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Low-temperature properties of a model glass. II. Specific heat and thermal transport
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We study the low-temperature properties of glasses using the elastic dipole model introduced in

the preceding paper (I). We show that harmonic excitations about the frozen ground states of the
defect Hamiltonian dominate thermal properties in the 1-10-K regime. We numerically determine
the density of states for the defect modes from the simulation of I. The coupling of long-wavelength
phonons to the defect modes is treated within perturbation theory, and is shown to lead to
frequency-dependent softening of the medium and to strong phonon scattering in the terahertz fre-
quency region. The defect modes account for the excess specific heat seen as the bump in C/T'.
Resonant scattering of acoustic phonons off the defect modes leads to the plateau in the thermal
conductivity. We compare our results with experiments on the orientational glass KBr:KCN and
on vitreous silica.

I. INTRODUCTION

The universal low-temperature properties' of amor-
phous materials have been a subject of considerable in-
terest for a long time. The very-low-temperature (T& 1

K) behavior was understood within the phenomenologi-
cal two-level system (TLS) framework of Anderson,
Halperin, Varma, and Phillips shortly after the first ex-
perimental observations. However, universal properties
like the plateau in the thermal conductivity and the ex-
cess specific heat between 1 and 10 K have long resisted
even a qualitative explanation.

It is only very recently that progress has been made on
these universal "intermediate"-temperature properties.
This progress has come from two rather different direc-
tions. First, experiments on disordered alkali-
halide —alkali-cyanide crystals which showed all of the
universal low-temperature properties of glasses led to a
detailed quantitative analysis ' of these features in a
model orientational glass by the authors. Our analysis re-
vealed the existence of additional harmonic excitations in
the tetrahertz frequency regime, which resonantly scatter
the phonons to produce the plateau. Ideas similar to
ours, but considerably different in detail, have been in-
dependently proposed by other authors. ' Second, in a
parallel development, inelastic-neutron-scattering experi-
ments' on vitreous silica gave direct evidence for local-
ized harmonic excitations, in addition to phonons, in the
terahertz frequency range. While a straightforward con-
nection could be made' between these modes and the ex-
cess specific heat, the evidence relating these to the
thermal-conductivity plateau in structural glasses has

been only circumstantial so far.
In this paper we study the intermediate-temperature

properties of glasses within the context of the elastic di-
pole model of I (Ref. 11}.While this model was originally
formulated for a particular orientational glass, in Sec. II
of I we have given arguments to espouse it as one of the
simplest phenomenological models for studying the low-
temperature properties of all glasses. Here we will apply
our model to describe the intermediate-temperature prop-
erties for both orientational glasses and vitreous silica.

Let us begin by briefly summarizing the main ideas of
I. There we introduced a model of elastic dipole defects
embedded at random locations in an elastic continuum,
with the defects acting as local sources of stress. The de-
fects and the phonons —the harmonic excitations of the
elastic medium —form a strongly interacting random sys-
tem, and in order to proceed we made certain simplifying
assumptions. We used elasticity theory to obtain the
strain-mediated interaction between defects, making the
approximation that the phonons mediate essentially in-
stantaneous interactions. This led to an anisotropic, I lr
Hamiltonian which describes the interacting defect di-
poles. We then performed a Monte Carlo simulation of
the defect Hamiltonian, and studied the glassy ground
states and certain excitations involving dipolar reorienta-
tion; see I (Ref. 11}for details.

In this paper we shall study the harmonic excitations
about the disordered ground states obtained in I. We
show that the interaction of the phonons with these "ad-
ditional" harmonic excitations of the defect system is re-
sponsible for the intermediate-temperature universal
properties of glasses.
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In Sec. II of the present paper we introduce the libra-
tion modes, which are the normal modes of the small an-
gular oscillations of the dipoles about their frozen orien-
tations, We show that the density of states (DOS) for the
libration modes is a strongly peaked function of frequen-
cy. After identifying the important harmonic excitations
about the disordered ground states, we analyze the cou-
pling of these modes with the phonons and its effects on
the elastic and thermal properties of the system in the
rest of this paper.

We begin in Sec. III by studying the response of the
system to a static external strain field. We show that the
relaxation of the defects leads to a softening of the shear
response of the material, although the bulk modulus is
unchanged. This is in excellent agreement with elastic
data for (KBr), „(KCN), as a function of the cyanide
concentration x.

We next study, in Sec. IV, the elastic response of the
system to a finite-frequency external perturbation. In ad-
dition to a frequency-dependent in-phase response, we
also find an absorptive part with strong frequency depen-
dence. The latter represents resonant scattering of pho-
nons from the libration modes.

In Sec. V we discuss the total density of harmonic exci-
tations. We show the need to include the coupling of the
phonons and the defect libration modes in determining
this DOS. We derive results for the specific heat and
show that the libration modes will give rise to the bump
in C/T, which is a universal feature of all glasses.

We focus on thermal transport in Sec. VI. We begin
with a brief review of various other phonon-scattering
mechanisms in glasses, which together fail to explain the
thermal-conductivity plateau. We then discuss the im-
portance of resonant scattering from librations for
thermal transport in the 1-10-K temperature range. We
discuss how this strong resonant scattering, together with
the temperature-independent scattering of low-energy
phonons, leads to a plateau in the thermal conductivity.

We next compare the predictions of our theory in Sec.
VII with thermal-conductivity and specific-heat experi-
ments: first with the orientational glass KBr:KCN, and
then with vitreous silica. For the former we have a mi-
croscopic identification of the libration modes with the
angular oscillations of the cyanide molecules. The fits to
the experiment are therefore without any free parameter
in KBr:KCN. On the other hand, for vitreous silica, the
elastic dipole model has no microscopic interpretation.
The two parameters of the model are obtained from
fitting the total density of harmonic excitations in the
model to that measured' by inelastic-neutron-scattering
experiments on a-SiO2. This determines the thermal-
conductivity plateau and excess specific heat without any
additional free parameters.

In Sec. VIII we discuss the universality of the plateau
within our model, and also discuss the extent to which
our model is successful in describing arbitrary glasses.

Section IX contains a critical discussion of the various
approximations we have made in the analysis presented
in this paper and its companion (I), together with a dis-
cussion of the strengths and weaknesses of our approach.

We describe other approaches which have been pro-

posed to understand the universal low-temperature prop-
erties of glasses in Sec. X, and contrast these with the
elastic dipole model analyzed in this paper. Finally, Sec.
XI contains our conclusions.

In the Appendix we show how to go from the "com-
puter" units used in the simulation of the defect system
to physical numbers.

II. NORMAL MODES

In this paper we discuss two types of harmonic excita-
tions. First, there are the phonon modes' of the elastic
medium which both mediate the interactions between the
defects and also contribute to thermal transport. Second,
there are the harmonic excitations of the dipole degrees
of freedom about their metastable ground state. These
two types of exeitations are coupled linearly, and thus, in
principle, we ought to be studying the true normal modes
of the coupled system, e.g. , by diagonalizing the random
harmonic system. We make the conceptual separation
between phonon and defect modes for two reasons. First,
our simulation of the random defect system is necessarily
much smaller than the phonon wavelengths relevant for
low-temperature thermal transport. Second, there is a
separation of frequency scales which allows us to incorp-
orate the bulk of the phonon modes, i.e., those near the
Debye frequency, into the effective interaction between
defects. The coupling of the long-wavelength phonons to
the defect modes is then treated perturbatively.

In this section we introduce the libration modes, which
are the harmonic excitations of the defect subsystem. In
I we simulated a system of elastic dipoles Q,= Qo(R', h~

—
—,'5;~ ), placed randomly on the sites x of a fcc

lattice. The dipoles interact via the Hamiltonian

H = —
—,
' g Q,J(x')J)kt(x —x')Qk((x'),

where J;Jk& is the real-space Green function for the strain
of a dipole in an isotropic elastic medium. In I we nu-
merically found ground states of this system, where the
dipoles are frozen in random orientations n(x)
= (sin8„cosg„, sin8„sing„, cos8„).

Since the ground states we find in the simulation are lo-
cal minima of the energy, the energy for small deviations
from a ground state is given by a quadratic form. Each
dipole has two angular degrees of freedom; we will write
the angular coordinates of the dipole at site x as g„, and

These could, for example, be given by small devia-
tions from the frozen orientation n of the dipole, so that
g„,=58„and 5(„z=sin8„5$„. We can then write the po-
tential energy as

H;„,=Eo+ —,
' g D„yp5(„5(„p+

x, a;y, P

The dynamical matrix D above is defined as

3 0,„,"'»= ag„ag, '

where the derivatives are evaluated at the frozen ground-
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state orientations.
We can diagonalize the dynamical matrix to determine

the normal modes of the defect system, which we call "li-
bration modes, " since these are the small angular oscilla-
tions of the defect dipoles about their frozen orientations.
We will show below that these modes are very important
for the intermediate-temperature properties of our model.

Let us define Mb „ to be the orthogonal matrix that di-
agonalizes the dynamical matrix D, so that

2~b, xaDxa, yP~b', yP I~b ~b, b'

Here, I is the moment of inertia of a defect and 0b is the
oscillation frequency of the bth normal mode;
b =1,2, . . . , 2X in a system with X defect dipoles. The
corresponding eigenvector of the dynamical matrix is

2

&b= X X.Mb
x a= 1

Mb „ is thus the amplitude of the angular coordinate g„
in the bth libration mode. We should emphasize that the
eigenvectors of the dynamical matrix of a random system
are not expected to be plane waves, which is indeed what
we shall find.

The density of states (DOS) of the libration modes

plays a major role in the subsequent analysis. We have
obtained this DOS by diagonalizing the dynamical matrix
for a particular frozen configuration and then averaging
over approximately 10-20 di6'erent configurations. The
density of states of the librations per unit volume, p (0),
is plotted in Fig. 1. We have found that it is remarkably
independent of the system size. For very small systems,
say with a few defects, the DOS has sharp structure, but
even for a 3 X 3 X3 lattice this structure is washed out
and a single peak is obtained.

This peak in the libration DOS is very crudely related
to the bare-barrier-height distribution P( V) of I, Sec. VI,
as follows. Each dipole "sits" in a local potential with a

double-well structure, and a barrier height V to 180' re-
orientation which has a peaked distribution P ( V). If we
make the gross simplification of assuming that each di-
pole is an independent Einstein oscillator, we obtain a
peaked DOS of small oscillations from the peaked distri-
bution P(V). (This crude "single-particle" estimate is
only qualitatively correct, and is unable to fit both the
plateau and the excess specific heat simultaneously, as
discussed in Ref. 7.) The true defect normal modes ob-
tained from the computer simulation are much more
complicated than individual Einstein oscillators and are
coupled oscillations of the dipoles about their frozen
orientations. We have checked the degree of anharmoni-
city of these modes, and find that the deviation from har-
monic behavior is less than 1% for temperatures below
20 K.

A question of some importance is the nature of these
eigenstates: are these modes localized or extended? We
estimate the number of dipoles in a given mode using the
participation ratio,

Xb = Q (Mb „,+Mb „2 )

X

We have defined this to normalize to the number of di-
poles, so that a mode that is evenly distributed over all
the dipoles will have a participation ratio of 1 and a local-
ized mode will have Xb -0 (N '). We find that both the
very-high-frequency and very-low-frequency modes are
localized; the modes at these frequencies have small parti-
cipation ratios which do not depend on the system size.
Figure 2 shows the participation (NXb) as a function of
frequency for various-size lattices at a concentration of
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FIG. 1. Density of states p (Q) for the defect libration modes
from simulation with a defect concentration x=0.5. The fre-

quency is in computer units.

FIG. 2. Smoothed participation values for @=0.25, on lat-

tices of length L=3, 4, 5, and 6. We plot (lV) =4xL' times the

participation ratio because it is easier to see. Each point on the

graph is the average of 20 points. The participation ratio is

shrinking 4,'slowly) with system size, but it is not clear whether it
is going to zero as the system size goes to infinity. The peak of
the participation ratio X& (see text) for the four sizes is 0.33,
0.30, 0.26, and 0.23.
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x=0.25, and we see that the participation ratio at inter-
mediate frequencies is still increasing as we increase sys-
tern size.

Thus, due to the extreme sensitivity of the participa-
tion ratio to finite-size effects, we cannot determine from
our simulation if the modes in the center of the libration
band are localized or extended. Even if they are extend-
ed, it is likely that energy diffusion via the librations is
small; however, we have not addressed this question
quantitatively. In the following we will simply assume
that the libration modes do not contribute to thermal
transport.

III. STATIC RESPONSE

for each libration mode. Collecting these terms, the total
energy of the system for small amplitudes in the normal
modes is given by

VH =Eo+ g ,'IQ—blab eij
—g Cb;jitb — s—ljk(o,(ok( .

(10)

If we apply a static external stress field, the dipoles will
just relax to their minimum-energy positions. Minimiz-
ing (10) with respect to pb gives

ij Cb, ij ijkl+klCb, ij

The libration modes have two main effects on the pho-
nons. The first is that they act to change the elastic con-
stants of the medium. This is because the dipoles can ad-
just to take up stress in the material. The second main
effect is to scatter phonons resonantly. We can determine
these effects in a unified way by calculating a complex
frequency-dependent susceptibility of the libration modes
to the phonon strain fields. It is useful to first do a
simpler calculation of the response of the dipoles to an
externally applied static stress. This calculation is more
physically transparent and serves to set the stage for the
full frequency-dependent response.

Imagine applying an external stress to the medium.
The Hamiltonian for the defect system coupled to an
external stress o; is given by'

and then the uniform strain field induced by the response
of the dipoles to the external stress field is given by

E=1 e; Cb;.
emn

V klmn X Cb, kl
IQb

(12)

The "renormalized" compliance tensor' is then given by

j. Cb, ij Cb, kl
Smnpp

(&= 0)=
Smnpp +Sklmn S(jpp ~b rn,

(13)

This result may also be obtained by substituting (11)back
into (10), and identifying the renormalized compliance
tensor as the coefficient of the term quadratic in the stress
fields.

We use the notation s „, (co) to determine the response
at frequency ~. Throughout this paper, elastic and com-
pliance constants without an argument are taken to be
the (high-frequency) "bare" values. Before turning to the
physics of this renormalization, we simplify our results by
doing a spherical average.

E I V E E
Q,"(x')J,,k((x x')Q—k, (x') e,, Q—(—

j ejo j, —
X, X

(XXX')

(7)

where Q;j= Q„Qj(x) is the total (internal) dipole mo-

ment, and the "external" strain e; =s,.jkro. &&. Note that
the e;~o.;J contribution comes in with a negative sign in
the total energy, since it involves both the (positive) elas-
tic energy of the medium and the (negative) p d V work
done on the system.

We want to calculate the renormalization of the elastic
constants due to the presence of the defects. The elastic
constants give the linear response of an elastic medium,
and for small external stresses we can make a harmonic
approximation (2) for the defect Hamiltonian. Using (4),
the first term of (7) is diagonalized to the form

gb ,'IQbpb We —next line. arize the second term of (7) in

the dipole coordinates g„, and express is in terms of the
normal modes, using the inverse of (5) given by
g„= gb Mb „fb. Using

2b( 2 ()Q. .

5Q (x)= g g ' Mb„pb,
b=i a=i xa

the coupling between the libration modes and the exter-
nal strain field can be written as e," gb Cb,"pb, where we
have defined a coupling constant

aQ„(x)
bij= X bxa

x,a bxa

A. Spherical average

We now want to spherically average the response to an
external stress for several reasons. First, while we have
already spherically symmetrized the bare elastic con-
stants by starting with an isotropic medium, we place the
defects randomly on the sites of a fcc lattice. This intro-
duces a (average) cubic symmetry in our simulation. We
will find that it greatly simplifies the later calculations,
e.g., of thermal transport, to work with a spherical aver-
age. Second, the libration modes are obtained from a nu-
merical simulation, and are thus arranged in some partic-
ular orientation, related to the frozen ground state. We
would like to average over all possible orientations for
these modes. In an infinite system this would be au-
tomatically done in the averaging over the quenched dis-
order, and one would expect a real glass to have spheri-
cally symmetric response functions.

An additional complication arises because there are (at
least) two different angular averages one obtained from
averaging the elastic constant c; kI and another from the
compliance s;~k&. Since it is easy in our case to do the
latter analytically, we choose to average the compliance
tensor. We have numerically checked that, for x=0.5,
the two averages give values of A. /p which differ by only
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a fraction of l%%uo,
' the two results are significantly

different, ' however, for x=0.7.
We calculate the response to an external stress, averag-

ing over an ensemble containing libration modes with all
possible orientations. To perform the average in Eq. (13),
we calculate (Cb;j Cb kl ) where the angular brackets
denote the above average. This is given by

Substituting the above result in (14), we find that the
angular average & C. ..Cbki, & is given by

QoAb(C;.C „)= [ —25; 5„+3(5,„5 +5, 5.„)],
(19)

a2
( Cb ijCbkl ) g Mbxa byP

x, a;y, p bxa gyp

x&Q„( )Q„,(y)&, (14)
2

x, a;y, p Sxa Syp
(20)

where we have defined an average (dimensionless) cou-
pling squared Ab for each mode b by

using (9). We now want to calculate (Qj(x)gki(y}),
which we will write in tensor form as

Q; kl =Q—o[R, (x)Rj(x)','5—
; —][R„(y')Rl(y)','5—„l—] .

A simple way to calculate the spherical average of Q,"ki
is to use the fact that the most general isotropic fourth-
rank tensor, which is symmetric under interchange of
i ~j and k~l, and under ij~kl, is given by

A jkl ~5' 5k l +C ( 5 'k 5jl +5il 5jk }

Contracting A;Jki with itself, we form the scalars
A,","=3B + 12C and A, ,

"=9B +6C. Performing these
contractions with Q;jkl gives

Qij, =Q(') [(n. ny)' —
—,'1

(17)

We note in passing that the longitudinal and transverse
components of ( Cb,,Cb «) are given by

( C2)(L)—4 ( C2)(T)—4QOAb

15

For an isotropic medium, the compliance tensor is
given by

1
sijkl 3~+2 )

5ij 5kl 4 (5ik5jl+5il5jk ) (22)

Performing the contraction in Eq. (13), and using (19) and
(22), we find that the change in the compliance tensor due
to mode b is given by

Qiijj =0
~

and solving for Q,jkl yields
AbQO

bsijki = 2, [—25,j5„,+3(5ik5ji+5, l5jk )] .
60VI QbP

(23)

2

Qijkl 30
[(n 'ny) 3 l( 25'j5kl+5'k5jl+5 l5jk )'

(18)
I

There is a sum rule for the coupling of external strains
to the librations. Performing the derivatives, the sum
over all the libration modes of Ab is given by

2N 2N an. „„any „„an, anyn„n„" +(n„n„) ~

b = 1 b =1 x, a;y, P kxa byP 5xa )yP
(24)

Since M is an orthogonal matrix with

gb Mb„~byp=5, „p, the sum over b is trivial. Then
the first term in the large square brackets vanishes and
(24) simplifies to

2N

Ab= g
2

= +2=2% . (25)

So Ab averages to 1.
Just as we averaged the DOS of librations over various

random configurations, we also average the coupling Ab.
Averaging over all the modes in different realizations
with frequency Qb =0 defines A (0), the mean-squared
coupling of libration modes of frequency 0 to long-
wavelength phonons. This quantity will be important
later in calculating the scattering rate of phonons, as well
as the zero-frequency shift in elastic constants. From
Fig. 3 we see that there is a strong increase' in the cou-
pling A (0) for the low-frequency librations.

B. Softening

We shall now discuss the physics of the elastic-constant
renormalization due to the coupling of the harmonic li-
bration excitations to the external strain fields.

It turns out that for all the properties concerning the
harmonic excitations, the defect parameters Qo, the di-

pole moment, and the moment of inertia, I, always ap-
pear in the same combination, Qo/I. We will define this
combination (pronounced 1am-mom') as

(26)

We write the sum over the libration modes in (13) in
terms of the density of states per unit volume, p(Q), us-
ing the replacement V 'yb ~fdQIj(Q}. Then, using

(22) and (23), the spherically symrnetrized, renormalized
compliance tensor can now be written as
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6 I I I I I I I I I I TABLE I. Elastic data from De Yoreo, Ref. 5. Note that the
bulk modulus K is quite constant over the entire range of con-
centrations for which the material is cubic.

& IZ &44

(10" dyn/cm )

0
0.05
0.10
0.25
0.50

4.17
3.40
3.20
3.01
2.84

0.52
0.75
0.85
1.00
1.10

0.520
0.380
0.350
0.306
0.240

1.74
1.63
1.63
1.67
1.68

(29), E is unchanged by the presence of the defects; that

A, (0)+—', tM(0) =A, + 2 p . (30)

1
0 (Computer Units)

2p(3i(. +2tM)

+ + (5,k5 i+5;i5ji, ),1 B
4p 20@

(27)

FIG. 3. The average coupling squares A'(0) of defect libra-
tion modes to long-wavelength phonons plotted as a function of
libration frequency.

We can check to some degree whether the bulk
modulus is independent of the concentration of defects by
looking at KBr:KCN. If the cyanides are responsible for
the change in elastic constants in this material, we expect
that E should not change much as x is varied. The bulk
modulus of a cubic material is given by I(: = 3Ci]+ 3C~2.
In (KBr), „(KCN)„, as x changes from 0 to 0.5 (for the
next-higher concentration, 0.7, the material is no longer
cubic), the cubic elastic constants all change significantly
(see Table I). C, t, which changes by the smallest factor,
varies by 47%%uo from its value at x=0. The bulk modulus,
however, only changes by 6.5% over the same range of x.

IV. FINITE-FREQUENCY RESPONSE

where we have defined the dirnensionless parameter

p(Q)ibB=——dQ
p 0 (2&)

If we now want to calculate the change in the Lame
coefficients, we must invert the s, k& tensor. Doing this
gives softened Lame coefficients' of

A, +(8/5)( —', tM+A, )
A,(0)=

(29)
0 P

1+8l5
In these equations, k and p are the bare values.

From (29) we can see that the presence of the defects
leads to a softening of the medium. The defects relax in
response to the externally applied static stress, and thus
the strain produced for a given stress is larger. Even
though A. increases from its high-frequency value, the ma-
terial is really getting softer. This can be seen from the
fact that both the longitudinal and transverse speeds of
sound decrease at low frequencies, since they are given by
UT=&plp and UL=&(k, +2@)Ip.

Note that if we apply hydrostatic pressure, the dipoles
do not relax, since their relative orientations to each oth-
er do not change. Therefore we expect that the bulk
modulus, K =A, +—', p, should be unchanged, despite the
presence of elastic dipoles. As can be verified from Eq.

We will now look at the coupling of finite-frequency
phonons (co&0) to the libration modes of the system.
This discussion generalizes the analysis of static distor-
tions coupled to the defect normal modes. The new
feature is that, in addition to a shift in the elastic con-
stants, which is now frequency (tet) dependent, we also
obtain a dissipative part to the response which represents
a phonon lifetime due to resonant scattering from the li-
brations. The latter effect will play a crucial role in our
understanding of thermal transport.

We begin with the energy of coupling between the elas-
tic distortion in the medium to the local stress fields of
the defects (located at x),

Hmteractton P Qij (X)Eij (~~ )) (31)

where k and g are the wave vector and polarization of
the distortion, and the superscript E denotes the fact that
the strain field c; is that caused by the externally appliedIJ

stress o.;, so that

E E
Eig siJkl ~kl (32)

Now, as argued earlier, the only important degrees of
freedom of the defect system, for our purposes, are the
small angular oscillations of the defects about their
frozen orientations. We now go through the same se-
quence of steps as in the preceding section to arrive at the
phonon-defect mode coupling. We first linearize (31) in
the defect coordinates and then use (5) to write it in terms



41 LOW-TEMPERATURE PROPERTIES OF A MODEL GLASS. II. 7805

of the normal modes. Generalizing our earlier equation,
(9), we define the coupling constant Cb; (k) of a phonon
with wave vector k to the bth defect mode by

t)g,j(x)
Cb;, (k)—:g Mb „e'"* .

x,a xa

Using this, we obtain

2N

Hinteraction g b, ij (k)kbeij ( & l)
b=1

(33)

(34)

Equation (34) represents the interaction energy of a
system of harmonic oscillators —the libration modes tl(b

with frequencies Qb and moments of inertia I—which are
driven by the externally produced strain field,

sEj(k, rj)= —,'(k;rj, +k, rj, )soe' ' . (35)

Consider now a single libration mode b; its induced am-
plitude under the effect of the external strain field is

Cb ij E
tl(b

= — '
y(ro; Qb )E,j, (36)

where the complex susceptibility g(co; Qb ) is given by the
usual expression for a harmonic oscillator:

q(~; n„)= [(n—', ~') —+(~r(~)]-'

y'(a);nb ) (y—"(o(;—Qb ) .

(37)

(38)

YAbN
l (o()= +

3UL UT 10mp
(39)

Note that the harmonic nature of the librations leads to a
temperature-independent response. ' The width of the
resonance, r(o(), is given by

( Cb (j (k)Cb k((
—k) )

QO~b

15 [—25;,5k, +3(5;k5,(+5;(5jk )], (42)

The phonon wave vector does not appear on the right-
hand side since we have taken the k~O limit.

Next, we denote the sum over the defect modes in (41)
by an average over the libration DOS via the replacement
V 'gb ~ fdnp(n) Just as. in the static case, we

define a dimensionless quantity representing the change
in elastic constants by

8 (co) =8'(o() —iB"(o()—

phase) part represents a change in the elastic constants of
the medium and the imaginary (out-of-phase) part
represents a lifetime for the phonon excitations.

Before proceeding to the final physical results, we need
to simplify (41) into a more manageable form. We will
first perform a spherical average over the libration modes
in the system. The angular average (Cb;j(k)Cb ki(

—k))
may be evaluated in much the same way as in the static
case, provided we make the approximation that we can
effectively take the limit k~O. Since our libration modes
have little resemblance to plane waves, we expect that
their coupling to phonons will be qualitatively unchanged
by including the spatial modulation of the phonon ampli-
tude. In any case, our simulation is small compared to
the phonon wavelengths of interest, so the k dependence
of the coupling is not accessible to us. Our final results
seem largely independent' of the detailed form of the
couplings, so long as the overall magnitudes are roughly
maintained.

With the above approximation the factor
exp[ik (x—y)]=1, and we obtain the same result as in
the static case, namely

and is the inverse lifetime of the libration mode due to its
coupling to the phonon bath. We take the Qb appearing
in (37) to be the renormalized libration frequency, which
takes into account the effects of the high-frequency pho-
nons via an effective moment of inertia. Thus we do not
need to keep an explicit shift in the bare-libration-mode
frequency from the coupling to the phonons.

We now calculate the effect of the libration modes on
the elastic medium as before. Substituting (36) into the
interaction energy gives

—=—Jdnp(n)A (Q)y(o(;Q) .
p

Written out explicitly, 8'(o() and 8 "(co) are given by

Q2 2

8'(o() =—Id Q p (Q) A (Q)
p (Q —co ) +co l (o()

and

(43)

(44)

X Cb, ij(k)Cb, ki( k)x(o('Qb )elf(ski) (40) 8"(oi)=—J d Q p (Q) 3 (Q)
p (n' —~')' N+'r'(M)

Comparing this to —,
'

V6ijkl&ij &kl, we obtain the change in

the compliance tensor of the medium due to the phonon-
defect coupling,

iji'j ' klk'l'
4sijk((o() — g Cb;j (k)Cb k (( —k)X(co;Qb) .

IV

(41)

Since the susceptibility is complex, the change in the
compliance tensor has a part which is in phase with the
external perturbation and one that is out of phase. We
shall show below that, in the usual way, the real (in-

(45)

8 (o()
~sijk( [ 25ij 5k(+ 3(5ik5jl+ 5i(5jk )]

60p
(46)

with 8(co) given by (43). Note that in the static limit
(o(=0) we recover our earlier result.

Finally, using Eq. (22), which gives the compliance ten-
sor in terms of the Lame coefficients, together with (42),
we find that the change in the compliance tensor, Eq.
(41), spherically averaged, reduces to
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A. Frequency-dependent elastic constants

We will now focus on the real and imaginary parts of
(46). We will find it convenient to first work out the lon-

gitudinal (L) and transverse (T) components of the com-
pliance tensor. For a general tensor with the symmetries

Cj'kl o jkl

B. Phonon scattering

We now turn to the imaginary part of the compliance
tensor (46). This is directly related to the rate of energy
absorption per unit volume of the medium,

~ Im(~ijkl )crij crki
dt

~ijkl Bfiij fikl c(fi kfijl fiilfijk )

these are given by

(47) where the externally applied stress field cr,- has an e'"'
time dependence. Using our earlier results, this may be
rewritten as

A' '=B+2C and A' '=C, (48)

and

j(+jj + 8 (co)

p( 3A, + 2)(c ) 15)M
(49)

I

s(T)( ) (50)
4p 20p

It is then straightforward to obtain the renormalized
(frequency-dependent) Lame coefficients which are given
by

and

p
1+—,'8'(co) (51)

where the L component is given by i =j =k =I, and the
T component by i =kAj =I. Adding the real part of
(46) to the bare compliance tensor, we obtain the
frequency-dependent compliance tensor whose com-
ponents are

dE coB"(co)
30 II jj ]0 !J Ij )

dt p
(57)

dE'"' =,4, coB"(co)rjk p, . (58)

For a transverse mode, o,, =0, and e;Jcr; =2g k p, giv-2 2 2

ing

dE"'
dt

=—'coB "(co))(crj k (59)

Again, we find it convenient to look separately at the
longitudinal and transverse cases. We will consider the
phonon to be a strain field as in Eq. (35). It should be
noted that a longitudinal phonon traveling in the, say, x
direction will have only an xx component in its strain
field, but will have all three diagonal elements of its stress
field nonzero.

For a longitudinal mode, o;; =rjk (3A, +2)(c), and
o; 0;=rj k (3X +4k)(i+4)(c ), where il is the amplitude.
Using this, we find that

~+ —,'(&+ 3)M )8'(co)

1+—,'8'(co) (52)
The mean free path l =v~, where z is the correspond-

ing phonon lifetime, is given by

VT= p
p[1+—,

) 8'(co)] (54)

It is easy to check that in the static limit we obtain the
same result for the "soft" Lame coefficients as in the pre-
vious analysis. Also, in the limit ~~ ~, i.e., for phonon
frequencies much larger than the characteristic libration
frequencies, 8'(co)~0, and the renormalized Lame
coefficients are simply equal to the "bare" j(, and )(c.

From the Lame coeScients we can determine the lon-
gitudinal and transverse speeds of sound, which are

i(, +2)(c+ —,
) (A, +—', u)B'(co)

p[1+—,'8'(co ) ]
' 1/2

(ur) '=I dE
dt

(60)

(61)

which for longitudinal or transverse waves in an isotropic
medium becomes

@(a) & (a)( &(a) )2u a (62)

where the label a can take on values L and T, and
c =A. +2p and c =p. We find that the scattering
rates for L and T phonons are given by

where 4 is the incident energy flux. The energy flux of
an elastic wave is given by

)(c(co)

A(co)+2)M(co)

We calculate a mean sound velocity as a function of
frequency by u =

—,'(u L +2ur i
),

' 1/2 3/2 —1 /3
(M(co) 1

u(co) = 2+
p 3 and

1

r(L)( )

4 8"( )
15 j(.+2)M

(55)

for an isotropic medium. Here we are treating the ma-
terial as if it had no dispersion, so that in the absence of
the libration modes the sound velocity would be indepen-
dent of frequency.

1 =
5coB "(co) .

(co)
(64)

Finally we define an "average" phonon-scattering rate
from librations,
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1 1 1 2+
(co) 3 r' '(co) v' '(co)

(65)

From (45) we see that 8"(co), and hence the phonon-
scattering rates, are highly peaked functions of the pho-
non frequency. This peaked nature follows from the re-
sult that the scattering rate is obtained by a convolution
of two peaked functions: the line shape y"(co;0) for res-
onant scattering off a single libration mode, and the
peaked density of states p (0) for these modes. Note also
that the phonon-scattering rate is temperature indepen-
dent; as mentioned earlier, this is a direct consequence of
the harmonic nature of the librations from which the
phonons are scattered. We will see that this strong
scattering leads to the plateau in the thermal conductivi-
ty.

V. SPECIFIC HEAT—TOTAL DENSITY
OF HARMONIC EXCITATIONS

The low-temperature specific heat of glasses has two
features which are rather different from crystalline ma-
terials. The first is the large specific heat below 1 K
which has an almost linear temperature dependence.
This part of the specific heat has a slow logarithmic time
dependence. Due to finite-size limitations, we are unable
to study within our simulation the very rare (few tens in a
million) two-level systems, if they exist, or some alterna-
tive ' nonphonon long-wavelength collective modes.
Thus we will simply use the standard TLS phenomenolo-

gy for T& 1 K.
The second characteristic feature of glasses is the ex-

cess specific heat in the 1—10-K region, seen as a bump in
C/T3. Experimentally, this contribution appears to be
time independent' and thus qualitatively different from
the linear term. We will show that the harmonic libra-
tion modes have a peaked density of states which explains
this excess specific heat.

Naively, it might seem that just adding the libration
DOS to the Debye density of states (-co ) for the acous-
tic phonons would give the bump in C/T . This is quali-
tatively correct: one does indeed get a bump in a plot of
C/T, but the value of C/T at temperatures above the
bump is much too high, e.g. , in KBr:KCN. The reason
why one cannot simply add the Debye phonon and libra-
tion DOS is that the presence of the defects produces a
considerable softening of the medium, as discussed in Sec.
III, and this must be taken into account. The main effect
of this phonon-defect coupling on the phonon density of
states is the following. For phonon frequencies well
below the characteristic libration frequencies, one must
use the phonon DOS coming from the measured (from
our point of view, "soft") speeds of sound. However, for
phonon frequencies much larger than the librations, the
dipoles no longer relax to take up the stress, and the
medium appears hard relative to the measured elastic
constants. The high-frequency phonon DOS is therefore
considerably less than would be expected from the mea-
sured speeds of sound. This, as might be expected, has a
significant impact upon the C/T fits.

We estimate the above modification of the phonon

DOS in a simple way by using the frequency-dependent
sound velocity of Eq. (55). We assume that we can ap-
proximate the phonon dispersion relation by three polar-
izations all having the same dispersion. We then obtain
the phonon density of states g h(k)=12nk (1/8m ) per
unit volume, or, equivalently,

3k (co) dk

2~
(66)

Using k (co)=co/ u(co), with u given by (55), we get
r

3co co av(co )

2m. u 3(co) u(co)
(67)

VI. THERMAL TRANSPORT

Our aim here is to calculate thermal transport for the
elastic dipole model. We show that the resonant scatter-
ing of acoustic phonons from the libration modes, studied
in Sec. IV above, leads to a plateau in the thermal con-
ductivity.

Starting from the phonon Boltzmann equation, the
thermal conductivity is given by the well-known result

crag)

A( T)=f dco C „(co,T)u'r(co, T) . (69)
0

In this expression,

k~x e"
Cph(co, T)=,x =Aco/ks T

2m u (e' —1)
(70)

is the specific heat of the phonons of frequency co at tem-
perature T, r is their lifetime, or inverse scattering rate,

Note from the above discussion that u(co) has a low value
as co~0 and a high value as co~ ~. In both these limits
the second term in the parentheses is small compared
with unity, and one obtains a Debye-like DOS, except
with different speeds of sound. In between these two lim-
its, u(co) goes from one value to the other in a nonmono-
tonic manner (see Fig. 5), and the second term is no
longer negligible. However the details of this "cross-
over" in the phonon DOS are not very important, since
in the total density of harmonic excitations the defect
modes dominate precisely in this frequency range.

To calculate the total DOS for harmonic excitations,
g«„,(co), phonons plus defect modes, we make the ap-
proximation of simply adding the modified phonon DOS,
(67), to the libration DOS, p (0). The specific heat of the
elastic dipole glass is then given by the sum of the contri-
butions from the TLS and the harmonic excitations, i.e.,
phonons plus librations:

~ 2ex
C(T)= ArLsT+ks fdcog«„)(co) (e"—1)

g,(&„)(~)=gph(co)+p (co) (68)

where x = vari/cok&T. The linear contribution from the
TLS which dominates below 1 K has a coeScient A &Ls
which is obtained from fitting the low-temperature data.
We will compare the specific heat thus obtained with ex-
periments in Sec. VII.
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and v is the Debye speed of sound. We approximate the
(total) scattering rate of a phonon by using Matthiesen's
rule of adding the rates due to independent mechanisms.

There are three well-known mechanisms of phonon
scattering in glasses and, as is well known, ' ' these are
inadequate to explain the thermal-conductivity plateau.
They are resonant scattering from TLS, relaxational
scattering from TLS, and Rayleigh scattering from densi-
ty or elastic-constant fluctuations. For completeness, we
briefly describe these mechanisms, since different scatter-
ing mechanisms determine the thermal conductivity in
different temperature regimes. This will help in under-
standing the role of the libration modes in producing the
plateau.

A. Scattering from t~o-level systems

At very low temperatures the dominant scattering
mechanism is resonant scattering from the TLS. This
gives a scattering rate of

—2

r,„'(co,T) = co tanh(irico/2k' T)
pv

=—2 co tanh(i)ico/2k& T),
where y is the strain coupling of TLS to phonons, P the
density of TLS, and p the density of the material. Reso-
nant scattering from the two-level systems gives a
thermal conductivity proportional to T at low tempera-
tures, in agreement with experiments below 1 K.

Another scattering mechanism involving the TLS is re-
laxational scattering. ' This is due to the fact that a
phonon modulates the energy splitting of the TLS, and
the TLS populations try to stay in equilibrium via the
emission and absorption of phonons. An approximate ex-
pression for the resulting phonon lifetime is

raayl(+) +min+
R co

(73)

where

a~3
4

R=
4' U

(74)

Here, ao is the microscopic length scale on which the
density or elastic-constant fluctuations occur, and I:
characterizes the magnitude of these fluctuations.
r;„-cia/U ensures that the mean free path does not be-
come smaller than ao.

The therma, 1 conductivity calculated from adding the
phonon scattering from the above three mechanisms, i.e.,
using r '(co, T) =r„„'(co,T)+r,,i'(co, T)+rz,'„i(co) in (69),
is about an order of magnitude too large in the 1—10-K
region, and does not explain the plateau. (See, e.g., Fig. 3
of Ref. 6, or Fig. 4 of Ref. 7.) In other words, these three
mechanisms together produce too little phonon scattering
to cause the plateau.

Estimates of the Rayleigh coefBcient R have varied in
the literature. Microscopic estimates for, e.g., vitreous
silica give too little Rayleigh scattering to give the pla-
teau. In the glassy crystal KBr:KCN these estimates are
even more straightforward, and are again found to be too
small. However, it has been pointed out by a number of
authors that if R is treated as a free parameter, and
chosen to be 2 orders of magnitude larger than the earlier
estimates, then this alone can give a plateau. In Ref. 27 it
was argued that this increased value of R is due to the ex-
istence of a new correlation length in glasses. However,
there is little independent evidence for such a length
scale, say from structural studies. (We will discuss other
proposals for the thermal conductivity plateau in Sec. X,
after describing our own calculations. )

1 1
r„i(co, T)= +

aT
(72) C. Scattering from librations: Thermal-conductivity plateau

The parameters a and b are given by

kB 7TP p CO

24 7, b=
q

=3/2.
8p fi v 2pv

The first term in (72) dominates at low temperature, when
the TLS are relaxing slowly on the scale of the incident-
phonon frequency co, and the second term (which will be
more important for us below) takes over a high tempera-
tures when the TLS relax fast compared with co. Relaxa-
tional scattering plays no role in low-temperature
thermal transport (see, e.g. , Ref. 23), and is only observ-
able in ultrasound experiments where the resonant in-
teraction is saturated by a large acoustic intensity.

B. Rayleigh scattering

At high temperatures (T) 10 K), Rayleigh scattering,
with its strong frequency dependence, is the dominant
mechanism. The Rayleigh-scattering rate cannot grow
indefinitely as ~ and we will cut it off by simply assum-
ing that the mean free path must be larger than intera-
tomic distances. The scattering rate is given by

Second, we approximate the different phonon dispersion
relations by that given from the frequency-dependent
average speed of sound (55), so that U =u(co). Third, we
use the same approximation for the phonon density of
states that we had used for specific heat. We thus use

kBX e"
C h(~, TPh ' 3 Ph

(
x l)2

(76')

instead of (70). We should note that the first change, i.e.,
inclusion of the libration-scattering rate, is crucial; the
second and third points do not make any qualitative

In addition to the above mechanisms, we next include
the phonon scattering from the librations which we have
described in Sec. IV. This introduces the following
changes in the thermal-conductivity calculation using
(69). First, we take the total scattering rate in (69) to be
the sum of the rates due to TLS scattering, libration
scattering, and Rayleigh scattering:

'(co, T) =r,„,'(co, T)+r,„'(co,T)+r~,'„,(co)+r,;„'(co) .
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change in the results. In the next section we will show
that with the libration scattering we obtain a plateau in

thermal conductivity in good agreement with experi-
ments.

Fits to the data will be discussed in the next section',
here we shall describe the formation of the plateau. The
basic idea is simply that the libration modes are excita-
tions whose frequencies match the thermal phonons in
the plateau regime. Resonant scattering of acoustic pho-
nons from these libration modes then leads to the
thermal-conductivity plateau. The detailed discussion
below of the different scattering mechanisms dominating
in different temperature regimes follows Ref. 7.

Below 1 K the phonons dominating thermal transport
have frequencies much lower than those characteristic of
the librations. The librations play no role there and the
usual T dependence of the thermal conductivity is ob-
tained from resonant scattering from TLS with a broad
distribution of energy splittings.

As we approach the plateau regime the libration DOS
increases, and the modes begin to limit thermal transport.
Between roughly 1 and 10 K the thermal phonons are ex-
tremely strongly scattered by the libration modes, and are
practically not carrying any heat current at all. The
current is then mainly being carried by the low-frequency
phonons (%co((k~T) in the plateau region. This, in-

cidentally, shows that the dominant phonon approxima-
tion, of equating temperature and frequency to obtain a
scattering rate (or mean free path) from (69), is totally
misleading. There is no way, in general, to deduce the
frequency-dependent scattering rate from the measured
temperature dependence of the thermal conductivity,
since a broad distribution of phonons is responsible for
transport.

The low-frequency phonons responsible for thermal
transport in the plateau regime are limited by the (a) re-
laxational scattering, and (b) scattering from the low-

frequency tail of the libration DOS. We have shown
that in the absence of these mechanisms, resonant
scattering of the low-energy phonons from the TLS is not
sufficient to create a plateau, and, in fact, leads only to a
T to Tcrossover -in -the thermal conductivity. When (a)
and (b) are included, however, one obtains a T -to-flat
crossover, which is the onset of the plateau.

The upper edge of the plateau corresponds to a de-
crease in the libration DOS beyond its peak. This leads
to an increase in the conductivity above the plateau.
Above the plateau the thermal phonons are limited by
Rayleigh scattering, which with its co dependence must
dominate at sufficiently high frequencies. Eventually,
this rise in the scattering rate is cut off once the phonon
mean free path becomes as small as the interatomic spac-
ing.

Rayleigh scattering is not necessary for the existence
and the onset of the plateau in our model. In fact, if we

turn off (by hand) Rayleigh scattering completely, we still

get a start of a plateau. About halfway through the pla-
teau, however, the thermal phonons start to have a
higher frequency than the libration modes. Then, since
these phonons are not strongly scattered by anything, the
thermal conductivity abruptly increases very sharply.

VII. COMPARISON %'ITH EXPERIMENTS

We now turn to comparing the results obtained from
our model with experiments, first for the orientational
glass KBr:KCN and then for vitreous silica. Some of the
details of transforming the parameters used in the com-
puter simulation of the elastic dipole model to real physi-
cal units are discussed in the Appendix.

A. KBr:KCN

KBr:KCN was the motivation for our model of glasses,
and is a material with which we can make rather direct
comparison with experiment; as we will show, there are
essentially no free parameters for KBr:KCN.

To turn the results of the simulation into real numbers,
we need to know three things: (1) the density of defects
= cyanide, for this material, (2) Y=QO/I [see Eq. (26)],
which characterizes a single dipole defect, and (3) the
elastic constants. The first is trivially known- for
(KBr)& „(KCN), from the cyanide concentration x.
This then determines the normalization of the libration
density of states.

The second, Y is also experimentally known since both
the elastic dipole moment and the moment of inertia of a
CN ion in a KBr host have been measured. It turns out
that neither value is known very precisely (see below), so
that the resulting value for Y is probably only known
within a factor of 2 or so. However, the characteristic li-

bration frequency, and hence the location of the bump in

specific heat and the thermal-conductivity plateau, scale
only as v'"f, so that various choices of this parameter do
not lead to qualitatively different results. (Compare this
with other theories of the plateau which have to tune pa-
rameters, e.g. , the Rayleigh-scattering amplitude, by an
order of magnitude or more to get a plateau at all. )

The elastic dipole moment is obtained as follows. The
"shape factor" k, (see Ref. 29) measured in the stress-
dichroism experiment of Beyeler is related to the
elastic dipole tensor via Q p=c &„„A„„where
A„„=k,Vo(h'„h'„——,'5„„),where Vo is the primitive cell

volume. Thus we find that the elastic dipole moment Qo
is given by Q0=2A, , Vop, where all of the quantities on
the right-hand side are experimentally measured.

We estimate Qo —-1.3 eV, using the measured shape
factor A,, =0.2, the volume of the primitive cell Vp=72
A, and approximating p=7. 3X10 dyn/cm~ for KBr.
This value of p is obtained by the Reuss average, ' which
is the spherical average of the compliance tensor of KBr
(which has cubic symmetry). The Voigt average, ' which
is an average of the elastic moduli, yields an estimate of
p = 10.4 X 10' dyn/cm, with a correspondingly higher
estimate of Qo.

The moment of inertia of a cyanide in a KBr host es-
timated from the rotational constant measured in one
experiment is I =2. 8 X 10 g cm, though another '

yields I =6.5X10-39 g cm2

As emphasized earlier, only the combination Y =Qo /I
is needed to compute the low-temperature properties of
interest. We have used a value of Y= 1.1 X 10'
ergs/sec . For QO=1.3 eV this implies I =4.0X10
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g cm, consistent with experiment.
The final physical quantity needed is the ratio of the

"bare" elastic constants to the values used in the simula-
tion. The experimentally measured constants are the
low-frequency values, which, as we have seen, are
softened by the presence of the dipoles. In the Appendix
we show how to determine the bare elastic constants
from the measured low-frequency speed of sound, Y, and
the density of defects. For (KBr)i „(KCN), we will use
this procedure to determine the bare elastic constants for
x=0.5, and then use the same values of the bare elastic
constants for all x values.

In Fig. 4 we show (I) the Debye-phonon density of
states corresponding to the measured (low-frequency)
speed of sound, (2) the phonon density of states g~„(co) of
Eq. (67), which has been modified from the bare-phonon
DOS due to the coupling to librations, and (3) the total
density of harmonic excitations g„„i(cubi), which is the
sum of curve (2) and the libration DOS [see Eq. (68)].
Note that the libration modes, seen as the bump in the
total-DOS curve, are indeed lower in frequency than the
majority of the phonon modes. This provides some
justification of our approximation that the phonons relax
much faster than the dipoles. However, a simple estimate
of the time taken for a phonon to propagate between two
neighboring defects shows that this time scale is only a
factor of 2 or 3 shorter than the time period of a typical
libration oscillation. Thus, at least for KBr:KCN, the

3.0 I I I I I I I I I I I I

neglect of retardation effects in the defect Hamiltonian
must be treated only as a first approximation.

Figure 5 shows the frequency-dependent speed of
sound predicted for (KBr)o s(KCN)o s. The two curves
shown come from (a) setting the high-frequency speed of
sound to be that given by using the elastic constants of
KBr, and (b) setting the lotti-frequency speed of sound to
be that given by using the speed of sound of
(KBr)o &(KCN)o s. We thus find that the softening pre-
dicted from the elastic dipole model is in fairly good
agreement with the experimental softening from the KBr
values. Also recall the agreement between the data of
Table I and the model: the relaxation of the dipoles leads
to a softening of the shear modulus without affecting the
bulk modulus.

%'e next plot the phonon-scattering rate in Fig. 6. As
discussed earlier, the strongly peaked nature of this rate
is due to resonant scattering from libration modes with a
peaked DOS. At its peak the transverse scattering rate
just exceeds the line cov.=1, the Ioffe-Regel criterion for
localization. %e have earlier argued in Ref. 7 that the
plateau is not evidence for phonon localization. As
shown there, inclusion of coherent multiple-scattering
effects does not affect the thermal-transport results: a
broadband measurement like thermal conductivity is in-
sensitive to whether a narrow band of phonons is very
strongly scattered or, in fact, localized, since all the heat
is carried by other phonon modes anyway. If it becomes
feasible at some future date to experimentally study
monochromatic phonon propagation in the terahertz fre-
quency region, the possibility of the two mobility edges
may be tested.

In Table II we list the parameters used in calculating

2.5

2.0
tD

0
0

(10' sec ) 1.5

FIG. 4. The dashed curve is the Debye-phonon density of
states {DOS) as determined from the measured low-frequency
speed of sound for x=0.5. Also plotted is the phonon DOS,
gph modified due to interactions with the defects; see Eq. {67).
At low frequencies this agrees with the dashed curve, but at
high frequencies the effective speed of sound is higher, leading
to a lower DOS. The third curve is the total density of harrnon-
ic excitations [see Eq. (68)], which is the modified phonon DOS
plus the libration DOS, the latter showing up as the bump at in-

termediate frequencies. Note that the libration modes are
significantly lower in frequency than the majority of the phonon
modes. Thus our approximation of assuming that the phonons
relax much faster than the dipoles is reasonable.

1.0 I I I I I I I I I I I I

(iO sec )

FIG. 5. Mean speed of sound as a function of frequency. The
two curves are both for x=0.5. The bottom dashed curve has

set the high-frequency speed of sound from the elastic constants
of KBr. The top curve sets the low-frequency speed of sound to
the correct value for x=0.5, 1.48X 10' cm/sec. The two curves

agree to about 15%.
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FIG. 6. Scattering rate of longitudinal and transverse pho-
nons as a function of frequency. Also shown is the line ~ ' =co,
the Ioffe-Regel criterion for localization.

FIG. 7. Thermal conductivity for x=0.25. Solid line is cal-
culated, as described in the text. The (KBr)

&
„(KCN) experi-

mental thermal-conductivity data for Figs. 7—9 are from Ref. 5.

the thermal conductivity and the specific heat. The TLS
parameters are chosen, as usual, by fitting to the thermal
data below 1 K; there are no other free parameters for
KBr:KCN, as shown above.

Figures 7—9 show the thermal conductivity for the
three concentrations x =0.25,0.5,0.7; the theoretical
curves have been calculated using (69) together with (75)
and (76). The plateaus in the thermal conductivity are in
fairly good agreement with the experimental data. Since,
as discussed earlier, the height of the plateau depends
somewhat on where exactly the librations start limiting
the current, it is sensitive to the shape of the libration
DOS on the low-frequency side. This may explain the
fact that our theoretical curves in the plateau region
often have a thermal conductivity somewhat higher than
the experimental value.

The specific heat of KBr:KCN and the model, obtained
from (68), are shown in Figs. 10—12. The specific heat,
especially when plotted as C/T, is much more sensitive
to details of the distribution than the thermal conductivi-

ty. This is because, while the plateau in the thermal con-
ductivity is caused by the majority of modes in the center
of the distribution, the specific-heat bump is caused by
the 1ow-frequency tail of the distribution. The bump in
C/T results from the total density of states first starting
to grow faster than co, but soon beginning to grow slower
than ~'.

The C/T curve for x =0.7, though qualitatively
correct, is in rather poor agreement with that data, even
though, surprisingly, the thermal-conductivity fit is excel-
lent. Since we determined the bare elastic constants from
x=0.5, the predicted soft speed of sound from the simu-
lation for x=0.7 does not have to fit the experimental
value, and, in fact, it does not. In the x=0.7 simulation
there are some low-frequency modes that couple extreme-
ly strongly to the phonons, and these lead to a large
softening; the predicted low-frequency (1.3 X 10 cm/sec)
is quite a bit less than the experimental value (1.6X10
cm/sec). This difference may have to do with the fact
that we have the wrong ground state (see I) at high con-

TABLE II. Parameters used in the calculation of the thermal conductivity and specific heat. The
tunneling-system parameters for silica are derived from data given in De Yoreo et al. (Ref. 5). The
data for Si02 are compiled from several sources (Refs. 9, 27, and 25).

Parameters

p (g/cm')
vD (cm/sec)

g,„. (cm ')
gib (cm )

Y (ergs/sec')
TLS A

TLS relaxation a (sec ' K '
)

Rayleigh R (sec )

Rayleigh ~,„(sec)
TLS specific heat (ergs/K')

0.25

2.50
1.54 x 10'
8.55 X 10
7.13X10 '

1.11 x 10'
7.80x10 '
2.96x10'
7.50 x 10-"
2.7X 10

24.0

0.5

2.18
1.48 X 10'
8.4x10"
1 4x10
1.11x10"
4.79 x10-'
7.01 X 10
1.49x10 "
2.7 x10-"
9.0

0.7

1.95
1.63 X 10'
8.67x10"
2 Q2 x 10~~

1.11x10"
9.67 x 10-'
5.96 X 10
1.20 x 10-"
2.7x10-"
43

0.5 (SiO, )

2.2
4.1x10'
1.9x10"
1.0X 10
4 QX 10'
8.92 x 10-'
4.0x10'
4.53 x 10-"
4x10-"

10.0
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FIG. 8. Thermal conductivity for x=0.5 (see Fig. 7).

centrations.
It is also true that in glasses the bump in the specific

heat varies much more from glass to glass than the pla-
teau in the thermal conductivity. Also, most glasses have
a bump in C!T whose magnitude is much larger than
the one in KBr:KCN. This may be seen by noting that
KBr:KCN has a softer shear modulus than real glasses,
and hence a considerably larger phonon density of states.
Thus the relative contribution of the defect libration
modes to the specific heat is correspondingly smaller.

B Vitreous silica

We now compare the results of the elastic dipole model
with low-temperature data on vitreous silica. As we have
emphasized earlier, ours is not a microscopic model for
real glasses (see the discussion in Sec. II of I). However,

FIG. 10. C/T' for x=0.25. Solid line is calculated, as de-

scribed in the text. The experimental (KBr)
& „(KCN),

specific-heat data for Figs. 10—12 are from Ref. 47.

it is interesting to see to what extent it can serve as a phe-
nomenological for structural glasses.

Recent inelastic-neutron-scattering experiments by
Buchenau et al. ' on vitreous silica show that there is a
fairly large density of excess states (i.e., states in addition
to the acoustic phonons} at frequencies of about 10'
rad/sec, which appear to be harmonic in nature and have
localized eigenvectors. Buchenau et a/. ' have suggested
that rotational motion of five coupled Si04 tetrahedra
may be the origin of these low-frequency harmonic
modes. The connection between the excess specific heat
and these extra modes is immediately obtained as shown
in Ref. 10. However, the connection with the thermal-
conductivity plateau requires a model for phonon scatter-

0.01 300 r t & &

i

& t & &

i

I I I

0.001 =

0.0001 =

100

10

10
0.01 0.1 1 10 100

T (K)

I t I I I I II I I I I I I II I I I I I I II t I I I L I II O
I I I I I I I I I I I I I I I I I I I

0 5 10 15
T (K)

20

FIG. 9. Thermal conductivity for x =0.7 {see Fig. 7). FIG. 11. C/T' for x =0.5 (see Fig. 10).
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FIG. 12. C/T' for x =0.7 (see Fig. 10).

ing off these extra modes.
We use the elastic dipole model to make this connec-

tion. We determine the parameters of the model by com-
paring the total density of harmonic excitations in the
model with the experimentally measured DOS. The
height of the excess peak fixes the density of "defects"
and the location of this peak determines the defect pa-
rameter Y. In our model the same parameter Y deter-
mines both the characteristic libration frequency and also
the phonon scattering relevant for thermal transport.
Thus once this parameter is fixed by the neutron DOS,
the thermal conductivity can be calculated without any
additional parameters. We cannot, of course, make any
microscopic identification of what the "defects" are in a-
Si02.

In Fig. 13 we match the total DOS from the elastic di-
pole model with the experimental curve; the correspond-

FIG. 14. Thermal conductivity calculated from the parame-
ters used for Si02. Experimental values are from the Cornell
group.

M I I I I

(

I I I I I I I I I I I I

ing values of the parameters are listed in Table II. From
these values of the parameters, we obtain reasonable
curves for the thermal conductivity and specific heat as
shown in Figs. 14 and 15. The TLS parameters (see Table
II) used were chosen, as usual, to fit the very-low-
temperature data ( T & 1 K). The Rayleigh-scattering es-
timate of Ref. 26 (which by itself is unable to explain the
plateau) was used.

There are several comments that should be made about
the use of the elastic dipole model to study thermal con-
ductivity of vitreous silica. First, it shows that there was
nothing special about the exact parameters used for

2.0 I I I I I I I I I I I I

40--

1.5

1.0

oo 30—
N
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20—
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0.5 10—
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FIG. 13. Density of defect-libration-mode states from simu-
lation fit to the neutron-scattering data of Ref. 10.

FIG. 15. Calculated specific heat plotted as C/T, and the
experimental specific heat for Si02 from Ref. 10.
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KBr:KCN, and that this model generically produces the
universal intermediate-temperature glassy properties. To
what extent the parameter values needed for a-Si02 are
reasonable will be discussed in the following section.

Second, there has been a long-standing controversy
about the role of Rayleigh scattering in producing the
plateau in glasses. Our calculation shows that Rayleigh
scattering has no effect on the existence and the onset of
the plateau, as explained above.

Third, there was some evidence from early experi-
ments of monochromatic phonon propagation in a-Si02
that phonons in the 100—300-GHz frequency range un-
dergo inelastic scattering. This would be in contradiction
with our model since the resonant scattering from libra-
tion modes is elastic, in the sense that the scattered pho-
non has the same frequency as the incident one. Howev-
er, more recent experiments on samples free of impuri-
ties suggest that the scattering may, in fact, be elastic, so
that there is no disagreement.

In conclusion, these results strongly suggest that the
intermediate-temperature universal properties in various
glasses are related to the existence of additional harmonic
excitations in the tetrahertz frequency range.

„( )
m.'fp (co)

2pQ)
(77)

The scattering rates for phonons, Eqs. (63) and (64), are
equal to numerical factors of order unity times co8 "(co),
so that

Q —(Y/pa )'~ (79)

where a is a typical distance between dipoles. Here, 0 is
a typical libration-mode frequency, or the frequency at
which the density of libration modes peak. The total
density of modes per unit volume is then proportional to

p (Q)Q-1/a (80)

We now want to know how strong the scattering will be
for phonons whose frequency co is approximately equal to
Q. Combining (78)—(80), we see that

r(co)—
'fp (~)

Further, since the only energy scale in the model is the
elastic interaction between dipoles, both the peak fre-
quency and the width of the libration DOS, p(Q), are
proportional to

VIII. UNIVERSALITY OF THE PLATEAU co~(co)-1 for co=Q, (81)
We discussed the physics underlying the thermal-

conductivity plateau at the end of Sec. VI. We now turn
to two other issues related to the plateau in the elastic di-
pole model.

First, we discuss the universality of the plateau within
this model, and the related universality of the softening of
the shear modulus due to the presence of the defects. We
show that strong scattering with cov -1, and consequently
a plateau, is always obtained within the interacting elastic
dipole model, independent of the parameters of the mod-
el; the location of the plateau is, however, dependent on
the parameters.

Second, we examine to the extent to which our model
is successful in describing the universal low-temperature
properties of real glasses. The above-mentioned univer-
sality is closely related to the assumption that the dynam-
ics of the defects is determined only by their mutual in-
teraction 1/r interactions. We discuss the validity of
these assumptions in the context of our fits to the thermal
data for a-Si02.

A. Universality of scattering and softening

A simple argument shows the existence of very strong
phonon scattering in the elastic dipole model, indepen-
dent of the concentration of defects and of the defect pa-
rameter f. To estimate the peak in the phonon scatter-
ing due to the librations, and show that it always has co~
of order unity, let us make some simplifying assumptions.
Assum. e that the width of the resonance is much less than
that of the librational density of states, and that A can
be approximated by its average value of 1. In this case,
Eq. (45), for the imaginary part of the compliance tensor
8 "(co), can be integrated, giving

independent of a11 the parameters. Thus we expect to al-
ways have very strong scattering close to the peak of the
defect density of states.

As shown above, and discussed in Ref. 7, this strong
scattering in a band of frequencies about 0 leads to a
plateau in the thermal conductivity centered at a temper-
ature which scales as A. Thus, while the existence of the
plateau is a universal feature of the elastic dipole model,
its location is not, since this depends upon the model pa-
rameters, as seen from (79).

A related universal feature of the elastic dipole mode1
is in the real part of the change in the compliance of the
medium, i.e., in the softening of the shear modulus. Let
us discuss this in a slightly different way from the imagi-
nary part above, though the basic idea is the same. As
sho~n in the Appendix, the conversion between the com-
puter frequency units denoted 0 and the physical fre-
quency 0 is given by

' 1/2 I /2
Y — — Y
Sxy

'
Sxy

(82}

where y is the density of libration modes per unit volume
in the material, and y=p/p is the high-frequency shear
modulus divided by the value used in the computer. If
we make a change of variables to Q in (28), we get

8 =8'(co =0)= f d Q
8x —P«)&b

(83}
p 0

where p(Q)=vp(Q}/y is the normalized density of de-
fect states in the simulation. Note that everything in this
equation only depends on numbers taken out of the com-
puter, so the amount of softening can be determined
without knowing the magnitude of the physical elastic
constants.
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It is interesting that the change in elastic constants
given in Eq. (83) is independent of both the concentration
of dipoles y, and of the defect parameter Y=QO/I. The
reason is slightly different in the two cases, although in
both of them it is because the change in elastic constants
due to a libration mode is proportional to 1/0 . 8 is in-
dependent of y because the interaction dies off like 1/r .
If we double y, we have twice as many modes, but the
modes have frequencies that are &2 times higher. Since
the change in elastic constants is like I/O, these effects
cancel. Estimating in a simple way the effect of changing
x gives the same result, although here we will not be ex-
actly right, since presumably changing x changes the
shape of f (0) as well as its peak frequency. The reason
that r has no effect on 8 is mathematically the same —B
increases linearly with Y—but the frequencies of the li-
bration modes increase like &Y, and again, the effects
cancel. This discussion is only true, of course, when we
can neglect the effect of the "local field" on the dipoles,
as we have in our model. In KBr:KCN, for example, as
we lower the concentration of cyanides, at some point the
local field will become more important than the interac-
tion between cyanides, and we would expect B to de-
crease linearly with concentration below this point.

B. "Local-field" effects

The basic reason why we obtain the "universal" results
given above within our model is the following. The in-
teraction between defects is mediated by the phonons.
Thus the frequency scale of the defect modes is deter-
mined by the same coupling constant Y that determines
the phonon scattering. This leads to independence of Y.
The 1/r nature of the interaction is responsible for the
concentration independence.

Although this universality is an appealing feature of
the elastic dipole model, we now investigate to what ex-
tent the assumptions that give rise to it are valid for real
glasses. (For a discussion motivating this model for
glasses, the reader is referred to Sec. II of I.)

The 1/r dependence is crucially dependent on the de-
fects being elastic dipoles, and not having any higher
multipoles associated with them. However, our basic pic-
ture, that resonant scattering from localized harmonic
modes causes the plateau, can surely be true without the
1/r interaction being crucial. We have run a simulation
(with the model parameters of KBr:KCN) with second-
rank traceless symmetric tensors interacting via near-
neighbor interactions, and we still find a plateau in the
thermal conductivity.

The universality with respect to the defect parameter Y
hinges on the neglect of "local-field" effects. As we had
emphasized while introducing the elastic dipole model
(see Sec. II of I), this is one of the simplest models within
which to study the low-temperature properties of glasses.
Since thermal transport requires the defect-phonon cou-
pling, there is no way to "turn off" the phonon-mediated
interaction between defects. In the glassy phase of
KBr:KCN we know that the local-field effects are small
(see Sec. IX), but, in general, we have no arguments other
than simplicity to rule out the importance of these effects.

Our results show that local-field effects are certainly not
necessary to explain the plateau.

For a high enough concentration of defects, it is not
unreasonable to believe that the interactions dominate
over the effect of the local environment. At low concen-
trations we certainly expect these arguments to break
down, as discussed above for the softening. We would
then expect the scattering to get less important, since as
the concentration decreases, the frequency will not de-
crease to compensate, and will be fixed at a value deter-
mined by the local field.

One check on this argument is that as the concentra-
tion of defects is increased in a crystal, one expects first
to not have a plateau, and then for the plateau to become
prominent first at low temperature, and then move to
higher temperatures as the concentration is increased. In
the regime where the local fields are negligible, the tem-
perature of the plateau should scale like &x. Both of
these observations seem to be true in (KBr), „(KCN)„.

In general, of course, it is difficult to take a crystal and
adjust the concentration of defects. One system where
this can possibly be done is neutron-irradiated quartz.
Here, the scenario sketched above does not hold as well.
Initially, as the dose of neutrons is turned up, the thermal
conductivity just drops, and a plateau does not appear at
low temperatures. This could be due to strong local fields
in the system. Clearly, in this system an isolated defect is
not free to rotate, as it is in our model. At the highest
doses the plateau moves to somewhat higher tempera-
ture, but the effect is rather small.

Finally, let us discuss the fits of the thermal properties
of the elastic dipole model of vitreous silica. There are
two features in our phenomenological fits which should
be mentioned. First, the fit to the neutron density of
states gave a value for Y=QO/I that is an order of mag-
nitude larger than the corresponding value for
KBr:KCN. Since we have no microscopic picture for
what the "defects" are in a-Si02, it is difficult to say if
this is "reasonable" or not. Nevertheless, the following
crude estimates may be of some interest. In KBr:KCN
the dipole moment Qo —1 eV. Since the elastic constants
of silica are an order of magnitude stiffer than that of
KBr:KCN, and Qo ~ p, , we would expect, assuming that
the "defects" are the same "shape, " that Qo for silica
would be roughly an order of magnitude larger. (This is
much higher than the characteristic 1-eV coupling to the
TLS in glasses; however, it must be kept in mind that the
TLS are rare and could well have atypical phonon cou-
plings. ) On the other hand, if we envision our defects as
rotating Si04 tetrahedra or as flopping oxygens, the mo-
ment of inertia I will probably be considerably larger
than that of a cyanide molecule in KBr. Given this pic-
ture, a value of Y= Q o /I which is 10 times that for
KBr:KCN could be possible.

Second, although we match the low-frequency phonon
density of states of silica, we are not able to match the
two elastic constants A, and p individually. The elastic di-
pole model leads to too soft a shear modulus, i.e., too
small a renormalized k/p for almost any reasonable
bare A. /p. Adding a local field (due to the "cage" in
which the defect "sits") to our model could solve this
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problem by preventing the softening of the shear

modulus. This would also give rise to a larger libration

frequency with a smaller value of Y.

IX. APPROXIMATIONS, STRENGTHS,
AND WEAKNESSES

The model that we have been analyzing —randomly
placed elastic dipole in an elastic medium —is a strongly
interacting random system, and in order to make any
progress it was necessary to make several simplifying as-

sumptions and approximations, some of which might be
left buried in the middle of the calculation. In a paper
this long, with a mix of analytical and numerical compu-
tations, many interested readers will not work through
the details of our calculations. We believe that it is there-
fore especially important to critically discuss at one place
all of the approximations that we have made and assess
the strengths and weaknesses of our approach. This is in

itself a strength: our theory is sufFiciently quantitative
that we can identify all of the simplifications and approxi-
mations separating our results from the real world.

We will divide the discussion into two broad
categories: (a) assumptions built into the model from the
start, and (b) approximations made in the process of
analyzing the model.

For a detailed discussion of the elastic dipole model we
refer the reader to Sec. II of I. We first discuss our use of
elasticity theory. The use of linear-elasticity theory down
to interatomic distances is itself an approximation. We
assume that the "defects" can be characterized as point
defects, and we only include the lowest nontrivial (elastic
dipole) term in the multipole series for elastic defects.
We then assume a particular form for the elastic dipole
(traceless, axially symmetric), and take all dipoles to be
identical. We neglect electrostatic interactions (electric-
dipole —dipole, etc.). These approximations are well
justified for KBr:KCN. For a general glass this scheme
of considering isolated point defects embedded in a con-
tinuum is justified only on grounds of simplicity. Relax-
ing these approximations would probably not give strik-
ingly different behavior, but would increase the number
of free parameters.

We further assume that the dynamics of the "defects"
is completely dominated by the interactions between de-
fects mediated by the strain field. As emphasized earlier,
since one has a strong phonon-defect coupling in glasses,
and a large concentration of defects, it would appear un-
reasonable to ignore the interaction between defects.
What is not a priori obvious is the neglect of local fields,
i.e., the assumption that a single isolated defect has no
preferred orientation. The neglect of local fields, in addi-
tion to reducing the number of free parameters, has an
important consequence. As discussed at length in Sec.
VIII of this paper, it leads to the existence of a plateau in-
dependent of the parameters of our model. If local fields
were important, we would lose this universality. Howev-
er, whether local fields are important or not is an experi-
mental question.

For (KBr), „(KCN)„, neglecting the crystal fields is

justified experimentally; for the range of x where glassy
behavior is seen, the local field (of about 5 K) is much
smaller than the energy scale of interactions (hundreds of
degrees Kelvin). Furthermore, within this approximation
we obtain reasonably good agreement for the low-

frequency softening of the material due to the dipole de-
grees of freedom [comparing (KBr )0 ~(KCN )o ~ with
KBr]. As shown in Sec. VII, we can obtain the thermal-
conductivity plateau for a-Si02 from our model which ig-
nores local-field effects. However, as discussed at the end
of Sec. VIII, these effects might, in fact, be important for
getting the right elastic properties.

We next turn to the various approximations we make
in analyzing the elastic dipole model. At the very outset
we make a conceptual separation between the interacting
defect system and the long-wavelength phonon modes of
the elastic medium. We should emphasize that it is only
through a combined use of numerical and analytical tech-
niques that we are able to study, e.g. , the thermal trans-
port in our model: a numerical study of the normal
modes of the defect system, followed by a perturbative
treatment of the interaction of the libration modes with
the low-frequency phonons. A purely numerical treat-
ment might allow a study of the true normal modes of the
system, which mix the defect libration and phonon de-
grees of freedom. However, due to finite-size effects it
would be impossible to include long-wavelength phonons
and thus an analysis of the thermal conductivity would be
limited to rather high temperatures (see, e.g. , Ref. 38).

Let us now examine some of the approximations in-
volved in more detail. First, in calculating the effective
Hamiltonian for the interacting defect dipoles, we "in-
tegrate out" the phonon degrees of freedom assuming
that the phonons relax instantaneously on the time scale
of the defect dynamics; see Sec. III of I. The validity of
this approximation is not a priori clear since it depends
on the values of the parameters. As shown in Sec. VII of
this paper, for KBr:KCN this approximation is only
moderately well justified; for vitreous silica the separation
of time scales between the libration modes and the
Debye-frequency phonons is reasonably large.

After the defect Hamiltonian has been derived, the
simulation is straightforward, as described in Sec. IV of I.
We obtain the harmonic excitations about the disordered
ground states of the simulation by numerically diagonal-
izing the dynamical matrix; see Sec. II. We verify that
the anharmonicity of these coupled angular oscillation
modes —the librations —is rather small, and also that the
density of states for these modes is extremely insensitive
to the system size. However, finite-size effects prevent us
from determining directly whether the libration modes
are localized or not. We assume that the libration modes
do not contribute significantly to thermal transport.

We take the coupling between the disordered libration
modes and low-frequency phonons to be bilinear, thus ob-
taining a random harmonic system. In calculating the
coupling between libration modes obtained in the simula-
tion and the long-wavelength phonons, we use the ap-
proximation that we may efFectively set the phonon wave
vector k~0. This is certainly justified for sufFiciently
long-wavelength phonons if the libration modes are local-
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ized. But even if they are not localized, the librations
bear little resemblance to plane waves, and their coupling
to phonons is expected to be qualitatively unchanged by
including spatial modulation of the phonon amplitude.

The resonant scattering rate of phonons from the libra-
tion modes is so large that co~-0 ( I ) near the peak in the
libration density of states. Our lowest-order perturbation
theory result might seem to be inadequate in this regime.
However, we have shown that a simple estimate of the
higher-order terms, which could give rise to phonon lo-
calization in a narrow band, does not affect the final re-
sult for the thermal conductivity. Since thermal conduc-
tivity is a broadband measurement, it is insensitive to
whether phonons in a narrow range of frequencies are
strongly scattered or localized; see Ref. 7.

It is not equally clear if the perturbative analysis of the
effect of the phonon-libration coupling on the total densi-
ty of harmonic excitations (needed for the excess specific
heat) is insensitive to higher-order corrections. In gen-
eral, the C/T curves are quite sensitive to details of the
density of states, unlike the thermal-conductivity plateau.

Once the scattering rate from the libration modes has
been calculated, the thermal-conductivity computation
proceeds along a standard route. The approximations
involved —use of the Boltzmann equation within a
relaxation-time approximation, Matthiesen s rule for add-
ing the rates due to various mechanisms, etc.—are well
known, and so we will not comment upon them further.

X. RELATION TO OTHER THEORIES
In this paper and its companion (I) we have introduced

and analyzed the elastic dipole model to understand the
low-temperature properties of glasses. In I we numerical-
ly studied the frozen ground states of this model, and
thermally activated excitations which involve a reorienta-
tion of the dipoles. There we compared our results with
two analytical approaches to study these excitations in
other models of "quadrupolar" glasses (see Sec. VI of I).
We also compared our work with various microscopic
models for mixed alkali-halide —alkali-cyanide systems
(see Sec. VIII of I). In this section we will attempt a
broader discussion comparing our work with other
theories of low-temperature properties of glasses.

We must first address the obvious question: Is our
model a glass? It is not formed by quenching an equilib-
riurn liquid into a frozen configuration: the lattice disor-
der is frozen in at a temperature high compared to the
orientational freezing temperature. For studying the
glass transition, our model is more closely related to spin
glasses than to window glass.

However, it is becoming increasingly clear that the
low-temperature thermal and elastic properties of glasses
are not uniquely dependent upon the way glasses are
formed. Several glassy crystals have low-temperature
specific heats, thermal conductivities, elastic properties,
and dielectric losses which are indistinguishable from
those found in more traditional covalent, polymer, and
molecular glasses. We have a successful numerical model
of one of these glassy crystals, (KBr)& „(KCN)„. While
our model is surely not applicable in detail to all glasses,
a general theory of the low-temperature properties of

glasses should make sense in the context of our model
and KBr:KCN. It is rather implausible that exactly the
same behavior will occur in glasses and glassy crystals for
completely different reasons. As we have shown above, if
we fix the parameters for the elastic dipole model from
neutron-scattering measurements on silica, without ask-
ing for a detailed microscopic picture, our model is able
to account for the thermal conductivity plateau in a-Si02.

In this paper we have only applied our model to the
intermediate-temperature properties, and simply assumed
the existence of tunneling centers or the TLS which ac-
count for the very low-temperature properties. For
KBr:KCN it has been suggested that 180' reorienta-
tions of isolated cyanides comprise the tunneling degree
of freedom in the TLS model. Extrapolating the distribu-
tion of barriers measured in dielectric loss to very low
barrier heights leads to about the right number of active
tunneling centers necessary for the low-temperature
specific heat; see Ref. 40. However, it should be noted
that in a similar material, CO/N2/Ar, it has been seen ex-
perimentally ' that the low-temperature specific heat is
unchanged as the symmetric molecule N2 is substituted
for the asymmetric molecule CO. This indicates that the
excitation responsible for at least the low-temperature
specific heat in CO/N2/Ar is more complicated than the
simple reorientation of the diatomic molecule.

It would conceivably be possible to look for tunneling
centers, whether or not they are more complicated than
simple 180 reorientations of the defects, in the elastic di-
pole model, and to extend the analysis to include the
very-low-temperature behavior. This is difficult for
several reasons. One is that the true tunneling centers are
presumably very rare. In glasses typically only about 1 in
10 atoms or so is able to quantum-mechanically tunnel
on experimental time scales. The other difficulty is that
the structure of the energy surface is very complicated;
even for a small number of dipoles there are many local
minima. Despite the possible difficulty, we think that
elucidating the nature of the low-energy states is a very
interesting area for future work.

Let us now turn to the main subject of this paper —the
intermediate-temperature properties of glasses. There are
several early theories that we can rule out for KBr:KCN
using our model. For structural glasses, also, these pro-
posals do not appear to be viable for reasons given below.

Two previous theories exist for the anomalous contri-
bution to the specific heat. The first attributes it to a
hierarchy of tunneling centers with new tunneling centers
relaxing only after others move. The second" uses the
detailed dipole-dipole form of the interactions between
pairs of centers to predict a crossover of the specific heat
from linear to cubic in temperature. We find that the
anomalous specific heat in our model is due to harmonic
excitations, and not due to collective effects involving the
tunneling degrees of freedom. In addition, there is exper-
imental evidence that the excess specific heat is time in-
dependent, and thus qualitatively different from the low-
ternperature linear term. Also, as mentioned earlier, in
vitreous silica Buchenau et al. ' have made a direct con-
nection between harmonic excitations and the anomalous
specific heat.
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There have been several recent suggestions linking the
plateau in the thermal conductivity with localization of
short-wavelength normal modes in amorphous materials
either due to strong scattering from structural disorder,
or due to the postulated fractal nature of glasses. All
these approaches need to introduce a new characteristic
length scale which is roughly 10 times the lattice spacing.

The first attributes the plateau to Rayleigh scattering
from density or coupling-constant fluctuations. This pic-
ture was motivated by using the dominant phonon ap-
proximation to extract a mean free path I which, as we
have discussed above (at the end of Sec. VI), is not valid
in the plateau regime. Further, a quantitative estimate of
the Rayleigh scattering in KBr:KCN, and even in
structural glasses, is far too small to explain the pla-
teau. Finally, as shown in Ref. 7, the only way to get
strong scattering (cor= kl —I ) from structural disorder is
to have the phonon wavelength k ' match the scale Ro
on which the disorder occurs, i.e., kRO-1. We do not
believe that there is any independent evidence for, say,
density fluctuations, on a length scale comparable to the
thermal phonon wavelength in the plateau regime.

The fracton theory postulates that amorphous ma-
terials are self-similar below this correlation length, an
assumption for which there is little direct evidence in
bulk glasses. Then the harmonic, localized, vibration
modes of the fractal structure, called fractons, lead to the
plateau. While resonant scattering off of rather localized
modes is important in our picture, we see no evidence
that our libration modes are dynamically fractal. We be-
lieve that direct experimental evidence for the fractal na-
ture of bulk glasses will be necessary for this theory to
gain more general acceptance.

There are several recent theories ' which also relate
the specific heat and the plateau to extra localized vibra-
tion modes, as we do. While the details of our analysis
and of our results are clearly rather different, we share
the same general picture.

The first, due to Karpov and Parshin, beings with an
explicit model of a double well written as a quartic poly-
nomial in some configurational coordinate. Within the
parameter space of all such potentials, they also have de-
grees of freedom with positive quadratic terms, i.e., single
wells; the double wells are responsible for the TLS. These
authors suggest that resonant scattering from the single-
well modes is responsible for the plateau, but no quantita-
tive estimates are provided. An issue on which we
disagree is the rise in the thermal conductivity above the
plateau. Karpov and Parshin suggest that this is due to
the resonant scattering of low-frequency phonons from
TLS, but as we have shown in Ref. 7 this effect is masked
by other scattering mechanisms. The rise, above the pla-
teau, in our model is related to the drop in the libration
DOS, and it is Rayleigh scattering which dominates
above the plateau. Finally, our libration modes are small
oscillations of the elastic dipoles within one of the double
wells, rather than in their single wells.

The second proposal, due to Yu and Freeman, at-
tempts to fit the plateau and the anomalous specific heat
with an assumed step-function density of states of addi-
tional localized harmonic modes. These authors were un-

able to fit both with a single set of parameters. In addi-
tion, Yu and Freeman needed to include a large amount
of Rayleigh scattering to fit the plateau. As discussed
above, the detailed positions and magnitudes of the pla-
teau and the bump in the specific heat are highly sensitive
to the form of the onset of the additional modes. The as-
sumed onset in Ref. 9 is presumably too abrupt. Indeed,
our original simpler attempts found much too large a
bump in C/T as well. The numerical results presented
here demonstrate that additional modes suffice to explain
both the plateau and the anomalous specific heat in
KBr:KCN and in vitreous silica, without the need to in-
voke enhanced Rayleigh scattering.

It may be of interest to note that recent computer
simulations of glasses have identified localized vibra-
tional modes in amorphous silicon. Such modes should
be a ubiquitous feature of glasses from the point of view
of our model.

Finally, we must discuss the ongoing theoretical work
by Yu and Leggett. ' They argue that the traditional
tunneling center or TLS theory of glasses below 1 K is in-
complete or wrong, and that a proper understanding of
these very-low-temperature properties will also lead to an
understanding of the intermediate-temperature properties
(the subject of this paper). While their analysis is still in-

complete, their initial formulation shares several features
with our model. First, they argue that the important de-
grees of freedom are stress sources with l/r interactions,
a specific example of which would be our elastic dipole
defects. Second, they argue as we do that the interactions
between these degrees of freedom dominate the physics,
in contrast to the noninteracting TLS, whose properties
are determined from their local environments. Third, the
l/r asymptotic form of the interactions is crucial for the
scaling arguments of Ref. 21. The argument for the
universality of the plateau in our model independent of
the density of defects, presented in Sec. VIII, also relies
on the 1/r form of the interaction.

On the other hand, there are several features of our
treatment which clearly differ from the Yu-Leggett ap-
proach. First, in some early simulations we tried using
nearest-neighbor interactions between the dipoles. We
observed roughly the same behavior at x=0.5 in both the
specific heat and the thermal conductivity as in the 1/r
simulations. Their argument for the plateau appears to
rest firmly on the I/r form of the interaction. While we
agree that for the plateau to be independent of dipole
concentration requires a 1/r interaction, the plateau ex-
ists at high concentrations of dipoles without long-range
couplings. Second, our basic views on the origin of these
intermediate-temperature properties differ. In their pic-
ture, the plateau is a crossover phenomenon, when the
phonon frequency A'Ulk (where U is the speed of sound
and A. the wavelength) matches the interaction energy be-
tween dipoles separated by A, . This is the point where the
time-related nature of the interaction makes the static
elastic dipole potential break down. (Perversely, the stat-
ic interaction in their approach works best for the lom-

frequency phonons, because the interactions they mediate
are at even lower energies. ) In our model, the plateau
occurs when the frequency scale of the phonons matches
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that of the libration modes. We have ignored the time-
retarded nature of the interaction in calculating the fre-
quencies of the libration modes, but this appears to be a
reasonable first approximation: more so for the pararne-
ters relevant to silica than for KRr:KCN.

We share with Yu and Leggett a dissatisfaction with
the traditional tunneling-center approaches. We do be-
lieve, however, that quantum tunneling is probably neces-
sary to get the very long time scales and the large density
of states at low energies. Low-energy excitations at long
wavelengths should be suppressed by phase space; also,
they ought to contribute to thermal transport (which ex-
perimentally is dominated by phonons ). The only way
we can see to have localized low-energy excitations in-
volves tunneling through barriers. We believe also that
more or less localized harmonic excitations are responsi-
ble for the plateau and the anomalous specific heat at in-
termediate temperatures in glasses.

XI. CONCLUSIONS

In this paper and its companion (I) we have introduced
a simple model —the elastic dipole model —and shown
that it is able to provide a natural explanation for the
universal intermediate-temperature properties of glasses.
We conclude by summarizing the basic physical picture
that emerges from the calculations reported above. We
have studied the harmonic excitations about the disor-
dered ground states of the elastic dipole model. The "ad-
ditional" harmonic excitations, the librations, of our
model have a strongly peaked density of states. The cou-
pling of these modes to the long-wavelength phonons
leads to a softening of the shear modulus of the elastic
medium, but has no effect on the bulk modulus. This is
due to the relaxation of the dipoles in the presence of an
externally applied stress. The libration density of states
accounts for the excess specific heat seen as a bump in
C/T . Phonons in the plateau region are on resonance
with the libration modes and are thus very strongly scat-
tered. This gives rise to a plateau in the thermal conduc-
tivity.
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APPENDIX: REAL NUMBERS

Here we describe the procedure by which we go from
the numbers which come out of the simulation to physi-
cal units. We will denote the units used in the simulation
by placing a tilde over the corresponding physical unit.
So if the volume of a physical unit cell is r, then the
volume of the unit cell in the simulation is r . Similarly,
for the elastic constants, if IM is the physical high-
frequency shear modulus, then p would be the value used
in the simulation. For a given configuration, the energy
in the simulation is calculated by Eq. (1),

H = —
—,
' g Q; (r')J; ki(x —x')Qki(x'} .

x, r'
(xWr')

In general, J; kt has units of

1

(elastic constant) X (volume)

(Al)

(A2}

so to go from the energy in the computer to a physical
energy, we have the following conversion,

F. =Qo(c/c)(r/r) E, (A3)

where c is one of the computer elastic constants, and c is
the corresponding physical elastic constant. We must
multiply by Qo since we have set Qo equal to 1 in the
simulation. Note that since r, c, and the other computer
values are unitless, the units are correct.

We define y
—=p/P. To go from computer units to real

units, we need to know y and F/r. At this point we do
not know what the value of y is, since we do not know
the high-frequency "bare" value of p, only the low-
frequency measured value.

On the other hand, we can obtain a value for r/r by
knowing y, the density of modes per unit volume in the
real material. In the simulation we have put dipoles on
fraction x of the sites of a fcc lattice. We want to know
the "real" length of a side of a conventional unit cell,
which the computer thinks is one unit long. Of course, in
KBr:KCN we know the size of the unit cell, but since we
want to apply our model to glasses in which the defects
are not on a fcc lattice, we will need to determine this
length by matching the density of defect modes. For
x=0.5 there are four dipoles per unit cell and two modes
per dipole; thus we have
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8xr =yr (r/r) =(y/8x) .

The energy conversion is then given by

(A4)

(A5)

0=]cQ, (A6}

defining a. From the simulation, we can calculate p(fl),
the distribution of 0, which we have normalized,

The frequency of a normal mode, Q, is determined
from 0, the square root of an eigenvalue of the dynami-
cal matrix, by

' 1/2
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p (0)=(y/tr)P(Q/tr) . (A7)

JdQp(Q)=1. The density of libration mode states per
unit volume in the real material, p (0), is then given by

that the change in elastic constants is determined by

8& d~P 0
p 0 (A8)

We now calculate the change in the elastic constants
due to this density of states. At zero frequency recall

I

Using Eq. (55) for the mean speed of sound in an isotro-
pic material, and (29) for the softened elastic constants,
we find the low-frequency Debye velocity,

VD
= TP

p(1+8/5)

1/2
3

' 1/3

2+ I p /[A, +2p+ (8/5)( —,'p+ X ) ] I
3r2 (A9)

This gives

UDp(1+8/5)
y —+-

p 3 3 [A+2p+(8/5)( 2p+JL)]

3/2 2/3

(A 10)

Now we know y in terms of the measured Debye velocity and the inputs to the simulation, x, p, and A, . As we have
mentioned before, only the ratio of P and X is important, if we double p and X, this lowers the computer's energy scale,
so that B also doubles, and finally y will end up being halved, giving the same high-frequency values for p and k, as
desired. Now that we know the "bare" values of p and k, we know everything we need to know, since we wi11 take Y
and y from experiment.
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