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Rigidity transitions induced by the formation of system-spanning disordered rigid clusters, like the jamming
transition, can be well described in most physically relevant dimensions by mean-field theories. A dynamical
mean-field theory commonly used to study these transitions, the coherent potential approximation (CPA),
shows logarithmic corrections in two dimensions. By solving the theory in arbitrary dimensions and extracting
the universal scaling predictions, we show that these logarithmic corrections are a symptom of an upper
critical dimension dupper = 2, below which the critical exponents are modified. We recapitulate Ken Wilson’s
phenomenology of the (4 − ε)-dimensional Ising model, but with the upper critical dimension reduced to 2. We
interpret this using normal form theory as a transcritical bifurcation in the RG flows and extract the universal
nonlinear coefficients to make explicit predictions for the behavior near two dimensions. This bifurcation is
driven by a variable that is dangerously irrelevant in all dimensions d > 2 which incorporates the physics of
long-wavelength phonons and low-frequency elastic dissipation. We derive universal scaling functions from the
CPA sufficient to predict all linear response in randomly diluted isotropic elastic systems in all dimensions.
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I. INTRODUCTION

We present here a complete analysis of a particular
isotropic, homogeneous rigidity transition. Our solution pro-
vides universal scaling predictions for the linear responses of
the system—viscosities, elastoplastic and viscoelastic func-
tions, Green’s functions, densities of states, etc. It also implies
a renormalization group flow which recapitulates the classic
(4 − ε)-dimensional Ising critical point predictions with the
upper critical dimension reduced to two.

There is a family of rigidity transitions of past and cur-
rent interest, with many common features but not all sharing
the same universality class. Most prominent is the recent
focus on the jamming transition [1,2], applied to glasses,
colloidal and granular systems, and foams. In jamming, a
replica solution in infinite dimensions [3,4] makes quantitative
predictions for microscopic power laws (universal contact
force and gap size distributions) all the way down to two
dimensions [5–7]. Other examples include rigidity transitions
in tissues [8,9] relevant to wound healing and embryonic or-
gan formation, dislocation entanglement in crystals [10], and
"double descent" accuracy transitions in deep learning [11].
Several of these systems appear to share the same dimension-
independent universal power laws above two dimensions,
motivating the simplified model investigated here.

Our work is inspired by the discovery [12] of diluted net-
works in both two and three dimensions that show a jamming
transition as an endpoint of a line of rigidity percolation

transitions, studied through static simulations and via the co-
herent potential approximation. These networks have no linear
elastic moduli in a floppy phase and show a jump in the bulk
modulus and linear growth in the shear modulus at a jamming
point of the phase boundary. With the inclusion of additional
angular and bending forces, these models are also believed
to be applicable to fiber networks, such as the ones found
in cytoskeletal networks and extracellular matrices [13,14].
Here we present an analysis of this model for the rigidity
percolation transition, where all static moduli grow linearly
from zero.

Our model is an isotropic, continuum version of the co-
herent potential approximation (CPA) [12,15,16]. It replicates
the CPA predictions for the dilution of a random, amorphous
spring network studied by Düring et al. [17]. Both are out-
growths of what is termed rigidity percolation [18–20], where
a network of springs connecting nodes with no angular forces
is diluted, not until it becomes completely disconnected (per-
colation) but until its elastic moduli vanish. It is known that
rigidity percolation on a two-dimensional triangular lattice
has critical exponents that differ from those found for rigidity
percolation on graphs generated from jammed packings of
spheres, with a modulus that with a higher power with ex-
cess coordination number [21,22]. We conjecture that lattice
anisotropy [23], and/or undeformed springs in a line (forming
second-order constraints [20,24]) are relevant perturbations at
the rigidity transition for spring networks, and that our theory
is applicable to a randomly diluted isotropic network without
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these buckling transitions (Sec. V). This continuum theory,
when used to describe jamming [12,25], matches most of the
properties seen numerically, both directly and in spring net-
work models generated from jammed configurations [26] and
simulations of diluted amorphous spring networks [17]. The
calculation presented here focuses on the case where the bulk
modulus does not jump, which includes most of the rigidity
transitions other than jamming. Nevertheless, this calculation
captures the predicted scaling of the shear mode close to the
jamming transition [25]. We leverage our exact solutions of
the continuum theory to generate universal scaling forms for
all linear response properties, and we use them to calculate
new critical exponents below two dimensions described by
nonlinear renormalization group flows. We identify a scaling
variable which is dangerously irrelevant for d > 2 which is
responsible for low-frequency dissipation, the phonon density
of states, and the logarithmic corrections in d = 2.

We conjecture that many qualitative features of our anal-
ysis are important predictions and tools that should apply
more generally. (1) Many replica-theory and other mean-field
methods yield self-consistent formulas that predict power-law
scaling near transitions [27]. Our analysis is a guide to extract-
ing universal predictions from these self-consistent relations.
For example, the Curie-Weiss law predicts the entire phase
behavior of an Ising magnet above four dimensions [28], but
only the power laws and the scaling function near the critical
point are expected to be universal. (2) Much impressive work,
especially in jamming, has focused on the microscopic behav-
ior [29–35] (how jammed systems are different from regular
systems [36]). Our previous work [16,37–40] has taken a dif-
ferent perspective by analyzing the emergent phase behavior
in terms of Widom scaling theories (investigating how jam-
ming may be reduced to regular system behavior). Our work
here builds on these by presenting a wonderful example of
the rich phenomena that can be extracted by focusing on the
macroscopic behaviors in space and time of this and other sys-
tems. (3) Our extraction of RG flows allows us to explain the
quite nontrivial invariant scaling variables in the upper critical
dimension (as we found also in the 4D Ising model [41]); these
variables should appear in a wide class of models that share
this upper critical dimension. (4) Many higher-temperature
features of glasses are missed in the infinite-dimensional
replica theories (such as the continued relaxation below the
mode-coupling transition) and are thought to be nonperturba-
tive in the inverse dimension 1/d . Our rigidity transition has
a dangerously irrelevant variable above two dimensions that
is needed to incorporate low-frequency vibrational modes and
dissipation, which we show is indeed such a nonperturbative
effect in the limit d → ∞. The work presented here provides
a road map for dealing with such irrelevant variables.

Our work is similar in some aspects to that of a manuscript
by Vogel et al. [42]. They form a self-consistent theory for
the shear response of a nearly unjammed solid with similar
structure to our continuum CPA. Their analysis incorporates
nontrivial momentum dependence which is important in the
disordered glassy phase studied by the authors of the article
in previous work [43,44] and by others [45]; this type of
momentum-dependent modulus is ignored by the CPA. Our
work, on the other hand, is focused on calculating the uni-
versal scaling functions for the transition, deducing nontrivial

normal forms for renormalization group flows and under-
standing specifically the singular behavior of the theory found
in two dimensions.

The organizational structure of our paper is as follows: In
Sec. II, we briefly review the CPA as applied to weakened
elastic media. We show that, under quite general assumptions,
elastic moduli vanish linearly in deviations from the critical
dilution fraction μ ∼ δp ∼ δz̃, where δp ≡ p − pc is the dis-
tance from the critical point in bond occupation probability
and δz̃ ≡ z̃ − z̃c is the distance from the critical point in coor-
dination number. In Sec. III, we evaluate the universal scaling
functions for the space-time linear response of the theory near
the critical point directly in d = 3 dimensions and in d = 2
dimensions and show that the appropriate scaling for the dy-
namical behavior close to the critical point has log corrections
in two dimensions, as was noticed in Ref. [17]. In Sec. IV and
Appendix A, we cast solutions close to the critical point into
a scaling theory in general dimensions d and show that d = 2
demarcates the boundary between two differing sets of critical
exponents. We construct renormalization group flow equa-
tions that are consistent with the critical exponents predicted
by the theory (with more details located in Appendixes B
and C), with an exchange of stability between two RG fixed
points in d = 2. In this way, we interpret d = 2 as the upper
critical dimension of the transition and find the appropriate
scaling variables in d = 2 analogously to those in the four-
dimensional (4D) Ising model. The logarithmic shifts that are
one signature of the upper critical dimension are investigated
in more detail in Appendix D through a direct comparison to a
lattice CPA calculation on the bond-diluted triangular lattice.
Finally, in Sec. V, we discuss the applicability of this model
more broadly to a wide variety of different rigidity transitions
in disordered elastic systems.

II. THE CPA AND CRITICAL EXPONENTS FOR STATIC
MODULI

We examine a continuum version of the CPA inspired by
the lattice CPA [15]. The lattice CPA can be used to describe a
system composed of purely harmonic springs of strength k0 on
some regular lattice that are independently randomly occupied
with probability p. This is equivalent to placing a probability
distribution on the strengths of bonds k′,

k′ ∼ p δ(k′ − k0) + (1 − p) δ(k′), (1)

so that each bond of strength k0 is independently randomly
occupied with probability p. Other effective medium theories
have placed more realistic distributions of bonds based on
observations of stress and strain fluctuations from simulations
of particular systems (soft spheres touching, gels near their
gelation point, etc. [46]). One then tries to describe this dis-
ordered elastic system by a nondisordered effective medium,
whose physical properties are renormalized by p. Finding the
best effective value of stiffness k so that the disorder-averaged
elastic Green’s function 〈G(k′, ω)〉 ≈ G(k(ω), ω), the elastic
Green’s function for an effective medium with no disorder,
amounts to solving a self-consistent equation for the stiff-
nesses. The effective moduli are allowed to become frequency
dependent and complex, transforming them into viscoelastic
moduli [15]. This CPA is related to the CPA used in other
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FIG. 1. Schematic of the approximation made by the CPA. (a) A
phonon traveling (upwards) into an elastic medium with randomly
distributed defects scatters in complicated ways. The dark circles
represent the isotropically scattering defects in our continuum CPA,
while the colors represent the magnitude of the displacement field.
(b) The same phonon traveling through the effective medium is
damped as it propagates. The CPA gives renormalized elastic con-
stants for a medium with no defects, which incorporates the strong
scattering of shorter-wavelength phonons through a damping term in
the effective moduli.

impurity scattering problems which makes a similar assump-
tion that the self-energy is local �(ω, q) ≈ �(ω). The content
of the approximation made by the CPA is twofold: First, the
effective stiffnesses depend only on ω and not on q. Second,
this constraint is imposed by requiring that the single-site T
matrix for multiple scattering vanishes [47], as opposed to the
full T matrix (which is analytically intractable). The result of
the approximation is a homogeneous effective medium that
incorporates the effects of phonons scattering off of defects
introduced by the disorder into a effective damping (Fig. 1).

The self-consistent equation for the shear modulus of the
effective medium under the assumptions of the lattice CPA
[12,15] is

p − μ/μF

1 − μ/μF
= 1

z̃

∫
BZ

− dd q Tr(DG), (2)

where the integral is an average over the first Brillouin zone,
z̃ denotes the average number of constraints per microscopic
unit in the undiluted system (in the lattice case, it is the
number of bonds per node), μF is the shear modulus in the
completely filled, nondisordered system, and D and G are
the dynamical matrix and Green’s function for the medium,
respectively. This long-wavelength limit of the lattice problem
reproduces the isotropic CPA for amorphous spring networks
investigated by Düring et al. [17]. This expression is self-
consistently solved for μ(p, ω), which is proportional to the
best effective value of the microscopic stiffness k. Some defi-
nitions of important parameters that regularly appear are given
in Table I.

We are interested in properties of disordered rigidity tran-
sitions for systems that are statistically isotropic. To lose
reference to any particular lattice, we pass to a continuum
version of the CPA, where the Brillouin zone is replaced by
a sphere of radius qD (the Debye wave vector) and dynamical
matrices and Green’s functions are written for an isotropic
continuum elastic sheet. We will see that this version of the
CPA also describes the CPA scaling behavior of diluted lat-
tices with a continuous rigidity transition that are isotropic at
long wavelengths, as anisotropic terms enter as corrections to
scaling. With only one independent microscopic stiffness, it
suffices to track the behavior of the renormalized shear mod-
ulus μ as it deviates from its value in the unweakened system
μF , as all other stiffnesses are proportional to this modulus.
We decompose the continuum dynamical matrix and Green’s

TABLE I. Descriptions of physical parameters and scaling variables. The location within the paper of the definition of each variable is also
included.

Variable Description Location

μ Viscoelastic shear modulus –
δp p − pc: deviation from continuous rigidity transition pc –
w ρω2: (undamped); iγω: (overdamped) –
f w/μ: frequency measured relative to shear stiffness –
M (μ/μ0 )/|δp|: scaling variable formed between μ and δp Eq. (26), Eq. (27), Eq. (A9)
F ( f / f0 )/|δp|: scaling variable formed between f and δp in d > 2 Eq. (26), Eq. (A19)
F2 Scaling variable formed between f and δp in d = 2 Eq. (30), Eq. (A29)
Fd ( f / f0d )/|δp|2/d : scaling variable formed between f and δp in d < 2 Eq. (27), Eq. (A34)
U Scaling variable for leading irrelevant correction to scaling in d > 2 Eq. (26), Eq. (A20)
Ud Scaling variable for leading irrelevant correction to scaling in d < 2 Eq. (27), Eq. (A35)
M Universal scaling function for μ in d > 2 implicitly defined by Eq. (26)
M2 Universal scaling function for μ in d = 2 implicitly defined by Eq. (30)
Md Universal scaling function for μ in d < 2 implicitly defined by Eq. (27)
D Universal scaling function for the density of states in d > 2 Eq. (A47)
D2 Universal scaling function for the density of states in d = 2 Eq. (A49)
Dd Universal scaling function for the density of states in d < 2 Eq. (A48)
G Universal scaling function for the Green’s function in d > 2 Eq. (A54)
Gd Universal scaling function for the Green’s function in d < 2 Eq. (A55)
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function into transverse and longitudinal parts to evaluate the
integrand:

D = DL(q)q̂iq̂ j + DT (q)(δi j − q̂iq̂ j ),

G = GL(q, ω)q̂iq̂ j + GT (q, ω)(δi j − q̂iq̂ j ),

Tr(DG) = GL(q, ω)DL (q) + (d − 1)GT (q, ω)DT (q).

(3)

At zero frequency, assuming the dynamical matrix of the
effective medium is invertible (as it is on the solid side of the
transition), G(q, 0) = D−1 (see the beginning of Appendix A
for details on the specific forms of DL/T and GL/T ), and so the
integrand is the trace of a d-dimensional identity matrix and
the self-consistent equation can be evaluated directly:

p − μ/μF

1 − μ/μF
= d

z̃
⇒ (p − d/z̃) − (1 − d/z̃)μ/μF

1 − μ/μF
= 0. (4)

The constant d/z̃ is identified as pc. It is identical to the
Maxwell counting constraint ignoring states of self-stress:
each microscopic unit has on average pz̃ constraints and d
degrees of freedom, and so pc = d/z̃. Keeping 0 < pc < 1,
and defining μ′ = (1 − d/z̃)μ/μF , one has

(p − pc) − μ′

1 − μ′/(1 − pc)
= 0, (5)

and so μ′ ∼ (p − pc) fCPA with fCPA = 1: The static shear
modulus vanishes linearly with p − pc on approaching the
transition.

It is tempting, then, to declare the CPA a mean-field-like
theory that gives dimension-independent critical exponents, as
Landau theory does in magnets. This turns out not to be true;
the dynamical scaling of the theory has much more interesting
structure.

III. TWO AND THREE DIMENSIONS AND A
DANGEROUSLY IRRELEVANT VARIABLE

In this Sec., we expand the solution for the viscoelastic
modulus μ(ω) close to its continuous stiffness transition.
We then cast the solution near the critical point in terms of
scaling variables and identify universal scaling functions. In
three dimensions (Sec. III A), we show that it is necessary
to retain an invariant scaling combination associated with an
irrelevant variable to capture the low-frequency dissipative
part of the viscoelastic modulus in the case of microscopi-
cally undamped dynamics. This irrelevant variable also gives
information about the low-frequency density of states. This
suggests that the irrelevant variable is dangerous: It vanishes
under a coarse-graining procedure, but it cannot be set to 0
directly without losing access to a description of important
low-frequency vibrational modes.

In two dimensions (Sec. III B), we show that the scaling
variables that were correct in three dimensions no longer
capture the behavior near the critical point. There are large,
logarithmic shifts in physically relevant frequencies. In Sec.
IV, we will show that this modification of the scaling variables
is a result of the leading irrelevant variable becoming marginal
in d = 2, significantly altering the low-energy physics. This
identifies d = 2 as the upper critical dimension, and we write

new critical exponents and scaling functions below the upper
critical dimension. We also construct renormalization group
flows consistent with the analytic structure of the scaling
variables.

A. Scaling in three dimensions

We first note that, at zero frequency, μ vanishes linearly
with p as p → 3/z̃ ≡ pc. We subtract pc from each side of
Eq. (2) [see Appendix A from Eq. (A3) to Eq. (A11) for
details] so that the self-consistent relation becomes

(p − pc) − (1 − pc)μ/μF

1 − μ/μF

= 3

z̃q3
D

(∫ qD

0
dq

wq2

(λF /μF + 2)μq2 − w
+ 2

∫ qD

0
dq

wq2

μq2 − w

)
(6)

where the functional form of w depends on the microscopic
damping of the system. We focus on undamped dynamics,
where w = ρω2, but w = iγω for overdamped dynamics has
very similar scaling behavior. One could in principle also
consider the case of Galilean-invariant Kelvin damping, where
w = ρω2 + iηωq2, but the analysis of the asymptotic scaling
in this manuscript assumes w is q independent.1 We write a
scaling theory for small δp ≡ p − pc, which is the distance
to the critical point as measured in p. At w = 0, the integral
terms vanish. This suggests a definition for a scaling variable
for the shear modulus:

M ≡ μ/μ0

|δp| , μ0 ≡ μF

1 − pc
. (7)

We use capital letters, such as M, to denote the corresponding
scaling variable for a physical quantity like μ. The scaling
variables are typically a physical quantity divided by a nonuni-
versal, dimensionful constant, such as μ0, and some power of
|δp|. We will use script letters, such as M, to denote scaling
functions, which take scaling variables as arguments.

The integrals in Eq. (6) can be done directly; it is useful
to substitute ξ = (q/qD)2 and rescale to wL = w/(λF /μF +
2)q2

D and wT ≡ w/q2
D to find

δp − |δp|M
1 − |δp|M/(1 − pc)

= − 3

2z̃

(∫ 1

0
dξ

ξ 1/2

1 − (μ/wL )ξ
+ 2

∫ 1

0
dξ

ξ 1/2

1 − (μ/wT )ξ

)
.

(8)

1The function w relates the frequency of a mode to the correspond-
ing eigenvalue of the dynamical matrix. In the case of a lattice with
no damping, an eigenvector of the dynamical matrix with frequency
ωi would have a corresponding eigenvalue mω2

i = w′(ωi ). In the
continuum case, ρ replaces m [see Appendix A from Eq. (A3) to
Eq. (A7) for details].
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Assuming Im(μ) < 0 for w > 0 (necessary for causality), we
have

δp − |δp|M
1 − |δp|M/(1 − pc)

= 3

z̃

(
wL

μ
+ 2

wT

μ

)
− 3

z̃

((
wL

μ

)3/2

tanh−1

(√
μ

wL

)

+ 2

(
wT

μ

)3/2

tanh−1

(√
μ

wT

))
. (9)

We are interested in the low-frequency behavior. The terms
proportional to w/μ dominate over the terms proportional
to (w/μ)3/2 at low frequencies. This suggests a scaling
w/μ ∼ |δp|, which suggests we should expand the func-
tions tanh−1(z) about their appropriate complex infinity. For
undamped dynamics, we note that Im(μ) � 0 and hence
Im(

√
μ) � 0 to respect causality. The function tanh−1(z) can

then be expanded to find

δp − |δp|M
1 − |δp|M/(1 − pc)

≈ 3

z̃

(
wL

μ
+ 2

wT

μ

)

+ 3

z̃

iπ

2

((
wL

μ

)3/2

+ 2

(
wT

μ

)3/2
)

.

(10)

One can check that since Im(μ) � 0, we can write

δp − |δp|M
1 − |δp|M/(1 − pc)

≈ 3

z̃

(
wL

μ
+ 2

wT

μ

)

+ 3π

2z̃

((
−wL

μ

)3/2

+2

(
−wT

μ

)3/2
)

.

(11)

This expansion is more general and also works for the over-
damped case where w ∼ iγω. This asymptotic analysis of the
leading correction to the CPA result reproduces the calculation
done in Appendix B of Ref. [48]. Now we are prepared to
define more invariant scaling variables and our first universal
scaling function. We first insert the definition of M in for μ ev-
erywhere. Then, we define �2 (named for the undamped case)
as the scaling variable for w which makes the dominant term
of the scaling for the frequency-dependent part |δp|�2/M.
The definition of w in terms of � is then inserted in the
higher-order frequency piece, and the remaining terms are all
absorbed into a scaling combination U for an irrelevant vari-
able. The result, after dividing both sides by |δp| and throwing
away the higher-order contribution from the denominator of
the left-hand side, is

±1 − M = �2

M
+ U

(
−�2

M

)3/2

,

�2 ≡ ω2/ω2
0

|δp|2 , U ≡ u/u0|δp|1/2.

(12)

The sign ±1 = δp/|δp| is for the rigid and floppy side of
the transition, respectively; formulas for ω0 and u/u0 can
be found in Appendix A. This is an implicit definition of

FIG. 2. Prediction for the shape of the excess density of states
near the rigid-floppy transition in d = 3 (see also Fig. 6). We com-
pare our density of states to the Debye result and find an excess
of states that contribute to the boson peak that is often seen in
disordered rigid systems. The dangerously irrelevant variable U must
be retained to capture the Debye phonon contribution to the density
of states below � = 1/2. These long-wavelength phonons are of
course important to the physics but are swamped near the rigidity
transition by the flat density of states above ω∗. Hence the phonon
contribution is irrelevant in the RG sense, even though it is important
to the physics.

a universal scaling function for M = M(�,U ).2 Setting the
leading irrelevant piece U to 0 allows us to solve a quadratic
equation for M as 2M(�, 0) = ±1 − √

1 − 4�2, as found
indirectly in Ref. [12] and directly in Refs. [16,39]. How-
ever, this form of the universal scaling function (unphysically)
has no scattering-induced dissipation on the rigid side of
the transition until � = 1/2, while the full solution retain-
ing U has Im(M) < 0 for all � > 0.3 As mentioned in the
Introduction to this section, this identifies U as an invariant
scaling combination associated with a dangerously irrelevant
variable for the case of undamped microscopic dynamics, as
the function M(�,U ) is not analytic in its second argument at
zero. Retaining U is necessary to understand the details of the
low-frequency viscosity, susceptibility, and density of states.

For models with many soft modes, we can illustrate the
excess number of soft modes by comparing the density of
states with that of the Debye model, in which D(ω) ∼ ωd−1.
We plot the predicted universal scaling forms for the density
of states divided by the Debye form for different values of
the dangerously irrelevant variable in Fig. 2. The peak in
the excess density of states is located near the frequency
ω∗ ∼ |δp| where the density of states becomes nearly flat: a
characteristic feature of all rigidity transitions in this family.
The dangerous irrelevant variable U controls the continuum

2In a more complete self-consistent theory beyond the CPA such
as in Ref. [42], the shear modulus will also have a q dependence,
leading to a scaling form M(�, Q,U ).

3The effective medium theory misses the important contributions of
quasilocalized modes to the low-frequency density of states, which
give a characteristic scaling D(ω) ∼ ω4 [49].
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phonon density of states, which vanishes in the appropriate
scaling limit.

We note in passing that the frequency scaling variable
only appears in conjunction with the scaling variable for the
modulus. Instead of defining a scaling for w, then, we could
define a scaling variable for f ≡ w/μ. This turns out to be
a particularly natural choice that eases the analysis in two
dimensions. Written in terms of this scaling variable, the self-
consistent equation reads

±1 − M = F + U (−F )3/2,

F ≡ f / f0

|δp| .
(13)

B. Scaling in two dimensions

We follow the steps above, and again evaluate the inte-
gral directly in d = 2, where now 2/z̃ = pc. We subtract pc

from each side of Eq. (2) so that the self-consistent relation
becomes

(p − pc) − (1 − pc)μ/μF

1 − μ/μF

= 2

z̃q2
D

(∫ qD

0
dq

wq

(λF /μF + 2)μq2 − w
+

∫ qD

0
dq

wq

μq2 − w

)
(14)

We again write a scaling theory for small δp. The zero-
frequency scaling for the modulus is the same as in Eq. (7). We
perform the same substitution as in d = 3 of ξ = (q/qD)2 and
rescale to wL = w/(λF /μF + 2)q2

D and wT ≡ w/q2
D to find

δp − |δp|M
1 − |δp|M/(1 − pc)

= −1

z̃

(∫ 1

0
dξ

1

1 − (μ/wL )ξ
+

∫ 1

0
dξ

1

1 − (μ/wT )ξ

)
.

(15)

Assuming Im(μ) < 0 for w > 0, we have

δp − |δp|M
1 − |δp|M/(1 − pc)

= 1

z̃

(
wL

μ
log

(
1 − μ

wL

)
+wT

μ
log

(
1 − μ

wT

))
. (16)

We are interested in the low-frequency behavior. There is
now quite clearly a logarithmic singularity at low frequencies,
as discussed in [17].4 Keeping only the leading-order low
frequency terms, we have

δp − |δp|M
1 − |δp|M/(1 − pc)

≈ −c1
w

μ
log

(
−c2

w

μ

)
. (17)

One cannot define a scaling variable for frequency as a ratio
of w and δp raised to some power as we did in d = 3, as
extra factors of δp appear inside the logarithm when written
in terms of the scaling variables. We instead implicitly define

4Their parameter ε is our − limω→0 f on the floppy side of the
transition with undamped dynamics.

FIG. 3. Logarithmic frequency shifts in an effective medium the-
ory for 2D rigidity percolation on the triangular lattice. We plot
numerical solutions of the lattice CPA (thin lines), rescaled shear
modulus MT ≡ μ/|δp| as a function of rescaled frequency �T ≡
ω/|δp|, against our scaling solutions [thick lines, Eqs. (30) and (D9)].
This comparison is done at two distances from the critical point δp =
{10−2, 10−4}, demonstrating nice agreement. All parameters in our
scaling form are determined from the long-wavelength parameters of
the triangular lattice (Appendix D), so there are no fitting parameters.
The shift in the rescaled frequency �∗

T where Re(MT ) = −Im(MT )
from ∼1.4 to ∼1.0 on reducing δp from 10−2 to 10−4 is due to
logarithmic corrections present in the upper critical dimension.

a scaling variable for f ≡ w/μ as the right-hand side divided
by |δp|:

±1 − M = F2,

|δp|F2 ≡ −c1 f log (−c2 f ).
(18)

The variable F2 is the 2D quantity that corresponds to the
right-hand side of Eq. (13). Given that F2 is an invariant
scaling combination, we can investigate how this implies f
depends on |δp| by inverting the definition of F2:

f = − (F2/c1)|δp|
W−1((F2c2/c1)|δp|) , (19)

where W−1(z) is a particular branch of the Lambert W function
satisfying W (z)eW (z) = z. The appropriate branch of the W
function has an expansion near z = 0 of the form W−1(z) ∼
log(z) − 2π i − log(log(z − 2π i)) + . . . (see Ref. [50] for
more details). This shows directly that the appropriate scaling
variable for frequency has important logarithmic shifts close
to the critical point in d = 2. These logarithmic shifts are
confirmed in Fig. 3, which compares our asymptotic scaling
forms for the continuum CPA to a numerical solution of the
CPA for the bond-diluted triangular lattice. More details of
this comparison are located in Appendix D.

We believe that these logarithmic corrections to scaling can
be detected in careful simulations of two-dimensional jammed
packings. For instance, in Ref. [51], the authors control the
pressure of a nearly unjammed solid of soft spheres and ex-
amine the phonon transport properties. The authors examine
several characteristic frequency scales and find a pure power-
law relating the pressure to each frequency scale, ω ∼ p1/2

[their Fig. 12(b)], consistent with the mean-field exponents
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FIG. 4. Logarithmic shifts in the frequency-dependent transverse
sound speed in two dimensions. We plot our scaling solutions for the
transverse sound speed cT ∼ √

Re[μ] against a rescaled frequency
variable �̂ ≡ (ω/ω0)/|δp| that ignores the logarithmic shifts. Just as
in the 2D soft-sphere collapses in Fig. 3(b) of Ref. [51], we see a
broadening of the curves as we approach the critical point, which
here is precisely due to logarithmic corrections.

and no logarithmic corrections. However, their collapse of
physical features like the sound speed [their Fig. 3(b)] is con-
sistent with what would be seen with additional logarithmic
corrections. In Fig. 4, we plot predictions for the rescaled
transverse sound speed cT over identical ranges of frequency
and comparable distances to the critical point. The residual
shifts are comparable in magnitude and direction to what is
seen in the simulation of compressed soft spheres in d = 2
after fitting the nonuniversal parameters, and in our case are
explicitly due to logarithmic corrections to scaling.

We will now seek to unify these contrasting results for
the scaling in 3D and 2D by passing to continuous spatial
dimensions d and analyzing the transition as a function of
spatial dimension, so that d = 2 and d = 3 appear as special
cases.

IV. GENERAL DIMENSIONS: RG FLOWS AND
UNIVERSAL SCALING FUNCTIONS

We now extend our analysis in the previous section to
arbitrary continuous dimensions d . We show that new critical
exponents arise for dimensions d < 2 (Sec. IV A); we discuss
their relevance and possible models to probe these new critical
properties in Sec. V. We use our predictions to deduce that
the critical properties near two dimensions are described by a
transcritical bifurcation in the renormalization group flows (as
in the 4D Ising model, where the Gaussian and Wilson-Fisher
fixed points exchange stability), use normal form theory [41]
to predict the universal nonlinear terms needed in the RG, and
use our exact solutions to deduce the CPA predictions for the
values of these universal nonlinear terms (Sec. IV B). We then
investigate the fate of all invariant scaling combinations as
we tune through d = 2 dimensions (Sec. IV C) and write uni-
versal scaling functions for the viscoelastic shear modulus in
terms of the appropriate scaling variables in each dimension.
All details of the direct calculation from the CPA can be found
in Appendix A; here we report the crucial parts necessary

for the understanding of the invariant scaling combinations
and the calculation of scaling functions. Definitions of some
variables that regularly appear can be found in Table I, along
with their location in the manuscript.

A. New exponents below d = 2

The CPA self-consistent equation [Eq. (2)] depends explic-
itly on the frequency only through G in the integral term,
which splits naturally into a transverse and a longitudinal
part, each of which can be evaluated separately. Following
the derivation of the scaling in three and two dimensions,
we first subtract pc from each side of the equation, so that,
to leading order in the scaling variables, each side of the
equation ∼|δp|1. Focusing arbitrarily on the longitudinal part,
one can rescale the integration variable to ξ = (q/qD)2, to find
integrals of the form

− d

2z̃

∫ 1

0
dξ

ξ d/2−1

1 − (μ/wL )ξ
= −1

z̃
2F1

(
1,

d

2
;

d

2
+ 1;

μ

wL

)
,

(20)
where wL depends on the dynamics (overdamped, undamped)
but is generally a frequency variable rescaled by longitudinal
information; for undamped dynamics wL = ρω2/(λF /μF +
2)q2

D. The function 2F1(a, b; c; z) is the ordinary hypergeomet-
ric function. Note that μ is a complex number determined by
the solution to the self-consistent equation. In this way, the
analytic structure of the asymptotic scaling for μ is closely
linked to the analytic structure of the hypergeometric function,
which is convoluted enough to justify further investigation.

We now need to expand the hypergeometric function as
μ/wL/T reaches its limiting value in the scaling limit. It is well
known in the field, and was found by us directly in Sec. III A,
that this ratio diverges in the scaling limit in d = 3.5 We will
assume that this is true in all dimensions (without assuming
any specific power laws) and self-consistently check it at the
end. The hypergeometric function has a branch point at z = ∞
that we need to account for to do our expansion properly.
There is a relation between the hypergeometric function’s
values inside the unit disk |z| < 1 and those outside that nicely
elucidates the complex branch structure at ∞. Assuming d is
not an even integer [52], we can separate our expression into
two pieces

�
(

d
2

)2

�
(

d
2 + 1

)
�

(
d
2 − 1

) 2F1

(
1,

d

2
;

d

2
+ 1;

μ

wL

)
=

(
−wL

μ

)
2F1

(
1, 1 − d

2
; 2 − d

2
;

wL

μ

)
+ �

(
d

2

)2 �
(
1 − d

2

)
�

(
d
2 − 1

)(
−wL

μ

)d/2

. (21)

5Mean-field rigidity transitions have μ ∼ |δp|. In the the undamped
case w = ρω2 and it is well known that ω ∼ |δp|, so μ/w ∼ 1/|δp|
diverges. In the overdamped case w = iγω, and we shall find ω ∼
|δp|2, so again the ratio diverges as 1/|δp|. In fact, our analysis is
agnostic to the type of damping, so wL/T ∼ |δp|2 above d = 2 for all
kinds of q-independent damping. This tells us the scaling of ω and
hence that the ratio diverges.
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We will eventually recover the behavior in even dimensions d
by carefully taking a limit. The hypergeometric function with
z = wL/μ as an argument is 1 for z = 0 and can otherwise be
expanded in a convergent power series in z. In other words,
from our self-consistent equation, the longitudinal piece can
be expanded in the scaling limit as

− 1

z̃
2F1

(
1,

d

2
;

d

2
+ 1;

μ

wL

)
= C1

(
wL

μ

)
+ C2

(
−wL

μ

)d/2

+ O
((

wL

μ

)2)
. (22)

In the previously analyzed d = 3, for instance, this identi-
fies the correction fixing the low-frequency imaginary part of
the modulus as a nonanalytic (−wL/μ)3/2 appearing in the
self-consistent equation—related to our dangerously irrele-
vant variable.

One now tries to set the scaling of wL/μ by examining
Eq. (22). For d > 2, the term (−wL/μ)d/2 is subdominant at
low frequencies to wL/μ, and so wL/μ ∼ |δp| so that either
side of the self-consistent Eq. (2) is balanced asymptotically
as δp → 0. On the other hand, for d < 2, (−wL/μ)d/2 sets
the dominant contribution at low frequencies. In this scaling
limit, wL/μ ∼ |δp|2/d so that (−wL/μ)d/2 ∼ |δp| and either
side of the self-consistent equation is balanced asymptotically
as δp → 0. We note that each of these scalings is consistent
with μ/wL → ∞ in the scaling limit, justifying the expansion
of the hypergeometric function around its branch point at ∞.
This difference in scalings is reminiscent of a theory near its
upper critical dimension: above d = 2, the critical exponents
are dimension independent and equal to their mean-field-like
value. Below d = 2, the exponents are modified because the
mean-field fixed point becomes unstable under the RG flow.

B. Deduced RG flow equations

In our case, we have access not to a principled set of renor-
malization group transformations for rigidity percolation or
jamming but only to previously studied scaling exponents and
our explicit solutions. Here we posit RG flow equations that
accurately reproduce the power-law invariant scaling com-
binations in our explicit solutions (see Appendix B). These
flow equations are nonlinear functions of the system param-
eters that express the amount they change as the system is
coarse-grained by a factor 1 + d� and rescaled. We find from
our explicit solution that we should measure w in units of
μ (measuring frequency in units of stiffness). We also find
there is an additional control variable u whose flow depends
on the dimension d: irrelevant for d > 2, becoming marginal
in d = 2, and relevant at the original RG fixed point for d < 2.

The scale invariance near the critical point is characterized
by properties (typically the eigenvalues) of the stable fixed
point of the flows. We have seen that the scale invariance near
the critical point changes completely as we pass through two
dimensions. We can capture the scale invariance smoothly as a
function of dimension by a set of coupled flow equations with
a pair of fixed points that cross and exchange their stability as
we pass through two dimensions.

Our group has developed [41] an understanding of how
theories of critical phenomena behave in the vicinity of their

upper and lower critical dimensions. Normal form theory,
adapted from dynamical systems, gives a unifying description
of renormalization group flows and special invariant scaling
combinations. In particular, it gives us the language necessary
to interpret flows near a bifurcation. In the Ising model near
its upper critical dimension d = 4, for instance, a variable that
can be identified with the quartic coupling u which was once
irrelevant in d > 4 becomes marginal in d = 4 and relevant
below (at the Gaussian fixed point), redirecting the flows
to the new, stable Wilson-Fisher fixed point. In the normal
form language, the RG flow of this parameter undergoes a
transcritical bifurcation around d = 4. Through an analytic
change of coordinates, the flow equations can be cast into their
normal form in the vicinity of d = 4. In typical cases (such
as in the three-dimensional Ising model), the normal form
can completely linearize the flow at the fixed point, giving
invariant scaling combinations that are ratios of powers of
physical quantities, and hence power-law behavior that can
be characterized by critical exponents. But precisely at the
bifurcation in the upper critical dimension, one must keep
specific nonlinear terms which cannot be removed by an an-
alytic change of variables, and these nonlinear terms capture
completely the well-known logarithmic corrections.

Based on our explicit solution, we thus posit the following
RG flow equations,6 which accurately reproduce the power-
law invariant scaling combinations in all dimensions d 
= 2:

dq

d�
= q,

dδp

d�
= 2δp − u δp,

dμ

d�
= 2μ − u μ,

d f

d�
= 2 f , (23)

du

d�
= (2 − d )u − u2,

where the nonlinear terms can be removed in dimensions d >

2. Details of the determination of these flow equations can
be found in Appendixes B and C. In the flow equations for
parameters other than u, the terms involving products of flow
parameters are higher-order and so the invariant scaling com-
binations in dimensions other than d = 2 can be accurately
determined by setting u equal to its value at the stable RG
fixed point, as we will do in the following section.

C. Scaling variables and scaling functions

We now use the flow equations deduced from the scaling
behavior together with the asymptotic expansions of the CPA
close to the critical point to write scaling variables and scaling
functions for the viscoelastic moduli in arbitrary dimensions.
Turning our focus to the flow equation for u, we find uc = 0
for d > 2 and uc = 2 − d for d < 2: by construction, the flow
equation for u undergoes a transcritical bifurcation in d = 2
(Fig. 5).

To demonstrate that the scaling for f deduced from the flow
equations is consistent with the direct CPA calculation both

6Normal form theory [41] demands a cubic term Du3 in the equa-
tion for du/d�. We have checked that the constant D = 0 for our
explicit solution.
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FIG. 5. Flows of the parameter u under the RG. The solid, red
lines indicate attractive fixed points. The dashed, blue lines indicate
repulsive fixed points. For d > 2, u flows to 0. For d < 2, u flows to
uc = 2 − d , a different fixed point. This is a transcritical bifurcation;
two fixed points cross and exchange their stability in d = 2. The
dimension-dependent critical exponents for d < 2 are controlled by
the new stable fixed point.

above and below d = 2, we combine the flow equations for
δp and f to write

d log ( f )

d log (δp)
≈ 2

2 − uc
⇒ f ∼ δp2/(2−uc ). (24)

This is correct away from d = 2, as uc = 0 makes the ex-
ponent 2/(2 − uc) = 1 and uc = 2 − d makes the exponent
2/(2 − uc) = 2/d . (We will explore d = 2 below, where the
full flow equations including the nonlinear terms are needed
to determine the complicated invariant scaling combinations.)
For d > 2, we must retain the flow equation for u despite its
irrelevance; it is a dangerously irrelevant variable since the
scaling function for M is not analytic at U = 0.

Is this interesting, given that we typically do not do sim-
ulations of colloidal gels or other disordered rigid systems
below two dimensions? While we do not expect experiments
to test our predictions in noninteger dimensions, in Sec. V
we discuss applications to theoretical simulations in d < 2.
In two dimensions, however, these predictions are in prin-
ciple experimentally observable. This is a case where the
upper critical dimension of a theory is physically relevant
(at least as determined within the CPA). In the Ising model
at its upper critical d = 4, there is a logarithmic singularity
in the magnetization, which also has important (very slowly
vanishing at the critical point) log-log corrections. Here the
situation is identical. Suppose one picks out a physically
relevant piece of dynamical information at this rigidity tran-
sition, like the frequency ω∗ where we cross over into being
dominated by dissipation Re(μ(ω∗)) = −Im(μ(ω∗)). For all
d away from 2, we can write how this physical frequency
scales with our excess contact number: In the undamped
case, ω∗ ∼ δp(4−uc )/(4−2uc ). But in two dimensions, there are

detectable shifts in this frequency, and it turns out that for
the undamped case ω∗ ∼ |δp|| log |δp||−1/2 with additional
important log-log corrections.

This can be understood by writing the proper invariant
scaling combinations in the upper critical dimension using
the flow equations. In Appendix C, we show that the scaling
of the frequency variable in two dimensions implied by the
renormalization group flow equations is (making only the δp
dependence explicit)

f ∼ x(u)δp

W (x(u) δp)
, (25)

where W is again the Lambert W function and x(u) is an
explicit function of the (marginally) irrelevant scaling vari-
able. This accurately reproduces the asymptotic behavior of
the frequency scaling that was found by directly evaluating
the CPA in d = 2 [Eq. (19)] and connects this result to scaling
found in standard critical phenomena.

As investigated in the particular cases of d = 3 and d = 2
in previous sections, the CPA self-consistent equation also
gives us predictions for the universal scaling functions deter-
mining the moduli; when written in the appropriate scaling
variables for each dimension one can predict the shape of
scaling collapse plots of measurements of viscoelastic moduli
close to a rigidity transition. With this in mind, we seek to
write the self-consistent equations in a form that is consistent
with the posited renormalization group flow equations.

For dimensions d > 2 not even, retaining the lowest-order
terms leads to a scaling function of the form

±1 − M = F + U (−F )d/2,

F = f / f0

|δp| , M = μ/μ0

|δp| , U = u/u0|δp|d/2−1,
(26)

where the scaling variable F is the invariant scaling combi-
nation formed between f and δp and f0, μ0, and u/u0 are
complicated but explicit combinations of microscopic param-
eters (Appendix A). The sign ±1 = δp/|δp| is for the rigid
and floppy side of the transition, respectively. The scaling
variable F can be adapted to deal with different microscopic
dynamics. This is an implicit definition of a universal scaling
function for M = M(F,U ) for d > 2. Here we note that
the scaling variable U varies with the correct power of δp
to be identified as the invariant scaling combination formed
between u and δp. Thus u is correctly identified as being ir-
relevant in dimension d > 2. As mentioned before in Sec. III,
in previous work [16,39], U is set to 0, making the eventual
solution for μ(ω) the solution to a quadratic equation, with a
cuspy form not seen in the full numerical solution to the CPA.
The variable u is dangerously irrelevant for microscopically
undamped dynamics in all d > 2 and needs to be retained to
understand the behavior of the low-frequency viscous part of
the modulus. We also note that the effect of U is nonperturba-
tive in the inverse spatial dimension: near d = ∞ perturbing
in ε ≡ 1/d , U ∼ |δp|1/(2ε). This effect is not specific to the
CPA, since above the upper critical dimension the onset of the
plateau in the density of states is ω∗ ∼ |δp| while a description
of the phononic contribution to the low-frequency density of
states gives Debye behavior ∼ωd−1 which is heavily sup-
pressed in high dimensions.
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TABLE II. Critical exponents as predicted by the CPA in the
undamped case, away from the upper critical dimension dupper = 2.
The invariant scaling combinations in dupper capture the logarithmic
corrections typical of an upper critical dimension.

fCPA ν z θ ≡ ων γ

d > 2 1 1/2 2 d/2 − 1 2
d < 2 1 1/d 1 + d/2 2/d − 1 1 + 2/d

Below dimension 2, we are forced to change our scaling
variables to the ones relevant at the new attractive RG fixed
point. We find

±1 − M = −(−Fd )d/2 − Ud Fd ,

Fd = f / f0d

|δp|2/d
, Ud = ud/u0d |δp|2/d−1.

(27)

This is an implicit definition of a universal scaling function
for M = Md (Fd ,Ud ) for d < 2. This scaling identifies Ud

as the invariant scaling combination associated with u in the
vicinity of the new attractive fixed point that has emerged be-
low d = 2, with the correct exponent on δp (see Appendix B
and Appendix A for details). We summarize the usual critical
exponents in Table II.

One can recover the scaling function in d = 2 by carefully
taking a limit d → 2. Reinstalling the definition of U above
d = 2, and pulling out a factor of �(d/2 − 1) that was previ-
ously absorbed into a definition of f0, one finds

±1 − M = −F ′(( − (u/u0)′
2

d−2 F ′|δp|)d/2−1 − 1
)
�

(
d

2
− 1

)
.

(28)

As d → 2+, this reproduces a limit similar to those seen in the
replica trick (xn − 1)/n → log(x) as n → 0 (elaborated on in
Appendix A). The resulting expression

±1 − M = −F ′ log(−(u2/u02)F ′|δp|) (29)

gives the right asymptotic behavior predicted by the RG flows
at the transcritical bifurcation but is not written in the appro-
priate scaling variables for d = 2; if one fixes these scaling
variables but takes the scaling limit δp → 0, then one side of
the self-consistent equation diverges. If one inserts the proper
frequency variable, then the equation is asymptotically

±1 − M = F2,

F2 = − f / f02

|δp| log (−(u2/u02) f / f02). (30)

This is a definition of a universal scaling function for M =
M2(F2) for d = 2. Explicit formulas for all quantities in terms
of the microscopic parameters of the isotropic elastic sheet are
also derived in Appendix A. In Fig. 3, we numerically solve
the CPA self-consistent equations for the triangular lattice in
the undamped case, which is not microscopically isotropic
and which has a hexagonal Brillouin zone. Nonetheless, be-
cause there is an emergent long-wavelength isotropy, the
scaling behavior of its modulus near the critical point is well
described by our forms of the scaling function for the isotropic

elastic sheet. Performing the naïve rescalings MT = μ/|δp|
and �T = ω/|δp|, one sees a slow but systematic shift of the
crossing point �∗

T , where Re(MT (�∗
T )) = −Im(MT (�∗

T )). If
�T were the correct scaling variable to use, as it is in all
d > 2, this crossing point would have small corrections away
from p = pc but would otherwise be constant in �T . Our form
of the universal scaling function in d = 2 perfectly accounts
for these logarithmic shifts.

V. APPLICABILITY OF THE TRANSITION TO PHYSICAL
SYSTEMS

To what systems do we expect the behavior to be quanti-
tatively described by our universal scaling predictions? What
features of our predictions do we expect to apply more broadly
to rigidity transitions? Here we discuss clearly where our
universal predictions do not apply and speculate about where
they may provide qualitative or quantitative guidance.

As noted in the Introduction and in Appendix D, our con-
tinuum CPA does not correctly describe the diluted triangular
spring lattice, which exhibits non-mean-field critical expo-
nents in its static properties in two dimensions rather than the
predicted log-corrections to mean-field theory [21,22]. Gen-
eralized to describe the abrupt jump in the bulk modulus, the
continuum CPA applies qualitatively to simulations of spring
network geometries generated from jammed packings [26].
The generalized continuum CPA reproduces the numerically
observed jamming mean-field exponents in three dimensions,
and both this calculation and the simulation find mean-field
exponents with log corrections to scaling in two dimensions
(however, see below). Indeed, based partly on a discussion
years ago with Carl Goodrich, we conjecture that randomly
diluting a spring network generated from a jammed packing
starting in the rigid phase will undergo a transition where both
bulk and shear moduli grow continuously, described quanti-
tatively by the version of our continuum CPA analyzed here
[53].

Why is the triangular lattice (and, by implication, many
other spring lattices) not behaving according to our theory?
While the triangular lattice is statistically isotropic in its
elastic moduli, many critical points are more sensitive than
elastic theory to breaking of rotational invariance. The XY
model is unstable to breaking of triangular and square sym-
metries [54,55], and diffusion-limited aggregation is famous
for breaking rotational invariance in a way that revealed itself
only in (then) large simulations [23]. Statistically isotropic lat-
tices might show mean-field behavior. Another likely culprit
are the straight lines between bonds in the triangular lattice,
which are shared with the Mikado networks [56] formed
by random long fibers cross-linked at their intersections. A
node connecting two parallel bonds cannot move freely under
tensile stress, while at any nonzero angle it needs a third
constraint to fix it in place: such second-order constraints
are expected to change critical properties [20,24]. A generic
lattice with the same connectivity structure as a regular trian-
gular lattice, as suggested by Jacobs [20], could be enough
to show mean-field behavior. Diluted, statistically isotropic
spring networks with random node positions show mean-field
exponents, but it appears necessary to include the effects of
prestress to capture information about additional frequency
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scales that arise close to the transition [48]. This can be done
in an effective medium framework, and we expect similar
logarithmic corrections in d = 2 to the ones investigated in
this paper. However, effective medium theories generally in-
correctly predict the amplitudes of response properties such as
sound attenuation, and a better starting theory is likely needed
to understand this discrepancy [51].

As noted above, this continuum analysis has a natural
extension to describe a jamming transition, inspired again
by Refs. [12,16,39]. There the upper critical dimension is
believed to be two, and our model (and the lattice CPA
models) does agree with known critical exponents. However,
our calculation for jamming shows logarithmic corrections
to scaling that only arise in frequency-dependent quantities,
as we have seen in this paper, while convincing numerical
work shows logarithmic corrections to the finite-size scal-
ing of zero-frequency elastic moduli in jamming simulations
[26]. We suspect that the lack of logarithmic corrections to
the finite-size effects in our 2D jamming variant is related
to the CPA assumption that the moduli are independent of
wave vector. One notes that the Green’s function and other
wave-vector-dependent properties have a wave-vector scale
in 2D that does have logarithmic corrections to scaling q∗ ∼
|δp|1/2| log |δp||−1/2 (similar to the frequency scaling). Our
current theory replaces the system near its rigidity transition
with a uniform but frequency-dependent modulus, ignoring
the important effects of spatial fluctuations. A more sophis-
ticated self-consistent approach allowing for more general
forms of response functions, such as Vogel et al. [42] men-
tioned in the Introduction, could be analyzed to extract a
universal scaling theory that not only correctly describes the
finite-size effects in two-dimensional jamming but also de-
scribes the 2D and 3D crossovers to the elastic-dipole induced
correlations of glasses [43,44,57] and Rayleigh scattering.
However, the detailed simulations of Ref. [17] do appear to
reproduce the logarithmic shifts in the density of states and
�−1

c ∼ q∗ explained in this work.
Will our predictions of new critical behavior for d < 2

in Sec. IV have any chance of being tested? Jamming has
been studied for hard disks in a one-dimensional channel
[58], exhibiting different critical exponents for the distribu-
tion of small gaps than in higher dimensions. We suspect
our predicted critical exponents for linear response properties
may be only qualitatively predictive in d = 1. While our the-
ory predicts exact new values for critical exponents for all
d < dupper = 2, we trust our predictions quantitatively only
near the upper critical dimension. Indeed, other approximate
methods such as mode-coupling theories [59,60] give correct
critical exponents in dupper − ε only to order ε1, where higher-
order corrections demand further diagrammatic calculations.

The calculation presented here could, however, quanti-
tatively describe a rigidity transition in a one-dimensional
model with long-range bonds. For instance, the one-
dimensional Ising model [61] with bond strengths that decay
with a power law J (r) ∼ r−(1+σ ) has an ordering transition for
σ < σL = 1 and has nontrivial critical exponents for 1/2 <

σ < 1. The situation is similar in ordinary percolation with
long-range bonds [62], where having a bond length distri-
bution P(r) ∼ r−(1+σ ) leads to a percolation transition at a
threshold 0 < pc < 1 for 0 < σ < 1 and nontrivial critical

exponents for 1/3 < σ < 1 with additional logarithmic cor-
rections to scaling at σ = 1/3. This could be extended to an
elastic rigidity transition by replacing the connecting bonds
by elastic springs and measuring the elastic modulus. Ad-
ditionally, the long-range random-bond Ising model in one
dimension has a spin glass phase [63]. These are all cases
where tuning the exponent associated with the range of the
interaction can be used to continuously tune the effective
dimension of the critical properties of the transition, allowing
us to access the continuous predictions of critical exponents
in the vicinity of the upper critical dimension.

Finally, additional extensions to this scaling theory can in
principle be added by hand. Exactly at the rigidity transition,
there is no linear response regime, which has attracted much
interest in the jamming community. Tiny deformations induce
both microscopic topology changes and avalanches of all
sizes. Scaling theories have been developed to describe, for in-
stance, power-law relationships between friction coefficients
and shear rate in granular matter close to its flowing instability
[44,64]. Analytical predictions for the universal scaling func-
tions may not be as simple to determine, but once a suitable
scaling theory is established, adding new phenomena (such
as rheological responses beyond the linear regime) should be
possible.

VI. SUMMARY AND CONCLUSIONS

In summary, we take seriously a dynamical version of the
CPA, a frequently used effective medium theory. We examine
its predictions close to the critical point, casting solutions into
scaling forms to identify universal pieces. We first examine
its predictions for the universal scaling functions for effec-
tive viscoelastic moduli close to the critical point in d = 3
and identify a dangerously irrelevant variable that controls
low-frequency dissipation in the case of microscopically un-
damped dynamics. We then investigate d = 2, and we find
that the appropriate invariant scaling combinations are not
ratios of powers of parameters, as we would expect close to
a hyperbolic RG fixed point. To our surprise, although the
exponents with which the static moduli vanish with δp are
unchanged with dimension, the critical exponents associated
with relevant length and timescales in the system change
quantitatively as we pass below d = 2. This identifies d = 2
as the upper critical dimension of the theory. From the exact
solution, we deduce from normal form theory [41] a set of
renormalization group flow equations which have a transcrit-
ical bifurcation in two dimensions. These are constructed to
match the forms of the scaling variables above, below, and
in the upper critical dimension d = 2. These forms are self-
consistently checked against numerical solutions of the lattice
CPA for a bond-diluted triangular lattice, verifying these im-
portant corrections in this physically relevant dimension.
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APPENDIX A: SCALING VARIABLES IN TERMS OF
ISOTROPIC ELASTIC SHEET PARAMETERS

Here we expound on the calculation mentioned in the main
text that eventually leads to the universal scaling functions
for the vanishing modulus. We take the perspective of a long-
wavelength limit of a bond percolation CPA that is explicitly
isotropic at long-wavelengths; this recovers the CPA for amor-
phous spring networks developed in Ref. [17]. First, we write
the dynamical matrix and Green’s function for an isotropic
elastic sheet, with Lamé parameters λ and μ.7 This is typically
done in the reverse order using the constitutive relations (i.e.,
coarse-graining a lattice system with dynamical matrix D),
recovering the long-wavelength stiffness tensor Ki jk�. For a
lattice with real-space unit cell volume V and n sites in the
unit cell, we have

Ki jk� = n

V

[
1

2

∂2DSS

∂q j∂q�

− ∂DSF

∂q j
(DFF)−1 ∂DFS

∂q�

]
ik

∣∣∣∣∣
q=0

, (A1)

where the dynamical matrix is written in the center-of-mass
basis and the labels S and F represent the “slow” and “fast”
normal modes [65] (essentially separating the acoustic modes
from the optical). We are interested mainly in a scaling that
picks out low-frequency behavior, so we focus on the case n =
1 with no fast modes (investigating how the more general form
interacts with the CPA is a fruitful avenue for future work,
and is necessary to fully understand the jamming behavior of,
e.g., the system studied in Ref. [12]). In this case, the relation
simply reads

Ki jk� = 1

2V

∂2Dik

∂q j∂q�

∣∣∣∣∣
q

= 0. (A2)

Using the form of Ki jk� for an isotropic elastic medium, we
find

D(q) = V (λ + 2μ)q2 q̂iq̂ j + V μq2(δi j − q̂iq̂ j ),

G(q, ω) = 1

V (λ + 2μ)q2 − w′ q̂iq̂ j

+ 1

V μq2 − w′ (δi j − q̂iq̂ j ). (A3)

The frequency variable is taken to be w′ ≡ mω2 for undamped
dynamics and w′ ≡ i�ω for overdamped dynamics (in prin-
ciple one can have a bulk viscosity ζ and shear viscosity η;
this eventually gets reabsorbed into a definition of the scal-
ing variable). This decomposition is convenient because the

7We find it easier to work with Lamé parameters than with the
bulk and shear moduli because the forms of the transverse and
longitudinal parts of the Green’s function and dynamical matrix
are dimension-independent when written in terms of the Lamé pa-
rameters. However, μ and λ will be viscoelastic generalizations of
their static versions in the same way that μ(ω) is the viscoelastic
generalization of the static shear modulus.

longitudinal and transverse parts are orthogonal:

(q̂iq̂ j )(q̂ j q̂k ) = q̂iq̂k,

(δi j − q̂iq̂ j )(δ jk − q̂ j q̂k ) = (δik − q̂iq̂k ),

(q̂iq̂ j )(δ jk − q̂ j q̂k ) = 0.

(A4)

We can compute the integrand that appears in the CPA self-
consistent equation [Eq. (2)] for this isotropic sheet:

DG = (λ + 2μ)q2

(λ + 2μ)q2 − w
q̂iq̂k + μq2

μq2 − w
(δik − q̂iq̂k ), (A5)

so

Tr(DG) = (λ + 2μ)q2

(λ + 2μ)q2 − w
+ (d − 1)

μq2

μq2 − w
. (A6)

where we have redefined w ≡ w′/V = ρω2 or iγω. Using the
fact that the shear modulus is being considered as the only
independent modulus that is being depleted, we can write
λ/λF = μ/μF and so

Tr(DG) = (λF /μF + 2)μq2

(λF /μF + 2)μq2 − w
+ (d − 1)

μq2

μq2 − w
.

(A7)
Now we rearrange the integral a bit.

1

z̃

∫
BZ

− dd q Tr(DG) = 1

z̃

1

sBZ

∫
BZ

dd q Tr(DG)

= 1

z̃

Sd−1

Vd qd
D

∫ qD

0
dq qd−1 Tr(DG)

= 1

z̃

d

qd
D

∫ qD

0
dq qd−1 Tr(DG), (A8)

where Sd−1 is the surface area of the unit d − 1 sphere em-
bedded in d-dimensional space and Vd is the volume of the
d-dimensional ball; we have used the fact that Sd−1/Vd = d
in all dimensions d . Now we subtract pc = d/z̃ from either
side of the self-consistent equation. On the side involving just
the modulus, the result is

(p − d/z̃) − (1 − d/z̃)μ/μF

1 − μ/μF
= δp − |δp|M

1 − |δp|M/(1 − d/z̃)

≈ δp − |δp|M,

M ≡ μ/μ0

|δp| ,

μ0 ≡ μF

(1 − d/z̃)
. (A9)

We are justified in ignoring the denominator because it con-
tributes terms with one higher power in |δp| when written
in terms of the scaling variables. When we eventually care-
fully consider the side involving the frequency, we will find
terms that scale as |δp| and |δp|d/2, indicating we are safe
to ignore the contribution from the denominator until d = 4.
Even above d = 4, there are more relevant terms that dictate
the appropriate scaling behavior of the real part of the mod-
ulus, and the low-frequency imaginary part cannot be fixed
by including further polynomial terms like these in the self-
consistent equation. We describe this physically important
range of frequencies with a dangerously irrelevant variable.
Note that the exponents on the invariant scaling combination
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combining μ and δp are independent of dimension; this is
reflected in the RG flow equations that we write down.

Now we subtract pc from the side involving the frequency.
We write

d

z̃
= 1

z̃

∫
BZ

− dd q
(λ + 2μ)q2 − w

(λ + 2μ)q2 − w

+ (d − 1)

z̃

∫
BZ

− dd q
μq2 − w

μq2 − w
(A10)

and subtract the first piece from the longitudinal contribution
and the second piece from the transverse contributions. This
only serves to replace the numerators (λ + 2μ)q2 → w and
μq2 → w, giving us

1

z̃

d

qd
D

∫ qD

0
dq

wqd−1

(λF /μF + 2)μq2 − w

+1

z̃

d (d − 1)

qd
D

∫ qD

0
dq

wqd−1

μq2 − w
(A11)

or

1

z̃

d

qd
D

∫ qD

0
dq

qd−1

(λF /μF +2)
w μq2 − 1

+ 1

z̃

d (d − 1)

qd
D

∫ qD

0
dq

qd−1

μ

w q2 − 1
. (A12)

We now perform a substitution ξ = (q/qD)2. This serves the
dual purpose of nondimensionalizing the integration variable
and casting the integrals into a canonical form to be identified
with a special function. The integrals become

− d

2z̃

∫ 1

0
dξ

ξ d/2−1

1 − ξ
μ

wL

− d (d − 1)

2z̃

∫ 1

0
dξ

ξ d/2−1

1 − ξ
μ

wT

,

wL ≡ w

(λF /μF + 2)q2
D

, wT ≡ w

q2
D

. (A13)

Now each of these integrals are of the form∫ 1

0
dξ

ξ d/2−1

1 − ξz
=

∫ 1

0
dξ ξ d/2−1(1 − ξ )(d/2+1)−d/2−1(1 − ξz)−1

= B

(
d

2
, 1

)
2F1

(
1,

d

2
;

d

2
+ 1; z

)
= 2

d
2F1

(
1,

d

2
;

d

2
+ 1; z

)
(A14)

where B(z1, z2) is the beta function and 2F1(a, b; c; z) is
the ordinary hypergeometric function, as can be verified in
Sec. 9.111 of Ref. [52] (and using the beta function identity
B(z, 1) = 1/z). The frequency-dependent part of Eq. (2) in the
isotropic case (with pc subtracted out) is then exactly

− 1

z̃
2F1

(
1,

d

2
;

d

2
+ 1;

μ

wL

)
− (d − 1)

z̃
2F1

(
1,

d

2
;

d

2
+ 1;

μ

wT

)
. (A15)

The parameter μ is found self-consistently and is some com-
plex number in the appropriate scaling limit. The imaginary
parts of the viscoelastic moduli are nonpositive to respect the

causality of the Green’s function. As mentioned in the main
text, taking the scaling limit amounts to sending the argument
of the hypergeometric functions to ∞, so we are interested in
expansions of 2F1(α, β; γ ; z) about its branch point at z = ∞.
For this we look at the second identity in Sec. 9.132 of Ref.
[52], assume d is not even for now and write

�
(

d
2

)2

�
(

d
2 + 1

)
�

(
d
2 − 1

) 2F1

(
1,

d

2
;

d

2
+ 1;

μ

wL

)
=

(
−wL

μ

)
2F1

(
1, 1 − d

2
; 2 − d

2
;

wL

μ

)
+

+ �

(
d

2

)2 �
(
1 − d

2

)
�

(
d
2 − 1

)(
−wL

μ

)d/2

. (A16)

The hypergeometric function involving z = wL/μ is 1 for z =
0 and can otherwise be expanded in a power series in z, which
contributes terms higher-order in |δp|. Writing out the side
with the frequency dependence now, grouping terms with the
same powers of wL/T :

≈ 1

z̃

�
(

d
2 + 1

)
�

(
d
2 − 1

)
�

(
d
2

)2

wL + (d − 1)wT

μ

− 1

z̃
�

(
d

2
+ 1

)
�

(
1 − d

2

)
wd/2

L + (d − 1)wd/2
T

(−μ)d/2
. (A17)

The scaling variables asymptotically close to the critical point
are now ready to be defined, but they depend on whether we
are above or below d = 2. We investigate each case separately
below.

1. Scaling variables above two dimensions

First, assume d > 2 so that the first term contributes the
leading-order frequency behavior. Then we define a scaling
for the frequency f :

|δp|F ≡ 1

z̃

�
(

d
2 + 1

)
�

(
d
2 − 1

)
�

(
d
2

)2

wL + (d − 1)wT

μ
. (A18)

This corresponds to:

F = f / f0

|δp| ,

f0 = q2
D

�
(

d
2

)2

�
(

d
2 + 1

)
�

(
d
2 − 1

) z̃/μF
1

λF +2μF
+ (d − 1) 1

μF

, (A19)

essentially setting f0 = c2q2
D, where c is a weighted combi-

nation of the longitudinal and transverse sound speeds in the
undepleted membrane.

This definition of the scaling variable also makes the first
term of the frequency-dependent side of the self-consistent
equation |δp|F . These scaling variables are then inserted into
the other term, and the variable U is defined so that the final
term is +|δp|U (−F )d/2 (note that �(1 − d/2) is negative for
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2 < d < 4). This gives us

U ≡ u/u0|δp|d/2−1,

u/u0 = z̃d/2−1 �
(

d
2 + 1

)(−�
(
1 − d

2

))
�

(
d
2

)d(
�

(
d
2 + 1

)
�

(
d
2 − 1

))d/2

×
⎛⎝(

1
λF +2μF

)d/2 + (d − 1)
(

1
μF

)d/2((
1

λF +2μF

) + (d − 1)
(

1
μF

))d/2

⎞⎠. (A20)

The large prefactor involving � functions can be simplified to
bring the expression into the form

u/u0 = −z̃d/2−1

(
d − 2

d

)d/2
πd

2
csc

(
πd

2

)

×
⎛⎝(

1
λF +2μF

)d/2 + (d − 1)
(

1
μF

)d/2((
1

λF +2μF

) + (d − 1)
(

1
μF

))d/2

⎞⎠ (A21)

where the term involving csc is negative for 2 < d < 4. The
self-consistent equation for d > 2 defining the universal scal-
ing function is then (dividing both sides by |δp|)

±1 − M = F + U (−F )d/2, (A22)

as claimed in the main text.

2. Two dimensions as a limit

To take the limit d → 2, we first factor out one power of
−F from the self-consistent equation valid for d > 2. We then
define

F ′ ≡ F

�
(

d
2 − 1

) (A23)

to remove the divergence in the definition of F while retaining
the same critical exponents (for now). The equation becomes

±1 − M

= −F ′
((

−F ′�
(

d

2
− 1

))d/2−1

U − 1

)
�

(
d

2
− 1

)
.

(A24)

Bring U inside the power of d/2 − 1 and write it as
U 2/(d−2) = (u/u0)2/(d−2)|δp|. Then define (u/u0)′2/(d−2) ≡
(u/u0)2/(d−2)�(d/2 − 1). The self-consistent equation be-
comes

±1 − M = −F ′(( − (u/u0)′
2

2−d F ′|δp|)d/2−1 − 1
)
�

(
d

2
− 1

)
,

(A25)

as claimed in the main text. Now we need only to compute
u2/u02 = limd→2+ (u/u0)′2/(d−2). This yields

u2/u02 = z̃
μ

μF
λF +3μF
F (λF + 2μF )

λF +2μF
λF +3μF

λF + 3μF
. (A26)

The self-consistent equation in d = 2 is then

±1 − M = −F ′ log(−(u2/u02)F ′|δp|), (A27)

but as mentioned in the main text, this is not written in terms
of the proper scaling variables. This result can also be derived

without hypergeometric functions by directly performing the
integral in d = 2, but it becomes less clear how this result
is continuously connected to d = 3, or d < 2. It can also be
understood (equivalently) as the branch point of the hyper-
geometric function at z = ∞ transforming from a power-law
like branch to a logarithmic branch for d even. This kind of
resonance behavior, where the term with the exponent d/2
interacts with another term with an integer power to give a
logarithm, happens in every even dimension. For even dimen-
sions above 2, the logarithm is associated with a correction
that vanishes close to the critical point, but it is necessary to
retain to understand the low-frequency imaginary part of the
viscoelastic modulus.

In the right scaling variables, we can absorb this additional
logarithmic divergence into the definition of the invariant scal-
ing combination involving f in d = 2, giving

±1 − M = F2, (A28)

by analogy to the scaling variable for f in all dimensions d >

2. We can examine what this implies about how f scales with
δp. We have

F2 = −F ′ log(−(u2/u02)F ′|δp|) (A29)

or

(u2/u02)F2|δp| = −(u2/u02)F ′|δp| log(−(u2/u02)F ′|δp|),
(A30)

where F2 is the invariant scaling combination. We invert this
with the W function:

−(u2/u02)F ′|δp| = (u2/u02)F2|δp|
W ((u2/u02)F2|δp|) (A31)

reinstalling the definition of F ′ = f / f ′
0/|δp|, we have (up to

constants)

f ∼ (u2/u02)F2|δp|
W ((u2/u02)F2|δp|) (A32)

in d = 2, which is also supported by the RG flow equations.

3. Scaling variables below two dimensions

Below 2 dimensions, the term involving wd/2
L/T is dominant

at low frequencies. We define a scaling variable for the fre-
quency f :

|δp|(−Fd )d/2 ≡ 1

z̃
�

(
d

2
+ 1

)
�

(
1 − d

2

)
× wd/2

L + (d − 1)wd/2
T

(−μ)d/2 . (A33)

Note that for d < 2, �(1 − d/2) is now positive. This corre-
sponds to:

Fd = f / f0d

|δp|2/d
,

f0d = q2
D

1

�
(

d
2 + 1

)2/d
�

(
1 − d

2

)2/d

× z̃2/d/μF((
1

λF +2μF

)d/2 + (d − 1)
(

1
μF

)d/2)2/d
, (A34)
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another constant that is similar to c2q2
D. This sets the first

term in the self-consistent equation to be −|δp|(−Fd )d/2. We
again insert the definitions of the scaling variable Fd into the
remaining term and define an additional variable Ud so that
the final term is −|δp|Ud Fd . This gives us

Ud ≡ (ud/u0d )|δp|2/d−1,

ud/u0d = z̃2/d−1 −�
(

d
2 − 1

)
�

(
d
2

)2
�

(
d
2 + 1

)2/d−1
�

(
1 − d

2

)2/d

×
(

1
λF +2μF

) + (d − 1)
(

1
μF

)
((

1
λF +2μF

)d/2 + (d − 1)
(

1
μF

)d/2)2/d
. (A35)

Note that for d < 2, �(d/2 − 1) is now negative. The self-
consistent equation for d < 2 defining the universal scaling
function is then (dividing both sides by |δp|)

±1 − M = −(−Fd )d/2 − Ud Fd , (A36)

as claimed in the main text.

4. Scaling in even dimensions greater than 2

To understand the scaling in even dimensions d > 2 one
needs to retain three terms from the evaluation of the integral:
the dominant piece from the hypergeometric function, the
nonanalytic piece going as ∼(−w/μ)d/2, and the �d/2�th
term of the power series expansion of the hypergeometric
function (note that the first and third of these coincide when
d = 2). The latter two terms will interact in the limit d/2 →
k+ for k an integer >1 and produce a logarithmic singularity
in a way similar to the two-dimensional case. Keeping these
terms, and writing things in terms of scaling variables valid
above d > 2 gives

±1 − M = F − Ûd (−F )�d/2� + U (−F )d/2. (A37)

Here Ûd is an invariant scaling combination associated with
some other irrelevant variable ∼|δp|�d/2�−1. As in dimension
2, pull out a factor of Ûd (−F )�d/2� from the last two terms,
and one finds

±1 − M = F + Ûd (−F )�d/2�
(

U

Ûd
(−F )d/2−�d/2� − 1

)
.

(A38)

Similarly to the case in d = 2, we can redefine Ûd to Û ′
d to

pull out a divergence in even dimensions and take the limit as
d/2 → �d/2� to recover (making the δp dependence of the
irrelevant variables explicit)

±1 − M = F + cd |δp|�d/2�−1(−F )�d/2� log (−ud F |δp|).
(A39)

This shows that the scaling exponents for all relevant variables
in d > 2 are the same; the F term sets the scaling and the re-
maining term is a correction that vanishes. The only novelty is
that the nonanalyticity that fixes the low-frequency imaginary
part is now a logarithmic singularity, rather than a power-law
singularity. As in other d > 2 this correction term must be
retained to capture the low-frequency dissipation in the micro-
scopically undamped case. As in other integer dimensions, the
self-consistent integral can be expressed directly in terms of

rational functions and logarithms (without referring to special
functions) to verify these formulas.

5. Density of states scaling

The density of states is given in the undamped case as

D(ω) = ω

π

∫
BZ

dd q Im(Tr(G)). (A40)

This is evaluated for an isotropic system similarly to the
previous section:

D(ω) = ω

πV
Im

[∫ qD

0
dq

Sd−1qd−1

(λF /μF + 2)μq2 − w

+ (d − 1)
∫ qD

0
dq

Sd−1qd−1

μq2 − w

]
. (A41)

A trick to eliminate more tedious manipulation is to multiply
and divide by a particular factor:

D(ω) = ω

π

z̃Vd qd
D

V w
Im

[
d

z̃qd
D

∫ qD

0
dq

wqd−1

(λF /μF + 2)μq2 − w

+ (d − 1)
d

z̃qd
D

∫ qD

0
dq

wqd−1

μq2 − w

]
. (A42)

The term in brackets can be identified, to leading order in the
scaling variables, as

D(ω) ≈ ω

π

z̃Vd qd
D

V w
Im[δp − |δp|M] = −|δp| z̃Vd qd

D

πmω
Im[M]

(A43)
For d > 2, this gives the following scaling form (written in
terms of scaling variables for ω rather than for f = w/μ):

D(ω) = D0D(�,U ),

D(�,U ) = − Im[M(�,U )]

�
, (A44)

where D0 is a nonuniversal constant. This remarkably simple
scaling form is true within the CPA [48], but not in general.
Setting U = 0 allows us to exactly evaluate this; in this scaling
limit there is only a nonzero density of states for � > 1/2 and
it is flat at high frequency. We have

D(�, 0) =
√

4�2 − 1

2�
. (A45)

The density of states is shown for d = 3 and various values of
U in Fig. 6.

For d < 2, we have:

D(ω) = D0d

|δp|1/d−1/2 Dd (�d ,Ud ),

Dd (�d ,Ud ) = − Im[Md (�d ,Ud )]

�d
.

(A46)

ωD(ω) can also be written in terms of F and U . This leads,
using Eq. (26) for d > 2, to

ωD(ω) = D′
0|δp|D(F,U ),

D(F,U ) = −Im[M(F,U )]. (A47)
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FIG. 6. Density of states for a nearly floppy 3D viscoelastic
membrane. The dangerously irrelevant variable controls the low-
frequency density of states in the undamped case. The rescaled
density of states has a square-root cusp at U = 0 (δp = 0) [12,16]; as
discussed in Sec. III A, the continuum CPA, and our universal scaling
limit, do not show the ω4 contribution to the density of states found
from quasilocalized modes [49]. See Fig. 2 for the excess density of
states D(�,U )/�2.

For d < 2, we use Eq. (27) to write

ωD(ω) = D′
0d |δp|Dd (Fd ,Ud )

Dd (Fd ,Ud ) = −Im[Md (Fd ,Ud )].
(A48)

In d = 2, we use Eq. (30) to write

ωD(ω) = D02|δp|D2(F2),

D2(F2) = −Im[M2(F2)].
(A49)

This properly incorporates all of the logarithmic corrections
yielding the theory curves on Fig. 7. For the triangular lattice
in two dimensions (see next section for all specifics of lattice
constants and microscopic stiffness parameters), we can rein-
stall the nonuniversal constants in the definitions of the scaling

FIG. 7. Density of states for the diluted triangular lattice com-
puted within the CPA. We plot rescaled numerical solutions (thin
lines) against our scaling solutions (thick lines) at two distances
from the critical point δp = {10−2, 10−4}, again demonstrating nice
agreement with the scaling form. The shift in the rescaled frequency
�∗

T where we cross over to a flat density of states and the vertical shift
in the location of the plateau are both due to logarithmic corrections
present in the upper critical dimension.

variables to make a direct comparison to the numerically de-
termined density of states. To highlight the logarithmic shifts,
we define MT ≡ μ/|δp| and �T ≡ ω/|δp|. In these variables,
the asymptotic form of the density of states for an elastic sheet
with the same long-wavelength parameters as the triangular
lattice is

D2 = − 32π

3
√

3

Im(MT )

�T
, (A50)

where MT is the solution to

±1 − 4

3
√

3
MT = − 1

3π
√

3

�2
T

MT
log

(
−31/4

4π

�2
T

MT
|δp|

)
.

(A51)
(See Appendix D for details.) The plot of the comparison
is shown in Fig. 7 for δp = 10−2 and δp = 10−4. The slow
leftward drift of the onset of the plateau in the DOS and the
upward drift of the location of the plateau in the DOS are
both related to d = 2 being the upper critical dimension of
the theory.

One often identifies the excess soft modes in glassy sys-
tems by plotting the density of vibrational states divided by
the expected form from a Debye model of a crystal. This
amounts to dividing the universal scaling function D by �d−1

in dimension d; as the density of states is flat for � � 1, these
plots unsurprisingly show a bump (Fig. 2).

6. Green’s function scaling

For completeness, we report the scaling form of the
Green’s function. For the case of the continuous transition,
we write the long-wavelength form associated with an elastic
sheet:

V G(q, ω) = 1

(λ + 2μ)q2 − w
q̂iq̂ j + 1

μq2 − w
(δi j − q̂iq̂ j ).

(A52)

This can be rewritten in terms of f :

V G(q, ω) = 1

μ((λF /μF + 2)q2 − f )
q̂iq̂ j

+ 1

μ(q2 − f )
(δi j − q̂iq̂ j ) (A53)

so q2 and f have identical scaling asymptotics in all dimen-
sions [this can also be seen from the RG flow Eqs. (23)]. The
nonuniversal constants that set the scale for q differ for the
transverse and longitudinal parts, but the form of the universal
scaling function is identical: In dimensions d > 2,

Q ≡ q/qL/T
0

|δp|1/2 , GL/T (q, ω) = GL/T
0

|δp|2 G(Q, F,U ),

G(Q, F,U ) = 1

M(F,U )(Q2 − F )
. (A54)

Similarly, in dimensions d < 2, we have

Qd ≡ q/qL/T
0d

|δp|1/d
, GL/T (q, ω) = GL/T

0d

|δp|1+2/d
Gd (Qd , Fd ,Ud ),

Gd (Qd , Fd ,Ud ) = 1

Md (Fd ,Ud )
(
Q2

d − Fd
) . (A55)
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In d = 2 there are similar logarithmic corrections to the scal-
ing variables as in all other linear response quantities.

These forms imply diverging length scales at the transi-
tion: �c ∼ |δp|−1/2 for d > 2, �c ∼ |δp|−1/d for d < 2, and
�c ∼ |δp|−1/2| log |δp||1/2 in d = 2 (noted also in Table II).
If a phonon has a wavelength shorter than �c, then it is
strongly overdamped. In the case of jamming, the transverse
shear mode is associated with a diverging length scale of the
type analyzed here and elsewhere [16,39] but the longitudinal
mode has a different scaling.

APPENDIX B: RENORMALIZATION GROUP FLOWS
FROM SCALING COMBINATIONS

Here we detail the procedure of writing down our deduced
renormalization-group flow equations (Sec. IV B). First, we
take for granted that the wave vector, as an inverse length,
coarse grains as

dq

d�
= q. (B1)

This can be taken as a definition of the coarse-graining pro-
cedure. Let us first focus on flows above the upper critical
dimension and ignore the irrelevant variable. The frequency
variables scale as f ≡ w/μ ∼ δp, and the modulus scales
as μ ∼ δp. From the form of the Green’s function, (μq2 −
μ f )−1 ∼ δp−γ , which means that q ∼ δp1/2 gives a nontriv-
ial scaling limit. These mean-field power laws determine the
coefficients on the linear parts of the flow equations, i.e., the
terms linearized about the hyperbolic fixed point above d = 2.
We have for d > 2 the normal form:

dq

d�
= q,

dδp

d�
= 2δp,

dμ

d�
= 2μ,

d f

d�
= 2 f . (B2)

Now we include the effects of an upper critical dimension
of 2. Assuming that a variable that was originally irrelevant
undergoes a transcritical bifurcation and becomes relevant
below d = 2, we can write the flow equations with help from
normal form theory [41]. Normal form theory tells us the
minimal number of terms we need to keep assuming we have
made an analytic change of coordinates, i.e., we have pre-
served information about the singularity close to the critical
point. We write a flow equation for this speculative coupling u
irrelevant above two dimensions that undergoes a bifurcation
and flows to a new stable point for d < 2. We must keep
terms linear in u that appear in the other flow equations; these
serve to modify the critical exponents below the upper critical
dimension. We have

dq

d�
= q,

dδp

d�
= 2δp − λpu δp,

dμ

d�
= 2μ − λμu μ,

d f

d�
= 2 f − λ f u f ,

du

d�
= 1

A
(2 − d )u − u2, (B3)

where A > 0 and we rescale u to set the coefficient of the
quadratic term in its flow equation to −1. As this theory is
simple and exactly solvable, we have many resonances where

there are integer relationships between coefficients in the RG
flow equations. We will ignore these for now, but normal form
theory gives a prescription to keep additional terms in the
flow equations. These are then tuned to capture what would
otherwise be interpreted as large corrections to scaling. We
check directly that the coefficient D on the cubic term of the
flow for u, +Du3, is 0 through a calculation similar to the one
performed in Appendix C. The critical value of u below d = 2
is uc = (2 − d )/A. We know that, below d = 2, f ∼ δp2/d

and so q ∼ δp1/d . After coarse-graining for a while, we can
set u = uc in the flow equations to get accurate exponents for
the invariant scaling combinations. We write

d log q

d log δp
= 1

2 − λpuc
= 1

2 − λp(2 − d )/A
= 1

d
,

d log μ

d log δp
= 2 − λμuc

2 − λpuc
= 2 − λμ(2 − d )/A

2 − λp(2 − d )/A
= 1,

d log f

d log δp
= 2 − λ f uc

2 − λpuc
= 2 − λ f (2 − d )/A

2 − λp(2 − d )/A
= 2

d
.

(B4)

These are solved by

λμ = λp = A, λ f = 0. (B5)

We now look at how u scales with δp: above d = 2, we have

d log u

d log δp
= (2 − d )

2A
= − 1

A

(
d

2
− 1

)
. (B6)

Below d = 2, we have (expanding about the stable RG fixed
point δu = u − uc)

d log δu

d log δp
= − (2 − d )

dA
= − 1

A

(
2

d
− 1

)
. (B7)

The positive constant A sets the scale of uc for d < 2. We will
determine A = 1 by looking at the scaling implied by the RG
flow equations in two dimensions and choosing A to match the
asymptotic scaling found for the frequency directly in d = 2
from the CPA.

APPENDIX C: SCALING FOR FREQUENCY IN TWO
DIMENSIONS

Here we derive the scaling of f with δp in the upper critical
dimension d = 2; other scalings (such as the one for q) follow
similarly. This closely follows the supplementary material in
Ref. [41]. We will use

du

d�
= −u2,

dδp

d�
= 2δp − A u δp,

d f

d�
= 2 f . (C1)

Divide the flow equation for δp by the flow equation for u to
find

dδp

du
= 2δp − Auδp

−u2
. (C2)

This is integrated to give

log

(
δp

δp0

)
= 2

(
1

u
− 1

u0

)
+ A log

(
u

u0

)
. (C3)

It is useful to define a variable

s ≡ 1

u
. (C4)
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We coarse-grain to δp = 1. Then

− log (δp0) = 2(s − s0) − A log

(
s

s0

)
. (C5)

Rearrange this into a particular form:

− 2

A
s + log

(
− 2

A
s

)
= log

(
y(s0)δp1/A

0

)
,

y(s0) ≡ − 2

A
s0 exp

(
− 2

A
s0

)
.

(C6)

Note that this form is one of the definitions of the Lambert W
function,

W (z) + log (W (z)) = log(z). (C7)

Hence,

− 2

A
s = W

(
y(s0)δp1/A

0

)
(C8)

or

s = −A

2
W

(
y(s0)δp1/A

0

)
. (C9)

Now we use the flow equation for u directly, coarse-graining
from �0 = 0 to �:

� = 1

u
− 1

u0
= s − s0. (C10)

We are now prepared to determine how f0 varies with δp0

in the upper critical dimension. Directly integrating the flow
equation for f , we find

f

f0
= e2� = e2(s−s0 ) = e2s

e2s0
. (C11)

All δp0 dependence is through s (not s0). So to find our
invariant scaling combination (or the functional dependence
of f0 on δp0), we write

f0 ∼ e−2s. (C12)

Inserting our functional form for s, using the relation

eaW (z) = za

W (z)a
, (C13)

and calling the argument of the W function z, we have

f0 ∼ eAW (z) ∼ zA

W (z)A
. (C14)

(We assume A is an integer, which we will see in a moment,
to ignore further branch subtleties). Reinstalling the definition
of z, and calling x(u0) = y(s0), we have

f0 ∼
(
x(u0)δp1/A

0

)A

W
(
x(u0)δp1/A

0

)A = x(u0)A δp0

W
(
x(u0)δp1/A

0

)A , (C15)

Comparing this with the scaling of f determined from the
asymptotics of the theory in d = 2 allows us to identify A = 1.
This gives the result for the flow equations and the invariant
scaling combination in the main text. Note that f ∼ δp (as
it does in d > 2) with additional log and log-log corrections
coming from the W function.

APPENDIX D: DETAILS OF THE TRIANGULAR LATTICE
NUMERICS

Here we directly compare our continuum, isotropic ex-
pansion of the CPA to the lattice CPA for the bond-diluted
triangular lattice. (As noted earlier, the rigidity transition of
the diluted triangular lattice is not described correctly by our
CPA analysis [22]. The static critical exponents for the trian-
gular lattice have lengths which scale as |δp|−ν and moduli
which scale as |δp| f , with ν ∼ 1.3 ± 0.2 and f ∼ 2.2 ± 0.3;
CPA predicts ν = 1/2 and f = 1, and log corrections.)

To make this comparison with no numerically determined
fitting parameters, we must know the values of the nonuniver-
sal constants μ0, f02 ≡ limd→2+ f0�(d/2 − 1), and u2/u02.
We take the triangular lattice with nearest-neighbor bonds of
strength k and bond length a = 1. The dynamical matrix is

D =
(

Dxx Dxy

Dyx Dyy

)
(D1)

with

Dxx = 4k

(
sin2

(qx

2

)
+ 1

4
sin2

(
qx

4
+

√
3

4
qy

)

+ 1

4
sin2

(
qx

4
−

√
3

4
qy

))
, (D2)

Dxy = Dyx =
√

3k

(
sin2

(
qx

4
+

√
3

4
qy

)
− sin2

(
qx

4
−

√
3

4
qy

))
, (D3)

Dyy = 3k

(
sin2

(
qx

4
+

√
3

4
qy

)
+ sin2

(
qx

4
−

√
3

4
qy

))
. (D4)

The Brillouin zone is a hexagon with side length 4π/3, so
the area of the Brillouin zone is sBZ = 8π2/

√
3 and so qD =√

8π/
√

3. For small qx and qy, we expand the dynamical
matrix to quadratic order and find

Dxx = 3
8 k

(
q2

x + q2
y

) + 3
4 kq2

x + O(q4),

Dxy = Dyx = 3
4 kqxqy + O(q4), (D5)

Dyy = 3
8 k

(
q2

x + q2
y

) + 3
4 kq2

y + O(q4).

The long-wavelength isotropic form of the dynamical matrix
is

D(q) = V (λ + 2μ)q2 q̂iq̂ j + V μq2(δi j − q̂iq̂ j ). (D6)

with V = √
3/2 (a hexagon with side length 1/

√
3). Compar-

ing the two, we find that the triangular lattice is isotropic at
long wavelengths with λ = μ = √

3k/4. The triangular lattice
has an average of z̃ = 3 bonds per site, identifying pc = 2/3.
This is all of the information we need to make the comparison
between the triangular lattice CPA numerics and the asymp-
totic scaling forms for the weakened isotropic elastic sheet.
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Measuring the stiffnesses in units of k, we have

λF = μF =
√

3

4
, z̃ = 3, d = 2. (D7)

This leads to

μ0 ≡ μF

1 − d/z̃
= 3

√
3

4
,

f02 = 6π
√

3

ρ
, u2/u02 = 37/4

4
. (D8)

Setting ρ arbitrarily to 2 (which sets the microscopic mass
m to

√
3), we have an ansatz for the scaling form of the

viscoelastic modulus of the diluted triangular lattice, rescaling
to MT = μ/|δp| and �T = ω/|δp|:

±1 − 4

3
√

3
MT = − 1

3π
√

3

�2
T

MT
log

(
−31/4

4π

�2
T

MT
|δp|

)
. (D9)

This is compared with the full CPA for the bond-diluted trian-
gular lattice:

p − k/kF

1 − k/kF
= 1

z̃

∫
BZ

− d2q Tr(DG), (D10)

where all expressions are for the full triangular lattice
(hexagonal BZ, dynamical matrix and Green’s function with
triangular lattice symmetry, etc.) and kF = 1. The diluted
triangular lattice’s effective long-wavelength shear modu-
lus is then μ = √

3k/4, and μ/|δp| is compared with MT

(Fig. 3). Any discrepancies that can be seen by eye are due
to corrections to scaling from higher-order terms in the dy-
namical matrix and Green’s function, which are generically
anisotropic. These corrections vanish close to the critical
point, and the behavior of this anisotropic triangular lattice
near the critical point predicted by the CPA is well-described
by this emergent isotropic theory.
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