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Chapter 1

Introduction

When an external magnetic field is applied to a ferromagnetic material, several in-
teresting things happen. First, there is hysteresis—the changes in magnetization lag
behind the changes in the external field. The most obvious result of this hysteresis is
that the material remains magnetized when the external field is removed. Another
important effect is called the Barkhausen effect: as the external field is smoothly
increased, the magnetization of the material increases not smoothly but in fits and
jumps (called avalanches). The noise that is measured when the magnetization
changes are measured by a pickup coil is called Barkhausen noise.

This Barkhausen noise exhibits the properties of a critical phenomenon—many
aspects of the noise have a power law behavior. The distributions of avalanche sizes,
avalanche durations, and avalanche energies are all seen to behave as power laws
with apparently universal exponents.! Many other properties, such as the power
spectrum and the avalanche shapes appear to behave in a universal, critical way.

In recent years, much research has been done on theoretical models of Barkhausen

! Actually, several different sets of exponents have been observed in experiments. In chapter 2,
I will enumerate them and describe how they can all be explained by a single model exhibiting
three different critical behaviors.
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noise. In chapter 2, I will review several of these models and compare their results to
the results of experiments. The first of these models is called the ABBM model[1],
which describes the magnetization of a ferromagnetic material in terms of a single
degree of freedom. The more recent models are mostly variations of the random field
Ising model (RFIM) at zero temperature.[2, 3, 4, 5, 6, 7, 8, 9, 10] These previous
studies have left several open questions which I will discuss in this dissertation.

One aspect of Barkhausen noise which has remained unexplained is how the
significant range of exponents observed in experiments can be reconciled with the
universal critical exponents predicted by each of the existing models. In chapter 2,
[ will show that the experimental results fall into three categories, or universality
classes. I will then show that the existing models of Barkhausen noise can be unified
under one model, which can produce all three categories of exponents depending on
the values of tunable parameters. (These tunable parameters correspond roughly to
actual properties of the materials being studied in experiments.)

Another aspect of Barkhausen noise which has been been poorly understood
theoretically is the power law seen in the power spectrum. This is one of the most
commonly measured power laws in experiments, but it has remained largely unex-
plained by theories of Barkhausen noise. There have been several derivations of this
power law(11, 12, 13]. but their predictions are not only completely inconsistent with
the results observed in experiments, but also completely inconsistent with simula-
tions of the theoretical models they purportedly apply to. In chapter 3, I will show
how these previous derivations were wrong and derive a new prediction of the power
spectrum exponent which produces very good agreement with both simulations and
experiments.

The characteristics of Barkhausen noise in two dimensions have been a persistent
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source of confusion. Two dimensional simulations definitely appear to exhibit power
laws indicative of critical behavior. However, when rigorous attempts have been
made to understand these power laws in terms of critical phenomena, the results have
been inconclusive. I have run very large simulations in attempts to understand this
behavior. Rather than solving the problems, these large simulations have made even
more obvious the problems with the scaling of Barkhausen noise in two dimensions.
I will describe the current results on two dimensional scaling in chapter 4.

In order to run the very large simulations (up to two billion Ising spins) neces-
sary to properly study our models of Barkhausen noise, we have needed to develop
sophisticated algorithms for simulation. In chapter 5, I will describe in detail each
of the algorithms we have used. The most sophisticated of these algorithms uses
only one bit of memory per spin (in addition to a constant overhead which does not
scale with the number of spins) and has an O(N log N} running time. A simulation

of two billion spins will run in less than a day.
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Chapter 2

Relating the zero temperature

RFIM to experiments

In experiments, many measured properties of Barkhausen noise follow power laws.
One of the first power laws observed in Barkhausen noise is the behavior of the
power spectrum at high frequencies.! Recently, as experimental techniques have
improved, it has become possible to distinguish individual jumps, or avalanches, in
the Barkhausen noise. Many properties of these avalanches also obey power laws.
These properties include the distribution of avalanche durations, the distribution of
avalanche sizes, the distribution of avalanche energies, and the relationship between
avalanche duration and avalanche size.

Inspired by the link between thermally driven critical points, scale invariance,
and power laws, several groups have recently tried to explain the characteristics
of Barkhausen noise in terms of either a disorder driven critical point or disorder

driven self-organized criticality.

1The power spectrum at high frequencies is determined by the internal structure of avalanches,
as well as the distribution of avalanche sizes. The low frequency power spectrum is determined by
the spacing between avalanches and has a different behavior. (See chapter 3)
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2.1 The Models

There are two primary processes involved in Barkhausen noise. The first process is
domain nucleation. Early in the magnetization process and late in the magnetization
process, when there are few domains, domain nucleation is the dominant source
of Barkhausen noise. Unless there is very strong disorder (which makes domain
nucleation very easy), once domains become well established the motion of existing
domain walls becomes the dominant magnetization process.

Because domain wall motion is thought to be the most important process during
most of the magnetization process, many researchers have focused on understanding
domain wall motion in order to understand Barkhausen noise. Many experiments
have focused on materials in which dipole-dipole interactions cause long smooth
domains to form parallel to the magnetization. In these materials, nucleation is
almost non-existent once the domains are formed.

To explain the properties of the Barkhausen noise observed in these materials,
Alessandro et. al.[1] proposed a simple model (called the ABBM model, after its in-
ventors) of domain wall motion. They based their model on two observations. First,
because the domain wall is long and smooth, domain wall motion can be character-
ized by one parameter: the thickness of the domain. Second, it was observed that
the coercive field measured in experiments was a random function of the width of the
domain wall, approximately described by a Wiener-Lévy stochastic process. They
combined these two observations with equations for the magnetostatic interactions
to produce a single degree-of-freedom (domain wall width) model of Barkhausen
noise.

The ABBM model has turned out to be extremely successful in predicting the

exponents of the power laws in Barkhausen noise in certain classes of materials.
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However, it leaves an important question unanswered: why is the coercive field
described by a Wiener-Lévy stochastic process? If it were not, then the ABBM
model would predict different power laws, or no power laws at all. One of the first
hypotheses was that the defects and disorder in the material are correlated. However,
experiments have shown that the correlation length of the defects in materials is
much shorter than the correlation length needed to make the ABBM model work.

Another possible solution to this problem is that the power-law behavior of
Barkhausen noise arises not from the spatial distribution of the disorder, but from
the collective action of many degrees of freedom. In particular, collective action
could lead to critical behavior, a natural source of power laws. In this case, the power
laws would be universal, and independent of the particular spatial distribution of
disorder.

For ferromagnetic systems, a natural model of collective behavior is the Ising
model. Because the systems of interest are far from equilibrium, it makes sense to
model the systems at zero temperature. The quenched disorder in the materials
can be modeled by random fields, random bonds, or a diluted lattice. It has been
argued that at zero temperature, the random field, random bond, and diluted Ising
models all fall in the same universality class. ([11]) The random field Ising model is
the easiest to simulate, and several variations have been proposed as explanations
of Barkhausen noise. These models have all had significant success explaining prop-
erties of Barkhausen noise in various experiments. (But different models have had
success explaining different experiments.)

In 1992, Ji and Robbins(7] proposed a simple model of domain wall motion based
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on the RFIM. They proposed a simple Hamiltonian:

H==> sis; — > _(H+hy)s, (2.1)

where s; is an Ising spin (£1), h; is a random field?, and H is an external magnetic
field. In order to model domain wall propagation, they proposed a simple dynamics:
a spin will flip over when it becomes energetically favorable for it to do so, if it has at
least one neighbor up. The condition that one neighbor must be up for a spin to flip
eliminates all domain nucleation, producing a front propagation model. Depending
on the strength of the disorder, Ji and Robbins found that there were three different
behaviors. For weak disorder, they found a simple faceted growth. For intermediate
disorder, they found a compact, self-affine growth. For high disorder, they found
a fractal, self-similar growth. In all three regimes, there was a value of H = H,
at which the domain wall depinned and spanned the system. In the self-affine and
self-similar regimes, the approach to H. was critical, and there was a power law
distribution of avalanche sizes and durations. The self-similar growth is less likely
to be observed in ferromagnetic materials, because at disorders large enough to
produce self-similar growth, domain nucleation is likely to be a dominant process.
Narayan and Fisher[9] did an epsilon expansion for the critical exponents of this
model in the self-affine regime.

Although domain wall motion is thought to be the primary source of Barkhausen
noise, in real materials domain nucleation is present, and there are multiple interact-
ing domains. To capture these features, Sethna et. al. proposed extending Robbins’
model to include domain nucleation. They did this by changing the dynamics so
that spins can flip even when all of their neighbors are unflipped. For low disorders,

domain nucleation remains unimportant, and there is still self-affine domain wall

2Many different distributions of random fields are possible, but identical, universal power laws
occur for a wide range of distributions.

rievrntes - ————— s e ¢ =



growth with a depinning transition at a particular H = H.. However, at larger dis-
orders, there is a second-order critical point, at which domain nucleation eliminates
the depinning transition and produces a macroscopically smooth magnetization pro-
cess. At this critical point, there is a power law distribution of avalanche sizes and
durations, with a new set of critical exponents. This critical point was observed
to have a very wide critical region, so it is expected that experiments with high
disorder might observe these critical exponents even without tuning the disorder.

Both Robbins’ and Sethna’s models ignored the presence of long-range forces.
In experiments, long-range forces have been observed to play an important role.[8,
14] The primary source of long-range interactions in ferromagnetic materials is the
dipole-dipole interaction between spins. In some materials, these interactions are
very week in comparison to the short-range exchange interactions, and can possibly
be ignored. In other materials, they have a strong effect, and cause the material to
form long domains parallel to the direction of the magnetization.

In 1995, Urbach et. al.[10] proposed that rather than being coincidentally close
to a critical point, experimental systems are self-organized to a critical point by the
long-range forces. Specifically, they added an infinite range demagnetizing field to a
two-dimensional front-propagation model similar to the model of Ji and Robbins’.
This demagnetizing force is not as unrealistic as it might seem at first glance. Real
experimental samples, however large, are finite in size, and everywhere a domain
crosses the boundary of the system the dipole-dipole interactions produce an effective
long-range demagnetizing force. Except in special experimental geometries, where
the domain walls do not cross the sample boundary, this demagnetizing force has
been observed to have a significant effect on experiments.

Urbach et. al. found that the demagnetizing force indeed self-organized their
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model. When the domain wall tried to depin, the demagnetizing force grew until
it stopped the domain wall, and returned the system to the depinning transition.
Over a wide range of external fields power-law distributions were observed, with
the same exponents as the distributions at the depinning transition in the short-
range model. Narayan[9] performed a more rigorous theoretical justification for this
self-organization.

Cizeau, Zapperi, Durin and Stanley[8, 14] further examined this problem. They
considered a continuum version of Urbach’s model with full dipole-dipole interac-
tions added. (They retained an infinite-range demagnetizing force as an approxima-
tion of the boundary effects, since they appear to play an important role in experi-
ments.) Like Urbach et. al., they found that the demagnetizing force self-organized
the system. However, they also showed that the dipole interactions lowered the
upper critical dimension of the system from five to three, leading to mean-field be-
havior. In addition, they showed that this mean-field behavior produced the same
exponents as the single-degree-of-freedom ABBM model. This finding resolved one
of the major questions raised by the ABBM model: the correlated pinning field
needed for the ABBM model arises not from a particular spatial distribution of

disorder, but from the collective action of an extended interface.

2.2 Pulling the models together

The models above produce three different sets of critical exponents—three dimen-
sional front propagation (Ji and Robbins and Zapperi et. al. without dipole), plain
old critical (Sethna et. al.), and mean field (Zapperi et. al., with dipole). However,
each of the models left out important aspects of real physical systems. The models

of Ji and Robbins, Urbach, and Zapperi et. al. all left out both domain nucleation
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and interactions between domains. On the other hand, the model of Sethna et. al.
completely ignored the effects of long-range interactions. The question arises—will
multi-domain interactions, domain nucleation, and long range forces interact with
each other to produce a new type of behavior.

To examine this possibility, we have recently extended the plain old critical model
(short range interactions with domain nucleation) to include both demagnetizing
and dipole forces. The Hamiltonian for this model (which can be used for all of
the mentioned models, by setting appropriate constants to zero, and enforcing the

appropriate dynamics) is

H==> Junsis; — D _(H+hi)s;

Jin 3cos(6;;) — 1 .
F 30T S e 2 = L, (2.2)

{i.j} gl

where J,, is the strength of the nearest neighbor interactions, Jis¢ is the strength
of the infinite range demagnetizing force, Jyigole is the strength of the dipole-dipole
interactions, 6;; is the angle between the line joining s; to s; and the direction of
magnetization, and r;; is the distance between s; and s;. In this section, we will
consider the dynamics previously used by Sethna et. al., which include domain
nucleation.

The simplest version of this model is the original model of Sethna et. al.. This
case arises when both Jir and Jyipole are set to zero. As can be seen in figure
2.1, there is a phase transition from hysteresis loops with a finite jump (we will
call this jump an infinite avalanche from now on—in the thermodynamic limit, it
involves infinitely many spins) to macroscopically smooth hysteresis loops. At this
transition, there is a critical distribution of avalanche sizes, durations, energies, and

other properties. The distribution of avalanche sizes near the critical point can be
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Figure 2.1: The hysteresis loop of the plain-old-critical model has a jump for R < R,,

and is smooth for R > R..

seen in figure 2.2.
The effect of adding infinite range demagnetizing forces to this model depends

on the disorder. First, let us consider what happens at high disorders where there is
no infinite avalanche. As defined in equation 2.2, the strength of the demagnetizing
field decreases in proportion to the size of the system. This is actually a realistic

definition—in real materials the demagnetizing forces result from boundary effects

which become weaker and weaker as the size of the sample grows. This means

that in the thermodynamic limit, only avalanches which occupy a finite fraction of
the system will cause a finite change in the demagnetizing force. Because of this,
the non-infinite avalanches at large disorder will be unaffected by the addition of a
demagnetizing force. The only effect of the demagnetizing force will be to increase
the magnetic field required to start each avalanche (an avalanche that would start at

a field H without the demagnetizing field will start at a field of H + M Jine/N in the
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Figure 2.2: The avalanche size distribution for the plain-old-critical model at R ~ R,
(integrated over all values of H) has a power-law distribution, which decays with
an exponent 7 + 038 ~ 2. The divergence from a simple power law decay is a
result of being slightly above R,, instead of at the critical point. At H = H,, the

(unintegrated) avalanche size distribution decays with an exponent of 7 ~ 1.6.
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Short—Range |
—=—~ Infinite~Range -~

Figure 2.3: When infinite range demagnetizing forces are added to the plain-old-

critical model, the hysteresis loop is tilted.

presence of the demagnetizing field), and thus to tilt the hysteresis loop. The tilt in
the hysteresis loop can be seen in figure 2.3. As can be seen in figure 2.4, the critical
distribution of avalanche sizes is unchanged—even in the presence of demagnetizing
forces, the scaling behavior near the second order critical point should be visible in
experiments with large enough disorder.

For small disorders R < R,., the effect of demagnetizing forces is much more
important. At these disorders, in the absence of demagnetizing forces, there is an
infinite avalanche which occupies a finite fraction of the system, even in the thermo-
dynamic limit. Hence, even in the thermodynamic limit, this avalanche will cause
a finite increase in the demagnetizing field. As the demagnetizing field increases,
the effective field felt by the avalanche decreases below the field necessary for the
avalanche to continue propagating, and the avalanche halts until the external field

is increased again. This process breaks up the infinite avalanche into many smaller
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Figure 2.4: The avalanche size distribution near R = R, is unchanged by the addi-

tion of the infinite-range demagnetizing force.

avalanches with a critical distribution of sizes. The infinite avalanche becomes a
propagating front. Because there are few clusters of preflipped spins ahead of the
avalanche for disorders R < R., and these clusters are small, the propagating front
has the same properties as the fronts modeled by Ji and Robbins, by Urbach et. al.,
and by Cizeau et. al.. As Cizeau et. al. found for the front propagation model,
the front is self-organized by the demagnetizing field. The hysteresis loop for this
situation can be seen in figure 2.5. The avalanche size distribution can be seen in
figure 2.4. Note that it has a different scaling exponent than the distribution at the
second order critical point.

Even below R., the small avalanches before and after the infinite avalanche are
unaffected by the demagnetizing field, and their behavior continues to be influenced
by the nearby second order critical point. In fact, if one measured the critical

behavior over the entire hysteresis loop, and not just within the infinite avalanche,




H

Figure 2.5: For R < R., the infinite avalanche is broken up by the demagnetizing
forces and the vertical part of the hysteresis loop becomes tilted with a constant
slope. The initial jump in M is presumably a nucleation effect, and would get

smaller gradually as the system size was increased.
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Figure 2.6: For R < R., the demagnetizing forces self-organize the system to a
critical front-propagation behavior. The avalanche size distribution decays as a
power law with an exponent 7 = 1.3, as for non-self-organized front-propagation.
The presence of domain-nucleation does not change the exponent. Notice that
because it is self-organized, the system is right at the critical point and there are
six decades of scaling with no tuning of parameters. There are also no signs of

corrections to scaling from being away from the critical point.
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one would find a crossover between the front-propagation exponents and the second
order critical exponents as R — R.. However, this crossover would be seen only in
a very narrow range of R—one does not have to go very far below R, in two and
three dimensions before the infinite avalanche takes up most of the system and all
remnants of the second order critical point are washed out.

Since, for small R, the addition of demagnetizing forces leads to front-propagation
behavior, one would expect that the addition of dipole forces would have the same
effect as was described by Cizeau et. al. for the front-propagation models. Indeed,
this seems to be the case. The addition of dipole forces leads to the formation of
long domains in the direction of magnetization, just as seen in experiments. (see
figure 2.7) In our simulations with dipole forces, the results seem consistent with the
mean field results claimed by Cizeau et. al. However, since the addition of domain
nucleation requires us to model the entire bulk of the material, and not just the
domain surface?®, the addition of dipole-dipole interactions is much more computa-
tionally costly in our model, and we have not been able to run large enough systems
to check this well.

Though their strength relative to the exchange interactions varies dramatically,
dipole-dipole interactions are always present in ferromagnetic materials. The ques-
tion arises, can either the simple front-propagation behavior or the plain-old-critical
behavior survive the addition of weak enough dipole interactions. It seems likely
that in a large enough system any dipole interactions, however weak, would change
the universality of either the front-propagation or the plain-old-critical behavior.
Not only do the dipole interactions add a long-range interaction, but they add a

preferred direction to the Hamiltonian. In the case of the front-propagation crit-

3With the front-propagation dynamics of Cizeau et. al., which allows no overhangs, it is possible
to model just the surface.
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Figure 2.7: The addition of dipole-dipole forces leads to the formation of long,
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ical behavior, this has the effect of lowering the upper critical dimension to three
and producing mean field exponents. It is likely that it also produces a new sec-
ond order critical point with new exponents. However, for finite systems, and weak
enough dipole interactions, the dipole-free critical behavior seems to persist. Not
only do very weak dipole interactions not seem to effect our small simulations, but,
as will be described in the next section, experiments appear to have measured both

front-propagation and plain-old-critical scaling.

2.3 Experiments

As we showed in the previous section, one model can produce the results seen by
the ABBM single degree of freedom model, the simple front-propagation model
described by Ji and Robbins, the SOC front-propagation model described by Urbach
et. al. and Cizeau et. al. (this SOC model has the same exponents as the non-SOC
model of Ji and Robins), the front-propagation model with dipole-dipole interactions
described by Cizeau et. al. (which has mean-field exponents), and the second order
critical behavior described by Sethna et. al..

In all, there are three different sets of critical exponents (for a three-dimensional
lattice) which can arise from this model, depending on the relative strengths of the
forces in the material, and the degree of disorder. (See table 2.1) One wonders which
(if any) of these behaviors are seen in real experiments. One also wonders whether
one can look at the properties of the experimental materials and guess which critical

behavior will be observed.
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Table 2.1: The exponents from all the models described in this paper fall into three
universality classes. The exponents in three dimensions are shown in this table. 7
is the exponent describing the distribution of avalanche sizes. (r—1)/ovz+1 is the
exponent describing the distribution of avalanche durations. (7 —1)/(2 —ovz) +1
is the exponent describing the distribution of avalanche energies. 1/ovz is the
exponent describing the high frequency power spectrum. The derivation of this
exponent can be found in chapter 3. The plain-old-critical exponents describe the
behavior of the short-range model with domain nucleation at R = R. and H = H..
The front-propagation exponents describe the SOC behavior when infinite range
demagnetizing fields are added to either the short-range front propagation model, or
the short-range domain nucleation model at R < R.. The mean-field exponents are
seen when dipole-dipole interactions are added to a SOC front-propagation model,

and also in the single degree of freedom ABBM model.

T =l o+ 1 1/ovz
Plain-Old-Critical 1.6 2.05 1.42 1.72
Front-Propagation 1.3 1.51 1.21176 1.71
Mean-Field 1.5 2.0 1.33 2.0
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2.3.1 Front-propagation with strong dipole-dipole interac-

tions

Because of the focus on domain wall motion in understanding Barkhausen noise,
many experiments have focused on studying materials with very simple domain
structures—one or a few long domains spanning the sample in the direction of
magnetization. These long simple domains are a result of strong dipole-dipole in-
teractions (or, equivilently, weak exchange interactions) and fairly small disorder.
Therefore, according to this model, and the results of Cizeau et. al., one would
expect these materials to produce mean-field exponents. Indeed, this seems to be
the case!

Zapperi et. al.[14] describe the results of experiments in Fes; CogsB15 amorphous
alloy. They show a picture of the domain structure in their sample which looks
remarkably like the domain structure depicted in figure 2.7. In their experiments,
they measure the exponents 7 = 1.5 and (7 —1)/ovz +1 = 2.0, as one would expect
in mean-field theory.

Earlier, Grosse-Nobis[15] studied the motion of a single domain wall in a single-
crystal silicon-iron alloy. He used a frame geometry to minimize the effects of demag-
netizing fields. As in the experiments of Zapperi et. al., there was a simple domain
wall extending across the sample in the direction of magnetization. Grosse-Nobis
measured the power spectrum, and found that it had a 1/w?® decay, as predicted by

mean field theory.

2.3.2 Front-propagation with weak dipole-dipole interactions

Not all experiments have been performed on materials with simple dipole-induced

domain structures. Urbach et. al.[10] measured avalanche size distributions in a
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sample of Fe-Ni-Co alloy. Because they wanted well separated Barkhausen pulses,
they prepared the sample to have particularly strong pinning. As a side effect, the
dipole-dipole interactions were relatively less important. In this material, Urbach
measured a value of 7 = 1.33, which agrees well with the dipole-free self-organized
front-propagation exponent.

Durin and Zapperi[16] performed experiments in which they tried to further
explore the transition between front-propagation and mean-field behavior. They
studied samples of Feg;Co2;B;5 in which the importance of short-range interactions
relative to the long-range dipole interactions was increased with the addition of
tensile stress. They measured both the avalanche size distribution and the avalanche
duration distribution with the sample under tensile stress, and found exponents of
7= 1.3 and (7 —1)/ovz+1 = 1.5, in excellent agreement with the dipole-free front

propagation exponents.

2.3.3 Plain-old critical results

Other experiments have produced results which seem to fit well with the plain-old
critical model. Many of these experiments have attempted to fit their data with the
ABBM model. One such case is the experiments of Alessandro et. al. (the creators
of the ABBM model). Alessandro et. al.[17] performed experiments on non-oriented
polycrystalline SiFe alloys. Because of their non-oriented polycrystalline nature, we
might expect both dipole and demagnetizing forces to play a much smaller role.
(The preferred direction of the dipole forces is different in different crystals, except
when the sample is very strongly magnetized.) Moreover, the polycrystalline sample
is likely to have an effectively higher disorder, so it is likely that we might see the

behavior of the second-order critical point, rather than the lower disorder front-
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propagation behavior.

Although Alessandro et. al. fit their power spectra with some success using
the ABBM model, most of their experimental curves appear to have a slower high
frequency decay than the w™2 which they fit to. In fact, attempting to read the
exponent off their graphs (they don’t actually try to fit the exponent of the decay),
it appears that they measured a power spectrum with an exponent of ~ 1.6. This
is much more consistent with the front-propagation exponents or the second-order-
critical exponents than it is with the mean-field/ABBM exponents.

In a later paper, Bertotti et. al.[18] reported measurements of avalanche statistics
in a similar polycrystalline SiFe sample. They claimed to measure an avalanche size
distribution exponent of 7 = 1.5 — ¢/2, where c is a measure of the driving rate.*
Indeed, their measurements fit this form for large driving rates c. However, their
measurements at small ¢ deviate from this form. Their measured exponent for the
slowest driving was approximately 7 = 1.63. This is significantly higher than the
maximum of 7 = 1.5 expected from the ABBM model or mean-field theory. In
fact, it is in very good agreement with the value 7 = 1.6 predicted by the plain-old-
critical model. Taken with the power spectra measured by Allesandro et. al.[17], this
seems to indicate that plain-old-critical behavior can be observed in non-oriented
polycrystalline samples.

Another experiment which appears to have plain-old-critical exponents is the
experiment described by Spasojevi¢ et. al.[12]. Spasojevi¢ et. al. measured many
properties of avalanches in a commercial VITROVAC 6025 X metal glass sample.
They measured exponents of 7 = 1.77, (1—1)/ovz+1 =222, (1—1)/(2—0ovz)+1 =

1.56, and 1/ovz = 1.6. These results are all quite close to the results predicted by the

4 At high driving rates, small avalanches overlap, creating more large avalanches and fewer small
avalanches. This leads to a decreased scaling exponent.
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plain-old-critical model. (and completely inconsistent with the other two models)
Except for 1/ovz, each of the exponents seems to be a little bit high. This is what
the plain-old-critical model would predict if they measured Barkhausen pulses over
slightly too wide a range of H. If they measured over the entire hysteresis loop,

then 7 = 1.6 would be replaced everywhere by 7 + 084 = 2.03.

2.4 Conclusion

Theoretical models of Barkhausen noise seem to fall into one of three universality
classes. By varying the relative strengths of parameters, all three of these behaviors
can be produced by a single model based on the random-field Ising model. This
model includes the effects of both domain-motion and domain-nucleation, along
with both demagnetizing and dipole fields. The three universality classes produced
by this model seem to be capable of describing a large set of experiments, the results
of which previously seemed incompatible.

When the disorder is low, and dipole interactions are strong, this model produces
mean-field results. These results are the same as the results of the single degree of
freedom ABBM model. Many experiments have been performed on soft magnetic
materials, in which the disorder is fairly low, and dipole interactions lead to long
parallel domains in the direction of magnetization. In these samples, the properties
of the Barkhausen pulses seem to be well described by the mean-field exponents.

When the dipole interactions are weaker, the model produces non-mean-field

front-propagation exponents. The system is self-organized by the presence of de-

magnetizing fields. In experiments with somewhat stronger disorder, or stronger
exchange interactions, these exponents have been observed.

For high enough disorder and weak enough dipole interactions, the model pro-
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duces critical distributions of avalanche properties due to proximity to a disorder-
induced second order critical point. These exponents have been observed in ex-
periments on polycrystalline samples, where the disorder is high, and the effects of
dipole-dipole interactions are reduced by the lack of a well-defined orientation.
Other effects can modify the exponents observed in experiments. All of the pre-
dictions of this model assume an infinitesimal driving rate. If the external field in
experiments is ramped up too quickly, avalanches will overlap, leading to more large
avalanches, fewer small avalanches, and decreased exponents. Also, experiments
must be careful to measure Barkhausen noise only in the steepest part of the hys-
teresis loop. (Except for high disorder systems near the second-order critical point,
experiments are likely to be self-organized, and this should be quite a large region of
the hysteresis loop.) At the extremities of the hysteresis loop, there are fewer large

avalanches, and the measured exponents will be higher.




Chapter 3

Scaling of the power spectrum

3.1 Introduction

One of the main power laws which must be explained if our theoretical models
are to be successful is the power law behavior of the power spectrum. Actually,
the power spectrum exhibits two different power laws, one for low frequencies, and
another for high frequencies. The high frequency power law, P,,(w), reflects the
dynamics within avalanches, and the low frequency power law, Py (w), reflects
the correlations between avalanches. Simulations of the various random field Ising
models have been fairly successful in modeling the high frequency scaling of the
power spectrum, but theoretical predictions of this scaling have been absent or
wrong.[3, 6, 11, 8] (See the discussion in section 3.4 for a description of several
previous calculations.) In this chapter, I will derive an exponent relation for the high
frequency power spectrum which applies to all of the models described in chapter 2.
Large portions of the derivation should also apply to any critical avalanche model.

In this derivation, I will relate the power spectrum power law to two exponents:

T, the exponent describing the distribution of avalanche sizes, and ovz, the exponent

26
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Table 3.1: Important exponents for the three universality classes. 7 is the exponent
for the avalanche size distribution D(S) = S~7. ovz relates the avalanche size S to

the avalanche duration T : T ~ S7%*

Short Range (3D) Front Propagation (3D) Mean Field

T 1.6 1.28 1.5

ovz 0.58 0.58 0.5

Short Range (4D) Front Propagation (4D)

T 1.53 1.42

ovz 0.52 0.56

describing the relationship between avalanche size and avalanche duration. The
values of these exponents for each of the models described in chapter 2 are given
in table 2.1. Except in section 3.3, all of the results in this paper are from three-
dimensional simulations with nearest neighbor and infinite range interactions, which

exhibit self-organized front-propagation exponents.

3.2 Deriving the exponents

In the process of deriving the form of the critical exponent for the energy spectrum,
we will derive the scaling forms of several other quantities which are themselves
of interest. Warned by the failure of the naive scaling exponent for the energy
spectrum, we will present numerical scaling plots for each of these intermediate

quantities.
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V(t)
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Figure 3.1: The shape of a typical large avalanche. Notice that the avalanche nearly

stopped several times, and the voltage (the number of spins flipped in each time

step) fluctuated drastically.

3.2.1 The avalanche shape

Near criticality, the avalanches in the random-field Ising model have a very ragged
shape. There are avalanches of all sizes precisely because each avalanche is always
finely balanced between continuing and dying out. Most large avalanches come close
to dying many times. A typical large avalanche can be seen in figure 3.1.

Despite this rough shape, criticality implies that the average avalanche shape
will scale in a universal way. Consider the average shape of avalanches of duration
T. If we rescale the time axis, ¢, by a factor of T', and divide the vertical axis, which
measures the number of spins flipped (or the voltage V which would be measured
in a pickup coil), by the average voltage, we should get a generic shape which is

independent of T. The average height is the average area, S(T) ~ T'/?¥* (let this
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define the exponent ovz)!, divided by the duration, T. Therefore, the scaling form
should be

V(T,t) = TY"="1f(¢/T). (3.1)

The scaling of the average avalanche shape according to equation 3.1 can be seen in

figure 3.2.2

3.2.2 Distribution of voltages V in avalanches of size S

The power spectrum is sensitive not only to the shapes of the avalanches, but to the
fluctuations in the avalanche shapes. An interesting measure of these fluctuations
is the probability P(V'|S) that a voltage V' will occur at some point in an avalanche

of size S. If this probability scales universally, then we know it must have the form
P(V|S)y=V"=f(VS™Y). (3.2)

But what are the exponents z and y? We can determine the value of z by integrating

over all voltages. Since P(V|S) is a probability distribution, it must integrate to 1:
e o]
/ VEf(VS™¥)dV = AS~¥="1) = 1. (3.3)
0

From this, we know that z = 1. (The alternative, y = 0, can be discarded because
along with equation 3.2 it would imply that P(V'|S) is independent of the avalanche

size S.)

In earlier papers{2, 3, 4, 5, 6], our group has called the exponent relating avalanche size to
avalanche duration ovz. o is the exponent describing the growth of the cutoff in the avalanche size
distribution with increasing disorder. v is the exponent describing the growth of the correlation
function as the critical disorder is approached. z describes the dynamics of the model.

2This shape is very well fit by an inverted parabola. In mean field theory, this fit seems to be
exact.
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Figure 3.2: The average avalanche shape for three different durations. Spasojevic et
al.[8] measured the average avalanche shape experimentally and found a somewhat
different shape. This kind of measurement provides a much sharper test for the
theory than the tradition of comparing critical exponents. Presumably, the average
avalanche shape for large sizes and times is a universal scaling function: if the
experiment differs in this regard from our model, then our model is expected to
have different critical exponents. All features at long length and time scales should

be universal.
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Figure 3.3: A collapse of the voltage distribution for three avalanche sizes according

to equation 3.5.

We also know that the average voltage in the avalanche must be equal to the

avalanche size S divided by the avalanche duration T' ~ S7“*, so
(V) = / VP(V|S)dV
0
- / F(VS4)dV
0

~ Sy ~ Sl——m/:‘ (34)

From this, we know that y = 1 — ovz, and the probability of a voltage V occurring

in an avalanche of size S is
P(V|S) = Volf(vsort), (3.5)

As can be seen in figure 3.3, this scaling form works very well.
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3.2.3 The scaling of avalanche energy E with avalanche size
S

The voltage distribution in equation 3.5 allows us to calculate the dependence of
avalanche energy on avalanche size. The avalanche energy is simply the average
squared voltage, (V'?), times the average avalanche duration, S7**. Using equation

3.5, this is

E(S) = §°* / T VRpWS)av

0

— Sau:/ Vf(VSdu:——l)dV
¢]
~ S2—¢ru:_ (3.6)

Note that this is the same result we would find if we assumed that the time depen-

dence had a square profile.

3.2.4 The scaling of the time-time correlation function with

S

With this information, we can calculate the scaling of the time-time correlation
function within avalanches, which is simply related to the high-frequency part of

the power-spectrum, P,,(w). The time-time correlation function is defined as
G(0) = / V)V (t + 8)dt. (3.7)

If we assume that the magnetic field is increased adiabatically and the avalanches are
well separated in time, we can calculate the time-time correlation function separately
for each avalanche and then add the individual functions together to get the overall

time-time correlation function.3

3There should also be contributions from cross-terms between avalanches, but this will con-
tribute only at a time # which grows as the field is ramped more and more slowly. In the limit of




33

This allows us to break up the time-time correlation function into the contri-
butions from avalanches of different sizes, S. Let G(8|S) be the average time-time
correlation function of an avalanche, given that the avalanche is of size S. (In con-
trast, the notation G(6,S) would denote the contribution of all avalanches of size
S to G(8). This would be weighted by the probability that an avalanche is of size
S, S~7.) If we consider equation 3.7 at # = 0, we see that the § = 0 component of
the correlation function is [ V/(¢)?dt, which is proportional to the avalanche energy.
Using this fact along with the scaling of the energy from equation 3.6, we find that

the time-time correlation function should scale as
G(6|S) = S*7*° f(8S~7%). (3.8)

As shown in figure 3.4, this scaling works very well over a wide range of avalanche

sizes.

3.2.5 The scaling of the energy spectrum with S

The energy spectrum describes the amount of energy released in Barkhausen noise
at each frequency. It can be calculated as the cosine transform of the time-time
correlation function. Transforming equation 3.8, we find that the scaling of the

energy spectrum with avalanche size has the form
o0
E(w|S) = / cos(w8)G(6]S)d6
0
= [ cos(wt)s? o f(05 =)o
0

— Szf(wl/‘”"S). (39)

an adiabatically slowly increasing field, these cross terms will affect only the w = 0 scaling of the
power spectrum. Here, we are calculating the scaling behavior for large w.
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Figure 3.4: A collapse of avalanche time-time correlation functions according to

equation 3.8. The data is binned logarithmically to get good statistics.

A collapse of the energy spectra for different avalanche sizes according to this form

is shown in figure 3.5.

3.2.6 The energy spectrum scaling depends on the large

avalanche cutoff

The energy spectrum for all avalanches (the quantity usually measured in experi-
ments) is just the integral [ P(S)E(w|S)dS, where P(S) ~ S™7 is the probability
that an avalanche will be of size S. If we substitte equation 3.9 and P(S) ~ 577

into the integral, we find the naive prediction

Enwrong(w) = / P(S)E(w|S)

~ w(3—‘r)/0u: /y2—ffenergy(y)dy

~ w—(3—'r)/¢ruz

(3.10)
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Figure 3.5: A collapse of the energy spectra for different avalanche sizes according

to equation 3.9.

as predicted by Lieneweg et al.[19], Dahmen and Sethna{3, 6, 11] and Spasojevi¢ et
al.. In the next section we will argue that the energy contributed by an avalanche
at fixed frequency w is proportional to S. This implies that fepergy in equation 3.10
should have the form fenergy (y) ~ A/y for large y. The integral in equation 3.10
dies off as a power law y!~~ for large y. Therefore, the integral gives a well defined
(and correct) answer for 7 > 2, but for 7 < 2 the indefinite integral in equation 3.10
diverges and must be replaced by a definite integral with a cuttoff at large avalanche
sizes. The naive result should work for the integrated avalanche size distribution for
the short-range model[3, 5] at the critical point R.. In that case, the corresponding
exponent in three dimensions is 7 + 08§ = 2.03 (close enough to two that we might
expect logarithmic corrections). Above six dimensions, the exponent rises to the
mean field value of 9/4. For all of the models which we study in this chapter, 7 < 2

and the cutoff at the largest avalanches in hte integral changes the form of the power
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Figure 3.6: A collapse of the energy spectra for several avalanche sizes S. The
collapse is performed by dividing out the linear S dependence. The curves are made
flat by dividing out the simple power law w!/***. The w axis has not been rescaled,

so the high w cutoffs collapse together and the small w cutoffs do not.

spectrum.

3.2.7 The energy at frequency w scale linearly with the
avalanche size S?

We shall argue in this section that except at very small frequencies the energy at
a fixed frequency is proportional to S. Along with equation 3.9, this eimplies that
the energy spectrum at fixed S scales as w~'/?“*. This means that dividing E(w|S)
by Sw~1/?% should collapse the curves and eliminate the w dependence. The resul
of this collapse for the infinite range model can be seen in figure 3.6

The fact that the energy at frequency w scales linearly with S follows from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

two assumptions. First, each spin in the avalanche contributes equally to E(w).
Second, the contribution of a given spin is independent of the size of the avalanche
it is in. (Of course, a few spins at the beginning of the avalanche might differ, so
long as the fraction of such spins vanishes for large avalanches.) One way in which
this could be true would be if the following two hypotheses were true. First, each
spin contributes to E(w) only through its correlations with physically nearby spins.
Second, the local growth of an avalanche does not reflect the overall size of the
avalanche. The first hypothesis seems likely in the models described in this paper
because the times of physically distant spin flips are likely to be randomly distributad
in time and contribute incoherently to the power spectrum. Only nearby spin flips
will be correlated in time and contribute coherently. The second hypothesis is also
likely to be true because the avalanches are occurring at a critical point. Every
part of the avalanche is always on the verge of stopping regardless of the size of the
avalanche.

We can check these hypotheses by breaking up the energy spectrum into the
contributions from pairs of spins at different radii 7. The time-time correlation
function for avalanches of size S can be written in terms of individual pairs of spins

as

G(0IS) =) _4(t; —t: - 0), (3.11)

where ¢; is the time at which spin 7 flips. From this form, we can use an additional

delta function to pull out the contribution due to pairs of spins separated by a
distance r:

G(9.71S) = <Z 5(t; — t: — 0)8(17 — 7l ~ r)> , (3.12)

i

where (); implies an averaging over all values of i. Using this definition of the
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function G(0,7|S), we can rewrite the time-time correlation function as
G(0|S) = S/G(B,rlS)dr. (3.13)

Now, we can use equation 3.13 to calculate the contribution of spins separated
by a distance r to the energy spectrum F(w|S) at a frequency w. Taking the cosine

transform of equation 3.13, we find that

E(w|S) =S’//cos(w0)G(9,rlS)drd0

= S/E(w,rlS)dr, (3.14)

where the function E(w,r|S) is defined by this equation. Notice that E(w,r|S)
must have a cutoff at the largest r present in an avalanche of size S. We can see
from equation 3.14 that in order for F(w|S) to be proportional to S, the integral
must be independent of this S dependent cutoff. This is a more precise statement of
the hypothesis that only correlations between nearby spins contribute to the energy
spectrum. It is also necessary that except for extreme values of w and r, E(w,r|S)
must be independent of S. Combined with the first condition, this corresponds to
the hypothesis that the local growth of the avalanche should not reflect the overall
size of the avalanche.

Figure 3.7 shows that the decay of E(w,|S) is decaying approximately as 1/r.
Figure 3.8 shows that it is independent of S and that the decay is oscillating about
zero. Neighboring radial shells contribute with opposite sign. Hence the integral
3.14 appears to be conditionally convergent at large distances: each spin contributes

to E(w) only through its correlations with nearby spins, and E(w|S) ~ S.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

1070 ¢ ]
Z10" | i 3
e |
s I
st /
<R |

-5
10° ¢ "J ]
i | .
- T N ~——d
10° |
]
0 0.1 0.2 0.3 04 0.5

Frequency

Figure 3.7: This graph shows the function |F(w,7|S)| for a range of values of r
at S = 32500. The function E(w,r|S) not only decays with w, but also oscillates
about zero. To better compare the amplitudes of the curves at different r, we
took the absolute value and performed a running average over w, averaging out the
oscillations. The horizontal lines show how the positions of these curves should scale
if they went as 1/r. Notice that while for small r the amplitudes drop slower than

1/r. for larger r the amplitudes drop off approximately as 1/r.
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Figure 3.8: This graph shows |E(w, 7 |S)| at r = 6 for two sizes of avalanches. No av-
eraging has been performed, so the oscillations are visible (the function changes sign
at each dip). For larger r, the oscillations are much faster. Notice that the curves
are nearly identical for the two sizes—E(w, r |S) has no significant S dependence at

small .
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3.2.8 Integrating the energy spectrum over avalanche sizes

In section 3.2.6 we found that in order to understand the scaling of the energy
spectrum for 7 < 2, we must first understand the cutoff at large avalanche sizes. In
our simulations, there is a typical largest avalanche size S* which is primarily due
to finite size effects: S* ~ L'/?¥. In experiments, the typical largest avalanche size
could be determined by the finite experimental duration or from the demagnetizing
forces. (In some cases, demagnetizing forces also contribute to the cutoff in our
simulations.) These effects would cut off the probability of getting large avalanches.

For large avalanches, the contribution to E(w) from an avalanche of size S
scales linearly in S: each spin contributes the same amount. The cutoff at large
avalanche sizes dominates the scaling of E(w) precisely because most spins are in the
largest avalanches. The distribution of avalanche sizes D(S, §*) cannot be a simple
power law cut off at S* for 7 < 2, because we know that fSD(S, 5*)dS =1, but
[ 5 §1-74S depends on S* and diverges as S* — oo. Hence, the overall amplitude
of D must decrease as S* gets bigger. If we describe the avalanche size distribution

with an amplitude depending on S*, we can solve this problem:

D(S, S™)dS = (S*) ™ fze(S/S") (3.15)
foize(y) ~y™7 y—0 (3.16)
/ SD(S, S*)dS = / (528 fune(S/S*)dS
= / Y fuize(y)dy
=1 (3.17)

where the last equation provides a condition on the scaling function fge.
We are now ready to integrate the power spectrum over S, finding the form E(w)

corresponding to equation 3.10, but valid for 7 < 2. We found in the last section
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that fenergy — A/y. We control the integral by adding and subtracting A/y:
E(w) = / D(S, S*)E(w|S)dS
= U5 Faue(S/5"S* Feney (7S 1S
= [(S/57) £ase(5/5") forer (> 5) S
= [ (815" fuan(S/5") A/ H/**S)as
+ / (5/5)? fine(S/S™) [ fenergy (@7**S) — A/ (w*/7**S)]dS (3.18)

In the first integral, we set z = S/S*. In the scond integral, we set y = w!/?**S. Also,

the second integral now converges, so we can substitute f,.(S/S*) — (5/S*)~":
B@) =w 7 [ 42 fann()dz
(&) e [ @) - Aty (319
~wTHrE (1< 2) (3.20)

The exponent in the second term of equation 3.19 is Eyo.ng of equation 3.10,
given by ignoring the cutoff at large avalanche sizes. However, for 7 < 2 the first
term will dominate over the second term both for large system sizes and for large
w. Only for 7 > 2 will the second term dominate. For all of the models we are
considering in this chapter, 7 < 2. (See table 3.1.) In fact, the exponent (3—7)/ovz
disagrees badly with the results obsered in both simulation and experiments, and
the exponent 1/ovz agrees very well. In mean field theory, we can actually derive
rigorously that the power spectrum exponent is 2 (see appendix A). This is in
perfect agreement with the exponent 1/ovz and in complete disagreement with the
exponent (3 — 7)/ovz which would be 3. A plot of the power law for the infinite-
range model can be seen in figure 3.9. A comparison of the two possible exponents

with simulations for each of the three models can be seen in table 3.2.
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Figure 3.9: The power spectrum for the infinite range model. The dashed line is

not a fit. It is a power law with an exponent 1/ovz.

Table 3.2: This table compares values of the power spectrum exponent measured

in simulations with the values predicted by the exponents 1/ovz and (3 — 7)/ovz.

Notice that for all three models 1/ovz is very close to the simulated exponent, and

(3 — 7)/ovz is in complete disagreement.

1/ovz (3 —T)/ovz Simulated
Short-range 1.72 241 1.70
Infinite-range  1.72 3.00 1.70
Dipole 2.00 3.00 2.00
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3.3 How universal is the exponent 1/ov2?

We have shown quite generally that the non-universal scaling of the high w cutoff in
E(w|S) causes the naive exponent of (3—7)/ovz to be incorrect whenever w®-7)/ovz
decays more rapidly than E(w|S). (In our models, where we have shown that
E(w|S) ~ w~'/7¥* this occurs for all 7 < 2.) Instead, the exponent of the overall
energy spectrum FE(w) is the same as the exponent for the energy spectrum for
avalanches of a fixed size S, E(w|S). However, the conclusion that the exponent for
the energy spectrum at fixed S was 1/ovz was based on less general arguments. In
fact, for models with very different dynamics, it is likely that the exponent will not
be 1/ovz.

So far, we have only verified these results for the infinite range model in three
dimensions. However, we have also checked these results in several other situations
where both 7 and ovz take on a range of values. (In all cases, 7 < 2.) We have
checked the short-range model in 3 and 4 dimensions, the infinite-range model in
3 and 4 dimensions, and mean field theory. In all cases, the linear scaling with S
seems exact, and both E(w|S) and E(w) scale as w~1/7¥* to within simulational
precision. In all cases, the exponent (3 — 7)/ovz is completely inconsistent with the
observed results. The results of mean field theory and the short-range model at the
three dimensional critical point can be seen in figures 3.10 and 3.11. The results
for the four dimensional short-range model and the four dimensional infinite range

model were also completely consistent with a 1/ovz scaling exponent.
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Figure 3.10: The mean field model. Notice that the energy spectrum for avalanches
of size S collapses when divided by S, and that the energy spectrum for avalanches of
size S and the overall energy spectrum both have the same power law as the average
avalanche size as a function of the inverse avalanche duration. Sizes 96, 1536, 24576,
and 196608 are shown in the collapse of P(w|S)/S. The average avalanche size as a
function of the inverse avalanche duration is the definition of the exponent 1/ovz.
Power laws of 1/ovz and (3 — 7)/ovz are also shown for comparison. Notice that

(3 — 7)/ovz is completely incompatible with the results.
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Figure 3.11: The short-range model in 3 dimensions. The plots and the sizes are

the same as in figure 3.10.

3.4 Discussion

There have been several previous predictions of the power spectrum exponent. In
her Ph.D. thesis, Karin Dahmen[11] did a calculation similar to the one done in
this paper, but she ignored the problems with the integral and came up with the
exponent (3 — 7)/ovz. This exponent was published by our group(3] without any
derivation, and was compared to experimental work by Cote and Meisel[20, 21] and
Bertotti et al.[22] The correct exponent form derived here makes the agreement
between the short-range model and these experiments substantially better: they
quote an exponent of “around 2", our former (wrong) prediction was 2.46 + 0.17,
and the correct prediction is 1.754+0.25. Spasojevié, Bukvié¢, Milosevi¢ and Stanley(8]
also came up with the same (wrong) form based on arguments about the average
puise shape. They measured an experimental power spectrum exponent of 1.6. For

their experimentally determined values of 7 = 1.77 and ovz = 0.662, they found
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that (3 — 7)/ovz = 1.86 fit their data well, but the value of (3 — 7)/ovz = 2.46
quoted by Dahmen et. al.[3] was much too large. This lead them them to disregard
the plain old critical model with domain nucleation as a possible explanation of
Barkhausen noise in their system. However, note that their experimental value of
1/ovz = 1.51 is as close to their measured power spectrum exponent as their value
of (3 —7)/ovz = 1.86. The value of 1/ovz = 1.75 £ 0.25 quoted by Dahmen et al.
is even closer to the experimentally observed power spectrum exponent. The value
of 7 = 1.6 predicted by Dahmen et al. is also closer to the experimentally measured
7 = 1.77 than any of the other models. (Front propagation has an exponent 7 = 1.3,
and mean-field theory has an exponent 7 = 1.5.) One should note, however, that
the average avalanche shapes measured by Spasojevi¢ et al. disagree with those
predicted by the short-range model (figure 3.2).

In 1989, Jensen, Christensen and Fogedby([13] published a different calculation of
the power spectrum exponent for sandpile models, which has been cited many times
as an explanation for 1/w? scaling of the power spectrum in sandpiles, Barkhausen
noise, and other systems. They made two major assumptions in their derivation.
First, they assumed that the avalanche shape could be approximated by a box
function: V(t) = S/T for all t < T. For our models, this assumption turns out to be
valid for calculating the average avalanche energy, but is not valid for determining
the overall scaling of the time-time correlation function. Second, they assumed
that one of their scaling functions, which was related to the time-time correlation
function, had the simple scaling form G(T') ~ T*exp(—T/Tp). As can be seen from
the exact mean field time-time correlation function in equation A.6, this is not at
all a safe assumption. In terms of our exponents 7 and ovz, their prediction was

that the energy spectrum would have the form E(w) ~ wB=m/ovz for 1 > 3 — 20v2
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and F(w) ~ w™2 for 7 < 3 — 20vz. This is the same as our result in the case
where ovz = 1/2. For the particular model they were studying, their assumptions
seem to be correct, but in the more general case, the exponent (3 — 7)/ovz should
become invalid for 7 < 2, rather than 7 < 3 —ovz. Also, for 7 < 2, exponents other
than 2 are possible, depending on the particular dynamics. For the class of models
described in this paper, the correct exponent for 7 < 2 is 1/ovz.

There are other specific models for which the power spectrum exponent has been
calculated. For example, Bak, Tang and Wiesenfeld[23] calculated the power spec-
trum exponent for their sandpile models. Without further investigation, we can’t
expect our arguments for an exponent of 1/ovz to hold for these and other mod-
els. However we do expect that in any avalanche based model, the power spectrum
exponent for 7 > 2 will be (3 — 7)/ovz, and another exponent will dominate for
7 < 2. Whenever the arguments in section 3.2.7 hold, we expect that for 7 < 2 the
exponent 1/ovz will dominate. (Where 1/ovz is the exponent relating avalanche

size to avalanche duration.)
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Chapter 4

Scaling in two dimensions

Previous work by Jim Sethna, Karin Dahmen, Olga Perkovic and others has thor-
oughly described the behavior of the zero-temperature random-field Ising model in
three dimensions and higher. However, the behavior in two dimensions is still poorly
understood. For small systems (and for the large disorders which are necessary in
small systems) the scaling seems quite good with the same scaling forms used in
three dimensions and higher. However, as larger and larger systems are run, at
lower and lower disorders, the scaling seems to break down. Using large simulations
at small disorder, we argue here that R, is zero, and that the scaling variable takes

on an unusual form r?logs.

4.1 Scaling the avalanche size distribution in 2D

One of the most important scaling functions in three and higher dimensions is the

avalanche size distribution (integrated over H), P(S). The standard scaling form

for the avalanche size distribution is

P(S) = S~™F D(rS°), (4.1)

49
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Figure 4.1: Large disorders collapse well.
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where 7 is the distance from the critical disorder, S is the avalanche size,
and 7 + 084 and o are relevant scaling exponents. For large disorders, this scaling
form seems to work quite well. Figure 4.1 shows the scaling for high disorders with
R. =063, T+ 086 = 2.04 and 1/0 = 4.5. Notice that while the scaling is quite
good, and all of the peaks collapse together, the lowest disorder curve (R = 0.8)
seems to have a slightly different shape from the other curves. There is a bump at
smaller avalanche sizes which cannot be collapsed. If this R = 0.8 curve had been
dropped, as would be necessary if we were running systems only a few hundred spins
on a side, it would seem quite reasonable to concluding that there was a standard
scaling form, with R, =0.63 and 1/0 = 4.5.

However, as can be seen in figure 4.2, the situation becomes much worse when
larger systems are used and smaller disorders are studied. The bump rapidly grows

until only the peaks (and eventually not even the peaks) collapse well. Because the

shape and the slopes are changing as the disorder is lowered, no scaling form which
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Figure 4.2: No horizontal translations can fix this bump at lower disorders!

simply translates the curves horizontally (like the standard scaling form in higher
dimensions) could possibly fix this problem. Moreover, with a 30000 x 30000 system,
there are still no system spanning avalanches for disorders below R = 0.63.

A hint to a potential solution of this problem comes from the fact that 1/0 = 4.5
seems quite large. (Though it was already almost as large, 1/0 = 4.2 in three
dimensions) If two was the lower critical dimensions of the system, then it would be
typical for the critical exponents to be ratios of small integers. What if in reality
o = 0?7 In this case, the standard scaling form would not be meaningful.

In her Ph.D. thesis, Olga Perkovi¢ performed a very elegant derivation of two
possible scaling forms for the case o = 0. The first scaling form assumed R. — 0
in two dimensions, and the second scaling form didn’t. If R. = 0, she concluded
that the scaling variable would be sexp(1/(Ir?)) instead of sr'/?. If R. > 0, she
concluded that the scaling variable would be sexp(1/(kr)). These scaling forms

were also suggested by Bray and Moore in the context of the thermal RFIM. ([24])
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Figure 4.3: The scaling variable s” gives a good collapse.

Unfortunately, these scaling variables both merely translate the avalanche size
distribution horizontally without any possibility of correcting the slope change as-
sociated with the bump.

The naive guess for a 0 = 0 equivalent of s?r is rlog(s). This is actually the
o — 0 limit of (s° — 1)r/o. This is analogous to the logs that appear at the upper
critical dimension. It turns out that this scaling form, though seemingly on weaker
theoretical grounds than the scaling forms Olga derived, works very well at much
lower values of R. Notice that unlike the other three scaling forms, it does change
the shape of the curve. Figure 4.3 shows a collapse using an equivalent scaling
variable r*. The critical disorder R. = 0.39 derived from this collapse is much lower
than the value of R. = 0.63 derived from the incorrect scaling form at large R. Not
only do the peaks collapse well, but down to about R = 0.7, the bump in the scaling
form collapses well with this scaling form.

Unfortunately, as we increase the system size even farther, to 460002, and push
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Figure 4.4: At low enough disorders (requiring 45,000 x 45,000 simulations!) the

scaling becomes bad again.

the disorders down to R = 0.64, the scaling breaks down once again, and this form,
too, does not work. This breakdown in scaling is shown in figure 4.4. Moreover,
although this scaling seems to indicate that we are well abeve R, the hysteresis loop
goes from almost smooth (for a two billion spin system) at R = 0.64 to having an
enormous jump at R = 0.6. The two hysteresis loops are shown in figure 4.5. The
largest avalanche at R = 0.64 was about 100,000,000 spins. The largest avalanche
at R = 0.60 was about 1,800,000,000 spins (18 times larger), and would have been
larger in the absence of finite size effects! This indicates a much larger change in
correlation length than would be expected if the scaling shown in figure 4.3 were

correct.
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Figure 4.5: Between R = 0.64 and R = 0.60, the correlation length increases dras-
tically, and the hysteresis loops goes from a smooth one to one with most of the
system flipped in a single avalanche. This is inconsistent with a critical disorder of
R = 0.38. It is much more consistent with the critical disorder predicted by the

standard scaling form, but this form does not successfully collapse the data near R..
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4.2 Is there a problem with nucleation?

Even for very large systems, there appears to be a problem with nucleation in two
dimensions. In the thermodynamic limit, even for very low disorders, there would
be a few spins, or even clusters of spins, which would flip long before other spins.
However, for the system sizes we can study in simulations, even for two billion spins,
there are very few spins available to nucleate the initial avalanche. This difficulty
in nucleation might lead to distorted distributions of avalanches.

Hoping that this was the source of our problems with scaling in two dimensions,
we tried to alleviate the nucleation problem in several ways. The first thing we tried
was to add a row of preflipped spins to the simulation, so that the initial avalanche
nucleation would be easier. This lead to growth very similar to the front propagation
described by Robbins et. al. [7], with only a few clusters of flipped spins in front
of the advancing front. Though this qualitatively changed the early portion of the
magnetization process, it did not change the avalanche size distributions, and our
scaling problems remained.

We also tried using a random field distribution with much longer tails, so that
there would be more spins capable of flipping early. The distribution we chose was

a Lorenzian distribution:

p(h) = ————s (4.2)

" ama? + h?
Indeed, with this distribution many spins flipped alone or in small clusters early in
the simulation, providing many potential sites for avalanche nucleation. However,
this only changed the small S, non-universal part of the avalanche size distribution,

leaving the scaling unchanged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

4.3 Are there symmetry problems?

Another possibility we considered was the possibility that there was some sort of
asymmetry (perhaps between the horizontal/vertical directions and the diagonal
directions) which only became important when the correlation length became very
large. We did two things to test this. First, we compared horizontal correlation func-
tions with diagonal correlation functions. We found that these correlation functions
differed only at distances of a few lattice spacings.

Second, we tried using different lattices with different symmetries. We tried
running simulations on both triangular and hexagonal lattices. The only effect of
this change was to change the value of the apparent critical disorder. The critical
behavior was completely unchanged. In fact, with a shift of coordinates to account
for changing values of R, the square lattice results, the triangular lattice results,
the hexagonal lattice results, and the Lorenzian square lattice results could all be

collapsed on top of each other. (Including the growth of the bump.)

4.4 Is there a problem with the random number

generator?

We also worried that with the very large simulations we were running, we might
be running into problems with correlations in the random number generator. To
examine this problem, we tried using several different high quality random number
generators. We found that the different random number generators produced statis-
tically identical simulational results. We also tried using two different algorithms for
medium sized simulations (large enough to begin seeing the growth of the bump)—

the sorted list algorithm and the bits algorithm, as described in chapter 5. Even
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though these algorithms use random numbers in completely different ways, we got

statistically identical results.

4.5 Good scaling at last

In the final days before the oral defense of this Ph.D, we tried yet another scaling
variable, 72 log s (or, equivalently, srz), with R. = 0. This was motivated by three

things.

1. Figure 4.5 suggested that the largest avalanches grow very quickly with de-
creasing disorder; for this scaling form, the largest avalanches grow as logs ~

L. This is faster than any of the previous forms.

r

o

In the thermal RFIM [24], the correlation length was conjectured to grow as
le*/m* | which implies that the largest avalanches grow as logs ~ . Perhaps
they got the scaling variable wrong, but got the relationship between the

largest avalanches correct.

3. This form is natural for R. = 0; since R — —R is a symmetry of the model,
odd powers of R are not expected. Since R. = 0 in the two dimensional
thermal RFIM, and R. = 0 has been argued for the front propagation version
of our model[25], it seems reasonable to expect R. = 0 in our model. Finally,
since no spins can flip ahead of the infinite avalanche at R = 0, our model

becomes equivalent to the front propagation model if B. = 0.

As one sees from figure 4.6, this scaling form works quite well.

We note three key points in brief:

1. It would seem likely that the correct scaling variable for the thermal RFIM
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Figure 4.6: The scaling variable appears to be r?log s, or equivalently s™'; R. appears

to be zero.

o

may also be r? log s. This may not be testable in the near future, as simulations
of this model are currently confined to much smaller systems. We saw in the
zero temperature model that very large systems were necessary to rule out

traditional scaling forms.

There are many cases where logarithms of physical quantities are the scaling
variables. Two that come to mind are the metal-insulator Anderson transition
in one dimension [26] (where the scaling variable involves log(1+ p) with p the
dimensionless resistance) and the random transverse field Ising chain (where

log &% is a scaling variable with AE the energy gap)[27, 28, 29].

Having the logarithm of a physical size be the scaling variable strikes at the
heart of the renormalization group as it is usually formulated! Since the renor-

malization group coarse-graining is done in space, lengths and areas are treated
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differently than conductivities and energy distributions. It would appear that

an unorthodox approach will be necessary in two dimensions.
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Chapter 5

Algorithms for simulating the zero

temperature RFIM

In our studies of hysteresis and avalanches in a simple model of magnetism (the
random-field Ising model at zero temperature), we have often found it necessary to
do very large simulations. Previous simulations were limited to relatively small sys-
tems (up to 9002 and 128% [30, 31], with the exception of Ji and Robbins'). In our
simulations we have found that larger systems (up to a billion spins) are crucial to
extracting accurate values of the universal critical exponents and understanding im-
portant qualitative features of the physics. As we need larger and larger simulations,
the scaling of time and memory become more and more important.

We have developed two efficient and relatively straightforward algorithms which
allow us to study large systems for the short-range model. The first algorithm uses

sorted lists and scales as O(/N log N), and asymptotically uses

1Ji and Robbins [7] study the closely related interface depinning model (which does not allow
avalanches to start except next to existing flipped spins). The methods we discuss in this chapter
can be used to study front propagation (by pre-flipping a layer of spins and setting the probability of
flipping isolated spins to zero), but are less efficient than those developed by Ji and Robbins, which
“forget” the spins left behind by the propagating interface. They ran 3003 and 2000? simulations
in 1991 and 120002 simulations in 1994.

60
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N x (sizeof(double)+sizeof(int)) bytes of memory, where NV is the number of spins.

This algorithm can also be extended to support infinite range forces. The sec-

'
!

ond algorithm, which does not generate the random fields, also scales in time as

O(Nlog N), but asymptotically needs only one bit of storage per spin, about 96

times less than the first algorithm. Neither algorithm can be used when dipole-
dipole interactions are present. Using the latter algorithm, simulations of a billion
spins can be run on a workstation with 128MB of RAM in a few hours.

The algorithms discussed in this chapter can be used to simulate the following

simplified version of the Hamiltonian in equation 2.2:

H=— Z J.S‘ié'j - Z[H(t) -+ hi]s,-, (51)

<i,j> i
where the spins s; = %1 sit on a D-dimensional hypercubic lattice? with peri-
odic boundary conditions. The spins interact ferromagnetically with their z nearest
neighbors with strength J, and experience a uniform external field H(t) and a ran-

dom local field h;. We choose units such that J = 1. The random field A; is

distributed according to the Gaussian distribution® p(h) of width R:

p(h) = —me P2 (5.2)

V2rR

The external field H(t) is increased arbitrarily slowly from —oo to oco.

The dynamics of our model includes no thermal fluctuations: each spin flips

deterministically when it can gain energy by doing so. That is, it flips when its local

field

W =Ty si+hi+H (5.3)

y)

2We have also examined this model on triangular and hexagonal lattices, and found the same
critical behavior. The models discussed here can be applied relatively easily to these other lattices.

30ther distributions are also possible. For a wide range of distributions, the critical behavior
will be the same. We have applied the algorithms in this paper to both Gaussian and Lorenzian
distributions.
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changes sign. This change can occur in two ways: a spin can be triggered when one
of its neighbors flips (by participating in an avalanche), or a spin can be triggered
because of an increase in the external field H(¢) (starting a new avalanche).

The zero-temperature random-field Ising model is interesting because, as in the
disordered magnetic materials it attempts to model, the avalanches can have a
broad range of sizes. If all the avalanches were small, understanding them would
be straightforward and not very interesting. Indeed, at large disorder R, the chance
that a spin which has just flipped will trigger one of its z neighbors scales roughly
as zJ/R. If this quantity is smaller than one (large disorder), all avalanches will be
small: the noise will be a series of small pops all of about the same size. This be-
havior is uninteresting not because it is simple, but because the behavior is strongly
dependent on the details of the model at short distances, where the model is at best
a caricature of a real material.

It also is easy to understand the system in the small disorder regime 2J/R >> 1,
where almost all the spins flip over in one infinite avalanche. There are many
problems (for example, fracture and first-order phase transitions) where a single
nucleation event leads to the release of the stored energy in a single catastrophic
event.

We focus on the crossover between these two limiting cases, where the system
exhibits crackling noise with avalanches of all sizes. For a particular value of the dis-
order R = R., a spin which has just flipped will on average flip exactly one neighbor
as the external field H(t) is increased to a particular value H.. The avalanches at
R., H. (the critical point), are finely balanced between halting and growing forever.
They advance in fits and starts (see Figs. 5.1 and 5.2) and come in all sizes (Figs. 5.3

and 5.4) with a probability which decreases as a power law of the number of spins in
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the avalanche. At H,, the distribution of avalanche sizes decays with an exponent
of T & 1.6 (quite close to the experimental results), and integrated over all H, the
distribution decays with an exponent* 7 =~ 2. Below the critical disorder R., there
will be an avalanche which will flip a nonzero fraction of the spins in the system
even as the system size goes to infinity: we call this the infinite avalanche. There
are very large avalanches even for disorders far above the critical disorder. In three
dimensions, there are still two decades of power law scaling 50% above the critical
point. However, the convergence to the expected asymptotic power law is very slow.
(Figure 5.3) This behavior means that we see critical scaling even if we do not fine
tune R to R., but we must use very large systems to get close enough to R, to get a
convincing power law. In practice, we needed simulations of approximately a billion
spins to understand the physics in three dimensions [4]. As described in chapter
4.1, the proper scaling in two dimensions remains unclear even for systems of size
46, 0002.

It is crucial in simulations with this many spins that our algorithms be efficient
both in computer time and memory. We begin by giving the simple, but inef-
ficient approach which has an execution time which scales as O(N2). We then
develop a more efficient approach using a sorted list which gives an execution
time that scales as O(N log N), but which needs memory storage which scales as
N x (sizeof(double)+sizeof(int)). A billion spins would demand 12 Gigabytes of
RAM for efficient execution, which usually is not available. Finally, we give an
algorithm whose execution time also scales as O(N log N), but whose memory re-
quirements asymptotically are only one bit per spin. In this case 10° spins requires

120 MB of storage, which is feasible on a standard workstation 5. We conclude with

4The exponent 7 can be written in terms of other critical exponents for our problem: ¥ = 7+ 6.
5Neither of the useful algorithms parallelizes well; our group has made effective and extensive
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Figure 5.1: A three dimensional view from one side of a single avalanche in a 200 x
200 x 200 system at R = 2.3 (within 6% of the critical disorder R.). The avalanche
contains 282,785 spins. The time when each spin flipped is shown by its color. The
avalanche generally grew from left to right. Notice that it has many branches and
holes; the large avalanches in three dimensions probably have a fractal dimension a
little less than three. Also notice that on the right hand side, in the middle of the
light green area, there are several dark red spots poking through. The green area

stopped growing, but other parts of the avalanche later filled in the holes.
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Figure 5.2: A time series showing the number of spins that flipped in each shell of
the avalanche shown in Fig. 5.1 [32]. Note that the avalanche is a series of bursts:
near the critical point, the avalanche is always on the verge of halting, so it proceeds

in fits and starts.
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Figure 5.3: Distribution of avalanche sizes for different values of the disorder R
in three dimensions. Some avalanches remain large (hundreds of spins) for R a
factor of two above the critical value R. ~ 2.16 where we expect a pure power
law. The avalanches are enormous (millions of spins) when the system is still 4%
away from the critical point; for this reason we need large systems. The inset is
a scaling collapse of the data: the thin lines in the main figure show the scaling
prediction for the avalanche sizes stemming from the scaling collapse[4]. Notice that
the scaling predictions already work well at R = 4. The pure asymptotic power law
behavior is not yet seen at R = 2.25, when six decades of scaling are observed. We
needed simulations of a billion spins to show convincingly that the power law would

eventually occur(4].
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Figure 5.4: A 30,000 x 30, 000 simulation with disorder R = 0.65, where each pixel
represents a 30 x 30 square, and each avalanche is a different color. Note that there

are avalanches of all sizes, with many smaller avalanches, and fewer large ones.
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a discussion of time and space issues for calculating and storing histograms and

correlation functions.

5.1 The Brute Force Method

The brute force method is the easiest one to implement and is competitive for
system sizes up to about 10,000 spins. In this method, we store a spin direction and
a random field for each site of the lattice. We can then proceed as an experimentalist
would by measuring the magnetization at specific predetermined values of H. We
start with magnetization M = —N and a large negative field Hy and then increment
to H,, check all spins in the lattice, and flip those spins in a positive local field. Then
we must check the neighbors of the flipped spins again to see if their local fields are
now positive. This procedure is continued until all the neighbors of flipped spins
have been checked. We then repeat the whole procedure again for a new field H>,
and so on. This approach gives the correct magnetization at the fields H,: the order
in which spins are flipped can be shown not to influence the final state [33, 34, 2].
However, unless the increments in H are very small, several avalanches may occur in
a given increment, and all information about single avalanches (such as histograms
of avalanche sizes) will be distorted. The time for this method scales as O(NXT),
where X is the number of fields H, at which the magnetization is measured, and T
is the average time needed to check the neighbors of the flipped spins measured in
units of shells of neighbors.

A variation on this approach is to propagate one avalanche at a time as shown

in Fig. 5.5:

use of parallel machines to average over disorder. The fluctuations at the critical point are severe
at all system sizes.
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1. Find the triggering spin for the next avalanche by checking through the lattice

for the unflipped site with the largest internal field hi"t = he® — H.

!.\D

Increment the external field to just flip that site, and push the spin onto a

first-in first-out (FIFO) queue. (see Fig. 5.5, right)
3. Pop the top spin off of the queue.

4. If the spin has not been flipped, flip it and push all unflipped neighbors with

positive local fields onto the queue.
5. While there are spins on the queue, repeat from step 3.
6. Repeat from step 1 until all spins are flipped.

This method is standard for avalanche propagation problems. It is also related
to the propagation of cluster flips in the Wolff algorithm [35]. Using a queue instead
of recursion has two advantages. First, recursion is both slower and more memory
intensive, because each recursive call must push all local variables and all registers
onto the system stack (which usually has a pre-allocated limit). If we use our
own queue, we need only to push the coordinate of the next spin on the queue
each time, and we can make the queue as large as necessary. Second, in order to
produce a natural spin-flip order, we want to flip all spins that are ready to flip at
a given time before we flip the spins that they cause to flip. If we put spins that
are ready to flip on a FIFO queue, we correctly achieve this order. This procedure
corresponds to doing a breadth-first search. Recursion, which is the same as putting
the spins on a LIFO stack, would explore all possible consequences of flipping the first
neighbor it looks at before it considers the second neighbor. This depth-first search

produces an unnatural spin-flip order (although the final state after the avalanche is
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_Lattice | Queue

12 12 15 16 19 19 7

Figure 5.5: Example of how a queue is used to propagate an avalanche. The colored
spins are spins which either have flipped in the current avalanche or will flip in
the current avalanche. Spin 13 triggered the avalanche, then the light grey spins
(14,8,12) were put on the queue as the first shell. As they flipped, the second
shell, the blue spins (15,19,7,11,17), were put on the queue. As the first blue spins
(15,19,7) flipped, the dark red spins (10,20,20,18,6) were added to the queue as the
start of the third shell. The next spin to flip is at the left hand side of the queue.
When this spin flips, its neighbors will be checked, and the neighbors that are ready
to flip will be added to the right hand side of the queue. The small numbers below
the spins in the queue indicate which neighbor caused the spin to be put on the
queue. Notice that different neighbors can cause a spin (such as spin 20) to be put

on the queue more than once. We have to be careful to only flip the spin once.




71

unchanged [33, 34, 2]). The dynamics during the avalanche of Fig. 5.2 assumes one
shell of spins flipped during each time slice, which is easy to determine by placing
markers on a FIFO spin queue, as shown in Fig. 5.5. Each time one pops the marker
off of the queue, one starts a new shell and puts the marker back on the end of the
queue.

Doing the brute force algorithm one avalanche at a time is very inefficient except
at very low disorders. Sweeping through the entire lattice for each avalanche takes
O(N) time per avalanche. Since there are O(N) avalanches, the total running
time scales as O(/V?). A hybrid approach, finite steps in field followed by internal
propagation of avalanches, could be quite efficient if one is solely interested in the
magnetization at those fields. A brute force method is probably necessary when

simulating systems with dipole-dipole interactions [14].

5.2 Time Efficiency: Sorted Lists

The brute force method is very inefficient at locating the origin of the next avalanche,
and one is immediately led to think of storing the several largest local fields in each
sweep. If we take this thinking to its logical conclusion, we are led to store a list of
all of the spins in the system, sorted according to their random fields.
Unfortunately, life is complicated by the fact that spins experience not only their
local random fields, but also fields from their neighbors. To find the origin of the

next avalanche, we use the following algorithm:

1. Define an array nextPossible[n4|, ny = 0,1...z, which points to the location
in the sorted list of the next spin which would flip if it had n; neighbors.

Initially, all the elements of nextPossible[n;] point to the spin with the largest
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local random field, A;.

N

. Choose from the z + 1 spins pointed to by nextPossible, the one with the

largest internal field K™ [ny] = ny ~ny + h; = 2ny — z + h;.
3. Move the pointer nextPossible[n;] to the next spin on the sorted list.

4. If the spin with the largest hi®[n;] has n; up neighbors, then flip it. Otherwise

go back to step 2.

An example of the sorted list and the pointers from nextPossible is shown in Fig. 5.6.

The sorting of spins can be done in time O(N log V). Storage with this algorithm
is IV x sizeof(int) for the sorted array (if we reduce the D-dimensional coordinates to
one number °), and N x (sizeof(spin) + sizeof(double)) for the lattice itself. Various
other compromises between speed of execution and storage are possible, but all
leave the running time O(N log N). The sorted-list algorithm is fast: the largest
system sizes we can store on a reasonable workstation execute 10002 and 1003 spins
in a few seconds. It is the method of choice for these small systems or when one
is interested in the behavior for non-monotonically increasing fields. © With some
care, the sorted-list algorithm can be extended to work in the presence of infinite

range forces.

6(X1,X2,...,Xp) can be reduced to X; + XoL + --- + XpLP~!. This yields the numbering
scheme shown in Figs. 5.5 and 5.6. This reduction also allows us to store a D-dimensional lattice
in a one-dimensional array and write code which will work in any number of dimensions.

"The sorted-list algorithm can be used for non-monotonically increasing fields with only a
few minor additions. When the external field is being lowered instead of raised, the avalanche
propagation is the same, except spins are flipped when their local field becomes less than zero
instead of when it becomes greater. The nextPossible array needs to be handled carefully. The
next spin that would flip up if the field were increased is the last spin that would have already
flipped down with the field decreasing. Every time the direction of change of the external field is
reversed, all of the nextPossible[n4] pointers need to be adjusted by one to account for this.
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Lattice Sorted List
Spin #

Figure 5.6: Example of how a sorted list is used to find the next spin in the avalanche.
The colors indicate spins that have already flipped. The first column in the sorted
list contains the random field, and the second column contains the number of the
spin with that random field. The arrows to the right indicate the nextPossible{n;]
pointers — the first spin that would not flip with n4 neighbors up. The spins pointed
to are the possible starting locations for the next avalanche. Notice that some of
the pointers point to spins that have already flipped. This means that these spins
have more than n; neighbors up. In a larger system, the unflipped spins will not all

be contiguous in the list.
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5.3 Space Efficiency: One Bit per Spin

The combination of the rapid execution of the sorted-list algorithm and large finite
size effects led us to develop an algorithm optimized for memory efficiency. The
key is to recognize that we need never generate the random fields! In invasion
percolation [36] (and in the interface problem [7] analogous to ours) one generates
the random fields only on sites along the boundary of the growing cluster. In our
problem, we can take things further: for each change in a spin’s local field given by
eq. (5.3), we generate only the probability that it will flip. Storing the random fields
is unnecessary because the external field, the configuration of the spin’s neighbors,
and the knowledge that the spin has not yet flipped gives us all the information which
we need to determine the probability that the spin will flip. The only quantity which
we must store for each site of the lattice is whether the spin is up or down. Thus, we
can store each site of the lattice as a computer bit saving large amounts of memory.

For a monotonically increasing external field, the conditional probability that a
spin flips before its non-random local field, H,, = H + (2ny — z), reaches H,, + AH,,

given that it has not flipped by H,, is

(P,L(Hnr) - PL(Hm' + AHnr))

Pi(Ha) ’ (5-4)

Pﬁip (Hnra AHnr) =

where P;(H,.) is the probability that a spin will point down when the local field
is H,.. A spin with local field H,. will point down if its random field A; satisfies
h; + H,, < 0. This condition implies that the probability that a spin with ny up

neighbors points down is

—Hune(ng ,H)
P = [ o(h) dh (5.5)
= %erfc (Hulne, H)/V2R) (5.6)
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Pep(L,AL)+P (L)

(L+AL) -L

Figure 5.7: The probability that a spin will not have flipped by the time its local field
reaches L is the probability that the random field is less than —L. This probability
is represented by the shaded area of the Gaussian. The probability that the spin
will flip before the field reaches —(L + AL) is represented by the area of the darker

region divided by the area of the shaded region.

(Writing P, in terms of the erfc function cured some problems with rounding at
large negative fields H.) These probabilities are illustrated graphically in Fig. 5.7.
Finding the next avalanche is subtle when the random fields are not stored:
changing the external field H introduces a probability that any unflipped spin in
the lattice may flip. Inspired by the continuous time Monte-Carlo algorithm [37], we

keep track of N,_, the number of down spins which have ny up neighbors. Given the

T’
probabilities that spins with ny up neighbors will flip, we calculate both the change
in the external field AH needed to flip the next spin and the probability that the
next spin to flip has ny up neighbors. We then randomly choose n4, and search at

random through the lattice for a spin with ny up neighbors. The time taken for the
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search is the part of the algorithm which scales worst for large N. If there are NV,
spins left, this search will take an average time O(N/N,,). Summing over N,, and
n4 yields a bound of order z/N log V. In one of our programs, we use a tree structure
to do this search more efficiently; this complication decreases the running time by
40% for a 5002 system at R = 1.

How do we calculate AH? From eq. (5.4), the probability that a single spin
with ny neighbors up has not flipped in the range AH is 1 — Pap(ng, H,AH) =
Pi(ny, H + AH)/P,(n4, H). The probability that no spin with n{ up neighbors has

flipped in this range is

N"T
Prr:;)ne _ Pl(n’hH'*'AH)) ’ (57)
P-L(nTs H)
and the probability that no spin has flipped between H and H + AH is
prene(AH) = [] Preee. (5.8)

ne=0
To find AH, we choose a random number r uniformly distributed between zero and
one, and set AH so that P*"*(AH) =r.

Unfortunately, we cannot solve for AH analytically, and we must find a numerical
solution. To find this solution efficiently, we must have a good initial guess. In
analogy with nuclear decay, if spins flip with a constant rate I, we expect the
probability that no spins have yet flipped to be e T2 . So, for a first approximation

of AH, we assume that the spin-flip rate I is a constant, and therefore

_ log(r)
AH, —_I‘(H)' (5.9)
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where I'(H) is given by

_ dlog(P™"(AH = 0))

L(H) = dAH
_ i N dlog(P,(ny, H + AH))
S dAH
n.T=
_ Z N p(Hye(ny, H))
"'T=0 T Pi(n’T’ H)
= ) _T(n, H) (5.10)
ny=0

We can make a better second guess by looking at the error in our first guess. If the
error in our guess is Ar = P""(AH) — r, then we can make an improved second

guess for AH by aiming for r — Ar:

log(r — Ar)

AL ===

(5.11)

These two guesses can then be used as input into a root finding routine 8. Note that
while these guesses are usually very good for small |H| and lead to quick solutions,
they can be very bad for large |H|. If the guesses for AH are very large, it may be
better to choose two arbitrary guesses. In our code, if AH; > 20, we use AH; =0
and AH, = 20 for the two guesses.

Our algorithm for finding the next avalanche becomes
1. Choose a random number r uniformly distributed between zero and one.

2. Pre-calculate the values of P(n+, H). These values will be used repeatedly in

solving for AH.

8We use a simple algorithm to make sure that the guesses are on opposite sides of the correct
guess, and then use the Brent algorithm to find the root. The Brent algorithm uses a combination
of interpolation when the guesses are close, and bisection when the interpolation works badly. De-
scriptions and implementations of this and other root finding algorithms can be found in Refs. [38]
and [39].
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. Calculate guesses for AH using egs. (5.9) and (5.11) and use them as input

to a root finding routine to find the exact solution for AH.

Increment H by AH.

Calculate the array probFlip[ns] for use in the remainder of the avalanche,
where probFlip[n4| is the probability at the current field H that a spin will

flip when its number of up neighbors changes from n; to n4+1 (see eq. (5.4)).

. Calculate the rates for flipping spins for each n4 at the current field H =

H,uqa+ AH:
C(ny, H) = Ny p(Hoe(ny, H)) /Py (04, H) (5.12)

and the total rate ['(H) =3, _,T'(ny, H).

Choose a random number uniformly distributed between zero and I' and use

it to select ny.
Search at random in the lattice for an unflipped spin with n; up neighbors °.

Start the avalanche at that spin. During an avalanche, the algorithm is essen-

tially the same as the brute force algorithm:
Push the first spin onto the queue.

Pop the top spin off of the queue.

9If your random number generator is not good enough, or if you have incorrectly kept track
of the number of down spins with n{ neighbors up, your simulation may enter an infinite loop
searching for the next spin. Also, if you are storing your spins in a 1D array, you should still
generate D random numbers, one for each coordinate. If you try to save time and only generate

one random number, then for a very large system there will be gaps in the random numbers, and
some spins will never be found, causing an infinite loop.
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12. If the spin is unflipped, flip it, find n;, and decrease N,. by one. Otherwise,

skip to step 14.

13. Look at all unflipped neighbors. For each unflipped neighbor, find the current
number of up neighbors, nt; decrease NV, by one, and increase NV,, by one.
Push the spin on the queue '° with probability probFlip{ns — 1], as calculated

in step (5).
14. While there are spins left in the queue, repeat from step 11.
15. While there are unflipped spins, repeat from step 1.

This algorithm is about half as fast in practice as the sorted-list algorithm which
is faster than we expected. The overhead involved in solving for AH is presumably
compensated by the time saved not shifting data in and out of cache. Systems of
10° spins take a few days of CPU time on a reasonable workstation; 30, 000° systems

take less than 15 hours on a 266 MHz Pentium II.

5.4 Calculating Histograms and Correlations

Several functions are needed to characterize the critical properties of our model.
The simplest function is the magnetization M as a function of the external field
H. We also calculate distributions of avalanche sizes (Fig. 5.3, top), and correlation

functions. Some care must be taken to make sure that the calculation of these

180Qpne might worry that the queue will grow very large. However, the queue will only be as
large as the largest shell of spins, which should scale as the surface area of the largest avalanche.
Therefore, it should scale as N!/2 in two dimensions, and as N?/3 in three dimensions. Because
the avalanches tend to grow in fits and starts, this situation is even better. Notice that in Fig. 5.1,
even though the avalanche contained almost 300,000 spins, and the surface area was very large,
the largest shell had only 321 spins in it (Fig. 5.2). The queue is generally very small compared
with the system size.
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functions does not dramatically increase the running time or memory requirements
of the simulation.

When doing calculations with a billion spins, one cannot calculate any quantity
which scales linearly with the system size. Instead of computing H(M) at each
avalanche (one GB of data), we are forced to compute H(M,) at pre-chosen points.

The characteristic feature of the critical point is the appearance of an infinite
avalanche. The equivalent of an infinite avalanche in a finite system is an avalanche
that spans the entire system in at least one dimension. To tell whether we are above
or below the critical point, we need to detect these spanning avalanches. In three
and higher dimensions, the number of spanning avalanches as a function of R is also
interesting to study. The most obvious way of detecting spanning avalanches is to
mark each row as a spin flips in it, and check at the end of the avalanche to see if all
the rows contain flipped spins from the avalanche. However, this method requires
O(N'/P) operations per avalanche. Because there are many small avalanches, this
method is unacceptable. A preferable method is to keep track of the 2x D boundaries
of the avalanche as it grows. If a pair of boundaries meet, then the avalanche is a
spanning avalanche. One must take care to deal properly with the periodic boundary
conditions.

Another useful function is the avalanche size distribution D(S), defined as the
number of avalanches which flip S spins during the simulation, divided by the total
number of spins. Like the M (H) curve, the avalanche size distribution scales linearly
with the system size. Thus, we need bins up to size IV, the size of the largest possible
avalanche. Logarithmic binning is the obvious solution, with bin n including all sizes
b»~! < § < b?. We have chosen b, from 1.01 to 1.1. Large bins are preferable for

lower statistical noise. This choice is particularly important in the tail of very large
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avalanches, where small bins would contain few avalanches. However, very large
bins will systematically alter the shape of the scaling functions (although they will
not change the critical exponents). It is important to divide the final population
in each bin by the number of integers contained within the bin (and not just the
bin width). Clearly one should also ignore the early bins which do not contain any
integers.

We calculate the correlation function G(z, R) within an avalanche, where G(z, R)
gives the probability that the first spin in an avalanche will cause a spin a distance
z away to flip in the same avalanche. At the beginning of each avalanche, we record
the coordinates of the first spin in the avalanche. Then, for each subsequent spin
in the avalanche, we calculate the distance = to the first spin, and add one to the
appropriate bin. Logarithmic binning is not necessary for the correlation function,
because the size of the correlation function is proportional to the length of the
system, not the total number of spins. Thus, we use a fixed bin size b. = 1. At the
end of the simulation, each bin should be normalized by the number of spins which
are between z — b./2 and z + b./2 away from the origin.

The only tricky part of calculating G(z, R) comes from the periodic boundary
conditions. If the avalanche crosses a boundary, two points at opposite ends of the
avalanche can come close together. Because we do not calculate G(z, R) for spanning
avalanches, we know that there will be at least one row in every dimension which
is not touched by the avalanche. To calculate separations, we use the periodicity
of the lattice and the continuity of the avalanche to shift the coordinates so they
are all on one side of these empty rows. Because we are already keeping track of
the boundaries of the avalanche for the detection of spanning avalanches, finding an

empty row is easy.
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The running times of the three algorithms as a function of system size are shown
in Fig. 5.8. The brute force algorithm can be useful when one cares only about
M(H) at a few points, but is otherwise too slow to implement large systems. The
sorted-list algorithm is the fastest algorithm, but on a 128 MB machine, only system
sizes of about six million spins can be run. The bits algorithm is almost as fast as
the sorted-list algorithm, and asymptotically uses only one bit of memory per spin.

Note that all three algorithms are limited to 2,147,483,648 spins unless more
sophisticated data structures are used to hold the spins—the long integers which

are used to index the spin arrays cannot hold a number larger than 2,147,483,648.
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Figure 5.8: The running times for the three algorithms for two-dimensional systems
with ® = 1.0 on a 266 MHz Pentium II with 128 MB of memory. Note that
both the bits algorithm and the sorted-list algorithm have run times which grow
approximately linearly (the log N is not visible), and the brute force running time
grows quadratically. Also notice that the largest bits simulation was 64 times larger

than the largest sorted-list simulation.
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Appendix A

The mean field power spectrum

In mean field theory, we can calculate the power spectrum exactly. The Hamiltonian
in mean field theory is the Hamiltonian in equation 2.2, without nearest neighbor

or dipole terms:
H==) (H+J+h)s. (A.1)

When a spin flips with an external field of H, all spins with random fields between
—~(H+JM) and —(H +J(M +2/N)) will flip. Therefore, each spin has a probability
of %p(—H — JM) of flipping, where p(h) is the probability distribution of the
random fields. On average, 2Jp(—H — JM) spins will be flipped. If 2Jp(—H —
JM) > 1, then the avalanche will tend to grow indefinitely, and there will be an
infinite avalanche. If 2Jp(—H — JM) < 1, then the avalanche will quickly die
out, and all avalanches will be small. If 2Jp(—H — JM) = 1, then avalanches will
always be finely balanced between continuing and dying, and there will be a critical
distribution of avalanches. If the random field distribution p(k) has a maximum
value of 1/2J, then there will be a critical distribution of avalanches at the value of

H = H. where p(h) is a maximum.
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Let us calculate the power spectrum for the critical system with p(h) = 1/2J. To

begin with, we will calculate the probability distribution of time-series ny, na, . .., N-

We know that in shell zero, exactly ng = 1 spins will flip. At the critical point, where
each spin on average causes one more spin to flip, shell one will have a Poisson dis-
tribution with mean one: P(n,) = m—l—l, Shell 7 will have a Poisson distribution with

g

-1, R R . R R
mean n;_;: P(n;) = E—n—:f‘:‘- Therefore, the probability distribution for the entire

time series will be

1 ¢ es'ni
P(lanlanza""noo): 'H ’l l’ (A'z)
en;. e n;:

Now, from equation A.2, we can calculate the average time-time correlation

function
G() = f:(niniw), (A.3)
i=0
where
(Ninipe) = Z ninioP(ny, ..., Neo)- (A.4)
{nl,...,nea}=0

To simplify equation A.4, we need to use several properties of the Poisson distribu-

z

3 T ol - n - n -
tion: 57X €= =1, T2 n€= =z, and § oo n?S—E = z + z*. Using the

n!

first rule repeatedly, we can simplify equation A.4 to
(ninie) = Z ninipeP(ny, ..., Tiy).
Then, using the second rule repeatedly, we can further simplify to
(Niniye) = Z n2P(ny,...,n:).

Now, applying the second and third rules repeatedly, we can simplify to a single
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sum:

o0 .
(i — 1)n; + n?
nin; =
(ninite) r;) o

=1+ 1 (A.5)

Notice that the correlation between two times is proportional only to the first time,
and not the separation between the times.

Now, we can find the value of the time-time correlation function G(@) by sum-
ming the result of equation A.5. Because the time-time correlation function as
defined is proportional to the square of the total time, we must cut off the summa-

tion at some maximum time T to get a finite result. Summing according to equation

A.3, we find
T—-6-1
GO)= ) i+l
=0
_(T-6)(T—-6+1)
- 2
2 2
£~+T—+9——Q—T0 (A.6)

“ 272722
This shape for a cutoff time of T = 1000 is shown in figure A.1. Notice that the
exact shape in mean-field theory is very similar to the experimentally measured

correlation functions in three dimensions.

To get the exact form of the mean-field energy spectrum, we just take the cosine

transform of equation A.6.

Ew) = / ” cos(wh)G(6)do

_/ cos(wﬂ)( -—+%2-—§—T0)d0

=Tw?+ -—(1 — cos(Tw)) — w3sin(Tw). (A.T)
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Figure A.1: The exact time-time correlation for mean field theory with a maximum

time cutoff of T = 1000.

The dominant term in this equation is Tw™2. This is the same exponent as predicted
by the general scaling arguments: —— = 2. The general scaling arguments also
predicted that a term smaller by a factor of T and with the exponent (3—7)/ovz =3
would be subtracted off, and it is, but multiplied by a factor of sin(T'w). However, the
sin(Tw) turns out to simplify things even more. Because the correlation function
was actually discrete, we should consider a discrete power spectrum, where the
frequencies are multiples of wg = Z. This means that cos(Tw) = 1 and sin(Tw) =0
for all w in the discrete spectrum. Because of this, all terms except the Tw™? term

drop out. If we divide by T to get the power spectrum, we find

Plw) = w2, (A.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] B. Allesandro, C. Beatrice, G. Bertotti, and A. Montorsi, J. Appl. Phys. 68(6),
2901 (September 1990).

[2] J. P. Sethna, K. Dahmen, S. Kartha, J. A. Krumhansl, B. W. Roberts, and
J. D. Shore, Phys. Rev. Lett. 70(21), 3347 (May 1993).

[3] K. Dahmen, S. Kartha, J. A. Krumhansl, B. W. Roberts, J. P. Sethna, and
J. D. Shore, J. Appl. Phys 75(10), 5946 (May 1994).

[4] O. Perkovi¢, K. Dahmen, and J. P. Sethna, Phys. Rev. Lett. 75(24), 4528
(December 1995).

[5] O. Perkovié, K. A. Dahmen, and J. P. Sethna, Dusorder-induced critical phe-
nomena in hysteresis: Numerical scaling in three and higher dimensions,
cond-mat #9807336, Los Alamos Nat’l Laboratory, Los Alamos, N. M.
http://xxx.lanl.gov/abs/cond-mat/9807336.

[6] K. A. Dahmen and J. P. Sethna, Phys. Rev. B. 53(22), 14872 (June 1996).
[7] H. Ji and M. O. Robbins, Phys. Rev. B 46(22). 14519 (1 December 1992).

[8] P. Cizeau, S. Zapperi, G. Durin, and H. E. Stanley, Phys. Rev. Lett. 79(23),
4669 (December 1997).

[9] O. Narayan, Phys. Rev. Lett. 77(18), 3855 (October 1996).

(10] J. S. Urbach, R. C. Madison, and J. T. Markert, Phys. Rev. Lett. 75(2), 276
(July 1995).

(11] K. A. Dahmen, Hysteresis, Avalanhces, and Disorder Induced Critical Scaling:
A Renormalization Group Approach, Ph.D. thesis, Cornell University (May
1995).

[12] D. Spasojevié¢, S. Bukvié, S. Milosevi¢, and H. E. Stanley, Physical Review E
54(3), 2531 (September 1996).

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://xxx.lanl.gov/abs/cond-mat/9807336

89

[13] H. J. Jensen, K. Christensen, and H. C. Fogedby, Phys. Rev. B 40(10), 7425
(October 1 1989).

[14] S. Zapperi, P. Cizeau, G. Durin, and H. E. Stanley, Physical Review B 58(10)
(September 1998).

[15] W. Grosse-Nobis, Journal of Magnetism and Magnetic Materials 4, 247 (1977).
[16]) G. Durin and S. Zapperi, Journal of Applied Physics 85(8), 5196 (April 1999).

[17] B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi, J. Appl. Phys. 68(6),
2908 (September 1990).

18] G. Bertotti, G. Durin, and A. Magni, J. Appl. Phys. 75(10), 5490 (May 1994).
19] U. Lieneweg and W. Grosse-Nobis, Intern. J. Magnetism 3, 11 (1972).

[
[
[20] P. J. Cote and L. V. Meisel, Phys. Rev. Lett. 67(10), 1334 (Sept 1991).
[21] L. V. Meisei and P. J. Cote, Phys. Rev. B 46(17), 10822 (Nov 1992).

[

22] G. Bertotti, F. Fiorillo, and A. Montorsi, J. Appl. Phys. 67(9), 5574 (May
1990).

P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38(1), 364 (July 1 1998).

[23)
[24] A. J. Bray and M. A. Moore, Journal of Physics C 18 (1985).
[25] B. Drossel and K. Dahmen, Eur. Phys. J. B 3 (1998).

[

26] P. W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. rev. B
22(8), 3519 (1980).

27] D. S. Fisher and A. P. Young, Phys. rev. B 58(14), 9131 (1998).

[

[28] D. S. Fisher, Phys. rev. lett. 69(3), 534 (1992).
[29] D. S. Fisher, Phys. rev. B 51(10), 6411 (1995).
[

30] E. Vives, J. Goicoechea, J. Ortin, and A. Planes, Phys. Rev. E 52 (1995),
vives et al. studied random-field random-bond systems up to 100 x 100. Our
methods are not directly applicable to random bond systems or to systems with
long-range forces [14].

[31] R. Blossey, T. Kinoshita, and J. Dupont-Roc, Physica A 248 (1998), blossey
et al. studied the prewetting transition with our model using the efficient form
of the brute force algorithm, on systems up to 900 x 900.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

[32] J. P. Sethna, O. Perkovié, and K. A. Dahmen, in B. Dubrulle, F. Graner,
and D. Sornette, eds., Scale Invariance and Beyond, Les Houches Workshop
(Springer, Berlin), Les Houches Workshop, p. 87. Figure 1 (right) is incorrect
in this reference: it shows dM/dt for the whole hysteresis loop, not just one
avalanche.

3] A. A. Middleton, Phys. Rev. Lett. 68 (1992).
34] A. A. Middleton and D. S. Fisher, Phys. Rev. B 47 (1993).

3

[

[35] U. Wolff, Phys. Rev. Lett. 62 (1989).

(36] L. Furuberg, J. Feder, A. Aharony, and T. Jgssang, Phys. Rev. Lett. 61 (1988).
[37] A. B. B. M. H. Kalos and J. L. Leibowitz, J. Comp. Phys. 17 (1975).

[

38] W. H. Press, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C:
The Art of Sczentzﬁc Computing (Cambridge University Press, 1992), the book
is also available online at http://www.nr.com/.

[39] NetLib is a collection of mathematical software, papers and databases at
http://www.netlib.org/.

[40] O. Narayan and D. S. Fisher, Phys. Rev. B 48(10), 7030 (September 1993).

[41] F. Pdzméndi, G. Zardnd, and G. T. Ziményi, cond-mat/9902156 (February
1999).

[42] B. Tadié and U. Nowak, cond-mat/9903090 (March 1999).
[43] A. Visquez and O. Sotolongo-Costa, cond-mat /9903207 (March 1999).
[44] E. Obradé, E. Vives, and A. Planes, Physical Review B 59(21) (June 1999).

[45] S. Field, J. Witt, F. Nori, and X. Ling, Phys. Rev. Lett. 74(7), 1206 (February
13 1995).

[46] E. Vives, J. Ortin, L. Mafoso, I. Rafols, and R. Pérez-Magrané, Phys. Rev.
Lett. 72(11), 1694 (March 14 1994).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.nr.com/
http://www.netlib.org/

