffuse in the surface and recombine at step edges. In Prifyiaq case falls into then=2/3 mathematical limit. It
ciple, both adatom and vacancy motion can contribute tQp 14 he noted, however, that the screening length hypoth-
mass flovyﬁon th? surface. However, the rate constants Mayg;s s not physically self-consistent, so that this approach
be very different for adatom and vacancy motion, so that 0Ny, 4 not be expected to yield quantitatively correct results.

may dominate the surface evolution. In particular, a screening length can only arise through the
_ _ interaction of many featurgsslands, pits, and step edges
B. Particular examples for physical systems which case it turns out that the screening length is too long to

In this section we will discuss limiting behaviors associ- Properly treat the island as isolat&
ated with each of the three processes involved in the mass A Crossover between the interface-transfer-limited and
flow from a decaying island, i.e. interface transfer, diffusion,diffusion-limited cases can be defined by the condition that
and outer boundary incorporatidsee Secs. IIB, IIC, and the first two terms of Eq(11) are equal. At sufficiently large
IID, respectively. The special case of an island located radii Kir will be larger tharKp , and the mass flounustbe
within a pit will also be discussed. in the diffusion-limited regime. Only when the island reaches
The treatment of Sec. Il bears similarities to treatmentg Sufficiently small size can the interface-transfer-limited re-

concerned with Ostwald ripening in ensembles of clusters ofime be observed. Physically, a shorter island perimeter pro-
surfaces:In those treatments, a central quantity of interestvides fewer detachment sites, making interface transfer more

is the critical radiusr,, defined such that islands of size difficult. We can define a transition radius at which this
r<r, shrink while larger islands grow. Under approxima- crossover will occur by equatinj;r andKp, which gives
tions analogous to those in Sec. IlIA, along with certain[see Eqs(6) and (7b)]

assumptions about the ensemble size distribution, the critical

radius is found to increase in time according to a power Ko ( D )

In(N\)J} (19

law.1° Indeed, it can be shown that the resulting exponents =1
are identical to those found above for an individual shrinking ‘
island®? Note, however, that the critical radius of an en-
semblegrows while the physical radius of an isolated island Since Ing) is a number of order one, we see that in order for
shrinks r, to be significant,J, must be significantly smaller than

The physical characteristics that lead to power-law behavb. That is, there must be some impediment to an atom at-
ior in Ostwald ripening™® will also lead to corresponding taching to an island relative to diffusion. On a clean metal
behavior for isolated islands. Consider a configuration insurface this is unlikely, as attachment energy barriers are
which an island is not surrounded by any clearly definedgenerally found to be similar to or lower than diffusion
outer boundary. For instance, it might be on a terracéarriers>>3* For adsorbate covered surfaces, however, the
bounded on two sides by relatively straight steps. Using thedsorbate will often tend to bind to the step edge and may
mean field aproach, we assume that the outer boundary itherefore present a steric impediment to attachment.
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For individual islands, other cases arise that have no angtence ofpoecq_ This is because the equilibrium density results
log in the ensemble treatments. For instance, a configuratiofiom adatoms being thermally activated to detach from step
frequently observed on surfacésg., in growth or ion bom-  edges, and therefore will depend exponentially on inverse
bardmenk is one where the decaying island is on top of temperature. The effect adsorbates would have on a system is
.another Iarger iSland, forming a mUltilayer structure. FOCUSanother particu|ar|y interesting influence on the decay
ing on the decay of the top layer, the outer boundary of oufate3523 Adsorbates lower the free energy of a surface. If
treatment is the perimeter of the second layer. Because thfiey also lower the relative free energy of individual sub-
energy barrier for mt_e_rlayer transport of atoms is frequgntlystrate adatoms, this could substantially increafe leading
high, the rate coefficienK, may be very small for this 5 an increase in the decay rate. Adsorbates would also be
multilayer case. This situation, which we call the “outer- gynected to lower the step free energy, improving the ap-
boundary-limited” case, satisfies approximatigita) (con-  proximation(ii) (GT expansion[see Eq(12)]. However, if
stantC). In this case the equilibrium density at the outerihe adsorbates interact with the surface chemically through
boundary ispr=pg’' as given by the Gibbs-Thomson rela- girectional bonding, then such simple arguments are insuffi-
tion. However, if the lower island is much larger than thecient; other considerations, outside the scope of this paper,
upper one then the approximatiéin (R>r) is also reason- must be included. Finally, adsorbates could also affect rate
able, so thapg~p.. and Eqs(13) apply withC=KyR. Thus  constants by simply getting in the way of the substrate at-
the outer-boundary-limited case falls into the-2/3 math-  oms, as mentioned above in connection with Bdp).
ematical limit. This configuration was considered by
Villain, 2 who also found an exponent nf= 2/3. Note, how-
ever, that Villain's approximations lead to the diffusion- v cOMPUTER SIMULATIONS OF ISLAND DECAY
limited case discussed above. Our outer-boundary-limited
case gives the same exponent, but through a different mecha- The continuum model presented above is useful for iden-
nism. tifying important factors controlling the stability and decay

A final surface configuration of interest is the “island in a Of surface features. However, it makes many simplifying as-
pit” case, where an island is within a monolayer pit. The Sumptions, in particular about the proper macroscopic de-
outer boundary is well defined, similarly to the previous scription of microscopic behavior. To approach the problem
case. Here, however, the atomic processes at the outéPm another direction, we may examine island decay for a
boundary are the same as those taking place at the inngeneric system based on simple energetics, where different
boundary, so thak,=K; . There is no mathematical power- microscopic processes are explicitly included. The results
law limit for this case, as neither approximati¢ii-a) nor ~ may then be compared to the thermodynamic model to see
(ii-b) applies. We can, however, give a criterion as tohow well the latter captures the behavior of the system. To
whether the decay is dominated by the diffusion process othis end we have pursued computer simulations of island
the interface transfer process. This criterion is similar to thedecay. One goal of these simulations is to verify that the
crossover between the interface-transfer-limited ancddbove continuum treatment is applicable to nanoscale sys-
diffusion-limited cases above. This transition radifiss de- ~ téms based on simple energetics, and in particular to test
fined by the condition that the second term of Efjl) is whether the limiting regimes of decay predicted by the ther-

equal to the sum of the first and third, yielding the transcenodynamic model can be reproduced in simulations. We
dental equation also hope to illuminate what microscopic mechanisms play

the dominant role in the mass transfer process, and how they

R -1 D relate to the thermodynamic parameters.
—+1| In(R/r{)= KR (16 Our computer code simulates atoms moving on a square
Mt ! lattice using the solid-on-solid model, which does not allow

The left-hand side of Eq16) has a maximum value of ap- OVG”_"?‘”QS- The system is rectangul_a_r with peri(_)dic bounda_ry
conditions. Atomic moves are classified according to the ini-

i ly 0.278; if the right-h ide is | han this, X A :
proximately 0.278; if the right-hand side is larger than this, al horizontal coordination of the moving ato(d to 4 for

then there is no transition radius and the entire decay i ) o .
interface-transfer limited. Otherwise, the decay is interface; e square lattige the coordination the atom would .hav'e i
transfer limited for very large and very small islands, butthe move were made_, an_d Whethe_r the yert|cal motion Is up,
diffusion limited between. The physical interpretation is thatdown' or absent. Tz_ikmg Into consuj_eranon that some moves
re geometrically disallowed, this yields 48 types of moves.

when the island is almost as large as the pit, diffusion o .
atoms across the narrow terrace between them occurs r he rates for these move types are determined by an Arrhen-
us form, in which a single attempt frequeneyand an en-

idly, leading to interface-transfer-limited behavior for large . .
islands. For very small islands, the short island perimetef'@Y barrier for each type of move are parameters in the
leads to interface-transfer-limited decay through lack of deSimulation. Note that the attempt frequency applies to each
tachment sites. move separately, so that each atom attempts to move at the
Finally, a comment on how experimentally controllable rate 4v. In order to ensure that detailed balance is satisfied,

parameters should be expected to influence feature behavi(tp.ese ba”'e.’s are cgnstramed such that the system obeys the
ond counting Hamiltonian

The overall rate of decajsee the prefactors of Eq&l3b)
and(14b)] depends on many parameters, and therefore could
vary widely from material to material. For any particular 1

material, temperatu_re WI|| play a central role in controlling H=— _Z g (coordination, (17)
the decay rate, primarily through the temperature depen- 23ites
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(3) t =00s (b) t=0.5x10"*s ()t =1.0x10"*s

FIG. 2. Snapshots of a simulated island decay: the initial configurédjcand later stages &b) 45% and(c) 90% of the total decay time.
White regions are one atom higher than black regions.

whereeg is the energy of a single bond. This constraint leadsdimensional systerft The attempt frequency used was
to 26 independent barriers, along with the bond energy and=10'2 s~ %, which sets the overall time scale.
attempt frequency, as parameters defining the system. A dy- Elsewhere we have showhrthat this model does exhibit a
namical Monte Carlo algorithfi~®is used in which every Gibbs-Thomson effect. That is, smaller islands are in equi-
computer iteration results in an atomic move, the simulatedibrium with higher adatom concentrations. There we show
time being advanced probabilistically. This algorithm is verythat the parameters of Eq(l) can be analytically
efficient relative to standard Monte Carlo methods, as naalculated'>  for  this  simulaton to  be
attempted moves are rejected. p29=3.58<10 %a~? and y=0.117 eVA. However, at the
Although we are studying the generic behavior of sur-simulation temperature of 1347 K, the adatom concentration
faces, we wish to have barriers that are reasonable from @f the vapor phase is high enough so that its equation of state
physical standpoint. Therefore, the energy barriers for indeviates significantly from that of a noninteracting gas.
plane moves used in the following simulations are based offherefore, the proper Gibbs-Thomson relation is much more
barriers for the C(001) surface as calculated with the complex than Eq(1). Nevertheless, we fouAtiphenomeno-
Finnis-Sinclair atom embedding mod@lin Ref. 40 barriers logically for this model at these temperatures that the GT
were calculated for in-plane moves with al®ossible con-  vapor enhancement can be well described by including a
figurations of nearest and next-nearest neighbors to the initidorrection factorg=1.59 in the exponent of anodified
and final sites of the moving atom. Exchange type movessibbs-Thomson equation
were considered, but were found to be unimportant for this

surface. For each combination of initial and final coordina- eq e agvyQ

tion we averaged an appropriate subset of théSéarriers pri=piex TKT | (18)
to obtain the barriers for use in our simulation. This proce-

dure clearly does not retain the details of the(@1) sur- For our decay simulations, a 188100a lattice was

face. However, it does yield physically reasonable numbersysed. The initial configuration was a circular islandaif
and in particular results in a bond energy consistent with the

original barrier set. The energy barriers we use, correspond-

ing to a bond energy ofg=0.341 eV, are shown in Table I. 600 ' - . T '
The barriers for interlayer movement were set very high _

(=100 eV in order to prevent the occurrence of such b
moves. In order for the decay to take place within a reason-
able amount of computer time, the simulated temperature .~ 4® ]
was a moderately high 1347 K, or 60% of the critical tem- 3
perature for this model. Note that the 2D critical temperature 2
is a lower bound for the roughening temperature of the three- % 0

TABLE |. Energy barriers for intralayer atomic moves, in units averaged simulations
of eV. —— model prediction

y Final coordination % 2 ) P 8 10
Initial 1(107%sec)
coordination 0-fold 1-fold 2-fold 3-fold
0-fold 0.697 0.479 0.328 0.166 FIG. 3. Simulated island decay using barriers based Oy
1-fold 0.820 0.624 0.450 0.275  showing the island area vs time. The figure shows the average area
2-fold 1.010 0.791 0.591 0.377 of ten simulations referenced to time of island disappearance. Error
3-fold 1.189 0.957 0.718 0.462 bars represent standard deviations of the mean. The inset shows two

representative individual decays.
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radius, centered within a pit of radius @Qas in Fig. Za)]. N , : .

As expected for a system exhibiting a Gibbs-Thomson effect,

the island disappears over time as the adatoms move from -

the island to the pit edge. Figure 2 shows configurations v @

typical of those observed during decay; the island remains 2 L ¢t i } [ i

relatively circular, and remains relatively well centered in the
pit. In any individual simulation, the area of the island
showed significant fluctuations during the dedage Fig. 3

D (10’ d'ts)
——
——
——

insey. To obtain an averaged behavior, ten simulations were 1+ © dil"wuii;ﬂt .
run with identical initial conditions except for the seed for e
the random number generator. Each decay represents

roughly 15 hours of CPU time on an IBM RS6000 model
550 computer. The time origin of each run was offset so that % 000 Py o Y o 5005

the islands vanished at the same time, and the sizes of the o@D

islands were averaged at each sampled time. Very early

times, during which the system was coming into steady state,

were ignored. Figure 3 shows the averaged results. FIG. 4. The dependence of the diffusion coefficient on adatom

We wish to make quantitative comparisons between thesgensity in the simulation, obtained from direct measurements of

results and the macroscopic theory of Sec. II. In particularcurrem densities under enforced concentration gradients. Open
we are simulating the “island in a pit” case discussed in SeCi:ircle shows the theoretical dilute limit value. The arrows indicate

Il B. As discussed there, the outer boundary rate coefficien}he concentration of vapor adatoms required for equilibrium with

o ’ . each of the pit(left arrow) and the islandright arrow) at the be-

is Kp=K;. Because the geometry of the system is com-_. . . _
o . . __ginning of the decay simulation.

pletely specified, it is unnecessary to make assumptlon%

about screening lengths. The outer boundary p03|R_or$ ing of the lattice gas to the Ising model, for which a high
very close to constant, as the area of the island is sm

mpared to the ar f the pit. Finallv. th ilibrium den- eld (low concentratioh expansion is used to obtain the
compared o the area of the pit. Finally, the equ um de equation of state. The interested reader can find a more com-
sity at the outer edge is given by the GT relation as

_ el N hat the bit edge h . i lete description of this mapping and its use in Ref. 31.
pr=p-r Note that the pit edge has a negative radius of , yhe jimit of vanishing concentration, the diffusion co-

curvature, which changes the sign of the exponent in the Glficient can be directly determined from the attempt fre-
relation. Thus the equation governing the decay of the islang,\ency and the energy barrier for zero initial and final coor-

in this system i§see Eqs(10)] dination:
e of1 171 1} D(p—0)=aZve EokT=2 47 10PaZls.  (20)
dt rikKp Kilr R

However, as noted above, the temperature of the simulation
o gyQ gyQ results in an adatom concentration that is high enough for the
XPec| €XP 7| T EX _m) (193 system to deviate significantly from ideal gas behavior.
Therefore the diffusion coefficient was measured directly
with “enforced gradient” simulations. Simulations were run
b= . (19b) in which a flat terrace populated by adatoms was divided into
In(R/r) three sections. The densities in the left and right sections

A —4,-2
Here we have included the phenomenological correction faclvere held constant at values differing by<40 “a"" (a

tor g in the modified GT expression. The definitionkf is small'd|fference compared W',thiq: 3.58<10" %a"?). The
explicitly repeated to emphasize that it has significant deperf€Sulting adatom current density was then measured and used
dence o for this configuration. to calculate a dlffL.JSIOI’] coefficient through F|ck’s_ Law,
Note that neither approximatiofi) (R>r) nor (i) (GT J=—-DVp, wherel is the adatom current density. Flggre 4
expansioh applies to these simulations. Specifically, the is-SNOWs the measurdd versus the average of the densities in
land is too large relative to the pit fdi) to be satisfied, and (he left and right regions. As should be expected, an increas-
the island is too small fofii) to be satisfied. Therefore, the N9 dgn&% with an aftractive interaction leads to a lower
complete decay equation above must be used for a quantitglffus"”ty- Although the low densities make it difficult to

tive comparison of simulation and analytic theory. obtain _good statistics, the diff_usivity is clearly reduced by
approximately 25% from the dilute gas value.

The second parameter that must be determindq isAs
noted in Sec. Il, the assumption in the macroscopic theory
thatK; is independent of should be checked for any given

In order to apply the macroscopic decay equation to th&ystem. Equatiox6) shows thaK;~J;. In Refs. 31 and 32,
simulations, it is necessary to determine the correct values ofie show thatl, may be measured from simulations through
the parameter® andK;. These may be determined through microscopic considerations, and that it changes very little
proper measurements of the simulation behavior togethewith island size. That is taken as evidence that the assump-
with analytic thermodynamic calculations. Portions of thetion thatK; is independent of is likely to be satisfied. How-
following treatment are achieved through the use of a mapever, our attempts at describing the simulated decay using

V. DETERMINATION OF MACROSCOPIC PARAMETERS
FOR THE MICROSCOPIC SIMULATION
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K; calculated fromJ} in this way have so far failed to agree does not affect the interface mobility, because all types of
quantitatively with the observed island decay, leading us t@&tomic moves that involve the interface are unaffected; the
develop the methods described in the following paragraphgdatom redistribution is done in a way such that it will never
for determiningK; from purely thermodynamic arguments. cause.the creation of new nearest-neighbor bonds. By thus
This procedure was carried out for only one size island, unfémoving the vapor memory effect, the interface fluctuations
der the assumption th#g; is independent of island size. may easily be analyzed to obtain the interface mobility, and

Our method of numerically extracting the interface trans—henci the ikr:terface transfer constét otel
fer constantK; is closely related to the shape fluctuation _In act, the vapor memory Is not completely removed by
analysis of Khare and Einsteff.They study how the equi- this artifice, be(_:ause clusters in the vapor are stable_. How-
librium fluctuations of the islanghapedepend on the inter- €VEr. the density of clusters in the vapor is small in our

face transfer constant, the surface diffusion constant, and tiimulations. Also, each cluster will have some mean time to
edge diffusion constant; we will consider the equilibrium Issociation, so that the memory introduced by clusters of a

fluctuations of the islangize However, we stabilize the is- 91Ven size decays exponentially. For these reasons, the effect

land against changes in size by placing it in a finite box with® clugters_l SEOUId be r_1eg|||g|ble. siand | ibri h
conserved order parameter, while Khare and Einstein stabi- " détail then, we simulate an island in equilibrium wit

lize the island size by externally adjusting the chemical po2n @datom vapor in a closed, conserved mass system. Note

tential under conditions of nonconserved order parametelt.hat by simulating an islgnd, rather than a straight interface,

The equations in Ref. 44 therefore do not apply directly to?1Y @ngular dependencies are automatically averaged. Be-

our results. cause mass is conserved, the island size is stabilized at some
equilibrium sizer .. When the island fluctuates to be either

The parameteK; may be determined through its relation ler i his. th i h in th
to the mobility of an interface. Because a current of adatom{rger or smaller than this, the resulting change in the sur-

detaching from an interface causes the interface to movd2unding adatom density tends to restore the island size. This
K, is closely related to the mobility for interface motion un- Can be understood in terms of a thermodynamic potential for
der the driving force of a vapor density imbalance. In prin-the System, which is a function of island radids(r). Ref-
ciple, this mobility could be directly measured by putting an€rénce 31 discusses this potential at lerfgtiihe equilib-
interface in interaction with a vapor of density lower than the/ UM radiusr ¢ is at the minimum of this potential.
equilibrium density. The interface mobility could then be 1 N€ fluctuations in the island size can be seen as a random
determined from the rate at which the interface recedes. 1@k Of the island radius, characterized by some interface
practice for a computer simulation, however, it is very diffi- diffusivity D;. Note that the diffusivity of thénterface O is
cult to keep the vapor concentration constant near the intediStinct from the adatom diffusivitpp. In general the behav-
face. Detaching atoms continually increase the vapor density?" Of the interface would be affected by the adatom diffu-
and this source must be counterbalanced by an adatom singity D through the memory effect described above. For
However, the required strength of this sink is not knoan these S|mulat|.ons, however, monomer rearrangement is em-
priori. Indeed, it is even difficult to distinguish whether a Ployed to achieve fast vapor equilibration, so that the inter-
density increase near the interface is due to net detachmeffice diffusivity obtained is a property of the interface alone.
or is due to a fluctuation in the vapor density. The random walk Qf the island rqd|us is biased by the
The interface mobility is closely related to the fluctuationsth€rmodynamic potentiab(r), so that it tends to return to-
of the interface position in an equilibrium system. By con-Wardsreq. The strength of this bias is given by the thermo-
sidering an equilibrium system, the need for an adatom sin€ynamic mobility of the interfac®; , which is defined by the
is eliminated. However, one must be careful because of thegquation
nature of the interface-vapor interaction. When an atom de-

taches from the interface, the local vapor density is enhanceﬂ:_ .@: _B i @) (p—p)+ - -- 21)
momentarily. Because the vapor has a finite diffusivity, thisdt tdr 'dp |\ dr p=p '
enhancement will persist for some time, influencing the sub- ed

sequent behavior of the interface. This memory effect means ) .
that the interface position does not perform a random walk!" the second equality we have Taylor expandeel/dr in

and the fluctuations of the interface position are thus slowed? aPout the equilibrium density®, for reasons that will
The strength of the memory effect depends on the vap ecome clear below. Note that the interface mobityand

diffusivity, and also on the system size because of the longth® interface diffusivity may be related through the general-
range nature of the solution to the 2D diffusion equationi2€d Einstein relatiom;=kTB;. _
Note that these considerations do not influence the average 10 characterize the fluctuations of a random walk in a
vapor density near the interface. The memory effect is due t§°tential, we approximate the potential as quadratic:in

time correlations between fluctuations of the vapor density

and fluctuations of the interface position. 1 d’®
We have not obtained an analytic form for the interface O(r)= Ec(f—feq)z, =4zl - (22)
fluctuations in the presence of such a vapor memory effect. eq

However, it is clear that the memory can be removed by

causing the adatom vapor to equilibrate quickly on the timewherec gives the curvature of the potential well. The value
scale of interface motion. In simulation, this can be achieve®f ¢ can be calculated from the known fothof ®(r), but

by randomly redistributing all monomer adatoms to otherwill not be required for the following analysis. Note that the
monomer sites between every atomic move. This explicitlyBoltzman distribution in a quadratic potential is Gaussian,
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In the Taylor expansion of Eq21), the interface mobility

oo ' ' ' ' was also described in terms of densities, so that by compar-
ing these equations we obtain
correlation function
"3 0.008 ~— — - exponentially decaying fit i 1 dch ‘ 1 ( dr )
% Ki=— =Bi5—| ==Bic| —4—| |. (27
P i i i
3 Q “'drdp e Q dp eq
-4
£ 0004 | The derivativedr/dp is given by purely geometrical consid-
< . - .
5 erations. Note that it is not necessary to known order to
obtain K; with this method; the produds;c is obtained di-
0000 | rectly from the decay length of E¢25). As a consistency
check,c was calculated fron® as known from the equation
000 o o oo oo 10 of state for the Ising modéf. It was then used to check the

t (us) initial amplitude of the time correlation function.

VI. QUANTITATIVE EVALUATION

FIG. 5. The time correlation function for the interface position OF DECAY SIMULATIONS

r, showing the function calculated from one equilibrium simulation

and a least-squares fit of the form in Eg5). The above procedures vyield values of;=(2.47
+0.19)x 10'%/s and, at the equilibrium concentration for
. —P(r) —c(r —reg? the initial island,D = (1.75+0.2)x 10°a?/s. Using Eq.(16),
Probability(r)<exp — +—| =ex KT : these values together with the average pit radius of

(23) R=38.5a yield transition radii ofr{ =R/4550~8x 10 %a
, ) ) ] ) o _andr{=R/1.003%38a. Thus the island, which is initially
The Gree_n s function for diffusive motion within a quadra.tlc of sizer=15a, remains well within the diffusion-limited
potentlal is therefore also Gaussla}n, with an exponent|all¥egime throughout the decay. Figure 3 shows the results of
relaxing mean and standard deviation: numerically integrating Eq(19a using these parameters.
The agreement with the simulation results is very good. As
1 (r—r,)? expected based on the transition radii, the predicted decay is
exp( - —g‘) (249 extremely insensitive to the value of the interface transfer
\/EU 20 constant. The deviation at very small islands may be due
either to a breakdown in the phenomenological expression of
Fm=Teqt (Fo—Tege B, (24b  the modified GT equation, or to a breakdown in the assump-
tion thatK; is size independent. A breakdown of the quasi-
) steady-state assumption seems unlikely, since even at the
02=B—'(1—e*23i°t), (240  highest recorded interface velocities each monomer makes
i over 1000 moves in the time that the interface recedes by one
lattice spacing.
wherer, and o are the time-dependent mean and standard In order to test the macroscopic theory in a regime where
deviation of the Gaussian form. Recall that the Green’s functhe interface transfer process is important, a second set of ten
tion can be interpreted as the probability distribution thatdecay simulations was run in which the diffusion rate was
evolves from an initial>-function distribution atry. It can  greatly increased. This was achieved by reducing the barrier
therefore be used to find the time correlation function for thefor moves from 0-fold to O-fold coordination. That barrier
interface positiorr, was changed from 0.697 to 0.0 eV. This unphysical sounding
“barrier” is possible because our simulation uses the barrier
parameters only to determine rates. Note that at room tem-
_2_& —Bjct ture th me change in the rate of th mov Id be
(r(O)r(t)—r2= g Bict, (25)  Pperature the same change in the rate of these moves cou
Bic achieved with a barrier reduction of only 0.14 eV. The large
magnitude of the barrier change, required to obtain the fol-
the prefactor of which may of course be simplified with thelowing results, is necessary here because of the high tem-
Einstein relation. Thud; is found by measuring the time perature of the simulation.
correlation function of the island radius(using As determined by the methods described above, the dif-
r=\/areatr) and fitting it with Eq.(25), as shown in Fig. 5. fusivity is even more concentration dependent than in the
The interface transfer constak is then obtained from Previous case. Figure 6 shows that at the vapor density that is
B; by comparing the ways they each describe interface moln €quilibrium with the initial island, the diffusivity

tion. K; describes how an interface moves due to a vapoP =5.0x10""a%s is one-half of the dilute limit value of
density imbalancésee Eq(2)], D=1.0x 10'%a%/s. As the island shrinks, the concentration

increases and the diffusion coefficient decreases signifi-
cantly. If we are to describe the entire decay with a single

dr 2ar effective diffusion coefficient, it will be yet lower than
_—— =|.= [ 89— !
dt Q li=2mrKilp™=p(r)] (26) 5.0x 10"a?/s.

G(r,t;rg)=
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FIG. 6. The dependence of the diffusion coefficient on adatom FIG. 7. Simulated island decay with fast diffusion, showing the
density in the modified simulation that has a faster diffusion rateaveraged island area vs time, referenced to time of disappearance.
obtained from direct measurements of current densities under ereTor bars represent standard deviations of the mean.
forced concentration gradients. Open circle shows the theoretical
dilute limit value. The arrows indicate the concentration of vaportinctive feature is correctly reflected by the analytic predic-
adatoms required for equilibrium with each of the @éft arrow) tions.
and the islandright arrow) at the beginning of the decay simula- In principle, simulations might be run further into the
tion. interface-transfer-limited regime by further increasing the
difference between the energy barriers for interface transfer
gnd for diffusion. However, such an approach is impractical,
qras the program must spend most of its time processing dif-
S - usion events, and therefore decay occurs very slowly in real
(16), the left-hand side '@/(K‘R)_Osﬂ' As a result, E_q. computer time. Other, more artificial means of increasing the
(16) has no roots, and the interface transfer process is th8ffective diffusion rate, such as the monomer rearrangement

most important process in limiting the decay rate during theseheme described in Sec. V, might circumvent this difficulty.
entire island decay. Note, however, that this decay is not far

into the interface-transfer-limited regime, so that the diffu-
sion coefficient is still expected to be of importance.
Shown in Fig. 7 is the averaged decay from simulation, as Isolated features on a surface will tend to decay in size
well as analytic predictions. In this case the analytic resultglue to the Gibbs-Thomson effect. This decay implies that
are sensitive to botd and K; as expected. Note that the there is mass flow in the adatom vapor surrounding the is-
decay rate is two orders of magnitude larger than in the preland, flowing from the island to the surrounding environ-
vious case. The relationship of interface velocity and diffu-ment. There are three processes in this mass flow to be con-
sivity is similar to the previous case, supporting the use ofidered: interface transfer at the island edge, diffusion across
the quasi-steady-state assumption. The dashed curve, whithe surface, and incorporation into the environment at some
uses the valud =5.0x 10"a?/s, qualitatively succeeds in outer boundary. For various surface parameters and various
showing this increase in decay rate, but deviates as the islarmlirface configurations, each of these processes may be the
becomes smaller. The entire decay can be matched quite welite limiting one, so that there are three general cases of the
by using the valu® =3.0x 10'a?/s, as shown by the solid island decay.
curve. This can be partially justified by the fact that the With certain approximations, the limiting regimes of these
smaller island results in higher adatom concentrations, andases lead to a power-law dependence of the island size on
hence a lower diffusion coefficient. However, because of untime. For the interface-transfer-limited regime, this leads to
certainties in the calculations @ andK;, it is difficult to  the island area decaying aAo(ty—t). For the outer-
compare simulation and analytic theory closely. boundary-limited regime, this leads to the island area decay-
In Sec. Il we saw that in treatments of systems with noing as Ax(t,—t)?3. For the diffusion-limited regime, no
clear outer boundary, under certain approximations, theower law is strictly valid, but under a screening length hy-
diffusion-limited and interface-transfer-limited regimes arepothesis theAx (t,—t)?° power law can be argued.
characterized by power-law decay of the island area, with The existence of these power laws may make it possible
respective exponents of 2/3 and 1. For these simulationgp experimentally distinguish between the regimes by mea-
there is a definite outer boundary that is near the island ansluring exponents for observed feature decay. Both the outer-
the various approximations are not valid, so that power-lawboundary-limited regime and the diffusion-limited regime
behavior cannot be achieved. However, at the end of theould probably be observed on physical surfaces. The inter-
decay in Fig. 3 the decay rate increases markedly, whereas face transfer regime is unlikely to occur on clean metal sur-
Fig. 7 the increase in decay rate is less pronounced. In thigces, but may be important on other surfaces or on metal
sense, the diffusion-limited decay is “less linear” than the surfaces covered with adsorbates. It should be noted, how-
decay dominated by the interface transfer process. This digver, that it can be quite difficult to distinguish between the

Since nondiffusion barriers were unchanged, the sam
value ofK; as above applies here. Using these values in E

VIl. CONCLUSION
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two power laws based on a single decay. Data must eithdfonship between microscopic and macroscopic parameters
have very low uncertainty in measured island areas, or conwould be of interest, since in principle the macroscopic be-
sist of many independent decagas in Ref. 27, in order to  havior is completely determined by the microscopic charac-
be a good test of the exponent. teristics.
Computer simulations based on the solid-on-solid model
and simple energetics exhibit the island decay behavior.
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