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Mesoscale Theory of Grains and Cells: Crystal Plasticity and Coarsening
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Crystals with spatial variations in their axes naturally evolve into cells or grains separated by sharp
walls. At high temperatures, polycrystalline grains form from the melt and coarsen with time: the
dislocations can both climb and glide. At low temperatures under shear the dislocations (which allow only
glide) form into cell structures. We present here a mesoscale theory of dislocation motion. It provides a
quantitative description of deformation and rotation, grounded in a microscopic order parameter field
exhibiting the topologically conserved quantities. The topological current of the Nye dislocation density
tensor is derived from a microscopic theory of glide driven by Peach-Koehler forces between dislocations
using a simple closure approximation. The resulting theory is shown to form sharp dislocation walls in
finite time, both with and without dislocation climb.
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Crystals, when formed or deformed, relax by developing
walls. Common metals (coins, silverware) are polycrystal-
line: the atoms locally arrange into grains each with a
specific crystalline lattice orientation, separated by sharp,
flat walls called grain boundaries. When metals are de-
formed (pounded or permanently bent) new cell walls form
inside each grain [1–3]. Until now, our only convincing
understanding of why crystals form walls has been detailed
and microscopic. Our new theory provides an elegant,
continuum description of cell wall formation as the devel-
opment of a shock front—a phenomenon hitherto associ-
ated with traffic jams and sonic booms.

Continuum theories of dislocation dynamics are not new
[4–7]. Various approaches have been used to study dis-
location pattern formation. Simplified diffusion models
have been used to describe persistent slip bands [8], dis-
location cell structures during multiple slip [9], and dis-
location vein structures [10]. Models similar in spirit to
ours have recently been analyzed both for single slip [11–
13] and in three dimensions [14]. None of these approaches
have yielded the sharp, wall-like singularities character-
istic of grain boundaries and deformation-induced cell
structures (see, however, [15]).

Continuum plasticity theory, as used in practical engi-
neering codes, describes the deformation gradient (@iuj,
for displacement field u) as the sum @iuj � �E

ij � �
P
ij of an

elastic, reversible distortion �E and a permanent plastic
distortion �P. The plastic distortion involves the creation of
microscopic dislocations and cannot be written as a gra-
dient of a single-valued displacement field. Integrating
around a loop L enclosing a surface S, the change in
such a hypothetical plastic distortion field �uP can be
written using the Stokes theorem as
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where the Nye dislocation density tensor
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measures the net flux of dislocations �, tangent to t, with
Burgers vector b, in the (coarse-grained) neighborhood of
x. The microscopic statement that dislocations cannot end
implies @i�ij � 0, so the time evolution must be given in
terms of a current [6,7,16] J: @�ij=@t � �"ilm@Jmj=@xl.
From Eq. (2) we see that [17]

Jij � @�P
ij=@t: (3)

Thus the natural physicist’s order parameter (the topo-
logically conserved dislocation density �) is a curl of the
common engineering state variable (the plastic distortion
field �P). The focus of our Letter will be the derivation of
an evolution law (3) appropriate for scales large compared
to the atoms but small compared to the cell structures and
grain boundaries.

Notice that we consider only the net density of disloca-
tions. We ignore the geometrically unnecessary disloca-
tions (those with opposing Burgers vectors which cancel
out in the net dislocation density) because they do not
affect the long-range strain fields or the misorientations
at grain boundaries and cell walls. Macroscopically they
are known to dominate dislocation entanglement and work
hardening, and are included in previous continuum theories
of plasticity [8,11–13,18,19]. Much of the macroscopic
cancellation in net dislocation density comes from the
near alternation of the net rotations in the series of cell
walls [20]. Our focus on the subcellular, subgrain length
scales and our current omission of dislocation tangling
make keeping only the net dislocation density natural for
our purposes. We also do not explicitly incorporate a yield
surface, because we hope eventually to explain work hard-
ening and yield surfaces as properties which emerge from
the intermediate length-scale theory.

We motivate our evolution law from the microscopic
Peach-Koehler force on a section of a dislocation line due
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to the stress field � present at that point: fPK
i �

�"ijktjbl�kl. The current J of a single dislocation moving
with velocity v is Jij � "ilmtlbjvm����. If we treat dislo-
cation glide and climb on an equal footing (a crude model
for metals at high temperatures), the dislocation will move
in the direction of the applied force v / fPK. For a single
dislocation, tuning the climb component with a parameter
�, we find

Jij � D
�
"ilmtlbj"mpq�prtqbr����

�
�
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Here D is a materials constant with units of �length�2�
�time�=�mass� giving the mobility of dislocation glide. At
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� � 0, climb and glide have equal mobilities, and at � �
1, J is traceless and hence only glide is allowed. Coarse
graining over many dislocations,

Jij � Dijkmpqrs�pq�
�4�
kmrs; (5)

where Dijkmpqrs � D=2��iq�jm�kr�ps � �ir�jm�kq�ps �
�=3��ij�mq�kr�ps � �ij�mr�kq�ps��, is an eighth rank iso-

tropic tensor specific to Peach-Koehler model, and ��4�kmrs is
a higher order Nye dislocation tensor. Thus that the evo-
lution of � depends upon the new object ��4�.

We now need to perform a closure approximation, writ-
ing ��4� in terms of � (as in Hartree-Fock and in theories of
turbulence). The only choice ��4� ! � 	 � that guarantees
a decrease of elastic energy with time [21] is
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where C has units of distance. The resulting evolution law
for the plastic distortion tensor is
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where � is a curl of �P [Eq. (2)], and the stress� (due to the
long-range fields of the other dislocations) is written in
Fourier space as [22]
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For simplicity, we present solutions to our three-
dimensional theory for the special case of systems where
the dislocation density varies only along one and two
dimensions. In one dimension with variations only along
ẑ, our theory becomes local, with stress
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Nye dislocation tensor
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P
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and evolution law
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Interestingly, w��P� is the linear elastic energy density of
the system, the effective force F��P� is proportional to the
z component of the Peach-Koehler force, and the rate of
change of the elastic energy density is simply�F2��P� (so
the energy decreasing condition is explicit).

Our equation for �P in one dimension is hyperbolic: the
method of characteristics may be applied, where the char-
acteristics are the parametrized curves �t�s�; z�s�� with
dt=ds � 1, dz=ds � F��P�. Along these curves,
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implying ([from Eq. (11)] that �P is constant along the
characteristics. As with many hyperbolic systems, we ob-
serve shock formulation in finite time. Our analytic analy-
sis of the shock asymptotics (in preparation) exhibits the
jump in �P, wall in �, and stress jump described numeri-
cally below, with a 1=

��
t
p

time dependence for the surround-
ing continuum �P.

We simulate systems of spatial extent L in one or two
dimensions, with periodic boundary conditions and no
external stress. The initial plastic distortion field �P is a
Gaussian random field with mean-square amplitude �P

0 and
root-mean-square decay length approximately L=16. In
one dimension, we use the upwind scheme [23] as imple-
mented by Press et al. [24]. In two dimensions, we calcu-
late � using Fourier methods and regularize our equations
by adding a fourth-order numerical viscosity �Kr4�P

ij to
Eq. (7). (A second-order viscosity r2�P

ij was not as suc-
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cessful in suppressing the instabilities.) In one dimension,
we have checked that the upwind scheme produces the
same solution as the viscosity regularization. Unlike shock
waves in fluids, where conservation laws tell us that the
upwind or viscosity solution is the correct one, here the
dynamics of the walls is not determined by the continuum
theory. (We speculate that the wall dynamics regularization
may be nontrivial and stochastic, emerging out of ava-
lanches and critical depinning phenomena on subcell
length scales—observed both experimentally [25] and
theoretically [26] in systems with only one active slip
system.)

Figure 1 shows the final state of the plastic distortion �P

in a one-dimensional system evolving under dislocation
glide only (corresponding to plastic deformation, which
experimentally leads to cell structure formation). Jump
singularities in �P form after a short time, representing a
wall of dislocations and an abrupt change in lattice orien-
tation. The cell walls in our model are not grain bounda-
ries, because they do not correspond to pure, simple
rotations (they do not satisfy the Frank conditions [27]).
There is a jump in the stress across each cell wall: the glide
component of the forces from the two neighboring cells on
� in a wall is equal, opposite, and compressive. Our model
therefore predicts that the initial formation of cell walls
during low-temperature plastic deformation is driven by a
stress jump due to noncancellation of the stress field of the
constituent dislocations. As our system evolves, new cell
walls form (intriguingly similar to the cell refinement seen
experimentally [28,29]) and the existing cell walls evolve
to reduce their stress jumps.

Figure 2 shows the evolution of the plastic distortion in a
system allowing both glide and climb, corresponding to
high-temperature annealing of a plastically deformed
structure. Here the initial singularities again are not grain
boundaries, but walls of dislocations with net stress jumps.
These walls then move and coalesce in response to the net
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FIG. 1 (color online). Plastic distortion tensor component �P
ij

in one dimension allowing only glide motion, after time t �
20L2=D�, with 2048 mesh points. The shocks or jumps in the
values correspond to the cell walls. A stress-free wall (satisfying
the Frank conditions) here would have no jump in �P
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P
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force due to other dislocations, coarsening the resulting
grain boundary structure.

Figure 3 shows the final state of �P in a two-dimensional
plasticity simulation (with glide and not climb). Notice the
formation of sharp walls (mathematically demonstrated
above only in one dimension). These walls separate rela-
tively unstrained regions which we identify with the cells
formed during plastic deformation. As in the one-
dimensional simulations, the cell walls formed at short
times have stress jumps.

Generically we expect our model to form sharp walls in
finite time. Special initial conditions, however, may not
form walls. Indeed, the case of a single-slip system does
not form singularities within our model—perhaps explain-
ing why cell wall formation is not observed in stage I
hardening or in dislocation-dynamics studies of single
slip in two dimensions otherwise similar to our approach
[11–13].

Our dislocation-dynamics theory is minimalist: it
ignores many features (geometrically unnecessary disloca-
tions [11], slip systems [30], dislocation tangling, yield
surfaces, nucleation of new dislocations, etc.) that are
known to be macroscopically important in real materials.
It does incorporate cleanly and microscopically the topo-
logical constraints, long-range forces, and energetics driv-
ing the dislocation dynamics. As hypothesized by the low-
energy dislocation structures approach [31,32], we find
that a dynamics driven by minimizing energy (omitting
tangling and nucleation) still produces cell boundary struc-
tures. Finally our theory, to our surprise, initially forms
sharp walls that are not the usual zero-stress grain
boundaries.

In condensed-matter physics, crystals are anomalous.
Most phases (liquid crystals, superfluids, superconductors,
magnets, etc.) respond smoothly in space when strained.
Crystals, when rotationally strained, form sharp walls sep-
arating cells or grains. Our analysis suggests that the for-
mation of these walls can be understood as a shock
formation in the dislocation dynamics.
FIG. 2 (color online). The xz component of the plastic dis-
tortion tensor in one dimension up to time t � 22L2=D�, with
2048 mesh points. The evolution allows both glide and climb
motions. The walls move and coalesce until only a single wall
survives.
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FIG. 3 (color online). The yz component of the plastic dis-
tortion tensor allowing only glide, in two dimensions after time
t � 9:15L2=D�.
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