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Calculation of Quantum Tunneling for a Spatially Extended Defect: The Dislocation Kink
in Copper Has a Low Effective Mass
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Several experiments indicate that there are atomic tunneling defects in plastically deformed metals.
How this is possible has not been clear, given the large mass of the metal atoms. Using a classical
molecular-dynamics calculation, we determine the structures, energy barriers, effective masses, and
quantum tunneling rates for dislocation kinks and jogs in copper screw dislocations. We find that jogs
are unlikely to tunnel, but the kinks should have large quantum fluctuations. The kink motion involves
hundreds of atoms each shifting a tiny amount, leading to a small effective mass and tunneling barrier.
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Tunneling of atoms is unusual. At the root, the rea-
son atoms do not tunnel is that their tunneling barriers and
distances are set by the much lighter electrons. The tun-
neling of a proton over a barrier one Rydberg high and
one Bohr radius wide is suppressed by the exponential
of

p
2MpRya2

0
�

p
Mp�me � 42.85: a factor of 10219.

When atoms tunnel, one looks for a special reason.
The atomic tunneling which dominates the low-

temperature properties of glasses [1] occurs in rare
regions (few parts per million) where an atom or group of
atoms has a double-well potential with a low barrier and
asymmetry. Tunneling defects in crystals [2] involve
either nearly spherical molecules or weakly off-center
defects with low barriers and tunneling distances. Quanti-
tative modeling of these spatially localized tunneling
defects requires extremely accurate estimates of energy
barriers, beyond today’s best density functional electronic
structure calculations.

There is much evidence that quantum tunneling is im-
portant to the properties of undoped, plastically deformed
metals. Quantum creep [3], glassy low-temperature behav-
ior [4], and two-channel Kondo scaling seen in the volt-
age and temperature-dependent electrical conductivity in
nanoconstrictions [5] have been attributed to quantum tun-
neling associated with dislocations. It has never been clear
how this can occur, given the large masses of the metal
atoms involved.

We show here using a classical effective-medium inter-
atomic potential that quantum fluctuations can indeed be
important in the dynamics of one particular defect: a kink
in a split-core dislocation —in this case a screw disloca-
tion in copper. The motion of the kink involves a concerted
motion of hundreds of copper atoms, leading to a dramatic
decrease in its effective mass [6]. Because our important
conclusions rest upon this delocalization they are qualita-
tively much less sensitive to the accuracy of our potential
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than calculations for spatially localized tunneling defects.
We assert that kinks are likely the only candidate for quan-
tum tunneling in pure fcc metals.

The kink simulation consists of two screw dislocations
with opposite Burgers vectors b � 6

a
2 �110�, allowing

periodic boundary conditions giving us the perfect transla-
tional invariance necessary to measure energy differences
to the accuracy we need. The two dislocations are
placed in different �111� planes separated by 20 �111�
planes (4.4 nm); see Fig. 1. The system is 86 planes
wide (19.3 nm) in the two (nonorthogonal) directions,
and extends 44.5b (11.4 nm) along the dislocations. We
introduce kinks or jogs on the dislocations by applying
skew periodic boundary conditions to the system, i.e., we
introduce a small mismatch at the interface to the next
cell. The procedure also introduces a row of interstitial
atoms between the kinked dislocations, which is subse-
quently removed from the system, leaving us with a total
of 329 102 atoms. The kinks have a net line vector of
jkink �

a
4 �112�, with a the lattice constant.

To show how unusual the properties of the kink are,
we also study the properties of a dislocation jog. The jog
simulation, and the associated energy barrier calculation,
is similar and is described elsewhere [7]. The elementary
jog we study is introduced with a line vector oriented in the
�111� glide plane of the screw dislocation, jjog � a

4 �112�,
which then transforms into an obtuse lower energy configu-
ration: a

4 �112� ! a
2 �101� 1

a
4 �110�. This jog is expected

to be the most mobile of the jogs, second only to the kink
in mobility.

We introduce the two kinked dislocations directly as
Shockley partial dislocations; see Fig. 1, and relax using
the MDmin algorithm [8], using effective medium theory:
a many-body classical potential [9], which is computation-
ally almost as fast as a pair potential, while still describ-
ing the elastic properties well. The elastic constants of
© 2001 The American Physical Society
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FIG. 1. (color). Kink geometry. Broadly speaking, the screw
dislocation represents the locus where planes of atoms form
a helix. In copper it spreads out into a ribbon along the x
axis to lower its energy. The kink we study shifts the ribbon
by one atom in the x direction. More specifically, the b �
a
2 �110� dislocation on the left dissociates on the �111� plane
into the Shockley partials: aC �

a
6 �121� and Da �

a
6 �211 �,

respectively. The kink is introduced with line vector jkink �
a
4 �112�, and dissociates into a wide screwlike and a bulky edge-
like kink located on the partial dislocations. The lighter atoms
are on the stacking fault (hcp local environments) and the darker
atoms are along the partial dislocations (neither hcp nor fcc).

the potential are C11 � 176.2 GPa, C12 � 116.0 GPa, and
C44 � 90.6 GPa with a Voigt average shear modulus of
m � 66 GPa, and an intrinsic stacking fault energy of
gI � 31 mJ�m2.

We present three quantities for the kink and jog: the
Peierls-like barrier for migration along the dislocation, the
effective mass, and an upper bound for the WKB factor
suppressing quantum tunneling through that barrier. Since
the motion of these defects involves several atoms moving
in a coordinated fashion, we use instantons: the appropri-
ate generalization of WKB analysis to many-dimensional
configuration spaces [6,10,11]. An upper bound for the
tunneling matrix element is given by the effective mass
approximation [11,12],

D # h̄v0 exp

µ
2

Z q
2M��Q�V ��Q� dQ�h̄

∂
, (1)

where v0 is an attempt frequency, V ��Q� is the energy of
the defect at position Q with the neighbors in their relaxed,
minimum energy positions qi�Q�, and

M��Q� �
X

i

Mi�dqi�dQ�2 (2)
is the effective mass of the defect incorporating the ki-
netic energy of the surrounding atoms as they respond adi-
abatically to its motion. The effective mass approximation
is usually excellent for atomic tunneling. The method is
variational, so Eqs. (1) and (2) remain upper bounds using
other assumptions about the tunneling path qi�Q� (such as
the straight-line path between the two minima described
below for the kinks).

The difficulty of finding models for atomic tunneling
is illustrated rather well by the properties of the jog we
study. The barrier for migration was determined to be
15 meV [7]: lower than other jogs, or even than sur-
face diffusion barriers calculated with the same potential.
The effective mass for the jog, estimated by summing the
squared displacement of the 200 atoms with largest mo-
tion, is M�

jog � 0.36 MCu: the jog is spatially localized (it
does not dissociate into partials), with a few atoms in the
core of the jog carrying most of the motion. The WKB
tunneling matrix element for the jog to tunnel a distance
Q � 2.5 Å over a barrier V � 0.015 eV is suppressed by
a factor of roughly exp�2

p
2M�

jogV Q�h̄� � 10214. Jogs
do not tunnel much.

For the kinks, we take a relaxed initial configuration and
define a final configuration with the kink migrated by one
lattice spacing along the dislocation. The final position
for each atom is given by the position of the neighboring
atom closest to the current position minus the kink migra-
tion vector lmigr �

a
2 �110� which represents the net motion

of the kink. This automatically gives the correct relaxed
final position, which is otherwise difficult to locate given
the extremely small barriers. The width of the kinks is
the traditional name for their extent along the axis of the
screw dislocation. We can measure this width by looking

FIG. 2. The magnitude of the atomic displacement field as the
kinks move on the partials, along the cores of the two partial
dislocations, as a function of the z coordinate. The data points
are fitted to “periodic” Lorentzian distributions. The full widths
at half maximum of the two partial kinks are Gedge � 13b
(bullets) and Gscrew � 21b (triangles). The centers of mass of
the two partial kinks are separated: the screwlike partial kink is
shifted by dz � 21.5b.
1547
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at the net displacement of atoms between the initial and
final configurations. We find that this displacement field is
localized on two partial kinks; Fig. 2 shows it along lines
through the cores of the partial dislocations described in
Fig. 1. These two partial kinks are quite wide (13b and
21b). They differ because the partials are of mixed edge
and screw character; it is known [13] that the kink which
forces a mixed dislocation towards the screw direction will
be wider and have higher energy. This is wider than the
w # 10b predicted for slip dislocations in closed-packed
materials by Hirth and Lothe, and Seeger and Schiller us-
ing line tension models [14]. The kinks will merge together
for kink densities above one per kink width, or dislocation
radius of curvature smaller than the width squared over b
(say, ,300b), validating the traditional description of con-
tinuously curved dislocations.

Notice that the maximum net distance moved by an
atom during the kink motion in Fig. 2 is around 0.01 Å.
Summing the squares of all the atomic motions, and us-
ing Eq. (2), we find an effective mass M�

kink � MCu�130
within the straight-line path approximation. This remark-
ably small mass can be attributed to three factors. (1) The
mass is decreased because the screw dislocation is split
into two partial dislocations [15]. (2) The cores of the par-
tial dislocations are spread transversally among WT � 4
planes of atoms, Fig. 3; this factor seems to have been
missed in continuum treatments. These first two factors
each reduce the total distance moved by an atom as the
kink passes from z � 2` to 1`. (3) The kinks on the
partials average WL � 17 planes wide (above), so the to-
tal atomic motion is spread between around 17 kink migra-
tion hops [16]. Thus when the kink moves by x, the atoms
in two regions 1�WL long and 1�WT wide each move by

FIG. 3. The magnitude of the atomic displacement field as the
two partial kinks move, along the cores of the two partial dislo-
cations, as a function of the x coordinate. The core regions are
fitted to two squared Lorentzian distributions. The partial core
widths WT � 4d [4 �111� lattice planes], significantly reduce
the effective mass of the kink.
1548
x��2WLWT �, reducing [16] the effective mass by roughly
a factor of 2WLWT � 136.

Evaluating the energy at equally spaced atomic configu-
rations and linearly interpolating between the initial and
final states (along the straight-line path) yields an upper
bound to the kink-migration barrier of 0.15 meV, Fig. 4.
We attribute this extremely small barrier to the wide kinks
on the partials: for wide kinks the barrier V should scale
exponentially with the ratio of the kink width to the inter-
planar distance: V ~ exp�2WL� [17].

This small barrier is not only negligible for thermal
activation (2 mK), but also for quantum tunneling.
The WKB factor suppressing the tunneling would be
exp�2

p
2M�

kinkV Q�h̄� � exp�20.0148� � 0.985. Even
at zero temperature, the kinks effectively act as free par-
ticles, as suggested in the literature ([13], among others).

Our estimated kink migration barrier is thus 105 times
smaller than that for the most mobile of the jogs. How
much can we trust our calculation of this remarkably small
barrier? Schottky [18] estimates using a simple line ten-
sion model that the barrier would be �3 3 1025 eV in
fcc materials, using a Peierls stress sP � 1022m and a
kink width w � 10b. This value is a factor of 200 higher
than the barrier we find. On the other hand, both experi-
ments and theoretical estimates predict sP � 5 3 1026m

for Cu [17], yielding barriers orders of magnitude lower
than ours. Using a classical potential is valid for our pur-
poses: electronic quantum fluctuations are well treated in
the Born-Oppenheimer approximation, and atomic quan-
tum fluctuations are explicitly treated in the instanton ap-
proximation. The interatomic potentials we use do not take
into account directional bonding. This is usually a good
approximation for noble metals; however, small contribu-
tions from angular forces may change the kink width. The
kink width is like an energy barrier, balancing different
competing energies against one another: in analogy, we

FIG. 4. The activation energy as a function of the straight-line
distance moved by the kink on one dislocation, with an associ-
ated barrier of Eact � 0.15 meV. Notice that this activation
energy is about one part in 1013 of the total system energy.
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expect it to be accurate to within 20% or 30%. Our small
value for the effective mass, dependent on the inverse cube
of the spatial extent of the kink, is probably correct within
a factor of 2. The energy barrier is much more sensitive: if
we take the total exponential suppression to be 105 (using
the jog as a “zero-length” defect) then each 20% change in
the width would yield a factor of 10 change in the barrier
height. The qualitative result of our calculation, that the
barriers and effective masses are small, is robust not only
to the use of an approximate classical potential, but may
also apply to other noble metals and perhaps simple and
late transition metals.

Quantum creep estimates [3] of double-kink nucleation
will change significantly using our low kink effective mass.
The glassy low-temperature properties [4] of deformed
metals probably arise from kinks tunneling between pin-
ning sites. (Dislocation-rich metals are not glasses, and
glasses do not have kinks, but there has been speculation
[19] that tunneling in glasses is collective.) We do not have
an explicit model for the scaling seen in nanoconstrictions
[5], but we do claim that kinks are the only active atomic
degrees of freedom.

In summary, we have used an atomistic calculation with
classical potentials to extract energy barriers and effective
masses for the quantum tunneling of dislocation jogs and
kinks in copper. For jogs, the atomic displacements dur-
ing tunneling are primarily localized to a few atoms near
the jog core, each moving a significant fraction of a lattice
spacing. Consequently, the tunneling barrier and effective
mass are relatively large, and tunneling is unlikely. How-
ever, the kinks in screw dislocations are much more ex-
tended: as a kink moves by one lattice spacing, hundreds
of atoms shift their positions by less than 1% of a lattice
spacing. Both the energy barrier and the effective mass are
reduced, to the extent that tunneling should occur readily.
Kinks are likely the only candidate for quantum tunneling
in pure crystalline materials. They may be the source of
quantum creep, glassy internal friction, and nonmagnetic
Kondo effects seen in plastically deformed metals.
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