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CHAPTER 1
INTRODUCTION

1.1 Motivation

Figure 1.1: (a) Grain boundaries in copper, from the news article in Sci-

ence {1} covering our theory of plasticity [2] (b) Cell walls, from
Hughes et al. [3].

In condensed-matter physics, crystals are anomalous. Most phases (liquid
crystals, superfluids, superconductors, magnets) respond smoothly in space when
strained. Crystals, when formed or deformed, relax by developing walls. Common
metals (coins, silverware) are polycrystalline; the atoms locally arrange into grains
each with a specific crystalline lattice orientation, separated by sharp, flat walls
called grain boundaries (figure 1.1(a)). When metals are deformed (pounded or
permanently bent) new cell walls (figure 1.1(b)) form inside each grain [6, 7, 8].
Until now, our only convincing understanding of why crystals form walls has been
detailed and microscopic. Our new theory provides an elegant, continuum descrip-
tion of cell wall formation as the development of a shock front—a phenomenon

hitherto associated with traffic jams and sonic booms.
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Figure 1.2: Dislocation tangle at early stages before wall formation.

Crystals work harden when plastically deformed. Figure 1.2 shows a traditional
view of work hardening as due to the entanglement of dislocation lines. It is
certainly true that as structural metals are plastically deformed the dislocations
multiply,' and that they form immobile sessile junctions when they intersect. In
this picture, the yield stress for a crystal with dislocation density p is seen to be
proportional to p!/2, the rough distance between pinned sites on a given dislocation.
As dislocations multiply and p increases, the yield-stress increases and the material
work hardens.

However, the spaghetti tangles of figure 1.2 are typical of only the initial stages
of hardening (stage I) where only one slip system is involved; in later stages large-
scale patterns form. Figure 1.1(b) shows the cell structures formed in FCC metals
in multiple-slip stage III hardening [6, 7, 8, 9, 10], the dislocations have orga-
nized themselves into relatively sharp and flat cell walls, mediating small rotations
between relatively dislocation-free crystalline cells.

These cell walls are reminiscent of grain boundaries in polycrystalline met-
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als, which also mediate rotations between nearly perfect crystalline grains (fig-
ure 1.1(a)). Grain boundaries can form in several different ways. They can form
during crystallization from the melt (not described by our theory), where the grains
often form a dendritic morphology. They can form under external shear at high
temperatures, where the dislocations migrate into grain boundaries in a process
known as polygonization and then the grains coarsen. Grain boundaries can also
arise at low temperatures in highly dislocated materials in a process called recrys-
tallization; here a small, clean crystalline region can grow by eating the dislocations
surrounding it, giving a net outward force on its grain boundary. These dislocation
patterns and structures have important consequences for the materials properties.!

Our formulation of a plasticity theory rests upon differential geometry ap-
proaches to dislocation dynamics, developed in the middle of the last century [17,
18, 19, 20, 21, 22]. These elegant mathematical descriptions stopped at describ-
ing the state of the material; our work is aimed at developing a similarly elegant
approach to the evolution law, and extracting predictions about experimental sys-
tems. By focusing on the Nye dislocation density tensor [23], we do not incorporate
the extra framework of slip systems, immobile dislocations, and geometrically un-
necessary dislocations which are central features of a community of models used
to study texture evolution and sub-grain structure [24, 25, 26, 27, 28, 29, 30, 31].

Apart from intriguing hints in Dawson’s simulations [29], wall formation is not

1For example, the yield strength oy of clean polycrystalline materials is not
determined by the average dislocation density, but rather by the grain size d, ac-
cording to the Hall-Petch relation oy = 0o+kvd. (Here dislocation pile-up, rather
than pinning, dominates the yield stress. For nano-crystalline materials, slippage
at the grain boundaries dominates the plastic deformation, leading to a reverse
Hall-Petch effect [11, 12, 13].) The yield strength dependence on dislocation den-
sity in stage III hardening is no longer determined by the simple ,/p dependence
of dislocation tangles, but now depends on the scaling of cell size with continuing
work hardening deformation {14, 15, 16].
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typically observed or studied in these texture evolution models. There have been
several recent efforts to develop coarse-grained dynamics for dislocations, both for
parallel dislocations [32, 33, 34] and in fully three-dimensional theories [35, 36, 37,
38, 39]. None of these investigators found wall formation in their models.?

Our approach to the formulation of a dislocation dynamics theory is mini-
malist: it ignores many features (geometrically unnecessary dislocations [34], slip
systems [29], dislocation tangling, yield surfaces, nucleation of new dislocations)
that are known to be macroscopically important in real materials. It does incorpo-
rate cleanly and microscopically the topological constraints, long-range forces and
energetics driving the dislocation dynamics. As hypothesized by the LEDS (low-
energy dislocation structures) approach [40, 41], we find that a dynamics driven
by minimizing energy (omitting tangling and nucleation) still produces cell bound-
ary structures. The é-function wall singularities in our dislocation theory form,
however, not from the energy minimization, but from the nonlinear nature of the
evolution law. Finally our theory, to our surprise, initially forms sharp walls that

are not the usual zero-stress grain boundaries.

1.2 Outline of the dissertation

We begin in chapter 2 by introducing a Nye dislocation tensor as an order para-
meter to describe dislocations. The evolution equation in the form of a continuity
equation relating the dislocation density with a dislocation current is put forward.
The relationship between the dislocation density field and other state variables

such as the stress and the plastic distortion field are given in chapter 3. Motivated

2We discuss the context of our plasticity theory in connection with other ap-
proaches in great details in chapter 5.
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by the criterion for a decrease in elastic energy and the microscopic Peach—-Koehler
force, the form of the dislocation current is written down in chapter 4. This com-
pletes the description of the evolution law. The last part of this chapter describes
wall-like structures and their superpositions as one possible family of stationary
state solutions to our law. In chapter 5, connections are made between our plas-
ticity theory and the conventional plasticity theories. The implementation of the
evolution equation specialized to one dimension, the mechanism of sharp walls
formation for volume conserving systems and systems allowing for climb, and the
asymptotics of the one-dimensional solutions at large times near sharp walls are
described in chapter 6. Finally, our finite difference simulations for various types
of slip systems in two dimensions and the predictions for different slip subsystems
against other discrete dislocation simulations are discussed in chapter 7.
Throughout the dissertation, the reader is asked to consult the appendices for
prerequisite knowledge on tensors and symmetry group, definitions and conven-
tions for the Fourier transforms, elementary exposure to conventional elasticity
theory, the proof of stress-free dislocation states too involved to be incorporated
in the main text, a modified one-dimensional theory, different finite difference nu-
merical schemes, and an efficient method to visualize results from two-dimensional

simulations.
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CHAPTER 2
DISTRIBUTIONS OF DISLOCATIONS AND MODEL EQUATIONS

2.1 Burgers vector and Nye dislocation density tensor

To appropriately describe a dislocation, one needs to introduce the idea of
Burgers vector. The Burgers vector is the topological charge characteristic of a
defect found by counting the net number of extra rows and columns of atoms in a
distant path encircling the dislocation. We define the Burgers vector b, according
to the procedure outlined by F. C. Frank [42] which can be best illustrated with
a hypothetical cubic lattice. For a perfect crystal, if one traverse the crystal in
a closed loop in a clockwise direction, one has to have the same number of “up”
lattice vectors as “down” lattice vectors, and as many “right” lattice vectors as
“left” ones. For a crystal with a dislocation line, this won’t be true. If one performs
the vector sum of all the lattice vectors going around the loop, the resulting vector
is called the Burgers vector. In other words, the negative of the Burgers vector
is needed in order to close the circuit completely.! Figure 2.1 shows images of an
edge and a screw dislocation.

The same concept can be generalized to an isotropic material in the continuum
theory. From the definition, after a passage around any closed contour L that

encircles a dislocation line, the displacement vector u receives an increment b

1This convention has been used by, e.g., J. M. Burgers, T. Mura, F. R. N.
Nabarro, W. T. Read, Jr., A. Seeger, and J. Weertman. However, there are many
authors who use the opposite convention such as, B. A. Bilby, R. Bullough, E.
Smith, F. C. Frank, J. D. Eshelby, J. Friedel, J. P. Hirth, E. Kroner, J. Lothe, N.
Thompson, and R. deWit.
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Figure 2.1: (a) A Burgers vector is described by a traversal around a contour

surrounding an edge dislocation. (b) A screw dislocation.

which is equal to one of the lattice vectors. This can be expressed as 2

?{Ldu,‘.’ =£ Fdz; = —b;, (2.1)

where BF is the plastic distortion tensor and can be thought of as a primary field
by itself.

A dislocation is a crystallographic defect associated with crystalline transla-
tional order. It represents extra rows or columns of atoms and is characterized
by two quantities; the direction of the dislocation line, t, and the Burgers vector
direction, b as defined above. Therefore the dislocation density p, must be defined

as a second-rank tensor in order to carry such information:

p=(t®b)i(£), (2.2)

where §(-) is the Dirac d-function, and & is the two-dimensional radius vector

2Here and throughout the manuscript a subscript notation is used to represent
a component of a vector or tensor quantity. We also employ Einstein’s summa-
tion convention where repeated indices are understood to be summed over unless
otherwise noted.
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Figure 2.2: The shift in the displacement vector upon a circulation around a

dislocation line defines the Burgers vector.

taken from the axis of the dislocation in the plane perpendicular to the vector t
at the given point. This type of tensor is called Nye dislocation density tensor
(J. F. Nye, 1953 [23]). One categorizes types of dislocations into edge, screw, and
mixed according to the relationship between Burgers vector b and the direction
of dislocation line t. An edge dislocation is one where the Burgers vector lies
perpendicular to the direction of the dislocation line. A screw dislocation is one
where the Burgers vector is parallel to the line. A mixed dislocation is one with
general Burgers vector, e.g., by a superposition of both types of dislocations.

In the presence of many dislocations labeled by an index «,
pij(x) = Zt"‘b"‘é(z (x—£&%). (2.3)
Here §(®(-) is a two-dimensional d-function, infinite if the position x lies along the

dislocation path £&%. When many dislocations are present, a continuum or coarse-

graining description of a conglomerate of dislocations is preferred. In this picture,
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we can write p as
pu) =Y [ 128550 — €)G(x - x) (2.4)

with Gaussian weighting G(x — x') =~ (1/v2wL)3exp[—(x — r)?/(2L?)] over some
distance scale.L large compared to the distance between dislocations and small
compared to the dislocation structures being modeled.

In his revolutionary paper [23], Nye provides the relationships between the
dislocation density tensor p and the lattice curvature tensor k. Let d¢; be small
lattice rotations about three coordinate axes, associated with the displacement
vector dz;, then x;; = 0¢;/0r;. He shows that given a curvature tensor k, the

Nye dislocation tensor p can be determined:

pij =Kij — dijffkk (25)
and vice versa:
1
Kij = Pij = 5 03 Pk (2.6)

Equation 2.5 offers a means to obtain p experimentally by measuring disorientation
angles through techniques such as electron back scattering diffraction (EBSD) {43,
44).

Macroscopically, most of the dislocatiors are geometrically unnecessary with
canceling contributions to p and to the overall deformation of the material body.
Thus most theories of plasticity either ignore them and only keep a scalar for
the gross line length dislocation, or incorporate separate disloéation densities for
positive and negative Burgers vectors (whose difference and sum give the necessary
and unnecessary dislocation densities). Dislocations which are unnecessary on the

macroscale may be important on the mesoscale, perhaps giving rise to interesting
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substructural pattern such as an alternating pattern of cell orientations giving an
alternating Burgers vector density in neighboring walls (which nearly cancels on
longer length scales [45, 46]). In our theory, the net dislocation density tensor p
that we keep is the sole origin of the long-range stress fields whose screening leads
to pattern formation; it determines the net plastic deformation field and the grain

and cell mis-orientations that experimentally characterize the mesoscale structure.

2.2 Fundamental equations

A complete macroscopic description of the deformation u of a material is given

by
Oyu; = B + B (2.7)
where BF represents an elastic, reversible distortion, while the plastic distortion
tensor BF describes the irreversible plastic deformation.® In this context, the
plastic distortion is the result of the creation and motion of dislocations, and cannot
be written as the gradient of a single-valued displacement field. Integrating around
a loop L enclosing a surface S, the change in such a hypothetical plastic distortion

field Auf can be written using Stokes’ theorem as

A'LL_}; = —bj = iﬂg dwi = /;'Eilmalﬁ-r};j dSiv (28)

where €, is the totally anti-symmetric tensor. Here and throughout this disser-
tation, we shall make use of the shorthand notation 9; to represent 9/9z;. For a

single dislocation, equation 2.3 gives

b; =/tibj5(€) dS,-=/p,-,~ dS; (2.9)
S S

3Please consult appendix D for a review on the basic ideas of the theory of
elasticity.
4See appendix A.1 for more details.

10
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where we have used the property of the Dirac d-function. Since the contour L
can be arbitrarily chosen, equation 2.8 and equation 2.9 provide the relationship

between the Nye dislocation density tensor and the plastic distortion field:
pij = —€amOiBy; (2.10)

Thus the natural physicist’s order parameter (the topologically conserved dislo-
cation density p) is a curl of the common engineering state variable (the plastic
distortion field BF). Analogous to the continuity of magnetic field lines, the micro-
scopic statement that dislocations cannot end (except at grain or cell boundaries)
implies that

Bip,-j = 0, (211)

which follows from (2.10).% Due to the compatibility of the displacement, ;1 0,0mu; =

0, an equivalent description to (2.10) involving the elastic counterpart is
Pij = 8ilmal:871?1j . (2.12)

In the absence of dislocations or plastic strains, an elastic body subject to
an applied stress has a compatible elastic strain. Kroner’s incompatibility tensor

defined by

(aﬂm&pjm + Ejlmalpim) s (2-13)

[N

— E P _
Rij = €itmEjpk O10p €xm = —EitmEspk A10p €4 =

where € and €} are the symmetric parts of BF, and ff,, respectively, directly

measures the incompatibility of the strain tensor due to the presence of dislocations

SEquation (2.11) will not be true if our theory includes disclinations. The idea
of disclinations was first used by Frank in the study of cholesteric liquid crystals to
describe twisting discontinuities of the crystals allowing discrete jumps of one half-
pitch of the helicoidal texture [47]. deWit modified the form of (2.11) to replace 0
by adding a source or a sink term [48, 49]. In the more general form, dislocations
can then start or end on disclinations.

11
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or disclinations. R;; = 0 coincides with de Saint—Venant’s compatibility equation
for the components of the strain tensor. In the language of differential geometry,

the incompatibility tensor is recognized simply as the Ricci tensor.

2.3 Dislocation current and the continuity equation

The law of conservation of the Burgers vector in a medium implies that the time
evolution of the Nye dislocation density tensor must be given in terms of a current.
Consider the flow rate of Burgers vector through surface S enclosed by contour C.
We can define the dislocation current J as a quantity which when summed across

the surface S gives the flow of the Burgers vector through the contour:

db;
o jiJJ T (2.17)

To obtain the continuity equation, we simply substitute the relation between

b and p in (2.9) into (2.17),

i o _ /  OJmj o
/S 5 dSi=~ | cun=52LdS;, (2.18)

6There exists a three-dimensional Riemannian space where € can be considered
a natural compatible strain field. In such a space, the metric g;; is defined by

gij = 6ij + 2657 . (214)
The Ricci tensor can be computed from
Rijkm = EijpErmqipg (2.15)
where R;jxm is the Riemann-Christoffel curvature tensor defined by
1
Rijim = 3 (0;0k gim + 0i0m ik — 0i0m it — OiOk Gjm) - (2.16)

For a more complete treatment of the elasticity theory on curvilinear coordinates,
the reader should consult, e.g., [50, 22].

12
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with one application of Stokes theorem. Since the contour S is arbitrary,

Opij 0Jms
Bt + Eiim 5z 0 (2.19)

This continuity equation describes the evolution of dislocations according to the
choice of the dislocation current J.

Equation 2.19 was derived independently by Kosevich and Mura in 1962-1963
[20, 21]. By taking a time derivative of (2.10) and compares it to (2.19), one can
identify the dislocation current with the rate of change of the plastic distortion

field,
o
5

One of the main objectives of this dissertation is to derive the evolution law for

Jij = (2.20)
these fields (2.20) appropriate for scales large compared to the atoms but small
compared to the cell structures and grain boundaries.

We only consider, in our theory, the net density of dislocations. The sta-
tistically stored dislocations (those with opposing Burgers vectors which cancel
out in the net dislocation density) have been ignored because they do not af-
fect the long range strain fields or the misorientations at grain boundaries and
cell walls. Macroscopically they are known to dominate dislocation entanglement
and work hardening, and are important in previous continuum theories of plastic-
ity [34, 51, 52, 33, 32, 53]. Much of the macroscopic cancellation in net dislocation
density comes from the near alternation of the net rotations in the series of cell
walls [54]. Our focus on the sub-cellular, subgrain length scales and our current
omission of dislocation tangling make keeping only the net dislocation density
natural for our purposes. We also do not explicitly incorporate a yield surface,
because we hope eventually to explain work hardening and yield surfaces as prop-

erties which emerge from the intermediate length-scale theory.

13
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Figure 2.3: The current J due to the motion of a segment of a dislocation

loop.

The form of our mesoscopic continuum theory will be motivated by the micro-
scopic motion of a single dislocation. To calculate a dislocation current J for a
dislocation loop moving in the direction of the plane of the loop, consider a surface
S, whose normal vector is fi, spanning a dislocation loop [ with t denoted the
tangential vector along the loop. The plastic distortion tensor BF caused by the

slip b of the plane is given by

5 = —ub; 6(Q)O(€ ~ &), (2.21)
where ( is the length measured in the direction of i1 while £ is measured from the

position of a point on the line & = &({) along  x f, and

1, z>0;
O(z) =

0, z<0.

If the line is displaced by a small amount dx, the distortion field will change by

505, = ~nib; 8(C) ‘-fg 06 = —nib; 6(C) B(E — £0) B (2.22)

Only the component of §x in the direction of £-axis matters; the component along

t is meaningless. In terms of 0%, 66 = |6x|sin(¢), where ¢ is the angle between €

14
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and dx. One can rewrite n in terms of these quantities as

. Eikm&rktm
= SR (2.23)
Substituting (2.23) into (2.22) gives
8B = Eitmtib;0zmP (), (2.24)

where 6@ (€) is the two-dimensional §-function earlier expressed as §(¢) 8(€ — &o).
And therefore,

Jij = Eitmtibjvmd@ (€), (2.25)

where v denotes the velocity at the point ({,€ — &). We are going to motivate the
form of the mesoscopic dislocation current due to the local Peach—Koehler force
density using (2.25) in section 4.1.3.

We can distinguish types of dislocation motions according to whether or not
the motions cause changes in material’s volume. A dislocation is said to be gliding
when it is moving in the plane formed by its Burgers vector b and its line direction
t. A dislocation is climbing when it’s moving perpendicularly to this plane. The
climb motion is non-conservative; the crystal volume changes with the motion
of the dislocation. Consider, again, the configuration as shown in figure 2.3. The
climb motion leads to an increase of the area of the surface S by dS in the direction

perpendicular to the plane formed by éx and dl,
0S = déx x dl, (2.26)

where dl denotes the element of the dislocation loop and thus points along t. The

change in area therefore introduces the change in volume by
dV =b-40S =—(b xdl)-x. (2.27)

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since all the changes happen at the core of the dislocation line in the coarse-
graining description of the dislocation motion, the relative volume change is asso-

ciated with def, according to
(56{.,,C = ai,-k(éa:,-bjtk)d(” (5) . (2.28)

If the change occurs during the period 4%, then

&Ek (2)
—= = g;;k(vibitr )0 (€) , (2.29)

Adye = =5

where, again, v is the speed of the dislocation line. We can therefore identify
the type of dislocation motions by calculating the trace of J; if Ji = 0, the
motion is conservative, volume conserving (glide) otherwise the motion contains a

non-conservative, vacancy/interstitial diffusion (climb) piece.
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CHAPTER 3
RELATIONSHIPS BETWEEN STATE VARIABLES

3.1 Stress fields due to dislocations

In the presence of a dislocation, crystal strains and a stress field is created
around it. Peach and Koehler first derived the equation for stress fields due to
dislocations in 1950 [55]. A complete theory of dislocation dynamics should include
the motions of dislocations due to the effect of their own stresses. In this section,
we write down the expression for stress fields in terms of the coarse-grained Nye
dislocation density tensor. Qur derivation is based on the formulation given by
Hirth & Lothe [56].

For an isotropic material, the stress field due to a closed dislocation loop is
given by

0 7 0
a — TS5 bm ima 2 / s meimB o 7 2 :
Oag = % £ 57 —V*Rdz 87r}€;b £ ﬂamgv Rdz,

PR 0
1_ 1/ f‘ meaLmk ( ,az axﬂ - 60[33 ,V R) k’ (31)

where 0,4 signifies the stress field, with the shear modulus ;, and Poisson’s ratio
v.! R = |r —r'|, where r is measured from the origin to the observer, while r'
is measured from the origin to the point on the dislocation line. The Kronecker
delta §;; gives the value of 1 when ¢ = j, and 0 when ¢ # j. We can explicitly
write out the integration along dzj; as §...dz; = fc ...tgdl', parametrized by
I’ with tangent direction t. It is now possible to represent a line integral as a
volume integral over a two-dimensional d-function, §...tgdl' = fy-..6(8) d°r,

where the contour of integration is defined by €. The collection of Burgers vector

1See appendix D on how to relate these two quantities with others.
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b, the direction along the dislocation t, and (&) signifying a diminishing density
away from the core of the dislocation make up a Nye dislocation density tensor p.

Equation 3.1 becomes

o, (r)=—£~/(e‘ (r') + & (r'))——a—sﬁ——d"’r’
af oy imaPpBm imBPam ax; 823; BSB;

R : R _ &R y
pe _V)/Vemzkpkm(r) <3m§3x;8z’ﬁ 5aﬂ___8a:§8x}8x§. d’r'. (3.2)

It is clear that each term in (3.2) can be written as a convolution between two
functions. This suggests that such formula is more naturally expressed in Fourier
space’ as a product between two functions. By performing the transformation on

all terms, o becomes

Tap(K) = Kopu (k)P (k) , (3-3)

where

itk %y [ kaok
Kaﬂw(k) = _?1 gquaéﬂp + E'yuﬁéap, + 1 1 Ilj ("k—2ﬁ‘ — 50[3 .

The detailed calculation of the above expression is provided in appendix C. By
formulating everything in Fourier space,® we can avoid complicated integrations,
but at the expense of an extra assumption that the material has periodic boundary

conditions or has an infinite extent.

2Throughout the manuscript, we shall denote a Fourier quantity by putting ~
on top of its real-space counterpart.

3A happy coincidence happens in one dimension where stress fields are local
and the transformation into Fourier space can be avoided. See chapter 6 for the
complete analysis of our theory in one dimension.
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3.2 Plastic distortion fields due to dislocation density fields

From equation 2.10 in section 2.2, we are able to write down a dislocation

density field given a plastic distortion configuration,
Pij = —EimOiBn; - (2.10°)

To invert this relation, we note that this equation has a close analog in electro-

magnetic theory, namely

VxB= qu, (34)

which relates the charge density J to the magnetic field B in free space with
magnetic permeability po. Many standard textbooks in electromagnetic theory
(see, e.g. [57]) provide the inverse expression of (3.4), and we shall only quote the

result:

_ Mo J) 5,
B—4WVX/|x_x,|dx (3.5)

By appealing to the analogy to the above expression, the form of the plastic

distortion field on the Nye tensor is immediate:

1 I — :I:I
P l l
i =7 /Eilmpmj (X’) , ’,3 d3x' + aiv;

(3.6)
1 Pmi(X) 5,
= ——E&im ———d O,
47 ! 8l< |x — x'| X' | +0i;
o X=X 1 o
Here we have used the identity —————— = —V | ———|. The above relationship
x —x'f? Ix — x|

is defined up to a gradient of an arbitrary vector field 1¥». When one writes down
a dislocation density tensor from a plastic distortion field, V1) is automatically
cast away in the process of taking a curl. This term should be thought of as an
elastic distortion arising from the displacement field 7). Since the elastic distortion

tensor is written as a gradient of a displacement field and since the dislocation
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density tensor cares only about the plastic portion of the total distortion field, this
term is neglected by the dislocation density description. This field, however, is
very crucial to uniquely describe the displacement field u of a material subject to
various constraints such as boundary conditions. This point is to be illustrated in
the following section.

The relationship is simpler in Fourier space:
~p i

i = 12 EitmKiPm; + ik (3.7)

3.3 Displacement field u due to 8 and p

In order to express total displacement vector according to dislocation arrange-
ments in an isotropic medium in equilibrium, we first express the equilibrium

condition,

31‘0'1‘]' = 8j0’ij =0. (38)

From (D.5) and (D.1) in appendix D, we are able to replace the stress with the

total and plastic distortion fields,

i (CijemBim = Bom)) =0

Cijkmam ajuk = Cijkmaj /Bll.)m .

(3.9)

In the first line we use the symmetry under interchanging the last two indices of
Cijem to replace €, and €f,, by Onui and Bf,, respectively.

One way to solve (3.9) is to first transform the equation, then write out Cijxm
as given by (D.6), and finally algebraically solve for u;. A straightforward but

tedious calculation for an isotropic system shows,
~ ¢ v . 3P 3P o 7P i 1 3P
W=7 [(1—:—”) kiBj; + k; ( i T ji)] + ) (_1—_u> kik;kiB5 . (3.10)
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Let us now return to the question of determining an extra displacement field
mentioned in the previous section. If one expres;ses BF’s in (3.10) using (3.7), one

gets

- 1 v k:k k;k 1 kikj ~  ~
U; = —EE {(1—_—;) Ejlm—To 12 + Eim—5 K2 } Pmj + <1__:;> Fle + ;. (311)

For the sake of comparing, let’s re-express p’s back to B°’s. This becomes

~ ] v ~ ~ 7 1
ui=_ﬁ{(1_y>kifj+kj ‘j] U( — )kkhg

+ (m) o) i+ (3.12)

Equating 4; in (3.10) and (3.12) gives

1 kik;
SRY) —(——1_,,) kb v . (3.13)

However from (3.7) and a few contractions, we know that --k%kj~jpi = 1. The

condition that 17; needs to satisfy in order to give a correct u is

kik; ~ ~
Z; =0, or  kjp;=0. (3.14)

Looking back at (3.11), we see that the second to last term is zero, and %); in the
last term has to be divergent-free in real space. This reflects the fact that a total
displacement field is defined only up to an overall translation of zero divergence.

We can now rewrite (3.11) safely as

_ 1 v ik kjk
i { () st ) B )

Once we have the total displacement field, and hence, the total distortion field,

and the plastic distortion field, the elastic distortion tensor can easily be obtained

by a simple subtraction.
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CHAPTER 4
EVOLUTION LAW AND STRESS-FREE STATE SOLUTIONS

4.1 Energy decreasing condition and the evolution equa-
tion
A sensible evolution law for dislocation motion should make the elastic energy
decrease with time. In this section, we provide the most general form of a disloca-
tion current that allows for a decrease in energy satisfying symmetry requirements.
Out of an infinite possibilities, we pick the form of J motivated by the microscopic
Peach—Koehler force acting on a single dislocation.

We begin by expressing the energy decreasing condition in terms of the state

variables.

4.1.1 Elastic energy and power due to dislocations inside
a material

The elastic energy can be expressed in terms of the integral over a volume V'

of the stress contracted with the strain inside the material body:

1
Eiotal = 5 / Oij 65‘ d’r (41)
|4
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This equation can be expressed in terms of the total displacement field and the

plastic distortion tensor in the following manner,*
1 T _ P\ 43
Erotal = 3 g Uz’j(‘fij - fij) d°r

1 1 8UJ an 3 1/ P 13
== Al e A ] - . ebd
2/‘,01]2(3mi+5mj>dr 5 VO'JGZ] r

1 . 1 [ Ooi; 1
= é- /(sv(njaij)uids - 5 /‘; 8—2;;Ui d3r - 5/‘/0'1']' Efj d3r.

The first two terms of the last line were obtained by integrating by parts the first
term of the previous line. Under the assumptions that there is no surface traction
7j0;; = 0, and the body force is zero d;0i;; = 0, the elastic energy expression is
reduced to

Erotal = —% /VUz'j e dr. (4.3)
As a remark, it is not hard to consider the elastic energy of a body in equilibrium

subject to external surface tractions F; which causes the displacement field u?

in the absence of plastic strains. Under such a circumstance, the elastic energy

becomes
1 0 0u) 5 1 P 73
gext=ELJijgédr*aLdijéijdr, (44)
where 0; = Cijri Oif is the stress due to the externally imposed displacement field
u’.

The time rate of change of elastic strain energy, or the power, can be computed

from (4.1) resulting in the expression,

di;:tal - / (tj04)i:dS — _aalui d*r —/ 03j & d°r
av ' v
(4.5)

= / (’FLjO'ij)’I:L,;dS - ——‘ ﬂi dsl‘ "/ Oij Jij dsr,
av v 9z; v

1Consult appendix D for a brief review on the elasticity theory.
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where we identify ¢¥ with the dislocation flux density J introduced in the earlier
chapter. The factor /2 in (4.2) disappears from (4.5) because

4
d

(Ekz Cijkl €; Tt Ojj eij) = Oij €5 -

DN =

(UZ] 65- + aij 65) =

DO =

(o €55) =

BN | =

Here we have used one intrinsic symmetry of C;;; namely that Cijz = Ciyij. With

two additional assumptions that both the traction and the body force are zero,

d_“/;;o_t?_l = —/ Oij Jij d31‘. (46)
t v

4.1.2 Isotropic tensors and the energy decreasing criterion

It is possible to write down conditions on the current J that guarantees that the
elastic energy of the system does not increase with time. Note that the continuity
equation (2.19)

Opij OJm;

5t T Cim g,

=0 (2.19)
relates the evolution of dislocations according to the curl of the dislocation flux.
From the previous section, we derived an expression for the rate of change of
the strain energy (equation 4.6). If the integrand is positive definite, or at least
positive semidefinite, then the elastic energy of the system will not increase as time
progresses forward.

The most obvious ansatz is Ji; = coy; for any positive real constant c¢. This

turns out to be a special case of a more general expression:
Jij = Bijkmffkm (4-7>

Jij = Bijkmakm
where Bijim is a linear combination of rank-four isotropic tensors. (See appen-

dix A.3 for a detailed discussion on general isotropic tensors.) There are three
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isotropic fourth rank tensors. They can be rearranged in the following manner,
1 1
Bijkm = €1 5(5ik5jm + OimOjk) — 3 8:0km | + €2 [0ikOjm — Oim0jk] + €3 0j0km . (4.8)

with some unknown constants c;, ¢, and c3 to be determined. Upon contracting
with ok, the second term becomes identically zero which means that the co-term
does not contribute to either the current or the strain energy, and therefore can be
omitted. Following the discussion at the end of section 2.3, we can separate B;jrm
into two terms according to the nature of their motion:

1

1
Bijkm = cgl ‘2‘(6ik6jm + Oimjk) — 3

5ij5km + Cq 6ij5km (49)

The subscripts in ¢y and ¢ distinguish between the glide (conservative) contribu-
tion to the current from the climb (non-conservative) contribution. Substituting

the form of J into (2.19’), we obtain our (linear) evolution equation,

Opij Oapq(p
BtJ = —ai,mijpq——gi%——). (4.10)

The tensor B contributes to the most general dynamics allowed by symmetry
to lowest order in p. This equaticn was first derived, with ¢q = 0 using a different
approach by Rickman and Vifial in 1997 [58].2 It is not enough for Bjjkm to be
isotropic to guarantee that the elastic energy is a non-increasing function of time;
the eigenvalues of Bjjx, needs to be at least non-negative. One can calculate the ,
eigenvalues of Byjxm by grouping the first two and the last two indices, B(;j)km)
to form a new 9 x 9 matrix. The eigenvalues are computed numerically using

Mathematica® 5.0. Provided that Cal, Ca 2 0, all eigenvalues of the 9 X 9 matrix

2In order to identify (4.10) with that of Rickman and Viiial, one needs to identify
their variational derivative of Free energy F with respect to dislocation density p;;
with negative of the stress field —o;; of the system, namely, §F/dpa; = —0a:.
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are non-negative. Let’s denote these eigenvalues by A* and the corresponding

eigentensor %, where a runs from 1 to 9. The rate of change of the elastic energy

dgoal
j;—tt— = —/VO'ij Ji]‘ d31‘

=— / 03 BijkmOkm d°r (4.11)
A7

9
==Y [/ Aaa;;ag.d%] <0,
a=1 v

clearly shows the flow of energy down hill for all non-negative values of A\%s.

4.1.3 Nonlinear current motivated by the Peach—Koehler

interaction

The main objective in this study is to see the formation of cell structures
under the motion of dislocations according to equation 2.19. Physically speaking,
a dislocation current should vanish in the absence of dislocations, and the time rate
of change of dislocations should depend on the number of dislocations available.
Equation 4.7 seems to contradict this statement; the current depends only on
the local stress of the system and not at all on the density of dislocations. Such
consideration leads us to set the constraints B;;i,; = 0 and, instead, to explore the
incorporation of a nonlinear term. A dislocation in the presence of a stress field
feels the force called a Peach—Koehler force. Our nonlinear term was motivated
by the form of the dislocation current for a single dislocation moving under the
influence of the Peach—Koehler force.

We shall see that the Peach-Koehler dislocation current J¥¥ is cubic in p. It
is difficult to construct currents quadratic in p that are guaranteed to decrease
the energy because the rate of change of energy (equation 4.21) is then cubic in

p; if the energy for p decreases with time, the (equal) energy for the (physically
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rather different density) —p would increase. (Groma and collaborators (33, 34]
have a current quadratic in p, but they keep separate densities for positive and
negative Burgers vectors and hence negative densities are not allowed in their
formulation; see section 5.3.) Our closure approximation yields a theory whose
current is cubic in p and is guaranteed to decrease the energy. The group-theory
calculation shows that the most general equation cubic in p allowed by symmetry
in an isotropic system has 15 undetermined coefficients (appendix B.2). To derive
the conditions on these coefficients that guarantee that energy decreases involves
a positivity condition on all the eigenvalues of a 54x54 matrix (section 4.1.5)—a
nonlinear constraint problem we bypassed by choosing a microscopically motivated
evolution law.

Peach and Koehler were the first to write down the formula for the force on a

section of a dislocation loop due to the stress field present at that point [55],

FK = —eiptibon . (4.12)

1

From (2.25), the dislocation flux density of a single dislocation moving with velocity

v reads

Jij = Eumtibjv 6@ (£). (2.25”)

Suppose the dislocation is moving in the direction of the applied force, therefore

v o« fP¥ and

Jij X Eimntmbi€nrsTirt b0 (€). (4.13)

We can then generalize this statement to
— .. \2)
Jij = DijkmparsTpePianrs »

4
Jij = Dijkmpqrsapqucrzm ) (4.14)

where D;jimpers is the most general eight-index tensor that makes the energy of
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the system decrease, and

P = Ztab"t 2 5@ (£9). (4.15)

The new J;; term does not close on p;; when plugging into the continuity equa-
tion (2.19). The evolution of p;; now depends on a new quantity pz(.;,)d. To have an
expression which depends only on p;;, we therefore perform a closure approzima-
tion similar in spirit to Hartree-Fock approximation in many-body physics, and
in theories of turbulence. We would like to approximate pﬁﬁd as a tensor product
of two p;j, p¥ — p® p. One can see from (4.15) that Pukz is symmetric under

interchanging i < k, and j «» m. With these symmetries,
Pl = cl[zt%%@) GIIDNALRIGE]
+Cy [Z tabe 53 (¢ ] [Zt" b 6@ (g0 )] (4.16)

= C10ijPrm + C2PimPr;-
C; and C, have units of distance. It is to be shown below that only the first
term guarantees a decrease of elastic energy with time. We therefore shall omit
the second term and set C; — C. In principle C can be dislocation-dependent
provided that C(p) remains positive everywhere. For example, we can introduce

a density-dependent C,

1 1
Clp)=— = , 4.17
(o) lpl  \/Piipi 417

as being the inverse of an average dislocation length in the volume. (This particular
choice will be discussed in sections 4.1.4 and 5.1.)

Several authors {33, 32, 34] coarse-grain their dislocation density and take a clo-
sure approximation as we do. Their closure approximation involves the long-range

correlation function (which we also assume factorizes); our closure approximation
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for them is trivial (because, for a single slip system, the ij piece of p®) in equa-
tion 4.15 factors out and p « p). In the end, their evolution law for J has
one fewer factor of the dislocation density p. While we cannot generalize their
approach to the three-dimensional tensorial theory, we can reproduce their results
by choosing our constant C(p) (in equation 4.24 shown below) to be density de-
pendent as shown above (equation 4.17) and specializing to two dimensions and
one slip system.

With the addition of the nonlinear Peach—-Koehler term, the new J;; is of the

form,

_ N . ~nnPK X
Ji “Jij = BijkmOkm + CD gljmpqrsapqpkmprs ) (4'18)

where DFX for Peach-Koehler model is

DR =2

ijkmpgrs = -2_

[5iq6jm5kr 5ps - 5ir6jm5kq6ps

A
-3 (6:50mgOkrOps — 0ij0mrOrglps) |- (4.19)

Here D is a materials constant with units of [length]?[time]/[mass] giving the mo-
bility of dislocation glide. At A = 0 climb and glide have equal mobilities, and at
A =1 J is traceless and, according to the discussion at the end of section 2.3, only
glide is allowed.

In the case of DFX treating glide and climb on an equal footing, one can directly
show that the elastic energy does decrease without calculating the eigenvalues.
From the expression regarding the rate of change of the elastic energy (4.6), one

can substitute the expression for the Peach-Koehler flux (4.19) with A = 0,

CD CD
T = _TeilmflPKpmj = —— (Gichac = Oacpic) Paj » (4.20)
to get
d€iotal CD
(;tm - _T v (Uijaicpacpaj - Uijaacpicpaj) d’r. (4'21)
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Next, let’s call I';; = 0cpjc, then the integrand becomes simply (CD/2) I'i(Tia —
Tsi)- Since the sums are taken over all @ and ¢, consider the sum of the pair (a, ¢)

and (4,a),
CD(Tiolia + Tailai — Tialai — Failia) = CD (Tje — Twi)? > 0. (4.22)
This is true for each fixed (a,) and (¢,a). Therefore

dg‘“a' CDZ / ia = Tai)?d’r < 0. (4.23)

0.1.—

We note in passing that a general case allowing for an arbitrary value of A is
much more complicated and the energy minimization has not been shown analyt-
ically. The continuity equation (2.19) together with the Peach—Koehler motivated

current JFX form the basis of our evolution law:

Opij OJmi _ :
C(p)D A
Jij = _(g)_ [ (Uicpac - Uacpic) Paj — 5 5ij (akcpac - Uacpkc) pak] (424)

4.1.4 Simple derivation of J*¥ by Roy & Acharya

The form of the current (equation 4.20) for A = 0 (both glide and climb) has a
simple interpretation due to Roy & Acharya [38]. The Peach-Koehler force density

on p in the local volume (from equation 2.25) is
K= —€lmn Zt;lnbgo'nc = —&mnPmcOnc - (425)

The current due to a single dislocation moving with velocity v is Jf’;"g'e = Eiatabjuid@ (&)
(equation 2.25). We introduced a density-dependent function

1 1
C = — =
) =15~ Trerg

(4.17)
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in our closure approximation to reproduce the closure approximations developed
recently for single slip systems; we can think of C(p) as being the inverse of an
average dislocation length in the volume. If we assume that the velocity of each
dislocation in the volume is proportional to the average force per unit length on

the dislocations in that volume v; = (DCy(p)/2)fF¥, we find

D

D
le;A = —2-Eia[ngKpaj = '2_€iai<_C<p)5lmnpmcanc)Paj =

C(p)D
2

<0' icPac — T acpic)paj
(4.26)

reproducing the result of our energy—decreasing closure approximation (equation 4.20).

4.1.5 Other possible choices for D’s

Can we explore more general forms for the current J, beyond the Peach-
Koehler motivated choice in section 4.1.37 We argued in section 5.1 that currents
J that are quadratic in p would not flow to decrease the energy. But what other
theories cubic in p are possible? What other choices for the tensor D will lead to
energy decreasing? In this section, we formulate the criteria for this more general
theory, but do not solve it.

There are 91 linearly independent isotropic tensors Djjkmpers Of eighth rank
out of the possible 105 fundamental isotropic tensors constructed from all possible
combinations of products of Kronecker delta’s [59]. Only fifteen of these, how-
ever, satisfy the imposed symmetries.®> The antisymmetric terms that do not meet
the symmetry requirements are projected out in the power expression (4.6), even

though they may be responsible for the evolution of dislocations.? To list all the

3For the detailed calculation, please refer to appendix B
To illustrate this point, note that the dislocation flux density J;; is in general
not a symmetric tensor. However only the symmetric piece contributes to the
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symmetries, let’s first take a look at the second term of (4.18),
JlIJI = CDijkmpqrsOpgPmpPrs - (4.27)

The two stress indices p and ¢ are interchangeable. From the two p’s retaining the

decomposition in (4.16), we can pairwise interchange (k, m) < (r,s) so that

Dijkmpqrs = Lijkmqgprs = Dijrqulcm . (428)

Additional symmetries are taken from the power integral,

dgll

e _C/ D;jkmpqrsTij PkmOpgPrs d’r. (4.29)
dt v

Interchanging both the other two stress indices 7 « j and the two o’s immediately
yields

Dijkmpqrs = Ujikmpgrs — L/pgkmijrs - (430)

The most general isotropic tensor of rank eight that meets the above requirements
is given in table 4.1 as a reference.

As for the fourth rank tensor B, there are non-trivial conditions on I needed
to ensure that the energy decreases with time. We proceed in the same spirit as
we did with the analysis of tensor B at the end of section 4.1.2. The indices of

D are arranged in such a way that it is convenient to convert a given eighth rank

expression for the elastic power,

dgo al 3
(;tt = —[/aijJij dsr, (46)

because o;; is symmetric and therefore if one decomposes J;; into symmetric and

antisymmetric pieces, J;; = Jisj + J{} then

A _ A __ A __
ai]‘J.i' -_ —szt]]l -_ —0'111]1] - O,

and therefore, 0;;J;; = Uij']isj'
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Table 4.1: The eighth-rank isotropic tensor with the required symmetries

comprises fifteen terms.

Dijkmpqrs = dl 5ij6km5pq6rs + d2 5ij5pq5kr6ms + d3 6ij5pq5mr5ks
d
5 (Bemsp0iq6rs + BemipSiadire)
d
+ (8i0iq0krOms + GipBigBirbma)

d
+56 (6jp6iq6mr5ks + 5ip5jq5m7-5k3)
+%7' (6jm5pq5kr6is + 5im5pq(5}¢r(5]’3 + 6ij6mq5kr6ps + 6ij5mp5kr5qs)

d
+ZS_ (5jk6pq5i15ms + 6ik5pq5jr5ms + 512.7'6kq(5pr6ms + 5ij6kp6qr6ms)
d
+§9 (5km5pq6jr5is + 5km6pq5ir5js + 5ij6km6q1‘6ps + 6ij6km(5pr‘sqs
+ 8:i0mpOkaOrs + 0ijOkpOmqOrs + 0k0imOpglrs + 0ik0jmOpgOrs)
dio
8
+ 5jk5im5qr5ps + 5ik6jm6qr5ps + 5jk6im5pr5qs + 5ik6jm5pr6qs)
di

+? (5jk6pq5mr5is + 5ik5pq6mr5js + 5jm5pq5ir6ks + 5im(quéjrfsks

+ (Sijfsmq(Spr(sks + 5ij§mp6qr5ks + 6‘ij5kq6mr5ps + 6ij5kp6mr5qs)

+d—é2 (6jm5kq6pr(sis + 5jm6kp6q1-5is + 5im5kq6pr6js + 5im6kp6qr5js

+ (6mp5kq5jr5is + 6kp5mq6jr6is + 5mp6kq5ir5js + ‘Skp5mq5ir5js

+ 8310mg0irOps + 0ikOmq0jrOps 4 6ikOmqglirOgs + GikOmp0jrdys)

dis

3

(6mp5jq6kr6is + 6jp6mq5kr(sis + 5mp6iq5kr5js + 6ip6mq5kr6js

+ 6jm5iq5kr(sp3 -+ 5im5jq6kr5ps + 6jm6ip5kr6qs + 5im6jp5kr5qs)

du

3

(6jk6mq5pr5is + 5jk5mp5qr5is + 5ik5mq5pr5js + 5ik5mp5qr5js

+ 6jm6kq6i1‘5ps + 5im6kq6j1‘5ps + 6jm6kp5ir6qs + 6im5kp5jr6qs)

dis

M

(5kp6jq5ir6ms + 5jp6kq6ir5ms + 5kp5iq6jr5ms + 5ip6kq6jr6ms
+ 5jk6iq6pr6ms + 6ik6jq5pr5ms + 5jk6ip6qr6ms + 5ik6jp5qr6ms)
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tensor D to an 81 x 81 matrix by grouping the first and last four indices together
to make D(;jkm)(pgrs). The resulting matrix is to be calculated its eigenvalues. The
rate of change of the elastic energy in this case can be written in the following

manner

dgoal
—C%it— = —/Vaij Jijd3r

=-C /V [oP)ijtm) Disjiemypars) [0 Pliwars) 4°r (4.31)

81
= —CZ [A /\a[ap]gjkm) [a.p]ajkm) d31‘ < O’
a=1

provided that all the eigenvalues A*’s of D;jkm)(pers) are either positive or zero.
Here we treat [op](jkm) as an 81 vector, while the superscript [-]* indicates that
this vector is the eigenvector corresponding to the eigenvalue A*. The eigenvalues
of the Peach-Koehler DF¥ for an arbitrary ) s 0 introduced in the previous section
are computed numerically using Mathematica® 5.0 to give 54 positive reals and
27 zeros.

In general, the task of finding all the eigenvalues of an 81 x 81 matrix with 15
parameters can be daunting.® If one randomly assigns values into each parameter
and finds the eigenvalues numerically, one would discovers that there will almost

always be at least 27 zero eigenvalues.® The reason for this lies in the symmetry

SThere is perhaps an easier method to ensure whether or not a Hermitian
matrix A is positive semidefinite. A set of necessary and sufficient conditions for
a quadratic form (x, Ax) to be positive semidefinite is if all the principal minors
in the top-left corner of A are non-negative, in other words

A A All A12 A13
Ay >0, o2 >, Ay Apm Ax|>0, ... [60,61]. (4.32)
A21 A22
Az Az As

With this method, we still need to solve, at best, a system of 54 inequalities. (See
the discussion that follows.)
6 Additional symmetries can result in more zero eigenvalues, e.g., when one or
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of stress field o. The 27 zeros represent the unphysical antisymmetric piece of o
which naturally gets projected away. Out of the nine elements, only six of these
are independent. Therefore one can reduce the representation of the product o ® p
as a 54 vector instead of an 81 vector. This means that the actual independent

representation is a 54 x 54 matrix, which in general gives 54 distinct eigenvalues.

4.2 Stress-free dislocation densities

A crucial aspect of dislocation evolution, and a key prediction of our dynamical
theory, is the formation of grain boundaries and cell walls. Microscopically, the
anisotropic, long-range interaction between dislocations can be minimized and
screened by the arrangement of dislocation lines into walls. A flat grain boundary
will be stress-free at long distances if it satisfies the Frank condition. A general

stress-free wall in our notation has
plsJF = [einj - gknk(si]'] 5(nm(xm - Am)) (433)

This is a boundary that is perpendicular to n (lying along n- (x — A) = 0) with
grain misorientation @ (rotating around by a small angle |@|). The derivation is
given in section 5.4.

Microscopically, ‘these ideal walls have a stress field which decays exponentially
with distance away from the wall (reminiscent of the Meissner effect [62]), with a
characteristic decay length that is roughly the spacing d between the dislocations
composing the wall. To see this, consider the energy of a single edge dislocation
per unit length [63]

Gb? T
E = 471_(1—_1/5 ln(g) + Be , (434)

more of the 15 parameters are zero. The chance of this to happen is infinitesimal
provided that the parameters are chosen completely at random.
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where G is the shear modulus, b is the magnitude of the Burgers vector of the
dislocation, v is Poisson’s ratio, r is the distance to which the elastic distortion
produced by the dislocation reaches, and B, is the core energy of the edge dislo-
cation. When a dislocation lies in an array forming a boundary, the elastic strain
vanishes exponentially at distances greater than the separation d between similar
dislocations in the boundary, so 7 ~ d. The relation between the orientation dif-
ference 6 of the two crystals and the number of dislocations per unit length can be

determined geometrically (see figure 4.1):
sin f ~ % (4.35)

(This is the Frank condition in disguise.) Therefore the interface energy per unit

area is

1 Gb 1 6
y = =L = — - —~Dg = E — , .
Epary dE (1= 1) ln(9> + bB 00(A —1In6) (4.36)

where Ey = Gb/(4n(1 — v)) and A = 4n(1 — v)B,/Gb?. The same equation holds

for a twist boundary but with Ey = Gb/2m and A = 27 B,/Gb?. Therefore
Ebdry ~ —b6 ln(0/00) (4.37)

where 6, can be used to incorporate the core energy of the dislocations. This strain
energy vanishes in our continuum limit where b — 0 and d — 0 in such a way that
b/d ~ 6 stays fixed.

Hence, it is not energetically favorable for a wall to be sharp within our contin-
uum theory. A continuous superposition of low angle boundaries wall is as good
a candidate to be a cell wall or a grain boundary as a sharp wall. Blurry walls,
however, are not observed in our simulations. The mechanism which is responsible
for the sharp feature of walls therefore cannot be energetics. The reason turns

out to lie in the nonlinear nature of our evolution law. The analysis of why sharp
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cellular/grain walls form is one of the key results of our theory and is the subject

of discussion in chapter 6.

g

el

l
| I 17

Figure 4.1: Two patches of crystal one tilted with an angle § with respect to
the other are joined together by a parallel set of edge dislocations

making a tilt boundary.

In this section, we show that any stress-free state can be written as a super-
position of flat cell walls. Every cell wall or grain boundary can be decomposed
into two types: tilt and twist boundaries [64]. A simple tilt boundary is one at
which the orientation difference between the two crystals, one on either side of

the boundary, is equal to a rotation about an axis which lies in the plane of the
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boundary. This can be constructed from a series of regularly spaced parallel edge

dislocations because in every row above each dislocation line, there must be one

more atom than the row below it.
Y
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(a) (b)

Figure 4.2: (a) A simple shear due to one parallel set of screw dislocations.
(b) A twist boundary is formed from two parallel sets of screw

dislocations making a 90° angle relative to one another.

A set of parallel screw dislocations (figure 4.2(a)) produces shear in the position
XY ZX' relative to XY'Z'X'. To cancel the effect of this shear, another set of
parallel screw dislocations at right angles to the first set is needed (figure 4.2(b)).
This results in a net rotation where the axis of rotation is perpendicular to the
common plane shared by the two crystals. This type of boundary is called a twist

boundary.

4.2.1 Basis tensors for the stress-free dislocation state

From the previous section we observe that a stress-free dislocation configuration
is a stationary-state solution to the evolution equation. Therefore it is interest-

ing to systematically write out all possible stationary solutions. This problem is
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equivalent to finding all the basis matrices that span the null space of operator K
in
Gap(k) = Kapu () (K), (3.3)

where

ipk 2e kok
Ko‘ﬂ“"(k) = _—ﬁl €7V€!6ﬂ# + E'YUﬂ(Sa/J + ﬁ (—Z_Qé ~0Oag || -
The solution also has to satisfy the continuity of the dislocation lines, which in

Fourier space looks like

The easiest way is to write out the system of equations which incorporate both
setting KijxmPrm = 0 and ik;p;; = 0.

Component-wise, the solutions are

- ky . k.. -~ ky . k. . ky - ky
Pzz = —kf;pyz - ATy‘sza Py = _szpmz - kTypzy’ Pzz = _k_szz - k_zpyz’

~ ky . -~ ke ~ ke .
= —p , = — , p = — . 439
Pzy k. zz Pyz k. Pyz 2z ky Pzy ( )
The matrix K’, whose null space gives a complete collection of stress-free dis-

location states, is formed by arbitrary substitutions of values into P, py., and

Pzy-
k k
/10000—”0—"0\
k, k,
00E0100E0
k, k,
k k
00 = 00 X 0 0 1
K = ’v;é k. (4.40)
01 -200 0 0 0 O
k, .
00010—k—"000
: k
\0000001——}0/
}"y
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The nine numbers in each line represent the nine components of a 3 X 3 tensor.
With the explicit form of K’, getting its null space is an exercise in linear algebra.
Since any given p has nine components, and only six constraints, three basis tensors

are expected . We label them E*, EY and E*.

0 ik, ks ik, 0 0 ik 0 0
E=|0 —ik, 0 [ E'=|4k 0 ik |- E'=| 0 -ik 0
0 0 ik 0 0 —ik, ik, ik, 0
(4.41)
Or simply:
Ej = —ikabi; + tkjbia = iKi€itmEjam (4.42)

Direct substitutions of the form of E* in place of p show that (3.3’) and (4.38) are
simultaneously satisfied for all values of a. The reason for including the imaginary

number 7 into the expression for E® is a matter of convention and convenience.

4.2.2 Decompositions of a stress free state

These three basis tensors naturally give rise to the two types of cell wall struc-
tures discussed earlier. As an example, consider a tilt boundary in the z-y plane
constructed from a set of parallel dislocation lines pointing along the % direction
with the Burgers vector b pointing along the Z direction. The number of disloca-
tion lines per unit length is denoted by n. To make a plane in real space, we need

two d-functions in Fourier space. The boundary can be written as

001

i nb -

P = == 0(kz)(ky) B” =nbd(k:)3(ky) [0 0 0 |- (4.43)
000
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Another example, a twist boundary in the z-y plane generated by two sets of
parallel dislocations oriented perpendicular to one another, one pointing in the X

direction while another pointing in the ¥ direction can be written simply as

100
wis nb 2
5 tz_{lgé(kZ)é(ky)E =nbd(k:)0(ky) [0 1 01,
0 00
(4.44)
1 1 0 0

=nbd(k)o(ky) [lo|®|o]|+]1|®]1

The fact that one needs two perpendicular sets of parallel dislocations comes out
naturally in this formulation. Because the number densities of the screw disloca-
tions are the same in both directions, n here denotes the number density in one of
the two directions.

Utilizing the three basis matrices derived in the previous section, it is possible
to write down any type of grain boundary as a superposition of the two or more
types of fundamental boundaries (twist and tilt) rotated and translated by some
specific amounts. The most general form of a stress-free boundary can be written

as follows,

(R;} kp)6(Ry k)
iRk,

5 .
PPk, w,Q, A] = (2r)? wn B e A (4.45)

where
R7'Q = (0,¢)] = [Ra(6) - Ry(-0)]""
cos(8) cos(¢) cos(6)sin(¢) — sin(8)

= —~ sin(¢) cos(¢) 0
sin(f) cos(¢) sin(f)sin(¢) cos(f)

(4.46)
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is the inverse of a three-dimensional rotation obtained by first rotating about y-
axis by —#, then about Z by ¢. 6 and ¢ define a unit vector i normal to the
plane of the boundary. The angle 6 is measured with respect to z, while ¢ is
the angle between X and the projection of i onto the z-y plane. The boundary
separates two grains where their relative rotation is defined by w whose magnitude
expresses the amount by which one is rotated with respect to the other. A is the
vector pointing from the origin to the plane of the boundary perpendicularly. The
connection between our formulation with the well-established Frank condition of

a general five-parameter grain boundary shall be discussed in section 5.4.

">

Figure 4.3: A general grain boundary whose normal is i positioned at the
distance A away from the origin separates two unstrained regions

with a relative orientation defined by w.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To take this one step further, since it is possible to decompose any stress-free
state into a linear combination of the tensor E%, it should also be possible to write

a stress-free state as a superposition of flat cell walls.

Theorem 1 Any stress-free state p° can be written as a superposition of flat cell

walls. Or more precisely,

Pl (k) = A'(k)E}; = /_c:dA /dQ/dSw (alk,w, 2, A] - 558k, w, Q, A]),
(4.47)

where P3P is as previously defined, and

z'wl ~|w)?

a[k,w,Q, A] = We

y /_ " ak K3RL[{K' sin(6) cos(¢), k' sin(9) sin(), k' cos(9)}] X2, (4.48)

To get a general stress-free dislocation distribution, one needs to integrate over the
five degrees of freedom, plus the position of each grain component. An interested
reader can see the proof of the theorem and some examples in appendix E. One
can group the coefficients in front of each E‘ in the decomposition to form a vector
Al(k) which turns out to be a valid vector field (i.e. A transforms like a vector).
This vector will play a special role in determining the grain orientation inside each

cell.

4.2.3 What is A?

In this section we first show that the vector field A(x) introduced in the pre-
vious section is precisely the Rodrigues vector field giving the rotation matrix
that describes the local orientation of the crystalline axes at position x. Then we

develop an analytical approach to extract the local orientation A(k) from p(k),
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which is exact for stress-free dislocation fields pSF and serves to define the local
orientation field for general p. Finally the real-space formule for A in terms of p
and the plastic distortion tensor BF are derived.

To understand the meaning of A in real space, let’s first determine the corre-

sponding ACB of a general grain boundary p®B. To do so, we follow these steps:

y 5. (k) = ALEL z
pis(r) = Fy(k) = Ky = A(r) (4.49)

The volume integration over all k-space is readily reduced to a one-dimensional
integral due to the presence of two §-functions. The last integral can be evaluated
by integrating around a semi-circular contour in the upper complex plane, resulting

in the identity,

o GiAk:
/ dk, = im sign[A4], (4.50)

o K

where sign[A] is the sign of A. Essentially,
ACB — %sign[r‘p (r—A)w. (4.51)

Again 1 is the vector normal to the plane. Due to the sign[-] function, A®® flips
its sign across the cell boundary.
In general A(x) provides the information about the local crystal orientation at

point x relative to the global fixed orientation.

Theorem 2 The direction of A gives the azis of rotation of the local crystal ori-
entation with respect to a fized global coordinates by the amount provided by its

magnitude.

In other words, the Rodrigues vector A(x) describes the local crystal orientations
due to the presence of the stress-free dislocation density field pSF. To see this, note
that

A = ROB® = ik K, — bijikhn, (4.52)
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which, in real space, corresponds to
pu = 0;\; — 6ijOmAm . (4.53)

According to the discussion in section 2.1, together with the definition of the
lattice curvature tensor x;; = 0¢;/0x;, where ¢ gives the local lattice orientation,

equation 2.5 becomes
Pij = Kij = Oijfimm = 0j¢i — 0ijOmdm . (4.54)

Thus, we can identify A with the Rodrigues vector describing the local orientations.

The decomposition of 25 = K"‘Eg is somewhat different from the problem of
breaking up a vector into projections on various basis vectors. The main distinction
lies in the fact that the three Ef}’s are not orthogonal to one another. One common
method that has been used to perform such decomposition is to find a minimization

of the square of the difference between the actual ;; and the decomposition A EZ.

Let’s define
~ 2
=3 (5’5_71“ _ AaEf"j) : (4.55)
ij
Then the minimization occurs when the derivative with respect to the component
A? is zero:
_of
OAP
0
= —= AaEa>
aAﬁ - (pz]
(4.56)
I Ao
= —28}, (3 - k°E3)
ES T = Ef ES A
z} j Hij
Mag
Or,
A* = M7} ELB, (4.57)
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where

K2 =2k ok, gk,

M-l

a= 2k4 ——(kaks — 2k20ap) =

1
5o | keky K226 Rk, |
kok,  kyk, k2 —2K?

and k2 = |k[2.

It is possible to directly compute A in real space. From

Al = M3 E] 5ok

mnpmn

[kik; — 2k26,5] [—ik;Omn + iknbim] o

2k4
%4 [ikikmbky + 26k%ki6mn — 2ik%Kknbim) P (4.58)
i [kikmkn

= ) [—W‘ + kibmn — kn5im] ﬁfnliz

The expression of the Rodrigues vector A in real space, therefore, is

a/pSF(x ( I) 3 /
- / Px (4.59)

x - X’I

Since all of our simulations are performed using the plastic distortion field, it is

natural to express A in terms of this field. According to pi; = —€um0i0m;,
i 1 ﬁrljm I)
N (%) = = [eipmOpOn ~ EpmnDiGy / ] d*x’. (4.60)

In principle, we can use the above expression for A(x) corresponding to the rotation
matrix R(x) that best describes (in a least-squares sense) the misorientations
developed by the dislocation density p(x). Therefore equation 4.59 can be used
to extract the information about the misorientation angle distribution, the wall

positions, and hence the grain and cell size distributions [16].
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CHAPTER 5
CONNECTIONS WITH CONVENTIONAL PLASTICITY
THEORIES

We begin this chapter by giving a broad overview of previous work on contin-
uum dislocations. We shall draw direct connections between our theory and these

earlier approaches in the remaining of the chapter.

5.1 Previous work and related approaches

Under loading and unloading, certain features are similar for all materials.
Depending on the loading condition, the response may be classified roughly into
five categories: elastic, plastic, viscoelastic, viscoplastic, and fracture [65]. The
response is called linear elastic if upon loading and unloading, stress associated
with the processes fnoves along a straight-line path. As further load is applied
until reaching a sufficiently large value, the stress-strain curve becomes nonlinear.

If the unloading process is nonlinear but reversible, i.e., the loading and unload-
ing paths coincide, the process is called nonlinear elastic. Reversible nonlinearities
are small for most crystalline materials; plastic deformation usually arises when
the strains are on the order of 1%. A material whose unloading path does not
follow the loading path is called an inelastic material. If the unloading path does
not take the state back to the original unstrained state, the response is called
plastic. Some material response changes with time under the unloading process.
Upon load removal, a viscoelastic material will travel along a path, different from
the one under loading process, that returns the state to its previously unstrained

state. The response for a viscoplastic material also changes with time under un-
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loading. However, after complete unloading, some permanent strain will remain
and the material state will not return to the original one.

In this work, we focus only on the plastic responses that are independent of
time upon load removal. In a uniaxial tension test, sometimes the transition from
linear elastic to plastic response is abrupt; a kink can be observed in the stress-
strain curve. The stress at which the kink occurs is called yield stress oy. After the
yield point if the stress remains constant with increasing strain, the material is said
to be perfectly elasto-plastic. Most structural metals exhibit hardening behavior.
After the initial yield point, the stress continues to increase with increasing strain,
although usually at a slower rate than in the elastic region. Upon unloading, the
material becomes again elastic and follows a new stress-strain curve. The yield
point also moves to the unloading point which is now at the highest point of the
curve. The point will continue to move to higher strains as the applied stress
exceeds the current yield point.

The study of dislocation pattern formation in metals has been subject to con-
siderable theoretical and numerical investigations in the field of mesoscale plas-
ticity. Several models have been proposed to describe their origins. The discrete
dislocation approaches [66, 67, 68, 69, 70, 5] have been very useful in providing
insights into the formation processes despite the computational limitations due to
the enormous number of dislocation segments in a typical physical system and the
long-range nature of the dislocation-dislocation interaction. Alternatively, many
continuum approaches have been devised to bypass this difficulty.

Traditional engineering plasticity often makes use of the simple von Mises law,
which presumes an elastic response when a yield stress oy is reached, after which

the distortion tensor evolves according to the local deviatoric stress (stress with
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the isotropic pressure removed). There are many variants of this formulation, with
different rules of work hardening giving shapes and evolution laws for the yield
surface. The yield surface from our point of view is an emergent property, arising
on macroscales from the complexities of grain boundaries, cellular structures, and
dislocation tangles that we wish to describe on the mesoscale.

There are generalizations of the von Mises approach which incorporate correc-
tions due to gradients in the local distortion tensor. These gradients are precisely
our p;;, here called the density of geometrically necessary dislocations. These gen-
eralizations have grown out of early work on size-dependent hardness [71] and dis-
location patterns [72, 73, 51, 52]. One key feature needed in these strain-gradient
theories is a new length scale, typically much larger than atomic scales. Much
progress has been made in this community in finding alternative explanations for
the size-dependence of hardening and the origin of these new mesoscopic length
scales. Our more microscopic theory should allow us to explore some of the pro-
posed mechanisms, and the intriguing possible relations to the mesoscale cellular
dislocation structures.

There are a variety of reaction—diffusion models which have been used to de-
scribe the widths of persistent slip bands and other dislocation patterns [72, 73,
51, 52], cellular structures [74, 75], double cross-slip [76], dislocation vein struc-
tures [77], and many other effects [78]. These models typically use scalar order
parameters to describe mobile and immobile dislocation segment densities. By
ignoring the tensor structure of the dislocation density, they both lose the ability
to predict the rotational and deformation morphology and they lose the connec-
tion between the microscopic Peach-Koehler forces and the continuum dynamics.

Finally, these theories do not show the sharp wall formation seen in our approach
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(figures 7.1, 7.2, and 7.3 in section 7.1). Sethna et al. also had investigated a scalar
theory of plasticity [79], which produced a three-dimensional Burgers equation that
did form sharp walls (and phenomenologically described work hardening as well);
we have moved on to the tensor approaches precisely to regain the predictive power
and the connection to the microscopics.

There are a number of recent re-examinations of plasticity using rather different
approaches. Langer and Falk’s shear-transformation-zone theories of plasticity in
metallic glasses [80, 81] note that the deformation in these amorphous systems is
not mediated by dislocation line motion, but rather by localized rearrangements
of atoms (with suggestive links to the two-level systems in the low temperature
theory of glasses); recent work [82] suggests that these rearrangements are spatially
extended, with avalanche-like fractal properties. Plastic flow in metallic glasses
shows shear banding and work softening, and does not exhibit the work hardening
(due presumably to dislocation entanglement) seen in crystalline metals. Ortiz’s
analogies between plasticity pattern formation and patterns formed in non-convex
energy minimization for martensitic and magnetic systems [83] incorporate the
full three-dimensional structures of the theory, but rest upon a variational ansatz
and are not expressible in terms of evolution laws writable as partial differential
equations evolving in time.

Several groups have used Landau-like expansions to expand the most general
theory allowed by symmetry within a given framework in powers of the order
parameter. Fleck and Hutchinson’s strain gradient plasticity {71] does so within a
yield-surface approach. As mentioned earlier, our group [79] systematically found
the most general evolution law for a scalar order parameter consistent with rate-

independent plasticity, yielding a 3D Burgers equation. In this earlier theory, the
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formation of sharp walls was the onset of irreversibility and defined the yield stress.
Rickman and Vinals [58], within a tensor theory, write the most general climb-
free evolution law for J allowed by symmetry to linear order in p (similar to our
equation 4.8 below). Since the stress field is linear in p, this roughly corresponds to
von Mises’ plasticity; in both cases one gets the (microscopically unintuitive) result
that the dislocation current J is independent of the local net density of dislocations.
On macroscopic scales where most of the dislocations are geometrically unnecessary
(canceling out in p) this assumption is not a serious approximation, but on the
mesoscale (where the dislocation density tensor is needed) we ought to attach
dislocation flow to existing geometrically necessary dislocations.

Groma and collaborators [33, 34] use a similar approach to study plastic de-
formation in two dimensions with only one slip system (i.e., allowing only parallel
edge dislocations with one direction of Burgers vector, leading to scalar order pa-
rameters). They do a closure-like factorization of a two-point dislocation density
correlation function which leads to a theory with one fewer factor of p in the evo-
lution law than our equation has. While we cannot generalize their approach to
the three-dimensional tensor theory, we can reproduce their continuum theory by
choosing C(p) = Co/+/tr(pTp) (section 4.1.3) and specializing to two dimensions
and one slip system (section 5.3). On the one hand, we have checked that all of
the wall-singularity formation we describe here persists for this alternative choice
for C(p). On the other hand, we find that no wall singularities form when we
specialize to Groma’s glide-only slip system: their special case happens to miss
the cell-wall physics we describe here. Instead of sharp walls corresponding to
jump singularities in BF, we see formation of cusps (see chapter 7). When we

include climb for Groma’s system, our simulation develops parallel walls of dislo-
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cations reminiscent of those seen in discrete dislocation dynamics simulations [5],
with spacing comparable to our lattice cutoff.! El-Azab [37] provides a different
three-dimensional multiple-slip generalization of Groma’s approach, retaining the
densities on different slip systems as independent order parameters and incorpo-
rating the momentum field corresponding to the moving dislocations (where our
theory is overdamped). El-Azab’s approach has not been implemented numeri-
cally, and the question of wall formation in his approach has not been explored.
Mika and Dawson [29, 84, 26] keep dislocation densities on multiple slip systems,
where the dependence of one slip system strength depends upon the others: their
simulations show misorientation distributions between finite elements which scale
as do those of experimental cell walls [29]. The relatively sharp walls in these last
simulations was one of the motivations for our analytically more tractable model.

A community of researchers, growing out of pre-computer work by Taylor [31],
simulate plastic flow in crystals using separate scalars 7(®) representing the net
slip on each slip system. These simulations have been used to study texture (grain
orientation distribution) evolution in polycrystal plasticity and the evolution of
subgrain structures, either for their own sake [29, 26, 84, 24, 25, 28] or as a pre-
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