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We propose a Widom-like scaling ansatz for the critical jamming
transition. Our ansatz for the elastic energy shows that the scaling
of the energy, compressive strain, shear strain, system size,
pressure, shear stress, bulk modulus, and shear modulus are all
related to each other via scaling relations, with only three in-
dependent scaling exponents. We extract the values of these
exponents from already known numerical or theoretical results,
and we numerically verify the resulting predictions of the scaling
theory for the energy and residual shear stress. We also derive a
scaling relation between pressure and residual shear stress that
yields insight into why the shear and bulk moduli scale differently.
Our theory shows that the jamming transition exhibits an emergent
scale invariance, setting the stage for the potential development of
a renormalization group theory for jamming.
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The existence of criticality at the jamming transition suggests
that universal physics underlies rigidity in disordered solids

ranging from glasses to granular materials (1). The jamming
transition marks the onset of rigidity in athermal sphere packings
and was originally proposed as a zero-temperature transition (2,
3) for soft repulsive spheres in a nonequilibrium “jamming phase
diagram” (4) of varying packing density and applied shear. Many
studies have documented behaviors characteristic of critical phe-
nomena near the jamming transition, including power law scaling
(2, 3, 5) and scaling collapses (6–13) of numerous properties, with
the expression of quantities in terms of scaling functions, diverging
length scales (6, 14–19), and finite-size scaling (10, 12, 20). Theories
have been developed to individually understand and relate some of
these power laws (15, 16, 21, 22), but a unified scaling theory has
been lacking. Here, we develop such a theory by proposing a scaling
ansatz for the jamming critical point in terms of the fields originally
identified by the jamming phase diagram, namely density and shear.
The critical point scaling ansatz introduced by Widom (23) in

the 1960s was a key advance in the theory of critical phenomena
that set the stage for the development of the renormalization
group. The ansatz writes the state functions near continuous
equilibrium phase transitions in terms of power law ratios of
the control parameters. By positing a scaling function for the free
energy, it exploits the fact that quantities, such as the specific heat,
magnetization, and susceptibility, are derivatives of the free en-
ergy to derive relations not only among their scaling exponents but
among their scaling functions. Thus, the scaling ansatz provides a
unified and comprehensive description of systems exhibiting what
later was realized to be an emergent scale invariance.
Unlike most systems exhibiting a dynamical scale invariance,

we find that a jammed system can also be viewed as a material
with critical properties that are determined by a state function,
analogous to those at thermodynamic critical points. We in-
troduce a scaling ansatz for the elastic energy of a sphere packing
just above the jamming transition to develop a unified theory of
the scaling exponents and scaling functions for the energy, excess
packing fraction, shear strain, pressure, shear stress, bulk modulus,
shear modulus, and system size. Our theory yields scaling re-
lations that relate the singular behavior of all of these quantities
to only three independent scaling exponents, which can be
extracted from known numerical and theoretical results. It predicts

exponents for the shear stress and shear strain. Most impor-
tantly, however, our scaling theory shows how the jamming
transition can be understood in the context of the theory of
critical phenomena.

Scaling Ansatz
We consider d-dimensional jammed packings of soft frictionless
spheres at temperature T = 0 with packing fraction ϕ (details are
in Materials and Methods). Note that the packing fraction at the
jamming transition, ϕc,Λ, varies from one member of the en-
semble, Λ, to the next. For each packing, we characterize the
distance above the transition by Δϕ≡ϕ−ϕc,Λ.* Systems are
further characterized by the average number of interacting
neighbors per particle (the contact number Z), which satisfies
Z≥Zmin where Zmin = 2d− ð2d− 2Þ=N approaches the isostatic
value Ziso ≡ 2d in the thermodynamic limit (3, 10). A key quantity
used extensively in this paper is the excess contact number (the
number of contacts per particle in excess of the minimum value),
namely ΔZ=Z−Zmin. For a given protocol for preparing jam-
med states, the mean dimensionless (Materials and Methods)
energy density E of a sphere packing will depend on ΔZ and Δϕ
as well as the shear strain e and the system size N. We define e
relative to the strain of the as-quenched state.

Significance

Central to the theory of phase transitions is the fact that the
free energy can be written in a scale-invariant form that cap-
tures scaling exponent relations. Our work shows that, for the
jamming transition, the elastic energy is the relevant free en-
ergy and can be expressed in a scale-invariant form consistent
with known exponent relations. This result places jamming in
the context of the theory of critical phenomena, suggesting the
potential for a theoretical description of jamming on par with
that of Ising criticality. It also provides powerful support for the
idea that the observed commonality in the mechanical and
thermal responses of disordered solids can be understood
as a manifestation of universality associated with the critical
jamming transition.
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*This configuration-dependent critical density is similar to many other systems with sharp
global transitions in behavior as originally discovered in the depinning of charge–density
waves (24–26). Such systems may not obey the inequality between the correlation length
and dimension ν≥ 2=d derived for equilibrium systems, unless analyzed using deviations
from the infinite system critical point (27). In jamming, not only does the critical density
fluctuate because of finite-size effects, it is also known that, even in the thermodynamic
limit, the critical density depends on the protocol (20, 28). However, the dependence of
quantities, such as those discussed here, on the distance above each system’s critical
density seems to be insensitive to protocol (28). Here, we use the system-dependent
critical density as suggested in refs. 2 and 3, which allows closer scrutiny of scaling near
the jamming transition.
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We first present the scaling ansatz and then show that it agrees
with known scalings and correctly predicts the scaling exponent
for the shear stress. Our scaling ansatz is

EðΔZ,Δϕ, e,NÞ=ΔZζE0

�
Δϕ
ΔZβϕ

,
e

ΔZβe
,NΔZψ

�
, [1]

where the scaling exponents ζ, βϕ, βe and ψ are yet to be de-
termined. Eq. 1 is set up so that the leading singular part of the
elastic energy in the thermodynamic limit is proportional to ΔZζ.
The excess packing fraction Δϕ and shear strain e represent
components of the same strain tensor (compression and shear,
respectively) but are allowed to scale differently.† Allowing Δϕ
and e to scale differently would seem natural, because they are
different “relevant directions” in the jamming phase diagram.
The different exponents lead to different scaling properties for
the bulk and shear moduli B and G, respectively.‡

Jamming is believed to have an upper critical dimension of
du = 2 (1, 10, 21, 30–33). There is close agreement between the
numerical exponent for the shear modulus in dimensions d= 2,3
(3, 5, 10) with the analytical result of G∼ΔZ1 in d=∞ (34).
More compellingly, the use of the total number of particles,
N ∼Ld, rather than the more traditional system length L to
characterize system size in the finite-size scaling collapse allows the
critical exponent for the shear modulus to be independent of di-
mension for d= 2,3 (10). This fact provides strong evidence that
du = 2, because finite-size effects should scale with N ∼Ld (35, 36)
instead of L for d≥ du. This reasoning underlies our choice of the
form of the last argument of the function E0 in Eq. 1. It also justifies
our use of integer and half-integer values for the various critical
exponents in the analyses that follow (34).
Finally, note that, for a given preparation protocol, jammed

packings at a given Δϕ, N, and e have a prescribed average
value of ΔZ, so that ΔZ is not a variable that can be tuned
independently. Until now, it has not been clear whether the
natural control variable for the problem (analogous to reduced
temperature in the Ising model) should be ΔZ, Δϕ, or p. We
find that corrections to scaling suggest that ΔZ should be the
natural control variable (SI Text); in addition, the formulation is
more elegant if we treat ΔZ as an independent variable, so that the
form of Eq. 1 is the same with respect to compressive strain and
shear strain. The use of ΔZ as an independent variable is somewhat
analogous to the use of a variable magnetization in Landau theory
of magnets, where the free energy density at fixed external field and
temperature is expressed as a function of magnetization, although
the equilibrium magnetization is set by the field and temperature.
We proceed by calculating derivatives of the energy (Eq. 1)

with respect to Δϕ and e to obtain scaling expressions for the
pressure p and the residual shear stress s:

p≡ϕ
dE
dΔϕ

=ΔZδpP0

�
Δϕ
ΔZβϕ

,
e

ΔZβe
,NΔZψ

�
[2]

and

s≡
dE
de

=ΔZδsS0

�
Δϕ
ΔZβϕ

,
e

ΔZβe
,NΔZψ

�
. [3]

Similarly, the bulk modulus B and shear modulus G are second
derivatives of the energy, taking the forms

B≡
ϕ2

2
d2E
dΔϕ2 =ΔZγBB0

�
Δϕ
ΔZβϕ

,
e

ΔZβe
,NΔZψ

�
[4]

and

G≡
d2E
de2

=ΔZγGG0

�
Δϕ
ΔZβϕ

,
e

ΔZβe
,NΔZψ

�
. [5]

Note that the factors of ϕ and ϕ2 that appear in Eqs. 2 and 4 are
slowly varying and can be treated as constant near the singularity.
Also, note that the scaling functions P0, S0, B0, and G0 can be
written explicitly as functions of E0 and its derivatives.
Eqs. 2–5 are constructed for a “fixed ΔϕeN” ensemble and

show that the pressure and shear stress arise naturally for this
ensemble as order parameters that scale with powers of the ex-
cess contact number, ΔZ. In this ensemble, p and s are analogous
to the magnetization, whereas Δϕ and e are analogous to the
magnetic field in the Ising model. However, it is straightforward
to use Legendre transformations to convert to other ensembles,
such as the “fixed peN” ensemble that is common in the numerical
literature (SI Text) or the “fixed psN” ensemble of ref. 9. We em-
phasize that the scaling of all variables with ΔZ is not affected
by the ensemble in which one works. However, in the fixed psN
ensemble, Δϕ and e are order parameters, whereas p and s play
the role of the magnetic field in the Ising model. The latter
ensemble leads to second derivatives B−1 and G−1, where G−1

diverges at the transition, in more direct analogy to the mag-
netic susceptibility as the diverging second derivative of the
free energy with respect to magnetic field in the Ising model.
Our notation for the exponents βϕ, βe, δp, δs, γB, and γG
therefore conforms to the scaling theory natural for the fixed
psN ensemble.
The scaling forms of Eqs. 2–5 imply four exponent relations:

δp = ζ− βϕ,
δs = ζ− βe,
γB = ζ− 2βϕ,

and γG = ζ− 2βe.

[6]

We will later derive an additional exponent relation, δs = δp +ψ=2.
Eqs. 1–5 contain eight exponents, and therefore, the entire the-
ory is expressed in terms of only three independent scaling
exponents.

Extracting Exponents and Numerical Verification
We now use known scaling laws to extract numerical values for
the exponents in our theory.
SI Text shows how to manipulate Eqs. 1–5 to directly compare

with numerical simulations. The manipulation is straightforward
and involves converting to the fixed peN ensemble (which has
become standard in the numerical literature for jamming), in-
tegrating over the ΔZ distribution, and explicitly setting the shear
strain to zero. This process results in the following scaling pre-
dictions from the ansatz:

E=ΔZζEðNΔZψÞ, [7]

Δϕ=ΔZβϕΦðNΔZψÞ, [8]

s=ΔZδsSðNΔZψÞ, [9]

†Different shear directions are statistically equivalent, because systems are prepared iso-
tropically, and therefore, we represent them with a single e.

‡Clearly, bulk and shear moduli need not scale together—liquids form a counterexam-
ple. At the critical jamming transition separating a nonequilibrium jammed solid from
a repulsive gas of nonoverlapping spheres, the bulk and shear moduli share features
of a liquid (G= 0 and B> 0). This behavior is reminiscent of the metal-like resistivity at
the 2D disordered critical point separating superconductors and insulators (29).
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B=ΔZγBBðNΔZψÞ, [10]

and

G=ΔZγGGðNΔZψÞ [11]

as well as

N
1
ψΔZ=Z

�
Np

ψ
δp

�
. [12]

Note that B, G, and ΔZ should become independent of N in the
large N limit, and it is well-established that ΔZ∼ p1=2, B∼ΔZ0

and G∼ΔZ in this regime (3, 5, 12). Furthermore, recent studies
of finite-size effects found that NΔZ=FðNp1=2Þ (10, 12).§ Com-
paring these results with Eqs. 10–12, we see that δp = 2, γB = 0,
γG = 1 and ψ= 1. Using the exponent equalities of Eq. 6, we also
find ζ= 4, βϕ = 2, βe = 3=2 and δs = 5=2. These exponents are
summarized in Table 1.
Note that the scaling exponents can be obtained alternatively

by appealing to theoretical arguments for the scaling of the shear
modulus, contact number, and length scale (21), leading to a
completely theoretical derivation of the exponents and scaling
relations (SI Text).
Our scaling theory yields predictions for the scaling of E, Δϕ,

and s in Eqs. 7–9. To test these predictions numerically, we
generate jammed sphere packings in the fixed peN ensemble,
which is described in Materials and Methods. We first consider
the energy density E, which is shown as a function of ΔZ in Fig. 1A
for systems in three dimensions (d= 3). The clear finite-size effects
collapse quite well when the data are scaled according to Eq. 7
with ζ= 4 and ψ= 1 (Fig. 1B) as predicted.
We now turn to the scaling of the shear stress s. Our packings

are prepared isotropically at e= 0, and therefore, the residual stress
fluctuates around zero. We, therefore, consider the average of
s2 ≡Tr

�
σ− 1

d Tr σ
�2, where σ is the stress tensor. This average is

shown as a function of ΔZ in Fig. 2A. To collapse these data, we
note that s2 vanishes in the infinite system size limit as 1=N (Pres-
sure–Shear Stress Exponent Equality), consistent with the central
limit theorem. It is, therefore, convenient to factor out one power of
ðNΔZψÞ−1 from the scaling function for s2 analogous to Eq. 9:

s2 =ΔZ2δs
�ðNΔZψÞ−1S2ðNΔZψÞ�. [13]

This predicted scaling collapse is verified numerically in Fig. 2B
with δs = 5=2 and ψ= 1. Finally, as expected from classical scaling
theories, Fig. 2C shows that our theory also describes the distri-
butions of quantities: in this case, s2.
The SI Text shows data for the energy, pressure, shear stress, bulk

modulus, and shear modulus in 2D (Fig. S1) and 3D (Fig. S2). The
scaling collapses for 3D systems are even more successful if one
includes analytic corrections to scaling (Fig. S3). The collapses for
2D systems are reasonable but not quite as successful, likely because
of corrections to scaling expected in the upper critical dimension as
observed previously (12, 13); however, they are otherwise consistent
with our theory with the same exponents as in d= 3.
Finally, note that Eqs. 2 and 3 are stress–strain relations,

and the well-known compressional stress relation p∼Δϕ (3, 5)
emerges from the scaling ansatz. Similarly, the scaling collapse of
the shear stress–strain relation, obtained by integrating Eq. S5 as
in SI Text, so that s=ΔZδsS∞ðe=ΔZβe ,NΔZψÞ, is consistent with
that obtained earlier for harmonic spring networks (37). The

scaling ansatz also yields a prediction for the scaling of the excess
contact number ΔZ∼ e1=βe with strain e at the jamming transition
and the dependence of various quantities on s (e.g., figure 10 of
ref. 12) when s is controlled as in the fixed psN ensemble (9). The
scaling of s with e and p predicted by the scaling theory has al-
ready been tested in recent numerical calculations (38, 39).

Discussion
Many nonequilibrium phenomena exhibit power laws and are
described by scaling functions; however, they cannot be framed
in the context of the theory of equilibrium critical phenomena,
because they cannot be described in terms of state functions. The
jamming transition is at zero temperature, deep below the dy-
namical glass transition, and its behavior depends on how the
system was prepared. It has long been recognized that jammed
systems obey clean scaling behaviors when considered relative to
the configuration-dependent critical packing fraction ϕc,Λ (3, 28).
What our work shows is that all of the nonequilibrium aspects of the
properties studied here are captured in ϕc,Λ, so that after we choose
to describe behavior in terms of Δϕ=ϕ−ϕc,Λ, the system can be
described as a material in terms of a state function, namely the
elastic energy. Thus, jamming provides a rare example of a non-
equilibrium transition that can be understood, at least partially,
within the framework of equilibrium critical phenomena.
The facts that the mean stress (unlike the pressure) remains

zero for systems above the jamming transition and that the
variance of the stress fluctuations scales as 1=N shed light on why
the bulk modulus scales differently from the shear modulus at
the jamming transition. In Pressure–Shear Stress Exponent Equality,
we analyze the pressure and stress fluctuations microscopically and
derive an important exponent relation, 2δs −ψ= 2δp (Eq. 16), be-
tween the singularities of stress and pressure, which also yields the
relation γG = γB +ψ between the shear and bulk moduli. This

Table 1. List of scaling exponents and their approximate values

Exponent

ζ βϕ βe ψ δp δs γB γG

Value 4 2 3/2 1 2 5/2 0 1

As discussed in the text, numerical studies suggest that jamming
exponents are close to integer or half-integer values, as presented here.
These eight exponents are related by five exponent relations (Eqs. 6 and 16),
leaving three independent critical exponents.

B
A

Fig. 1. Scaling collapse of the energy. (A) Energy as a function of ΔZ. (B) Energy
scaled according to Eq. 1 using the predicted exponents ζ= 4 and ψ= 1.

§Note that the finite-size analyses in refs. 10 and 12 also found that GN= FGðNp1=2Þ, which
is consistent with Eq. 11 and the exponents in Table 1, thus providing the first check of
our scaling theory.
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analysis uses the lack of long-range bond orientational order to
derive the exponent relation; hence, we expect that shear-jammed
systems (40) will have some components of their shear modulus that
scale as the bulk modulus as jamming is approached (because shear
jamming will yield long-ranged bond orientation correlations),
which was also predicted in ref. 41.
Just as for equilibrium critical points, the dynamics of jamming

at frequency ω is controlled by an additional invariant scaling
combination ω=ΔZδω, which is not part of the free energy and
depends on what properties are conserved by the dynamics.
Tighe (42) studied the complex shear modulus GðωÞ and showed,
for overdamped dynamics, that GðωÞ=ΔZγGGðω=ΔZδωÞ, with
δω ≈ 2. For undamped dynamics (15, 42), δω = 1 (for example,
controlling the cross-over frequency ωp in both longitudinal and
transverse phonons to the boson peak due to jamming) (14,
15). Since the longitudinal and transverse speeds of sound
cL ∼

ffiffiffiffiffiffiffiffi
B=ρ

p
and cT ∼

ffiffiffiffiffiffiffiffiffi
G=ρ

p
scale differently near jamming, the

longitudinal cross-over wavelength is ℓL ∼ cL=ωp ∼ΔZγB=2−δω ∼ΔZ−1,
whereas the transverse cross-over wavelength is ℓT ∼ cT=ωp ∼
ΔZγG=2−δω ∼ΔZ−1=2 (14). Note that, in d= 2 (the upper critical
dimension), we can convert N ∼L2 to rewrite the argument
NΔZψ in Eq. 1 as LΔZν, where ν is a correlation length exponent.
We see that the resulting length scale, ξ∼ΔZ−ν, has ν=ψ=2= 1=2,
which has the same scaling as ℓT (14, 18). Interestingly, ref. 43 re-
cently showed that finite-size effects governing flow in non-
Brownian suspensions below the jamming transition scale as
NðZiso −ZÞψ, with ψ also equal to one. It remains to be seen if
and how ℓL, which is also understood as the rigidity length ℓp that

controls the excess low-frequency vibrational modes (15, 17),
enters into the scaling theory.
In standard scaling theories, one expects the free energy

density to scale as T=ξd from dimensional analysis for dimensions
at or below the upper critical dimension (hyperscaling). Eq. 1
would then imply that ΔZζ =ΔZdν, so that ζ= dν. In our case,
ν= 1=2 in d= 2 and ζ= 4, violating hyperscaling, presumably
because the jamming transition is at T = 0. A similar situation
arises for the random field Ising model (44).
To extend to nonzero temperatures near the jamming transition,

it is best to convert to the fixed psN ensemble, because strains be-
come problematic in systems that can undergo rearrangement
events. In that case, the scaling ansatz for the free energy becomes

FðΔZ, p, s,N,TÞ=ΔZζF 0

�
p

ΔZδp
,

s
ΔZδs

,NΔZψ,
T

ΔZδT

�
. [14]

If one then argues that, at high T, the free energy should not
vanish or diverge at ΔZ= 0 and should scale as T, one obtains
δT = ζ= 4, consistent with the scaling of the cross-over tempera-
ture Tp ∼ΔZ4 governing whether the system obeys jamming be-
havior (T <T*) or glassy behavior (T >T*) (45, 46). However, for
T > 0, issues, such as timescales and aging, become important,
and we will leave a more thorough exploration for future work.
For the same reason, we have not yet generalized the theory to
thermal hard spheres at densities below the jamming transition,
where similar power law scaling and diverging length scales arise
(16, 47, 48), or to nonlinear responses necessary for describing
avalanches (49) and shear flow (50).
In summary, we have proposed a Widom-like scaling ansatz for

the jamming transition that ties together the behavior of thermody-
namic quantities at densities above the jamming transition. It contains
three independent exponents and predicts two nontrivial exponents.
One of these exponents (δs) we have verified here using numerical
simulations, and the other (βe) has been the subject of recent research
(38, 39). The fact that the jamming transition can be described by a
scaling ansatz implies that the jamming transition exhibits emergent
scale invariance and that the tools of the theory of equilibrium critical
phenomena, such as coarse graining and rescaling to study renorm-
alization group flows, should be applicable. The scaling ansatz is,
therefore, an important step toward a complete theoretical de-
scription of the jamming transition capable of systematically including
friction, nonspherically symmetric potentials, three-body interactions,
and other features of the real world to understand the extent of
universality in the mechanical properties of disordered solids.

Materials and Methods
Definition of Jammed Sphere Packing. We consider disordered systems of N
soft frictionless spheres in a d-dimensional periodic box of volume V. Systems
are at temperature T = 0 and thus sit in a local minimum of the energy
landscape defined by the pairwise interaction potential

U
	
rij


=
U0

α

�
1−

rij
Ri +Rj

�α
Θ
�
1−

rij
Ri +Rj

�
, [15]

where rij is the distance between the centers of particles i and j, Ri and Rj are
the particles’ radii, ΘðxÞ is the Heaviside step function, and U0 sets the energy
scale. The packing fraction is ϕ=V−1P

iVi, where Vi is the d-dimensional
volume of particle i, and the shear strain e is defined relative to the strain
of the as-quenched state. We define an effective spring constant, keff =
U0ðα− 1ÞD−2

avgΔZ2ðα−2Þ (51), where Davg is the average particle diameter. We
then rescale energy, pressure, shear stress, bulk modulus, and shear modu-
lus by keff with appropriate factors of Davg, so that E= energy=keffD2

avg,
p=pressure×Davg=keff, and so on. The scaling ansatz presented in Eq. 1 is for
these scaled quantities and does not depend on the exponent α in Eq. 15.

Numerical Generation of Jammed Sphere Packings. We generate jammed
sphere packings in the fixed peN ensemble as follows. Particles are initially placed
at random in a square or cubic periodic box at a very large packing fraction.
We then quench the system to a local energy minimum corresponding to a

A

B
C

Fig. 2. Scaling collapse of the residual shear stress: (A) s2 as a function of ΔZ,
(B) s2 scaled according to Eq. 13 using the predicted exponents δs = 5=2 and
ψ= 1, and (C) probability distribution of s2N=ΔZ4 for systems at fixed NΔZ
(50≤NΔZ ≤ 52) and fixed p=ΔZ2 (7.9×10−3 ≤p=ΔZ2 ≤ 8.3× 10−3). For N= 64,
insufficient data exist in these ranges to calculate a distribution. Symbols and
colors have the same meanings as in Fig. 1.
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zero-temperature configuration using the FIRE algorithm (52). We then sys-
tematically adjust the packing fraction until we reach a target pressure (to within
1% accuracy). Starting from this final configuration, we repeat this process with
a slightly lower target pressure. By continuously lowering the target pressure, we
produce mechanically stable packings over a range of pressures (between
p= 10−8 and p= 10−1) and system sizes (between N= 64 to N= 4,096) with e= 0.
Approximately 5,000 configurations are generated for each combination of p
and N. We focus in the text on d = 3 systems with harmonic interactions (α= 2 in
Eq. 15) and a 50:50 bidisperse mixture of particles with diameter ratio 1:1.4. We
also generate 2D packings with a uniform diameter distribution between 1 and
1.4 (data in SI Text).

Pressure–Shear Stress Exponent Equality
Here, we derive a key result by connecting the scaling of the
pressure and shear stress to obtain the exponent relation

δs = δp +
ψ
2
. [16]

The difference in scaling can be understood by considering the
stress tensor, which is microscopically calculated using (53)

σαβ =− 
1
V

X
k

bðkÞ r̂ðkÞα r̂ðkÞβ . [17]

Here, α and β index spatial components,~r ðkÞ = rðkÞ r̂ðkÞ is the vec-
tor connecting the centers of two particles along bond k, r̂ðkÞ is a
unit vector, f ðkÞ is the magnitude of the force on the bond, and
bðkÞ = f ðkÞrðkÞ. Therefore, the pressure (the typical diagonal com-
ponents of σαβ) and the shear stress (the typical off-diagonal
components) are set by the same residual forces. However, the
off-diagonal components add incoherently, introducing an addi-
tional system size dependence in the shear stress.
The pressure of an individual system is

p=− 
1
d
Trσ=

1
Vd

X
k

bðkÞ =
Nb

Vd
hbik, [18]

where Nb =NZ=2 is the number of bonds, and h·ik indicates an
average over all bonds. We will indicate ensemble averages with
a Λ subscript, and therefore, the ensemble average pressure is

hpiΛ =
Nb

Vd
hbiΛ. [19]

Near the jamming transition, the pressure vanishes, but Nb=Vd is
slowly varying. We may, therefore, regard Nb=Vd as constant, so
that hbiΛ obeys the same scaling as hpiΛ as in Eq. 2.
For an ensemble where the pressure is not held fixed, the

fluctuations in p are described by

δp2 ≡
D
ðp− hpiΛÞ2

E
Λ
. [20]

Substituting in Eqs. 18 and 19, Eq. 20 can be written as

δp2 =
Nb

V 2d2
X
k

hD
bð0ÞbðkÞ

E
Λ
− hbi2Λ

i
[21]

=
Nb

V 2d2

h�
b2
�
Λ − hbi2Λ

i

+
Nb

V 2d2
X
k≠0

�D
bð0ÞbðkÞ

E
Λ
− hbi2Λ

�
. [22]

We now make two assumptions. First, one would expect that
a microscopic quantity like bðkÞ should have a consistent scaling

form, so that the distribution Pðb=hbiΛÞ is independent of system
size and ΔZ. This expectation is confirmed in Fig. S4, and it
implies that the variance, hb2iΛ − hbi2Λ, is proportional to hbi2Λ and
therefore scales like p2. Similarly, the correlations hbð0ÞbðkÞiΛ with
nearby bonds should scale like p2. Second, we assume that the
correlations between force moments bðkÞ decay rapidly with the
distance between the bonds. This assumption is consistent with
earlier assumptions made to derive the scaling of the shear
modulus (21) and the widespread failure to find long-ranged
force correlations in jammed systems. Thus, although there may
be some very short-range correlations, this should not change the
scaling of δp2. Finally, because Nb ∼V ∼N, we see that

δp2 ∼
p2

N
. [23]

Note that, because the pressure is proportional to hbiΛ, this re-
sult is what one would expect from the central limit theorem.
We now consider the residual shear stress, which is quantified

by the deviatoric stress tensor

~σαβ = σαβ −
1
d
σγγδαβ. [24]

However, h~σαβiΛ = 0 by symmetry, and therefore, we instead consider

s2 ≡
�
~σαβ~σαβ

�
Λ. [25]

Note that Eq. 25 can also be written as s2 = hTr�σ− 1
dTrσ

�2iΛ.
Substituting Eq. 17, we have

s2 =
1
V 2

*X
kk′

bðkÞbðk′Þ

cos2ðθkk′Þ− 1

d

�+
Λ

, [26]

where θkk′ is the angle between bonds k and k′.
The sum can again be broken into two pieces:

s2 =
Nb

V 2

d− 1
d

�
b2
�
Λ

+
Nb

V 2

X
k≠0

�
bð0ÞbðkÞ


cos2ðθ0kÞ− 1

d

��
Λ
.

[27]

Note that, for an isotropic system, hcos2ðθ0kÞ−1=diΛ = 0. If only
short-range correlations exist, then the second term will again
have the same scaling as the first term. More specifically, if we
define the bond force moment correlation function

CM
	
~x


=

*X
k≠ 0

bð0ÞbðkÞ
�
r̂ð0Þ r̂ðkÞ −

1
d

�
δ
�
~xð0, kÞ −~x

�+
Λ

, [28]

where~x ð0, kÞ is the vector between bond 0 and bond k, then

s2 =
Nb

V 2

�
d− 1
d

�
b2
�
Λ +

Z
CM

	
~x


dd~x

�
. [29]

Thus, if there are no long-range correlations, then the final
integral converges to a finite result as N→∞ that is proportional
to hb2iΛ. s2 will then scale like hb2iΛ=N, and because we have
already seen that hb2iΛ ∼ hbi2Λ, we have

s2 ∼
p2

N
. [30]

We, therefore, expect s2N=p2 ∼ΔZ2δs−ψ−2δp to be independent
of ΔZ for sufficiently large N, implying our exponent relation
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δs = δp +ψ=2 of Eq. 16. In general, using Eq. 9 and Eq. S12 (SI
Text), we see that

s2N
p2

= f ðNΔZψÞ. [31]

Fig. S5 shows that this scaling form is obeyed (until analytic
corrections become relevant at large ΔZ) (SI Text) and that
s2N=p2 is constant over several decades of p as expected, affirm-
ing our analytical argument for the scaling relation of Eq. 16.

Finally, note that although the diagonal and off-diagonal com-
ponents of the stress tensor scale differently with distance to the
critical point, their fluctuations scale the same way.
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1. Changing Ensembles and Integrating over the ΔZ Distribution. Eqs.
1–5 can be easily adapted to the fixed peN ensemble by inverting
Eq. 2,

Δϕ
ΔZβϕ

=Φ
� p
ΔZδp

,
e

ΔZβe
,NΔZψ

�
, [S1]

and inserting this into Eqs. 1 and 3–5. The other scaling functions
can then be written as functions of the scaled pressure, shear
strain, and system size, taking the forms

E=ΔZζE
� p
ΔZδp

,
e

ΔZβe
,NΔZψ

�
, [S2]

s=ΔZδsS
� p
ΔZδp

,
e

ΔZβe
,NΔZψ

�
, [S3]

B=ΔZγBB
� p
ΔZδp

,
e

ΔZβe
,NΔZψ

�
, [S4]

and

G=ΔZγGG
� p
ΔZδp

,
e

ΔZβe
,NΔZψ

�
. [S5]

Note that the scaling functions in Eqs. S2–S5 are different from
those appearing in Eqs. 1–5. It is straightforward to adjust the
theory to other ensembles, such as the fixed Δϕ  sN ensemble of
the original jamming phase diagram (4) or the fixed psN ensem-
ble of ref. 9.
Recall that ΔZ is not externally controlled but instead, is

measured for packings at a given p, e, and N, forming the
probability distribution RðΔZjp, e,NÞ. The scaling hypothesis
implies that the probability distribution RðΔZjp, e,NÞ for ΔZ
should take the form

RðΔZjp, e,NÞ= p−
1
δpR
 
ΔZ

p
1
δp

,
e

p
βe
δp

,Np
ψ
δp

!
, [S6]

where we have taken combinations of the natural scaling variables
so that only the first variable depends on ΔZ. The prefactor p−1=δp
normalizes the distribution. Changing variables to W =ΔZ=p1=δp,
X = e=pβe=δp, and Y =Npψ=δp, we can integrate over the distribu-
tion to obtain the average of W:

hW i=
Z

RðW , X , Y ÞWdW . [S7]

Defining ZðX ,Y Þ≡Y 1=ψ R RðW ,X ,Y ÞWdW, we can write this as

N
1
ψhΔZi=Z

 
e

p
βe
δp

,Np
ψ
δp

!
. [S8]

Dropping the h.i notation and inverting Z with respect to the
second argument, we see that

p=N− δp
ψF1

� e
ΔZβe

,NΔZψ
�
. [S9]

Dividing by ΔZδp, we can write

p
ΔZδp

=
N−  δpψF1

�
e

ΔZβe ,NΔZψ
�

ΔZδp
[S10]

= ðNΔZψÞ−
δp
ψF1

� e
ΔZβe

,NΔZψ
�

[S11]

=F2

� e
ΔZβe

,NΔZψ
�
. [S12]

Note that the scaling function F2 could depend slightly on the
details of the numerical protocol used to create the systems.
Because of this interdependency between the scaling variables,
we see that the scaling functions in Eqs. S1–S5 can be written in
terms of just two variables, e=ΔZβe and NΔZψ. Furthermore, for
unsheared packings, e= 0 by our definition, and therefore, in that
case, the number of variables in the scaling functions is reduced
to only one, NΔZψ. Therefore, our theory predicts

E=ΔZζEðNΔZψÞ, [S13]

Δϕ=ΔZβϕΦðNΔZψÞ, [S14]

s=ΔZδsSðNΔZψÞ, [S15]

B=ΔZγBBðNΔZψÞ, [S16]

G=ΔZγGGðNΔZψÞ, [S17]

and as well as

N
1
ψΔZ=Z

�
Np

ψ
δp

�
. [S18]

2. Corrections to Scaling.Here, we examine the scaling collapses at
the upper critical dimension, du = 2, where we expect singular
corrections to scaling to be important. We also include analytic
corrections to scaling at large ΔZ in d= 3. Both types of cor-
rections to scaling are expected for critical phase transitions and
in no way contradict the ideas presented in the text. We begin by
showing numerical data for the energy, pressure, shear stress,
bulk modulus, and shear modulus, scaled according to our the-
ory, for systems in the fixed peN ensemble in both two (Fig. S1)
and three dimensions (Fig. S2). Note that, compared with Figs. 1
and 2, here we extended the data to larger ΔZ.
The 2D data in Fig. S1 show clear systematic deviations from

scaling in the energy, pressure, shear stress, and to a lesser ex-
tent, shear modulus. Such deviations from scaling are expected
at the upper critical dimension of a phase transition and are not
observed in three dimensions (Fig. S2). Also, note that (except
for B), these deviations are relatively small compared with the
singular behavior, which is scaled out in each plot (see figure 6 in
ref. 12). Therefore, for an extreme example, the energy collapse
is good only to a factor of about four, but the energies span a
range of 1014, because ΔZ varies by at least 104. Although we do
not have a theoretical prediction for the form that such correc-
tions should take, it has been shown that such data can be col-
lapsed by introducing logarithmic corrections (12, 13). However,
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we find that including small corrections to the scaling exponents
works equally well (Fig. S1, Inset in row 2).
A scaling ansatz describes only the leading order behavior near

a critical point. Subdominant corrections to scaling can and often
do exist. As one might, therefore, expect, the scaling collapse in
Figs. 1 and 2 as well as the collapse of B,G, etc. break down if the
data are extended to larger ΔZ. Fig. S2 clearly shows this for 3D
data. Far from the critical point (ΔZ∼ 1), one expects analytic
corrections to scaling, reflecting the noncritical dependence of
energy and other properties on external parameters. We find the
deviations in our 3D data can be described all the way to
ΔZ≈ 0.5 by incorporating an overall multiplicative analytic cor-
rection to scaling. Expanding the analytic correction to E about
the critical point, our ansatz can be written as

E=ΔZζE0

�
Δϕ
ΔZβϕ

,
e

ΔZβe
,NΔZψ

�
ð1+ e1ΔZ+ . . .Þ. [S19]

Eq. S19 suggests that the energy should collapse by dividing
EΔZ−ζ by 1+ e1ΔZ for some appropriately chosen e1, which is
confirmed in Fig. S3, Upper, where we have set e1 =−0.13. An-
alytic corrections are not restricted to the scaling of the energy,
and it is clear from our theory how the higher-order terms in
Eq. S19 should propagate to the scaling of other quantities. For
example, including linear corrections to the scaling of the bulk
modulus gives

B=ΔZγBBðNΔZψÞð1+ b1ΔZ+ . . .Þ, [S20]

suggesting that we should get data collapse by dividing BΔZ−γB by
1+ b1ΔZ, which is confirmed by Fig. S3, Lower (recall that
γB = 0), where b1 = 0.5. Finally, note that if the corrections to
scaling in Eqs. S19 and S20 were written in terms of the pressure
p or the excess packing fraction Δϕ, the leading correction would
be proportional to

ffiffiffi
p

p
or

ffiffiffiffiffiffiffi
Δϕ

p
. The fact that the corrections are

linear in ΔZ suggest that ΔZ is, indeed, a natural control variable
for the theory, although it technically depends on p or Δϕ, de-
pending on ensemble.

3. Review of Theoretical Arguments for Scaling Exponents. In the
text, we used known numerical results to extract the exponents
δp, γB, γG, and ψ, from which we obtained the other exponents
from Eq. 6. Because we then derived the scaling relation

γG = γB +ψ, we actually only needed to extract δp, γB, and ψ to
fully determine all scaling exponents. Here, we provide a brief
review of some previous theoretical arguments for δp, γB and ψ,
so that the full theory rests on theoretical rather than numerical
grounds. We emphasize that there are multiple ways of un-
derstanding these relations, and therefore, the arguments given
here are not unique.
In ref. 21, Wyart showed that the scaling of the excess contact

number with the pressure can be understood as follows. The
frequency of the lowest vibrational mode (excluding phonons) can
be written as ω2

0 =A1ΔZ2 −A2p, where A1 and A2 are positive
constants. The first term, A1ΔZ2, comes from a variational ar-
gument (15) for the spectrum of a sphere packing in the absence
of stresses, whereas the second term, −A2p, results from re-
introducing the prestress on each particle–particle contact. Be-
cause ω2

0 ≥ 0 for a stable packing, we obtain the bound
ΔZ≥C0p1=2. Wyart (21) argues that this becomes an equality for
jammed sphere packings, because rearrangements only result
from instabilities and have the effect of making the system only
marginally stable. Therefore, p∼ΔZ2, and δp = 2.
From this result, Goodrich et al. (10) showed that ψ= 1 follows

by considering finite-size systems very near the jamming transi-
tion. Because a jammed system must always have at least one
contact in excess of the isostatic number of contacts to support a
pressure, the contact number Z is bounded by Z−Ziso ≥ 2=N,
where Ziso ≡ 2d− 2d=N. Thus, one would expect a cross-over in
the scaling from Z−Ziso ∼ p1=2 at high pressure to Z−Ziso ∼ 1=N
at low pressure. Therefore, if scaling collapse exists, it must be of
the form ðZ−ZisoÞN = ~Zðp1=2NÞ, where ~ZðxÞ→ 2 as x→ 0+. Re-
call that, here, we have defined ΔZ≡Z−Ziso − 2=N, and
therefore, we have NΔZ=Zðp1=2NÞ, where ZðxÞ= ~ZðxÞ− 2.
Comparing this form with Eq. 12 and using δp = 2, we see
that ψ= 1.
Finally, Wyart (21) understood the scaling of the bulk modulus

by writing the energy of a deformation as a sum of the projection
of the deformation on the various states of self-stress. For
packings of purely repulsive spheres, there is a state of self-stress
with only positive components that projects entirely onto hydro-
static compression and dominates the response near the jamming
transition. Because the response does not depend (to leading or-
der) on the total number of states of self-stress and thus on ΔZ, we
have B∼ΔZ0. Therefore, we see that γB = 0.
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Fig. S1. Scaling in two dimensions. In rows 1–5, the energy, pressure, shear stress, bulk modulus, and shear modulus, respectively, are all scaled according to
our theory. Small singular corrections to scaling as well as analytic corrections at large ΔZ are observed. In 2D, we include N= 8,192 systems (red crosses); the
rest of the symbols and colors have the same meaning as in Fig. 1.
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Fig. S2. Scaling in three dimensions. In rows 1–5, the energy, pressure, shear stress, bulk modulus, and shear modulus, respectively, are all scaled according to
our theory. Data are extended to higher ΔZ than what is shown in Figs. 1 and 2, and analytic corrections to scaling are observed in this region. Symbols and
colors have the same meaning as in Fig. 1.
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Fig. S3. Analytic corrections to scaling at large ΔZ for 3D data. (Upper) EΔZ−4=ð1+ e1ΔZÞ, where e1 =−0.13. (Lower) B=ð1+b1ΔZÞ, where b1 = 0.5. Symbols and
colors have the same meaning as in Fig. 1. For comparison, the scale on the y axis corresponds to that in Fig. S2.

Fig. S4. Collapse of the distribution Pðb=hbiÞ for different system sizes and ΔZ. (Inset) hb2i∼ hbi2 over many decades in pressure (or equivalently, ΔZ). Symbols
and colors have the same meaning as in Fig. 1.
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Fig. S5. Verification of the pressure–shear stress exponent relation. s2N=p2 is constant over several decades in NΔZ until ΔZ is large enough so that analytic
corrections to scaling become important (SI Text). Symbols and colors have the same meaning as in Fig. 1.
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