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Eric R. Grannan*
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501

Mohit Randeria'
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801
and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue,
Urbana, Illinois 61801

James P. Sethna
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501
(Received 5 May 1989; revised manuscript received 20 October 1989)

We develop a model to explain the universal low-temperature properties of glasses in the
1< T <10 K temperature range. Our model consists of elastic dipole “defects” which are placed
randomly in an elastic continnum. We derive a Hamiltonian for defects interacting via their long-
range strain fields. We simulate a system of elastic dipoles placed on a lattice with site dilution, and
find local minima of the defect Hamiltonian using Monte Carlo annealing. For a broad range of di-
lution, the ground states found are disordered. We study various excitations about these ground
states. In this paper (I} we determine the barriers to reorientations of the dipoles, and find that
these are in quantitative agreement with dielectric-loss data on the orientational glass KBr:KCN.
We also compare our results with other recent theories of orientational glasses. In the following pa-
per (II) we study harmonic excitations about the glassy ground states and the effect of these excita-
tions on the low-temperature thermal properties; we compare our results with experimental data on

KBr:KCN and vitreous silica.

I. INTRODUCTION

It has now been known for a long time' that amor-
phous materials have low-temperature properties that are
markedly different from crystals, and strikingly similar to
one another, independent of their structural or chemical
composition. The phenomenological theory of two-level
systems2 (TLS) of Anderson, Halperin, Varma, and Phil-
lips has been very successful in helping to understand
very-low-temperature (7<1 K) behavior. However,
there are several questions that this theory leaves
unanswered. First, there is no microscopic basis for the
tunneling centers which lie at the heart of the TLS
theory. Second, the TLS theory does not address the
quantitative universality of certain features seen in the
very-low-temperature data; these just seem to arise due to
numerical “accidents” in the TLS parameters. Finally,
there are wuniversal aspects of the intermediate-
temperature (1 <7< 10 K) data on glasses which cannot
be explained even qualitatively within the TLS model.
For example, every amorphous insulator shows a “pla-
teau” in the thermal conductivity between 1 and 10 K,
where the conductivity is essentially independent of the
temperature. In addition to the plateau, the specific heat
in this temperature range shows an excess over-the Debye
value (i.e., that obtained from the speed of sound), which
is best seen as a bump in a plot of C /T versus tempera-
ture. Further, all glasses show a broad (/3 or secondary)
relaxation peak well below their freezing temperature.

In this paper (I) and its companion® (II) we shall focus
on these intermediate-temperature universal properties of
glasses. This work extends the results previously pub-
lished in a short paper.* Our thinking has been strongly
guided by one particular material, the disordered crystal
(KBr); -, (KCN),, which, in its orientational glass phase,
shows all of the universal low-temperature properties® of
structural glasses. Since its microscopic structure is
much better characterized than that of a “real” glass, it
has the dual advantage of providing a microscopic basis
for our theory and being a stringent test case for it. Ata
phenomenological level, we also compare our results to
vitreous silica.

We summarize the results of this paper in the follow-
ing. .

We introduce our model in Sec. II. We begin with an
elastic continuum containing randomly placed defects.
The simplest characterization of a defect which couples
to a strain field is an elastic dipole, and we have taken
this as the basis of the model. Specializing to a traceless
uniaxial dipole, and neglecting local fields, leaves only
one parameter to characterize a single defect For
KBr:KCN these assumptions can be justified on micro-
scopic grounds. For a more general glass, our model
must be considered phenomenological. In the rest of this
paper and its companion we will analyze this model and
show that it is rich enough to give rise to the universal
intermediate-temperature properties of glasses.

In Sec. III we develop the elasticity theory for dipole
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defects coupled to the phonon modes of the medium and
use it to derive a Hamiltonian for defects interacting via
their strain fields. We make a major simplifying approxi-
mation by taking the phonons to be fast on the time scale
of the defect excitations. The validity of this approxima-
tion is assessed in II, where we study the harmonic defect
modes. While much of what we say in Sec. III is avail-
able in the literature, we are careful in treating the k=0
strain mode and in our treatment of periodic boundary
conditions. '

We next describe in Sec. IV our numerical simulation
of the defect Hamiltonian. We use a Monte Carlo heat-
bath method followed by a zero-temperature quench to
find local energy minima, or ground states, of a system of
dipoles placed on a lattice with site occupatlon probablh-
ties x of 0.25, 0.5, and 0.7.

We discuss the nature of the ground states obtamed in
the various simulations in Sec. V, and find that, for a
range of defect densities, these are glasslike. For x=0.25
and 0.5, the ground states seem not to exhibit long-range
order. The dipoles point in random directions (with some
short-range order in a {111) direction) determined by
the local strain field. At concentration x=0.7, the system
does have long-range order, in the Pa3 structure, but
many of its properties still look glassy.

We study in Sec. VI a particular excitation about the
glassy ground state: a 180° flip of a single dipole, which is
a local excitation connecting two degenerate ground
states. We compare the barrier heights for these reorien-
tations with two recent models for orientational glasses.
The distribution of barriers is reasonably approximated
by a Gaussian, except for the low-barrier tail, which
shows a hole presumably due to level repulsion. In Sec.
VI1I we study the same reorientations, allowing the neigh-
boring dipoles to relax. We compare the barrier heights
thus obtained with dielectric-loss data in KBr:KCN. We
obtain quite good agreement at all concentrations, with
the barrier-height distribution determined from the
dielectric loss.

Finally, in Sec. VIII we dlscuss the relation of our
work to previous theoretical work. The discussion of
theories of the low-temperature properties of glasses is
left to II; here we discuss our model in the context of oth-
er microscopic models of alkali halide alkali cyanides.

In II, we study harmonic excitations about the glassy
ground states of the defect Hamiltonian. We treat the
coupling of long-wavelength phonons to these defect
modes within perturbation theory. We calculate the
specific heat and thermal conductivity of our disordered
system and find characteristic glassy behavior in the in-
termediate temperature regime. We compare our results
with experiments on KBr:KCN and vitreous silica. For
the latter case, the parameters are fixed by matching the
defect density of states to‘rec’:ent neutron-scattering ‘ex-
perlments by Buchenau et al.®

Readers primarily interested in the low-temperature
thermal properties of glasses may wish to turn to II after
reading Sec. II of the present paper.

II. MODEL
At long wavelengths a glass has well-defined elastic
constants. In addition, there is clear experimental evi-
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dence for the presence of nonphonon degrees of freedom.
In specific-heat measurements one sees an additional
source of entropy; in thermal transport, which is experl-
mentally known to be phonon dominated, 7 one sees evi-
dence for strong phonon scattering, especially in the
10'2-Hz frequency region.

On rather general grounds, one way in which glasses
differ from crystalline materials is that they have a distri-
bution of internal stresses due to the disorder inherent in
their structure. These internal stresses give rise to inter-
nal motions which are clearly different from the phonons.

" We model these internal stresses in terms of “defects”

in an elastic continuum. It should be stressed that the
notion of isolating these “defects” at the microscopic lev-
el in a real glass is, in general, not well defined; what is
the defect and what is the medium? Thus, this type of
model can only be used for structural glasses in a phe-
nomenological way. However, as we shall show below,
for a system such as KBr:KCN we can provide a detailed
microscopic Justlﬁcatmn for our model.

A single defect in an elastic medlum is characterlzed
by an elastic multipole expansion® in much the same way
as in, say, electrostatics. The source for displacements in
an elastic medium is a point force. Symmetry does not
allow for an elastic monopole since this would be a unbal-
anced force, so, in general, the strain field that dies away
most slowly with distance (1/r°) is that due to the elastic
dipole moment. In analogy with an electric dipole, an
elastic dipole is given by two opposing forces whose
strength goes to inﬂnity as their separation goes to zero.
An elastic dipole®® is characterized by a symmetric
second-rank tensor; the antisymmetric part represents an
unbalanced torque.

We make three simplifying assumptions about the di-
pole defects. First, we will consider traceless defects,
which means that there is no volume change due to the
dipole. The trace of an elastic dipole couples only to lon-
gitudinal phonons, whereas, experimentally, transverse
phonons are equally strong scattered, and even for longi-
tudinal phonons the relative volume change that would
be required to ‘account for the measured phonon-defect
coupling is unphysically large. Second, we restrict our-
selves to the case where two of the axes are equal, i.e., the
dipole is cylindrically symmetric. Third, since we would
like to have a model with the minimum number of free
parameters, we take all the defects to be identical, rather
than having a distribution of dipole moments. '

Given these assumptions, only one number, Q,, the
elastic dipole moment, is needed to characterize the ener-
gies of the defect‘.10 Each elastic dipole is then given by
Q;;=Qo(f; 8;;), where i is a unit vector. (The ter-
minology in the ﬁeld is rather confusing and, by analogy
with electrostatics, Q;; ‘is sometimes called a *“quadru-
pole”’; we will always call it an elastic dipole.) This dipole
can be pictured as looking like an ellipsoid placed in a
spherical hole in a block of rubber. It pushes out in one
direction, and pulls in in the other two directions. As we
define it, the elastic dipole has units of energy and cou-
ples to the strain field in the host medium.

We must now address the issue of what determines the

dynamics of these defects. We will assume that the only
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important interaction is the strain-mediated coupling be-
tween the elastic dipoles, which is described in Sec. III.
We use linear-elasticity theory to calculate this interac-
tion. At short distances, comparable to a lattice spacing,
the use of linear elasticity is in itself an approximation,
which we nevertheless make on grounds of simplicity. In
general, an isolated defect will have preferred orienta-
tions due to the local environment. We neglect all such
effects, so that an isolated dipole in our model behaves
like a free symmetric rotor. For KBr:KCN, as we will
discuss below, this assumption appears to be well
justified, insofar as the intermediate-temperature proper-
ties are concerned. For the more general case, even the
separation of the interaction into “exchange” (defect-
defect) and “local-field” (defect-local cage) pieces is not
well defined. : )

We will discuss in more detail in II the extent to which
the neglect of local-field effects is justified. It is probably
worthwhile to ask what would happen if we took the
completely opposite point of view from the one taken in
this paper, ignoring all interactions between defects and
assuming that the dynamics is determined only by local-
field effects. In that case, an analysis identical to the one
given in Ref. 11 shows that if the local-field distribution
(which is not known in general glasses) is treated as
adjustable, one can obtain the usual intermediate-
temperature properties of glasses. Of course, in reallty it
would be impossible to turn off the phonon-mediated in-
teraction between defects, while keeping a finite defect:
phonon coupling as required by the thermal conductivity.
Local-field effects, however, are indeed negligible in some
glassy systems, like, e.g., KBr:KCN. Thus, at the very
least, our model raises a nontrivial question: Is it possible
to get the universal intermediate-temperature properties
of glasses from the simplest model, whlch only has the
phonon-defect mterachon"

A. KBr:KCN

We now turn to a brief discussion of the disordered
crystal KBr:KCN which, after all, was the inspiration for
the model, and is a material for which we can make fairly
direct comparisons between our results and experiment.
In particular, we will point out the microscopic basis for
some of the simplifying assumptions made above.

(KBr);_,(KCN), can be made with any concentration
x of CN™’s, spanning the range between pure KBr and
pure KCN. For x between about 0.1 and 0.6, the CN s
freeze into random orientations (as has been shown by
neutron scattering'?) which do not have long-range orien-
tational order. Over this range of composition the ma-
terial exhibits all the usual low-temperature glassy prop-
erties:® linear specific heat and T? thermal conductivity
below 1 K, a thermal-conductivity plateau, a broad
dielectric-loss peak, '’ etc.

We make the obvious association between the cyanide
ions which randomly replace the bromines on the anion
sublattice and the elastic dipoles of our model. For sim-
plicity, we ignore all higher-order elastic multipoles. The
approximation of neglecting the volume shift due to
the cyanides (i.e., ignoring the trace of the dipole tensor)
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is a very good one since the lattice constant of
(KBr);_,(KCN), is essentially constant as x is varied,
for x $0.6 (above this concentration, the material has a
ferroelastic phase transition at low temperatures).

There are (at least) three energy scales relevant to the
cyanides. These are due to the elastic-interaction between
the cyanides, the electric interaction between the
cyanides, and the interaction between the cyanide and the
crystal field of the host lattice. The crystal-field-energy
scale can be estimated from experiments on very dilute (a
few ppm) cyanide concentrations in a KBr host lattice.
In this case the CN’s point in the eight (111) direc-
tions and have barriers of 5 K between different orienta-
tions.'* The other two energy scales can be estimated
from KCN, where at zero temperature the barrier to 180°
reorientations'* is 1855 K and the asymmetry energy'®
340 K. From this, we see that for moderate to high
cyanide concentration the elastic interactions between
cyanides are dominant. Thus it is reasonable from a mi-
croscopic standpoint to treat KBr:KCN as a system of
interacting elastic dipoles.

We should also mention that there are some differences
between our model and the real material KBr:KCN. The
ground state at high concentration (x ~1) is different:
(KBr);_.(KCN), at this concentration is in a ferroelastic
phase at low temperatures, and in our simulation we find
a Pa3 structure (see Sec. V). This difference may be due
to the neglect of higher-order elastic multipoles, or of
local-field effects. Of course, our main interest is in the
lower-concentration glassy phase. 'In the glassy phase,
KBr:KCN has cubic elastic constants, but in our model
we have taken the elastic constants to be isotropic. Sim-
plifying the detailed interaction in this way has conceptu-
al as well as computational advantages. Since the proper-
ties we are trying to understand occur in all glasses as
well as KBr:KCN, one hopes that the details of the in-
teraction do not play a major role.

For KBr:KCN we can get all the microscopic parame-
ters of our model from experiment. In addition to the
elastic constants, these are the elastic dipole moment, the
moment of inertia of a cyanide ion, and the density of de-
fects.

III. DEFECT HAMILTONIAN

Our aim is to simulate a disordered system of elastic di-
poles interacting via their strain fields. In general,
second-rank tensors will interact through a Hamlltoman
of the form

—3 2 Jiu(xx)0;(x)Qy(x") , (n
(x:x')

and specifically, for elastic dipoles, J will be the strain
field at x caused by a dipole at x’. The main thrust in this
section is the determination of J ;.

We will use periodic boundary conditions in our simu-
lation. To consider the effects of such a periodic system
in a systematic way, we will reformulate the problem
below and write a “full Hamiltonian” which explicitly in-
cludes the phonon modes of the elastic medium in addi-
tion to the defects. We will eventually want to include
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phonons in our model to study the thermal and transport
properties, and it will be useful to have a Hamiltonian
which includes them explicitly. This is different from the
standard method of elasticity, in which the phonons are
always considered to be fully relaxed. We will rederive in
this way the Fourier-space equations for the strain field of
a dipole.

The phonons mediate an effective interaction between
dipoles. We will see that besides the 1/7° strain field
around each dipole, minimizing the energy in the k=0
mode leads to a uniform strain field. This strain field
vanishes for a single dipole in an infinite medium, but in a
system with a finite density of dipoles it only costs a finite
amount of energy per dipole. The uniform strain field is
important since it can cause a ferroelastic transition to a
state where there is a long-wavelength deformation, and
the dipoles all line up. It also must be treated correctly,
even in the absence of a long-wavelength deformation, in
order to study the response of the system to externally
applied stresses.

We should point out that the Hamiltonian studied in
this paper incorporates two aspects of the strain-
mediated interaction between dipoles that were neglected
in our earlier work.* First, we did not include the k=0
uniform strain mode in Ref. 4. This makes no difference
in the interaction energy of two isolated elastic dipoles,
because it costs an infinite amount of energy to have a
uniform strain field in an infinite medium. However, for
a finite concentration of defects the energy cost per defect
of such a strain field is finite. Thus it is necessary to in-
clude its contribution to Jy,(x). Second, we had previ-
ously used periodic boundary conditions with a sharp
cutoff on the interaction at the size of the box. In this pa-
per we impose true periodic boundary conditions, so that
a given elastic dipole interacts with all the periodic im-
ages of the other dipoles. We will show that these
changes do not qualitatively modify the results of Ref. 4.

A. Phonon-defect Hamiltonian

We want to obtain the Hamiltonian for a system of
elastic dipole defects interacting with the strain field in a
finite elastic medium with periodic boundary conditions.

We begin by writing the most general strain field,
which is periodic in a cube of side L:

1 |dP; dP
— 4

E,’j(r)'_'_'_ dx 1

—= {+e;, 2
2 d.xi elj @

J

where the P;(r) are periodic, and the e; are arbitrary

Hyy= 3

k (#0) 8

X

The first and third terms represent the elastic energy of
the medium in the finite-k modes and in the uniform
modes, respectively. The second and fourth terms
represent the energy of interaction between the elastic di-

pole defects located at x and the strain fields,

1.
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symmetrized constants. This is just the strain field ob-

tained from a displacement field u,(r) which has a period-

ic part P;(r) and a linear part of the form e
Expanding the P; in a Fourier series,

ijrj.

=27 (4 nym3) 3)

()= 7. ikr
Pi(r) %u,(k)e , 2

with n; integers, we obtain the strain field,

gy(r)= FE;(k)e™r, (4)
k
where
e;, k=0
z (5)

U= /2 ki, + k), kA0

Note that the k=0 mode has to be treated separately,

and cannot be obtained from the k—0 limit of the finite-

k part. While the six k=0 components ¢;; can be chosen

independently, for k0, ;;(k) are not six arbitrary con-

tinuous functions since they must be derived from a phys-

ical (i.e., continuous, single-valued) displacement field.
The elastic energy stored in these strain fields is

Eq= [ deguey(Deg(ridv ©

where ¢, is the elastic-constant tensor. (For a review of
elasticity theory, see, e.g., Refs. 16 and 17.) Converting
this to a sum over the Fourier modes gives

If we apply a force to a point in an elastic continuum,
the continuum will respond so as to minimize the total
energy. For a given displacement, we gain an energy
equal to —F-u. An elastic dipole, being a pair of op-
posed forces, will couple to the derivative of the displace-
ment, that is, to the strain field. So, considering a pair of
forces whose separation goes to zero, keeping the product
of force times separation constant, we get that the in-
teraction energy between a dipole and a strain field is
given by

Eiy=—0Qy8y - 8

We can now write the “full” Hamiltonian for an elastic
medium including the interaction with embedded dipoles
located at sites x. The (potential-energy part of the)
Hamiltonian is then

Kcijkl(kiﬁj+kja[ )(kka?‘i‘k[i‘i}t)_ 2 %(k,izj—i-kjﬂl )Qij(x)eikd{ +7Vcijkleijekl— EeijQij(x) R (9)
X

B. Elastic Green functions

Before finding the interaction energy between two elas-
tic dipoles, it is convenient to begin by computing the
Green function for the strain field due to a dipole source.
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We will assume that the phonon-mediated interaction be-
tween dipoles can be taken as instantaneous. For this ap-
proximation to be valid, it is necessary that motions of
the defects be slow on the time scale characteristic of the
phonons  (1/7g4epec; <<Wpeyye). This approximation is
checked in II, where we study the defect modes. Since
Taefect depends on the parameters of the model, so does
the validity of this approximation. We will find that for
the parameters relevant to KBr:KCN, neglecting retarda-
tion effects is only marginally justified, whereas for silica

1
Eijkl(k):V_‘u

-}7(8,-1-73,‘73, +8ikll€j7(\1 +81j7€kﬁi +8[kEjl?i )""
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there is a clear separation of time scales. More generally,
we believe that it is reasonable, as a first approximation,
to neglect retardation effects in the study of this model.

We now specialize to an isotropic medium, with Lamé
coefficients A and p. In this case

R =88y (8,8, +8,5,) . (10)
We can then obtain!® the Green function for the strain

field of a dipole by minimizing the total energy (9) with
respect to the phonon coordinates,

Atp
A+2u

kkk .k, ] (11)

(where k is a unit vector) for k70. The k=0 strain field is given by

1

11 A
V 2u

E(k=0)= m‘

%(aik8j1+8i18jk)_ {

8;i0u

=%sijk1 , ) ) (12)

where the compliance tensor s, =c,-j_k} is the inverse of the elastic modulus tensor. ¥,jx; has been made manifestly sym-
metric under interchange of i« j, k<>/, and ij«>kl. In fact, these symmetries are true in general, not just for an isotro-
pic material. [Formulas analogous to (11) and (12) can also be obtained for a cubic material; see Ref. 18.]

For an isolated dipole in an infinite medium only the k%0 modes contribute to the strain field, as argued earlier. In
this case (11) can be Fourier-transformed to real space to obtain

1
Eijkl(r)_._—w _%‘(Sikaﬂ +8,-,8jk +8jka,~, +8j,a,-k )

where we use d;; for 3%/8x,0x ;- From this it is apparent
that the strain field of a dipole dies off like 1/7°.

More generally, when we have a finite density of de-
fects, we must include the k=0 mode as well. We then
obtain the real-space Green function J, jki for the strain of
a dipole,

TR = 3T (ke ™™, (14)
k

where %,;,(k) are given by (11) and (12). The resulting
strain field at r due to an elastic dipole at the origin is
then given by

e (r) =T (r)Q;;(0) . (15)

C. Interaction between defects

The interaction energy between two elastic defects in a
medium is defined'® to be the energy of the two sources
minus the contribution each defect would have made in
the absence of the other. This energy can be calculated
by minimizing the energy in the phonon modes.'® Here
we give a simple argument which gives the same result.

To determine the interaction energy between two
forces, consider a material with a body force embedded in
it, and then turn on a second-body force. The interaction
energy is given by the difference between the work we do
with the second force present, and the work that we
would do if it were absent. As we turn on the second

L+
r

Atp
At+2u

az‘jkl(r)y , (13)

force, by linearity the displacement in the medium will
simply add to the displacement already present. So the
only difference in the work done with a force present is
due to that part of the work done as in moving the first
force. The interaction energy is then —F(1)-u(2).

The interaction energy between two dipoles is obtained
in a similar way, by turning on an elastic dipole in the
presence of the strain field due to another dipole. This
giVCS Eint = QU( 1)8,1(2)

We get the following effective Hamiltonian for a sys-
tem of elastic dipoles,

Hpg=—3 3 Qy(x'Wyu(x—x)Qy(x"), (16)
x,x’
(x#x')

where the real-space Green function Jy, for the strain of
a dipole is given by (14). Note that since Jijrs is sym-
metric between exchange of ij and kI, Q;;(1)e;(2)
=Q,;/(2)e;;(1). The interaction energy of a system of di-
poles is thus given by a sum of pair interactions. Equa-
tion (16) is the main result of this section; this is the equa-
tion that all of our simulations will involve. Since Jijki
has been calculated by summing the appropriate Fourier
modes, this Hamiltonian implicitly imposes periodic
boundary conditions.

Let us conclude with some comments on the interac-
tion between two elastic dipoles. The k#0 part leads to
an anisotropic 1/r* interaction, as seen in (13). It can be
shown'® analytically that for two isolated dipoles a “tee”
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configuration is a local minimum of this interaction. In
this configuration one dipole is pointing in the direction
of the vector separating the two and the other is perpen-
dicular to it. Numerically we find that the “tee” appears
to be the global minimum. The uniform k=0 part of the
interaction has the rather different effect of making two
dipoles align parallel to each other. The combined effect
of these interactions on the ground states of a system of
interacting dipoles will be discussed later.

IV. SIMULATION

One possible approach to study this system would be
through a mean-field theory. As is known from the study
of Ising spin glasses, as well as work on quadrupolar
glasses,” a rigorous mean-field theory for systems with
quenched disorder is quite difficult, and we have chosen
instead to perform a numerical simulation.

The basic purpose of the simulation is to find “ground
states” of the interaction Hamiltonian (16). By a ground
state, we mean a low-energy local minimum of the Ham-
iltonian, not necessarily a global minimum. Since we are
dealing with a disordered system and are trying to model
a glass, we do not expect that there should be one partic-
ular ground state that is much lower in energy than any
other local minimum. We have also investigated the
ground-state structure of a small system in some detail
and find that there are, in fact, many competing local
minima of similar energy. (This, together with a study of
the zero-temperature entropy of the system, will be dis-
cussed in a separate publication.?!)

We have chosen to run a Monte Carlo simulation to
find ground states. Alternatively, we could have just per-
formed a minimization of the energy, using a steepest-
descent algorithm. An advantage of using a Monte Carlo
simulation is that we expect to find better ground states
than by merely going straight downhill, as one is less like-
ly to get trapped in a high-energy metastable
configuration.

In the simulation we cycle through the dipoles repeat-
edly, in a random order each time. The strain field at
each dipole is calculated. We then pick an orientation fi
for that dipole from a Boltzmann distribution (the heat-
bath method). The temperature is slowly lowered to zero
until the system converges into a local minimum of the
energy.

At zero temperature we want to go to the minimum of
whatever energy valley we happen to be in. To do this,
we go through the dipoles one at a time,? and align them
with the local strain field until the system converges. We
consider the system to have converged if the fractional
char:ge in energy is less than some small value, typically
10774 ‘

The quenched randomness in our Hamiltonian (16) is
in the random location of the dipoles. To obtain a ran-
dom configuration, we take each site in a finite fcc lattice,
and place a dipole with probability x at that site (that is,
we have site dilution). We have typically used 5X5X5
conventional fcc unit cells, which gives 500 total sites.
We have performed simulations with x=0.25, 0.5, and

0.7. We average over typically 10-20 different random
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configurations to determine properties for a given con-
centration. The simulation was performed on the IBM
3090 computer at the Cornell National Supercomputer
Facility, and we used about an hour of central-
processing-unit (CPU) time for each run, including the
Monte Carlo annealing, calculation of relaxed barrier
heights (Sec. VII), and diagonalization of the dynamical
matrix (see II).

Before we run the simulation, we calculate the J,(x)
tensor for each possible displacement vector x between
lattice sites. Note that for a given set of elastic constants
and a given lattice size, we only have to calculate J;;;(x)
once, and we can then use the same values of J;;; in oth-
er runs of the simulation regardless of the positions of the
dipoles or of the concentration. When running the simu-
lation, we then use the J;;,(x) previously calculated. The
Jiju’s are obtained by Eq. (14), summing® over the k
values dictated by the periodic boundary conditions.
This has the effect of including the interaction of a given
dipole with all the periodic images of other dipoles.

We do not include the interaction of a dipole with its
own images. Including this would make the Monte Carlo
simulation more difficult, since the energy would no:

longer be of the form —e;;(x)(f;#; —18;;), with ¢;;(x) in-

dependent of fi. The effect of interacting with your own
images (in a cubic array) can be shown to be equivalent to
adding a crystal field of the form

A(x*+yt+zh, (17)

where A can be either positive or negative, depending on
the elastic constants. We have chosen to neglect this in-
teraction for two reasons. First, the effect of interacting
with one’s own images is clearly unphysical and disap-
pears in the limit of an infinite system. Second, since we
have already decided to neglect local-field interactions, it
seems defensible to throw this one away as well.

Finally, a word on the units used in our simulations.
On the computer, we consider the fcc conventional unit
cells to be one unit on a side, and the elastic dipole mo-
ment of the dipoles to be 1. The elastic constants are
given to the computer, and we will see that only the ratio
of the elastic constants matters to the results. The mag-
nitudes of the elastic constants are chosen after the simu-
lation to match to experiment. Unless otherwise men-
tioned, the results we will discuss in this section were ob-
tained on a 5X5X35 lattice with A=p=1.0. These num-
bers have been chosen because their ratio, 1.0, is the ratio
of A and u given by the Voigt spherical average!’ of the
elastic constants (i.e., isotropically averaging the elastic
modulus tensor, rather than the compliance tensor) for
KBr. We will give energies mainly in “computer units”
in this section. As a scale to the energy, in the ground
state of the system with dipoles on all the sites of a fcc
lattice, and with these elastic constants, the energy per
dipole is equal to —0.557, and the barrier to the reorien-
tation of a dipole is 1.67. The procedure by which we go
from the computer units to physical units requires the use
of formalism developed in II, and is thus described there.

V. GROUND-STATE STRUCTURE
As discussed earlier (at the end of Sec. III), the pre-
ferred orientation for two dipoles in an isotropic medium
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is a “tee,” i.e., one dipole is parallel, and the other is per-
pendicular to the vector connecting them. This “tee”
configuration is frustrated on a fcc lattice; even if we were
to approximate the interaction by limiting it to near
neighbors, the dipoles could not satisfy all their bonds
simultaneously. The “tee” configuration is actually frus-
trated on any three-dimensional Bravais lattice. This can
be seen by considering two neighbors in the, say, % direc-
tion from each other (see Fig. 1). One (dipole 1) must be
pointing in the X direction, and the other (dipole 2) in a
perpendicular direction, say the § direction. Then dipole
2 must have a neighbor in the § direction (dipole 3) which
must be pointing in the x-z plane. Since dipole 2 has a
neighbor in the § direction, dipole 1 must also have a
neighbor (dipole 4) in that direction, which must point in
the § direction. Then dipoles 3 and 4 must be neighbors,
so dipole 3 must actually point in the X direction. This
pattern can be repeated in two dimensions to form a
two-dimensional rectangular lattice on which all bonds
are satisfied. Now, all the neighbors in the Z direction
must be pointing in the Z direction in order to satisfy the
bonds with neighbors in the original plane. But in doing
*s0, they do not satisfy the interactions within the second
plane. This shows that the “tee” interaction cannot be
satisfied on a three-dimensional Bravais lattice. Since the
real interaction is long ranged, the question of when the
(approximate) near-neighbor interaction is frustrated is of
only marginal interest, and we will not pursue it further.

A. Nondiluted systems

Considering the long-range interaction again, we now
discuss the structure of the ground state for a system in
which dipoles are placed on all of the fcc lattices sites,
i.e., the site occupation probability x=1. For an isotro-
pic elastic medium, there are two possible structures de-
pending on the ratio of the elastic constants A and p.?* If
A/u is greater than about —0.385, the lowest-energy
configuration is the Pa3 structure, which is well known?
from solid ortho-hydrogen. In this structure the dipoles
of each of the four simple-cubic sublattices pick a
different (111) (body diagonal) direction in which to
point, with the condition that near-neighbor dipoles do
not lie in the same plane. There are eight degenerate Pa3
structures. We have conducted most of our simulations

FIG. 1. Elastic dipoles are frustrated in a three-dimensional
Bravais lattice.
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with isotropic elastic constants with A=p=1.0. This
structure differs from KCN at low temperatures, which
has an orthorhombic structure, with the long axes of the
cyanides pointing in a direction corresponding to a
{110) direction in a cubic lattice.

For A/u less than —0.385, the dipoles line up in one of
the {100) directions. By lining up in the same direction,
the dipoles can take advantage of a large uniform strain
field, although the rest of the interaction energy is posi-
tive.

We have checked that anisotropic elastic constants are
not sufficient to reproduce the correct ground-state struc-
ture for KCN, by running the simulation using cubic
elastic constants.'® Using the elastic constants for KBr as
our bare elastic constants, however, it turns out that the
x=1 system prefers the same state as the isotropic case,
that is, the Pa3 state. Among the ferroelastic states—
that is, states with the dipoles all pointing in the same
direction—the best one is not even the (110) state, but
the (111) state. Perhaps ignoring the higher multipoles
may be responsible for our model having the “wrong”
ground state in the ordered limit x=1.

B. Dilute systems

We find that the properties of the ground states do not
depend on the rate of cooling over the range of rates that
we can practically achieve. We also find that if we cool
the same system many times we find different ground
states. In fact, unless the system is very small (on the or-
der of 20 dipoles), we never get the same ground state
twice.

At the lowest two concentrations, the states we end up
with look glassy, with only short-range correlations in the
orientations of the dipoles. For x=0.7, the systems have
strong correlations throughout the lattice, showing
definite tendencies of the Pa3 structure. In Fig. 2 we

Random x = (.25

x - 05

<100> <100>

FIG. 2. Orientations of the dipoles in the ground states for
three concentrations—0.25, 0.5, and 0.7. Also shown for com-
parison is a random distribution of the same number of points.
The points have been folded onto a wedge of the sphere using
the operations of the cubic symmetry group, and then projected
in an area-preserving manner onto a plane.
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show a scatter plot of the orientations of the dipoles. We
create this by first folding the orientations of the dipoles,
using the cubic group operations, onto a wedge contain-
ing % of the sphere. We have then projected the wedge
from three-dimensional space onto a plane, in a manner
so that area is preserved. We see that for concentrations
0.25 and 0.5, the distribution of orientations is fairly uni-
form over the wedge, with some tendency to point in the
(110) and (111) directions. For concentration 0.7,
there is a quite strong tendency to point ina {(111) direc-
tion.

Another simple way to look at the structure of the sys-
tem is to consider the correlations between the orienta-
tions of the dipoles. In Figs. 3-5 we show the distribu-
tion of relative orientations of dipoles at various distances
from each other. If the orientations were uncorrelated,
the distributions would all be flat. For the Pa3 structure,
the distribution would be & functions at 1 for the dis-
tances whose square is a half-integer, and 8 functions at 1
for distances whose square is an integer. We see that for
the lower two concentrations there are fairly weak corre-
lations between the orientations of the dipoles.

For x=0.7 the systems have strong correlations
throughout the lattice. The structure is quite reminiscent
of the Pa3 structure, with signs of the peak at § and a
very strong peak at cos@=1 for the dlstances whose
square is an integer. At this concentration in
(KBr); .. (KCN),, the cyanides have undergone a ferroe-
lastic transition, so (as in our simulation) their orientation
is no longer random, but the ground state is different

x=0.25
8
11/2%
5
9/2 : : :
4 T ™
/2 - - - -
3 [T
5/2
2
3/8 ]
1 e
1/8 e ]
0 0.2 04 0.8 0.8 1.0

R? cosf

P(cos8)

FIG. 3. Probability distributions for the relative angles 8 be-
tween dipoles plotted as a function of cosf. The concentration
is x=0.25. Each of the 12 plots is for a different separation R
between the dipoles, measured in units of a fcc unit cell whose
side length is 1. Dipoles whose squared displacement is an in-
teger are on the same simple-cubic sublattice; otherwise they are
on different sublattices. At concentration 0.25 the correlations
are rather weak, although there is some tendency for dipoles on

the same sublattice to line up.

x=0.5

6
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R? - cosf

FIG. 4. Same as Fig. 3, at concentration x=0.5. Here there
is a tendency for dipoles on the same sublattice to line up at
short distances, which appears to be dying away for dipoles
separated by the largest distance.

from the one that we get.

Despite the long-range order, the x=0.7 results do
show some features which are glassy. The normal modes
of the dipoles at this concentration (discussed in II) do
not look extended, at least at the high- and low-frequency
tails, unlike the x=1 case. The distribution of barrier
heights (discussed in the next section) is broad, with a

5 : . — ]
9/2 - - — ‘
4 Wwv——“"""\//
NK& . .
8 3 i i M/-/
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1/ e — ]
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R? cosf

FIG. 5. Same as Fig. 3, at concentration x=0.7. At this con-
centration the system exhibits long-range orientational order in
the Pa3 structure, signaled by peaks in P(cos6) at cos6=1. Di-
poles on the same lattice have a strong tendency to lihe up, and
dipoles on separate lattices tend to be arranged with cosf= 3
Despite the orientational order, we will see that this system has
some properties which look glassy.
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similar width as at x=0.5. Furthermore, even though
the dipiles tend to point in {111} directions, as is shown
in Fig. 2, there is a large amount of disorder in the direc-
tion in which they choose to point.”

VI. BARRIER HEIGHTS

We now study the distribution of barrier heights to
180° reorientations of the dipoles. There are several
reasons why these barriers are of interest. First, in our
model, the configuration when a dipole has flipped by
180° is degenerate with the unflipped configuration. Thus
a 180° reoriéntation of a single dipole is a natural local
excitation. A broad distribution of barrier heights is
characteristic of a glassy system; for a concentration

x=1, the distribution of barriers is given by a & function,
as all the dipoles have the same environment. Second,
dielectric-loss experiments'® in (KBr),_,(KCN), have
been interpreted in terms of distributions of barrier
heights, and we will be able to compare the distributions
that we obtain with the experimental distributions.

In KBr:KCN the two-level systems have been con-
sidered?® to be those cyanides (about one in 10°) which
happen to have a very low barrier to reorientation, so
that they can quantum-mechanically tunnel on experi-
mental time scales. In principle, it should be possible to
look for ‘these two-level systems in our simulation, but,
practically, the true TLS would be so rare that they
would not be seen in a simulation of achievable size.
Consequently, we cannot say anything in detail about
TLS.

Another reason that barrier heights are of interest is
that there have been two recent theoretical calculations
of distributions of barrier heights in ‘“‘quadrupolar”
glasses. The two groups analyzed somewhat different
models, both of which simplify the actual elastic dipole
interaction, and which embody different aspects of the
physics present in real materials. Sethna and Chow?
(SC) have calculated a mean-field theory for a model
which ignored the frustration of the elastic dipole in-
teraction, but included the effect of dilution, the fact that
different dipoles have different numbers of near neigh-
bors.

Kanter and Sompolinsky?® (KS) have performed a re-
plica mean-field theory of a model which is frustrated,
but in which all the dipoles are equivalent, and each di-
pole interacts with all the other dipoles.

There are two barriers which we will calculate. In this
section we discuss the “bare” barrier; that is, the barrier
to the reorientation of a particular dipole when all the
other dipoles are fixed. This is given by Q, times the
difference between the largest two eigenvalues of the
strain tensor evaluated at the dipole. This is the barrier
height discussed in the theoretical calculations. In the
following section we will discuss the distribution of bar-
rier heights when other dipoles are allowed to relax.

The model Hamlltoman studled by Kanter and Sompo-
linsky was

HKS = 2 Kklmn(x’ X')le(x)an

x,x'

(x"), (18)

where the components of Kj;,,.(x,x’) are independent
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random variables aside from the usual symmetries; that
1S, Kipmn =Kimn =K mnkr- The sum is over all pairs of di-
poles, so each dipole interacts with all the other dipoles
with a coupling drawn from the same distribution. They
obtained a replica-symmetric solution, valid above the
temperature where the dipoles tend to freeze into a gen-
eral orientation, and a solution with replica-symmetry
breaking, valid below the freezing temperature and down
to zero temperature. A distinctive feature -of both of
these solutions is that the distribution P (V) goes to zero
linearly as V' —0. o
" Our model differs from this model in several ways. In
the first place, our J;, tensors are not random. The ran-
domness in our model is due to the random location (di-
lution) of the dipoles, not from any randomness inherent
in the interaction. Furthermore, the interaction tensor
for a pair of dipoles in our model is a function of the
difference in position of the dipoles, and since we place
the dipoles on a lattice, many pairs of dipoles will be
separated by the same displacement vector and therefore
have the same J;;;. Similarly, the J;y; values even for
different displacement vectors will not be uncorrelated.
Since the J;;, tensors are correlated with each other, if
the orientations of the dipoles are also correlated, which
certainly happens at high concentrations, the relevance of
the KS model may be questionable. On the other hand, if
the interaction is long ranged, one might imagine that the
effects of dilution and random interactions would be the
same.

The Hamiltonian of the model studled by Sethna and
Chow?” was

Hge=—3J 3 le(l)ka(J)X,X, , (19)
{if)

where the sum is over near neighbors, and y; =1 if a site
is occupied, and zero otherwise. This model ignores frus-
tration and its ground state is highly ordered, since the
energy is minimized when all the dipoles are aligned.
The model does include the fact that different dipoles are
in different environments, one may have many near
neighbors, and another will have few neighbors. Presum-
ably this will have a substantial effect on the barrier
height seen by these two dipoles. In the mean-field-
theory solution to this model the distribution of barrier
heights is very nearly a Gaussian (actually a binomial dis-
tribution).

We first compare the barrier heights to the high-
temperature replica-symmetric solution. In Fig. 6 we
show the bare-barrier-height distribution for a system of
dipoles in which the orientation of each dipole is simply
chosen randomly. This corresponds to the instantaneous
barrier distribution at very high temperature, where the
dipoles are practically freely rotating. The high-
temperature behavior of our model agrees very well with
the KS replica-symmetric solution. This solution has one
parameter, which sets both the width and the peak of the
distribution, and which we have fitted to the distribution
from the simulation.

At low temperatures our simulation converges into a
local minimum of the energy. Figures 7—10 show the dis-
tribution of bare barrier heights in the ground states for
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FIG. 6. Distribution of barrier heights at concentration
x=0.5 for dipoles pointing in random uncorrelated directions.
This is therefore the instantaneous barrier-height distribution at
a very high temperature, where the barrier is defined as the
difference between the largest two eigenvalues of the local
strain-field tensor. The smooth curve is the Kanter-
Sompolinsky replica-symmetric solution.

concentrations 0.1, 0.25, 0.5, and 0.7. The distributions
of the higher three concentrations are compared to both
the KS replica-symmetry-breaking solution and to a
Gaussian distribution. Note that the Gaussian distribu-
tion has one more parameter than the KS solution, since
for the Gaussian distributions we are independently
choosing both a width and mean.

At a concentration of 0.25 the KS solution gives rather
good agreement with the barriers from the simulation.
The quality of the fit is about the same as that of the
Gaussian, even though the KS solution has one less pa-
rameter.

At both higher and lower concentrations, however, the
KS solution does not do as well. We know, in fact, that
at a concentration of 1.0 the distribution of barriers is a §
function, since all the dipoles will have the same environ-
ment. The question is whether, as x becomes lower, the
distribution goes to the KS solution. At both of our
higher concentrations, x=0.5 and 0.7, the KS solution is
much wider than the numerical barrier distribution. This
is probably due to correlations in the orientations at these
concentrations. At a very low concentration of x=0.1
(which was done on a slightly larger 6X6X6 lattice) the
distribution of barrier heights is no longer given by a
smooth featureless curve, and we have not attempted to
fit it to either the KS solution or a Gaussian. There are
two noticeable peaks at about 0.1 and 0.3, which occur
since the discreteness of the lattice makes certain ar-
rangements of dipoles likely. For example, if two dipoles
are near neighbors on this lattice, and do not interact
with anything else, they have barrier heights of 0.0 and

0.225. The difference between these two values agrees
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FIG. 7. Distribution of barrier heights for ground states at
concentration x=0.1. This was done on a 6 X6X6 convention-
al unit-cell lattice. The discreteness of the lattice is becoming
apparent at this low concentration. An isolated near-neighbor
pair of dipoles would have barriers of 0 and 0.225. .

well with the observed difference between the two peaks
of the distribution.

We find from our simulation that the barrier distribu-
tion P(¥)—0 as ¥ —0. Since the bare barrier height is
defined by a difference in eigenvalues of a'random matrix,
this is just the phenomenon of level repulsion, as em-

100

P(V)
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0,0 0.5 1.0
Barrier Height V

FIG. 8. Distribution of barrier heights for ground states at
concentration x=0.25. The smooth curves are the broken-
replica-symmetry solution of Kanter and Sompolinsky (which
goes to zero at ¥=0) and a Gaussian (which is nonzero at
V=0). Both curves fit the numerical barrier distribution fairly
well, but the KS solution has only one free parameter, whereas

the Gaussian has two.
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FIG. 9. Distribution of barrier heights for ground states at
concentration x=0.5. The broad curve is the replica-
symmetry-breaking solution of Kanter and Sompolinsky, and
the narrow curve is a Gaussian. ’

phasized by KS in the present context. However, the KS
solution further predicts that P(¥) should go to zero
linearly as ¥V —0. From the distribution of barrier
heights from the simulation, we cannot, of course, rule
out the possibility that the extremely low barrier tail goes
to zero linearly, but if it does it must happen at such low
barriers and for so few dipoles that, at least for those
properties which involve a significant number of the di-
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FIG. 10. Distribution of barrier heights for ground states at
concentration x=0.7. The broad curve is the replica-
symmetry-breaking solution of Kanter and Sompolinsky, and
the narrow curve is a Gaussian.
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TABLE 1. Ratio of the width o to the peak position p of the
barrier-height distribution. The ratios are the experimental dis-
tribution in KBr:KCN, determined from dielectric loss, the ra-
tio for the binomial with 12 near neighbors, and the relaxed and
unrelaxed barriers from the simulation.

Ratio o/u
x Expt. Binomial Relaxed Unrelaxed
0.25 0.40 0.50 - 0.43 043
0.50 0.32 0.29 0.38 0.31
0.70 0.28 0.19 0.36 0.28

poles, it would not have a noticeable effect. Furthermore,
at the very low barrier tail (in the real world), local
crystal-field contributions to the barrier (which both
theories that we have discussed, as well as our simulation,
have neglected) will become important. It also should be
noted that we clearly contradict the SC solution in which
the barrier distribution went to a constant as ¥ —0.

If we assume that the Gaussian comes from a binomial
distribution from a random number of near neighbors, as
in the mean-field theory of SC, the ratio of the width to
the peak position as a function of x is given by a binomial
distribution. The ratios of o /u from the dielectric-loss
experiments of Birge et al., from the simulation, and
from a binomial distribution are given in Table I. The ra-
tios of the binomial distribution are qualitatively correct,
but they predict somewhat too steep a change in the ratio
as the concentration is changed. This is presumably due
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FIG. 11. Scatter plot of the barrier height as a function of
the number of near neighbors for x=0.5. The mean of the dis-
tribution has a linear dependence on the number of near neigh-
bors, but the width is extremely large, and there is a large inter-
cept on the y axis. The graphs for x=0.25 and 0.7 (not shown)
look qualitatively similar. In the Sethna-Chow theory a plot of
barrier height vs number of near neighbors is a straight line
through the origin.



TABLE II. Coefficients of linear fit to the bare barrier height
as a function of the number of first, second, and third neighbors;
that is, ¥ (ny,n,,03)=ag+a,n,+a,n, +asn;. The distribution
itself is actually very broad, and does not resemble a line.
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x agy a, Q; a
0.25 0.271 0.089 0.007 —0.009
0.5 0.516 0.064 0.012 —0.015
0.7 0.613 0.075 0.027 —0.023

to the effects of more distant dipoles.

A way of estimating the effect of various numbers of
neighbors is to consider the barrier height as a function
of the number of neighbors; see Fig. 11. We have per-
formed a least-squares fit of the barrier height as a func-
tion of the number of near, next-near, and third neigh-
bors to the form

V(n,ny,n3)=aytan,+a,n,tazn; . (20)

This gives the coefficients shown in Table II. As can be
seen, the effect of the number of near neighbors has a
large, but not overpowering, influence. The importance
of the number of near neighbors is most important for the
low-concentration, x=0.25, run (Fig. 12). The coefficient
of the third-neighbor term is negative. The presence of
third neighbors frustrates the closer neighbors and tends
to give a lower barrier height.

VIL. “RELAXED” BARRIER HEIGHTS
AND DIELECTRIC LOSS

A characteristic feature in glasses is a broad distribu-
tion of relaxation times at low temperatures (i.e., well

Barrier Height

Number of Near Neighbors

FIG. 12. The mean and error of the mean for the bare barrier
height as a function of near neighbors for x=0.25, 0.5, and 0.7.
The top line of the graph, 1.67, is the barrier height in the crys-

talline state at x=1.0.
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below the glass transition), known as the B relaxation.
This relaxation typically spans many decades in frequen-
cy. In KBr:KCN this 3 relaxation has been seen through

_ dielectric-loss measurements by Birge, Nagel, Wu, and

collaborators.' In these experiments the coupling of the

- small electric dipole moment of the CN™ to an external

time-varying electric field is used to probe the interac-
tions between cyanides which are dominated by elastic
forces. The dielectric-loss peak is very broad, spanning
around 10 decades of frequency. The data can be fitted
very well by assuming that it is due to independent de-
grees of freedom thermally activated over a Gaussian dis-
tribution of barrier heights.

By assuming that the excitations over these barriers are
180° reorientations of the elastic dipoles, we are able to
compare the barrier distribution from the simulation
with the experimental distribution. One indication that
the dielectric loss in the disordered material is due to 180°
reorientations is that this loss peak evolves continuously
as x is reduced from the dielectric-loss peak in KCN as-
sociated with 180° reorientations.?®

The bare barrier calculated above is actually an upper
limit to the measured barrier height, since presumably
the other dipoles will relax as one dipole flips over. If the
process is thermally activated, as the distribution mea-
sured experimentally in KBr:KCN is, the barrier impor-
tant for the reorientation rate of a dipole will be given by
the lowest-energy saddle that the system has to go
through as one dipole reorients itself. We therefore also
calculate a “relaxed” barrier height, where we allow the
other dipoles to adjust as a given dipole flips over. The
effect of relaxation is not small; there is generally a large
difference, of about a factor of 2, between the bare and re-
laxed barriers.

The idea of a relaxed barrier is somewhat ill defined.
There is clearly a question of time scales involved in
determining what exactly should be relaxed; relaxing an
arbitrarily large number of neighbors corresponds to
waiting a very long time. Furthermore, since we are deal-
ing with a glassy system, there are lots of local minima
that the system can fall into. If we try to do a very good
job of finding the minimum energy barrier needed to be
crossed in reorienting one dipole, we will likely find some
convoluted path that goes through other local minima.
This transition then cannot be considered as involving a
simple reorientation of one dipole. Therefore, in search-
ing for a relaxed barrier, there will have to be some
compromise between relaxing everything and between re-
stricting the ways in which we relax the system. It is cer-
tainly true that more complicated rearrangements of di-
poles may be important experimentally; presumably
single-dipole reorientations are just a particularly simple
example of more general rearrangements of the system.
In particular, in the CO/N,/Ar system it has been
shown? that reorientations are not important in deter-
mining the specific heat. In this paper, however, we will
only consider barriers to 180° reorientations.

We calculate the relaxed barrier heights as follows.
We first constrain the dipole of interest to point in a
plane perpendicular to its ground-state orientation. Al-

though there is no guarantee that the maximum energy
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should occur at /2, all of the barriers we found using
other methods!® had their maximum barrier at 7/2, so
this does not seem to be a bad assumption. We then relax
some of the other dipoles as well as the dipole whose bar-
rier we are calculating, still requiring, of course, that it be
perpendicular to its ground-state orientation. Once the
system converges, we check that the whole system relaxes
back into the original ground-state orientation. We have
tried various groups of “other dipoles” to relax, ranging
from just the near neighbors to all of the dipoles in the
simulation. The problem with relaxing all the dipoles,
besides being quite time consuming, is that the system
not infrequently (one time in 10 or so, and more at low
concentrations) ends up in a configuration which does not
relax back into the original ground state. This means
that we have really produced some point on a path be-
tween a more complicated rearrangement of the dipoles,
not just a reorientation of a single dipole.

As a compromise, we have chosen to minimize the di-
poles out to third neighbor. This distance includes 42 lat-
tice sites. We chose relaxing out to third neighbor be-
cause the barrier that this method gives is essentially the
same as the barrier height that we get when relaxing all
the dipoles for those barriers that relax back into the
same state. Benefits of relaxing dipoles out to third
neighbor are that this method is more likely to relax back
into the original state, and that it is much faster than re-
laxing dipoles on all 500 of the lattice sites.

A, Comparison with experiments

In order to compare the “relaxed” barrier heights with
those obtained from the dielectric-loss experiments, we
have to convert our results from “computer units” to
physical units. While a discussion of this conversion will
be taken up in II, we consider it worthwhile to present
the final results here. The energy scale of the simulation
is set by one number, Q% /Ca?®, where C is an elastic con-
stant and a is a typical distance between dipoles. We
have used the value of 1.3 eV for the elastic dipole mo-
ment Q,, which is consistent®® with experiments on iso-
lated cyanides in a KBr host. In addition, we also need
to match®! the elastic constants of the simulation to the
experimentally measured value for KBr:KCN.

We plot the relaxed barrier heights from the simulation
and the barrier heights deduced from the dielectric-loss
experiments in Fig. 13. All the distributions agree
reasonably well. It is rather surprising that the barrier
heights for x=0.7 agree moderately well, since (as we dis-
cussed in Sec. V) the structure of the two systems is
different at this concentration. It should be noted that if
we are allowed to adjust the energy scale (by a factor of
about 2), the unrelaxed barrier heights also fit the dielec-
tric loss quite well; the effect of relaxation is basically just
to lower the energy scale. The parameters of the various
barrier-height distributions (unrelaxed, relaxed, etc.) are
compared with the experiment in Table 1.

In summary, 2 model involving 180° flips of the defect
dipoles convincingly explains the dielectric-loss data.
While there is clearly a correlation of the barrier heights
with the number of nearest neighbors, as in the Sethna-

ERIC R. GRANNAN, MOHIT RANDERIA, AND JAMES P. SETHNA 41

0-003 T T T T I T T T T I T T LN T 1
r a
I x=0.25 b
0.002 — x=0.5 —
S = x=0.7 1
n.‘ - -
0.001 — -~
0.000 L L. l | S | 1 1 Ja. ]
(V] 500 1000 1500
v (K)

FIG. 13. Barrier heights from dielectric-loss experiments
(Ref. 13) and from the simulation.

Chow analysis,?’ the effects of frustration and of more
distant neighbors are also important.

VIII. RELATION TO OTHER MODELS

Our main aim in this paper and its companion (II) is to
study the universal low-temperature properties of glasses.
Thus far, we have discussed only certain thermally ac-
tivated reorientation processes here, and have compared
our results with predictions from other theories of “qua-
drupolar” glasses in Sec. VI. We will discuss the thermal
properties of our model in II. Thus we will postpone dis-
cussion of other theories of the universal low-temperature
properties to that paper.

Since our most direct comparisons with experiment are
made with the glassy crystal KBr:KCN, it is appropriate
here to discuss previous theoretical studies of the mixed
alkali halide cyanides. Most of this work has been done
from a perspective quite different than ours. These stud-
ies take a more microscopic point of view and have been
concerned with the details of the crystal structure, treat-
ing all the alkali ions, halogens, and the cyanides explicit-
ly. Michel and Rowe?? have used interatomic potentials
to derive a Hamiltonian which includes couplings be-
tween cyanides and phonons (the translational-rotational
coupling), as well as single cyanide orientation potential.
Their Hamiltonian includes the phonon-mediated in-
teraction between dipoles that we have used, as well as
other interactions which we have neglected. They have
then studied many of the high-temperature properties,
e.g., the phase transition into a disordered state, and
neutron-scattering line shapes. In a similar spirit, Sahu
and Mahanti have investigated phonon softening in the
high-temperature phase.** Michel** has pointed out the
importance of random-field effects due to the size of the
halogen atoms in understanding details of the phase dia-



gram of mixed crystals. Molecular-dynamics simula-
tions, which have been used to investigate the structural
properties of alkali cyanides, have been performed by
Lewis and Klein.® Using interatomic potentials, they are
able to achieve quite good agreement with the phase dia-
gram, as well as give insight into the structure of the
disordered state.

Our interest is in the low-temperature properties, and
in the excitations about the disordered ground states.
Since we study properties which are universal to all
glasses, we hope that these properties will be substantially
independent of the details of the Hamiltonian. We have
thus chosen to work with a simple model, which views
the cyanide as a “defect” in a continuum, and neglects its
microscopic environment. We have already shown above
the the barrier heights obtained from our model are in ex-
cellent agreement with the data obtained from the
dielectric-loss B-relaxation peak in KBr:KCN. To what
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extent this model explains the universal low-temperature
properties will be discussed in the next paper.
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