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Decay of isolated surface features driven by the Gibbs-Thomson effect
in an analytic model and a simulation
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A theory based on the thermodynamic Gibbs-Thomson relation is presented that provides the framework for
understanding the time evolution of isolated nanoscale features~i.e., islands and pits! on surfaces. Two limiting
cases are predicted, in which either diffusion or interface transfer is the limiting process. These cases corre-
spond to similar regimes considered in previous works addressing the Ostwald ripening of ensembles of
features. A third possible limiting case is noted for the special geometry of ‘‘stacked’’ islands. In these limiting
cases, isolated features are predicted to decay in size with a power-law scaling in time:A}(t02t)n, where
A is the area of the feature,t0 is the time at which the feature disappears, andn52/3 or 1. The constant of
proportionality is related to parameters describing both the kinetic and equilibrium properties of the surface. A
continuous-time Monte Carlo simulation is used to test the application of this theory to generic surfaces with
atomic scale features. A method is described to obtain macroscopic kinetic parameters describing interfaces in
such simulations. Simulation and analytic theory are compared directly, using measurements of the simulation
to determine the constants of the analytic theory. Agreement between the two is very good over a range of
surface parameters, suggesting that the analytic theory properly captures the necessary physics. It is anticipated
that the simulation will be useful in modeling complex surface geometries often seen in experiments on
physical surfaces, for which application of the analytic model is not straightforward.@S0163-1829~97!03803-4#
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I. INTRODUCTION

Real surfaces of crystalline materials below their roug
ening temperature, even of crystals with essentially per
ordering, are generally not in equilibrium. More typical
they have features such as irregular step edges, excess
vidual adatoms or vacancies, or clusters of adatoms or
cancies, which we call islands and pits. Since all these
tures have an associated free-energy cost but are not req
by the macroscopic orientation of the surface, their existe
indicates that the surface is not at a free-energy minim
Such surfaces will therefore tend to relax towards equi
rium.

The way in which this relaxation takes place has bee
subject of interest for many years. In processes that ten
produce nonequilibrium features, such as epitaxial growth
surface sputtering, the relaxation may be important in de
mining the time evolution of the surface both during a
subsequent to deposition or irradiation. Surface relaxa
will also be of particular interest in the future for the field
nanofabrication. As artificially created structures approa
the nanometer scale, it becomes important to unders
whether these structures, once made, will be relatively sta
Stability of such features is crucial to the success of e
tronic interconnects or information recording applications

One of the most studied situations is a surface popula
by an ensemble of islands of various sizes, as might
found, for instance, in a growth experiment after the init
550163-1829/97/55~3!/1811~13!/$10.00
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stage of island nucleation. This is a special case of a m
general situation in which small clusters of a condens
phase of material, which are of dimensionalityDc , exist in
an environment of a vapor phase, which is of dimensiona
Dv . Relaxation towards equilibrium in many such syste
occurs through the diffusion of atoms between the clust
in a behavior known as Ostwald ripening~also called coars-
ening!. Greenwood1 and Lifshitz and Slyozov2,3 first consid-
ered the caseDc5Dv53 under the simplifying assumption
that the intercluster mass flow is limited by the diffusio
process, and that the total amount of the condensed pha
small. Wagner4 extended the theory to include the possibili
that the transfer of adatoms between the phases could
limiting process. Further extensions by Chakraverty5 and
others6–9 applied the theory to the case of clusters on s
faces~i.e., Dv52, Dc52 or 3!. References 10 and 11 in
clude reviews of this material.

All of these treatments and many experimen
investigations12–21 have concentrated on quantities, such
average cluster radius and cluster density, which are
semble properties. This is because the clusters involved
usually very small, so that their properties are most read
studied by techniques, such as diffraction, that sample la
numbers of clusters. With the advent of atomic scale m
croscopies such as scanning tunneling microscopy~STM!, it
has become practical to study the behavior of individual s
face features, either within an ensemble or in isolation.
observing the behavior of individual features, the fundam
1811 © 1997 The American Physical Society
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1812 55JAMES G. McLEANet al.
tal mechanisms responsible for stability and decay can
studied without the complications that result from the int
actions between the clusters of an ensemble system. In a
tion, the behavior of an individual feature may be the qu
tity of interest in certain applications, as in nanofabricatio
Some studies have focused on the evolution of individ
features, either experimentally22–27 or theoretically.28,29 For
instance, we have found that, on the Au~111! surface in air,
isolated islands decay in size such that the island area
pends roughly linearly on time.23 A similar study of islands
on the Ag~111! surface in ultrahigh vacuum27 observed is-
land areas to be proportional to time raised to an aver
exponent of 0.54.

In this work we present an extension of the ensem
theories to consider the decay of isolatedindividual two-
dimensional islands on surfaces (Dv5Dc52). In Sec. II an
analytic continuum model is presented that accounts
three possible rate limiting steps in island decay. This mo
provides a connection between the observed behavio
such features and the parameters describing atomic proc
on the surface. Section III discusses limiting cases in
model that are relevant to physical systems. Specifically,
find ‘‘interface-transfer-limited’’ and ‘‘diffusion-limited’’
cases that are direct corollaries of similar limits of Ostwa
ripening.5,10Specific surface geometries lead to cases that
unique to individual islands. Islands completely surround
by a step-down or step-up edge can lead to the ‘‘ou
boundary-limited’’ and ‘‘island in a pit’’ cases. Villain ha
considered the first of these geometries in Ref. 28, us
assumptions which lead to the diffusion-limited case.

Because the evolution of a single surface feature invol
a relatively small area of the surface, it is feasible to perfo
atomic-scale simulation studies to test the analytic mo
Section IV presents such a computer simulation study
island decay for a generic surface with one particular geo
etry. In Sec. V we discuss how to obtain the parameters
the continuum model that are appropriate to describing
atomistic simulation. Using these parameters, we find in S
VI that comparison between the simulations and the anal
model is very good, showing that the analytic model captu
the key physics for describing feature evolution on a gen
surface. We anticipate that this simulation technique w
provide an additional tool for analyzing the observed beh
ior of physical surfaces, because it can be used to mo
complex geometries that are often observed, e.g., in S
studies, but that are not easily treated with the anal
model.

II. THEORY FOR DECAY OF ISOLATED
SURFACE FEATURES

A. The driving force for surface mass flow

At the heart of each of the treatments cited above is
Gibbs-Thomson~GT! relation. The pressure of a vapor th
is in equilibrium with its condensed phase depends on
curvature of the interface between the phases. For a con
condensed phase the pressure is enhanced relative t
pressure in equilibrium with a flat boundary. The GT relati
expresses this dependence. The increased vapor pressu
sociated with a curved boundary is the driving force beh
e
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the mass transfer between different clusters or betwee
cluster and a nearly straight step edge.

For a two-dimensional, incompressible condensed ph
the boundary of which has a radius of curvaturer , in contact
with a two-dimensional, noninteracting vapor, the GT re
tion is30

pr
eq5p`

eqexpS gV

rkTD , ~1!

wherepr
eq is the pressure at which the vapor will be in equ

librium with the condensed phase,p`
eq is the equilibrium va-

por pressure for a straight boundary (r5`), g is the edge
free energy~which is assumed to be isotropic and indepe
dent of curvature!, andV is the area occupied by one atom
the condensed phase. When working with a lattice, it is m
natural to consider the vapor concentrationr, measured in
units ofa22 wherea is the lattice constant. Because Eq.~1!
assumes that the vapor is noninteracting, the pressure wi
proportional to the vapor concentration. Thus we can sub
tute r for p in Eq. ~1!.

Note that the same relation continues to hold for a c
densed phase with a concave boundary. In that case,
boundary is described as having a negative radius of cu
ture. For example, the adatom density inside a monola
deep pit will be reduced relative to the density in equilibriu
with a flat boundary.

If the vapor is interacting, as is the case for adatoms o
surface, we have reported elsewhere31 that at vapor concen
trations as low asr r

eq'1023a22 there can be significant cor
rections to this equation. However, by including a correct
factor in the exponent an equation of the same functio
form as Eq. ~1! continues to satisfactorily describe th
Gibbs-Thomson vapor enhancement in our system, as wi
discussed further in Sec. IV.

The Gibbs-Thomson relation is sufficient to anticipate t
general behavior of a system. Features with the highest
vature will have the largest equilibrium adatom vapor co
centrations. On a surface with islands of different sizes
well as step edges, a concentration gradient will be es
lished whereby adatoms diffuse away from high curvat
features and toward low curvature features. For instan
large islands will grow as small islands shrink and disappe

We now consider in more detail the specific case of
isolated circular island on a surface with an adatom conc
tration below the island’s equilibrium value. We shall user
to denote the radius of the island, andr̃ to denote the radia
distance from the center of the island. The GT equation
scribes the equilibrium properties, but in order to calcul
the decay rate of an isolated island we must consider
kinetics of the surface. In the following sections, we w
describe the three processes involved in the flow of ato
from the island: interface transfer,4,5 diffusion,3 and incorpo-
ration at the outer boundary. These three processes are
trated in Fig. 1. We make the assumption throughout t
treatment that these processes are slow on the time sca
local equilibration in the vapor, so that the system may
described by a steady-state solution at any point in time.
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55 1813DECAY OF ISOLATED SURFACE FEATURES DRIVEN . . .
B. The interface transfer process

As the island decays, there must be a net detachmen
atoms from the island. If the deviation of the density of
oms just outside the islandr( r̃5r ) from the equilibrium
density given by the GT relation is sufficiently small, the
the current of atoms leaving the islandI i will depend linearly
on that deviation. Further, if the curvature of the interfa
does not significantly influence the manner in which ato
leave the island then the current will be proportional to
interface length, so that

I i52prK i@r r
eq2r~r !#, ~2!

where we introduce the coefficientKi , which is assumed to
be independent ofr . The subscripti is chosen to identify the
net detachment current as theinterface transfercurrent of
atoms out of the island.

Further insight into the coefficientKi can be obtained
from a detailed balance argument. In the remainder of
subsection we explore how this coefficient arises from
microscopic dynamics, thus clarifying the assumptions m
above and forming a basis for predicting the behavior
physical systems in Sec. III B. In order for an atom to atta
to or detach from the island, it must overcome some ene
barrier at the island-vapor interface~which depends on the
particular microscopic atomic move!. Let Jd be the detach-
ment current density at the interface, i.e., the rate per
length of perimeter at which atoms detach from the isla
edge. Similarly, letJa denote the interface attachment cu
rent density. Both of these will, in general, depend on
interface curvature and the vapor concentration. If we
sume that bothr(r ) and r r

eq are !1 a22 @an assumption
more stringent than required for Eq.~2!, but frequently sat-
isfied# then we may proceed by Taylor expanding the curr
densities inr(r ), obtaining

Jd„r ,r~r !…5Jd
0~r !1Jd8~r !r~r !1 1

2Jd9~r !@r~r !#21•••,
~3a!

Ja„r ,r~r !…5Ja8~r !r~r !1 1
2Ja9~r !@r~r !#21•••, ~3b!

whereJd
0(r ) is the detachment current density with no vap

and the prime indicates partial derivative with respect tor
evaluated atr50. Note that there is no constant term in E

FIG. 1. A schematic representation of the adatom vapor den
near a small island of radiusr on a surface. The equilibrium vapo
densities for the island (r r

eq) and for the mean-field environment a
radiusR (rR) are indicated by dashed lines. The actual dens
profile r( r̃ ) lies between these limits, determined by the relat
rates of the three processes of decay indicated by arrows.
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~3b! because there can be no attachment unless an ad
vapor is present. If the coefficients are well behaved we
drop terms of higher than linear order. Under equilibriu
conditions, whenr(r )5r r

eq the rate of detachment and a
tachment are equal:

Jd
0~r !1Jd8~r !r r

eq5Ja8~r !r r
eq. ~4!

The total currentI i is determined by the current densitie
which simplifies through Eq.~4!,

I i[2pr @Jd~r ,r!2Ja~r ,r!#

52pr @Ja8~r !2Jd8~r !#@r r
eq2r~r !#. ~5!

Comparison with Eq.~2! yields an expression forKi ,

Ki5Ja8~r !2Jd8~r !'Ja8~r !, ~6!

where we have used the fact that in general we expect
detachment rateJd to have little dependence on the vap
concentration, i.e.,uJd8u!uJa8u. Equation~6! gives a clearer
meaning to the assumption thatKi is independent of curva
ture; it is equivalent to the assumption thatJa8(r ) ~qualita-
tively the rate at which an atom will attach to the island if
is already one step away, i.e., a rate per adatom densit! is
independent ofr . This assumption is plausible; for instanc
if we have an ideal gas in an enclosure, the number of
atoms hitting a given area of the enclosure wall is indep
dent of its curvature. However, this assumption should
justified for any particular system under study.

C. The diffusion process

Once the atoms have detached from a decaying isla
they must diffuse away across the terrace. Under our
sumption of quasi-steady state, the rate at which they diff
away is governed by the two-dimensional~2D! time-
independent radial diffusion equation. The general solut
of this equation diverges logarithmically at large distances
is therefore necessary to specify a boundary condition
from the island. Rather than specify the island’s environm
in detail, we apply a generic boundary condition that t
vapor concentration is somer( r̃5R) at a radiusR.r , where
R may vary in time. This outer boundary may be a physi
surface feature, or it may be a conceptual boundary fo
mean-field treatment of the surrounding surface features.
will consider some particular examples below. The curren
adatoms is then given by the usual solution to the stea
state 2D radial diffusion equation:

I D52p
D

ln~R/r !
@r~r !2r~R!#52pKD@r~r !2r~R!#,

~7a!

KD[
D

ln~R/r !
, ~7b!

where we introduce the coefficientKD . D is the collective
~or chemical! diffusion coefficient of the vapor on a step-fre
terrace. The subscriptD is chosen to denotediffusion.

ty
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1814 55JAMES G. McLEANet al.
D. The process of incorporation at the outer boundary

Finally, the adatoms must leave the vapor by crossing
outer boundary, thus becoming incorporated into the en
ronment. Since we have left unspecified the nature of
outer boundary, this process may limit the rate at which
oms can leave. We may reason in a manner similar to
case of interface transfer, as discussed above. There wi
some concentrationrR such that ifr(R)5rR then the net
current across the outer boundary vanishes. Ifr(R) does not
vary much fromrR , then the current across the outer boun
ary will be proportional to their difference,

I b52pRKb@r~R!2rR#. ~8!

This equation introduces the rate coefficientKb , where the
subscriptb is chosen to denote the outerboundary. Note the
similarity between Eqs.~8! and ~2!.

In contrast to treatments of Ostwald ripening, we w
assume thatPR is constant in time. This is because we a
considering the case in which the idland is changing m
more quickly than the surrounding surface features.

E. The total mass flow and island decay rate

As commented at the end of Sec. II A, we assume that
system is in a steady state. Therefore the three atom curr
which are in series, must be equal. Equating Eqs.~2!, ~7a!,
and ~8! gives the following expressions for the concent
tions of adatoms at the boundaries and for the net det
ment current in terms of equilibrium concentration values

r~ r̃5r !5S 1

KbR
1

1

KD
DC~r !r r

eq1
1

Kir
C~r !rR , ~9a!

r~ r̃5R!5
1

KbR
C~r !r r

eq1S 1

KD
1

1

Kir
DC~r !rR , ~9b!

I52pC~r !~r r
eq2rR!, ~10a!

52pC~r !r`
eqFexpS gV

rkTD 2
rR
r`
eqG ,

~10b!

where

C~r ![S 1

Kir
1

1

KD
1

1

KbR
D 21

. ~11!

In Eq. ~10b!, the GT relation has been substituted forr r
eq. In

Eq. ~11! the coefficients of the individual current equatio
add together as conductances. ThusC(r ) is the overall con-
ductance relating the adatom current to the driving force p
vided by an imbalance in equilibrium densities. Note th
r(r ) and r(R) are intermediate between the equilibriu
concentrationsr r

eq andrR ~see Fig. 1!. In this way a driving
force is present for all three processes in the mass flow a
from the island.
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III. LIMITING CASES OF THE ANALYTIC MODEL

A. Simplifying mathematical limits

The form of Eqs.~10! and ~11! is quite complex, espe
cially in their dependence onr . In order to better understan
them it is useful to consider simplifying mathematical limit
Using physically reasonable approximations, we will fin
limits in which the decaying island size obeys a simp
power law. That is, in these limits the area of the isla
obeysA}(t02t)n whereA is the area of the island andt0 is
the time at which the island disappears. It will be seen t
the exponentn may take the values of 2/3 or 1.

Two approximations must be satisfied in order to achie
either of the power-law limits. The first approximation is th
~i! the equilibrium adatom density at the outer boundary
close to the equilibrium density for a straight step ed
rR'r`

eq. We expect this to be valid if the island edge has
much higher curvature than other nearby surface features
that ur r

eq2r`
equ@urR2r`

equ. We will thus label this as the
‘‘ R@r ’’ approximation.

The second approximation required is that~ii ! the argu-
ment of the exponential in Eq.~10b! must be much less tha
1, so that the exponential may be approximated by the c
stant and linear terms from its Taylor expansion. This a
proximation we will label as the ‘‘GT expansion.’’ It is als
frequently physically reasonable. For instance, for a surf
with g50.117 eV/a ~see Sec. IV! at room temperature, ap
proximation ~ii ! is good to within 10% for islands of size
r*23a. This approximation is not always valid, howeve
for instance, it seems to fail for island decay observed
Morgenstern, Rosenfeld, and Comsa.27

Using these first two approximations, Eq.~10b! may be
rewritten

I'2pC~r !r`
eqgV

rkT
. ~12!

In order to get a power-law decay of the island size, a th
required approximation is that~iii ! C(r ) must be constant o
proportional to a power ofr . This can be realized in two
ways.~Physical realizations of the following approximation
will be discussed in Sec III B!.

In one limit ~iii-a! C(r ) may be approximated to be
constantC0. This can occur, for instance, if the third term o
Eq. ~11! is much larger than the first two, i.e
KbR!min(Kir, KD), and if R is constant in time. This we
call the ‘‘constantC’’ approximation. The adatom curren
gives the time rate of change for the island area, so tha
this case we have

2pr
dr

dt
5
dA

dt
52IV522pVC0r`

eqgV

rkT
. ~13a!

This may be directly integrated to obtain

r5S 3C0

r`
eqgV2

kT D 1/3~ t02t !1/3, ~13b!

A}~ t02t !n, n52/3. ~13c!

This will be referred to as the ‘‘n52/3 mathematical limit.’’
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55 1815DECAY OF ISOLATED SURFACE FEATURES DRIVEN . . .
In the other limit~iii-b ! of Eq. ~11! that can lead to power
law behavior,C(r ) is approximately proportional tor . This
we call the ‘‘linearC’’ approximation. This can occur, fo
instance, if the first term of Eq.~11! is much larger than the
last two. Expressing ther dependence ofC(r ) explicitly
with C(r )5C1r , analogously to Eqs.~13! we have

2pr
dr

dt
5
dA

dt
52IV522pVC1r`

eqgV

kT
, ~14a!

r5S 2C1

r`
eqgV2

kT D 1/2~ t02t !1/2, ~14b!

A}~ t02t !n, n51 . ~14c!

In this ‘‘n51 mathematical limit,’’ the island area scale
linearly with time.

Note that in both of these limits, the velocity of the inte
face dr/dt diverges as the island approaches the vanish
point at timet0. If a high enough velocity is reached, then t
assumption that the system is in a quasi-steady state will
In practice, the velocity is limited by the fact that the isla
cannot be smaller than one atom, so that the breakdow
quasi-steady state might not occur.

The formalism presented above for describing the de
of islands via adatom diffusion may also be applied to
decay of pits in the surface~vacancy clusters! via vacancy
diffusion. These pits may be the source of vacancies
diffuse in the surface and recombine at step edges. In p
ciple, both adatom and vacancy motion can contribute
mass flow on the surface. However, the rate constants
be very different for adatom and vacancy motion, so that
may dominate the surface evolution.

B. Particular examples for physical systems

In this section we will discuss limiting behaviors asso
ated with each of the three processes involved in the m
flow from a decaying island, i.e. interface transfer, diffusio
and outer boundary incorporation~see Secs. II B, IIC, and
IID, respectively!. The special case of an island locat
within a pit will also be discussed.

The treatment of Sec. II bears similarities to treatme
concerned with Ostwald ripening in ensembles of clusters
surfaces.5,10 In those treatments, a central quantity of inter
is the critical radiusr c , defined such that islands of siz
r,r c shrink while larger islands grow. Under approxim
tions analogous to those in Sec. III A, along with certa
assumptions about the ensemble size distribution, the cri
radius is found to increase in time according to a pow
law.10 Indeed, it can be shown that the resulting expone
are identical to those found above for an individual shrink
island.32 Note, however, that the critical radius of an e
semblegrows, while the physical radius of an isolated islan
shrinks.

The physical characteristics that lead to power-law beh
ior in Ostwald ripening5,10 will also lead to corresponding
behavior for isolated islands. Consider a configuration
which an island is not surrounded by any clearly defin
outer boundary. For instance, it might be on a terra
bounded on two sides by relatively straight steps. Using
mean field aproach, we assume that the outer boundary
g
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corporation process described in Sec. IID does not sign
cantly affect the island decay, so that the third term in E
~11! is negligible. If the curvature of the island edge is high
than that of other surface features, i.e., if the island is sm
then the approximation~i!(R@r ) remains valid. The island
must be larger than the length scale set by the step
energy, so that the approximation~ii ! ~GT expansion! is also
valid. The choice of a mean-field outer boundaryR is prob-
lematic ~it still enters the problem throughKD). If it is very
difficult for atoms to cross from the condensed phase to
vapor phase and vice versa at the island edge, then the
term of Eq. ~11! dominates the others. In this wa
C(r )'Kir , so that the outer boundary is totally remove
from the problem. The approximation~iii-b ! ~linearC) and
Eqs. ~14! apply. This is called the ‘‘interface-transfer
limited’’ case, and falls into then51 mathematical limit.

If, on the other hand, the isolated island is in a syst
where diffusion is very slow, then we have the ‘‘diffusion
limited’’ case, for which the second term of Eq.~11! domi-
nates. SinceC(r )'KD depends on the outer bounda
through Eq.~7b!, further assumptions must be made. T
classic treatment of this regime5 assumes that the weak loga
rithmic dependence ofKD on r and R may be neglected
This is equivalent to assuming that there is a vapor ph
screening lengthj5(l21)r . This screening length leads t
an outer boundary that goes asR5lr , so that
C(r )'KD5D/ ln(l) is constant. Thus the approximatio
~iii-a! ~constantC) and Eqs.~13! apply, and the diffusion-
limited case falls into then52/3 mathematical limit. It
should be noted, however, that the screening length hyp
esis is not physically self-consistent, so that this appro
should not be expected to yield quantitatively correct resu
In particular, a screening length can only arise through
interaction of many features~islands, pits, and step edges!, in
which case it turns out that the screening length is too long
properly treat the island as isolated.9,32

A crossover between the interface-transfer-limited a
diffusion-limited cases can be defined by the condition t
the first two terms of Eq.~11! are equal. At sufficiently large
radii Kir will be larger thanKD , and the mass flowmustbe
in the diffusion-limited regime. Only when the island reach
a sufficiently small size can the interface-transfer-limited
gime be observed. Physically, a shorter island perimeter
vides fewer detachment sites, making interface transfer m
difficult. We can define a transition radius at which th
crossover will occur by equatingKir andKD , which gives
@see Eqs.~6! and ~7b!#

r t5
KD

Ki
5S D

ln~l!Ja8
D . ~15!

Since ln(l) is a number of order one, we see that in order
r t to be significant,Ja8 must be significantly smaller tha
D. That is, there must be some impediment to an atom
taching to an island relative to diffusion. On a clean me
surface this is unlikely, as attachment energy barriers
generally found to be similar to or lower than diffusio
barriers.33,34 For adsorbate covered surfaces, however,
adsorbate will often tend to bind to the step edge and m
therefore present a steric impediment to attachment.
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For individual islands, other cases arise that have no a
log in the ensemble treatments. For instance, a configura
frequently observed on surfaces~e.g., in growth or ion bom-
bardment! is one where the decaying island is on top
another larger island, forming a multilayer structure. Foc
ing on the decay of the top layer, the outer boundary of
treatment is the perimeter of the second layer. Because
energy barrier for interlayer transport of atoms is frequen
high, the rate coefficientKb may be very small for this
multilayer case. This situation, which we call the ‘‘oute
boundary-limited’’ case, satisfies approximation~iii-a! ~con-
stantC). In this case the equilibrium density at the out
boundary isrR5rR

eq as given by the Gibbs-Thomson rel
tion. However, if the lower island is much larger than t
upper one then the approximation~i! (R@r ) is also reason-
able, so thatrR'r` and Eqs.~13! apply withC5KbR. Thus
the outer-boundary-limited case falls into then52/3 math-
ematical limit. This configuration was considered
Villain,28 who also found an exponent ofn52/3. Note, how-
ever, that Villain’s approximations lead to the diffusio
limited case discussed above. Our outer-boundary-lim
case gives the same exponent, but through a different me
nism.

A final surface configuration of interest is the ‘‘island in
pit’’ case, where an island is within a monolayer pit. T
outer boundary is well defined, similarly to the previo
case. Here, however, the atomic processes at the o
boundary are the same as those taking place at the i
boundary, so thatKb5Ki . There is no mathematical powe
law limit for this case, as neither approximation~iii-a! nor
~iii-b ! applies. We can, however, give a criterion as
whether the decay is dominated by the diffusion process
the interface transfer process. This criterion is similar to
crossover between the interface-transfer-limited a
diffusion-limited cases above. This transition radiusr t8 is de-
fined by the condition that the second term of Eq.~11! is
equal to the sum of the first and third, yielding the transc
dental equation

S Rr t8 11D 21

ln~R/r t8!5
D

KiR
. ~16!

The left-hand side of Eq.~16! has a maximum value of ap
proximately 0.278; if the right-hand side is larger than th
then there is no transition radius and the entire deca
interface-transfer limited. Otherwise, the decay is interfa
transfer limited for very large and very small islands, b
diffusion limited between. The physical interpretation is th
when the island is almost as large as the pit, diffusion
atoms across the narrow terrace between them occurs
idly, leading to interface-transfer-limited behavior for larg
islands. For very small islands, the short island perime
leads to interface-transfer-limited decay through lack of
tachment sites.

Finally, a comment on how experimentally controllab
parameters should be expected to influence feature beha
The overall rate of decay@see the prefactors of Eqs.~13b!
and~14b!# depends on many parameters, and therefore co
vary widely from material to material. For any particul
material, temperature will play a central role in controllin
the decay rate, primarily through the temperature dep
a-
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eq. This is because the equilibrium density resu

from adatoms being thermally activated to detach from s
edges, and therefore will depend exponentially on inve
temperature. The effect adsorbates would have on a syste
another particularly interesting influence on the dec
rate.35,23 Adsorbates lower the free energy of a surface.
they also lower the relative free energy of individual su
strate adatoms, this could substantially increaser`

eq, leading
to an increase in the decay rate. Adsorbates would also
expected to lower the step free energy, improving the
proximation~ii ! ~GT expansion! @see Eq.~12!#. However, if
the adsorbates interact with the surface chemically thro
directional bonding, then such simple arguments are insu
cient; other considerations, outside the scope of this pa
must be included. Finally, adsorbates could also affect
constants by simply getting in the way of the substrate
oms, as mentioned above in connection with Eq.~15!.

IV. COMPUTER SIMULATIONS OF ISLAND DECAY

The continuum model presented above is useful for id
tifying important factors controlling the stability and deca
of surface features. However, it makes many simplifying
sumptions, in particular about the proper macroscopic
scription of microscopic behavior. To approach the probl
from another direction, we may examine island decay fo
generic system based on simple energetics, where diffe
microscopic processes are explicitly included. The res
may then be compared to the thermodynamic model to
how well the latter captures the behavior of the system.
this end we have pursued computer simulations of isla
decay. One goal of these simulations is to verify that
above continuum treatment is applicable to nanoscale
tems based on simple energetics, and in particular to
whether the limiting regimes of decay predicted by the th
modynamic model can be reproduced in simulations.
also hope to illuminate what microscopic mechanisms p
the dominant role in the mass transfer process, and how
relate to the thermodynamic parameters.

Our computer code simulates atoms moving on a squ
lattice using the solid-on-solid model, which does not allo
overhangs. The system is rectangular with periodic bound
conditions. Atomic moves are classified according to the
tial horizontal coordination of the moving atom~0 to 4 for
the square lattice!, the coordination the atom would have
the move were made, and whether the vertical motion is
down, or absent. Taking into consideration that some mo
are geometrically disallowed, this yields 48 types of mov
The rates for these move types are determined by an Arrh
ius form, in which a single attempt frequencyn and an en-
ergy barrier for each type of move are parameters in
simulation. Note that the attempt frequency applies to e
move separately, so that each atom attempts to move a
rate 4n. In order to ensure that detailed balance is satisfi
these barriers are constrained such that the system obey
bond counting Hamiltonian

H52
1

2(sites«B3~coordination!, ~17!
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FIG. 2. Snapshots of a simulated island decay: the initial configuration~a! and later stages at~b! 45% and~c! 90% of the total decay time
White regions are one atom higher than black regions.
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where«B is the energy of a single bond. This constraint lea
to 26 independent barriers, along with the bond energy
attempt frequency, as parameters defining the system. A
namical Monte Carlo algorithm36–38 is used in which every
computer iteration results in an atomic move, the simula
time being advanced probabilistically. This algorithm is ve
efficient relative to standard Monte Carlo methods, as
attempted moves are rejected.

Although we are studying the generic behavior of s
faces, we wish to have barriers that are reasonable fro
physical standpoint. Therefore, the energy barriers for
plane moves used in the following simulations are based
barriers for the Cu~001! surface as calculated with th
Finnis-Sinclair atom embedding model.39 In Ref. 40 barriers
were calculated for in-plane moves with all 210 possible con-
figurations of nearest and next-nearest neighbors to the in
and final sites of the moving atom. Exchange type mo
were considered, but were found to be unimportant for t
surface. For each combination of initial and final coordin
tion we averaged an appropriate subset of these 210 barriers
to obtain the barriers for use in our simulation. This proc
dure clearly does not retain the details of the Cu~001! sur-
face. However, it does yield physically reasonable numb
and in particular results in a bond energy consistent with
original barrier set. The energy barriers we use, correspo
ing to a bond energy of«B50.341 eV, are shown in Table I

The barriers for interlayer movement were set very h
('100 eV! in order to prevent the occurrence of su
moves. In order for the decay to take place within a reas
able amount of computer time, the simulated tempera
was a moderately high 1347 K, or 60% of the critical te
perature for this model. Note that the 2D critical temperat
is a lower bound for the roughening temperature of the thr

TABLE I. Energy barriers for intralayer atomic moves, in un
of eV.

Initial
coordination

Final coordination

0-fold 1-fold 2-fold 3-fold

0-fold 0.697 0.479 0.328 0.166
1-fold 0.820 0.624 0.450 0.275
2-fold 1.010 0.791 0.591 0.377
3-fold 1.189 0.957 0.718 0.462
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dimensional system.41 The attempt frequency used wa
n51012 s21, which sets the overall time scale.

Elsewhere we have shown31 that this model does exhibit a
Gibbs-Thomson effect. That is, smaller islands are in eq
librium with higher adatom concentrations. There we sh
that the parameters of Eq.~1! can be analytically
calculated31,42 for this simulation to be
r`
eq53.5831023a22 and g50.117 eV/a. However, at the
simulation temperature of 1347 K, the adatom concentra
of the vapor phase is high enough so that its equation of s
deviates significantly from that of a noninteracting ga
Therefore, the proper Gibbs-Thomson relation is much m
complex than Eq.~1!. Nevertheless, we found31 phenomeno-
logically for this model at these temperatures that the
vapor enhancement can be well described by includin
correction factorg51.59 in the exponent of amodified
Gibbs-Thomson equation

r r
eq5r`

eqexpS ggV

rkT D . ~18!

For our decay simulations, a 100a3100a lattice was
used. The initial configuration was a circular island, 15a in

FIG. 3. Simulated island decay using barriers based on Cu~001!,
showing the island area vs time. The figure shows the average
of ten simulations referenced to time of island disappearance. E
bars represent standard deviations of the mean. The inset show
representative individual decays.
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radius, centered within a pit of radius 40a @as in Fig. 2~a!#.
As expected for a system exhibiting a Gibbs-Thomson eff
the island disappears over time as the adatoms move
the island to the pit edge. Figure 2 shows configuratio
typical of those observed during decay; the island rema
relatively circular, and remains relatively well centered in t
pit. In any individual simulation, the area of the islan
showed significant fluctuations during the decay~see Fig. 3
inset!. To obtain an averaged behavior, ten simulations w
run with identical initial conditions except for the seed f
the random number generator. Each decay repres
roughly 15 hours of CPU time on an IBM RS6000 mod
550 computer. The time origin of each run was offset so t
the islands vanished at the same time, and the sizes o
islands were averaged at each sampled time. Very e
times, during which the system was coming into steady st
were ignored. Figure 3 shows the averaged results.

We wish to make quantitative comparisons between th
results and the macroscopic theory of Sec. II. In particu
we are simulating the ‘‘island in a pit’’ case discussed in S
III B. As discussed there, the outer boundary rate coeffic
is Kb5Ki . Because the geometry of the system is co
pletely specified, it is unnecessary to make assumpt
about screening lengths. The outer boundary positionR is
very close to constant, as the area of the island is sm
compared to the area of the pit. Finally, the equilibrium de
sity at the outer edge is given by the GT relation
rR5r2R

eq Note that the pit edge has a negative radius
curvature, which changes the sign of the exponent in the
relation. Thus the equation governing the decay of the isl
in this system is@see Eqs.~10!#

dr

dt
52

V

r S 1

KD
1

1

Ki
F1r 1

1

RG D 21

3r`
eqFexpS ggV

rkT D2expS 2
ggV

RkTD G , ~19a!

KD[
D

ln~R/r !
. ~19b!

Here we have included the phenomenological correction
tor g in the modified GT expression. The definition ofKD is
explicitly repeated to emphasize that it has significant dep
dence onr for this configuration.

Note that neither approximation~i! (R@r ) nor ~ii ! ~GT
expansion! applies to these simulations. Specifically, the
land is too large relative to the pit for~i! to be satisfied, and
the island is too small for~ii ! to be satisfied. Therefore, th
complete decay equation above must be used for a quan
tive comparison of simulation and analytic theory.

V. DETERMINATION OF MACROSCOPIC PARAMETERS
FOR THE MICROSCOPIC SIMULATION

In order to apply the macroscopic decay equation to
simulations, it is necessary to determine the correct value
the parametersD andKi . These may be determined throug
proper measurements of the simulation behavior toge
with analytic thermodynamic calculations. Portions of t
following treatment are achieved through the use of a m
t,
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ping of the lattice gas to the Ising model, for which a hig
field ~low concentration! expansion is used to obtain th
equation of state. The interested reader can find a more c
plete description of this mapping and its use in Ref. 31.

In the limit of vanishing concentration, the diffusion co
efficient can be directly determined from the attempt f
quency and the energy barrier for zero initial and final co
dination:

D~r→0!5a2ne2E00 /kT52.473109a2/s. ~20!

However, as noted above, the temperature of the simula
results in an adatom concentration that is high enough for
system to deviate significantly from ideal gas behavi
Therefore the diffusion coefficient was measured direc
with ‘‘enforced gradient’’ simulations. Simulations were ru
in which a flat terrace populated by adatoms was divided i
three sections. The densities in the left and right secti
were held constant at values differing by 431024a22 ~a
small difference compared withr`

eq53.5831023a22). The
resulting adatom current density was then measured and
to calculate a diffusion coefficient through Fick’s Law
J52D¹r, whereJ is the adatom current density. Figure
shows the measuredD versus the average of the densities
the left and right regions. As should be expected, an incre
ing density with an attractive interaction leads to a low
diffusivity.43 Although the low densities make it difficult to
obtain good statistics, the diffusivity is clearly reduced
approximately 25% from the dilute gas value.

The second parameter that must be determined isKi . As
noted in Sec. II, the assumption in the macroscopic the
thatKi is independent ofr should be checked for any give
system. Equation~6! shows thatKi'Ja8. In Refs. 31 and 32,
we show thatJa8 may be measured from simulations throu
microscopic considerations, and that it changes very li
with island size. That is taken as evidence that the assu
tion thatKi is independent ofr is likely to be satisfied. How-
ever, our attempts at describing the simulated decay u

FIG. 4. The dependence of the diffusion coefficient on adat
density in the simulation, obtained from direct measurements
current densities under enforced concentration gradients. O
circle shows the theoretical dilute limit value. The arrows indica
the concentration of vapor adatoms required for equilibrium w
each of the pit~left arrow! and the island~right arrow! at the be-
ginning of the decay simulation.
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Ki calculated fromJa8 in this way have so far failed to agre
quantitatively with the observed island decay, leading us
develop the methods described in the following paragra
for determiningKi from purely thermodynamic argument
This procedure was carried out for only one size island,
der the assumption thatKi is independent of island size.

Our method of numerically extracting the interface tran
fer constantKi is closely related to the shape fluctuatio
analysis of Khare and Einstein.44 They study how the equi
librium fluctuations of the islandshapedepend on the inter
face transfer constant, the surface diffusion constant, and
edge diffusion constant; we will consider the equilibriu
fluctuations of the islandsize. However, we stabilize the is
land against changes in size by placing it in a finite box w
conserved order parameter, while Khare and Einstein st
lize the island size by externally adjusting the chemical
tential under conditions of nonconserved order parame
The equations in Ref. 44 therefore do not apply directly
our results.

The parameterKi may be determined through its relatio
to the mobility of an interface. Because a current of adato
detaching from an interface causes the interface to mo
Ki is closely related to the mobility for interface motion u
der the driving force of a vapor density imbalance. In pr
ciple, this mobility could be directly measured by putting
interface in interaction with a vapor of density lower than t
equilibrium density. The interface mobility could then b
determined from the rate at which the interface recedes
practice for a computer simulation, however, it is very dif
cult to keep the vapor concentration constant near the in
face. Detaching atoms continually increase the vapor den
and this source must be counterbalanced by an adatom
However, the required strength of this sink is not knowna
priori . Indeed, it is even difficult to distinguish whether
density increase near the interface is due to net detachm
or is due to a fluctuation in the vapor density.

The interface mobility is closely related to the fluctuatio
of the interface position in an equilibrium system. By co
sidering an equilibrium system, the need for an adatom s
is eliminated. However, one must be careful because of
nature of the interface-vapor interaction. When an atom
taches from the interface, the local vapor density is enhan
momentarily. Because the vapor has a finite diffusivity, t
enhancement will persist for some time, influencing the s
sequent behavior of the interface. This memory effect me
that the interface position does not perform a random w
and the fluctuations of the interface position are thus slow
The strength of the memory effect depends on the va
diffusivity, and also on the system size because of the lo
range nature of the solution to the 2D diffusion equatio
Note that these considerations do not influence the ave
vapor density near the interface. The memory effect is du
time correlations between fluctuations of the vapor den
and fluctuations of the interface position.

We have not obtained an analytic form for the interfa
fluctuations in the presence of such a vapor memory eff
However, it is clear that the memory can be removed
causing the adatom vapor to equilibrate quickly on the ti
scale of interface motion. In simulation, this can be achie
by randomly redistributing all monomer adatoms to oth
monomer sites between every atomic move. This explic
o
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does not affect the interface mobility, because all types
atomic moves that involve the interface are unaffected;
adatom redistribution is done in a way such that it will nev
cause the creation of new nearest-neighbor bonds. By
removing the vapor memory effect, the interface fluctuatio
may easily be analyzed to obtain the interface mobility, a
hence the interface transfer constantKi .

In fact, the vapor memory is not completely removed
this artifice, because clusters in the vapor are stable. H
ever, the density of clusters in the vapor is small in o
simulations. Also, each cluster will have some mean time
dissociation, so that the memory introduced by clusters o
given size decays exponentially. For these reasons, the e
of clusters should be negligible.

In detail then, we simulate an island in equilibrium wi
an adatom vapor in a closed, conserved mass system.
that by simulating an island, rather than a straight interfa
any angular dependencies are automatically averaged.
cause mass is conserved, the island size is stabilized at s
equilibrium sizer eq. When the island fluctuates to be eith
larger or smaller than this, the resulting change in the s
rounding adatom density tends to restore the island size.
can be understood in terms of a thermodynamic potential
the system, which is a function of island radius,F(r ). Ref-
erence 31 discusses this potential at length.45 The equilib-
rium radiusr eq is at the minimum of this potential.

The fluctuations in the island size can be seen as a ran
walk of the island radius, characterized by some interfa
diffusivity Di . Note that the diffusivity of theinterface Di is
distinct from the adatom diffusivityD. In general the behav
ior of the interface would be affected by the adatom diff
sivity D through the memory effect described above. F
these simulations, however, monomer rearrangement is
ployed to achieve fast vapor equilibration, so that the int
face diffusivity obtained is a property of the interface alon

The random walk of the island radius is biased by t
thermodynamic potentialF(r ), so that it tends to return to
wardsr eq. The strength of this bias is given by the therm
dynamic mobility of the interfaceBi , which is defined by the
equation

dr

dt
52Bi

dF

dr
52BiF ddr S dF

dr DU
eq

~r2req!1•••G , ~21!

In the second equality we have Taylor expandeddF/dr in
r about the equilibrium densityreq, for reasons that will
become clear below. Note that the interface mobilityBi and
the interface diffusivity may be related through the gener
ized Einstein relationDi5kTBi .

To characterize the fluctuations of a random walk in
potential, we approximate the potential as quadratic inr :

F~r !5
1

2
c~r2r eq!

2, c[
d2F

dr2 U
eq

, ~22!

wherec gives the curvature of the potential well. The valu
of c can be calculated from the known form31 of F(r ), but
will not be required for the following analysis. Note that th
Boltzman distribution in a quadratic potential is Gaussian
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1820 55JAMES G. McLEANet al.
Probability~r !}expS 2F~r !

kT D5expS 2c~r2r eq!
2

2kT D .
~23!

The Green’s function for diffusive motion within a quadrat
potential is therefore also Gaussian, with an exponenti
relaxing mean and standard deviation:

G~r ,t;r 0!5
1

A2ps
expS 2

~r2rm!2

2s2 D , ~24a!

rm5r eq1~r 02r eq!e
2Bict, ~24b!

s25
Di

Bic
~12e22Bict!, ~24c!

whererm ands are the time-dependent mean and stand
deviation of the Gaussian form. Recall that the Green’s fu
tion can be interpreted as the probability distribution th
evolves from an initiald-function distribution atr 0. It can
therefore be used to find the time correlation function for
interface positionr ,

^r ~0!r ~ t !&2r eq
2 5

Di

Bic
e2Bict, ~25!

the prefactor of which may of course be simplified with t
Einstein relation. ThusBi is found by measuring the tim
correlation function of the island radius~using
r[Aarea/p) and fitting it with Eq.~25!, as shown in Fig. 5.

The interface transfer constantKi is then obtained from
Bi by comparing the ways they each describe interface
tion. Ki describes how an interface moves due to a va
density imbalance@see Eq.~2!#,

2
dr

dt

2pr

V
5I i52prK i@req2r~r !#. ~26!

FIG. 5. The time correlation function for the interface positi
r , showing the function calculated from one equilibrium simulati
and a least-squares fit of the form in Eq.~25!.
ly
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In the Taylor expansion of Eq.~21!, the interface mobility
was also described in terms of densities, so that by com
ing these equations we obtain

Ki52
1

V
Bi

d2F

drdr U
eq

5
1

V
BicS 2

dr

dr U
eq
D . ~27!

The derivativedr/dr is given by purely geometrical consid
erations. Note that it is not necessary to knowc in order to
obtainKi with this method; the productBic is obtained di-
rectly from the decay length of Eq.~25!. As a consistency
check,c was calculated fromF as known from the equation
of state for the Ising model.31 It was then used to check th
initial amplitude of the time correlation function.

VI. QUANTITATIVE EVALUATION
OF DECAY SIMULATIONS

The above procedures yield values ofKi5(2.47
60.19)31010a/s and, at the equilibrium concentration fo
the initial island,D5(1.7560.2)3109a2/s. Using Eq.~16!,
these values together with the average pit radius
R538.5a yield transition radii ofr t85R/4550'831023a
and r t85R/1.0037'38a. Thus the island, which is initially
of size r515a, remains well within the diffusion-limited
regime throughout the decay. Figure 3 shows the result
numerically integrating Eq.~19a! using these parameters
The agreement with the simulation results is very good.
expected based on the transition radii, the predicted deca
extremely insensitive to the value of the interface trans
constant. The deviation at very small islands may be d
either to a breakdown in the phenomenological expressio
the modified GT equation, or to a breakdown in the assum
tion thatKi is size independent. A breakdown of the qua
steady-state assumption seems unlikely, since even at
highest recorded interface velocities each monomer ma
over 1000 moves in the time that the interface recedes by
lattice spacing.

In order to test the macroscopic theory in a regime wh
the interface transfer process is important, a second set o
decay simulations was run in which the diffusion rate w
greatly increased. This was achieved by reducing the ba
for moves from 0-fold to 0-fold coordination. That barrie
was changed from 0.697 to 0.0 eV. This unphysical sound
‘‘barrier’’ is possible because our simulation uses the bar
parameters only to determine rates. Note that at room t
perature the same change in the rate of these moves cou
achieved with a barrier reduction of only 0.14 eV. The lar
magnitude of the barrier change, required to obtain the
lowing results, is necessary here because of the high t
perature of the simulation.

As determined by the methods described above, the
fusivity is even more concentration dependent than in
previous case. Figure 6 shows that at the vapor density th
in equilibrium with the initial island, the diffusivity
D55.031011a2/s is one-half of the dilute limit value o
D51.031012a2/s. As the island shrinks, the concentratio
increases and the diffusion coefficient decreases sig
cantly. If we are to describe the entire decay with a sin
effective diffusion coefficient, it will be yet lower than
5.031011a2/s.
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Since nondiffusion barriers were unchanged, the sa
value ofKi as above applies here. Using these values in
~16!, the left-hand side isD/(KiR)50.317. As a result, Eq
~16! has no roots, and the interface transfer process is
most important process in limiting the decay rate during
entire island decay. Note, however, that this decay is not
into the interface-transfer-limited regime, so that the dif
sion coefficient is still expected to be of importance.

Shown in Fig. 7 is the averaged decay from simulation
well as analytic predictions. In this case the analytic res
are sensitive to bothD and Ki as expected. Note that th
decay rate is two orders of magnitude larger than in the p
vious case. The relationship of interface velocity and dif
sivity is similar to the previous case, supporting the use
the quasi-steady-state assumption. The dashed curve, w
uses the valueD55.031011a2/s, qualitatively succeeds in
showing this increase in decay rate, but deviates as the is
becomes smaller. The entire decay can be matched quite
by using the valueD53.031011a2/s, as shown by the solid
curve. This can be partially justified by the fact that t
smaller island results in higher adatom concentrations,
hence a lower diffusion coefficient. However, because of
certainties in the calculations ofD andKi , it is difficult to
compare simulation and analytic theory closely.

In Sec. III we saw that in treatments of systems with
clear outer boundary, under certain approximations,
diffusion-limited and interface-transfer-limited regimes a
characterized by power-law decay of the island area, w
respective exponents of 2/3 and 1. For these simulati
there is a definite outer boundary that is near the island
the various approximations are not valid, so that power-
behavior cannot be achieved. However, at the end of
decay in Fig. 3 the decay rate increases markedly, where
Fig. 7 the increase in decay rate is less pronounced. In
sense, the diffusion-limited decay is ‘‘less linear’’ than t
decay dominated by the interface transfer process. This

FIG. 6. The dependence of the diffusion coefficient on adat
density in the modified simulation that has a faster diffusion ra
obtained from direct measurements of current densities under
forced concentration gradients. Open circle shows the theore
dilute limit value. The arrows indicate the concentration of vap
adatoms required for equilibrium with each of the pit~left arrow!
and the island~right arrow! at the beginning of the decay simula
tion.
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tinctive feature is correctly reflected by the analytic pred
tions.

In principle, simulations might be run further into th
interface-transfer-limited regime by further increasing t
difference between the energy barriers for interface tran
and for diffusion. However, such an approach is impractic
as the program must spend most of its time processing
fusion events, and therefore decay occurs very slowly in r
computer time. Other, more artificial means of increasing
effective diffusion rate, such as the monomer rearrangem
scheme described in Sec. V, might circumvent this difficul

VII. CONCLUSION

Isolated features on a surface will tend to decay in s
due to the Gibbs-Thomson effect. This decay implies t
there is mass flow in the adatom vapor surrounding the
land, flowing from the island to the surrounding enviro
ment. There are three processes in this mass flow to be
sidered: interface transfer at the island edge, diffusion ac
the surface, and incorporation into the environment at so
outer boundary. For various surface parameters and var
surface configurations, each of these processes may be
rate limiting one, so that there are three general cases o
island decay.

With certain approximations, the limiting regimes of the
cases lead to a power-law dependence of the island siz
time. For the interface-transfer-limited regime, this leads
the island area decaying asA}(t02t). For the outer-
boundary-limited regime, this leads to the island area dec
ing as A}(t02t)2/3. For the diffusion-limited regime, no
power law is strictly valid, but under a screening length h
pothesis theA}(t02t)2/3 power law can be argued.

The existence of these power laws may make it poss
to experimentally distinguish between the regimes by m
suring exponents for observed feature decay. Both the ou
boundary-limited regime and the diffusion-limited regim
could probably be observed on physical surfaces. The in
face transfer regime is unlikely to occur on clean metal s
faces, but may be important on other surfaces or on m
surfaces covered with adsorbates. It should be noted, h
ever, that it can be quite difficult to distinguish between t

,
n-
al
r

FIG. 7. Simulated island decay with fast diffusion, showing t
averaged island area vs time, referenced to time of disappeara
Error bars represent standard deviations of the mean.
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two power laws based on a single decay. Data must ei
have very low uncertainty in measured island areas, or c
sist of many independent decays~as in Ref. 27!, in order to
be a good test of the exponent.

Computer simulations based on the solid-on-solid mo
and simple energetics exhibit the island decay behav
Comparison of simulations and the analytic theory dem
strate that this theory correctly captures the essential
ments of island decay. Although some limiting regimes
the theory cannot be fully achieved in simulation, the sim
lations match the theoretical predictions well for an impo
tant range of surface parameters. Note that this is the cas
spite of the fact that the theory is thermodynamic and m
-roscopic in nature, while the simulation involves features
atomic scale. We conclude that even at atomic scales
analytic theory includes all the physics necessary to desc
the behavior of a surface governed by simple energetics

The relationship between the parameters governing
microscopic dynamics of the system~e.g., the energy barriers
for atomic moves! and the macroscopic dynamics paramet
D and Ki is quite complex. We have shown methods
obtaining the macroscopic parameters from measuremen
the simulation behavior. Further investigations of the re
C

rr

c
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er
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el
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le-
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tionship between microscopic and macroscopic parame
would be of interest, since in principle the macroscopic b
havior is completely determined by the microscopic chara
teristics.
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Tatjana Ćurčić, Jack Blakely, and Georg Rosenfeld for valu
able conversations. We particularly thank Rein Breeman
providing energy barriers for atomic moves, upon which o
simulation parameters were based. This work was gen
ously supported by the National Science Foundation throu
the Cornell Materials Science Center~NSF-DMR-9121654!,
and through Grants No. NSF-DMR-9313818, No. NS
GER-9022961, and No. NSF-DMR-9200469, and by the A
Force Office of Scientific Research~AFOSR-91-0137 and
AASERT No. F49620-93-1-0504!. Early portions of this
work were performed at Sandia National Laboratories su
ported by the U.S. Department of Energy under Contract N
DE-AC04-94AL85000.
.
50

tt.

ett.

to
in

na,

v.

s.
*Present address: Department of Chemistry, UCSD, La Jolla,
92093-0358.

†
Present address: Bell Laboratories, Lucent Technologies, Mu
Hill, NJ 07974.
1G. W. Greenwood, Acta Metall.4, 243 ~1956!.
2I. M. Lifshitz and V. V. Slezov@Zh. Éksp. Teor. Fiz.35, 479
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