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ABSTRACT 

We study the growth ("coarsening") of domains following a quench in an Ising model 
with weak next nearest-neighbor antiferromagnetic (AFM) bonds and single-spin-flip dynam- 
ics. The AFM bonds introduce free energy barriers to coarsening and thus greatly slow the 
dynamics. In three dimensions, simple physical arguments suggest that the barriers are propor- 
tional to the characteristic length scale Lit) for quenches below the corner rounding transition 
temperature TcR. This should lead to Lit) ~ log(t) at long times t. Monte Carlo simulations 
provide strong support for this claim. 

We also predict logarithmic growth in a purely two-dimensional tiling model, which 
can be thought of as describing a single interface in our three-dimensional model viewed from 
the [111] direction. Here, the slow coarsening dynamics should persist all the way up to the 
order-disorder transition (at. To'R). However, if the model is cooled slowly at a rate F, the final 
length scale should have power-law, not logarithmic, dependence on 1/F. Simulations support 
both of these claims. 

INTRODUCTION 

When a system is quenched from high temperatures to a temperature below the order- 
disorder transition, domains form and coarsen. Of particular interest is how the characteristic 
length scale Lit) grows with time t at long times. 

Historically, there have been some theoretical predictions that certain systems without 
randomness in their Hamiltonians would show logarithmically slow coarsening at long times. 1 
For a while, such claims could not be disproved since the numerical evidence was ambiguous due 
to long time transients and finite-size effects. However, large Monte Carlo simulations, bolstered 
by more careful theoretical arguments, eventually showed that the long time growth in these 
models obeys the naively expected power laws: LIt) ~ ~" with n = 1/3 or 1/2 (depending on 
whether the dynamics does or does not conserve the order parameter, respectively). ~ Indeed, the 
only models known to exhibit logarithmic domain growth are those which contain randomness 
explicitly in their Hamiltonians, such as the random-field Ising model and spin glasses. 

In light of these results, there seems to be a growing belief that, for nonrandom systems 
quenched to nonzero temperature, the n = 1/3 and n = i /2  power law behavior is universal (i.e., 
independent of the details of the Hamiltonian), and even independent of the dimensionality. 
Motivated by the slow dynamics present in glasses, a we have been looking for counter examples, 
i.e., models without randomness which display logarithmically slow ordering dynamics. 4 

ARGUMENT FOR LOGARITHMICALLY SLOW GROWTH 

Consider the nearest neighbor Ising ferromagnet on a square or cubic lattice in d = 2 
or 3 dimensions, with frustration added by introducing weak next-nearest neighbor (NNN) 
antiferromagnetie (AFM) bonds. The Hamiltonian is 

H = -da E sisj + J : E  sis j ,  (1) 
NN NNN 

where si = :t:1. The first sum is over all nearest-neighbor (NN) bonds while the second is over 
all NNN bonds. We have chosen our sign convention so that both J1 and J2 are positive when 
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the NN bonds are ferromagnetic and the NNN bonds are antiferromagnetic. We will require 
that J1/J2 > 2(d - 1) so that the ground state for this model is ferromagnetic. We will study 
this tlamiltonian under single-spin-flip (i.e., nonconserved) dynamics. 

The NNN AFM bonds introduce free energy barriers to coarsening and thus greatly 
slow the dynamics (freezing the system completely at T = 0). In two dimensions, these barriers 
are independent of the characteristic length scale L(t), and thus L(t) ~ t 1/2 at long times. 4 Let 

us now study what happens in three dimensions 
by considering the time to shrink a cubic domain 
of, say, up spins in a larger sea of down spins (see 
inset of Fig. 1). The energy barrier to flip a corner 
spin (black cube) is 12J2. Once a corner flips, the 
neighboring spins along an edge (white cube) can 
flip in turn, hut there is an energy barrier of 4J2 
for each to flip. The barrier to flip the spins along 
an entire edge is then E = 4J2(L + 1), where L 
is the linear size of the domain. The time t to do 
this is given by activation over this barrier and is 
thus exponential in L: 

t -~  TO e T M  �9 (2) 

Naively inverting this equation to solve for the 
size of the smallest structure which we expect to 

F ig  1. Arrhenius plot of the remain in a coarsening system at time t, we find 

time to flip all the spins along T 
the edge of a cubic domain of L(t) ~ 7r_ log(t/ro). (a) 
size L (shown in inset). Curves 
are the theoretical forms derived This gives the expected result 5 that energy barri- 
from a low temperature expan- ers which diverge with the characteristic length 
sion, as discussed in the text. scale L(t) should lead to logarithmically slow 

coarsening. 
Of course, the above discussion is only valid in the limit T --* 0. What happens at 

nonzero temperatures where we must consider not energy barriers but, rather, free energy 
barriers? Fig. 1 shows Monte Carlo simulation results for the average time t to flip all the spins 
along the edge of a cubic domain. We see that the slope on this Arrhenius plot increases with 
domain size L, thus confirming our prediction of an activation barrier which grows with L. 

Furthermore, if we write 

t = ro(T)e F~(L'T)/T , (4) 

we can perform a low temperature expansion for both to(T) and FB(L, T). 4 The curves in Fig. 
1 show the resulting prediction, which has no free parameters and is in excellent agreement 
with the simulation results at low temperatures. 

We expect our argument for logarithmically slow coarsening to break down when the 
free energy barrier per unit length (to flip the spins along a cube edge) goes to zero. This occurs 
at the corner rounding temperature Ten, which has previously been studied in the context of 
equilibrium crystal shapes. 6 In the limit J1/J2 --* oc, Ten can be calculated exactly TM and 
yields Tcn ~ 7.11J2. 

SIMULATIONS OF THE COARSENING PROCESS 

There is still a large gap in our argument: Although we have identified a special config- 
uration in which there are energy barriers that scale with the length scale L, we have not shown 
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that during the process of coarsening the system will necessarily find itself in configurations 
in which it will have to cross these barriers in order to coarsen further. It is conceivable that 
the system could find a path through configuration space which goes around these barriers. To 
construct a proof that the barriers must be crossed is very difficult since it requires a detailed 
understanding of the spin configurations which form in a quench. Instead, we turn to numerical 
simulations of the coarsening process in order to test our conjecture. 

Fig. 2 shows the growth of L(t) following a quench from infinite temperature (a 
random spin configuration) to a final tem- 
perature T. Since this is a log-log plot, 
power law behavior would give a straight 
line. We see that as the ratio of T/J2 is 
decreased, the coarsening slows dramati- 
cally. Furthermore, at temperatures below 
TcR (for T/J2 = 2, 3, and 4), the Monte 
Carlo data show some downward curvature 
on this log-log plot at late times. [By con- 
trast, for J2 = 0 and T/J2 = 8, there is 
no downward curvature until finite-size ef- 
fects lead to a sharp leveling off of L(t) once 
it is approximately 1/3 the system size.] 
This suggests that the growth is becoming 
slower than a power law. In fact, if we re- 
plot this on a log-normal plot we find that, 

F ig  2. Growth of L(t) following a quench while there is considerable upward curva- 
from infinite temperatnre to a final tem- ture at early times, the last one to two 
perature T. Numbers in parentheses give decades of data are quite straight and thus 
system sizes, in reasonably good agreement with loga- 

rithmic growth of L(t). 4 

THE TILING MODEL 

We now briefly discuss a closely related 
model which is also expected to show logarithmic 
coarsening. This is a two-dimensional model for 
a single interface in the three-dimensional model 
as viewed from the [111] direction. If we re- 
quire that the configurations of this interface have 
no bubbles or overhangs (when viewed from this 
direction), then we obtain the so-called " [1I l l -  
restricted solid-on-solid (RSOS) model" for our 
three-dimensional model. 7 The RSOS restriction 
corresponds to taking the limit J1/J2 ~ oo in the 
3-d model. Any configuration in the RSOS model 
(of which an example is shown in Fig. 3) can be 

F ig  3. A sample configuration represented as a tiling of the plane by 600 rhombi 
for the tiling model, of three different, orientations. (The model also 

has a third representation as an Ising spin sys- 
tem on a triangular lattice. 7) 

The order-disorder transition in this model occurs at Tcn. Above Tcn, the interface 
is rough (i.e., the tiles intermingle); below Ten, the interface forms a sharp corner (i.e., the 
tiles phase separate). When the system is quenched from infinite temperature to T < Ten, we 
expect that the interface will coarsen under the dynamics, which consists of adding or removing 
cubes subject to the RSOS restriction. Since this dynamics conserves the order parameter in 
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this model, the naively-expected behavior would be L(t) ~ t 1/3. However, the mechanism 
by which the interface coarsens involves activation over precisely the same sort of barriers 
which grow with L(t) as in the three-dimensional model. Thus, the same arguments we made 
for logarithmically slow coarsening in the three-dimensional model should apply here as well. 
Simulations of the coarsening process once again lend support to this claim. 

Unlike in the three-dimensional model, here the ordering temperature and the temper- 
ature at which the dynamics becomes slow coincide. Thus, we might hope that this system 
would be glassy, i.e., that it would have great difficultly ordering even when cooled slowly at a 
rate F. Specifically, we'd want the final (T = 0) value of L to depend only logarithmically on 
the time 1/F spent cooling. We have simulated slow cooling in this model and find that this 
does not appear to be the case. Furthermore, more careful arguments suggest that we should 
expect L(T = 0) ~ F -1/4 in the limit F --* 0, which is in reasonably good agreement with 
the simulation results. 4 The reason why the dependence is a power law and not a logarithm is 
because the free energy harrier goes continuously to zero at Tcn, and thus there is a region of 
temperature just below Tcn where the barriers are small and the system can still coarsen quite 
rapidly. 

CONCLUSIONS 

We have discussed two closely related models in which we conjecture that the growth 
of the domains should be only logarithmic in time following a quench. Simulations lend strong 
support to this conjecture. However, if cooled slowly at a rate F, these models are not expected 
to order sluggishly: the final domain size has a power law, rather than a logarithmic, dependence 
on 1/F. 
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