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The renormalization group is nearly fifty years old, and has proven to be

a comprehensive description of equilibrium critical phenomena. Fifty years

may seem a long time, but after fifty years of quantum mechanics physicists

were only just coming to terms with the significance of entanglement. New

frontiers abound, but dark corners in our understanding remain. This thesis,

in various ways, pokes around some of those dark corners.

One burgeoning frontier is in the critical phenomena of nonequilibrium

systems. Chapter 1 describes the skeleton of a new scaling theory for quasib-

rittle fracture as a departure from the percolation fixed point along an invari-

ant surface that becomes trivial in the thermodynamic limit. After reviewing

the set of numeric tools needed to simulate a popular model for quasibrittle

fracture across a wide scale of disorders, we compare simulation results to sev-

eral versions of the scaling theory. Qualities of the numeric model at critical

stress and after rupture that are singular at the percolation fixed point seem

well-described by the simplest versions of that theory, while dynamic quali-

ties that are nonsingular at the percolation fixed point appear to be governed

by different scaling. At the end we reflect on possible explanations for this

discrepancy, and paint a path towards distinguishing them.

If the first chapter demonstrates the importance of numeric experiments

for assessing the predictions of scaling theories, the next two offer some new

tools for performing certain numeric experiments. Chapter 2 describes an

extension to cluster Monte Carlo algorithms that permit their efficient use
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in the presence of arbitrary on-site potentials. These algorithms were vital

for making precision numeric measurements near the critical points of lattice

models, and our extension offers new opportunities for study. We give two

examples: determining the relevance of symmetry-breaking fields on the 2d

XY model, and constraining the form of universal scaling functions in the

metastable state. Chapter 3 describes how our extension works equally well

for the application of inhomogeneous potentials in geometric cluster flip al-

gorithms for the simulation of colloidal or atomistic systems. We detail the

form of the extension and speculate on possible uses, from the simulation

of novel phase transition boundaries in gravitational fields to improving the

equilibration of computer glasses.

After building some useful tools, we return to a dark corner. Chapter

4 examines the influence that an obscure and subtle singularity near lines of

abrupt phase transitions has on the universal scaling at the critical points that

terminate them. We show that a simple ansatz for the scaling functions in

the metastable state, across the abrupt transition, gives a close prediction for

the scaling functions and their derivatives in the stable state, at least for the

2d Ising model. We discuss techniques for improving the simplest prediction

perturbatively and speculate on why the description is so much worse in 3d.

Chapter 5 addresses another subtle question: what makes two critical

points the same? Specifically, it examines the breadth of phenomena, equi-

librium or not, whose critical behavior is infinite order and whose critical

singularities are not power laws, but stretched exponentials. We question

whether every transition claimed to be in the Berezinskĭi–Kosterlitz–Thouless

universality class actually is, and go hunting for corrections to scaling in a
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model of growing networks that would prove otherwise.

Finally, we return to more familiar waters. Chapter 6 uses functional mean

field theory to explain anomalous singular behavior near the critical point of

URu2Si2. Data from experiments that measure components of the modulus

tensor across an array of temperatures reveal behavior in one mode of the

modulus that appears to decay like a power law above the critical point but is

not singular at it. We show that this can be explained by the critical point of

an order parameter with the same symmetry of that mode, but which becomes

modulated, not uniform, in the low-temperature phase. We reflect on other

evidence for this idea and on future experiments that could support or falsify

it.
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CHAPTER I

SCALING IN QUASIBRITTLE
FRACTURE

Everything we build will eventually fail, but we would like to know when and

how. Here I will discuss some ideas we have about how the way concrete fails

might depend on a structure’s size. Concrete is an example of a quasibrittle

material. This means that it is brittle (does not tolerate much plastic defor-

mation) but disordered (full of inhomogeneities). Though it is one of the most

common building materials, we don’t have a firm idea about how to take its

failure statistics at small, laboratory scales and extrapolate them to the scale

of buildings and dams. This is a problem because concrete is often used to

construct buildings and dams.

The trouble seems to be wrapped up in the way that concrete yields under

strain. In plastic materials like metal and—well—plastic, complicated micro-

scopic processes mediate plastic yielding: individual and collective movement

of dislocations, and polymer breaking, rejoining, and untangling, respectively.

Despite the complexity, these phenomena behave well under mesoscopic and

ultimately macroscopic coarse graining, and yielding is well-described by the-

ories with continuum elastic fields.2,3 In concrete, yielding largely progresses

through a process called microfracture : when ‘stretched,’ a sample opens up

1



2 Scaling in quasibrittle fracture

myriad tiny cracks across many length scales which collectively conspire to

reduce the bulk modulus and admit more strain.4 This process does not be-

have well under coarse graining, and continuum theories of concrete yielding

preform poorly outside of the systems they were tuned to.

This leads to material behavior whose size effects are difficult to pre-

dict; strength tests on a concrete sample in the lab have little bearing on

the strength of concrete in a dam.5 The reason for this lies in the fracture

procedure, which is heavily affected by microfracture. At the tip of a per-

fect crack, stress diverges. In ordinary brittle materials, this divergent stress

leads to immediate breaking,∗ while in plastic materials like metals a small

region—usually on the order of micrometers—around the crack tip is plasti-

cally deformed, absorbing energy and blunting the tip. In quasibrittle materi-

als, however, stress at the crack tip is relieved by microcracking: the formation

of myriad small cracks in the vicinity of the larger one, with stress being dis-

tributed across all. This microcracking is a highly correlated phenomena, and

for materials like concrete can take place on the order of feet.4 Since the mi-

crofracture that blunts the progression of cracks though the material appears

to span length scales up to the size of the structure, neglecting the finite

system size in our analysis just won’t do.

Numerous scaling theories have been proposed for disordered fracture,

some at fixed disorder and others while the disorder is varied, that seek to

explain both the structures that result and the avalanche dynamics that char-

acterize the lead up to fracture, often with great success.6–16 A few have

attempted to trace the behavior of disordered fracture to infinite disorder,
∗This is why you see so few partial cracks in glass.
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where percolation physics is thought to describe the crumbling failure that

occurs.17–22 At this point, it has been well-established that common infinite-

disorder numeric models do reproduce percolation physics in this limit, and

have a crossover governed by the percolation fixed point as disorder is de-

creased.17,21 There has been less success connecting the critical avalanche dy-

namics seen at intermediate disorder to this infinite disorder limit. The main

prior work making this connection relies heavily on corrections to scaling.17

In this chapter, I examine the question of this infinite-disorder to inter-

mediate disorder crossover in quasibrittle systems, mostly by numeric experi-

ments on fuse networks. First, I will introduce those networks and the details

of how they are simulated. Then, I’ll lay out the minimum pieces of a scal-

ing theory that has fracture cross over from a percolation critical point, and

make some guesses at some underconstrained details. We’ll step through the

simulation results and reflect on their support—or lack thereof—for the sim-

plest crossover models. Finally, I’ll discuss some ideas on resolving seeming

inconsistencies with a scaling picture, and look towards using these results to

describe the structure and dynamics of growing cracks in these materials.

§1. Resistive networks

We study fracture using a simple analogue to elasticity: dc circuits. Stress

on a bond is represented by current, and strain at a node is represented by

voltage. The scalar-valued objects current and voltage are far more wieldy

than their tensor-valued elastic counterparts, and their governing equations

match the elastic equations in the limit that strain is purely compressive,
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e.g., maintains the relative positions of all elements up to a global length

scale. Some features are lost in this translation—for instance, we’ll talk of

percolation on our networks, where the relevant process for an elastic system

is rigidity percolation—but we believe the same scaling laws should apply.

The details of our numeric model follow.

Figure 1.1: Resistive networks that we use. (Left) a square network tilted so
as to ensure that bonds have symmetric exposure to current (right) a network
comprised of the faces of voronoi cells for uniform random points.

A resistive network G is a simple connected undirected graph G = (V;E).

Each edge e 2 E represents a resistor of unit resistance. Assuming jV j = N ,

let fx1; � � � ; xNg = V and adopt the natural ordering xi < xj if i < j. In our

work we strictly deal with two-dimensional resistive networks, which further

requires that G be planar.∗ Kirchoff’s law requires that the net current flowing

from each node be zero, which (using Ohm’s law) means that the voltages u(x)
∗Or at least planar locally. We will be modelling fracture on a torus, after all.
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for each x 2 V obey

0 =
X

fyjfx;yg2Eg
u(x)� u(y) (1.1)

where the sum is over neighboring sites. We can represent this requirement

as a matrix equation. Consider the adjacency function A(G) : V � V ! Z2

defined for x; y 2 V by

(A(G))(x; y) =

(
1 if fx; yg 2 E

0 otherwise
(1.2)

This gives 1 if the sites are connected by an edge, and if they are not. Consider

further the degree function D(G) : V ! N defined for x 2 V by

(D(G))(x) =
X
y2V

(
1 fx; yg 2 E

0 otherwise
(1.3)

which gives the degree of each vertex. If we define the function L(G) : V �V !
Z by L(G)(x; y) = �xy(D(G))(x) � (A(G))(x; y), then (1.1) is equivalent to

the requirement that

0 = (D(G))(x)u(x)�
X
y2V

(A(G))(x; y)u(y)

=
X
y2V

(L(G))(x; y)u(y)

(1.4)

which is equivalent to the matrix equation [L(G)][u] = 0 for the matrix with

components

[L(G)]ij = (L(G))(xi; xj) (1.5)
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and the vector with components [u]i = u(xi). L(G) is called the Laplacian of

G, and [L(G)] is called the Laplacian matrix.23 The name is not spurious; in

fact, the Laplacian matrix of a planar network is the natural discretization of

the Laplacian operator r2 for continuous space. Its relevance here is similar

to its relevance for the diffusion equation: it is the simplest isotropic linear

operator which produces a conservation law.

Boundary conditions

Though we have reduced determining vertex voltages to a linear problem,

that linear problem is trivial as currently posed. First, the zero vector is a

solution. Since we have required that G be connected, [L(G)] has precisely

one zero eigenvalue, which corresponds to an eigenvector [u] = (1; : : : ; 1).24 All

solutions to the problem posed above, then, have u(x) constant for all x 2 V ,

and constant voltage implies zero current. This is a complex way of seeing

an obvious physical fact: isolated networks of resistors do not spontaneously

carry currents. We will need to modify the problem by adding a boundary

condition of some kind. Given a resistive network and a boundary condition

x of boundary type B, we want to find the current across each edge. The

graph G� = (V �; E�) and the injective function f� : E ! E� represent a

transformed version of G for which the desired boundary has been accounted

for.∗ G� resembles G, but depending on the boundary conditions desired G�

can equal G, contain G, or neither. In all cases, V � � V .

No matter the boundary conditions, the same general technique is used.

G� is derived from G based on the boundary type desired. A boundary condi-
∗This seems very cryptic now, but will become clearer given the coming examples.
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tion x : V � ! R, is chosen, along with an additional functionM : V ��V � ! R

that helps fix the boundaries in certain cases. A voltage function u : V � ! R

is computed by solving the linear system [L(G�)+M(G�)][u] = [x]. A current

function i : E ! R is then computed from u by the linear transformation

m : (V � ! R)! (E ! R) defined for fx; yg 2 E and fx�; y�g = f�(fx; yg) 2
E� by

i(fx; yg) = (m(u))(fx; yg) =
(
u(x�)� u(y�) x� > y�

u(y�)� u(x�) x� < y�
(1.6)

which is the realization of Ohm’s law. The resulting values i(fx; yg) give the

current (in the direction x ! y for x < y) on the resistor represented by

fx; yg.
The simplest boundaries to adopt are current boundaries. In this case, one

defines a current source function I : V � ! R which gives the net current

flowing out of each vertex. Now Kirchoff’s law gives

I(x) =
X

fyjfx;yg2E�g
u(x)� u(y) (1.7)

for x 2 V �, or [L(G�)][u] = [I], which yields nontrivial solutions for any I for

which
P

x2V � I(x) = 0. Mathematically, this is because the sum over vertices

of the adjacency function equals the degree, so

X
x2V �

I(x) =
X
x2V �

X
y2V �

(L(G�))(x; y)u(y)

=
X
y2V �

u(y)
�
(D(G�))(y)�

X
x2V �

(A(G�))(x; y)
�
= 0

(1.8)
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but physically this is the statement that the amount of current entering the

network must equal that exiting. If one is content selecting point sources

within the network as the boundary, one can take G� = G and M = 0 and

be done. For our purposes, we will tweak this slightly so as to apply virtual

bus-bars to our network. Let Vt; Vb � V be the vertices on the top and bottom

boundaries of our network, respectively. Then we define V � = V [ fxt; xbg
and

E� = E [ �fy; xtg j y 2 Vt
	 [ �fy; xbg j y 2 Vb

	
(1.9)

Let I(x) = 0 for all x 2 V and I(xt) = 1, I(xb) = �1. We have added two

fictitious vertices to our network, connected them to the network’s top and

bottom, and made them a source and sink, respectively. In order to produce

more numeric stability and make voltage solutions unique, we will also require

u(xt) = 0 by setting M(x; y) = �xtx�xty, as

0 = I(xt)�
X
y2V �

�
(L(G�))(xt; y) +M(xt; y)

�
u(y)

= u(xt) + I(xt)�
X
y2V �

(L(G�))(xt; y)u(y) = u(xt)

(1.10)

This removes the zero eigenvalue from [L(G�) +M ] and therefore the degree

of freedom represented by constant shifts in u. In order for the presence

of the boundary to minimally effect the resulting currents, we often set the

resistance of the extra edges in E��E to near-zero values, which is equivalent

to multiplying all associated terms in the Laplacian by a large constant.

Now suppose we want to fix the voltage on a subset of vertices V1 � V
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to equal U and the voltage on another subset V0 � V to equal zero. These

vertices will be removed from the linear problem because they no longer need

to be solved for, but how do we account for them in the solution for the free

vertices? If we define

E0(x) = ffx; yg 2 E j x 2 V0g E1(x) = ffx; yg 2 E j x 2 V1g

E0 =
[
x2V

E0(x) E1 =
[
x2V

E1(x)
(1.11)

and E� = E � (E0 [ E1), then for a vertex x 2 V � = V � (V0 [ V1), we have

0 =
X

fx;yg2E
(u(x)� u(y))

=
X

fx;yg2E�

(u(x)� u(y)) +
X

fx;yg2E0

(u(x)� u(y)) +
X

fx;yg2E1

(u(x)� u(y))

=
X
y2V �

LG�(x; y)u(y) + u(x)
� X
fx;yg2E0

1 +
X

fx;yg2E1

1
�
�

X
fx;yg2E1

U

(1.12)

If we write M(x; y) = �xy(jE0(x)j+ jE1(x)j), then we have

U jE1(x)j =
X
y2V �

(LG�(x; y) +M(x; y))y (1.13)

Thus the boundary condition x is given by x(v) = U jE1(v)j for all v 2 V �.

If G is locally planar but globally a tiling of a torus,∗ we can still compute

currents on it assuming that voltage around one axis of the torus increases
∗I was introduced to the possibility of toroidal boundaries in an unpublished document

sent to me by either Stefano Zapperi or Vincenzo Vitelli (I can’t find the relevant email),
but I couldn’t make heads or tails of that description, so I eventually worked this out myself.
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Figure 1.2: While all figures in this paper seem to show planar networks, they
are actually just visually appealing representations of networks on a torus.
This is a square network with the wrapping edges explicitly shown—not very
comprehensible!

by �U with each traversal.∗ This would require the voltage function to be

multi-valued, and actually violate Kirchoff’s laws. We will get around this by

cutting the torus. First, cut the torus along one axis. Let the set of cut edges

be Ec, and let V1 and V2 be the sets of vertices represented in Ec on each side

of the cut. Consider new sets V �
1 and V �

2 with jV �
1 j = jV1j and jV �

2 j = jV2j,
and let f1 : V1 ! V �

1 and f2 : V2 ! V �
2 be bijections. Then define the graph

Gf = (Vf ; Ef ) where Vf = V [ V �
1 [ V �

2 ,

E1 =
�fx; f1(y)g j fx; yg 2 Ec; y 2 V1

	
E2 =

�fx; f2(y)g j fx; yg 2 Ec; y 2 V2
	 (1.14)

∗This is equivalent to there being some net magnetic flux threaded through one of the
principal axes of the torus.
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and

Ef = (E � Ec) [ E1 [ E2 (1.15)

Kirchoff’s laws will faithfully reproduce the torus current on this graph pro-

vided we ensure that u(f1(y)) = u(y) + �U and u(f2(y)) = u(y) ��U . Let

E0 = E � Ec. We have, for some x 2 V ,

0 =
X

fx;yg2Ef
(u(x)� u(y))

=
X

fx;yg2E0

(u(x)� u(y)) +
X

fx;yg2E1

(u(x)� u(y)) +
X

fx;yg2E2

(u(x)� u(y))

=
X
y2V

L(V;E0)(x; y)u(y) +
X

fx;yg2E1

(u(x)� u(f�11 (y)) + �U)

+
X

fx;yg2E2

(u(x)� u(f�12 (y))��U)

=
X
y2V

L(V;E0)(x; y)u(y) +
X

fx;yg2Ec

(u(x)� u(y))

+
X

fx;yg2E1

�U �
X

fx;yg2E2

�U

=
X
y2V

LG(x; y) + jE1(x)j�U � jE2(x)j�U

(1.16)

Remarkably, the linear problem can be solved in terms of the Laplacian of

the original torus, with specially added sources and sinks! We let x(v) =

(jE2(v)j�jE1(v)j)�U . We can now also remove a final trivial degree of freedom

by setting u(x1) = 0 as we did for the current boundaries.
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§2. Fuse networks

A fuse network F = (G; t) is a resistive network G = (V;E) with a function

t : E ! (0; 1] that corresponds to the breaking current of each fuse.25–27 Our

networks will take thresholds distributed by p(t j �) = �t��1, which is very

peaked around t = 1 for large � and very peaked around t = 0 (spanning many

orders of magnitude) for small �. A fuse network is fractured deterministically

under the following procedure. The current function i : E ! R is computed

on G using whatever boundaries are desired. The edge e 2 E which maximizes

ji(e)j=t(e) is found. A new graph G0 = (V;E � feg) and a new fuse network

F 0 = (G0; t0) (for the natural restriction of the domain of t) are then created.

This simulates the breaking of elements in the network as the voltage (or

current) is increased adiabatically. Since we are simulating the fracture of

tori, this process can be thought of as physically like increasing the amount

of flux threaded through one of the principal axes. When this procedure is

iterated, it results in a chain (F; F 0; F 00; : : : ; F 0���0) of networks, the final one of

which is fractured. A network is fractured when

• (in the case of current boundaries) the source and sink belong to different

connected clusters, or

• (in the case of voltage or toroidal boundaries) the current function i(e) =

0 for all e 2 E.

The distinction in the definition of “fractured” is present only because in

the current case the linear problem used to find the current function has no

solution, and so it cannot be solved for i(e) = 0. This process of breaking

networks in sequence can be done very efficiently. Because, when a fuse is



§2 Fuse networks 13

broken, only four elements in two rows and columns of the Laplacian are

affected, one can solve for the currents of the new graph by using a rank-

one transformation to the Laplacian’s Cholesky decomposition (used by the

numeric solver) rather than refactor the new Laplacian each time, a very

expensive operation.28 We use the cholmod library for this.29

Trimming the backbone: lollipops and bow ties

Simulation of the fuse network may seem straightforward enough, but a com-

plexity arises in practice. As fuses are broken, the distribution of currents on

the remaining fuses are changed, and sometimes carry no current at all. The

numeric problem of determining the currents cannot distinguish between a

fuse which carries no current and one that carries a current at or less than the

level of precision in the linear problem.∗ Figure 1.3 shows the distribution of

currents for large systems with small �. The hump at small currents is not

physical—it represents bonds that should be identically zero. For this sys-

tem size those bonds cannot be distinguished from ones carrying a physical

current, since the distributions overlap.

Though the inability to distinguish between fuses with small current and

those with none may seem a problem of no more consequence than the inability
∗A careful reader might notice another problem that could arise from the indistinguish-

ably of small and zero current: how can you ensure that the torus is broken by confirming
that i(e) = 0 if we can’t be sure i(e) is zero or just near zero? An inconvenient way would
be to search for a cycle of the correct signature over and over until we find it, confirming
current can no longer be carried. A better way is to mark the edges along the cut in the
torus, and after every bond breaks sum up their values (careful to preserve the sign of the
currents across the cut). This gives the total current on the system, which for �U = 1 is
also the modulus. The minimum modulus is given by a network with all the fuses lined up
in series, which would be 1=N . This lower bound on the modulus, or total current, is much
greater than the numeric jitter in our systems, and so therefore it can be reliably used to
determine if the system has ruptured or not.
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Figure 1.3: The distribution of currents on all fuses measured over the
course of many fuse network fractures for a voronoi lattice with L = 128 and
� = 0:0001. The blue line depicts the current on bonds that have (by the
methods detailed below) been identified as backbone bones, and the orange
line depicts the current on bonds that have been identified as not in the
backbone.

to distinguish between fuses with different small currents, the former often

leads to a complete breakdown of the numeric problem. The trick we use

to efficiently update the set of currents after each fuse is broken relies on

modifying the Cholesky decomposition of the Laplacian matrix of the network,

which itself relies on the positive-definite nature of that matrix. Breaking

certain identically-zero fuses renders that matrix merely positive semi-definite.

Why should this be true? Here is an example. If two collections of fuses

are joined only by one fuse, no current can be carried on that fuse, because
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there cannot be a net one-way flow from one bunch to the other. This is a

bond whose current must be identically zero. If that bond is removed, the two

collections are disconnected. Because they are disconnected, the potential on

each can be set arbitrarily with the same outcome. This is responsible for a

zero eigenvalue—the difference from an Ohm’s law solution is unchanged by

such a shift. These bonds and the collections of bonds they connect to we will

call lollipops because of their resemblance. Another class of identically-zero

bonds is formed when a collection of bonds is connected to the backbone by

only a single vertex—we will call these bow ties.

Unless we would like to destroy our chances at analyzing a network as often

as such a bond is broken, we must prevent lollipops from being broken, and

once we are doing this, making the same analysis for bow ties is not too much

more work. Many “burning” strategies for this have been proposed,30 but

we shall make use of an idea first articulated by Roux and Hansen, suitably

generalized for fuse networks spanning a torus.31 We will first describe the

idea on a simply connected network, where the application is more simple.

A group of fuses that is connected to the rest of the network by only one

bond—like that pictured in the left panel of Figure 1.4—can be identified

by looking at the connectivity of the network’s dual. If the dual to a bond

(highlighted gray in the figure) has both ends in the same connected cluster

on the dual network, then the bond is the stem of a lollipop. This is because

a continuous path may be drawn from one end of the dual bond to the other,

and the bonds enclosed by that path must be connected to the rest of the

network only by the stem in question. After identifying a stem this way, the

rest of the lollipop may be found by summing the currents on the pieces of
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the network on each side of the stem and looking for the one with zero net

current.

A similar logic is used to identify a bow tie. Now, instead of looking for

bonds on the lattice whose dual has both ends in the same connected cluster,

one searches for sites—like that pictured in the right panel of Figure 1.4—

that have two adjacent faces that lie in the same cluster. That condition isn’t

quite sufficient to merit a bow tie, though: a vertex along line of fuses has two

connected faces on each side of it, but that doesn’t mean that the vertex has

a dangling tie flap on one side. A sufficient condition (at least on a simply

connected network) is that the site has two adjacent faces that lie in the same

cluster and are not themselves adjacent. Then, just as in the case of the

lollipop, a connected path can be made between the faces, and the bonds

enclosed must be connected to the network only by the vertex in question.

The flap(s)∗ are then identified by traversing sections of the network bounded

by the vertex in question and computing the net current they carry.

The story for the torus is considerably more complicated. Figure 1.5 shows

neat counterexamples to the carefully constructed lollipop and bow tie condi-

tions we listed above. The left (right) panel depicts a path within a connected

cluster on the dual network connecting one side of a dual bond (one face ad-

jacent to a vertex) to the other side of the dual bond (another face adjacent

to the same vertex but not adjacent to the previous face). Concluding that

the offending bond (site) was the stem (knot) of a lollipop (bow tie) would be
∗The only unique bow tie geometry on the square lattice is shown in Figure 1.4, and

so bow ties can only have one flap on those lattices. This is because every vertex has a
degree four, and so there is only one way to have two adjacent faces that are not themselves
adjacent. On the voronoi lattice, where the vertex degree is often considerably higher, more
exotic bow ties are permitted, including sometimes with multiple flaps.
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Figure 1.4: Basic collections of bonds that carry no current and the cycles
that identify them (red). Left: A lollipop and its stem (highlighted edge).
Right: A bow tie and its knot (highlighted vertex).

inaccurate, and severely so: these features actually carry the entirety of the

current on the network, being the only elements remaining that connect top

to bottom!

We must therefore add more nuance to the identification of these features.

We must also exclude bonds and sites that meet the previous criteria but where

the path that connects their corresponding dual sites has an odd topological

signature on the torus. Such a path on the dual violates the principle that

it encloses a collection of bonds connected to the network at only one point:

rather, it encloses every bond in the network!

This combination of criteria has the potential for blowing up our efficiency.

Every time a bond is broken, we would naïvely have to:

1. Iterate over every bond still in the backbone and ask if the ends of its

dual lie in the same cluster (efficient), and if they do perform a depth



18 Scaling in quasibrittle fracture §2

Figure 1.5: Dual vertices belonging to the same cluster as (Left) another on
the same bond (Right) another around the same vertex, but that don’t imply
no current over the bond or site in question.

first search to find the path(s)∗ on the cluster that connect the two ends

and ask if its topological signature is odd (inefficient).

2. Iterate over every site still in the backbone and ask if any of its non-

adjacent faces lie in the same cluster (efficient), and if they do perform

a depth first search to find the path(s) on the cluster that connect the

two ends and ask if its topological signature is odd (inefficient).

The great inefficiency that could be involved on the torus is: once a candidate

lollipop stem or bow tie knot is found that actually has a spanning path and

should not be removed, we might retry removing that bond or site over and

over again, yielding many unnecessary depth first searches. We can save a lot

of time by remembering what dual-lattice pairs of sites we’ve tried before and
∗Paths? Yes! Once the network has been broken along one axis of the torus, the two

ends of a lollipop are connected by both an ordinary enclosing path and a path that spans
the torus (and the composition of the two!). We have to make sure we’ve found every path,
because if we stop after finding a spanning one then we risk missing an ordinary loop.
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found a spanning path, and then immediately skip those candidates. There is

one wrinkle in this picture, and it arises when the network has broken along

one axis (or diagonally!) but still conducts along the other. Upon breaking

along the first direction, candidate bonds or sites that previously only had a

cycle that spanned the torus along the direction that is now broken can now

have a couple more cycles, one of which is an ordinary cycle of the type that

signifies a dangling cluster.

Therefore, the following method allows the removal of dangling lollipops

and bow ties without unnecessary path searches. Every time a fuse is broken,

1. Iterate over every bond still in the backbone. If the ends of its dual lie

in the same cluster and the network isn’t broken along the x (y) axis,

check if the pair of ends has been tried before and had a cycle with

an odd signature in the x (y) direction. If it hasn’t (or the network is

broken along the direction that it has been tried), perform a depth first

search to find all cycles connecting those sites. If any cycle is found with

only even signatures, identify the bond as a lollipop stem and process

the two connected pieces of the backbone it separates, removing the one

without current. If the only cycle found has an odd signature in some

direction, add the pair of sites to the dictionary of pairs that have been

tried with a signature along that direction.

2. Iterate over every site still in the backbone. For every pair of adjacent

faces not adjacent to each other that lie in the same cluster and the

network isn’t broken along the x (y) axis, check if the pair of faces has

been tried before and had a cycle with an odd signature in the x (y)

direction. If it hasn’t (or the network is broken along the direction that it
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has been tried), perform a depth first search to find all cycles connecting

those sites. If any cycle is found with only even signatures, identify the

site as a bow tie knot and process each of the connected pieces of the

backbone it separates, removing every one without current. If the only

cycle found has an odd signature in some direction, add the pair of sites

to the dictionary of pairs that have been tried with a signature along

that direction.

This suffices to successfully remove many of the offending zero-current bonds.

However, as emphasized by the remaining lump of probability for currents

below 10�10 in the curve corresponding to only purported backbone bonds

in Figure 1.3, we didn’t get them all. . .

One class of bonds we necessarily miss are those that carry zero current

because of symmetry protection. Two examples of these situations are shown

in Figure 1.6. They arise where two sites that join one (or several) bonds

have, because of the lattice geometry surrounding them, exactly the same

voltage. Though certain small configurations are by far the most common,

these symmetry-protected lattice animals can get quite large. There is no good

way to find and remove them from the backbone, because even if all offending

subgraphs could be identified, finding them within the network is a subgraph

isomorphism problem, which is NP-complete.∗ This isn’t very concerning,

since we don’t expect these rare bonds are relevant to any sort of structure or

avalanche dynamics. They would be completely removed if an infinitesimal

amount of randomness were added to the resistances of the fuses, or if we
∗A linear-time subgraph isomorphism algorithm exists for planar graphs, but it isn’t

clear whether this can be extended to toroidal graphs.32
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incorporated dynamic jitter in the bonds. One might worry that the presence

of these bonds is indicative of something fundamentally wrong with the model,

since reality does not feature elements with exactly the same modulus—could

lacking any resistive disorder change the universality, as it does in quantum

percolation?33 Even if this were the case, numeric jitter causes their rupture

regardless, and we are powerless to stop it. If one were concerned that the

preservation of the bonds would change something fundamental in the fracture

process, that numeric jitter provides same effect that a small random spread

in the bond resistances would.

Figure 1.6: Edges that carry no current because they are protected by sym-
metry (red).

There is a final class of structures which have identically zero current over

them, and they are topological bow ties and symmetry-protected clusters.

These rarities appear sometimes in very disordered systems, and involve a

loop of bonds that spans the torus and connects back to the current-carrying
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backbone in a way that puts both ends of the loop at the same voltage. Fig-

ure 1.7 shows an example of each variety, with the left depicting a topological

symmetry-protected loop, while the right depicts a topological bowie.∗ The

same considerations that apply to standard symmetry-protected clusters ap-

plies to the topological ones, and we neither can identify them easily nor do

we expect them to affect anything important. The bow ties can be identified

more easily, if the same site is found to have two different nonadjacent pairs

of nonadjacent adjacent faces that are connected by loops that span the torus.

Right now we don’t find and remove these, since they are both very rare and

not conceptually very different from the symmetry-protected cases that we

aren’t concerned with anyway.

Figure 1.7: Networks with novel bond configurations. Backbone bonds are
black, bonds identified as not current-carrying are grey, and bonds that cannot
be identified using the described methods are red. Left: A spanning collection
of bonds that connect to sites with the same voltage. Right: A spanning
collection of bonds that connect to the same site.

∗Why bow tie? Imagine the loop popping out of the page.
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On avalanche measurement: ‘stress’ versus ‘strain’

For a given network, one can find the conductivity � of the network (the

analogue to elastic modulus) by

• (in the case of current boundaries) dividing the applied current (usually

unit current) by the voltage difference between the source and sink, or

• (in the case of voltage boundaries) identifying a minimal set of edges

which cuts the system, summing the currents on these edges in the

direction they cross the cut, and dividing it by the applied voltage

(usually unit voltage).

For the chain of fuse networks defined above, the conductivity should be a

monotonically decreasing function of time, or fuses broken, because removing

a resistor from a network of resistors cannot increase its conductivity. One

network in the chain will be known as the critical fuse network. If e is the

edge broken in each network and I is the current flowing across the network,

then the critical network is that for which It(e)=ji(e)j is maximized. In the

case of current boundaries I = 1, and in the case of voltage boundaries I = �.

The quantity It(e)=ji(e)j can be thought of as the current on the network

in the units of the fuse threshold—put another way, if we were to actually

simulate slowly ramping up the boundary conditions until the literal result

of our linear problem equals the fuse value, this would be the value of the

applied current. This has other significance: if the value of It(e)=ji(e)j for a

network in the chain is greater than that of n networks following it, then the

breaking of the fuse in the first network can be thought of as having caused the

breaking of those in the next n networks—an avalanche. Avalanches occur in
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all matter of critical phenomena, and specifically in fracture and other forms

of yielding when the failure of one region triggers the successive and recursive

failure of others. Another way of viewing the critical network, then, is the

network prior to the final avalanche that breaks the system.

The procedure for breaking bonds described above does not care whether

the system is broken with current or voltage boundaries: the choice of the

next fuse is a function of only local properties. The procedure for determining

avalanches does, however, care about the boundary conditions. Avalanches

are determined by finding the current or voltage that would have had to

been applied to the system for that bond to break, then compute when that

necessary external current or voltage backtracks.

The numeric problem described above gives the numeric current inum for

each fuse in the network. The next fuse that will break is that whose threshold

would be first reached by uniformly scaling all numeric currents from zero.

The current i on that fuse when it breaks is its threshold value, and the ratios

of real to numeric currents

i

inum
=

I

Inum
=

U

Unum
(1.17)

all are equal. The numeric voltage is always Unum = 1, defined by the bound-

ary conditions detailed above. The numeric current Inum = �Unum = � (and

therefore the modulus �) can be measured by summing the currents flowing

over bonds whose duals form a closed path around the torus. It follows that

U = i=inum and I = �U = � � (i=inum); the two differ by a factor of the

modulus �.
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Since fuses are only broken, � is a monotonically decreasing function of

time. This has a direct consequence on the avalanches: those defined by

fracture at external voltage are fully contained by those defined by fracture

at external current. If In is the external current after the nth fuse has burned

and it ends a current avalanche, Im < In for all m < n. It therefore follows

that, since monotonicity implies that �m � �n for any m < n,

Um =
Im
�m

<
In
�m

� In
�n

= Un (1.18)

whence Um < Un for all m < n and Un must terminate a voltage avalanche.

The opposite is not true, and in fact current avalanches may and do often

contain multiple voltage avalanches. This is an example of a no-passing prin-

ciple.34–36 An example where a large current-based avalanche contains several

voltage-based avalanches can be seen in Fig. 1.8.

The difference between these two types of avalanches is more than just

academic. Numeric measurements indicate that the two types of avalanches

appear to scale differently, at least up to the system sizes that are accessible to

us right now. There are compelling reasons for this. If we think of the fracture

event as an abrupt phase transition, as it has been thought of historically,37

then trading stress for strain can be thought of as trading control parameters

from, e.g., one like external field to one like magnetization. In a constant-

magnetization Ising model, the transition is washed out with a coexistence

region, and study of the abrupt transition itself is more conveniently done at

constant field. In the fracture problem, the stress (current) is the canonical

control parameter,37,38 and we expect that it is more natural for describing the
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Figure 1.8: Voltage, current, and modulus versus fuse number in the fracture
of a 64 � 64 square lattice with � = 0:5. An avalanche in both current and
voltage starting at fuse 831 is highlighted. The height of the filled regions
show the current or voltage that began that avalanche and that a bond must
break at or above in order to end it. (Top) Data over the entire fracture.
(Bottom) Data only over the course of the avalanches starting at fuse 831.
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transition. An intuition around this can be developed: in the thermodynamic

limit, even a perfectly brittle system held at nonzero constant strain will not

propagate a crack forever, since eventually the lowering modulus and widening

crack will separate the two sides enough to meet the imposed strain—partial

cracks can be held at constant strain. However, this is not true for constant

stress, since as the modulus lowers and the sides of the system separate the

force applied does not subside. We therefore expect that studies at constant

strain will be dogged by an analogy to coexistence phenomena, where the

‘critical strain’ happens at a place with the growing crack already present.

§3. Percolation and the � ! 0 limit

Figure 1.9: Broken networks for three choices of � (from left to right): 0:03,
0:5, and 3. The fracture surface is highlighted in each.

We’re going to talk a lot about percolation, and here’s why. Small �

corresponds to high disorder, where material strengths vary across orders of

magnitude, while large � corresponds to very little disorder. In the limit of

infinite disorder, or zero �, the fuse network problem reduces to percolation.39

This can be seen by the following argument: for any �, the expected value of



28 Scaling in quasibrittle fracture §3

the nth strongest fuse is

hxn jN;�i =
Z 1

0
xnP (xn j N;�) dxn

=

Z 1

0
xn

�Z xn

0
�x

��1
< dx<

�n�1
�x��1n

�Z 1

xn
�x

��1
> dx>

�N�n
dxn

=
�(N + 1)�(n+ 1

� )

�(N + 1 + 1
� )�(n)

= ( nN )
1=� +O(N�1)

(1.19)

For sufficiently small �, the ratio ((n+1)=n)1=� of any two subsequent micro-

scopic strengths dwarfs the ratios of stress in those regions, and fuses break

simply in the order of their strengths. Since strengths are independent, this

corresponds to breaking regions in random order, with the system fractured

when a contiguous broken region spans the system.∗ This is simply a perco-

lation problem.

A review of percolation physics40

We will therefore build our scaling theory around the notion that � = 0, L =

1 is a critical point in the percolation universality class. It’s worth taking a

moment to review percolation physics, as we will rely on it heavily. In a (bond)

percolation process, a lattice has its connections depleted at random, where

the probability that a given connection is present is p. When p is reduced

through a critical bond density pc, the lattice transitions from connected to

disconnected via a continuous phase transition.
∗One could also study the case where the system is considered fractured when its rigidity

goes to zero. Our scaling analysis would be unchanged, with the percolation exponents
substituted for those of rigidity percolation, though our numerics would need to be changed
entirely.
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At the transition, the regions that remain connected by bonds have sizes

that span all length scales, and in particular are distributed with a power law

ns � s�� . One infinite cluster remains but is so internally depleted as to be

fractal, with fractal dimension df . The probability that two sites separated

by a distance r belong to the same cluster is power-law distributed as well,

with g(r) � r�2+(d��) with anomalous dimension � related to the fractal

dimension by � = 2 + d� 2df . The portion of the infinite cluster that would

support a current (excluding lollipops and bow ties) grows with a different

fractal dimension db, and the length of the shortest path between two sites

in the same cluster grows as a power dmin of the Euclidean distance between

them.

As the transition is approached from above or below, the distribution of

non-infinite clusters inherits a cutoff smax � �p�1=�, so that ns � s��f(s�p1=�)

for some function f . The correlation length of growing clusters (or shrinking

voids) grows as � � �p�� . Since the cutoff in the cluster size distribution can

be thought of as the size of the growing infinite cluster and its size is given by

its extent to the power of its dimension, smax � �df implying df� = 1=�.41

We will be working with two-dimensional simulations, and so we will be

making frequent use of the two-dimensional values of these exponents. Most

referenced here are known from exact solutions, and listed in Table 1.1. Also

present is the first singular correction to scaling !, which provides corrections

of the form L�!. Checking that the exponent relations given above work in

two dimensions is left as an exercise of the reader.

The renormalization group analysis of percolation is a textbook example
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Exponent Description 2D value

� Correlation length divergence 4=3

� Cluster size distribution tail 187=91

� Cluster size distribution cutoff 36=91

df Fractal dimension of infinite cluster 91=48

� Anomalous dimension in correlation function 5=24

! First singular correction to scaling 3=2 [42]
db Fractal dimension of conducting backbone 1.64336 [43]
dmin Fractal dimension of shortest paths 1.13077 [44]

Table 1.1: Percolation exponents and their two-dimensional values.

of its use: a nice, ordinary, hyperbolic fixed point.∗ The distance �p from

critical depletion is proportional to the scaling field up with largest scaling

dimension yp, and if we take us to be the scaling field with the next largest

scaling dimension ys we have

dup
d`

= ypup

dus
d`

= �ysus
dL

d`
= �L

(1.20)

where L is the system size. The correlation length is a function of these scaling

fields that leaves the combination L�1� invariant under the flow, which gives

0 =
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(1.21)

∗What does hyperbolic mean? Check out Chapter 5!
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which in turn can be solved to yield

� = u
�1=yp
p f(upL

yp ; usL
�ys) (1.22)

for some function f . Near the critical point, the scaling fields can be expanded

with up = �p+O(�p2; u2s;�pus), and we have

� ' �p�1=ypf(�pLyp ; usL�ys) (1.23)

Given this form of the correlation length, we can immediately infer that � =

1=yp, and that ! = yu. Functional dependence like this is how finite size

effects and corrections to scaling principally affect critical behavior.

§4. Modelling fracture: depletion with correlated avalanches

How do we work our fracture problem into this picture? At � = 0 we should

see perfect percolation, with fuses breaking in a (mostly) uncorrelated way

(mostly) in order of strength until the system breaks, exhibiting all the nice

scaling properties discussed above at fracture.∗ With nonzero �, several new

phenomena begin to emerge:
∗The “mostly”s here are in reference to the fact that—because of the lollipops and bow

ties discussed in the previous section—bonds do not actually get broken in the order of their
thresholds, and in fact whole connected regions of the system are removed from the damage
process at intermediate p because they belong to one of these features. It has been argued39

that these differences do not affect the universality of percolation on the basis that any two
points that would belong to the same cluster if not separated by a lollipop stem in fact do
belong to the same cluster, by the definition of a lollipop detailed above. This argument
preserves the scaling of the backbone, but is not bulletproof in regard to the cluster size
distribution, since it neglects the effect of myriad bonds within lollipops that would have
been broken but weren’t. We find, as has been found previously, numeric evidence that
certain quantities, like the fractal dimensions of the infinite cluster and the minimum path,
are different in the fuse problem.45
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• The depletion events will become increasingly correlated.

• The network will be depleted to a point increasingly far from pc at the

point it is broken.

• The network becomes broken (its conductivity drops to zero) in an in-

creasingly discontinuous way.

• In the infinite system limit, the first depletion event immediately rup-

tures the system.

Proposed scaling theories of these combined phenomena can be quite com-

plex.46

Sufficiently long range correlations in percolation are known to be relevant

in the renormalization group sense,47–49 and so it is plausible that these corre-

lations in the depletion process will significantly change the critical behavior.

In particular, a Harris-style criterion concludes that correlations that fall off

like r�� are relevant if �� � 2 < 0, or � < 2=� = 3=2 in two dimensions.

Given that the effective force field of broken fuses goes like r�1=2, it is plausi-

ble we would see correlations of sufficiently long range! It is also known that

the correlation length exponent for the resulting long-range percolation fixed

point is given by ~� = 2=a.

Another important feature of the fracture problem is the lack of a sensible

thermodynamic limit. This is because, as the size of a sample is increased, the

weakest flaw present within it becomes weaker. An infinite system where any

avalanches are permitted will inevitably have a rare, extremely weak region

so large as to trigger a spanning avalanche.10 Therefore, any average of the

properties of a system at critical stress, or averaged over the lead up to critical

stress, must have finite size integrated into the description in a central way,
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since the critical stress is zero in the thermodynamic limit.

In addition to the primary scaling field up, we imagine a second relevant

scaling field ud, with associated scaling dimension yd. The surface along which

the rupture happens is thought to define a first order transition.37 If this is

the case, there must exist a fixed point associated with the abrupt transition

with a relevant direction that acts as a separatrix for the two ‘phases,’ broken

and unbroken.50–52 A point inside the basin of attraction of this fixed point

cannot be brought outside of it, since that would violate the meaning of a

basin of attraction, and therefore the basin of attraction must be an invariant

surface of the rg. Since the basin of attraction for the first-order fixed point

is also the transition surface, this means that the values of upf and udf at

critical stress, or the fracture transition, obey a relationship like

0 = F (udfu
�yd=yp
pf ; udfL

yd) (1.24)

for some function F . This definition of the critical surface is naturally invari-

ant under the rg, because both of the arguments to F are invariants of the

rg. Assuming the surface is single-valued in the correct arguments, we can

equivalently write the relationship as

udfu
�yd=yp
pf = F (udfL

yd) (1.25)

In the infinite-size limit, the system does not become broken if ud is zero, but

instantly breaks for infinitesimal ud. We therefore conclude that the transition
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surface must run along the line ud = 0 at L�1 = 0, and

lim
x!1F (x) = 0 (1.26)

For nonzero L�1, F is likewise nonzero and the transition surface pulls away

from ud = 0. How it does this is the largest outstanding question in this

theory, and I will try to address it with our existing data as best as possible.

How should we expect to relate our physical parameter, �, to these abstract

scaling fields? Since for � = 0 we have no fracture transition and simply see

ordinary percolation, we expect that

ud = �� + � � � (1.27)

where � is some positive constant. While at the moment our data is only

at the fracture transition, we do not vary �p or its analogue �I from their

transition values �pf = pf � pc or �If = If � Ic = If , but imagine that

up = �p+ � � � (1.28)

Model A: Power law approach

For the purposes of a scaling theory, the simplest answer is to slap a power

law on it. This would give F (x) = Ax�z for same constant z. The value of z

is constrained by the limiting consideration discussed above, and since

udf / u
yd=(1+z)yp
pf L�ypz=(z+1) (1.29)
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we have simply z > 0. This relates the finite-size invariants upLyp and udL
yd

along the critical surface by

(udfL
yd)1+z = A(upfL

yp)yd=yp (1.30)

For small �, this gives

�pf ' upf / u
(z+1)yp=yd
df Lzyp ' (�Lzyd=�(z+1))�(z+1)yp=yd (1.31)

Model B: Logarithmic approach

In the science of fracture, it is known that the critical stress of a system often

scales like an inverse logarithm of its size.10 That therefore suggests to us

that, at fixed ud (which we will heuristically think of as fixing the properties,

e.g., heterogeneity, of the system) the transition point upf should approach

infinity as some logarithm of L�1. Why infinity and not zero? Recall that

up � �p, the distance from fully percolated, and the larger up is the fewer

bonds we have broken. Since we expect infinite systems to break upon the

first depletion event, the critical up should diverge with system size.

A simple form of F that is consistent with this limit is given by

F (x) =
A

log(B + xz)
(1.32)

This gives, at finite size,

upf = ~Au
yp=yd
df log(B + (udfL

yd)z)yp=yd (1.33)
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which has a logarithmic singularity as L ! 1, and where ~A = A�yp=yd . We

must check that this ansatz for the surface preserves the correct behavior

in udf as L ! 1. Unfortunately this form is not analytically invertible, so

we cannot write udf as an explicit function of upf and L. We will make an

assumption about the dependence of udf on L for fixed upf then check if the

solution self-consistently satisfies the assumption. Namely, we will suppose

that Lyd grows much faster than udf shrinks in the limit of large L for any

fixed upf . This would imply that B + udfL
yd ' udfL

yd , and therefore that

udf '
~Au

yd=yp
pf

zW
�
~A(upfLyp)yd=yp=z

� (1.34)

where W is the principal branch of the Lambert W function. At large argu-

ment, W (x) = log x� log log x+O(1), and

udf '
~Au

yd=yp
pf

z log
�
~A(upfLyp)yd=yp=z

� (1.35)

which both vanishes as L!1 for any fixed upf and does so much faster than

any positive power of L grows.

What does this form for the critical surface imply for the relationship

between the invariants upfLyp and udfL
yd along it? Equation (1.33) implies

upfL
yp = ~A(udfL

yd)yp=yd log(B + (udfL
yd)z)yp=yd (1.36)

For small udfLyd , we find

upfL
yp ' ~A log(B)(udfL

yd)yp=yd (1.37)
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which implies upfu
�yp=yd
df = ~A log(B), e.g., a line of constant flow for the

percolation fixed point in the limit L!1. For large udfLyd , we find

upfL
yp ' ~Az(udfL

yd)yp=yd log(udfL
yd)yp=yd (1.38)

which implies upfu
�yp=yd
df = ~Az log(udfL

yd)yp=yd , or that the invariant combi-

nation grows logarithmically with fixed L along the fracture transition surface

with udf . In the limit of small �, we should find

�pf ' upf / u
yp=yd
df ' ��yp=yd (1.39)

Notice that this predicts no rescaling of � with L.

Model C: Power law approach with crossover

At this point we should pause and allow a little more complexity into our

thinking, lest we construct a power-law-scaling cargo cult. Besides the con-

straint that it diverge sufficiently quickly with infinite L, very little practically

constrains the function F , and any function will result in a critical surface

that is invariant under the renormalization group flow, since it is built from

pieces that are each invariant under the renormalization group flow. Though

it’s reasonable to assume that things will approach their limits with some sort

of power law, the middle is fair play.

The simplest surface function that has power law tails but does something

different in the middle might be something like

F (z) = Ax�z(B + xm)�(y�z)=m (1.40)
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which goes as x�z for small x and x�y for large, with a crossover whose width

is tuned by m and whose position is tuned by B. The same considerations

on z discussed in Model A apply here for y, which sets the large-argument

behavior. This relates the finite-size invariants upLyp and udL
yd along the

critical surface by

upfL
yp = ~A(udL

yd)(1+z)yp=yd(B + (udL
yd)m)(y�z)yp=ydm (1.41)

Since we suspect the critical surface meets the origin, we must have z > �1.
For small �, this gives

�pf ' upf / u
(1+z)yp=yd
df Lzyp ' (�Lzyd=�(1+z))�(1+z)yp=yd (1.42)

which is exactly the same as in Model B.

§5. Numeric comparison with the critical damage

To investigate the plausibility of this picture, we will start by looking at data

giving pf as a function of � from fuse network simulations. Inspired by the

considerations above, we fit

pf =
pc

1 + ax
 + bx2
 + cx3

(1.43)

where x = s�Lq and where pc and s are taken to be lattice dependent (with

ssq = 1). The form of the function means that

�pf = pc � pf = apcx

 +O(x2
) (1.44)
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p
sq
c pvoc a b c 
 q ssq svo

0.437 0.604 1.18 0.103 0.00709 1.19 0.144646 1 1.21832

Table 1.2: The parameters and their values for the fit to the damage at
critical stress.

which allows for the departure of �pf from the critical point to be a nonlinear

power law of �. Unfortunately, the pcs from ordinary percolation on e.g.,

voronoi lattices,53 are not relevant here, because we leave so many bonds in

lollipops and bow ties as to dramatically modify the proportion broken at the

critical point.

The resulting fit is shown in Figure 1.10, in which data from both square

and voronoi lattices at many system sizes is superposed. The fit parameters

are shown in 1.2. The result fits the data well until the edge of the expected

scaling region. The difference between the fit and pc does poorly in the limit

of small �, where properly taking into account the finite size scaling of the

effective pc would be necessary to improve the agreement between data in the

collapse. Our value of psqc is consistent with that measured in other studies.39

Notice that 
 is very nearly one, and q is quite small, which could suggest

the presence of a logarithm, though the logarithmic Model B does not predict

logarithmic corrections to �pf as a function of � for small �, only for large �.

Therefore we will take it seriously as an exponent for now. In the framework

of Model A or Model C, these exponents are q = zyd=�(z + 1) and 
 =

�(z + 1)yp=yd. Without a serious consideration of the uncertainty analysis,

this immediately suggests z ' 0:23 and yd=� ' 0:78.
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function of the fit variable x = s�Ld for both square and voronoi data, along
with a fit in black. (Middle) Same, but on a logarithmic scale. (Bottom) The
deviation �pf = pf � pc.
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Figure 1.11: A 64� 64 square lat-
tice with � = 0:316, held at critical
stress. Connected clusters on the
dual lattice are highlighted with in-
dividual colors.

§6. Dual lattice clusters

Besides the asymptotic value of �p along the failure surface, the other proper-

ties that can be measured in this numeric system and then directly compared

to percolation are properties of the clusters. In our case, any interesting anal-

ysis will have to be made of the clusters of sites on the dual lattice connected

by dual bonds corresponding to burnt fuses. Trying to do the opposite, and

analyze the cluster size distribution of connected components on the principal

network, is not very interesting because, as we discussed in a previous section,

we go to great pains to makes sure that there is only ever one connected com-

ponent on the principal network! Therefore that size distribution at fracture,

say, would be exactly the analysis of the damage done above. The amount

of damage done at percolation does not have interesting scaling properties

beyond its mean.



42 Scaling in quasibrittle fracture §6

Cluster size

Recall that the distribution of clusters in percolation has a power law form

s�� that is cut off at some smax � u
�1=�
p . Let us take this scaling seriously in

our extended analysis, and therefore consider

ns = s��N (su
1=�
p ; upL

yp ; udL
yd) (1.45)

Fitting the entire distribution is challenging, and it helps to reduce our mental

(and computational) load by instead fitting moments of that distribution.

These will have scaling forms given by

hsni =
Z 1

1
snns ds

=

Z 1

1
sn��N (su

1=�
p ; upL

yp ; udL
yd) ds

=

Z 1

u
1=�
p

u
�1=�
p (yu

�1=�
p )n��N (y; upL

yp ; udL
yd)u

�1=�
p dy

= u
�(n+1��)=�
p

h
Nn(upL

yp ; udL
yd) +O(u(n+1��)=�

p )
i

= Ldf (n+1��)h ~Nn(upL
yp ; udL

yd) +O(L�df (n+1��))
i

(1.46)

where we have used the exponent relation df = 1=�� = yp=�. The first term

is leading for small up, i.e., in the vicinity of the critical point, if n+1�� > 1.

Since we expect from percolation that � = 187=91, this means that we can

expect the moments to be well-described by the truncation above for n = 2

and up.

We can take more from our knowledge of the percolation problem than

simply the exponents—there’s a reason we call them universal scaling func-
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Figure 1.12: Example cluster size distributions for a 128� 128 square lattice
fuse network for several disorder parameters �. The dashed line shows s��

for � = 187=91, from 2d percolation.

tions, after all! In particular,

Pn(upLyp) = ~Nn(upL
yp ; 0) (1.47)

should match (up to constant scale factors) the scaling functions found for

the moments of the cluster size distributions in ordinary bond percolation.

Therefore, if we can fit the values of Pn we can write

~Nn(x; y) = Pn(x) + y ~N (1)(x) +O(y2) (1.48)
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Figure 1.13: Percolation scaling functions measured by use of direct simula-
tion on a 4096� 4096 toroidal square lattice.

which significantly constrains our fits to fracture data. Percolation cluster

statistics have been observed in fracture problems before.17,21,54

We have simulated standard bond percolation on L�L toroidal square lat-

tices for L up to 4096 and measured the cluster size distribution as a function

of �p using the Newman–Ziff algorithm.55 These were then fit to the largest

system size—in the region where the previous several system sizes collapsed

well together—to functions of the form

A

�
1 +

� NX
i=0

bix
�df (n+1��)�i +

NX
i=1

cix
i
�m��1=m

(1.49)

for sufficient N that the agreement was close. The results are shown in 1.13.
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As a first-order attempt to compare the data from fracture to the scaling

functions of our theory, we will perform a fit focusing on small �, so that the

next terms in the series for the scaling function are relatively small. A fit in

this regime then takes the form

hsni = anL
�df (n+1��)Pn(bnx�); (1.50)

where x = s�Lr and s and the an depend on the lattice. We again take

ssq = 1. The resulting fits are shown in Figure 1.14 for both square and

voronoi lattices, along with the percolation scaling function we fit earlier.

This fit fixes the percolation exponents � and df . We measure r ' 0:87 and

� ' 0:96. Slightly better agreement in the small � limit is obtained if df is

allowed to be fit as well, which might imply that the internal structure inside

lollipops and bow ties that is held in place throughout the fracture process

rather than continuing to percolate is relevant. When it is allowed to vary, it

takes the value df ' 1:869, which is to be compared with the percolation value

df = 91=48 ' 1:896. Our fit value for the infinite cluster fractal dimension

is consistent with that found by other researchers on a similar model.45 The

same fits with df allowed to vary are seen in Figure 1.15—these result in

r ' 0:85 and � ' 0:96. The parameters from this latter fit, which we believe

is more trustworthy than the first,45 can be found in Table 1.3.

Even this basic fit, without matching more than the percolation scaling

function, allows us to connect back with our scaling theory. It predicts that
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� r df b2 b3 b4 b5

0.96 0.85 1.87 0.52 0.35 0.33 0.35

ssq a
sq
2 a

sq
3 a

sq
4 a

sq
5

1 0.45 0.24 0.13 0.075

svo avo2 avo3 avo4 avo5

1.65 1.1 1.2 1.3 1.4

Table 1.3: Parameters resulting from fitting (1.50) to fuse network data for
L > 16 and � < 0:5. No corrections to scaling are present, and including
them would likely lead to a better fit.

a function of the invariant upLyp should depend on � like

upfL
yp / (udfL

yd)(1+z)yp=yd ' (�Lyd=�)�(1+z)yp=yd (1.51)

which means that the parameters in our fit correspond to with the exponents

in our theory like r = yd=� and � = �(1+ z)yp=yd. This fit gives yd=� ' 0:85

and z ' 0:1. The former prediction agrees with our fit from the previous

section, while the latter is about half its previous value. The fact that z is so

small once again suggests that a power law may not be the right fit in this

limit, but a different scaling theory than Model B would have to incorporate

it.

Here we have only fit the small-� dependence of the functions, explicitly

ignoring the far tails. Taking a look at those tails by plotting on a logarithmic

scale as in Figure 1.16 reveals some of the intermediate and large � structure.

At very large �, the square and voronoi lattice models cross over into dif-

ferent, nonuniversal behavior, with the square lattice becoming unstable to
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every avalanche, and with the baked-in disorder of the voronoi cutting off the

decreasing disorder in �. This behavior has nothing to do with critical phe-

nomena, and we don’t expect to be able to describe it with a scaling theory.

There does appear to be an intermediate regime, however, which looks similar

across both lattices, in which the fracture data pulls away from the percola-

tion scaling function with a slightly shallower slope and in a way that depends

on the system size. Intermediate disorder is known to have clusters that are

not described by percolation physics.38,56 This behavior is not explained by

Model A alone, but may be accommodated by Model C, or by the addition of

singular corrections to scaling in Model A.

Cluster geometry

Besides having sizes, the clusters that form on the network has a spatial

extent, and we can measure their two-point correlation function as well. More

precisely, we measure g(r), which is the probability that, starting on a site at

the origin, a site displaced by r belongs to the same cluster. Recall that in

percolation, g(r) � rd�2�� and is cut off by the correlation length � � u��p .

Taking these behaviors to heart again, we look for a scaling form

g(xk; x?) = x
��
k G(xku�p; xkx�1? ; upL

up ; udL
ud) (1.52)

Here and throughout, the parallel direction refers to the direction parallel to

the applied stress, and the perpendicular direction refers to the direction of

crack propagation. This predicts that its moments will likely have scaling
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forms, now of the form

hxnk i =
Z
x
n��
k G(xku�p; x?x�1k ; upL

up ; udL
ud) dxk

=

Z
u
��(n��)
p G(v; vu��p x�1? ; upL

up ; udL
ud)u��p dv

= u
��(n+1��)
p Gn(x?u�p; upLup ; udLud)

= Ln+1�� ~Gn(x?u�p; upLup ; udLud)

(1.53)

with a similar expression for the moments in x?. In particular, using these

moments we can estimate the correlation length directly, using

� =
hx2i
hs2i = L2+1���df(2+1��) ~G2

~N2

= LC(upLyp ; udLyd) (1.54)

where we used the hyperscaling relationships � = 2+d�2df and � = d=df+1.

Also of interest are the aspect ratio of clusters, given by the ratio of second

moments and scaling as L0. While the lattices we study in this thesis are

isotropic save the voltage applied along one direction but not the other, in

fracture surfaces are thought to be strongly anisotropic, and so more nontrivial

scaling of aspect ratios is expected as Lk and L? are varied separately.

Figure 1.17 shows the second-moment correlation lengths in directions

both parallel and perpendicular to the applied stress as a function of the

scaling variable we fit in the previous subsection. For small � the correlation

length is larger than the system size, and the scaling behaves as expected. For

intermediate �, the larger values of the ratio of correlation length to system

size for smaller systems indicate that the correlation length becomes smaller

than the system size.
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Figure 1.17: The second-moment correlation lengths of clusters at critical
stress as a function of the scaling variable fit for the cluster size distribution
in §6. The parallel direction is the direction along which stress is applied, and
the perpendicular direction is the direction along which the crack propagates.



§6 Dual lattice clusters 53

The correlation length along the direction stress is applied develops a

maximum near the crossover regime, but that gives way for larger systems

and has an apparently universal tail that is not described by our single scaling

variable. The correlation length along the direction of crack propagation also

develops of maximum at around the same point (emphasized with a dashed

line on all plots), but unlike the correlation length parallel to the applied stress

this appears to sharpen as the peak becomes smaller. For larger systems, the

location of the peak in �clus? appears to coincide with the formation of an

inflection point in �clusk . Right now our scaling theory does not address why

this should be the case.

Figure 1.18 shows the aspect ratio of the connected clusters at the critical

stress, again as a function of our fit scaling invariant. In both lattice geometries

it is very well described by our fit scaling variable alone up to around the same

place where the peak in �clus? occurs, again drawn as a vertical dashed line,

at which point the curves fall away in a way that at least initially seems

independent of the lattice.∗ There may be the start of a power law decay

after the second crossover, but our system sizes are not able to resolve this

more than a decade.

Notice that while the aspect ratios are near one for very small �, they

asymptote on a value less than one that does not approach it with increasing

L, at around 0:98. This may seem troubling, since percolation is definitely

an isotropic phenomena—how does our limit have a baked-in anisotropy if it

is meant to replicate percolation? Though our lattice-breaking procedure is
∗Far outside the field of view, the square lattice curves drop to zero while the voronoi

lattice curves flatten.
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Figure 1.18: Aspect ratios of connected clusters at the critical stress as a
function of the scaling variable we fit to the cluster size distributions in §6.
Note that the parallel direction is the direction of applied stress, and the
perpendicular direction is the direction of crack propagation.
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different from percolation even in the infinite-disorder limit, the identification

of lollipops and bow ties is independent of the direction of applied stress,

and so this is not the source of our problem. Rather, it has to do with the

definition of critical stress: the point at which the lattice stops conducting

along the direction of applied stress. Here is the asymmetry: if we percolate

along the parallel direction first, we don’t stop breaking fuses, while if we

percolate along the perpendicular direction first we are done. This leads,

even in the limit of infinite disorder, to clusters that are more stretched along

the perpendicular direction, since we must guarantee that a spanning cluster

exists along that direction but not the other. This sort of behavior makes our

small deviation from the percolation fractal dimension more plausible, since

it suggests that, despite sharing many properties with percolation exactly, the

bonds left unbroken by the fuse problem that would be broken by percolation

lead to a fundamentally different network connectivity. We will see this very

starkly when we examine the minimal crack surface in §9.

§7. The spanning cluster

At percolation there is a cluster of broken bonds whose duals span the system.

At the percolation fixed point, this infinite cluster has a mass that grows

like Ldf with the system size. We can identify and measure the size and

correlations in this infinite cluster in our fuse networks after they have broken.

The average size of the spanning cluster is shown plotted in Figure 1.20

as a function of the scaling variable we fit in §6. Here the agreement is good

far out in the scaling variable, with a behavior that seems to converge to a
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Figure 1.19: A 64� 64 square lat-
tice with � = 0:316, after rupture.
The spanning cluster on the dual
lattice is highlighted in red.

universal scaling function as L grows. The identical crossovers for the two

lattices are indicative of a trivial regime, where the system is broken by a

clean crack whose size grows proportional to L.

Since the distribution of spanning clusters is peaked heavily around its

mean and not power-law distributed like the clusters before fracture, we now

expect

�span ' hx2i
hs2i /

L2+1��

L2df
= L�1 (1.55)

though this may prove to be different if we cannot trust percolation df or �

to describe our spanning cluster, which recall is underpopulated due to not

breaking bonds contained in lollipops and bow ties. If � were unchanged

but df took the value we fit earlier, we would see � � L0:946. Instead, the

data we plot in Figure 1.21 agrees best at small � for � � L0:9. The correla-

tion length �
span
k along the direction that current is applied has a apparently
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Figure 1.20: The average size of the spanning cluster rescaled by the frac-
tal dimension as a function of the scale invariant we fit to the cluster size
distributions in §6.
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universal peak around the same place that the correlation length in the per-

pendicular direction did for the clusters at critical stress, shown again by the

dashed vertical line. The tail of �spank appears to be a power law, apparently

maintained in the voronoi case for several decades. This length, which can

be considered as a sort of “crack width” should be compared with results in

depleted elastic networks that show monotonic increase with disorder.57 The

correlation length �span? along the direction of crack propagation simply grows

monotonically from a minimum value before nonuniversal lattice effects take

over.

Figure 1.22 shows the aspect ratio of the spanning cluster as a function

of our scaling invariant. Since the individual correlation lengths both were

well-described by simple functions of our scale invariant, it is not surprising

that the aspect ratio of the spanning cluster likewise is well described as a

function of the scale invariant alone. This, like the clusters, does not approach

isotropy in the small � limit, as more clearly seen in this figure than for the

clusters in Figure 1.18 since we have forgone the logarithmic scale.

§8. The conducting backbone

At critical stress, when the network is about to be ruptured, there are a

great many bonds that don’t carry any current. We spoke at length about

the technical reasons why in a previous section, but now we will reckon with

exactly what this does by looking at the scaling of the conducting backbone,

which is the set of bonds at critical stress that still carry a current. At

percolation we have already seen that the size of spanning clusters grows with
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Figure 1.21: Correlation lengths for the spanning cluster after the system is
ruptured. As a function of the invariant fit in §6. The parallel direction is the
direction of applied current, while the perpendicular direction is the direction
of crack propagation.
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Figure 1.22: The aspect ratio of the spanning cluster after rupture as a
function of our scale invariant fit in §6. Note that the parallel direction is
the direction that current is applied, while the perpendicular direction is the
direction of crack propagation.
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Figure 1.23: A 64� 64 square lat-
tice with � = 0:316, held at crit-
ical stress. Bonds that belong to
the conducting backbone are black,
while those that do not are light
gray.

a fractal dimension; it turns out that there are so many dead ends in the

percolated network, those remaining grow with a different, smaller fractal

dimension db. The best estimates have db ' 1:64336.43

Unlike the case of other properties, we have no reason to suspect our modi-

fications to straight percolation will influence the size scaling of the backbone,

since every single bond we would remove in percolation but don’t is a bond

that carries no current, and therefore isn’t part of the backbone anyway. Fig-

ure 1.24 shows the average size of the conducting backbone at the critical stress

as a function of our invariant fit in §6, rescaled by the percolation prediction,

and the agreement is good.

Since �db � hSi, we might expect � � L1=db = L0:6085. Figure 1.25 shows

the correlation length data as a function of the scaling invariant, rescaled by

that factor with reasonable agreement. More interesting is the aspect ratio,

shown in Figure 1.26, and which starts at an anisotropic value of about 0:9

near percolation before peaking at intermediate � before becoming isotropic



62 Scaling in quasibrittle fracture §8

0

0:5

1

1:5

2

2:5

3

3:5

4

0

0:5

1

1:5

2

2:5

3

3:5

10�3 10�2 10�1 100 101 102 103

hS
ba

ck
iL

�d
b

Square
4
8
16
32
64

128
256

hS
ba

ck
iL

�d
b

(s�Lr)�

Voronoip
32
8p

128
16p
512
32p

2048
64p

8192
128

Figure 1.24: Average size of the conducting backbone at critical stress as a
function of the scaling variable we fit for small � in §6.
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in the limit of no damage at critical stress.

The properties of the distributions of currents on the conducting backbone

are quite rich, and beyond the scope of the current study, but they are worth

touching on because that distribution should affect the structure of avalanches

in the near-percolation limit. At percolation, the distribution of currents is

multifractal, meaning that unlike the power-law distributed cluster size dis-

tribution, for instance, moments of the current distribution are not linear in

the moment number.58–81 This can be interpreted as having assigned a differ-

ent fractal dimension to different characteristic current magnitudes, with the

linchpin fuses that carry most of the current having a very small dimension,

while the fuses with middling current have one that more closely resembles

that of the backbone itself. Multifractal scaling has been used to measure

structure in concrete.82

§9. The crack surface

The minimal crack surface is defined by the unique path on the dual lattice

that spans the torus in the direction opposite the applied current. An example

is shown in Figure 1.27. When we want to draw something that one would

intuitively describe as “the crack,” this is it. In the percolation limit it is forced

to crawl around a fractal maze and therefore its length grows more quickly

than linear with L. In percolation, the analogue to this minimal crack is the

minimal path, which can be defined as the shortest path that spans, e.g., the

torus. In 2d its fractal dimension has been measured to be dmin ' 1:13077.44

Figure 1.28 shows the average size of the minimal crack measured in our
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Figure 1.25: Correlation lengths for the conducting backbone at critical
stress as a function of the scale invariant fit in §6. Recall that the parallel
direction is the direction current is applied and the perpendicular direction is
the direction of crack propagation.
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Figure 1.26: Aspect ratio of the conducting backbone as a function of the
scale invariant fit in §6.



66 Scaling in quasibrittle fracture §9

Figure 1.27: A 64� 64 square lat-
tice with � = 0:316, held at critical
stress. The set of bonds that make
up the crack surface on the dual
lattice are highlighted in red.

simulations, rescaled by dmin ' 1:23, substantially larger than that measured

for 2d percolation but consistent with that measured by researchers on a

similar model.45 Here, the discrepancy between fuse network structure and

percolation structure is more clear. Not only is the minimal crack surface

not necessarily the shortest path (since it must span against the direction of

applied current), but it isn’t even close. The unbroken stems of lollipops dra-

matically decrease the paths that the crack surface can take on the fractured

system, to the extent that in actual percolation there are many paths that

span in a given direction, but in this problem there is exactly one. It is not

surprising, then, that we have to travel farther on average. Besides bucking

the expectations set by percolation, the size of the minimal crack appears to

scale reasonably well with our scaling variable fit in §6.

Figure 1.29 shows the correlation lengths for the minimal crack surface.

These are all described well by our single fit scaling variable, with those along

the direction of applied current crossing over into a decreasing power law
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Figure 1.28: Average size of the minimal crack surface rescaled by Ldmin for
dmin ' 1:23 as a function of the scale invariant we fit in §6.
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Figure 1.29: Correlation lengths for sites in the minimal crack surface as a
function of the scale invariant fit to cluster size distributions in §6. Recall
that the parallel direction is the direction current is applied in, while the
perpendicular direction is the direction of crack propagation.
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while those along the direction of crack propagation crossing over into an

increasing power law. Its aspect ratio, shown in Figure 1.30, likewise has very

clean behavior, with a simple power-law crossover from a value that seems to

coincide on the square and voronoi lattices, around 0:26.

Besides being an abstract quantity that percolation researchers are inter-

ested in, the minimal crack surface has the possibility for direct connection

to experiment: in the case it happens to be single-valued in xk, it is the sur-

face one would see if one separated the two halves of a fractured object. The

quantity that people are interested in in this context is the height–height

correlation function, defined by

h(x?)2 = h(xk(0)� xk(x?))2i =
Z
x2kgmin(xk; x?) dx (1.56)

Normally, this is expected to scale like h(x?) � x
�
? for some positive expo-

nent � that describes the self-affine fractal nature of the crack surface.21,83–96

Because we have a minimal surface that can wrap back on itself (xk(x?) is

not single-valued), the h(x?) we get by integrating the correlation functions

for the minimal surface do not go to zero at zero x?. Figure 1.31 shows some

examples of these for an L = 256 square lattice for several �. For large � there

is relatively good power law dependence up to a point, while this is quickly

swamped by a constant floor that results from how increasingly agnostic the

crack surface is about moving vertically. They all turn over at large x? due

to the fact we are on a torus, and these functions must therefore be periodic.

This strong system-size dependent feature makes it difficult to compare the

height–height correlation functions directly across � and L.
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Figure 1.30: The aspect ratio of the minimal crack surface as a function of
our scaling invariant fit in §6. Recall that the parallel direction is the direction
that current is applied in, while the perpendicular direction is the direction
of crack propagation.
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Figure 1.31: Example height-height correlation functions for an L = 256
square lattice for several values of �.

If h goes as h(x?) � x
�
?, we might expect its first moment to scale as

h1 =

Z
x?h(x? j L; up; ud) dx? =

Z
x
1+�
? H(x?L�1; upLyp ; udLyd) dx?

= L2+�
Z
u1+�H(u; upLyp ; udLyd)Ldu

(1.57)

and therefore with L2+� . Figure 1.32 shows data depicting h1 as a function of

our scaling invariant and rescaled to collapse in small � by L3:1, which would

seem to imply that � ' 1:1, which is also plotted as a line in Figure 1.31.

However, that region does not have h � x
�
?, and so our scaling consideration

isn’t expected to hold. In the large-� limit, we get good agreement for � ' 0:8,

but the moments act like a function of a different scaling variable �Lt for
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t ' 0:4. The � resulting in this limit is roughly consistent with what we see

in Figure 1.31 for � > 1.

§10. Precursor avalanches

We are now finished reviewing the structural properties of the network at or

after the critical stress, and will now turn to dynamical properties. Here we

will have very little to compare directly with percolation, since the dynamics

of percolation are “break one bond at a time until you’re done.” However,

mean-field models of fracture will guide our way. These may be expected to

work reasonably well, since the range of the interaction between rupturing

fuses is so long. First, we will look at the distribution of avalanches leading

up to the rupture. Here we venture away from the rupture surface for the first

time, averaging together all avalanches before the final one.

Avalanches are the groups of bonds that break in response to the failure of

a single fuse, and they are found in our simulations by looking for backtracking

in the external current necessary to break successive fuses. In fracture, they

empirically have power-law tails.97,98 The democratic fiber bundle model99–103

is a mean-field theory of fracture that provides some predictions for the way

that the precursor avalanches are distributed. It can be connected directly

to a mean-field theory of failure in continuous solids,37 and predicts that the

avalanche sizes should be distributed by

ns � s��f(s(If � I)�) (1.58)

where I is the applied current and If is the current that causes fracture. Com-
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Figure 1.32: First moment of the height–height correlation function as a
function of two different scaling variables, and rescaled two different ways.
(Top) As a function of the scaling variable fit to the cluster size distributions
for small � in §6. (Bottom) As a function of a scaling variable fit by eye with
t ' 0:4.
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Figure 1.33: A 64 � 64 square
lattice with � = 0:316, held at
critical stress. Dual bonds whose
partners were broken in the same
avalanche are highlighted with the
same color.
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Figure 1.34: Example avalanche size distributions averaged over all precur-
sors for a 128�128 square lattice fuse network for several disorder parameters
�. The dashed line shows s���1=� for � + 1=� = 5=2, from mean field fiber
bundles.
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parison has been made between these avalanches and fluctuations observed on

approach to a spinodal, where metastable states become unstable.56 The mean

field prediction gives � = 3=2 and � = 1.

To make a connection with our scaling idea, we need a correspondence

between I and our scaling variables. Since increasing the applied current is

what advances the network depletion at fixed disorder, it is therefore reason-

able to associate If � I with (up � upf )
w for some power w, which likewise

gives a proximity in the unbroken network from rupture. We take as a guess

for the form of the avalanche size distribution

ns = s��N (s(up � upf )
w�; upL

yp ; udL
yd) (1.59)

It follows that the distribution averaged over all precursors is given by

~ns =

Z If

0
ns dI

=

Z If

0
s��N (s(If � I)�;

�
upf + (If � I)1=w

�
Lyp ; udL

yd) dI

=

Z 0

�If
s��N (s�I�;

�
upf +�I1=w

�
Lyp ; udL

yd) d�I

=

Z 0

�Ifs1=�
s��N (y�;

�
upf + y1=ws�1=w�

�
Lyp ; udL

yd)s�1=� dy

= s���1=� ~N (upfs
1=�w; upfL

yp ; udL
yd)

(1.60)

Therefore, moments of the avalanche size distribution along the rupture sur-
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face should be given by something of the form

hsni =
Z 1

1
sn~ns ds =

Z 1

1
sn�� ~N (upfs

1=�w; upfL
yp ; udL

yd) ds

=

Z 1

u�wpf

u
��w(n��)
pf yn�� ~N (y1=�w; upfL

yp ; udL
yd)u��wpf dy

= u
��w(n+1��)
pf

h
Nn(upfL

yp ; udL
yd) +O(u�wpf )

i
= Lyp�w(n+1��)h ~Nn(upfL

yp ; udL
yd) + (upfL

yp)��w(n+1��)O(u�wpf )
i

(1.61)

This predicts, up to eventual corrections, linear scaling in the moment n as a

function of the scaling variables we have seen before, with eventual corrections.

Plots of moments n = 2; : : : ; 5 are shown in Figure 1.35 scaled by the

scaling invariant fit to the cluster size distributions in §6, along with � = 5=2

and w�yp ' 1:3. Though this rough fit for the size scaling appears to perform

well in terms of, e.g., the heights of the peaks, the distributions are not well-

described by a single function of the scaling invariant we have been using. This

data also appears inconsistent with a model that would attempt to explain

this poor description using an irrelevant singular correction to scaling, which

should decay like L�!. The horizontal separation of, e.g., the peaks of these

curves appears to not converge as this would predict, but (especially for larger

n) remain constant, suggesting we have scaled by the wrong factor of L.

When rescaled by the same empirical invariant �Lt used in the lower

plots of Figure 1.32 in §9 with t ' 0:4, the curves collapse well. The peaks

appear to line up at around s�Lt ' 2, shown as a dashed line on the plot

This suggests that the scaling of precursor avalanches may be governed by a
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different length scale than governs most structural aspects for small �, either

because the abrupt transition surface has experienced the sort of crossover

behavior predicted by Models B or C, or as a result of proximity to the abrupt

transition fixed point. It also appears that it is the same length scale that

governs the formation of cracks with power law height–height correlations for

large �.

The second-moment correlation lengths give another angle on the picture

of precursor avalanches. These are shown, rescaled, in Figure 1.37. It is hard

to reason much about the scaling of these, except to say that the precursor

avalanches are always very long-ranged, even in the limit of zero � where they

become small. Look, for instance, at the avalanche examples in Figure 1.33,

where very few avalanches affect just nearby bonds. The correlation length

along the direction of applied current, perpendicular to crack propagation,

monotonically decreases with �, while the length along the direction of crack

propagation has a shallow local minimum at around (s�Lr)� ' 4, which is

shown is a dashed line in the plot. This local minimum, unlike the peaks of

the size distributions, appears to scale with the scaling invariant fit from the

cluster size distribution in §6.

The aspect ratio of these precursor avalanches is shown in Figure 1.38,

rescaled by the empirical invariant s�Lt introduced in §9. A dashed line at

s�Lt ' 2 is shown at the same place as in Figure 1.36 for the avalanche size

distribution moment peaks. The aspect ratio appears to have some asymptotic

value for small �, and a local peak, governed by the cluster invariant (s�Lr)� ,

around the same time as similar peaks in the aspect ratio of static structural

properties, but then a decay afterwards that appears again to be governed by
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Figure 1.37: Correlation lengths for precursor avalanches as a function of
the effective scale invariant fit in §6. Recall that the parallel direction is the
direction of applied stress, while the perpendicular direction is the direction
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�Lt. In this viewing, the phenomenology seems to look like a steady growth

of the aspect ratio with decreasing � towards isotropy that is cut off at finite

size by the onset of percolation phenomenology.

Besides the sizes of the precursor avalanches, we can also look at the distri-

bution of the modulus drops that they arrive with. Every time an avalanche

occurs and some number of bonds break, the modulus (or more literally the

conductivity) of the fuse network goes down by some amount. These drops

are more experimentally accessible than the avalanche sizes themselves. Ex-

amples of the distributions we see in fuse networks are shown in Figure 1.39

for several values of �. It appears that the distributions have a �-independent

tail for large �, with a �-dependent beak and tail towards zero.

Right now we do not have any theory for the scaling of this quantity, but

one could likely be formed from an ansatz between the average avalanche size

at a given up to the average modulus drop that results. In any case, the data

in Figure 1.40 collapses reasonably well with the empirical invariant �Lt and

a linear dependence of n, as is usually expected for a power-law distributed

quantity. The dashed line in that figure shows again the same position that

was shown in Figure 1.36 of the avalanche sizes scaled with the same horizontal

axis. The two peak in the same place, which is not surprising. Once again,

this scaling suggests a universal form that is a function of �Lt but cutoff for

small � by the percolation phenomena, in which there is a smallest possible

modulus drop that decreases with the size of the system.

If we ever find ourselves wanting for properties of these avalanches to

measure, their size is not their only feature thought to be universal: the

shape of avalanches is also thought to be universal, and is easily measurable



82 Scaling in quasibrittle fracture §10

0

0:2

0:4

0:6

0:8

1

0

0:2

0:4

0:6

0:8

1

10�3 10�2 10�1 100 101 102 103

�p
re
c

k
=�

pr
ec

?

Square
4
8
16
32
64

128
256

�p
re
c

k
=�

pr
ec

?

s�Lt

Voronoip
32
8p

128
16p
512
32p

2048
64p

8192
128

Figure 1.38: Aspect ratios of the precursor avalanches as a function of the
invariant first introduced in §9. Recall that the parallel direction is the direc-
tion that stress is applied, while the perpendicular direction is that direction
of crack propagation.



§11 The final avalanche 83

10�7

10�6

10�5

10�4

10�3

10�40 10�35 10�30 10�25 10�20 10�15 10�10

P
ro
ba

bi
lit
y
de

ns
it
y
of

lo
g
(�

C
)

Modulus drop ��

� = 0:0312
� = 0:316
� = 3:162

Figure 1.39: Examples of modulus drop distributions for a 2048-vertex
voronoi lattice for various �. The dashed line shows ���0:33, with no theo-
retical basis.

in the context of our simulations.104–106

§11. The final avalanche

When a little more than critical stress is applied, the system ruptures in a

violent event with a large final avalanche. Unlike the precursor avalanches, the

distribution of its size does not have a power-law tail, and instead has a well-

defined typical size. This average size is plotted in Figure 1.42 as a function

of the scale invariant fit in §6 for the cluster size distribution. For small �,

the size of the final avalanche grows with a power law and is independent of
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Figure 1.41: A 64 � 64 square
lattice with � = 0:316, after rup-
ture. Dual bonds whose partners
were broken in the final avalanche
are highlighted in red.

L. This then begins to grow faster, and has an L dependent peak for large �.

One might wonder how the final avalanche at some intermediate � is larger

than that at very large �, where the final avalanche is the only avalanche

and is therefore system spanning. The answer is that the final avalanche in

the intermediate � region is both system spanning and wide : it breaks many

bonds to its sides as it moves. Look, for instance, at Figure 1.41, which shows

the bonds broken by the final avalanche in a system at intermediate �. While

some are systematically along the final crack surface, the damage is extremely

diffuse.

This is seen strikingly in Figure 1.43, where the same average sizes are

shown as a function of the invariant �Lt and rescaled by L�1:5, and the peaks

match well for sufficiently large system size. This suggests that the final

avalanche grows with a fractal dimension � 1:5, which while subextensive is

much faster than linear. As this final crack propagates through the system, it

tears a wide path in this regime.
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Figure 1.42: Average size of the final avalanche as a function of the scale
invariant fit from the cluster size distribution in §6.
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first introduced in §9.
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Interestingly, the wide avalanches we conclude must be happening in the

large-� limit do not show up in the second-moment correlation lengths, shown

in Figure 1.44. The “width,” as measured this way, monotonically decreases

with � from a maximum in the percolation limit with a crossover to a power

law for intermediate �, with no local peak. Likewise, the “length” of the

avalanche grows monotonically from a percolation value until cut off by the

size of the lattice.∗ Both length scales are described well as functions of the

invariant �Lr from the cluster size distribution fit in §6 alone.

The aspect ratio of the final avalanche shows more interesting behavior,

having a peak at intermediate � that increases steadily with system size,

suggesting an approach towards isotropy in the thermodynamic limit. This is

shown in Figure 1.45, where this is plotted as a function of the invariant fit to

the cluster size distribution in §6. A dashed line is drawn near its peak, which

seems to be stably around (s�Lr)� ' 2. When plotted as a function of the

invariant �Lr introduced in §9, the aspect ratio appears to have a universal

form for large � which, like that for the precursor avalanches, seems to be

headed towards isotropy at small � but is cut off by the emergence of the

percolation phenomenology.

Finally, we can also examine the modulus drop that happens over the final

avalanche. When scaled with the invariant fit to the cluster size distribution

in §6, as in Figure 1.47, these are well-described by a function of that invari-

ant up to a crossover. This isn’t surprising, since the modulus drop over the

final avalanche is precisely the modulus of the conducting backbone at crit-
∗Or, in the case of the square lattice, is cut off by the strange, perfectly diagonal cracks

that form and therefore no longer tend to run straight across the system.
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Figure 1.45: Aspect ratio of the final avalanche as a function of the invariant
fit to the cluster size distribution in §6.
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Figure 1.46: Aspect ratio of the final avalanche as a function of the invariant
first introduced in §9.
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Figure 1.47: Modulus drop over the final avalanche as a function of the
invariant fit to the cluster size distribution in §6.

ical stress, and therefore should be expected to scale with other percolation

properties.
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§12. Conclusions & steps forward

We have seen the skeleton of a scaling theory that can describe the crossover

of an abrupt transition line from coinciding with a scaling field in the thermo-

dynamic limit to acting as a nontrivial function of the relevant scaling fields

at finite size. We have also seen a menagerie of properties of a numeric system

purported to belong to the universality class described by the scaling theory.

Some of those properties, namely most every static structural property as-

sociated with quantities that have analogues in the percolation problem, are

very well described by a simple scaling picture like our Model A, in which we

simply leave the percolation fixed point along a weird direction. Other prop-

erties, namely most every dynamic property associated with the form of the

individual depletion steps in the limit of small disorder, are poorly described

by such a picture, and instead seem to be governed by scaling with a different

relationship between � and L than that predicted near the percolation fixed

point.

How can we reconcile these phenomena? Models B and C are two attempts,

but neither quite succeeds. Model B is clearly too simple a model of the

fracture surface and doesn’t predict the correct finite size scaling in the small

� limit that is so clearly seen in the cluster size and pcf data of §6 and

§5. If a logarithmic singularity is present it likely needs an associated power

law, which makes the analysis we use in the Model B subsection much more

complicated.∗ Model C and perhaps more complex models like it offer some

flexibility, as they predict that the scaling invariants along the fracture surface
∗There is no commonly named function for the solutions to y = x� log� x.
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should experience a crossover as one departs from the percolation fixed point.

Since this prediction gives a crossover in the scaling invariants, any function

of the scaling invariants should see the same crossover to dependence on �Lt

instead of �Lr for large �. However, since the structural properties associated

with percolation don’t clearly exhibit such crossovers, it is difficult to imagine

it could be responsible for the inconsistency.

How else to square this circle? Perhaps, we have been too focused on

where the flow is coming from, and haven’t thought enough about where it

is going to. As mentioned while constructing the scaling theory, any abrupt

transition is the result of a fixed point that acts like a separatrix for the two

phases. This fixed point has its own properties, and its own scaling fields,

which are not necessarily proportional to the scaling fields of the unstable

critical fixed point we are flowing from. Take the example of the Ising model:

below a critical fixed point at T = Tc, flow is separated either towards infinite

or zero field by a separatrix at T = 0. Near the critical point, the external

field has a flow equation

dH

d`
=
��

�
H + � � � (1.62)

which is linearized by the scaling field uH with

duH
d`

=
��

�
uH (1.63)
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Near the low-temperature fixed point the external field has a flow equation

dH

d`
= DH + � � � (1.64)

and the flow is linearized by the scaling field u0H with

du0H
d`

= Du0H (1.65)

Clearly, u0H and uH cannot coincide, and while both are near-identity func-

tions of H near their respective fixed points, they are not at all when you

venture away.

Continuing the Ising metaphor, we now consider measuring a property of

the system associated with the critical point, e.g., the correlation length �.

This has a finite-size singular form

� = Lf(uHu
���
t ; uHL

��=�) (1.66)

that describes its singular part for all T and H, up to irrelevant corrections

to scaling. On the other hand, a property of the system associated with the

zero-temperature fixed point, like the facet length—defined by the average

length scale along which an interface is perfectly straight, and which diverges

at zero temperature—will also have a singular scaling form, like

�f = Lg(u0Hu
�
T ; u

0
HL

D) (1.67)

Near the critical point, we don’t expect this facet length to do anything inter-



96 Scaling in quasibrittle fracture §12

esting, since the lattice that defines it is literally irrelevant. Its singular scaling

from should be largely independent of the critical scaling. Therefore, it would

be folly to attempt to develop a scaling theory where the facet length depends

on the critical point invariant uHu
���
t , since—while it might be technically

true—the only region in which the facet length experiences singular scaling is

a region where uH is no longer linear in H and the connection between our

control parameters and our scaling invariants is lost. This is epitomized at

intermediate temperatures, where the facet length and the correlation length

are both nonzero and noninfinite, and where each should have a reasonable

description in terms of the fixed points they are respectively singular at. One

would expect different finite-size scaling in T for each!

The traditional crossover picture, in which the scaling variables of the

unstable fixed point do well-describe the behavior crossing over to the stable

one, works because one is usually describing quantities that are singular at

both fixed points, e.g., the susceptibility or correlation length, and so therefore

must also be singular along the entire line connecting them.107,108 But if a

quantity isn’t singular at both fixed points, and it mustn’t necessarily be

singular along the line connecting them, then the argument falls apart, because

the behavior of the quantity as a function of the scale invariants of the fixed

point that it is not singular at can be explained by analytic corrections to its

behavior as a function of the scale invariants of the fixed point it is singular

at. Analytic corrections aren’t a part of universal scaling functions!

This metaphor is a long example that is meant to reflect on our thinking

about avalanches in this problem. Near percolation, what avalanches exist are

a sort of lattice effect and their behavior is not singular. Far enough along
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the fracture surface away from percolation, however, they become system-

spanning and are power-law distributed, clear singular behavior. Are the

avalanches and their properties a kind of facet-length to the percolation prob-

lem? If this were the case, then what we are measuring with, e.g., exponents

like t are in fact universal properties of the fracture fixed point that the crit-

ical surface is flowing towards. This is consistent with the fact that we would

see different finite-size scaling for those properties in the same region we see

percolation-like finite-size scaling for structural properties. Unlike the facet

length, the intermediate � properties of the avalanches appear to be lattice-

independent, which suggests there is a universal fracture fixed point with a

basin of attraction that our fuse networks come into the vicinity of, before our

large-� limit sees behavior in both lattices cross over to nonuniversal behavior.

One might have expected to see a crossover from isotropic percolation to

something self-affine, in which the crack is described by a fractal dimension

that is self similar under different rescales parallel and perpendicular to its

direction. This is well-understood to be the coarse-grained geometry of cracks

as review in §9. In that case we may have seen something similar to the

crossover from isotropic to directed percolation,109–111 which is even known

to have associated avalanche phenomena.112 The treatment of truly self-affine

scaling cannot be done with ordinary finite-size methods, since correlation

functions along different directions scale with different exponents.113,114

This is all, right now, speculation, and more work needs to be done fitting

various models of the critical surface to rule it out as a possibility entirely. Now

that we have a better sense of the space of theories and what looks interesting

or is unexplained, taking more fine-grained data through the fracture process
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as a function of the external current I or �p (as in [21]) would provide a lot

more constraint on the form of possible scaling theories, since we would then

have two knobs to play with and could directly measure, e.g., I as a function

of �p and the shape of the fracture transition surface near the critical point.

This work is far from over.

We are also looking to begin extending these ideas from describing the

static spatial properties of the completed crack to describing the dynamic

spatial properties of the growing crack. Of the data we have seen, those

describing the final avalanche come closest, but likely are strongly governed

by finite-size and boundary effects.∗ To this end, we are developing an coarse-

grained model of the fracture process in high disorder, inspired by this data,

to look into what conditions are required for cracks in these materials to

propagate versus stand still and grow fat, similar to [115] but for quasibrittle

systems that suffer from diffuse damage that modifies the local modulus. That

work has only barely begun.

∗A torus has no boundary, but it does let the crack interact with its other end as it
propagates. . .



CHAPTER II

CLUSTER MONTE CARLO WITH
ON-SITE POTENTIALS

Lattice models are important tools for studying emergent and critical phe-

nomena. Besides describing the form of crystals, admitting exact solutions or

perturbative expansions, the discreteness of a lattice makes them amenable

to simulation. Simulations of critical phenomena are challenging, however,

because they must contend with critical slowing down.117 As length scales

diverge near a critical point, dynamic scaling dictates that so too must time

scales. In nature this slowness can make fluctuations observable; on a com-

puter it can make them interminable. The autocorrelation time � is pre-

dicted to diverge with system size L like Lz, and 2d Ising models have

z = 4 � � = 15
4 = 3:75 with conserved dynamics118 and z ' 2:1767 with-

out.119 With the length of a computational time step increasing like LD,†

this can mean the difference between enough system-size range to measure

something or not.
∗Portions of the material of this chapter were published in J Kent-Dobias and JP Sethna,

“Cluster representations and the Wolff algorithm in arbitrary external fields”, Physical Re-
view E 98, 10.1103/physreve.98.063306 (2018).

†After all, while we must update each site in our system one by one, nature is the ultimate
parallelizer and handily updates every site simultaneously! The system size dependent
timescales of computer simulations therefore differ from those of natural systems by a factor
of the number of sites.
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Thankfully there are methods for alleviating this. One of the most useful

is the cluster method, which is the basis for both the celebrated Swendsen–

Wang120 and Wolff algorithms.121 They use unphysical nonlocal updates122

whose clusters undergo a percolation transition at the critical point of the

system.123 Moving beyond the constraint of realistic local dynamics results

in relatively small dynamic exponents for many spin systems,119,124–126 in-

cluding the Ising, O(n),121 Potts,120,127 and other models.128–132 For the 2d

Ising model they give z ' 0:3,119 a remarkable improvement in speed. Un-

fortunately these methods have limited applicability; in their original form

they cannot even deal with the application of a simple magnetic field. These

algorithms rely on the natural invariance of the systems in question under

symmetry transformations on their spins.

Some success has been made in extending these algorithms to systems in

certain external fields by adding a ‘ghost site’133 that returns global rotation

invariance to spin Hamiltonians at the cost of an extra degree of freedom,

allowing the method to be used in a subcategory of interesting fields.134–136

Static fields have also been applied by including a separate metropolis or heat

bath update step after cluster formation,137–139 and other categories of fields

have been applied using replica methods.140–142 Monte Carlo techniques that

involve cluster updates at fixed magnetization have been used to examine

quantities at fixed field by later integrating measured thermodynamic func-

tions.143,144

Here, I will discuss a useful generalization of these methods applicable to a

broad class of lattice models with both pair interactions and arbitrary on-site

potentials.116 We show that the scaling of correlation time near the critical
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point of several models suggests that the ‘ghost’ approach is a natural one, e.g.,

that it extends the celebrated scaling of dynamics in these algorithms at zero

field to various non-symmetric perturbations. We also show, by a redefinition

of the spin–spin coupling in a generic class of spin systems, arbitrary external

fields can be treated using cluster methods. Rather than the introduction of a

‘ghost spin,’ our representation relies on introducing a ‘ghost transformation,’

an extra degree of freedom residing on a ‘ghost’ site coupled to all other sites

that takes its values from the collection of spin symmetry transformations of

the base model rather than resemble the base spins themselves.

We provide an open-source implementation of this method in the form of

a C++ library, available at https://git.kent-dobias.com/wolff/. Use of

this library will be described briefly within, but extensive documentation is

also available at https://doc.kent-dobias.com/wolff/.

We will first briefly review the formal basis of cluster methods, which

rests in a duality between the Ising model and a strange model on graphs.

We will then see how this duality can be extended to one between many

more complicated models and ensembles of strange graph models. We will

then introduce the Wolff algorithm for a general model, and see the small

conceptual tweak that allows its use with arbitrary on-site potentials. We’ll

then see this borne out in several canonical models, and gauge its efficiency

in those cases. Finally, we’ll see some direct applications: measuring the

relevance of lattice anisotropies on the two-dimensional xy model, and directly

measuring the value of scaling functions in the metastable state of the Ising

model.

https://git.kent-dobias.com/wolff/
https://doc.kent-dobias.com/wolff/


102 Cluster Monte Carlo with on-site potentials §13

§13. Duality in Markov-chain Monte Carlo

Equilibrium statistical models are usually expressed in the form of an unnor-

malized probability distribution f over phase space 
 parameterized by values

x. For instance, the Boltzmann weight for a system with Hamiltonian H and

parameter given by inverse temperature � is

f(s j �) = e��H(s) (2.1)

The properties of such a model are summed up in its partition function

Z(x) = Trs f(s j x) (2.2)

which is also the normalization of f , so that

P (s j x) = f(s j x)
Z(x)

(2.3)

is a proper probability distribution on 
. Most properties of interest can be

expressed as various derivatives of the partition function Z, and so its form

and dependence on the model parameters is in many ways defining of a model.

A duality exists between two models fa and fb on phase spaces 
a and


b when there exists a joint model fab on 
a � 
b with

fa(sa j x) = Trsb fab(sa; sb j x)

fb(sb j x) = Trsa fab(sa; sb j x)
(2.4)

†Many of the ideas in this section are inspired by HG Evertz, HM Erkinger, and W von
der Linden, “New cluster method for the Ising model”, in Springer proceedings in physics
(Springer Berlin Heidelberg, 2002), pp. 123–133.

https://doi.org/10.1007/978-3-642-59406-9_17
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This implies a close connection between the partition functions of the two

models; as a function of the parameters their partition functions must have

the same singularities, since

Za(x) = Tra fa(sa j x) = TraTrb fab(sa; sb j x) = Trb fb(sb j x) = Zb(x) (2.5)

Posing the duality here as being characterized by a joint model may seem

unusual, since ordinarily it is the correspondence between the two partition

functions that is of interest, and any temporary expressions of both models’

variables in a joint trace is just a means to that end. Here, though, the fact

that both models have a joint expression is something we will exploit, and in

particular it induces conditional probabilities

P (sa j sb; x) = fab(sa; sb j x)
fb(sb j x) P (sb j sa; x) = fab(sa; sb j x)

fa(sa j x) (2.6)

that—if they end up being simply expressed functions of the microstates—will

allow us to switch back and forth rapidly between the two representations.145

Fortuin–Kasteleyn

Cluster methods are based on a representation of the Ising model developed

by Fortuin and Kasteleyn,146–148 and the connection between them was eluci-

dated by Edwards and Sokal.149 The Ising model in the absence of a field,

which we shall see many more times in this thesis, is given on a graph
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G = (V;E) by the unnormalized distribution

fIsing(s j �) = exp
h
�

X
fi;jg2E

Jijsisj
i

(2.7)

over sets s of spins that take values of one or minus one and reside on the

vertices of the graph. The Fortuin–Kasteleyn random graph model is given

on the same graph by the distribution

fFK(b j p) = 2Nc(b)
Y

fi;jg2E
(1� pij)

1
2

�
pij

1� pij

�bij
(2.8)

over sets b of binary values (zero or one) that reside in the edges of the graph,

and where Nc(b) gives the total number of connected clusters of active (value

one) bonds defined by the configuration b.

We will show that the joint model defined by the unnormalized distribution

fIsing/FK(s; b j �) =
Y

fi;jg2E
(1�pij)� 1

2
�
�bij ;0(1�pij)+�bij ;1�Jijsisj>0pij

�
(2.9)

has the property (2.4) if the model parameters J and p are taken to relate to

each other by

pij =

(
1� e�2�Jij Jij > 0

1� e+2�Jij Jij < 0
(2.10)

It is sufficient to show that the partial trace over each configuration subspace

is zero. First, tracing over the bond degrees of freedom yields the Ising model:
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Trb fIsing/FK(s; b j �) = Trb
Y

fi;jg2E

�
�bij ;0e

��Jij + �bij ;1�si;sj (e
�Jij � e��Jij )

�
=

Y
fi;jg2E

X
bij=f0;1g

�
�bij ;0e

��Jij + �bij ;1�si;sj (e
�Jij � e��Jij )

�
=

Y
fi;jg2E

�
e��Jij + �si;sj (e

�Jij � e��Jij )
�
= fIsing(s j �)

(2.11)

since the identity

e�Jijsisj = e��Jij + �si;sj (e
�Jij � e��Jij ) (2.12)

holds for si; sj = �1. The other direction is a little more complicated. For

a given configuration b, the product is only nonzero if for every fi; jg 2 E

with bij = 1, si = sj . This means that a connected cluster of sites joined

together by bonds with bij = 1 throughout must have si = sj through the

entire cluster they form in order to have a nonzero product. Therefore, there

are two distinct states per such cluster of sites connected by activated bonds

(all up and all down in each cluster) in each contributing term in the trace,

or 2Nc(b). This leaves

Trs fIsing/FK(s; b j �) = 2Nc(b)
Y

fi;jg2E
(1� pij)

� 1
2 (1� pij)

1�bijpbijij

= 2Nc(b)
Y

fi;jg2E
(1� pij)

1
2

�
pij

1� pij

�bij (2.13)

The models are therefore dual.
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This is a neat and ancient exercise, but what does it have to do with lattice

models and Monte Carlo? The useful insight comes when one writes down

the joint distributions that result. From examination of the form of the joint

model, one can see that

P (s j b; x) =
Y

C2C(b)

(
1
2 Jijsisj > 0 for all bij 2 C
0 otherwise

(2.14)

where C(b) is the set of clusters associated with a configuration b, and

P (b j s; x) =
Y
ij

8>>>>><>>>>>:
pij bij = 1 and Jijsisj > 0

0 bij = 1 and Jijsisj < 0

1� pij bij = 0 and Jijsisj > 0

1 bij = 0 and Jijsisj < 0

(2.15)

Because both marginal distributions factor into distributions on individual

clusters and bonds, respectively, and both distributions are nontrivial, i.e.,

they aren’t delta functions on a single configuration, we now have our Monte

Carlo strategy: take a configuration of one model, then sample a configuration

of the other model, then repeat back and forth. A configuration of bonds is

sampled from one of sites by setting bij to one with probability pij if Jijsisj >

0 and to zero otherwise. A configuration of sites is sampled from one of bonds

by setting si up or down with equal probability, so long as it is set that way

along with every other site in the cluster connected by activated bonds it

belongs to.
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Adding a field: a preview

Notice that the procedure followed to arrive at a cluster representation of

the Ising model is independent of the structure of the lattice, or even the

presence of a lattice: the coupling J can be anything, so long as it is a pair

coupling between objects with two states, symmetric under the inversion of

both. We will exploit this generality to add an external field by defining a

strange lattice.

First, the more general form of our classic Ising model also allows for the

addition of a field:

fIsing(s j �; h) = exp
h
�

X
fi;jg2E

Jijsisj +
X
i

hisi
i

(2.16)

Though this seems to have spoiled our construction in the previous subsection,

we can recover it at the cost of adding another site with a spin s0 to the lattice.

We have

~fIsing(s0; s j �; h) = exp
h
�
X
ij

Jijsisj + hs0
X
i

si
i

= exp
h
�
X
ij

~Jijsisj
i (2.17)

for ~Jij = Jij for i; j � 1 and ~J0i = ~Ji0 = h. This new model has two

important features: it has the form of (2.7) and expectation values of the

distribution (2.16) can be computed. Indeed, any observable A of the original

model can be written as an observable ~A(s0; s) = A(s0s) of the new model

such that h ~Ai = hAi, as we shall see in detail later. This representation and
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its connection to the Ising model in a field was noticed in the original paper

introducing the random cluster model,146 and later drawn out in the context

of cluster methods.133,135

General lattice models

The specific connection between the Ising and random-cluster models is useful

far beyond the context of either model. This is because the Ising model is

so simple: it describes any theory of objects under a pairwise coupling that

can take one of two states, and that has a global symmetry when everyone is

brought from one state to the other. Up to isomorphism, Z=2Z is the only

symmetry group with two elements, and any element with an order-two orbit

inside another symmetry group is isomorphic to it. This means that the Ising

model can be embedded inside other models that contain this subgroup, and

clusters can be used to rapidly sample new states exactly as above.

This embedding scheme also opens a new degree of freedom in the con-

struction of a cluster algorithm: the distribution of embeddings one uses. As

long as this distribution satisfies some loose conditions covered later, a wide

variety of cluster-forming choices lead to detailed balance. This freedom will

be especially important in the next chapter.

Since the formal correspondence between models and dual ensembles of

Fortuin–Kasteleyn graph models becomes complicated and tedious with di-

minishing conceptual returns (though some write it out150), we will move onto

an alternative framing for the rest of this chapter which focuses on the way the

method arises in practice, dynamically in cluster construction. The new fea-

ture introduced here is the extension of the field-as-lattice-site above to these



§14 Clusters without a field 109

general models by introducing a field-as-lattice-site with a sufficiently large

configuration space to capture the composition of flips over many different

Ising embeddings.

§14. Clusters without a field

We will pose the problem in a general way, but several specific examples can

be found in Table 2.1 for concreteness. Let G = (V;E) be a graph, where

the set of vertices V = f1; : : : ; Ng enumerates the sites of a lattice and the

set of edges E contains pairs of neighboring sites. Let R be a group acting

on a set X, with the action of group elements r 2 R on elements s 2 X

denoted r � s. X is the set of states accessible by each spin, and R is the

symmetry group of X. The set X must admit a measure � that is invariant

under the action of R, e.g., for any A � X and r 2 R, �(r � A) = �(A). This

trait is shared by the counting measure on any discrete set, or by any group

acting by isometries on a Riemannian manifold, such as O(n) on Sn�1 in the

O(n) models.150 Finally, a subset R2 of elements in R of order two must act

transitively on X. This property, while apparently obscure, is shared by any

symmetric space151 or by any transitive, finitely generated isometry group. In

fact, all the examples listed here have spin spaces with natural metrics whose

symmetry group is their set of isometries. We put one spin at each site of the

lattice described by G, so that the state of the entire system is described by

elements s 2 X � � � � �X = XN .
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The Hamiltonian of this system is a function H : XN ! R defined by

H(s) = �
X

fi;jg2E
Z(si; sj)�

X
i2V

B(si); (2.18)

where Z : X �X ! R couples adjacent spins and B : X ! R is an external

field. Z must be symmetric in its arguments and invariant under the action

of any element of R applied to the entire lattice, that is, for any r 2 R and

s; t 2 X, Z(r � s; r � t) = Z(s; t). One may also allow Z to also be a function of

edge—for modelling random-bond, long-range, or anisotropic interactions—

or allow B to be a function of site—for applying arbitrary boundary condi-

tions or modelling random fields. The formal results of this chapter (that

the algorithm obeys detailed balance and ergodicity) hold equally well for

these cases, but we will drop the additional index notation for clarity. Some

extensions, like adding strong random fields or bonds, ultimately prove in-

efficient,140,152 though random, frustrated bonds have proven amenable to a

cluster approach.153 The approach should also work fine for randomness added

perturbatively to nonrandom models.

Implementation of a model in the provided library is as simple as defining

a class that represents an element of the state space X, with default construc-

tor (and destructor, if necessary), and a class that represents an element of the

group R, with default constructor and member functions that define the action

and inverse action of the class on both states and group elements. Specific de-

tails may be found at https://doc.kent-dobias.com/wolff/models.html.

The goal of statistical mechanics is to compute expectation values of ob-

servables A : XN ! R. Assuming the ergodic hypothesis holds (for systems

https://doc.kent-dobias.com/wolff/models.html
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with broken-symmetry states, it does not and these phase-space integrals need

to be restricted to a subset), the expected value hAi of an observable A is its

average over every state s in the configuration space XN weighted by the

Boltzmann probability of that state appearing, or

hAi =
R
XN A(s)e��H(s) d�(s)R

XN e��H(s) d�(s)
; (2.19)

where for Y1�� � ��YN = Y � XN the product measure �(Y ) = �(Y1) � � ��(YN )
is the simple extension of the measure on X to a measure on XN . These values

are estimated using Monte Carlo techniques by constructing a finite sequence

of states fs1; : : : ; sMg such that

hAi ' 1

M

MX
i=1

A(si): (2.20)

Sufficient conditions for this average to converge to hAi asM !1 are that the

process that selects si+1 given the previous states be Markovian (only depends

on si), ergodic (any state can be accessed), and obey detailed balance (the

ratio of probabilities that s0 follows s and vice versa is equal to the ratio of

weights for s and s0 in the ensemble).

Measurements of observables during Monte Carlo in the provided library

are made by the use of hooks, which are member functions of a measurement

class that are run at designated points during the algorithm’s execution and

are provided arbitrary information about the internal state of all relevant

objects. A detailed description of these hooks can be found at https://doc.

kent-dobias.com/wolff/measurement.html.

https://doc.kent-dobias.com/wolff/measurement.html
https://doc.kent-dobias.com/wolff/measurement.html
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While any of several related cluster algorithms can be described for this

system, we will focus on the Wolff algorithm [121]. In the absence of an ex-

ternal field, e.g., B(s) = 0, the Wolff algorithm proceeds in the following way.

Algorithm 1 Wolff
1. Pick a random site m0 and add it to the stack.
2. Select a transformation r 2 R2 distributed by f(r j m0; s). Often f

is taken as uniform on R2, but it is sufficient for preserving detailed
balance that f be any function of the seed site m0 and Z(s; r � s) for all
s 2 s. The flexibility offered by the choice of distribution will be useful
in situations where the set of spin states is infinite.

3. While the stack isn’t empty,
a) pop site m from the stack.
b) If site m isn’t marked,

i. mark the site.
ii. For every j such that fm; jg 2 E, add site j to the stack with

probability

pr(sm; sj) = minf0; 1� e�(Z(r�sm;sj)�Z(sm;sj))g: (2.21)

iii. Take sm 7! r � sm.

When the stack is exhausted, a cluster of connected spins will have been

transformed by the action of r. In order for this algorithm to be useful, it

must satisfy ergodicity and detailed balance. Ergodicity is satisfied since we

have ensured that R2 acts transitively on X, e.g., for any s; t 2 X there exists

r 2 R2 such that r � s = t. Since there is a nonzero probability that only one

spin is transformed and that spin can be transformed into any state, ergodicity

follows. The probability P (s ! s0) that the configuration s is brought to s0

by the flipping of a cluster formed by accepting transformations of spins via

bonds C � E and rejecting transformations via bonds @C � E is related to
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the probability of the reverse process P (s0 ! s) by

P (s! s0)
P (s0 ! s)

=
f(r j m0; s)

f(r�1 j m0; s0)

Y
fi;jg2C

pr(si; sj)

pr�1(s0i; s
0
j)

Y
fi;jg2@C

1� pr(si; sj)

1� pr�1(s0i; s
0
j)

=
Y

fi;jg2@C
e�(Z(s

0

i;s
0

j)�Z(si;sj)) =
e��H(s0)

e��H(s)
;

(2.22)

whence detailed balance is also satisfied, using r = r�1 and Z(r � s0; s0) =

Z(r � s; s).
The Wolff algorithm is well known to be efficient in sampling many spin

models near and away from criticality, including the Ising, Potts, and O(n)

models. In general, its efficiency will depend on the system at hand, e.g.,

the structure of the configurations X and group R. A detailed discussion of

this dependence for a class of configuration spaces with continuous symmetry

groups can be found in [150, 155].

This algorithm can be run on a system using the provided library. To

construct a system, you must provide a graph representing the lattice, a tem-

perature, the spin coupling function Z, and the field coupling function B.

Once constructed, cluster flips as described in Alg. 1 can be performed by di-

rectly providing seed sites m0 and transformations r, or many in sequence by

providing a function that generates random (appropriately distributed to pre-

serve detailed balance) transformations r. The construction and use of Wolff

systems is described at https://doc.kent-dobias.com/wolff/system.html.

https://doc.kent-dobias.com/wolff/system.html
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§15. Adding the field

This algorithm relies on the fact that the coupling Z depends only on relative

orientation of the spins—global reorientations do not affect the Hamiltonian.

The external field B breaks this symmetry. Fortunately it can be restored.

Define a new graph ~G = (~V ; ~E), where ~V = f0; 1; : : : ; Ng adds the new ‘ghost’

site 0 which is connected by

~E = E [ �f0; ig j i 2 V
	

(2.23)

to all other sites. Instead of assigning the ghost site a spin whose value

comes from X, we assign it values in the symmetry group s0 2 R, so that

the configuration space of the new model is R � XN . We introduce the

Hamiltonian ~H : R�XN ! R defined by

~H(s0; s) = �
X

fi;jg2E
Z(si; sj)�

X
i2V

B(s�10 � si)

= �
X

fi;jg2 ~E

~Z(si; sj);

(2.24)

where the new coupling ~Z : (R[X)� (R[X)! R is defined for s; t 2 R[X
by

~Z(s; t) =

8>><>>:
Z(s; t) if s; t 2 X

B(s�1 � t) if s 2 R

B(t�1 � s) if t 2 R:

(2.25)
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The modified coupling is invariant under the action of group elements: for

any r; s0 2 R and s 2 X,

~Z(rs0; r � s) = B((rs0)
�1 � (r � s))

= B(s�10 � s) = ~Z(s0; s)

(2.26)

The invariance of ~Z to global transformations given other arguments follows

from the invariance properties of Z.

We have produced a system incorporating the field function B whose

Hamiltonian is invariant under global rotations, but how does it relate to our

old system, whose properties we actually want to measure? If A : XN ! R is

an observable of the original system, we construct an observable ~A : R�XN !
R of the new system defined by

~A(s0; s) = A(s�10 � s) (2.27)

whose expectation value in the new system equals that of the original observ-

able in the old system. First, note that ~H(1; s) = H(s). Since the Hamil-

tonian is invariant under global rotations, it follows that for any g 2 R,

~H(g; g � s) = H(s). Using the invariance properties of the measure on X and
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introducing a measure � on R, it follows that

h ~Ai =
R
R

R
XN

~A(s0; s)e
�� ~H(s0;s) d�(s) d�(s0)R

R

R
XN e�� ~H(s0;s) d�(s) d�(s0)

=

R
R

R
XN A(s

�1
0 � s)e�� ~H(s0;s) d�(s) d�(s0)R

R

R
XN e�� ~H(s0;s) d�(s) d�(s0)

=

R
R

R
XN A(s0)e�� ~H(s0;s0�s0)d�(s0 � s0) d�(s0)R
R

R
XN e�� ~H(s0;s0�s0)d�(s0 � s0) d�(s0)

=

R
R d�(s0)R
R d�(s0)

R
XN A(s0)e��H(s0)d�(s0)R

XN e��H(s0)d�(s0)
= hAi:

(2.28)

Using this equivalence, spin systems in a field may be treated in the following

way.

1. Add a site to your lattice adjacent to every other site.

2. Initialize a ‘spin’ at that site whose value is a representation of a member

of the symmetry group of your ordinary spins.

3. Carry out the ordinary Wolff cluster-flip procedure on this new lattice,

substituting ~Z as defined in (2.25) for Z.

Ensemble averages of observables A can then be estimated by sampling the

value of ~A on the new system. In contrast with the simpler ghost spin repre-

sentation, this form of the Hamiltonian might be considered the ‘ghost trans-

formation’ representation.

One of the celebrated features of the cluster representation of the Ising and

associated models are the improved estimators of various quantities in the base

model, found by measuring conjugate properties of the clusters themselves.156

What of these quantities survive this translation? As is noted in the formative

construction of the cluster representation for the Ising and Potts models, all

estimators involving correlators between spins are preserved, including corre-
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lators with the ghost site.146 Where a previous improved estimator exists, we

expect this representation to extend it to finite field, all other features of the

algorithm held constant. For instance, the average cluster size in the Wolff

algorithm is often said to be an estimator for the magnetic susceptibility in

the Ising, Potts, and (with clusters weighted by the components of their spins

along the reflection direction)157 O(n) models, but really what it estimates

is the averaged squared magnetization, which corresponds to the susceptibil-

ity when the average magnetization is zero. At finite field the latter thing is

no longer true, but the correspondence between cluster size and the squared

magnetization continues to hold (see (2.33) and Figure 2.3 below).

§16. Examples

Several specific examples from Table 2.1 are described in the following.

The Ising model

In the Ising model spins are drawn from the set f1;�1g. Its symmetry group

is C2, the cyclic group on two elements, which can be conveniently represented

by a multiplicative group with elements f1;�1g, exactly the same as the spins

themselves. The only nontrivial element is of order two, and is selected every

time in the algorithm. Since the symmetry group and the spins are described

by the same elements, performing the algorithm on the Ising model in a field

is fully described by just using the ‘ghost spin’ representation. This algorithm

or algorithms based on the same decomposition of the Hamiltonian have been

applied by several researchers.134–136 I have implemented this algorithm in
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an existing interactive Ising simulator at https://mattbierbaum.github.io/

ising.js.

The O(n) models

In the O(n) model spins are described by vectors on the (n� 1)-sphere Sn�1.

Its symmetry group is O(n), n�n orthogonal matrices, which act on the spins

by matrix multiplication. The elements of O(n) of order two are reflections

about hyperplanes through the origin and � rotations about any axis through

the origin. Since the former generate the entire group, reflections alone suffice

to provide ergodicity. Sampling those reflections uniformly works well at

criticality. The ‘ghost spin’ version of the algorithm has been used to apply

a simple vector field to the O(3) model.158 Other fields of interest include

(n+ 1)-dimensional spherical harmonics154 and cubic fields,159,160 which can

be applied with the new method. The method is quickly generalized to spins

whose symmetry groups are other compact Lie groups.150,155

At low temperature or high external vector field selecting reflections uni-

formly becomes inefficient because the excitations of the model are spin waves,

in which the magnetization only differs by a small amount between neighbor-

ing spins. Under these conditions, most choices of reflection plane will cause a

change in energy so great that the whole system is always flipped, resulting in

many correlated samples. To ameliorate this, one can draw reflections from a

distribution that depends on how the seed spin is transformed, taking advan-

tage of the freedom to choose the function f in Alg. 1. We implement this in

the following way. Say that the state of the seed of the cluster is s. Generate

a vector t taken uniformly from the space of unit vectors orthogonal to s. Let

https://mattbierbaum.github.io/ising.js
https://mattbierbaum.github.io/ising.js
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the plane of reflection be that whose normal is n = s + �t, where � is drawn

from a normal distribution of mean zero and variance �. It follows that the

tangent of the angle between s and the plane of reflection is also distributed

normally with zero mean and variance �. Since the distribution of reflection

planes only depends on the angle between s and the plane, and since that

angle is invariant under the reflection, this choice preserves detailed balance.

The choice of � can be inspired by mean field theory. At high field or low

temperature, spins are likely to both align with the field and each other and

the model is asymptotically equal to a simple Gaussian one, in which in the

limit of large L the expected square angle between neighbors is

h�2i ' (n� 1)T

D +H=2
: (2.29)

We take � =
ph�2i=2. Fig. 2.1 shows the effect of making such a choice on

autocorrelation times for the energy for a critical 3d xy (O(2)) model. At

small fields both methods perform the same as zero field Wolff. Intermediate

field values see efficiency gains for both methods. At large field the uniform

sampling method sees correlation times grow rapidly without bound, while

for the sampling method described here the correlation time crosses over to

a constant. A similar behavior holds for the critical O(3) model, though in

that case the constant value the correlation time approaches at large field is

larger than its minimum value (see Fig. 2.2). This behavior isn’t particu-

larly worrisome, since the very large field regime corresponds to correlation

lengths comparable to the lattice spacing and is efficiently simulated by other

algorithms. More detailed discussion on correlation times and these numeric
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Figure 2.1: The scaled autocorrelation time of the energy H for the Wolff
algorithm on a 32� 32� 32 xy model at its critical temperature as a function
of applied vector field magnitude jHj. Blue points correspond to reflections
sampled uniformly, while the yellow points represent reflections sampled as
described in section 16.

experiments can be found in section 17.

The Potts model

In the q-state Potts model spins are described by elements of f1; : : : ; qg. Its

symmetry group is the symmetric group Sn of permutations of its elements.

The element (i1; : : : ; iq) takes the spin s to is. There are potentially many

elements of order two, but the two-element swaps alone are sufficient to both

generate the group and act transitively on f1; : : : ; qg, providing ergodicity.

Equations of state have been predicted from �-expansions for the three-state
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Potts model with symmetry-breaking fields—it may be interesting to compare

this with efficient numeric results.161,162

Clock models

In the q-state clock model spins are described by elements of Z=qZ, the

set of integers modulo q. Its symmetry group is the dihedral group Dq =

fr0; : : : ; rq�1; s0; : : : ; sq�1g, the group of symmetries of a regular q-gon. The

element rn represents a rotation by 2�n=q, and the element sn represents a

reflection composed with the rotation rn. The group acts on spins by per-

mutation: rn �m = n+m (mod q) and sn �m = �(n+m) (mod q). This

is the natural action of the group on the vertices of a regular polygon that

have been numbered 0 through q � 1. The elements of Dq of order 2 are all

reflections and rq=2 if q is even, though the former can generate the latter.

While reflections do not necessarily generate the entire group, their action on

Z=qZ is transitive and therefore the algorithm is ergodic.

Roughening models

Though not often thought of as a spin model, roughening of surfaces can be

described in this framework. These models are used to describe what happens

to the interface between magnetic or crystalline orders, which can experience

a phase transition in which the correlation length of the height of the interface

diverges. The “spins,” which describe the height of the interface at each point

in space, are described by integers Z and their symmetry group is the infinite

dihedral group D1 = fri; si j i 2 Zg, whose action on the spin j 2 Z is given

by ri � j = i+ j and si � j = �i� j. The elements of order two are reflections
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si, whose action on Z is transitive. The coupling can be any function of the

absolute difference ji � jj. Because uniform choice of reflection will almost

always result in energy changes so large that the whole system is flipped, it is

better to select random reflections about integers or half-integers close to the

state of the seed. Besides randomly selecting such a reflection plane, choosing

it to coincide with another random spin, different from the seed, has proven

quite successful, though it isn’t enough to give ergodicity on its own.163–165.

Detailed balance is still satisfied if the bond probabilities (2.21) are modified

by adding a constant 0 < x � 1 with

pr(sm; sj j x) = minf0; 1� xe�(Z(r�sm;sj)�Z(sm;sj))g: (2.30)

When x < 1 transformations that do not change the energy of a bond can still

activate it in the cluster, which allows nontrivial clusters to be seeded when

the height of the starting site is also the plane of reflection. This modification

is likely useful in general for systems with large yet discrete state spaces.

§17. Performance

No algorithm is worthwhile if it doesn’t run efficiently. This algorithm, being

an extension of the Wolff algorithm into a new domain, should be considered

successful if it likewise extends the efficiency of the Wolff algorithm into that

domain. Some systems are not efficient under Wolff, and we don’t expect

them to fare better when extended in a field. For instance, Ising models

with random fields or bonds technically can be treated with Wolff,166 but it

is not efficient because the clusters formed do not scale naturally with the
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correlation length.140,152 Other approaches, like replica methods, should be

relied on instead.140–142

At a critical point, correlation time � scales with system size L = N�D as

� � Lz. Cluster algorithms are celebrated for their small dynamic exponents

z. In the vicinity of an ordinary critical point, the renormalization group

predicts scaling behavior for the correlation time as a function of temperature

t and field h of the form

� = h�z�=��T (ht���; hL��=�): (2.31)

If a given dynamics for a system at zero field results in scaling like Lz, one

should expect its natural extension in the presence of a field to scale roughly

like h�z�=�� and collapse appropriately as a function of hL��=� .

We measured the autocorrelation time � of the energy H for a variety of

models at critical temperature with many system sizes and canonical fields (see

Table 2.1 with h = �H) using standard methods for obtaining the value and

uncertainty from time series.167 Since the computational effort expended in

each step of the algorithm depends linearly on the size of the associated cluster,

these values are then scaled by the average cluster size per site hs1ci=LD

to produce something proportional to machine time per site. The resulting

scaling behavior, plotted in Figure 2.2, is indeed consistent with an extension

to finite field of the behavior at zero field, with an eventual finite-size crossover

to constant autocorrelation time at large field. This crossover isn’t always kind

to the efficiency, e.g., in theO(3)model, but in the large-field regime where the

crossover happens the correlation length is on the scale of the lattice spacing
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and better algorithms exist, like Bortz–Kalos–Lebowitz for the Ising model.168

Also plotted are lines proportional to h�z�=��, which match the behavior of

the correlation times in the intermediate scaling region as expected. Values

of the critical exponents for the models were taken from the literature169–171

with the exception of z for the energy in the Wolff algorithm, which was

determined for each model by making a power law fit to the constant low field

behavior. These exponents are imprecise and are provided in the figure with

only qualitative uncertainty.

Since the formation and flipping of clusters is the hallmark of Wolff dy-

namics, another way to ensure that the dynamics with field scale like those

without is to analyze the distribution of cluster sizes. The success of the al-

gorithm at zero field is related to the fact that the clusters formed undergo a

percolation transition at models’ critical point. According to the scaling the-

ory of percolation,41 the distribution of cluster sizes in a full Swendsen–Wang

decomposition—where the whole system is decomposed into clusters with ev-

ery bond activated with probability (2.21)—of the system scales consistently

near the critical point if it has the form

PSW(s) = s��f(ts�; th�1=��; tL1=�): (2.32)

The distribution of cluster sizes in the Wolff algorithm can be computed from

this using the fact that the algorithm selects clusters with probability propor-
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tional to their size, or

hs1ci =
X
s

sP 1c(s) =
X
s

s
s

N
PSW(s)

= L
=�g(ht���; hL��=�):

(2.33)

For the Ising model, an additional scaling relation can be written. Since

the average cluster size is the average squared magnetization, it can be related

to the scaling functions of the magnetization and susceptibility per site by

(with ht��� dependence dropped)

hs1ci = LDhM2i = �h�i+ LDhMi2

= L
=�
�
(hL��=�)�
=���Y(hL��=� ; ht���)

+ (hL��=�)2=�M(hL��=� ; ht���)
�
:

(2.34)

We therefore expect that, for the Ising model, hs 1ciL�
=� should go as (hL��=�)2=�

for large argument. We further conjecture that this scaling behavior should

hold for other models whose critical points correspond with the percolation

transition of Wolff clusters. This behavior is supported by our numeric work

along the critical isotherm for various Ising, Potts, and O(n) models, shown

in Fig. 2.3. Fields are the canonical ones referenced in Table 2.1. As can be

seen, the average cluster size collapses for each model according to the scaling

hypothesis, and the large-field behavior likewise scales as we expect from the

naïve Ising conjecture.



128 Cluster Monte Carlo with on-site potentials §18

1
1

1 10

1 10

10010 �
6
10 �

4
10 �

2
10

0
10

2
10

4
10

6

110 �
6
10 �

4
10 �

2
10

0
10

2
10

4
10

6

1 10

10010 �
6
10 �

4
10 �

2
10

0
10

2
10

4
10

6

hs1cL�D
=�i
(a)

2d
Ising

(c)
2d

3-State
P
otts

4
8

16
32

64
128

256
512

(e)
3d

O
(2)

hs1cL�D
=�i

h
L
�
�
=
�

(b)
3d

Ising

h
L
�
�
=
�

(d)
2d

4-State
P
otts

h
L
�
�
=
�

(f)
3d

O
(3)

F
igure

2.3:
C
ollapses

ofrescaled
average

W
olff

cluster
sizehsi1c L

�


=
�
as

a
function

offield
scaling

variable
h
L
�
�
=
�

for
a
variety

of
m
odels.

C
ritical

exponents

,

�,
�
,
and

�
are

m
odel-dependent.

C
olored

lines
and

points
depict

values
as

m
easured

by
the

extended
algorithm

.
Solid

black
lines

show
a
plot

of
g
(0;x

)/
x
2
=
�
for

each
m
odel.



§18 Applying nonlinear fields to the XY model 129

§18. Applying nonlinear fields to the XY model

Thus far our numeric work has quantified the performance of existing tech-

niques. Briefly, we demonstrate our general framework in a new way: har-

monic perturbations to the low-temperature xy, or 2d O(2), model. We

consider fields of the form Bn(s) = hn cos(n�(s)), where � is the angle made

between s and the x-axis. Corrections of these types are expected to appear

due to the presence of the lattice or substrate in realistic models of systems

naïvely expected to exhibit Berezinskĭi–Kosterlitz–Thouless critical behavior.

Whether these fields are relevant or irrelevant in the renormalization group

sense determines whether those systems spoil or admit that critical behaviour.

Among many fascinating139,154,172–174 results that emerge from systems with

one or more of these fields applied, it is predicted that h4 is relevant while h6 is

not at some sufficiently high temperatures below the Berezinskĭi–Kosterlitz–

Thouless point.154 The sixfold fields are expected to be present, for instance,

in the otherwise Berezinskĭi–Kosterlitz–Thouless-type two-dimensional melt-

ing of argon on a graphite substrate.175

We made a basic investigation of this result using our algorithm. Since

we ran the algorithm at fairly high fields we did not choose reflections though

the origin uniformly. Instead, we choose the planes of reflection first by ro-

tating our starting spin by �m=n for m uniformly taken from 1; : : : ; n and

generating a normal to the plane from that direction as described in §16. The

resulting susceptibilities as a function of system size are shown for various

field strengths in Figure 2.4. In the fourfold case, for each field strength there

is a system size at which the divergence in the susceptibility is cut off, while
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Figure 2.4: Susceptibilities as a function of system size for a 2d O(2) model at
T = 0:7 and with (top) fourfold symmetric and (bottom) sixfold symmetric
perturbing fields. Different field strengths are shown in different colors.
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for the sixfold case we measured no such cutoff, even up to strong fields. This

conforms to the expected result, that even in a strong field the sixfold pertur-

bations preserve the critical behavior. Previous work has used Monte Carlo

to investigate similar symmetry-breaking fields and used a hybrid cluster–

metropolis method.139 To our knowledge, no application of a direct cluster

method has been applied to this problem before now.

§19. Directly measuring metastable scaling functions

Anyone who has even casually tried to measure some magnetization-related

property of the standard Ising model has had to reckon with an exceedingly

subtle aspect of equilibrium statistical mechanics. Record the magnetization

and susceptibility at a variety of temperatures and plot. At first glance, a

catastrophe: the susceptibility indeed increases as the critical point is ap-

proached from above, but continues to increase below it—and the magneti-

zation looks like random, near-zero gibberish! What has happened?

The answer lies in the fact that finite-size simulation of statistical mechan-

ics models with broken symmetry have behavior that is qualitatively different

from the same models in the thermodynamic limit. At any finite size, equilib-

rium follows typical ergodic arguments and the magnetization is zero, while at

infinite size a superselection rule kicks in and, at low temperatures, dynamics

will never bring a system from positive to negative magnetization.176

Though in practice we always simulate at finite size (unless very clever177),

we are usually interested in properties at infinite size. We therefore must

invent schemes for taking data found from simulations at finite size and re-
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liably and quickly extrapolate them to infinite size. For the Ising model’s

magnetic properties, a tradition formula is to take the absolute value of the

magnetization as the basis for a measurement. If we’re looking to measure

low-temperature properties at zero external field, this decision makes a lot of

sense: after all, the state with net up and that with net down should have

identical properties (once one is flipped to match the other), and therefore we

might as well sum twice as much data to help our averages converge well.

When the external field isn’t zero, this reasoning makes somewhat less

sense. Typical spin configurations that have a net magnetization against the

field should not resemble those with a net magnetization towards the field.

Therefore rather than take the average of values or absolute values of prop-

erties of microstates we shouldn’t expect to resemble those in the thermody-

namic limit, we should take averages only over microstates that we suspect

belong to the equilibrium state we wish to study. One could envision, in sys-

tems with subtle differences between states, an involved procedure for taking

a microstate at finite size and determining what phase it most likely belongs

to (machine learning?!), but for the Ising model and other systems where the

order parameter space is clearly partitioned into disjoint sectors by a symme-

try, a crude rule emerges with very little effort: associate a microstate with

whatever phase its magnetization aligns toward. This means, for the equi-

librium Ising model in a positive field: only average positive magnetization

samples!

What about the negative magnetization samples? Should we throw them

away? No! If we expect that Monte Carlo averages over samples with positive

magnetization at finite size should converge well to expectation values of a
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Figure 2.5: Two examples of parameter space E, order parameter space X,
and the connected components of order parameter space X. Left: The Ising
model has a scalar field. Negative (or zero) values correspond to negative
magnetization equilibria, while positive (or zero) values correspond to pos-
itive magnetization equilibria. The order parameter is the direction of the
magnetization, and the order parameter space is simply two points. The con-
nected components of this space is simply the space again. Right: A chiral
planar spin model might have a vector field in the plane, and a field that favors
different chiralities, like some vector spin glasses.178 The order parameter is
the direction of the planar spins and their chirality, making order parameter
space S1 � S1 or O(2). There are two connected components in this space, so
the set of connected components is again two points.

phase with positive magnetization in the thermodynamic limit, then we should

also expect that averages over samples with negative magnetization should

converge well to expectation values of a phase with negative magnetization in

the thermodynamic limit. But what significance should be afforded a negative

magnetization phase in a positive magnetic field? Traditionally, this is the

notion of the metastable state.

This reasoning lies behind most direct measurements of metastable prop-

erties of standard statistical models in numerics. With rare exception,179,180

studies making those measurements set up a numeric apparatus in the ex-

pected metastable state, then average quantities until the system has fallen
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out of this state into the true equilibrium.181–184 The alternative, which is

to sample with abandon and collect the samples into bins by magnetization

afterward, is inaccessible to Monte Carlo methods on all but the smallest

systems.179 That is, without Wolff in a field!

Wolff is marked for the unphysical nature of its updates. Unlike traditional

local Monte Carlo methods, whose updates make a good stand-in for true time

evolution and become virtually trapped in a single-magnetization state at zero

field when the system size becomes even moderate, Wolff rapidly samples back

and forth between opposing magnetizations, as in Figure 2.6 (top). In small

fields, this property persists (Figure 2.6 (middle)), and frequent samples from

the set of microstates whose properties we expect to converge on those of the

metastable state occur. However, this well is not infinite, and eventually the

sorry fact that the metastable configurations have vanishingly small proba-

bility compared to the stable ones independent of dynamics comes into play,

and no switching is seen (Figure 2.6 (bottom)).

Data taken within a regime where the switching happens offers four dif-

ferent possible estimates of the finite-size magnetization based on different

partitions of the empirical distribution, depicted in Figure 2.7. The first,

hMi, is the standard average over all states, which is so quickly abandoned at

zero field because it must be zero. The second, hjM ji, is the average over all

states of the absolute value, a usual fix at zero temperature. Finally, hMi>
and hMi< are the average over only microstates for the M > 0 and M < 0, re-

spectively. These measurements are plotted for a sample system as a function

of the applied field in Figure 2.8, with a detail of the region very close to zero

field in Figure 2.9. Notice in that second figure how, while the positive aver-
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Figure 2.6: Magnetization as a function of step for 50 steps of a Wolff
simulation of a 2D Ising model with 64� 64 spins at T = 2:23794 and (Top)
H = 0 (Middle) H = 0:001 (Bottom) H = 0:01.

age and absolute value average coincide at H = 0, the approach is markedly

different, and in particular the absolute value estimator does a shoddy job of

estimating the slope and curvature of the magnetization on its approach.

The differences become more striking when the estimated susceptibilities

are examined. Recall that the susceptibility—which is defined as the slope of

the magnetization with respect to H—can be written as the variance in the



136 Cluster Monte Carlo with on-site potentials §19

0

0:001

0:002

0:003

0:004

0:005

0:006

�4000 �3000 �2000 �1000 0 1000 2000 3000 4000

P
(M

)

M

H = 0
H = 0:001
H = 0:01

Figure 2.7: Probability distribution for the magnetization of a 64� 64 Ising
model at T = 2:23794 at three different external fields.

magnetization via a fluctuation–response relationship:
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This relationship is unchanged when the averages involved are restricted to

subsets of the configuration space, but it is changed when M is replaced by

jM j. Figure 2.10 shows the susceptibilities measured for the same system as a

function of field, defined by the fluctuations in the magnetization. Notice that
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Figure 2.8: Various finite-size measurements of the magnetization of a 64�64
Ising model at T = 2:23794 as a function of external field H.

while the true finite-size susceptibility and restricted-ensemble susceptibilities

correspond with the slopes of the magnetizations in Figure 2.8, the absolute

value susceptibility does not—the corresponding magnetization has zero slope

at the origin, but the susceptibility is not zero.

In all of these examples, some very interesting nontrivial behavior is hap-

pening in the negative field, positive magnetization ensembles. The magneti-

zation approaches zero around the region where the number of flipped samples

goes away, and the susceptibility appears nonmonotonic, eventually turning

over! While an investigation very far into the metastable region is unlikely

to be very fruitful, since the frequency of the appearance of the metastable
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Figure 2.9: Various finite-size measurements of the magnetization of a 64�64
Ising model at T = 2:23794 as a function of external field H, zoomed into the
region around H = 0.

samples vanishes, a shrewd use of finite size scaling to dance around this bar-

rier may provide insight about critical scaling functions much farther into the

metastable region than is currently known.

A first foray into a measurement like this can be seen in Figure 2.11,

which depicts the susceptibility of a 128�128 Ising model as a function of the

scaling invariants hjtj��� and Ljtj� . The typical universal scaling function is

found when the latter goes to infinity. Also shown are the first seven terms of a

divergent series for the susceptibility, which quickly and unphysically diverges

from the measured value in the, e.g., large field region because an essential
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Figure 2.10: Various finite-size measurements of the susceptibility of a 64�64
Ising model at T = 2:23794 as a function of external field H.

singularity exists at h = 0.∗ Even at this modest system size, the equilibrium

susceptibility converges to its infinite-size value well. Whether the same can

be said for the metastable susceptibility will require more careful analysis,

including an informed ansatz for the form of the scaling function in that phase.

Notice that at Ljtj� = 4 we are pushing up against the point where very few

metastable samples are being taken. Analyzing data like this, spread across

many system sizes, could begin to put bounds on the form of metastable

properties. Other models with disconnected order parameter spaces could

also be studied this way, e.g., the chiral Potts model using the geometric
∗An essential what?! See Chapter 4!
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Figure 2.11: The susceptibility �> of a 128� 128 Ising model as a function
of the scaling invariant hjtj��� for values of the scaling invariant Ljtj� . The
dashed line shows the sum of the first seven terms of a divergent expansion
for the susceptibility scaling function about zero field.187

cluster methods described in the next section, which might give insight into

metastable chirality in liquid crystals and other similar systems.185,186

§20. Conclusions

We have taken several disparate extensions of cluster methods to spin models

in an external field and generalized them to work for any model of a broad

class. The resulting representation involves the introduction of not a ghost

spin, but a ghost transformation. We provide a C++ library with example

implementations of all models described here. We provided evidence that al-
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gorithmic extensions deriving from this method are the natural way to extend

cluster methods in the presence of a field, in the sense that they appear to

reproduce the scaling of dynamic properties in a field that would be expected

from renormalization group predictions.

In addition to uniting several extensions of cluster methods under a single

description, our approach allows the application of fields not possible under

prior methods. Instead of simply applying a spin-like field, this method al-

lows for the application of arbitrary functions of the spins. For instance,

theoretical predictions for the effect of symmetry-breaking perturbations on

spin models can be tested numerically.154,159,160,188





CHAPTER III

CLUSTER MONTE CARLO WITH
BACKGROUND LANDSCAPES

In the previous chapter I discussed how fast cluster Monte Carlo algorithms

for general lattice models can be used in the presence of on-site potentials by

adding a new degree of freedom to the original Hamiltonian and then taking

modified expectation values on the new model. Throughout, the lattice aspect

of those models was at the forefront of our physics imaginary: the models

consist of degrees of freedom (“spins”) that occupy the sites of a graph (the

“lattice”) and interact via its edges (between “neighboring” sites). Though

this was intended, we need not restrict ourselves to that application. In this

chapter, I will describe how the same method can be used to construct cluster

algorithms for atomistic, colloidal, and other models defined by spatial degrees

of freedom interacting via arbitrary pair potentials.

In one sense this chapter will be a corollary to the previous one, since once

we make the formal correspondence between its language and spatial models

the technique follows immediately. However, in another sense this chapter will

discuss many details of implementation and simulation strategy that were less

relevant before, and so stands alone in its own right. After introducing the

correspondence, I will discuss several examples, strengths of the method for

143
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general atomistic simulation, subtleties in making an efficient implementation,

and speculative hope for insight into the glass problem. Though the validity

of the algorithms described here is shown and schematic techniques for their

efficient use are detailed, much of the work to compare their efficiency against

other methods is still ongoing.

§21. The formal correspondence

Consider a model of particles that exist in space, have some internal structure,

interact with each other, and interact with an energetic background. The ith

particle has a coordinate in ri 2 S, which describes its position in space

(center of mass, say). It also potentially has static properties �i 2 R (like

mass or radius) and dynamic properties �i 2 E (like orientation). The pair

interaction V : (S �R�E)� (S �R�E)! R between particles depends on

both their positions and their properties. Finally, the energetic background

U : S �R� E ! R also depends on all these properties. The Hamiltonian of

a model like this is given by

H =
X
ij

V
�
(ri; �i; �i); (rj ; �j ; �j)

�
+
X
i

U(ri; �i; �i) (3.1)

Here’s the trick: call X = S � E , G = (V;E) the complete graph on N

elements, i.e, V = f1; : : : ; Ng and E = ffi; jg j 1 � i � N; i < j � Ng, and

Zij [(ri; �i); (rj ; �j)] = �V �(ri; �i; �i); (rj ; �j ; �j)�
Bi[(ri; �i)] = �U(ri; �i; �i)

(3.2)
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It follows that for s 2 XN ,

H(s) = �
X

fi;jg2E
Zij(si; sj)�

X
i2V

Bi(si) (3.3)

which is precisely the form of (2.18) with bond and site dependence, which

don’t modify any of the conclusions of the previous chapter. While the graph

describing “neighboring” pairs is complete and any object therefore a “neigh-

bor” of any other, this is a reference to interaction neighbors, not positional

neighbors. Any two, e.g., spheres must be a neighbor because they have a

pair interaction, even if they are so distant in a particular configuration that

their pair interaction is zero. In practice, using neighbor-finding algorithms to

identify positional neighbors saves time by preventing the useless evaluation

of many zero-energy pairs.

We’re not quite done, though: besides identifying a ‘spin’ space and a

‘lattice’ graph, we need a symmetry group with sufficient structure to pro-

vide the basis for constructing clusters. Our ‘space,’ recall, is the product of

actual space and mutable particle properties: what are its symmetries? In

the absence of a background potential U , and if the dependence of the pair

potential on the mutable properties are sensible, then the relevant symme-

tries are the symmetries of space itself. If S = RD, then the symmetry group

is the Euclidean group. Since global rotations, translations, inversions, and

reflections are all symmetries of Euclidean space, they are also symmetries of

our Hamiltonian. Table 3.1 details several common examples.
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Space (S) Symmetry group Order-two elements

Real space (RD) Euclidean group Reflections, inversions, �
rotations

Discrete space (ZD) Coxeter group RD
Half-integer reflections,
inversions, � rotations

Torus (TD) Torus group
Translations & reflections
along axes, inversions, �
rotations

Sphere (Sn) Orthogonal group Reflections through origin, �
rotations

Table 3.1: Common single-particle coordinate spaces, their symmetry groups,
and member elements of order two.

§22. Lattice models at constant magnetization

When the state of the spins are fixed, traditional lattice models can be viewed

as varieties of lattice gas. The correspondence between the Ising model and

a hard-center lattice gas with neighbor attraction is a classic exercise.189 We

can use the relationship between these to make cluster moves with potentials

that preserve the net state of these models. Versions of this method without a

field were developed by Heringa and Blöte and have been used in other studies

under the name “geometric cluster algorithms.”190–193

Lattice gases live on a lattice, either infinite, e.g., ZD, or finite, e.g.

(Z=LZ)D. In either case, order-two symmetries of the space include reflec-

tions through half-integer planes orthogonal to any principal axis, � rotations

about half-integer sites, and inversions about half-integer sites. The model’s

spins have an internal state s, e.g., up or down, and interact via a pair inter-
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Figure 3.1: A 256 � 256
Ising model at its criti-
cal temperature and held
at constant magnetization.
The area enclosed by red
lines favors black spins over
white ones.

action like

V [(ri; si); (rj ; sj)] =

8>><>>:
1 ri = rj

�sisj kri � rjk = 1

0 otherwise
(3.4)

The external field can be any function of the lattice site, e.g., a fun pattern

as in Figure 3.1. The symmetry group element on the ghost site can be

represented by an integer-valued orthogonal matrix along with an integer-

valued translation.

A basic cluster flip is performed by picking a reflection at random and

a spin at random to seed the cluster. The spin residing on the site our seed

spin is destined to land will certainly also join the cluster, because the relative

change in their bond energy is infinite, and things progress from there. Notice

that in this language, simulating a depleted lattice, e.g., the Blume–Capel
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model, is natural. This formulation can be used to simulate models we could

not use clusters with in the previous section, because their pair potential was

asymmetric: the chiral Potts model has spins with a Z=pZ symmetry, which

does not have enough order-two elements to give ergodicity with ordinary

clusters, but simultaneous inversion of space and spin flips are symmetries

of the chiral Potts model with order two!194

However, a severe inefficiency arises quickly in this scheme. Consider the

seemingly trivial case of a trial move that lands a spin directly on top of

an identical spin. If we were so foolish as to waste our time making these

moves, what should happen is nothing: the net change in bond energy due

to simply exchanging the spins is zero, so the bond activation probability for

each neighbor should be zero. But that’s not what happens when we move

one spin at a time! When the seed spin leaves its original site, all bonds

whose energies were changed in the move have their probabilities evaluated,

both the very unhappy spin the seed landed on and the spins neighboring

both sites! A spin that was energetically happy with its neighbor now sees

a void, and the resulting change in bond energy may result in an activated

bond and a cluster formation that doesn’t change any relative configuration

of the spins—what a calamity!

The solution is to construct joint moves. If at any time during the course

of cluster formation a spin is asked to move to a place that frustrates an

infinite energetic bond, rather than adding that bond to the queue for later

processing, the degree of freedom at the other end of the bond is included in

the elementary step. For a lattice gas, this process is fairly simple, and in fact

was just the default procedure when the algorithm without a field was first
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introduced: reflections that take spins on top one another just swap the spins,

and all the bonds of both spins are considered for activation with an energy

change equal to the net change for the swap.

This procedure preserves detailed balance because the construction of the

joint moves is equally likely in the forward and backward processes; if a spin at

site a impinged on one at site b in the forward process, the spin at site b would

do so for site a in the reverse. And once the joint move is constructed, it’s as

if we are working with a strange degree of freedom in the usual course of the

algorithm; an Ising model embedded into our original model in a particularly

strange but nonetheless valid way.

Assessment of the efficiency of geometric cluster algorithms on lattice mod-

els without a field indicate a similar speedup that ordinary cluster algorithms

offer, measuring z ' 0:2 for the 2d Ising model.192 A careful study of the

efficiency effect of adding a field using the method described here has not yet

been made, but preliminary results like those in Figure 3.2 indicate that, at

least for modestly strong fields, the algorithm is more efficient in a field near

the critical point than at the critical point. Eyeballing the data in that one-

system-size plot, it looks as though the efficiency falls off with a logarithm

instead of a power law as in Figure 2.2, though this is a conclusion drawn

from extremely limited data.

§23. Hard spheres, soft spheres, & other particles

Hard spheres are one of the most useful simple models in modern statistical

physics, exhibiting all kinds of interesting structural and nonequilibrium tran-
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Figure 3.2: Autocorrelation times measured for a 32 � 32 2d fixed-
magnetization Ising model at its critical temperature and in a field U(x) =
H cos(2�x=L) as a function of H.

sitions. Spheres live in continuous space, either infinite, e.g., RD, or finite,

e.g., TD. The order-two symmetries of space are again reflections, inversions,

and � rotations, now about any point. Hard spheres have a radius s, and pair

interaction of the form

V [(ri; si); (rj ; sj)] =

(
1 kri � rjk=(si + sj) < 1

0 otherwise
(3.5)

The symmetry group element on the ghost site can be represented by a real

orthogonal matrix and a real translation.

Because the only energies at play are infinity or zero in the absence of an
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external potential, all microstates are either permitted with equal probability

or not regardless of temperature. In fact, because all probabilities are zero and

one, all the fancy tuning we did to preserve detailed balance is unimportant

for a purely hard system, and one can dispense even with the need to use

global symmetry transformations of order-two; any global transformation,

e.g., small rotations or translations, are valid: for any transformation and

any seed, the forward and reverse probabilities are always one, the energies

of the initial and final states are always the same, and detailed balance is

guaranteed. The formulation of a cluster algorithm for hard spheres in the

absence of potentials was first done by Dress and Krauth and for soft spheres

by Liu and Luijten, and both have been used in other studies.195–199

Hard spheres with hard external potential (also infinite or zero) lend one

of the clearest ways to intuit what is going on with the cluster algorithm.

Pick a seed, and try to move it using a global symmetry transformation. If it

hits anyone, move them with the same transformation. Keep going until no

one else gets hit. In the worst case, everyone moves but the state is still valid

because the transformation was a symmetry of space. Otherwise, some subset

of spheres is now oriented differently with respect to the rest. The addition of

a hard external potential, like a box, doesn’t change this picture at all: what

is a hard box if not a big, weirdly shaped hard sphere? If one of the spheres

hits the box, transform the box as well—the same considerations apply. A

demonstration of these steps is shown in Figure 3.3. Studies have predicted

the container-shape dependent free energy of fluids, and this method could

provide a direct way to measure these.200

A more useful demonstration of this method is to simulate a common lab-
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Figure 3.3: Hard spheres in a hard box. On the top left, they start in a
legal configuration. On the top right, a cluster flip is started using the red
seed and the red reflection plane. On the bottom left, the final positions of all
transformed objects ore shown in blue, while those that were not transformed
remain black. Having no further overlaps, the bottom right leaves the system
in a new state.
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oratory situation, which is spheres in a gravitational potential. Recent work

has studied the phase boundary between solid, liquid, and hexatic states201

of approximately hard spheres on slanted planes, and the cluster method with

a field, perhaps along with other Monte Carlo steps, is a good candidate for

speeding up simulations of such a set-up. Similar studies have been done

for spheres in the absence of a field using event-chain Monte Carlo.202–204 A

snapshot of a simulation of hard spheres in a gravitational potential can be

seen in Figure 3.4.

Soft spheres may seem like a corollary at this point, but in practice there

are new complexities that make them worth addressing all on their own. A soft

sphere model is defined by a pair potential that is a function of the distance

between the spheres relative to their radius, or

V [(ri; si); (rj ; sj)] = v(kri � rjk=(si + sj)) (3.6)

All the same considerations apply as for hard spheres. However, because soft

spheres are often somewhat attractive, the same consideration that led to

complexity in the choice of elementary steps for lattice models arises here: if

we very nearly swap two spheres with each other in a move that would, in

isolation, leave their close neighbors energetically happy, how do we ensure

that their neighbors’ bonds are not activated by the difference between their

presence and the void left in the intermediate step?

Unlike in lattice gases, we don’t necessarily have a deterministic procedure

for this, since set of cases where one sphere lands exactly on top another

should be vanishingly small if we hope to mix the system quickly. How can
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Figure 3.4: 10 000 hard spheres equilibrated(?) in a periodic box in a grav-
itational field using only cluster flips. Their hue and opacity is given by
the argument and magnitude, respectively, of the hexatic order parameter
	i =

1
Ni

P
hiji ei6�ij , where Ni =

P
hiji 1 is the number of nearest neighbors of

particle i and �ij is the angle the vector ri�rj makes with the horizontal. The
argument corresponds with the orientation of the local hexagonal crystal, and
the magnitude corresponds roughly with how closely the particles’ neighbors
are to being close-packed.
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we dynamically decide, when a sphere is about to be moved, whether to

associate one near its destination with the move inherently or not? There

turn out to be many schemes for doing this, but we will describe a simple one

here, with an eye on expanding this in the future.

Here is the scheme: say you have popped a sphere from the stack and

are now about to transform it to a new place. Before you do, evaluate the

energy change that each of the affected bonds will experience. If the largest

of these changes is �E, make instead a joint move incorporating the sphere

on the other end of the bond with probably maxf0; 1 � e���Eg. One can

see that this preserves detailed balance the same way that normal cluster

construction does. Any bond in a cluster that is activated as part of one of

these joint moves remains the maximum energy bond for the same symmetry

transformation in the ensuing configuration, and the probability of it being

activated in the reverse direction is equal. Any bond in a cluster that is tried

but not activated as part of a joint move will result in the new system in a

bond with unfavorable energy �E and will be activated for a joint move with

probability zero in the reverse process. It therefore follows that for such a

system,

Pforward

Preverse
=

1� (1� e���E)
1

= e���E ; (3.7)

which is precisely the relative Boltzmann factor associated with the increased

bond energy as a result of the forward process. It is important that, if a

bond is chosen for use in the formation of a joint move and the move fails

to be constructed, that bond not be evaluated in the normal Wolff process,
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since the probability of its second failure adds a second factor of e���E to the

total ratio of forward to reverse probabilities for the cluster flip; no double

jeopardy!

Our choice to only built joint moves in pairs, and for those pairs to be con-

structed only from the bond with the largest energy change, were somewhat

arbitrary, and in fact more complicated schemes may result in more efficient

joint moves.195 This sort of consideration is likely very important if we hope

to use techniques like cluster flips at the densities encountered in solid and

glassy state problems.

Dimers & more

Dimers are made from pairs of spheres joined together with some overlap.

They’re aren’t particularly special for the purposes of this example, except

that attempting to compute the overlap of two dimers is easy (it’s the same

as computing the overlap of four spheres) while computing the overlap of two

ellipses is difficult.

The treatment of dimers is only somewhat more complicated than that of

spheres. The position variable of the dimer is the same, and it has internal

properties like a radius or offset between the component spheres, but it also

has a dynamic property: its orientation. Symmetry transformations on space

like a reflection transform both the positions of the dimers in a system, and

their orientation.

The internal degrees of freedom of the dimer present a challenge for er-

godicity when simulated with periodic boundary conditions. Since the only

symmetries of the torus are � rotations and reflections along the principal
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axes, no global symmetry transformation exists than can tilt a dimer any

way but at right angles. Therefore, cluster dynamics in periodic boundary

conditions cannot by itself explore a phase space that includes internal ori-

entational degrees of freedom. Previous studies using cluster algorithms on

dimers and other asymmetric particles, like cubes, have been restricted to

lattice sites, or to keeping the faces parallel.205–207

If the torus is out of the picture for an ergodic cluster algorithm for dimers,

free space doesn’t necessarily look much better: the dimers can just scatter to

the wind! Luckily, we have the ability to apply confining fields, which allow

control over, e.g., the density of a simulation, with all the global symmetries

of free space to work with. Examples of dimers relaxed in a linear potential

both on periodic boundary conditions and in free space are shown in Fig-

ure 3.5. One could also simulate these systems on the surface of a sphere,

where reflections across planes through the center of the sphere do provide

ergodicity, though for dimers and other crystals the curved space would lead

to topological defects, and has previously been seen to affect glassy proper-

ties in colloidal simulations.208,209 However, anisotropic particles confined to

a cell with boundaries also have interesting phases in their own right, and this

algorithm is uniquely suitable for studying them.210

§24. The choice of reflections & other tweaks

Much more so than in the previous chapter, the freedom to choose the Ising

embeddings with which to define clusters is extremely important in the ef-

ficient simulation of atomistic models. For a dense system of stiff particles,
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Figure 3.5: Dimers! (Left) An attempt to relax dimers in a gravitational
field with periodic boundary conditions. (Right) Relaxing dimers in a radially
symmetric ‘gravitational’ field in free space.

haphazard choice of reflections will lead to clumsy moves in which the whole

system is pointlessly flipped this way and that without actually decorrelating

it from its starting point.

When envisioning moves that will lead to fast mixing, it helps to think

of the types of particle configurations we expect to see, and then push up

to the limits allowed by the constraints of detailed balance. Recall, as per

the previous chapter, that detailed balance requires that the distribution by

which a transformation is chosen be invariant under the transformation, so

that it is equally probable to choose the same transformation in the reverse

process. Previously, we used a distribution of reflection planes in the O(n)

models that was only a function of the absolute angle between the plane and

the seed spin. Once the seed spin is flipped, it is equally likely we will choose

the same plane to go in the reverse direction, as the absolute angle between
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the flipped seed and the plane has not changed.

In dense simulations of solids, liquids, hexatics, or glasses, particles are

locally close-packed or nearly so. Moves which insert a seed directly between

two or more nestled particles are unlikely to lead to new configurations. A

good scheme for seeds, then, is to pick a pair of particles and nearly swap

them. This can be done either by picking an inversion point almost directly

between them, or (if in real space) by picking a reflection plane that nearly

brings one to the other. When the amount by which the inversion or reflections

are perturbed from direct swaps is properly tuned to neither be too large nor

trivially small, these pair seeds dramatically improve the situation compared

to that of random transformations of random seeds. A systematic procedure

for coming to an optimal or even nearly optimal tuning is ongoing work.

One might be tempted to continue this trend in a direction that favors

local pairs, since nearly swapping distant pairs is unlikely to align with, e.g.,

a lattice direction. Unfortunately, making certain pairs more probable based

on dynamic properties like their relative position is almost always illegal. The

problem is subtle—after all, the distance between any pair of particles that

are both transformed by a global symmetry is invariant under that transfor-

mation. But unless every other particle is also transformed (which we don’t

want anyway), the distances between other pairs of particles is changed, and

therefore also is the normalization for the distribution of possible reflection

planes! Consider a system of three particles, two that begin nearby but both

farther from a third. If the probability of choosing a pair seed is proportional

to the distance between that pair, then the two that begin nearby are more

likely to be chosen as a seed than the pairs consisting of either with the dis-
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tant third. Once that nearby pair is transformed, the move could result in one

member of that pair ending very close to the formerly distant third particle.

Our procedure would then dictate that the pair consisting of that particle and

the newly close third one be more probable to seed a cluster in the reverse

process than the original transformed pair, spoiling detailed balance.

Some freedom does remain, though, and in a sense you can effectively favor

local moves. Once a pair of particles is selected at random to seed the cluster,

the amount by which their near exchange is perturbed can be distributed

by a function of the distance between them, or their relative orientation, or

anything else invariant under the transformation. Seed pairs within a certain

proximity can be assigned larger perturbations, for instance, or those outside

it can be left alone.

These considerations also apply to other efficient seed transformations.

Another, simpler, example is to simply nudge a particle to a position near

its current one by picking a reflection or inversion nearby its center. If the

reflection plane or inversion point is made to preserve the value of the external

field, even if only for that seed particle, then the magnitude of the nudge can

depend on the height in that field. Considerations like this may be impor-

tant for large-scale simulation of sedimented particles, where denser regions

at lower points merit smaller perturbations from their current position than

rarefied regions higher up.
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§25. Potential relevance to swap Monte Carlo

Cluster algorithms for particles resemble in many ways the hugely successful

swap algorithms that have recently revolutionized the computer modelling of

structural glasses.211–217 These computer glasses are formed by equilibrating

soft spheres with quenched polydispersity at extremely low temperatures and

high densities, where the timescales of any traditional dynamics diverge. The

dynamics of glasses in this regime involves particles trapped in extremely deep

wells, and equilibration becomes impossible on computer timescales.

Swap is a fairly simple idea. Every so often, pick a pair of differently sized

particles in the system, and try to swap them, with a probability of accepting

the swap that corresponds to the usual Metropolis step for the energy change

the swap would create. If the rate of these swap steps compared to regular

evolution is carefully tuned (sound familiar?), a fantastic speedup occurs and

equilibration timescales reduce by many orders of magnitude.

With an appropriately chosen reflection plane or inversion point, cluster

moves are alike to swap: two particles may have their positions exchanged

exactly. Metropolis swap would accept the change with probability

exp

�
� �

X
b

�Eb

�
(3.8)

for bond energy changes �Eb, while a cluster swap would accept the change

as being the end of the cluster (and therefore resulting in the same end state
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Figure 3.6: An example of nontrivial differing behavior between a cluster
‘swap’ and a true swap step with some soft, polydisperse spheres. (Left) The
red spheres about to be swapped by reflection over the red line. (Center) Their
swap (now blue) seeds a cluster containing all of the red spheres. (Right) A
new equilibrium configuration of spheres is reached.

as the ordinary swap) with probability

exp

�
� �

X
b;�Eb>0

�Eb

�
(3.9)

These probabilities coincide if all bonds are happy with the change or none

of them are, but in intermediate cases the cluster swap is more likely to

abandon that particular microstate than the metropolis swap. However, the

way that the cluster method abandons the microstate is completely different:

it keeps the change but activates unhappy bonds adjacent to the swapped

particles, potentially swapping more than just the original two. In the worst

case scenario, the swap really is ‘rejected’ because all particles are added to

the cluster, and the system is left where it started at a much higher cost than

a metropolis rejection step.

It’s possible that—at the high densities and with the polydispersity that

are used in these glass simulations—cluster flips will never produce nontriv-
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ial changes without enormous cost. But some models of the glass transition

indicate that there is a relevant length scale over which cooperative rearrange-

ments occur,218 and inducing dynamics at those length scales seems like some-

thing a cluster-like method could accomplish. It is also established that the

geometric clusters moves describe here outperform ordinary Monte Carlo for

high polydispersity, just like swap does.196,199,207,219,220 Would it require very

careful tuning? Definitely. Perhaps even elaborate cluster-shaping steps like

those discussed briefly at the end of the previous section are necessary. But

the extension of these methods to contribute to the equilibration of computer

glasses is something we are looking into.

§26. Pressure and chemical potential

So far we have embedded Ising models into a lot of strange places, but this

section may well take the cake. Here, we will describe how a similar trick to

that used previously—introducing a new degree of free that restores a global

symmetry to a symmetry-broken model—can be used to describe ensembles

of polydisperse particles at constant pressure. If the method implied by the

formal extension described was efficient, it would be a boon for cluster simula-

tions, since systems of constant pressure are more often of interest than those

at constant volume. The method is not a panacea, though: the polydispersity

is a necessary feature, and it is an annealed polydispersity at that—not likely

to exactly coincide with the common soft-sphere models of glassy physics.

Consider a model of soft spheres with pair potential

V [(ri; si); (rj ; sj)] = v(kri � rjk=(si + sj)) (3.10)
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where r 2 RD is the position and s is the radius. Suppose further that the

spheres are confined to a potential UL(r) of characteristic size L, e.g., the side

lengths of the box. This model, in isolation, has a global symmetry of a kind

we haven’t discussed yet: scale invariance. That is, a configuration of particles

f(r; s)g and box size L has the same energy as one with f(�r;�s)g and box

size �L for any constant �. If we allow the particle and box size to be dynamic

degrees of freedom, this model isn’t very interesting: entropy dictates the box

blows up to infinity and the particles spread out into a rarefied gas with no

characteristic size.

We therefore want to constrain both the box size and the particle sizes.

The former is done by the pressure, which contributes a term pLD to the

Hamiltonian. The latter is done by a term of the form

X
i

f(si) (3.11)

with f(s) = ��(s � �s) for monodisperse spheres but could be taken to be

Gaussian, e.g., f(s) / e�(s��s2)=�s2 . Both of these terms break the scale in-

variance described previously. We will restore it, as before, by introducing a

new degree of freedom into the system: a positive real number � that enters

the Hamiltonian like

H =
X
ij

V [(ri; si); (rj ; sj)] +
X
i

UL(ri) + p(�L)D +
X
i

f(�si) (3.12)

and where the action of a dilation by � of space on � is defined by � 7! �=�.
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This ghost variable couples to every sphere with pair potential

~V [(ri; si); �] = f(�si) (3.13)

and to the other ghost variable associated with the confining potential like

p(�L)D.

We can imagine what a cluster ‘flip’ using this ghost site would be like.

Starting with a seed particle, we pick a dilation of space about a point near

the particle. The particle grows a bit and translates slightly, causing it to

potentially bump other particles in its vicinity, that also dilate. If the process

goes too far and too many particles have ventured from their characteristic

size, the ghost site is triggered and the scale at which all particles and the

box itself are measured against is increased.

This is where the crank we’ve been turning to produce algorithms hits a

snag: the symmetry group whose transformations would yield changes in the

particle and system sizes—the multiplicative group of positive real numbers—

does not have any elements of order two.∗ This means that rejection-free

clusters of the type we have been constructing cannot be formed. It helps at

this point to review why: when the bond probabilities are tuned appropriately,

the probability of the forward and reverse process have a ratio

P (s! s0)
P (s0 ! s)

=
e�H(s0)

e�H(s)

Y
fi;jg2C

pr(si; sj)

pr�1(s0i; s
0
j)

(3.14)

where C is the set of activated bonds that make up the interior of the activated
∗If only particle sizes were complex. . .
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cluster. Every term in the product usually vanishes, since for a group element

of order two r = r�1, and since every pair s0i and s0j that are both members

of the cluster have not changed their bond energy the ratio is one. If r 6= r�1

we can no longer assume this to be true, and detailed balance would not hold

if we attempted to build clusters and ‘flip’ them without rejection. We can

still build clusters, however, if we only accept them with a relative probability

that cancels out this ratio. So what is that acceptance rate?

For bonds between regular particles, the forward acceptance probability is

p�[(ri; si); (rj ; sj)] = 1� exp

�
� �(V [� � (ri; si); (rj ; sj)]� V [(ri; si); (rj ; sj)])

�
= 1� exp

�
� �

�
v

�k�ri � rjk
�si + sj

�
� v

�kri � rjk
si + sj

���
(3.15)

while the reverse is

p��1 [(r0i; s
0
i); (r

0
j ; s

0
j)] = 1� exp

�
� �(V [��1 � (r0i; s0i); (r0j ; s0j)]� V [(r0i; s

0
i); (r

0
j ; s

0
j)])

�
= 1� exp

�
� �

�
v

�kri � �rjk
si + �sj

�
� v

�kri � rjk
si + sj

���
= p�[(rj ; sj); (ri; si)]

(3.16)

Here we see another interpretation of why transformations of order two are

so important: neither the pair potential nor the activation probability are

symmetric under exchanging the group action in their arguments. However,

this offers us our rejection step. If, every time a bond as activated because
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site i has been transformed and modified the energy of its bond with site j,

we stop the cluster process and throw it away with probability

1�p�[(rj ; sj); (ri; si)] = exp

�
��

�
v

�kri � �rjk
si + �sj

�
�v
�kri � rjk

si + sj

���
(3.17)

then the offending factor is cancelled in the ratio of forward to reverse prob-

abilities. This is the probability that the bond wouldn’t have been activated

because site j had been transformed and modified its energy with site i. This

probability is one if we have activated a bond because of site i’s transformation

that would not have had its energy changed because of site j’s transformation,

which can certainly happen, as in Figure 3.7. That our cluster growth is can-

celled so frequency is bad news for this idea, but there is a degree of freedom

remaining: the exponential factor in all of the activation probabilities can be

freely scaled by some constant 0 < a � 1. If a is taken to be relatively small,

we will accept more bonds and need to evaluate this probability more often,

but it will no longer be rejection-definite.

Whether this strange formal use of the ghost site idea performs in ac-

tual simulation comparably to existing methods for annealed polydispersity

at constant pressure is unknown. This exploration for now is a demonstration

on how important the existence of order-two transformations is for the cluster

method—rejection steps are much easier to construct when the symmetry is

broken instead!
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Figure 3.7: A demonstration of the asymmetry of dilation. (Left) The start-
ing configuration of two spheres. (Center) If the red sphere is dilated with
respect to the origin by a factor 1:5, it intersects the blue sphere and their
relative energies change. (Right) If the blue sphere is so dilated, the spheres
do not intersect and their relative energy remains the same.



CHAPTER IV

CRITICAL DROPLETS & SCALING

Scaling and the renormalization group usually focus their attention on contin-

uous phase transitions. This makes sense, because the emergent scale invari-

ance at continuous phase transitions requires their use to make quantitative

predictions. Proportionally less attention has been paid to scaling implica-

tions in the vicinity of abrupt transitions, which do not need scaling machinery

to describe. However, abrupt transitions do not always occur nicely separated

from scale-invariance. In the most canonical model of both an abrupt tran-

sition and a critical phenomenon, the two are nestled up against each other

where the abrupt separatrix merges into the critical point.

The Ising model is the canonical example of a system with a continuous

phase transition, and the study of its singular properties marked the first suc-

cess of the renormalization group (rg) method in statistical physics.222,223 Its

status makes sense: it’s a simple model whose continuous phase transition

contains all the essential features of more complex ones, but admits rg meth-

ods in a straightforward way and has exact solutions in certain dimensions

and for certain parameter restrictions. The Ising critical point is not simply
∗Portions of the material of this chapter were posted online in J Kent-Dobias and JP

Sethna, “Essential singularities in universal scaling functions at the Ising coexistence line”,
(2017), arXiv:1707.03791v2 [cond-mat.stat-mech].
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a continuous transition: it also ends a line of abrupt phase transitions ex-

tending from it at zero field below the critical temperature. Though typically

neglected in rg scaling analyses of the critical point, we demonstrate that the

strange and subtle analytic properties of the abrupt transition well-describe

the universal scaling functions of the Ising model in a field, and develop a per-

turbative approximate form for those scaling functions that should converge

better than any analytic approximation near the abrupt transition line.

§27. Metastability and essential singularities

Rg analysis predicts that the singular part of the free energy per site F as a

function of reduced temperature t = 1�Tc=T and field h = H=T in the vicinity

of the critical point takes the scaling form F (t; h) = jtj2��F(hjtj���) for the
low temperature phase t < 0.189 When studying the properties of the Ising

critical point, it is nearly always assumed that the universal scaling function

F is analytic, i.e., has a convergent Taylor series. However, it has long been

known that there exists an essential singularity in F at zero argument, though

its effects have long been believed to be undetectable by direct thermodynamic

measurements,224 or simply just neglected.225–232 With careful analysis, we

have found that assuming the presence of the essential singularity is predictive

of the scaling form of, for instance, the susceptibility and magnetization.

The provenance of the essential singularity can be understood using the

ideas of critical droplet theory for the decay of an Ising system in a metastable

state, i.e., an equilibrium Ising state for T < Tc, H > 0 subjected to a small

negative external field H < 0. The existence of an essential singularity has
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also been suggested by transfer matrix studies,187,233–236 rg methods,237,238

perturbative conformal field theory,239,240 and direct study of the partition

function.241 A different kind of essential singularity is known to exist in the

zero-temperature susceptibility.242–247 It has long been known that the decay

rate � of metastable states in statistical mechanics is often related to the

metastable free energy F by � / ImF .248–252

‘Metastable free energy’ can be thought of as either an analytic contin-

uation of the free energy through the abrupt phase transition, or restriction

of the partition function trace to states in the vicinity of the local free en-

ergy minimum that characterizes the metastable state. We’ve already seen

an empirical definition of metastable properties in §19 of this very thesis! In

any case, the free energy develops a nonzero imaginary part in the metastable

region. Heuristically, this can be thought of as similar to what happens in

quantum mechanics with a non-unitary Hamiltonian: the imaginary part de-

scribes loss rate of probability that the system occupies any ‘accessible’ state,

which corresponds to decay.

Critical droplet theory posits that the metastable state decays when a

domain of the equilibrium state forms whose surface-energy cost for growth is

outweighed by bulk-energy benefits. There is numerical evidence that, near

the critical point, these droplets are spherical,253,254 and we will assume that

we are in a regime where lattice effects that would make the droplets, e.g.,

square-like are not relevant. One can see the following argument in the context

of a course-grained theory.

The free energy cost of the surface of a spherical droplet of radius R is

�SdR
d�1 and that of its bulk is ��M jHjVdRd, where Sd and Vd are the
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surface area and volume of a (d � 1)-sphere, respectively, �M is the change

in magnetization between the equilibrium and metastable states, and � is the

surface tension of the equilibrium–metastable interface. The critical droplet

size is found by minimizing the change with respect to R, with

0 =
@�E

@R

����
R=Rc

= (d� 1)�SdR
d�2
c � d�M jHjVdRd�1

c (4.1)

giving the critical droplet radius

Rc =
d� 1

d

Sd
Vd

�

�M jHj (4.2)

The free energy of the critical droplet is then given by substituting Rc for R

in the expressions above, or

�Ec =

�
Sd�

d

�d� d� 1

Vd�M jHj
�d�1

(4.3)

As the metastable field is brought to zero, the size of the droplet required to

collapse the state diverges, as does the free energy cost of forming it.

The previous analysis amounts to solving a mean-field and coarse-grained

picture, where droplets are little uniform spheres in a uniform background

with infinitely thin boundaries. Introducing an interface thickness complicates

the picture by making the energy contribution of both the bulk and surface

have more detailed R dependence,255 but in the limit of small field these

introduce analytic corrections to Rc and �Ec and don’t affect the singular

behavior in jHj.
The addition of fluctuations has the possibility of changing the picture dra-
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matically. First, it is reasonable to suspect that, near the critical point, the

shape of critical droplets would deviate from circular and instead have some

fractal structure. The introduction of a fractal bulk and surface dimension to

the droplet idea above for db�ds 6= 1 would change the singularity of �Ec in

jHj. However, numeric evidence both directly measuring the imaginary free

energy using transfer matrix methods253 and indirectly by measuring the de-

cay of the metastable state256,257 find close agreement between the predictions

of the spherical theory and data.

A second effect of fluctuations is to give the critical droplet a characteristic

entropy independent of the entropy associated with the equilibrium state it

contains in its bulk. The principal contributions to this entropy are from

zero modes of the droplet. First, there is an entropy associated with the

position of the droplet, which is present event without fluctuations but is

independent of the droplet size, and so doesn’t affect the height of the free

energy barrier as a function of H. Second, there is an entropy associated

with long-range fluctuations of the droplet surface. These do depend on Rc

and therefore H, and their influence can be found by computing the partition

function for a field theory of the surface degrees of freedom in the vicinity

of the spherical droplet solution, following instanton methods.258 The result

gives �Sc � b logRc, where b = (d � 3)d=2 for d = 2; 4 and b = 7=3 for

d = 3.258,259 This gives a total free energy cost for the droplet of the form

�Fc = �Ec � T�Sc (4.4)

Droplet theory then predicts an asymptotic decay of the metastable state as
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following an Arrhenius form

� = �0e
���Fc = �0e

�Sce���Ec (4.5)

In the decay rate, the singularity in Ec as a function of jHj becomes an

essential singularity. Making the association between the decay rate and an

imaginary component of the free energy, we see the emergence of an essential

singularity in the free energy as well.

§28. Scaling considerations

Though we assumed in the previous section that we were working close enough

to the critical point for droplets to be spherical, it wasn’t strictly necessary

that we be near the critical point. The evidence for nearly spherical droplets

is maintained in the square lattice 2d Ising model down to nearly half of

Tc.253 However, we will now fix our attention to the critical region, and invoke

many of the scaling properties of the Ising fixed point to work the imaginary

free energy above into an ansatz for the asymptotic form of the free energy’s

universal scaling function, ignoring corrections to scaling.

As the critical point is approached from below, both the magnetization and

the surface free energy vanish with power laws in the reduced temperature

t, multiplied by universal scaling functions of the invariant hjtj���.∗ They
∗For now, we will suppose we are sufficiently close to the critical point to take ut ' t

and uh ' h.
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therefore have the form

�=T = jtj�S(hjtj���)

M = jtj�M(hjtj���)
(4.6)

Asymptotically close to the abrupt transition, the metastable magnetization is

equal to minus the equilibrium magnetization and�M ' 2M . Combined with

the exponent relations � = ��+
+2�,260 2 = �+2�+
, and �+�(1+�) =

2,189 the critical droplet radius can be brought to the form

Rc =
d� 1

2d

Sd
Vd

T jtj�S(hjtj���)
jtj�M(hjtj���)jHj

= jtj�� d� 1

2d

Sd
Vd

S(hjtj���)
M(hjtj���)(�hjtj

���)�1

= jtj���R(hjtj���)��1
(4.7)

which suggests a critical scaling form for the droplet size. Notice that Rc is

proportional to the correlation length � = ��0 jtj�� for fixed hjtj���. Upon

substitution into the critical energy, we have

�Ec =

�
SdT jtj�S(hjtj���)

d

�d� d� 1

2Vdjtj�M(hjtj���)jHj
�d�1

= T
Sdd(d� 1)d�1

(2Vd)d�1dd
Sd(hjtj���)

Md�1(hjtj���)(�hjtj
���)�(d�1)

= T
�G(hjtj���)��(d�1)

(4.8)

for the free energy change due to the critical droplet. Based on the way we

have defined the scaling function R and G, and since M and S go to nonzero

values as the field goes to zero, these new scaling functions have expansions
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of the form

R(X) = �R0X +O(X2)

G(X) = �BX +O(X2)

(4.9)

where the linear coefficients are defined by

R0 =
2d

d� 1

Vd
Sd

M(0)

S(0)

B =
2VdM(0)

d� 1

�
d

SdS(0)
�d=(d�1) (4.10)

Neither of these are universal, since the scaling functions are only universal

up to a constant factor, but the combination

B

R0�
�
0

=

�
d

Sd(�
�
0 )

d�1S(0)
�1=(d�1)

(4.11)

is universal, since S(0)(��0 )d�1 is a universal amplitude ratio.261 The critical

droplet size written in units of the correlation length and taken to the (d�1)th
power over the critical droplet energy in units of temperature

(Rc=�)
d�1

�Ec=T
'
�

B

R0�
�
0

�d�1
(4.12)

is likewise universal.

Based on the considerations in the last section, the imaginary part of the

free energy takes the form

ImF / � = �0e
��Fc=T = ~�0R

b
ce
�G(hjtj���)�(d�1)

(4.13)
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If the imaginary part of the free energy is part of the universal scaling around

the Ising critical point, it must scale like jtj2��, and we therefore suspect that

it ultimately can be written

ImF / jtj2��+b�Rb
ce
�G(hjtj���)�(d�1)

/ jtj2��R(hjtj���)�be�G(hjtj���)�(d�1)

= jtj2�� ImF(hjtj���)

(4.14)

where we have defined the scaling function

ImF(x) = A�(�x)R(x)�be�G(x)�(d�1)
(4.15)

where � is the Heaviside theta function, required for the extension to all

values of x. Expanding in x, we arrive at the familiar form of the essential

singularity262,263

ImF(x) = A�(�x)
h
R0x+O(x2)

i�b
exp

�
�
h
�Bx+O(x2)

id�1�
(4.16)

In 2d, the relative coefficient for the O(x2) term is known from perturbative

conformal field theory.239

§29. On ‘simplest’ scaling forms

In the following, we are going to take (4.15) and, assuming that it correctly

captures the singularity at x = 0, use it to write down approximations of the

real free energy that likewise capture that singularity. In working with this

form, however, we will want to make truncations and simplifications of the
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arbitrary functions it is built from. It is therefore worth investigating what

effect such truncations and simplifications have on the singularity.

We will make this explicit in the following sense: we will say that a trun-

cation Im ~F of the free energy preserves its singular structure if there exists a

near-identity analytic transformation ~x(x) = x+O(x2) such that

Im ~F(~x(x)) = ImF(x) (4.17)

With such a transformation, one could consistently take the imaginary part of

the free energy, simplify it by transforming the coordinates, bring the simpli-

fied version through, e.g., a Kramers–Kronig transformation and then invert

the coordinate transformation on the other side to recover the untruncated

version.

One could choose such a function to either be ~x(x) = G(x)=B or ~x(x) =

R(x)=R0 to greatly simplify the form of the free energy, but both cannot be

true at once. Taking the former, which ensures only one singular exponential

factor is present in the scaling form and not d� 1 of them, provides

Im ~F(~x) = AR(BG�1(~x))�be�1=(�B~x)d�1
= A ~R(B~x)�be�1=(�B~x)d�1

(4.18)

for a function ~R. Excepting the singular exponential factor, this has a series

expansion of the form

~R(X)�b = (�X)�b
1X
n=0

rnX
n (4.19)

We will start by truncating this series to its smallest order, but we should ex-
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pect corrections that come from terms like Xn�be�1=(�B~x)d�1
. More informed

corrections might come from considering more of the free energy’s analytic

properties in the vicinity of the abrupt transition line.264

§30. Recovering the real free energy

Griffith’s analyticity guarantees that the real part of F is analytic in the

upper complex plane of its argument,265 and therefore the real part of F in

the equilibrium state can be extracted from this imaginary metastable free

energy using the Kramers–Kronig relation

ReF(x) = 1

�

Z 1

�1
ImF(x0)
x0 � x

dx0 =
1

�

Z 0

�1
ImF(x0)
x0 � x

dx0 (4.20)

This relationship has been used to compute high-order moments of the free

energy with H in good agreement with transfer matrix expansions away from

the critical point.266 Here, we will use it to get functional forms to iteratively

approximate the whole real free energy.

Before we begin, let’s look at some of the weaknesses of this technique.

We have an asymptotic form for the imaginary free energy scaling function

at zero argument, and we are looking to use it for approximating the real

free energy via an integral over all values of the imaginary free energy. Since

we have a poor understanding of the imaginary free energy at large x, we

shouldn’t expect results that rely on its value at large x to be reliable. This is

why the Kramers–Kronig relation is most reliable for high derivatives of the
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free energy, evaluated at zero: those derivatives in general are

dn

dxn
ReF(x) = n!

�

Z 0

�1
ImF(x0)

(x0 � x)n+1
dx0 (4.21)

Evaluated at x = 0, the integrand becomes more and more strongly peaked

around x0 = 0, evaluating the imaginary part exactly where we know it

best.267,268 Lower derivatives rely more heavily on parts of the function we

know worst. Therefore, we should expect low-order products of these trans-

formations to be inaccurate, and need corrections.

In order to better facilitate the addition of these corrections, we will start

by using the integral relation to match the scaling function for the suscepti-

bility, which then will have the zeroth and first order corrections for the free

energy emerge from constants of integration. Its scaling function is given by

Y(x) = T�jtj�
 = T jtj�
 @M
@H

= �jtj�
 @
2F

@h2

= �jtj2���
 @
2F
@h2

= �@
2F
@x2

= � 2

�

Z 0

�1
ImF(x0)
(x0 � x)3

dx0
(4.22)

The other benefit of progressing using the susceptibility scaling function rather

than the free energy is that, for the 2d truncated form of the imaginary free

energy, the free energy integral does not converge, while this one does.

For a first approximation, let’s take the full truncation of the imaginary

free energy and run it through this machine. These functions can be integrated
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explicitly in terms of named functions, giving

Y2d(x=B) =
AB2

�x3

h
x(x� 1)� e1=x Ei(�x�1)

i
Y3d(x=B) =

AB2

54�x8

�
e�1=x

2�
18� 69x2 + 35x4)(2x�(2=3)E5=3(�x�2)� 3�(7=6)E7=6(�x�2)

�
6x2(x(13x2 � 6)�(2=3) + 3(3� 8x2)�(7=6))

�
Y4d(x=B) =

9AB2

8�3x
G

4;3
0;0

�
0 1=3 2=3
2=3 1 1 4=3

����x�3�
(4.23)

where Ei and E are exponential integrals and G is the Meijer G function. In

what follows, we will restrict our discussion to only the two and three dimen-

sional Ising models, for which we have data to compare with. All remarks

apply equally well to the four-dimensional model.

§31. Comparison with data

How predictive are these scaling forms in the proximity of the critical point

and the abrupt transition line? We simulated the 2d and 3d Ising models

on a square or cubic lattice using the Wolff algorithm modified for use in an

external field, described in Chapter 2. Data was then taken for susceptibility

and magnetization for Tc � T;H � 0:1. This data, rescaled as appropriate to

collapse onto a single curve, is plotted in Fig. 4.1.

Without any sort of fitting, we can fully restrain our truncated scaling

forms. First, the constant B can be set. For the 2d Ising model on a square

lattice, exact results at zero temperature have S(0) = 4=Tc and M(0) =
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Figure 4.1: Measured susceptibilities along with asymptotic approximations
for a (Top) 4096�4096 2d Ising model and (Bottom) 128�128�128 3d Ising
model. Data shown as blue points, critical amplitude for the susceptibility
shown in yellow, and lowest-order truncated scaling function in green.
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(25=2 arcsinh 1)� for � = 1=8.269 This gives

B2d =
8V2M(0)

S2
dS(0)2

= (211=16�(arcsinh 1)15=8)�1 ' 0:250448 (4.24)

Our value of B2d matches that obtained by perturbative conformal field the-

ory.239 For the 3d Ising model on a cubic lattice, S(0) ' 10:083=T
�
c for

� = 2� ' 1:25994 [270], Tc ' 4:51152480 [271] and M(0) = 1:6919045 [272].

This gives

B3d ' 0:0464597 (4.25)

Having fixed B, we only have A, which will be set by the critical amplitude of

the susceptibility. For the square lattice 2d Ising model Y(0) = 0:0255369719

[273], while for the cubic lattice 3d Ising model Y(0) = 0:99051 [274]. These

critical amplitudes are shown as yellow lines in Figure 4.1. These set the

constants A in the limit of zero field.

The truncated scaling functions with constants set as above are shown as

green lines in Figure 4.1. The 2d function describes the initial crossover from

the zero-field behavior well, but loses that description in the tail. The 3d case

appears a disaster. These become even more dramatic in the magnetization,

since integrating out over a tail which does not match adds up the discrepan-

cies. This lack of matching in the tails is due to a fundamental fault in our

scaling forms, which we will at least partially address in the next section.

These considerations are largely to do with the low-order matching of the

function, while the high-order agreement should be better. This is seen in the
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behavior of the series predicted for scaling function about zero field, compared

with direct numerical results for the same series coefficients.236,275 These data

are shown in Figure 4.2. The 2d function performs extremely well against

12 known coefficients, while the 3d function does very poorly for the many

fewer known coefficients. In the 2d case, is worth emphasizing that to get this

agreement, we have only set two numbers: B, which depends on quantities

not directly related to these coefficients, and A, which was used to set the

0th coefficient and therefore matches its exact value. The seemingly poor

performance of the 3d scaling functions may be due to a misestimation of the

constant B, or of the true asymptotic form of the singularity on the imaginary

side.

§32. Fixing the tails

Like mopey Eeyores, we have lost our tails. What happened? It first helps

to reflect what the tails should look like in the first place. As one approaches

the critical isotherm, or approaches t = 0 at finite h, the free energy has a

scaling form

F (t; h) = h(2��)=���(th�1=��) (4.26)

There is no transition or singularity on the critical isotherm, and so � is

analytic in its argument. It follows that

F(x) = x(2��)=���(x�1=��) = x(2��)=��
�
�(0) +O(x�1=��)

�
(4.27)
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Figure 4.2: Series coefficients for the (top) 2d or (bottom) 3d Ising suscep-
tibility scaling function near the abrupt transition. (Blue) Measured using
variational transfer matrix methods for 2d [236] and high temperature expan-
sions for 3d [275]. (Yellow) Predicted by our zeroth-order scaling function.
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for large x, and moreover that

Y(x) = �@
2F
@x2

= �
��

2� �

��

�2

� 2� �

��

�
�(0)x(2��)=���2 +O(x(1��)=���2)

(4.28)

For the 2d Ising model, the leading behavior goes as x�14=15, while for the

3d Ising model it goes as x�0:791221. The amplitude of these corrections is

again fixed by known amplitudes: for the 2d Ising model, �(0) = �0:992798
[187], while for the 3d Ising model �(0) = �4:20274 [225]. Neither of our

approximate scaling functions has the correct behavior at large x, as both are

analytic in x�1 and have in particular

Y2d(x) =
AB

�x
+O(x�2)

Y3d(x) =
2A�(7=3)

2�Bx3
+O(x�4)

(4.29)

In the 2d case we simply lucked out: 1 ' 14=15. We can also see one reason

why the discrepancy in the 3d case is so severe: 3� 0:79.

That these limits do not match is not surprising, since the large-field limit

depends heavily on the large negative field behavior of the imaginary free

energy, which we do not know much about. Suppose that for some argument
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x�, ImF (x) ' A1(�x)� for all jxj > jx�j. For x� jx�j,

Y(x) = � 2

�

Z 0

�1
ImF(x0)
(x0 � x)3

dx0

= � 2

�

Z 0

x�

ImF(x0)
(x0 � x)3

dx0 � 2

�

Z x�

�1
ImF(x0)
(x0 � x)3

dx0

' � 2

�

Z 0

x�

ImF(x0)
x3

dx0 � 2

�

Z x�

�1
A1(�x)�
(x0 � x)3

dx0

' � 2

�

1

x3

Z 0

x�
ImF(x0) dx0 � A1

�
�(� � 1)�(2� �)�(� � 1)x��2

(4.30)

In the 2d case, � = 1, and the asymptotic behavior is x�1, as we find when

we expand the integrated function about infinity.∗ In the 3d case, � = �7=3,
and the asymptotic behavior is not x�13=3 = x�4:33 because the x�3 term

dominates.

This analysis presents us with an possibility to fix the large x behavior of

our functions, by ensuring they match the expected behavior in that limit.

We might add a crossover term to our imaginary free energies so that they

take the form

ImF(x) = A�(�x)(�Bx)�be�1=(�Bx)d�1�
1+c(�Bxn)�(b+(2��)=��)=n (4.31)

This seems like a good choice because it does not modify the singularity of F
near x = 0, as a crossover like 1 + cBx� would. The large x behavior is

ImF(x) ' Acb+(2��)=��(�Bx)(2��)=�� (4.32)
∗Careful readers will notice that the amplitude of the term cannot be correct, since

� � 1 = 0. There is a special amplitude for � = 1 equal to 1
2
, which precisely reproduces

what we see when we expand the integrated result. This can also be found by taking the
limit � ! 1.
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which matches the asymptotic behavior for large x is as desired. We can now

try to set the constant c by requiring that the amplitude of the tails match.

Note that setting nonzero c changes the value of Y(0) as well, so A also need

to be rematched.

Unfortunately, we can no longer write the resulting integral as a jumble of

officially named functions, but numerically integrating still works fine. Doubly

unfortunately, this approach is very poor. For the 2d Ising model, both the

zero and infinite argument limits cannot be simultaneously fit by a function

of this form, while for the 3d model the addition fits both limits but leaves

an unsightly and unphysical camel hump in the middle. The choice appears

unnatural, in a sense, and while it might be suitable for a project to fit the

scaling function to intermediate data, it is not a controlled way to match it

to its asymptotic series expansions and expect the intermediate regions to

converge.

§33. Patching things together with Schofield coordinates

We’ve had limited success modifying the imaginary free energy scaling func-

tion to get the desired high-field behavior in the real free energy. However,

analytic corrections can still be made on the real side, and substantial ma-

chinery exists to write down parametrically defined scaling forms that have

the correct analytic behavior in each limit by definition.

Let us review this behavior, for the susceptibility, very briefly. Near the
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abrupt transition line the susceptibility has a scaling form

T� = jtj
Y�(hjtj���) = jtj

1X
n=0

Y �
n (hjtj���)n (4.33)

where though the function is nonanalytic and therefore the series nonconver-

gent it is nonetheless a series in integer powers. Near the critical isotherm, it

has

T� = jhj
=��Y�(th�1=��) = jhj
=��
1X
n=0

Y �
n (th

�1=��)n (4.34)

which is perfectly analytic, and near h = 0 in the high temperature phase it

has the form

T� = jtj
Y+(hjtj���) = jtj

1X
n=0

Y +
n (hjtj���)n (4.35)

which is again analytic, and where Y+ is an even function, since the magne-

tization is odd.

The susceptibility and other scaling functions functions can be put into a

form that also incorporates known properties of the scaling functions in the

rest of the configuration space using a Schofield-like parameterization.227,229

Those parameters are R, which is sort of like a radius from the critical point,

and �, which is sort of like an angle from the high-temperature zero-field axis.

They are defined by

t = R(1� �2) h = h0R
��g(�) (4.36)
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where h0 is a constant and g is an arbitrary odd function whose first finite zero

�c > 1 corresponds to the abrupt transition. Normally g is chosen such that

the coordinates obey a third relationship, M = m0R
��, which give special

significance to the lines of constant R. However, this is impossible to do while

preserving the analyticity of g if we consider the abrupt transition line as

part of our domain, and not infinitesimally outside of it: there is an essential

singularity in M as a function of h, and so there must be in � and R as

functions of H at fixed T ! We will therefore abandon this last constraint,

since the variables prove useful enough on their own.

In these coordinates the invariant combination hjtj��� near the abrupt

transition line is given by

hjtj��� = h0g(�)

j1� �2j�� =
h0(�g0(�c))
(�2c � 1)��

(�c � �) +O
�
(�c � �)2

�
; (4.37)

which is an analytic function of � about �c, asymptotically linear in �. The

invariant th�1=�� near the critical isotherm is

th�1=�� =
(1� �2)

[h0g(�)]1=��
=

2

(h0g(1))1=��(1� �)
+O

�
(1� �)2

�
; (4.38)

also an analytic function of �, asymptotically linear in �. Near h = 0 in the

high-temperature phase we get a similar result to (4.37).

Because of these nice properties, dependence we would normally write

as polynomial expansions of the scaling invariants that have non-polynomial

expansions in different limits can instead be written as polynomial functions
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of � and have all scaling dependence naturally captured. If we define

T� = R
Z(�) (4.39)

it has all the right limits built in! On the low or high temperature zero-field

line, we have

jtj�
Y�(hjtj���) = R�
 j1� �2j�
Y�(hjtj���) = R�
Z(�) (4.40)

while near the critical isotherm we have

h�
=��Y�(th�1=��) = R�
(h0g(�))�
=��Y�(th�1=��) = R�
Z(�) (4.41)

This sets the correspondence between familiar functions of our scaling vari-

ables and functions of the new Schofield coordinate. Note that the Schofield

coordinates are not analytically invertible, so to make this correspondence

formal takes quite it a bit of work.

As a first order attempt, let’s take our zeroth order functions and construct

the simplest scaling form consistent with the value of T� along the critical

isotherm and at both zero field limits, making sure it contains our singularity.

This function is

Z(�) = Z(�)+Y
�
h0(�g0(�c))
(�2c � 1)��

(�c� �)

�
+Y

�
h0(�g0(�c))
(�2c � 1)��

(�c+ �)

�
(4.42)

where Z(�) is an analytic, even function of �. For now, we will take it to

lowest order, with Z(�) ' Z0. As � goes to ��c, this function has an essential
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singularity of exactly our form. It is analytic in the range ��c < � < �c.

The function g needs to be odd, have its first zero at �c, and near-identity.

This is satisfied generally by

g(�) =

�
1� �2

�2c

� 1X
n=0

gn�
2n+1 (4.43)

but we will also take this to lowest order, or

g(�) ' �

�
1� �2

�2c

�
(4.44)

We are looking to match our function in three places, but have four unknowns:

A (embedded in the definition of Y), Z0, h0, and �c. We will therefore also

pick one derivative to match, and make sure that the first derivative of Y� is

also matched by our scaling function.

Fixing � at three values gives the consistency equations

Z(0) = Y +
0

Z(1) = (h0g(1))
�
=��Y �

0

Z(�c) = j1� �2c j�
Y �
0

(4.45)

where for the 2d Ising model, Y �
0 = 0:0255369719 [273], Y �

0 = �
h
(2 �

�)2=(��)2 � (2 � �)��)
i
�(0) = 0:070599 [187], and Y +

0 = 0:962582 while for

the 3d Ising model, Y �
0 = 0:99051 [274], Y �

0 = 1:07716 [225], and Y +
0 = 5:060

[275].

Matching a derivative is more difficult because the coordinate transfor-

mations are not analytically invertible. First, let us try to match the first
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2d 3d

A 15.9885 1.86074
h0 0.599909 1.1843
Z0 0.93902 2.24137
�0 1.04621 1.22238

Table 4.1: Parameters used to fit the paramet-
ric version of the asymptotic scaling function
to its known values.

derivative by the abrupt transition. If we call the invariant x = hjtj���, then

Z 0(�c)
j1� �2c j�


� 2
�cZ(�c)
j1� �2c j�
�1

=
@

@�

� Z(�)
j1� �2j�


�
�=�c

=
@Y�
@�

����
�=�c

=
@Y�
@x

@x

@�

����
�=�c

= �Y �
1

h0(�g0(�c))
(�2c � 1)��

(4.46)

which connects the derivative of Z to the coefficient Y �
1 . For the 2d Ising

model, Y �
1 = �0:0176358 [236] and for the 3d Ising model Y �

1 = �0:883
[275]. Other expressions like this exist for the other expansions, and they

get quite tedious for higher derivatives. The process can be made automatic

with computer algebra software, but for our purposes we will not need it: we

only need four constraints to match the four variables of our second-attempt

functions.

The values of the free parameters that result from making the matching

described in this section can be found in Table 4.1. There is little reason to

believe that these parameters would be stable to these values upon the further

expansion of the approximate scaling function to higher orders in Z and g.

The resulting forms for the susceptibility are plotted in Figure 4.3 in brown,

alongside the asymptotic forms that the scaling functions were matched to

(yellow and red) and the lowest-order truncated scaling form (green).

The use of these parametric coordinates has done wonders for the ability
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Figure 4.3: Measured susceptibilities along with asymptotic approximations
for a (Top) 4096�4096 2d Ising model and (Bottom) 128�128�128 3d Ising
model. Data shown as blue points, first two small-argument terms in the
susceptibility shown in yellow, and lowest-order truncated scaling function in
green, the first large-argument term in the susceptibility shown in red, and
the next-order scaling function in brown.
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of the scaling functions to describe the tails, having only matched the value

of the scaling function in three places and its derivative in one! Even the 3d

Ising model, whose lowest-order truncated scaling function did a very poor

job of describing the actual scaling function, has been brought much closer to

its true form. Iterative fitting of this type to higher orders in g should have

good convergence, though this is work that still needs to be done.

Having modified our singular scaling functions with analytic corrections

on the real side, we should reassess how the high-order coefficients behave.

These are pictured, alongside empirical coefficients and those of our lowest-

order truncation, in Figure 4.4. The extraordinary initial closeness between

the 2d coefficients and those of the truncated function mean that, by adding a

correction that fixes another of those coefficients, we have make the agreement

slightly worse. For the 3d case, the growth of the coefficient values picks up

dramatically, though still falls short of predicting well the third coefficient.

It’s difficult to draw conclusions from the discrepancies in the 3d case here,

though, because so few of its low-temperature scaling function coefficients are

known.

Finally, having produced a basically competent approximation of the sus-

ceptibility that includes its essential singularity, we are posed to finally address

the problem of the real free energy, which we started discussing exclusively

but lost ground to the susceptibility at some point along the way. This can be

achieved by taking the forms above and integrating with respect to h. Once

again, the inability to analytically invert the Schofield coordinates raises its

ugly head, and makes it very difficult to perform such an integral analyti-

cally. However, once the form is set, a numeric integral can be carried out,
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Figure 4.4: Series coefficients for the (top) 2d or (bottom) 3d Ising suscep-
tibility scaling function near the abrupt transition. (Blue) Measured using
variational transfer matrix methods for 2d [236] and high temperature expan-
sions for 3d [275]. (Yellow) Predicted by our zeroth-order scaling function
from §31. (Green) Predicted by our parametric scaling function from §33.
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with the result for the magnetization seen in Figure 4.5. There is reasonable

agreement, though the deviation in the tails shows the accumulated effects of

integrating small deviations though the course of the susceptibility.

§34. Discussion, conclusions, & next steps

We have seen that, with very little information about its precise form, asymp-

totic scaling forms derived from analytic continuation from the metastable

state can well-describe the behavior of the Ising critical scaling functions. In

two dimensions, the description appears natural from the outset, while in three

the description requires corrections to even qualitatively match the behavior.

As mentioned above, part of the gross discrepancy in the three dimensional

case is a result of bad luck in the truncated form’s tail, which isn’t a reflection

of the singular behavior at zero field, but the equally gross discrepancy with

the (admittedly few) higher-order coefficients in the function should lead to

pause. Why is the 2d version so much more successful than the 3d version?

One thought is related to the fact that the droplet entropy has special scaling:

you might have noticed that the exponent b multiplying the exponential had

an exceptional form for three dimensions. This is a result of unique logarith-

mic divergences in the renormalization group analysis for the long-wavelength

fluctuations on the surfaces of the 3d droplets; perhaps 3d is special for more

than just this reason, or perhaps this exceptional form is incorrect. Following

this analysis with the 4d model should shed some light on this question, since

markedly better performance in 4d would suggest 3d is uniquely bad, while

similar performance would suggest 2d is uniquely good. We would also like to
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attempt to directly measure the exponent of this prefactor, perhaps by simu-

lating metastable decay directly. Some work using the renormalization group

suggests that the essential singularity predicted by a naïve droplet theory is

not the only singularity at the transition line, and our predictions may be

doing so badly in 3d without further matching because we have missed an

aspect of the singularity.238,276,277 Improving existing direct numerical studies

of the 3d Ising decay rate in the vicinity of the critical point may help resolve

some of these questions.278

In the case of the 2d model, where the method converges exceptionally

well, our results should allow improved high-precision functional forms for

the free energy,229 and should have implications for the scaling of correlation

functions.279,280 A more careful self-consistent analysis would start with the

singular form for the free energy—not the susceptibility—and put it in the

parametric Schofield form to undergo the same limit-matching we saw pre-

viewed here. Developing a generalization of Schofield coordinates that natu-

rally captures the metastable region may dramatically improve things, taking

considerations of global renormalization flow into account and not just those

local to the critical point.281–283 One might be able to work with such coordi-

nates directly in the imaginary free energy, removing the need to incorporate

them in the real free energy in an ad hoc way, as we did here. Our methods

might be generalized to predict similar singularities in systems where nucle-

ation and metastability are proximate to continuous phase transitions, such

as 2D superfluid transitions,284,285 the melting of 2D crystals,286 and freezing

transitions in glasses, spin glasses, and other disordered systems.





CHAPTER V

NORMAL FORMS FOR
INFINITE-ORDER PHASE

TRANSITIONS

The renormalization group made firm how the universality enters statistical

physics. Different physical systems with different microscopic laws and differ-

ent general phenomenology exhibit the same critical behavior if their critical

points lie in the basin of attraction of the same fixed point under rg. All

systems with critical points in the same basin of attraction are said to belong

to the same universality class.

This provides a heuristic path to a taxonomy of critical phenomena: label

each critical point by the fixed point it flows into. This leaves an important

step in any classification project implicit: how does one label a fixed point?

The question is more serious than choosing a convention. If I set up one

rg procedure for a model and another rg procedure for another model, and

after painstaking work can tell you facts about the fixed point of each, what

exactly is needed to establish that the fixed points of both are the same? How

many exponents or critical amplitude ratios need to match? What about
∗Portions of the material of this chapter were published in A Raju, CB Clement, LX

Hayden, J Kent-Dobias, DB Liarte, DZ Rocklin, and JP Sethna, “Normal form for renor-
malization groups”, Physical Review X 9, 10.1103/physrevx.9.021014 (2019). Some of the
work was done in collaboration with the listed authors.
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fixed points whose critical behavior doesn’t have a power law form? Do the

corrections to scaling need to match? Which ones?

The failure of simply using exponents as the tool for classification is espe-

cially clear in the case of infinite order transitions, so-called because every

derivative of the free energy is continuous at the transition. In these situ-

ations, a wide array of critical phenomena usually described by slapping an

exponent on it now has a different form than a power law. Researchers often

fall back on the familiar anyway, citing the values of parameters in stretched

exponentials as “anomalous exponents” and using the appearance of even a

single stretched exponential that matches one in a known theory to associate

the two.

Luckily, we need not guess in the dark. A classification developed by my

colleagues provides a natural and rigorous way to differentiate fixed points of

arbitrary strangeness, and even tell which corrections to scaling are inherent

traits of a given fixed point and which are not.287 In this chapter I will briefly

review that classification, then reflect on its treatment of two canonical mod-

els with infinite-order transitions: the 2d XY model and the hexatic–solid

transition. We will then look at progress towards classifying a model with a

phenomenological infinite order transition that lacks a corresponding renor-

malization group theory. Finally, we will review a few other oddities in the

collection of transitions of this type.
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§35. Normal form theory & the classification of fixed points

The renormalization group is a continuous mapping from the space of possible

models onto itself. A physical model with parameters xi(0) is mapped by a

flow over ` to a model with parameters xi(`) whose properties are identical to

properties of the original model coarse-grained by a factor e`. Sinks, or stable

fixed points, are places in model space that are mapped onto themselves, and

all models that flow into those sinks are described by the same phase, since

by definition their long-range behavior is identical. Phase transitions occur

when a model, having smoothly varied its physical parameters, moves from the

basin of attraction of one sink to that of another. These basins are separated

by critical surfaces that flow on the unstable border between the basins to

unstable fixed points, which act as separatrices between basins.222,223,288

The typical picture connecting critical phenomena in physical systems to

the behavior of renormalization group flow near unstable fixed points is to

write down a set of differential equations governing the evolution of model

space under renormalization. For our parameters xi, they would take the

form

dxi
d`

= fi(x1; : : : ; xN ); (5.1)

where fi is an arbitrary function, but must be analytic because the coarse-

graining operation that gives rise to the renormalization group flow is itself
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analytic.189 At a fixed point xi = x�i , we expand these functions,

dxi
d`

= fi(x
�
1; : : : ; x

�
N ) +

X
j

@fi
@xj

(xj � x�j) + � � � (5.2)

Since a fixed point must have no flow, fi(x�) = 0 for all i and the principal

behavior of the flow is the linear term in the expansion. Usually, the flow is

then taken along eigendirections yi of the Jacobian matrix @fi=@xj ,

dyi
d`

=
@fi
@yi

yi + � � � = �iyi + � � � (5.3)

which introduces the scaling dimensions �i which give rise to the famous

power law exponents in the solutions to these flow equations. Also, implicitly,

one transforms from a picture with the original model variables xi (or linear

combinations thereof) and uses scaling fields ui defined by the property that

ui = yi + hi(y1; : : : ; yn) is near identity, and that

dui
d`

= �iui (5.4)

with no trailing dots. So simplified, the flow equations can be solved ana-

lytically to find, e.g., that combinations of the form uiu
��i=�j
j are invariant

under the flow and can be used for collapses and the like. Analytic corrections

arise from the nonlinear dependence of the scaling fields on the original pa-

rameters.289 A well-behaved fixed point whose flow equations have this simple

form is known as hyperbolic.

If we wish to use the great utility that comes with these simplifications of

the renormalization group picture of a fixed point, we need to take care that
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we do note introduce anything in our analysis that jeopardises the connection

between our physical parameters and the behavior of our convenient scaling

fields. If one were, for instance, to write ui = y�i , we would change our precious

exponent! In order for our model to have the same singular dependence on the

scaling fields that it does on our critical parameters, they must be connected

by an analytic change of coordinates. The functions hi that make these

corrections must therefore be analytic.

Usually this can be done in a generic way. Consider a higher-order term

in the flow equations for the variable yi of the form cy�11 � � � y�nn for some

set of integers �1; : : : ; �n. It can be shown, as it is in [287], that this term

can be removed, leaving only changes to the flow equations at polynomial

order higher than
P

j �j , by introducing a term of the form a��11 � � � ��nn in the

function hi with

a =
c

�i �Pj �j�j
(5.5)

The procedure for forming the scaling fields from flow equations follows. At

each polynomial order, solve the equation (5.5), using the results to define

the polynomial transformations h to the same order. These partially defined

functions define partially linearized scaling fields with no nonlinear terms up

to and at that polynomial order. The process is then repeated on these new

variables at the next highest order.

Looking at (5.5), one can immediately see that issues arise in this proce-

dure. If �i =
P

j �jaj for a nonlinear term in the flow equations for some

variable, the solution is singular and the term cannot be removed. A reso-
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nance like this is responsible for the anomalous logarithm in the scaling for the

2d Ising model. These often appear when an exponent is tuned through zero,

which happens in the upper and lower critical dimensions of many models.

If we cannot linearize every flow equation to then compare exponents, we

will have to do the next best thing. Having agreed on an order in which

to try to remove nonlinear terms from the flow equations, going order by

order and trying to do so (perhaps with more general equations than (5.5))

will always leave the same terms behind for the same model, even if it is

analytically reparameterized. The result, known as its simplest normal form,

is the identifying fingerprint of the flow equation, and the coefficients of the

remaining terms, linear and otherwise, are all universal. Constants of the

flow are constructed from integrating these equations, and can differ from

the familiar form of power law products if unremovable nonlinear terms are

present. These invariant combinations, while more complicated in form, are

actually analytically related to the physical parameters.

At an infinite order fixed point there are no relevant variables, but there

are marginal ones whose nonlinear terms cause them to flow away from the

fixed point. This means there is no Jacobian to diagonalize, no exponents,

and the formula (5.5) is useless for removing higher terms. The continuity of

the free energy arises from the continuity of the scaling invariants that the

free energy is a function of. If ui and uj are two marginal scaling fields for a

fixed point with flows

dui
d`

= ciu
�ii
i u

�ij
j

duj
d`

= cju
�ji
j u

�jj
j

(5.6)
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for constants c and integers �, then any function of

cju
1��ii+�ji
i

1� �ii + �ji
� ciu

1+�ij��jj
j

1 + �ij � �jj
(5.7)

is an invariant of the flow. The universal scaling functions for quantities like

the free energy are functions of this invariant, which for integer as such that

the denominators are nonzero is infinitely continuous and in fact analytic in

both variables.

§36. The XY model & the BKT transition

The 2d XY model is a remarkable system for several reasons. It was the site of

recently celebrated insight into the connection between ground-state topology

and phase transitions.290 Thermodynamic quantities have essential singular-

ities at its phase transition, not ordinary power laws, and their derivatives

remain continuous to arbitrary order, making its phase transition infinite or-

der.291–294 This is related the fact that its rg flow equations are inherently

nonlinear: they have no relevant and two marginal state variables and the

procedure laid out by (5.5) for removing higher order terms from the flow

equations contributes nothing to their simplification.

The XY model is usually posed as ferromagnetically interacting planar

spins. Its partition function is exactly equivalent to the product of a triv-

ial Gaussian model—corresponding to spin wave degrees of freedom—with a

neutral Coulomb gas—corresponding to the interaction of spin vortices,295–297

or to roughening models of 2d interfaces.298 The latter component contains

the interesting critical behavior, which is characterized by these vortices going



208 Normal forms for infinite-order phase transitions §36

through an unbinding transition. The flow equations for a Coulomb gas in

dimension d can be computed by renormalizing the vortex–vortex interaction

screened by bound vortices, and are given by

dK=dl = �K(14Ky2 + d� 2) + � � � (5.8)

dy=dl = �y(K � d) + � � � (5.9)

where K � T�1 and y is the fugacity∗ of the vortices,299 which for an XY

model is a function of temperature and cannot be tuned independently but is

a free parameter in other equivalent models, e.g., the Coulomb gas itself. For

d > 2 there is no phase transition in this system, and for d < 2 a nontrivial

unstable fixed point appears and there is a phase transition in the hyperbolic

universality family. It is worth noting that these flow equations do not de-

scribe the XY model for any dimension besides d = 2; 2 is the upper critical

dimension of the Coulomb gas and these flow equations, while it is the lower

critical dimension for the XY model. At d = 2 the flow equations undergo a

novel bifurcation: there appears a line of stable fixed points at y = 0 for all

K > 2, terminating at K = 2. This termination is the Berezinskĭi–Kosterlitz–

Thouless (BKT) critical point.

The flow equation near this point with x = K � 2 is, written to linear

order,

dx=dl = �y2 + � � �

dy=dl = �xy + � � �
(5.10)

∗Recall that the fugacity of a system in the grand canonical ensemble is proportional to
the Boltzmann weight per particle, i.e., y / e� for chemical potential �.
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Note that, at this order, there is nothing resembling an exponent here, and

that isn’t an accident: because of the nonlinear nature of the flow equations,

any physical parameters that result in flow equations with the same simplest

normal form as (5.10) but with constant coefficients on the quadratic terms

can be brought into the form above, with no quadratic coefficients, by constant

rescaling of the parameters. These flow equations are zero to linear order and

have zero Jacobian at the fixed point.

In principle arbitrary higher-order terms in these equations exist, but there

are several constraints on their form. There is a symmetry y ! �y in the par-

tition function arising from a neutrality condition. In the context of vortices,

this is related to the fact that a lone vortex has an energy that falls off log-

arithmically, and so therefore is infinitely costly in the thermodynamic limit.

All vortices must come in pairs, or at least the vorticity of all extant vortices

must cancel out, and each microstate in the partition function gets one factor

of the fugacity y per unit vorticity squared, not per vortex. The fugacity

therefore enters the partition function in factors of y�
P

r
n2r for

P
r nr = 0.

This implies that dx=dl be even in y and dy=dl be odd. In addition, when the

fugacity is zero the model is trivial and x cannot flow, meaning that for y = 0

we have dx=dl = 0 identically, and we must only have terms proportional to

y. Note that, with these constraints and a single tuning of dimension, we

uniquely arrive at the truncation (5.10) to quadratic order.

Having applied these constraints, the simplest normal form has been proven
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by induction in polynomial order (Appendix A of [300]) to take the form

dux=dl = �u2y � b0uxu
2
y � b1u

3
xu

2
y + � � �

= �u2y
�
1 + uxf(u

2
x)
�

duy=dl = �uxuy

(5.11)

For the BKT point in the sine–Gordon model, which is thought to display

to the same universality as the XY model, it is known that b0 = 3=2.300–302

An infinite number of coefficients remain, represented here in the form of the

Taylor coefficients of an analytic function f . These numbers are universal

in the sense that there is no redefinition of ux and uy such that the flow

equations take on the form above and contain different coefficient values. This

bifurcation does not have a named classification as far as we know.

A true constant of the rg flow can be found by integrating these forms.

First, dividing the equations the two equations in (5.11) we find

duy
dl

�
dux
dl

=
ux

uy(1 + uxf(u2x))
; (5.12)

which separates into

uy
duy
dl

=
ux

1 + uxf(u2x)

dux
dl

: (5.13)
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Integrating both sides and choosing l0 such that ux(l0) = 0, we find

1

2

�
uy(l)

2 � uy(l0)
2� = Z uy(l)

uy(l0)
y duy =

Z l

l0
uy

duy
dl

dl (5.14)

=

Z l

l0

ux
1 + uxf(u2x)

dux
dl

dl =

Z ux(l)

0

ux
1 + uxf(u2x)

dx: (5.15)

It follows that

Q(ux; uy) = u(l0)
2 = uy(l)

2 � 2

Z ux(l)

0

ux
1 + uxf(u2x)

dux (5.16)

= uy(l)
2 � ux(l)

2 +
2

3
b0ux(l)

3 � 1

2
b0ux(l)

4 (5.17)

+
2

5
(b30 + b1)ux(l)

5 +O(ux(l)
6) (5.18)

is a constant of the flow. The expansion of the integral can be taken to

arbitrary order with ordinary computer algebra software. Its truncation to

second order yields the usually cited form of the BKT invariant. The finite-

size behavior of the flow is rather complicated and doesn’t yield closed form

results, details can be found in [300]. The line that separates the unbound

and bound phases near the BKT fixed point is parameterized by Q = 0.

The correlation length in the approach to the BKT transition can be found

by requiring that L�1� be an invariant of the flow. This yields a differential

equation, which can be integrated to yield

�(ux; uy) = J (Q) exp
�Z ux

1

�
(1+f(v2)v)

�
Q+2

Z s

1

s

1 + sf(s2)
ds

�#�1
dv

�
(5.19)
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for an undetermined function J . If the higher-order terms are truncated, or

f = 0, this can be integrated to yield

�(ux; uy) ' J (Q) exp
�
Q�1=2 tan�1

uxp
Q

�
(5.20)

which in the limit of small Q has the form �(ux; uy) ' J (0)e�=2Q1=2
. Since Q

is an analytic function of ux and uy, which are in turn analytic functions of the

physical control variables, e.g., the temperature, this establishes the stretched

exponential form of the correlation length divergence as the critical line is

approached from high temperature.292 This gives the “anomalous exponent”

of � = 1
2 . Systematic corrections to scaling exist due to both the higher order

terms and finite-size effects—the first correction at infinite size takes the form

�1 = �0e
�=
p
Q�1 + I1

p
Q+O(Q)

�
(5.21)

where I1 = ��b20=12.300,303

Conformal field theory predicts the presence of infinitely many models

with this anomalous exponent.304 The value of � been shown to be fixed by

the quadratic-order truncation of the system’s flow equation, independent of

any higher-order terms.305 There are six possible quadratic-order terms in flow

equations with two variables. Of these, two can be removed by linear trans-

formations of the two variables. Two more can be set to 1 by rescaling the

variables. Hence, there are two parameters at quadratic order which deter-

mine the universality family that the system belongs to, and infinite number



§37 The hexatic fixed point 213

of subsequent terms which determine the universality class. Giving a full clas-

sification of possibilities is beyond the scope of this paper but we give some

examples below.

§37. The hexatic fixed point

When the requirement of symmetry under y ! �y is lifted, the flow equa-

tions can no longer be brought to the form (5.11). This occurs naturally in

the case of the hexatic–solid transition, which occurs during the melting of

certain two-dimensional crystals. Starting from a crystalline state, there are

two relevant topological defects of the lattice: dislocations and disclinations.

Dislocations can move more easily, and like the vortices in the XY model have

a critical temperature at which they unbind and move freely within the crys-

tal, destroying long-range translational order but preserving the orientational

order. At a higher temperature, the disclinations go through a similar unbind-

ing transition, melting the orientational order and reverting to a liquid. Both

dislocations and disclinations are topological defects within the lattice and

have an interaction energy that falls off with a logarithm in two dimensions.

Though this phenomenology is very similar in both circumstances to the

XY model, only one turns out to share the XY universality class. Disclina-

tions occur at points and have no relative orientation, and only have a scalar

topological charge. They therefore obey the same neutrality rules that XY

vortices do, and the hexatic–liquid transition is in the BKT universality class.

Dislocations, on the other hand, have a charge given by their Burger’s vec-

tor, which is a vector quantity. As a result, an odd number of topological
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charges can exist in the system simultaneously and still have net zero charge:

just point three length-one arrows away from a central point. As a result,

the symmetry restriction of the BKT critical point we discussed in the last

section is lifted, and these transitions belong to a different class.

The effect on the flow equations at quadratic order are the addition of two

more terms, giving

dx

d`
= a1y

2 + a2xy � � �
dy

d`
= b1xy + b2y

2 + � � �
(5.22)

However, this is not the simplest quadratic form. We can make a coordinate

change, redefining x and y at linear order in a way that preserves the fact

that the flow in x is identically zero at zero y. If x0 = c1x+ c2y, we have (to

quadratic order)

dx0

d`
= (b1c2 � a2)x

0y +
b1c

2
2 + b2c2 � a1a2c2

c1
y2 + � � �

dy

d`
= b1c2x

0y + (b1c2 + b2)y
2 + � � �

(5.23)

If we choose c2 = a2=b1 and then rescale x and y so that the terms that have

negative coefficients in the BKT flow have the same ones here, we have

d~x

d`
= �~y2 + � � �

d~y

d`
= �~x~y + 2A~y2 + � � �

(5.24)

Truncated to this order, these equations lead to a critical correlation length
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identical to that of the BKT transition, but with

� = 1� 1

2

h
1 + A2 + A(1 + A2)1=2

��1 (5.25)

an anomalous exponent that varies continuously with A.306 There are physical

reasons to believe that A2 ' 0:072939 for the actual hexatic transition—with

equal magnitudes of the angular and radial stiffnesses—but for more general

physical scenarios A, and therefore the anomalous exponent, can take other

values.

No proof exists right now for what simplest normal form the hexatic flow

equations should take. We have implemented a method for matching the

terms in differential equations under analytic transformations term by term

in order to see how the hexatic flow equations differ from those of the BKT,

at least at lower orders.307,308 The term y3 in the flow equations for ux cannot

be removed, and it seems like a new infinite set of terms is likewise created.

Up to seventh order, the flow equations with quadratic form (5.24) can be

brought to the form

dux
d`

= �u2y +Bu3y + c0uxu
2
y + c1u

2
xu

2
y + c2u

3
xu

2
y + c3u

4
xu

2
y + � � �

= �u2y(1 + uxf(ux)) +Bu3y

duy
d`

= �uxuy � 2Au2y + � � �

(5.26)

At seventh order and above, the order-by-order matching becomes strenuous

enough to take a desktop computer too long to finish within a day. A rigorous

mathematical attempt should be made to formally bring these equations into
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normal form.

§38. Percolation in grown networks

Grown networks are graphs whose edges are connected probabilistically as ver-

tices are added, meant to model the structure of real-world networks that de-

velop incrementally. A simple model—first introduced by Callaway, Hopcroft,

Kleinberg, Newman, and Strogatz—is as follows.309 Start with a graph on one

vertex. Every timestep, add one vertex, and with probability p choose two ver-

tices at random and add an edge between them. The connection to real-world

networks emerges from the heuristic structure that develops: early vertices

are more likely to have higher degrees and more connectivity, while later ones

are connected more sparsely.

In the long-time limit, this model has a novel phase transition at pc = 1=8.

For p < pc the largest connected cluster of vertices scales more slowly than

the total elapsed time T , and all clusters are finite. For p > pc the largest

connected cluster has an extensive weight that scales like the distance �p =

p� pc from the critical point like

S = lim
T!1

slargest
T

' S0 exp

�
� �

2
p
2
�p�1=2

�
; (5.27)

with S0 ' 0:590.310 At the critical point, the cluster size distribution has the

novel asymptotic form

ns � s�3 log�2 s (5.28)
∗Much of the thought and work done in this section was in collaboration with David

Hathcock.
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Far below pc, the cluster size distribution has the form ns � s�4
p
2�p=(1�2p2�p)�1,

i.e. as a power law with constantly varying exponent, and as the criti-

cal point is approached from below it has the form ns � s�3�4
p
2�p for

log s � �p�1=2. Above the critical point, the distribution has a cutoff for

large s with s� (S=T )�1 of the form

ns � s�3=2 exp
�
� Ss

2e

�
(5.29)

giving the cutoff the form smax ' 2e=S.

The form of (5.27) has an essential singularity that closely resembles that

present in the correlation length at a BKT transition. Because the BKT

correlation length grows steadily as the transition is approached from above,

diverges at the transition, and remains infinite below it, while the weight of

the infinite cluster is zero below and at the transition but grows steadily above

it, many have take to referring to this transition and similar ones that appear

in other network models an “inverted BKT” transition. However, insofar as

it can be considered a BKT transition, there need not be anything “inverted”

about it. Though the weight of the infinite cluster here resembles the form

of a correlation length, the weight of the infinite cluster in standard perco-

lation resembles the form of a critical correlation length in the sense that it

has a power law form, but the weight of the infinite cluster is not the cor-

relation length. At the percolation critical point, the weight of the infinite

cluster is zero, since even as the correlation length � diverges it grows with

a power law �df for fractal dimension df < d less than the dimension of the

percolation lattice. As the weight of the infinite cluster becomes finite with a
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power law above the transition, the correlation length decreases, correspond-

ing roughly to the maximum linear extent of finite clusters. Since we see here

that �df � smax ' S�1, it would be more appropriate to take the correlation

length as diverging just as it does approaching the BKT transition—nothing

inverted about it.311 Since the clusters remain power-law distributed below

the transition, the correlation length remains infinite there, even while the

weight of the infinite cluster is zero.

Besides the phenomenological similarities to the BKT transition, no for-

mal correspondence has been established between these transitions in grown

networks and BKT. As we have seen in the case of the hexatic, the BKT

transition is somewhat specially tuned, and why some network model should

check all its requirements is strange. For instance, what symmetry of the net-

work model preserves the requirement that the flow equations be even in the

fugacity-like variable? It’s hard to say, because no good renormalization-group

technique has been developed to treat the network models directly and even

write down flow equations. Therefore, in order to investigate the BKTness of

the grown network model, we will have to make use of the same phenomeno-

logical comparisons that led to their hazy identification in the first place. We

will focus on the tangible question: is the scaling of the grown network per-

colation consistent with the value of the first subleading flow coefficient for

BKT, b0 = 3=2?

Working with the exact solution

Looking at the facts about this model that I rattled off above—with �s, es,

and other order one constants strewn about—one might wonder what sort
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of insight can be gained from existing analytic information about the model.

After all, we know from Pelissetto and Vicari exactly what the corrections to

scaling for the correlation length are in terms of b0; with all that information,

why not just write down the subleading term and compare coefficients? Alas,

the method by which the exact leading behavior (5.27) is come by does not

generalize easily to higher orders. Here is the approach up to the point that

we have stalled, largely following the solution by Dorogovtsev, Mendes, and

Samukhin.310

The weight of the infinite component can be found from evaluating a

generating function g, with S = 1� g(1). The generating function obeys the

differential equation

xg0(x) =
1

2p

x� g(x)

1� g(x)
(5.30)

with boundary condition g(0) = 0. Note that even numerically solving this

equation is challenging, since the solution g(1) approaches 1 as p goes to pc,

making the equation singular. Note further that the relevance of pc = 1=8 is

completely opaque. We make it more clear with a change of variables, defining

u(y) = 1� g(1� x), which yields

(1� y)u0(y) =
1

2p

u(y)� y

u(y)
(5.31)

This equation is no more integrable than the previous one, but in the limit of

small y we can approximate 1� y ' 1. This makes the equation separable, as
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we can now write u(y) = v(y)y, and

v0(y)y = � 1

2p

2pv2(y)� v(y) + 1

v(y)
(5.32)

Finally, a hint of the significance of pc emerges: the roots of the polynomial

in the numerator are

v(y) =
1�p1� 8p

4p
(5.33)

and therefore at pc = 1=8 they become degenerate. At exactly that value, the

equation is integrated to give

u(y)jp=1=8 = 2y(1� f(y)) (5.34)

where the function f is the solution to the equation

log(yf(y)) +
1

f(y)
= log c (5.35)

for a numeric constant c. This “threshold” equation will become useful later.

Having separated (5.32), we can integrate it, yielding

C + log y =

Z
dy

y
= �2p

Z
v

2pv2 � v + 1
dv

=
1p

8p� 1
tan�1

�
4pv � 1p
8p� 1

�
� 1

2
log(1� v + 2pv2)

(5.36)



§38 Percolation in grown networks 221

or with the function u restored,

C =
1p

8p� 1
tan�1

�
4pu(y)=y � 1p

8p� 1

�
� 1

2
log(y2�u(y)y+2pu2(y)) (5.37)

The constant C is set by requiring u(0) = S, which gives

C = � �

2
p
8p� 1

� 1

2
log(2pS2) (5.38)

Expanding right hand side of (5.37) in powers of �p = p� pc, we find

� �

4
p
2�p

�1

2
log(2pS2) =

�

4
p
2�p

� 1

1� u(y)=2y
�1

2
log

�
1

4
(1�u(y)=2y)2

�
+O(�p1=2)

(5.39)

The remaining dependence on y can be eliminated using the threshold equa-

tion, which should be approximately satisfied for small �p. Substituting,

� �

2
p
2�p

� log(S=2) = � 1

f(y)
� 1

2
log

�
1

4
f2(y)

�
= � log c+ log 2

(5.40)

which allows us to finally solve for the equation (5.27).

Notice the places that an ultimately uncontrolled approximation enters

this calculation if we wish to make a consistent expansion in �p. First, we

approximate the differential equation near the point we would eventually like

to evaluate it. Second, we use the solution to our approximate equation at

the critical point as approximately true in the vicinity of the point. The one
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controlled approximation, expanding the inverse tangent in powers of �p,

is useless for our purposes, since—after the first constant term of ��=2—
that expansion only yields terms odd in

p
�p, which in turn only yield even

powers of
p
�p as corrections, and therefore miss the primary correction

we are hoping to match. The less-controlled approximations related to the

differential equation are necessary in order to get the
p
�p correction we’re

looking for.

There are a couple possible routes here, though I am not certain of the tools

that exist to confront them. One involves focus on the approximation that

renders the differential equation separable: given an approximate solution to

a differential equation that is nearly separable, can a self-consistent expansion

be made in the magnitude of the non-separable term? The second is related

to connecting the critical solution into the equation to get the finial result—

can that critical solution be usefully made perturbative in the distance from

criticality? More work needs to be done.

Numeric studies

With an analytic route stymied by a messy set of uncontrolled approximations,

we now turn to numeric options. A direct approach, attempting to measure

the infinite cluster size either by solving the differential equation for the gener-

ating function or by simulating the growth process and then fitting the result

as a function of p, requires unreasonable precision, since we are looking to fit

the singular correction to an essential singularity, which vanishes extremely

quickly and dominates the behavior.

We therefore will resort to finite size scaling.312 We have written a routine
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that generates grown networks of size N and computes their cluster size distri-

butions, and the distribution of their largest component, using the Newman–

Ziff algorithm.55 We make the following scaling theory. First, we suppose the

infinite-size correlation length is of the form (5.21), following Pelissetto and

Vicari.300 We expect that Q / �p for sufficiently small �p. We expect that

the infinite-size weight of the infinite cluster above pc should be related to the

correlation length by S1 = �
�df1 . This, the exact asymptotic solution, and

the relationship between �1 and Q from (5.21) uniquely set Q = 8d2f�p.

Finite size effects enter in the measure of any observable X compared to

its infinite-size value X1 via the relationship

X(Q;L)

X1(Q)
= AX(�1=L) +QBX(�1=L) +O(Q2) (5.41)

so long as we are not at the critical point.300 At the critical point, observables

scale like

X(L)

L��X
= A

�
�+

b0
3
log�

��X �
1 +O(��1)� (5.42)

for � = log(Le�K) for some nonuniversal constant K.300 For the weight of the

infinite cluster, we therefore expect finite-size scaling of the form

S(pc; N) = aN�yS
�
�+

b0
3
log�

��S
(5.43)

where yS is the codimension of the infinite cluster. Since we are working

with a model in infinite dimensions, it’s not obvious how L should be re-

placed in the logarithmic corrections—two simple choices are L = N , and
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L = limd!1N1=d = 1 (for which we would see no logarithmic corrections and

the project to use this form is in vain). Approaching the critical point from

above, the weight of the infinite cluster should have a scaling form

S(p;N) = S1(p)
h
AS(�1=L) +QBS(�1=L) +O(Q2)

i
(5.44)

where the same considerations about L apply.

A fit of (5.43) to simulated network data is shown in Figure 5.1 as an

orange line, and yields yS ' 0:54. A green line is also shown with a pure

power law with the same exponent for comparison. The corrections to scaling

for the infinite cluster weight at the critical point appear very small, and the

fit does not fix b0 at all, allow it to vary over several orders of magnitude.

Slightly more discerning data comes from above pc. That data is pictured

collapsed in Figure 5.2. A fit gives �1 = S
�df1 with df ' 1=yS , which lends

support to the notion that the natural length scale in this problem is L �
� � S�1=yS � N . The curve traced by the collapsed data is a measurement

of the function AS for this system. An inset shows detail of the collapse at

small �1=N , a region accessible when the system size is much bigger than the

correlation length. The failure of the collapse in this region is expected given

the finite-size scaling form (5.44), which predicts corrections to scaling that

grow linearly with Q ' �p; as the color indicates, the deviation from the

collapse appears to grow linearly with �p, and may be the sign of a nonzero

function BS . The fit at present does nothing to restrict I1 in (5.21), which

like b0 varies freely over several orders of magnitude. Perhaps a more careful

fit of data in the region of the inset will yield more information about these
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Figure 5.1: The average weight of the largest cluster in a grown network as
a function of size N . A fit to the scaling form is shown (yellow), along with a
fit to a pure power law (green).

corrections to scaling.

The finite size scaling of the full cluster size distribution might offer better

access to corrections to scaling, though the principal scaling of that distribu-

tion is already challenging. Recall that at the critical point, the cluster size

distribution scales like s�3 log�2 s. We empirically see something of this form,

as seen in Figure 5.3. Assuming that the distribution is cutoff like S�1 � �df ,

we would write

ns = s�3 log�2 s ~N (sS;N��1) = s�3 log�2 sN (sN�df ; �N�1) (5.45)
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Figure 5.2: The ratio of the average weight of the largest cluster in a grown
network to the weight of an infinite cluster, as a function of an estimate for the
infinite-size correlation length �1 over the network size N . The color shows
the value of �p for which the data was taken.

This gives moments of the form

hsni =
Z
snns ds =

Z
sn�3 log�2 sN (sN�df ; �N�1) ds

=

Z
(yNdf )n�3 log�2(yNdf )N (y; �N�1)Ndf dy

= Ndf (n�2)
Z
yn�3 log�2(yNdf )N (y; �N�1) dy

(5.46)

The logarithm inside the integral makes it difficult to draw conclusions about

the finite-size scaling of the moments from ordinary scaling arguments.
∗I made the mistake of having my program take N as an unsigned int, which on my

architecture is 32 bits and therefore has a maximum value of 232� 1. Luckily I was forward
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Figure 5.3: The cluster size distribution at criticality measured for networks
of size N = 231.∗ A fit to the asymptotic form is shown in yellow, while a pure
s�3 power law is shown in green for reference.

§39. Conclusions

Other universality classes and families definitely do exist, characterized by

novel values for �. The level-1 SU(N) Wess–Zumino–Witten model has been

found to be characterized by � = N=(N +2).313 Dislocated-mediated melting

alone has produced a melange of anomalous exponents, with � = 1=2, � = 2=5,

and � = 0:369 63 : : : depending on precise specification of the model and

the lattice geometry.306,314 Topological transitions in systems whose vortices

are non-Abelian produce several series of � values dependent on particular

thinking enough to make the bins uint64s or even this data (which counts a few hundred
times more than 232 size-one clusters) would be spoiled.
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symmetry.315 Each value of � indicates either a different universality family

or merely a different class within the same family depending on how it affects

the terms at quadratic order.

There are also many other network models that produce infinite order

transitions. Percolation on branching simplicial complexes has recently been

shown to have an infinite cluster that emerges with a stretched exponential

with anomalous exponents � = (s�3)=(s�1) that vary with integer s > 3.316

The authors claim the case for s = 5 that results in � = 1=2 reduces to

the BKT singularity, but it is unknown whether the full symmetry of the

BKT theory is reproduced by this choice or if choice of s has simply tuned

them there in only the quadratic order. Other complex networks see similarly

singular percolation transitions.317,318 Besides percolation transitions, taking

certain scale-free networks and slapping spins on their vertices produce lattice

models that have novel BKT-like phenomena.318–320

Other traditional statistical mechanics models, including ones that have

exact solutions or detailed perturbative theories, are thought to exhibit BKT

universality on the basis of their anomalous exponent alone. The Kondo

problem, which is the model of a spin interacting with a bath of fermions,

is one such example, and we hope to examine its exact solution to see if it

is amenable to the extraction of corrections to scaling.321–323 The 1D Ising

model with long-ranged inverse square interactions also has a BKT-like tran-

sition, and may also be amenable to a systematic study of corrections to

scaling.322,324–328

A classification of possible bifurcations and corresponding simplest normal

forms is in order for flow equations whose leading order is quadratic, and whose
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expansions are constrained or not by various symmetries. This would be

the first step in developing techniques for distinguishing between universality

classes and families of this type using experimental or simulation data.





CHAPTER VI

MODULATED NEMATIC AS HIDDEN
ORDER IN URu2Si2

We have spent the last five chapters with the closest connection to reality

being, at best, numeric experiments and the expectation of universality. Now,

reality comes crashing down, and we shall see an example of the application of

mean-field scaling ideas to explain actual experimental data. In this chapter,

we’ll examine a set of simple explanations for a strange feature in ultrasound

data near a mysterious phase transition in a uranium compound, and discover

than only one of those explanations is consistent.

§40. Introduction

URu2Si2 is a paradigmatic example of a material with an ordered state whose

broken symmetry remains unknown. This state, known as hidden order (ho),

sets the stage for unconventional superconductivity that emerges at even lower

temperatures. At sufficiently large hydrostatic pressures, both superconduc-

tivity and ho give way to local moment antiferromagnetism (afm).330 Modern
∗The material of this chapter was posted online in J Kent-Dobias, M Matty, and B

Ramshaw, “Elastic properties of hidden order in URu2Si2 are reproduced by a staggered
nematic”, (2019), arXiv:1910.01669v2 [cond-mat.str-el]. The work and writing was done
in collaboration with the listed authors.
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theories331–348 propose associating any of a variety of broken symmetries with

ho. This work analyzes a family of phenomenological models with order pa-

rameters of general symmetry that couple linearly to strain. Of these, only

one is compatible with two experimental observations: first, the B1g “nematic"

elastic susceptibility (C11 � C12)=2 softens anomalously from room tempera-

ture down to Tho = 17:5K;349 and second, a B1g nematic distortion is observed

by x-ray scattering under sufficient pressure to destroy the ho state.350

Recent resonant ultrasound spectroscopy (rus) measurements were used

to examine the thermodynamic discontinuities in the elastic moduli at Tho.351

The observation of discontinues only in compressional, or A1g, elastic mod-

uli requires that the point-group representation of ho be one-dimensional.

This rules out many order parameter candidates340–344,348,352 in a model-

independent way, but doesn’t differentiate between those that remain.

Recent x-ray experiments discovered rotational symmetry breaking in URu2Si2

under pressure.350 Above 0.13–0.5 GPa (depending on temperature), URu2Si2

undergoes a B1g nematic distortion, which might be related to the anomalous

softening of the B1g elastic modulus (C11 � C12)=2 that occurs over a broad

temperature range at zero pressure.353,354 Motivated by these results—which

hint at a B1g strain susceptibility associated with the ho state—we construct

a phenomenological mean field theory for an arbitrary op coupled to strain,

and then determine the effect of its phase transitions on the elastic response

in different symmetry channels.

We find that only one op representation reproduces the anomalous B1g

elastic modulus, which softens in a Curie–Weiss-like manner from room tem-

perature and then cusps at Tho. That theory associates ho with a B1g op
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modulated along the c-axis, the high pressure state with uniform B1g order,

and the triple point between them with a Lifshitz point. In addition to the

agreement with the ultrasound data across a broad temperature range, the

theory predicts uniform B1g strain at high pressure—the same distortion that

was recently seen in x-ray scattering experiments.350 This theory strongly

motivates future ultrasound experiments under pressure approaching the Lif-

shitz point, which should find that the (C11�C12)=2 modulus diverges as the

uniform B1g strain of the high pressure phase is approached.

§41. Model & phase diagram

The point group of URu2Si2 is D4h, and any theory must locally respect

this symmetry in the high-temperature phase. Our phenomenological free

energy density contains three parts: the elastic free energy, the op, and the

interaction between strain and op. The most general quadratic free energy of

the strain � is felastic = C0
ijkl�ij�kl.

∗ The form of the bare moduli tensor C0

is further restricted by symmetry. Linear combinations of the six independent

components of strain form five irreducible components of strain in D4h as

�A1g;1 = �11 + �22 �B1g = �11 � �22

�A1g;2 = �33 �B2g = 2�12

�Eg = 2f�11; �22g:

(6.1)

∗Components of the elastic modulus tensor C were given in the popular Voigt notation
in the introduction. Here and henceforth the notation used is that natural for a rank-four
tensor.
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All quadratic combinations of these irreducible strains that transform like A1g

are included in the free energy,355

felastic =
1

2

X
X
C0
X;ij�X;i�X;j ; (6.2)

where the sum is over irreducible representations of the point group and the

bare elastic moduli C0
X are

C0
A1g;11 =

1
2(C

0
1111 + C0

1122) C0
B1g =

1
2(C

0
1111 � C0

1122)

C0
A1g;22 = C0

3333 C0
B2g = C0

1212

C0
A1g;12 = C0

1133 C0
Eg = C0

1313:

(6.3)

The interaction between strain and an op � depends on the point group

representation of �. If this representation is X, the most general coupling to

linear order is

fint = �b(i)�(i)X �: (6.4)

Many high-order interactions are permitted, and in §44 another of the form

�2�2 is added to the following analysis. If there exists no component of strain

that transforms like the representation X then there can be no linear coupling.

The next-order coupling is linear in strain, quadratic in order parameter, and

the effect of this coupling at a continuous phase transition is to produce a

jump in the A1g elastic moduli if � is single-component,356–358 and jumps

in other elastic moduli if multicomponent.351 Because we are interested in

physics that anticipates the phase transition—for instance, that the growing
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op susceptibility is reflected directly in the elastic susceptibility—we will focus

our attention on ops that can produce linear couplings to strain. Looking at

the components present in (6.1), this rules out all of the u-reps (which are odd

under inversion), the A2g irrep, and all half-integer (spinor) representations.

If the op transforms like A1g (e.g. a fluctuation in valence number), odd

terms are allowed in its free energy and without fine-tuning any transition will

be first order and not continuous. Since the ho phase transition is second-

order,349 we will henceforth rule out A1g ops as well. For the op representation

X as any of those remaining—B1g, B2g, or Eg—the most general quadratic free

energy density is

fop =
1

2

�
r�2 + ck(rk�)2 + c?(r?�)2 +D?(r2

?�)
2�+ u�4; (6.5)

where rk = f@1; @2g transforms like Eu, and r? = @3 transforms like A2u.

Other quartic terms are allowed—especially many for an Eg op—but we have

included only those terms necessary for stability when either r or c? become

negative. The full free energy functional of � and � is

F [�; �] = Fop[�] + Felastic[�] + Fint[�; �]

=

Z
dx (fop + felastic + fint):

(6.6)

Rather than analyze this two-argument functional directly, we begin by

tracing out the strain and studying the behavior of the op alone. Later we

will invert this procedure and trace out the op when we compute the effective

elastic moduli. The only strain relevant to an op of representation X at linear

coupling is �X, which can be traced out of the problem exactly in mean field
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theory. Extremizing the functional (6.6) with respect to �X gives

0 =
�F [�; �]

��X(x)

����
�=�?

= C0
X�

?
X(x)� b�(x); (6.7)

which in turn gives the strain field conditioned on the state of the op field

as �?X[�](x) = (b=C0
X)�(x) at all spatial coordinates x, and �?Y[�] = 0 for

all other irreps Y 6= X. Upon substitution into (6.6), the resulting single-

argument free energy functional F [�; �?[�]] has a density identical to fop with

the identification r ! ~r = r � b2=2C0
X.

With the strain traced out, (6.5) describes the theory of a Lifshitz point

at ~r = c? = 0.359,360 The properties discussed in the remainder of this sec-

tion can all be found in a standard text, e.g., in Chapter 4 §6.5 of Chaikin &

Lubensky.361 For a one-component op (B1g or B2g) and positive ck, it is tra-

ditional to make the field ansatz h�(x)i = �� cos(q�x3). For ~r > 0 and c? > 0,

or ~r > c2?=4D? and c? < 0, the only stable solution is �� = q� = 0 and the

system is unordered. For ~r < 0 there are free energy minima for q� = 0 and

�2� = �~r=4u and this system has uniform order of the op representation, e.g.,

B1g or B2g. For c? < 0 and ~r < c2?=4D? there are free energy minima for

q2� = �c?=2D? and

�2� =
c2? � 4D?~r
12D?u

=
~rc � ~r

3u
=
j�~rj
3u

; (6.8)

with ~rc = c2?=4D? and the system has modulated order. The transition be-

tween the uniform and modulated orderings is first order for a one-component

op and occurs along the line c? = �2p�D?~r=5.
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Figure 6.1: Phase diagrams for (a) URu2Si2 from experiments (neglecting
the superconducting phase)330 (b) mean field theory of a one-component (B1g
or B2g) Lifshitz point (c) mean field theory of a two-component (Eg) Lifshitz
point. Solid lines denote continuous transitions, while dashed lines denote first
order transitions. Later, when we fit the elastic moduli predictions for a B1g op
to data along the ambient pressure line, we will take �~r = ~r� ~rc = a(T �Tc).
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For a two-component op (Eg) we must also allow a relative phase between

the two components of the op. In this case the uniform ordered phase is only

stable for c? > 0, and the modulated phase is now characterized by helical

order with h�(x)i = ��fcos(q�x3); sin(q�x3)g. The uniform to modulated tran-

sition is now continuous. This does not reproduce the physics of URu2Si2,

whose ho phase is bounded by a line of first order transitions at high pressure,

and so we will henceforth neglect the possibility of a multicomponent order

parameter. Schematic phase diagrams for both the one- and two-component

models are shown in Figure 6.1.

§42. Susceptibility & elastic moduli

We will now derive the effective elastic tensor C that results from the coupling

of strain to the op. The ultimate result, found in (6.17), is that CX differs

from its bare value C0
X only for the representation X of the op. Moreover,

this modulus does not vanish at the unordered to modulated transition—as

it would if the transition were a q = 0 phase transition—but instead ends in a

cusp. In this section we start by computing the susceptibility of the op at the

unordered to modulated transition, and then compute the elastic modulus for

the same.

The susceptibility of a single-component (B1g or B2g) op is

�f�1g(x; x0) =
�2F [�; �?[�]]

��(x)��(x0)

����
�=h�i

=
�
~r � ckr2

k � c?r2
? +D?r4

? + 12uh�(x)i2��(x� x0);

(6.9)
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where f�1g indicates a functional reciprocal defined as

Z
dx00 �f�1g(x; x00)�(x00; x0) = �(x� x0): (6.10)

Taking the Fourier transform and integrating out q0 gives

�(q) =
�
~r + ckq2k + c?q2? +D?q4? + 12u

X
q0

h~�q0ih~��q0i
��1

: (6.11)

Near the unordered to modulated transition this yields

�(q) =
�
ckq2k +D?(q2� � q2?)

2 + j�~rj��1
=

1

D?
�4?

1 + �2kq
2
k + �4?(q2� � q2?)2

;
(6.12)

with �? = (j�~rj=D?)�1=4 = �?0jtj�1=4 and �k = (j�~rj=ck)�1=2 = �k0jtj�1=2,
where t = (T �Tc)=Tc is the reduced temperature and �?0 = (D?=aTc)1=4 and

�k0 = (ck=aTc)1=2 are the bare correlation lengths perpendicular and parallel to

the plane, respectively. The static susceptibility �(0) = (D?q4�+ j�~rj)�1 does
not diverge at the unordered to modulated transition. Though it anticipates

a transition with Curie–Weiss-like divergence at the lower point a(T � Tc) =

�~r = �D?q4� < 0, this is cut off with a cusp at �~r = 0.

The elastic susceptibility, which is the reciprocal of the effective elastic

modulus, is found in a similar way to the op susceptibility: we must trace

over � and take the second variation of the resulting effective free energy
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functional of � alone. Extremizing over � yields

0 =
�F [�; �]

��(x)

����
�=�?

=
�Fop[�]

��(x)

����
�=�?

� b�X(x); (6.13)

which implicitly gives �?[�], the op conditioned on the configuration of the

strain. Since �? is a functional of �X alone, only the modulus CX will be

modified from its bare value C0
X.

Though the differential equation for �? cannot be solved explicitly, we

can use the inverse function theorem to make use of (6.13) anyway. First,

denote by ��1? [�] the inverse functional of �? implied by (6.13), which gives

the function �X corresponding to each solution of (6.13) it receives. This

we can immediately identify from (6.13) as ��1? [�](x) = b�1(�Fop[�]=��(x)).

Now, we use the inverse function theorem to relate the functional reciprocal

of the derivative of �?[�] with respect to �X to the derivative of ��1? [�] with

respect to �, yielding

�
��?[�](x)

��X(x0)

�f�1g
=
���1? [�](x)

��(x0)

����
�=�?[�]

= b�1
�2Fop[�]

��(x)��(x0)

����
�=�?[�]

: (6.14)

Next, (6.13) and (6.14) can be used in concert with the ordinary rules of



§42 Susceptibility & elastic moduli 241

functional calculus to yield the second variation

�2F [�?[�]; �]

��X(x)��X(x0)
= C0

X�(x� x0)� 2b
��?[�](x)

��X(x0)
� b

Z
dx00

�2�?[�](x)

��X(x0)��X(x00)
�X(x

00)

+

Z
dx00

�2�?[�](x
00)

��X(x)��X(x0)
�Fop[�]

��(x00)

����
�=�?[�]

+

Z
dx00 dx000

��?[�](x
00)

��X(x)

��?[�](x
000)

��X(x0)
�2Fop[�]

��(x00)��(x000)

����
�=�?[�]

= C0
X�(x� x0)� 2b

��?[�](x)

��X(x0)
� b

Z
dx00

�2�?[�](x)

��X(x0)��X(x00)
�X(x

00)

+

Z
dx00

�2�?[�](x
00)

��X(x)��X(x0)
(b�X(x

00)) + b

Z
dx00 dx000

��?[�](x
00)

��X(x)

��?[�](x
000)

��X(x0)

�
@�?[�](x

00)
@�X(x000)

�f�1g
= C0

X�(x� x0)� 2b
��?[�](x)

��X(x0)
+ b

Z
dx00 �(x� x00)

��?[�](x
00)

��X(x0)

= C0
X�(x� x0)� b

��?[�](x)

��X(x0)
:

(6.15)

The elastic modulus is given by the second variation (6.15) evaluated at the

extremized strain h�i. To calculate it, note that evaluating the second variation

of Fop in (6.14) at h�i (or �?(h�i) = h�i) yields

�
��?[�](x)

��X(x0)

�f�1g����
�=h�i

= b�1�f�1g(x; x0) +
b

C0
X
�(x� x0); (6.16)

where �f�1g is the op susceptibility given by (6.9). Upon substitution into

(6.15) and taking the Fourier transform of the result, we finally arrive at

CX(q) = C0
X � b

�
1

b�(q)
+

b

C0
X

��1
= C0

X

�
1 +

b2

C0
X
�(q)

��1
: (6.17)

Though not relevant here, this result generalizes to multicomponent ops.

What does (6.17) predict in the vicinity of the ho transition? Near the
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disordered to modulated transition—the zero-pressure transition to the HO

state—the static modulus is given by

CX(0) = C0
X

�
1 +

b2

C0
X

�
D?q4� + j�~rj��1��1: (6.18)

This corresponds to a softening in the X-modulus approaching the transition

that is cut off with a cusp of the form j�~rj
 / jT�Tcj
 with 
 = 1. This is our

main result. The only op irreps that couple linearly with strain and reproduce

the topology of the URu2Si2 phase diagram are B1g and B2g. For either of

these irreps, the transition into a modulated rather than uniform phase masks

traditional signatures of a continuous transition by locating thermodynamic

singularities at nonzero q = q�. The remaining clue at q = 0 is a particular

kink in the corresponding modulus.

§43. Comparison to experiment

Rus experiments351 yield the individual elastic moduli broken into irreps;

data for the B1g and B2g components defined in (6.1) are shown in Figures

6.2(a–b). The B2g modulus in Fig. 6.2(a) doesn’t appear to have any response

to the presence of the transition, exhibiting the expected linear stiffening

upon cooling from room temperature, with a low-temperature cutoff at some

fraction of the Debye temperature.362 The B1g modulus Fig. 6.2(b) has a

dramatic response, softening over the course of roughly 100K and then cusping

at the ho transition. The data in the high-temperature phase can be fit to the

theory (6.18), with a linear background modulus C0
B1g

and ~r� ~rc = a(T �Tc),

and the result is shown in Figure 6.2(b).
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Figure 6.2: Rus measurements of the elastic moduli of URu2Si2 at ambi-
ent pressure as a function of temperature from recent experiments351 (blue,
solid) alongside fits to theory (magenta, dashed and black, solid). The
solid yellow region shows the location of the ho phase. (a) B2g modu-
lus data and a fit to the standard form.362 (b) B1g modulus data and a
fit to (6.18) (magenta, dashed) and a fit to (6.41) (black, solid). The fit
gives C0

B1g
' �

73 � (0:012K�1)T
�
GPa, D?q4�=b2 ' 0:12GPa�1, and a=b2 '

3:7 � 10�4GPa�1K�1. Addition of a quadratic term in C0
B1g

was here not
needed for the fit.362 (c) B1g modulus data and the fit of the bare B1g modulus.
(d) B1g modulus data and the fits transformed by [C0

B1g
(C0

B1g
=CB1g � 1)]]�1,

which is predicted from (6.18) to equal D?q4�=b2+ a=b2jT �Tcj, e.g., an abso-
lute value function.
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The behavior of the modulus below the transition does not match (6.18)

well, but this is because of the truncation of the free energy expansion used

above. Higher order terms like �2�2 contribute to the modulus starting at

order �2� , and therefore while they do not affect the behavior above the tran-

sition, they change the behavior below it. To demonstrate this, in §44 we

compute the modulus in a theory where the interaction free energy is trun-

cated after fourth order with new term 1
2g�

2�2. The thin solid black line in

Fig. 6.2 shows the fit of the rus data to (6.41) and shows that high-order

corrections can account for the low-temperature behavior.

The data and theory appear quantitatively consistent, suggesting that ho

can be described as a B1g-nematic phase that is modulated at finite q along

the c�axis. The predicted softening appears over hundreds of Kelvin; Figures

6.2(c–d) show the background modulus C0
B1g

and the op–induced response

isolated from each other.

We have seen that the mean-field theory of a B1g op recreates the topol-

ogy of the ho phase diagram and the temperature dependence of the B1g

elastic modulus at zero pressure. This theory has several other physical im-

plications. First, the association of a modulated B1g order with the ho phase

implies a uniform B1g order associated with the high pressure phase, and

moreover a uniform B1g strain of magnitude h�B1gi2 = b2~r=4u(C0
B1g

)2, which

corresponds to an orthorhombic structural phase. The onset of orthorhombic

symmetry breaking was recently detected at high pressure in URu2Si2 using

x-ray diffraction, a further consistency of this theory with the phenomenology

of URu2Si2.350

Second, as the Lifshitz point is approached from low pressure, this theory



§43 Comparison to experiment 245

predicts that the modulation wavevector q� should vanish continuously. Far

from the Lifshitz point we expect the wavevector to lock into values com-

mensurate with the space group of the lattice, and moreover that at zero

pressure, where the rus data here was collected, the half-wavelength of the

modulation should be commensurate with the lattice spacing a3 ' 9:68Å, or

q� = �=a3 ' 0:328Å�1.363–367 In between these two regimes, mean field theory

predicts that the ordering wavevector shrinks by jumping between ever-closer

commensurate values in the style of the devil’s staircase.368 In reality the

presence of fluctuations may wash out these transitions.

This motivates future ultrasound experiments done under pressure, where

the depth of the cusp in the B1g modulus should deepen (perhaps with

these commensurability jumps) at low pressure and approach zero as q4� �
(c?=2D?)2 near the Lifshitz point. Alternatively, rus done at ambient pres-

sure might examine the heavy Fermi liquid to afm transition by doping.

Though previous rus studies have doped URu2Si2 with rhodium,369 the mag-

netic rhodium dopants likely promote magnetic phases. A non-magnetic

dopant such as phosphorous may more faithfully explore the transition out of

the HO phase. Our work also motivates experiments that can probe the entire

correlation function—like x-ray and neutron scattering—and directly resolve

its finite-q divergence. The presence of spatial commensurability is known

to be irrelevant to critical behavior at a one-component disordered to modu-

lated transition, and therefore is not expected to modify the thermodynamic

behavior otherwise.370

There are two apparent discrepancies between the orthorhombic strain in

the phase diagram presented by recent x-ray data350, and that predicted by
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our mean field theory if its uniform B1g phase is taken to be coincident with

URu2Si2’s afm. The first is the apparent onset of the orthorhombic phase in

the ho state at slightly lower pressures than the onset of afm. As the recent

x-ray research350 notes, this misalignment of the two transitions as function

of doping could be due to the lack of an ambient pressure calibration for

the lattice constant. The second discrepancy is the onset of orthorhombic-

ity at higher temperatures than the onset of afm. We note that magnetic

susceptibility data sees no trace of another phase transition at these higher

temperatures.371 It is therefore possible that the high-temperature orthorhom-

bic signature in x-ray scattering is not the result of a bulk thermodynamic

phase, but instead marks the onset of short-range correlations, as it does in

the high-Tc cuprates372 (where the onset of CDW correlations also lacks a

thermodynamic phase transition).

Three dimensions is below the upper critical dimension 412 of a one-

component disordered-to-modulated transition, and so mean field theory should

break down sufficiently close to the critical point due to fluctuations, at

the Ginzburg temperature.373,374 Magnetic phase transitions tend to have a

Ginzburg temperature of order one. Our fit above gives �?0q� = (D?q4�=aTc)1=4 '
2, which combined with the speculation of q� ' �=a3 puts the bare correlation

length �?0 on the order of lattice constant, which is about what one would

expect for a generic magnetic transition. The agreement of this data in the

t � 0:1–10 range with the mean field exponent suggests that this region is out-

side the Ginzburg region, but an experiment may begin to see deviations from

mean field behavior within approximately several Kelvin of the critical point.

An ultrasound experiment with more precise temperature resolution near the
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critical point may be able to resolve a modified cusp exponent 
 ' 1:31,[171]

since according to one analysis the universality class of a uniaxial modulated

one-component op is that of the O(2), 3D XY transition.[370]

§44. Adding a higher-order interaction

In this section, we compute the B1g modulus for a theory with a higher-

order interaction truncation to better match the low-temperature behavior.

Consider the free energy density f = felastic + fint + fop with

felastic =
1

2
C0�

2

fint = �b�� + 1

2
g�2�2

fop =
1

2

�
r�2 + ck(rk�)2 + c?(r?�)2 +D(r2

?�)
2�+ u�4:

(6.19)

The mean-field stain conditioned on the order parameter is found from

0 =
�F [�; �]

��(x)

����
�=�?[�]

= C0�?[�](x)� b�(x) + g�?[�](x)�(x)
2;

(6.20)

which yields

�?[�](x) =
b�(x)

C0 + g�(x)2
: (6.21)

Upon substitution into (6.19) and expanded to fourth order in �, F [�; �?[�]]

can be written in the form Fop[�] alone with r ! ~r = r � b2=C0 and u !
~u = u + b2g=2C2

0 . The phase diagram in � follows as before with the shifted
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coefficients, and namely h�(x)i = �� cos(q�x3) for ~r < c2?=4D = ~rc with

q2� = �c?=2D and

�2� =
c2? � 4D~r

12D~u
=
j�~rj
3~u

: (6.22)

We would like to calculate the q-dependent modulus

C(q) =
1

V

Z
dx dx0C(x; x0)e�iq(x�x

0); (6.23)

where

C(x; x0) =
�2F [�?[�]; �]

��(x)��(x0)

����
�=h�i

=
�2Felastic[�?[�]; �]

��(x)��(x0)
+
�2Fint[�?[�]; �]

��(x)��(x0)
+
�2Fop[�?[�]; �]

��(x)��(x0)

����
�=h�i

(6.24)

and �? is the mean-field order parameter conditioned on the strain defined

implicitly by

0 =
�F [�; �]

��(x)

����
�=�?[�]

= �b�(x) + g�(x)2�?[�](x) +
�Fop[�]

��(x)

����
�=�?[�]

: (6.25)

We will work this out term by term. The elastic term is the most straightfor-

ward, giving

�2Felastic[�]

��(x)��(x0)
=

1

2
C0

�2

��(x)��(x0)

Z
dx00 �(x00)2 = C0�(x� x0): (6.26)
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The interaction term gives

�2Fint[�?[�]; �]

��(x)��(x0)

= �b �2

��(x)��(x0)

Z
dx00 �(x00)�?[�](x00) +

1

2
g

�2

��(x)��(x0)

Z
dx00 �(x00)2�?[�](x00)2

= �b��?[�](x
0)

��(x)
� b

�

��(x)

Z
dx00 �(x00)

��?[�](x
00)

��(x0)
+ g

�

��(x)

�
�(x0)�?[�](x0)2

�
+ g

�

��(x)

Z
dx00 �(x00)2�?[�](x00)

��?[�](x
00)

��(x0)

= �2(b� 2g�(x)�?[�](x))
��?[�](x)

��(x0)
� b

Z
dx00 �(x00)

�2�?[�](x
00)

��(x)��(x0)
+ g�?[�](x)

2�(x� x0)

+ g

Z
dx00 �(x00)2

��?[�](x
00)

��(x)

��?[�](x
00)

��(x0)
+ g

Z
dx00 �(x00)2�?[�](x00)

�2�?[�](x
00)

��(x)��(x0)
:

(6.27)

The order parameter term relies on some other identities. First, (6.25) implies

�Fop[�]

��(x)

����
�=�?[�]

= b�(x)� g�(x)2�?[�](x); (6.28)

and therefore that the functional inverse ��1? [�] is

��1? [�](x) =
b

2g�(x)

 
1�

s
1� 4g�(x)

b2
�Fop[�]

��(x)

!
: (6.29)

The inverse function theorem further implies (with substitution of (6.28) after

the derivative is evaluated) that

�
��?[�](x)

��(x0)

�f�1g
=
���1? [�](x)

��(x0)

����
�=�?[�]

=
g�(x)2�(x� x0) + �2Fop[�]

��(x)��(x0)

��
�=�?[�]

b� 2g�(x)�?[�](x)
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(6.30)

and therefore that

�2Fop[�]

��(x)��(x0)

����
�=�?[�]

= (b�2g�(x)�?[�](x))

�
��?[�](x)

��(x0)

�f�1g
�g�(x)2�(x�x0):

(6.31)

Finally, we evaluate the order parameter term, using (6.28) and (6.31) which

give

�2Fop[�?[�]]

��(x)��(x0)
=

�

��(x)

Z
dx00

��?[�](x
00)

��(x0)
�Fop[�]

��(x00)

����
�=�?[�]

=

Z
dx00

�2�?[�](x
00)

��(x)��(x0)
�Fop[�]

��(x00)

����
�=�?[�]

+

Z
dx00dx000

��?[�](x
00)

��(x)

��?[�](x
000)

��(x0)
�2Fop[�]

��(x00)��(x000)

����
�=�?[�]

=

Z
dx00

�2�?[�](x
00)

��(x)��(x0)
�
b�(x)� g�(x)2�?[�](x)

�
+ (b� 2g�(x)�?[�](x))

��?[�](x)

��(x0)

� g

Z
dx00 �(x00)2

��?[�](x
00)

��(x)

��?[�](x
00)

��(x0)
:

(6.32)

Summing all three terms, we see a great deal of cancellation, with

�2F [�?[�]; �]

��(x)��(x0)
= C0�(x�x0)+g�?[�](x)2�(x�x0)�(b�2g�(x)�?[�](x))��?[�](x)

��(x0)
:

(6.33)

We new need to evaluate this at h�i. First, �?[h�i] = h�i, and

�2F [�?[�]; �]

��(x)��(x0)

����
�=h�i

= C0�(x�x0)+gh�(x)i2�(x�x0)�(b�2gh�(x)ih�(x)i)��?[�](x)
��(x0)

����
�=h�i

:
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(6.34)

Computing the final functional derivative is the most challenging part. We

will first compute its functional inverse, take the Fourier transform of that,

and then use the basic relationship between Fourier functional inverses to find

the form of the non-inverse. First, we note

�2Fop[�]

��(x)��(x0)

����
�=h�i

=
�
r�c?r2

?�ckr2
k+Dr4

?+12uh�(x)i2��(x�x0); (6.35)

which gives

�
��?[�](x)

��(x0)

�f�1g����
�=h�i

=
1

b� 2gh�(x)ih�(x)i
�
gh�(x)i2�(x� x0) +

�2Fop[�]

��(x)��(x0)

�
�=h�i

=
1

b� 2gh�(x)ih�(x)i
h
gh�(x)i2 + r � c?r2

? � ckr2
k +Dr4

? + 12uh�(x)i2
i
�(x� x0):

(6.36)

Upon substitution of (6.21) and expansion to quadratic order it h�(x)i, we
find

�
��?[�](x)

��(x0)

�f�1g����
�=h�i

=
1

b
�(x� x0)

(
r � c?r2

? � ckr2
k +Dr4

?

+ h�(x)i2
�
12u+

b2g

C2
0

+
2g

C0
(r � c?r2

? � ckr2
k +Dr4

?)
�
+O(h�i4)

)
(6.37)
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Defining dh�i2 = R
dq0 h�̂(q0)ih�̂(�q0)i, its Fourier transform is then

G(q) =
1

V

Z
dx dx0 e�iq(x�x

0)
�
��?[�](x)

��(x0)

�f�1g����
�=h�i

=
1

b

(
r + c?q2? + ckq2k +Dq4? + dh�i2�12u+ b2g

C2
0

+
2g

C0
(r + c?q2? + ckq2k +Dq4?)

�
+O(h�̂i4)

)
:

(6.38)

We can now compute C(q) by taking its Fourier transform, using the convo-

lution theorem for the second term:

C(q) = C0 + gdh�i2 � Z dq00
�
b�(q00)� gb

C0

Z
dq0h�̂q0ih�̂q00�q0i

�
=G(q � q00)

= C0 + gdh�i2 � b2
�

1

r + c?q2? + ckq2k +Dq4?

� dh�i2 12u+ b2g=C2
0 +

2g
C0
(r + c?q2 + ckq2k +Dq4?)

(r + c?q2? + ckq2k +Dq4?)2

�

+
gb2

C0

Z
dq0 dq00

h�̂q0ih�̂q00�q0i
r + c?(q? � q00?)2 + ck(qk � q00k)2 +D(q? � q00?)4

+O(h�̂i4):

(6.39)
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Upon substitution of h�̂qi = 1
2��
�
�(q? � q�) + �(q? + q�)

�
�(qk), we have

C(q) = C0 +
1

4
g�2� � b2

�
1

r + c?q2? + ckq2k +Dq4?

� �2�
4

12u+ b2g=C2
0 +
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(r + c?q2 + ckq2k +Dq4?)
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1
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+
1

r + ckq2k + c?(q? + 2q�)2 +D(q? + 2q�)4

�
+O(�4�):

(6.40)

Evaluating at q = 0, we have

C(0) = C0 � b2

r
+
�2�
4

�
g +

b2

r2
(12u+ b2g=C2

0 ) +
2gb2

C0r

16Dq4� + 3r

8Dq4� + r

�
(6.41)

Above the transition this has exactly the form of (6.18) for any g; below the

transition it has the same form at g = 0 to order �2� . With r = a�T+c2=4D+

b2=C0, u = ~u� b2g=2C2
0 , and

�2� =

(
0 �T > 0

�a�T=3~u �T � 0;
(6.42)

we can fit the ratios b2=a = 1665GPaK, b2=Dq4� = 6:28GPa, and b
p�g=~u =

14:58GPa with C0 = (71:14 � (0:010426 � T )=K)GPa. The resulting fit the

dashed black line in Fig. 6.2.
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§45. Conclusion & outlook

We have developed a general phenomenological treatment of ho ops that have

the potential for linear coupling to strain. The two representations with mean

field phase diagrams that are consistent with the phase diagram of URu2Si2 are

B1g and B2g. Of these, only a staggered B1g op is consistent with zero-pressure

rus data, with a cusp appearing in the associated elastic modulus. In this

picture, the ho phase is characterized by uniaxial modulated B1g order, while

the high pressure phase is characterized by uniform B1g order. The staggered

nematic of ho is similar to the striped superconducting phase found in LBCO

and other cuperates.375

The coincidence of our theory’s orthorhombic high-pressure phase and

URu2Si2’s afm is compelling, but our mean field theory does not make any

explicit connection with the physics of afm. Neglecting this physics could be

reasonable since correlations often lead to afm as a secondary effect, like what

occurs in many Mott insulators. An electronic theory of this phase diagram

may find that the afm observed in URu2Si2 indeed follows along with an

independent high-pressure orthorhombic phase associated with uniform B1g

electronic order.

The corresponding prediction of uniform B1g symmetry breaking in the

high pressure phase is consistent with recent diffraction experiments,350 ex-

cept for the apparent earlier onset in temperature of the B1g symmetry break-

ing, which we believe may be due to fluctuating order at temperatures above

the actual transition temperature. This work motivates both further theo-

retical work regarding a microscopic theory with modulated B1g order, and
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preforming symmetry-sensitive thermodynamic experiments at pressure, such

as ultrasound, that could further support or falsify this idea.
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