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We study the growth (“coarsening”) of domains following a quench from infinite temperature to a
temperature 7T below the ordering transition. The model we consider is an Ising ferromagnet on a square
or cubic lattice with weak next-nearest-neighbor antiferromagnetic (AFM) bonds and single-spin-flip dy-
namics. The AFM bonds introduce free-energy barriers to coarsening and thus greatly slow the dynam-
ics. In two dimensions, the barriers are independent of the characteristic length scale L (¢), and there-
fore the long-time (t— o) growth of L (1) still obeys the standard t'/?> law. However, in three dimen-
sions, a simple physical argument suggests that for quenches below the corner-rounding transition tem-
perature, Tcr, the barriers are proportional to L (¢) and thus grow as the system coarsens. Quenches to
T < Tcg should, therefore, lead to L (t)~1n(¢) at long times. Our argument for logarithmic growth rests
on the assertion that the mechanism by which the system coarsens involves the creation of a step across
a flat interface, which below Ty costs a free energy proportional to its length. We test this assertion nu-
merically in two ways: First, we perform Monte Carlo simulations of the shrinking of a cubic domain of
up spins in a larger sea of down spins. These simulations show that, below T¢g, the time to shrink the
domain grows exponentially with the domain size L. This confirms that the free-energy barrier,
Fp(L,T), to shrinking the domain is indeed proportional to L. We find excellent agreement between our
numerical data and an approximate analytic expression for Fz(L,T). Second, to be sure that the coar-
sening system cannot somehow find paths around these barriers, we perform Monte Carlo simulations of
the coarsening process itself and find strong support for L (¢)~1In(z) at long times. Above Tcy the step
free energy vanishes and coarsening proceeds via the standard ¢'/? law. Thus, the corner-rounding tran-
sition marks the boundary between different growth laws for coarsening in much the same way that the
roughening transition separates different regimes of crystal growth. We also find logarithmic coarsening
following a quench in a two-dimensional ‘“‘tiling” system, which models the corner-rounding transition of
a [111] interface in our three-dimensional model. However, if instead of quenching, we cool the system
slowly at a constant rate T, we find the final length scale L to have a power-law dependence on 1/T, i.e,,
L~T """ in accordance with a theoretical argument. The predictions concerning the dynamics of the
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tiling model should, in principle, be experimentally testable for a [111] interface of sodium chloride.

I. INTRODUCTION

It is known that in systems with externally imposed
disorder (i.e., randomness in their Hamiltonians), the dy-
namics of ordering can be greatly slowed because of free-
energy barriers which grow with the size of the correlated
regions.">? Motivated by the slow dynamics present in
glasses (discussed in Appendix A), we have searched for
model systems in which such diverging barriers, and the
resulting slow dynamics, occur even without imposed dis-
order. We have found*® two such closely related models
which we present in this paper. In these models, the
length scale with which the barriers diverge is not, how-
ever, the equilibrium correlation length, but rather the
characteristic length scale L(t) of the domains in a coar-
sening system. By a coarsening system we mean one
which has been quenched from above to below its order-
ing transition and is thus far out of equilibrium. We will
argue that the barriers to coarsening grow linearly with
L(t), and that, as a result, L (¢) grows only logarithmical-
ly with time ¢ following a deep quench. Before introduc-
ing the first model that we study, let us review the
relevant work on coarsening.
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A. Coarsening: A brief review (Ref. 6)

When an Ising model is quenched from a temperature
well above its critical temperature, 7., to a temperature
below T., the system finds itself in a disordered
configuration at a temperature which favors ordering. At
first, local regions of a few spins order. However, since
the ground state is up-down degenerate, some local re-
gions will order up and some down. Thus, after a short
time, one has a patchwork of up and down domains.
Since there is an interfacial free-energy cost associated
with the total length (or, in three dimensions, the total
surface area) of the boundary between domains, this
patchwork will evolve over time so as to decrease the to-
tal boundary. This process by which the system orders
over larger and larger length scales is called ‘“coarsen-
ing,” although it is also commonly referred to as ‘““‘domain
growth.”

Coarsening is ubiquitous in nature. Examples include
the coarsening of foams (e.g., bubbles in the “head” of
beer), the coarsening of the grains in a metal during the
annealing process, the ordering of a binary alloy follow-
ing a quench from above to below its order-disorder tran-
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sition, and the phase separation of a binary fluid or alloy
following a quench from the one-phase to the two-phase
region of its phase diagram.

In many ways, a coarsening system at late times is
analogous to an equilibrium system near a critical point.
For example, the coarsening system can be characterized
by a single “characteristic length scale” L(¢) which gen-
erally grows with some power of the time

L(t)~t". (1.1)

Since at late times this length scale will be macroscop-
ic, one might expect that, just as in static critical phe-
nomena, the exponent n of the scaling will be indepen-
dent of certain microscopic details of the system (i.e., of
the lattice, the Hamiltonian, and the dynamics), and that
there will thus be only a few universality classes. Two
such universality classes have been delineated. The
first, with n=1, is called Lifshitz-Allen-Cahn,”® or
“curvature-driven,” growth and occurs in many systems
in which the order parameter is not conserved by the dy-
namics. Physical examples of this class include ordering
in binary alloys, grain growth in metals, and coarsening
of foams. The second, slower class, with n =§, is called
Lifshitz-Slyozov® growth, and occurs when the order pa-
rameter is conserved by the dynamics. The primary ex-
ample of this class is spinodal decomposition, the process
of phase separation in a binary fluid or alloy quenched
from its one-phase region (where the atoms mix) into the
two-phase region (where they separate). That the order
parameter in such a system must be conserved follows
from the fact that the total number of atoms or molecules
of each type is not changing with time.

Are these the only universality classes for coarsening?
An important lesson from static critical phenomena is
that universality is a subtle business. That is, not all de-
tails of the system are irrelevant, and distinguishing the
relevant from the irrelevant perturbations is not always
obvious. While it is very appealing to imagine that all
models fall into one of these two universality classes,
there is no a priori reason why we should expect this to be
the case. In fact, as we will discuss further below, it is al-
ready known that systems with imposed disorder, such as
the random-field Ising model or an Ising model with di-
lute impurities, will have logarithmically slow coarsening
(“n =07).

During the past decade, there have been various claims
that, even in certain models without randomness, coar-
sening would not obey the 7172 or '/ laws, but instead
obey L(t)~In(¢). In particular, there were claims that in
a d-dimensional system with Q >d + 1 degenerate phases
(e.g., a Q-state Potts model),”!° and in an Ising model
with spin-exchange dynamics,'! the growth of L(z) would
be logarithmic, at least at low temperatures. For a while,
these claims could not be disproved since the numerical
evidence was ambiguous due to long-time transients and
finite-size effects. In particular, the fact that domains in
these coarsening models were found to freeze entirely at
zero temperature,'? and to grow only slowly at very low
temperatures, was taken by some as support for these
claims. However, large Monte Carlo simulations, bol-
stered by more careful theoretical arguments, eventually
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showed that the long-time growth in these models obeys
the naively expected power laws,'>~!7 at least in two di-
mensions.

Two points should be drawn from this historical per-
spective. First, one must be careful when determining
the growth law numerically. The primary reason that
these controversies occurred in the first place is that nu-
merical simulations often give ambiguous results because
they are hampered by both finite-size effects and initial
transients. The former can become a problem even when
L is only a fraction of the system’s linear dimension.'*
The latter can affect results even out to quite late times,
particularly when there are energy barriers present which
cause freezing after a quench to 7'=0.

Second, the relation between such zero-temperature
freezing and logarithmic growth has been widely misun-
derstood. Originally, there was the belief that zero-
temperature freezing would imply logarithmic coarsening
at low 7. In light of the evidence showing this is not
necessarily the case, the pendulum of opinion seems to
have swung the other way, with the assumption made (at
least implicitly) that zero-temperature freezing is always
an uninteresting phenomenon.'® In fact, there seems to
be growing conviction that the standard ¢'/? and t!/*
laws will hold universally (at 7+0), independent of al-
most any details of the Hamiltonian save randomness.
This conviction has been stated, with varying degrees of
generality, by several authors.!® It is important to note,
however, that no one has demonstrated the degree to
which universality should apply. The belief that it should
apply so broadly is based mainly upon the growing num-
ber of systems in which these laws hold and the lack of
any counterexamples.

It is Lai, Mazenko, and Valls® who have stated clearly
when to expect logarithmic growth. They distinguish
four different classes of systems on the basis of how the
free-energy barriers to coarsening grow with L(¢).%° Em-
phasizing what we think is most fundamental, namely,
the differential form for the growth of L(?), we present
here (in a suitably modified form) the delineation of these
classes. For definiteness, let us consider the differential
equation for the case of curvature-driven growth:

dL _a(L,T)

—_— = 1.2

dt L (1.2
(Completely analogous arguments follow for the

Lifshitz-Slyozov case by replacing the L in the denomina-
tor by L2) The four classes can then be distinguished by
the behavior of a(L,T).

Class 1, in which a(L,T) remains nonzero as T —0,
consists of those systems which do not have energy bar-
riers to coarsening and thus coarsen even at T=0. The
canonical example is the Ising model with spin-flip dy-
namics. (This class, Lai et al. point out, is actually un-
physical since all known experimental examples of coar-
sening have elementary processes which involve activa-
tion over barriers.)

The other three classes all freeze at zero temperature
(i.e., a—0 as T—0). Class 2 consists of systems whose
energy barriers are independent of L. For example, if
there is only one such barrier height, Fp, then we can
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write a(L,T):aoe_F (Throughout this paper, we

use units such that kz =1.) Integrating Eq. (1.2) for this
case gives

5 /T

L(t)=1'L +ayt/HT), (1.3)
where 7( T)=eFB T is the characteristic time to surmount

the barriers. In such systems, coarsening will be slow,
with L(t)=L,, for times ¢ short compared to 7; however,
on time scales long compared to 7, activation over the
barriers will be common and one finds normal power-law
growth, L(t)~t!/? (albeit, with a strongly temperature-
dependent prefactor).

Class 3 and 4 systems are those in which the barriers
grow with L. Class 3 refers to the case where the barriers
grow linearly with L, while class 4 refers to the case
where they grow like L™ with m#1. Lai et al. note that
all known examples of these two classes are systems with
disorder, i.e., randomness in their Hamiltonians. An ex-
ample of a system believed to be class 3 is the random-
field Ising model, while spin glasses and the Ising model
with random quenched impurities are thought to be
class-4 syLstt;ms. For class 3, we can write a(L,T)
=age /s , where fp is a free-energy barrier per unit
length. Integrating Eq. (1.2) then leads to a complicated
expression, which at long times goes asymptotically to
the form

T
L(t)~—"1In(1) . (1.4)
fa

Likewise, for class 4, L(¢)~[In(¢)]'/™ as t — .

B. Argument for logarithmic coarsening

In this paper, we will show, by example, that there ex-
ist models without randomness in their Hamiltonians
which nonetheless have free-energy barriers that grow
with the coarsening length (i.e., are in class 3 or 4), and
thus have logarithmically slow dynamics.

1. Introduction to the model

To study the dynamics of a statistical mechanical mod-
el, we must specify two things: the Hamiltonian and the
dynamical rule for evolving the system. The bulk of this
paper (excluding Sec. IV) will consider a system whose
Hamiltonian is simply the ferromagnetic Ising model on
a square or cubic lattice in d =2 or 3 dimensions, with
dynamical frustration?! added by introducing weak next-
nearest-neighbor antiferromagnetic (AFM) bonds. The
Hamiltonian is thus

H=—J, Y s;s5;+J, 3 555, (1.5)

NN NNN
where the spins s; take on the values +1 and —1. The
first sum is over all pairs of nearest neighbors (NN) while
the second is over all pairs of next-nearest-neighbors
(NNN). We have chosen our sign convention so that
both J, and J, are positive when the NN bonds are fer-
romagnetic and the NNN bonds are antiferromagnetic.
We will require that J, /J, >2(d —1) so that the ground
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state is ferromagnetic.??

The dynamical evolution of the model will be governed
by random-updating, single-spin-flip dynamics. This
means that a spin is chosen at random and flipped with a
probability P given by

—AE/T
. (1.6)

= 1+ehAE/T ’
where AE is the change in energy that flipping this spin
would produce.?> The updating rule we use, Eq. (1.6), is
usually referred to as Glauber dynamics.?* Metropolis
dynamics? should give qualitatively similar results.

2. Expected behavior of the model
in two and three dimensions

The following simple physical argument demonstrates
that the NNN bonds introduce energy barriers to domain
coarsening. Let us consider shrinking a droplet of, say,
up spins immersed in a sea of down spins.

First, we consider a square droplet in a two-
dimensional (2D) system as shown in Fig. 1(a). For sim-
plicity, let us assume 7 <<J, so that only spin flips which
do not raise the J; energy are accepted. Without the
NNN (J,) bonds, such a square can shrink away without
the system having to cross any energy barriers, since a
corner flips for free, and then the edges can unravel for
free. (This is why a nearest-neighbor Ising model will
coarsen even at 7=0.) However, the NNN bonds intro-
duce an energy barrier of 4J, to flipping a corner spin
(shaded dark gray) since three of its four NNN spins
(those spins diagonally away from it) are pointing down.
Once the corner flips, the neighboring spins along the
edge (shaded light gray) can flip for free (and the final
spin to flip along the edge reduces the system’s energy by
4J,). Therefore, shrinking the square involves surmount-
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FIG. 1. (a) A square domain of “up” spins in a system of
“down” spins, in two dimensions. The next-nearest-neighbor
bonds introduce an energy barrier of 4J, to flipping a“co/rrner

spin (dark gray). As a result, it takes a time of order e 2 to
shrink the entire domain. (b) A cubic domain in three dimen-
sions. (Here, for clarity, most of the individual spins have not
been shown.) There is an energy barrier of 12J, to flip a corner
spin (dark gray) and a barrier of 4J, to flip each spin along the
edge (light gray). Thus, unlike in two dimensions, the total bar-
rier to flip all the spins along an edge is proportional to the
linear size, L, of the domain; and the time to shrink the domain
is now exponential in L.
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ing energy barriers of height Fz =4J,. Note that the bar-
riers to be crossed are independent of the edge length L.
For 4’5ir§1;. scales smaller than a characteristic time
T=e *°, we expect little domain coarsening to occur.
However, on time scales much longer than 7, such corner
flips occur regularly and the ¢!/ law should be observed.
(In the language of Lai, Mazenko, and Valls,? this is a
class-2 system.) Thus, although the dynamics is slowed,
the behavior of the growth law at asymptotically long
times is not changed. Because of this, the 2D case will be
of little interest to us except insofar as it provides a nice
contrast to the 3D case.?¢

In three dimensions, the argument for the energy bar-
riers to flipping a cube of linear size L, shown in Fig. 1(b),
is made analogously. The energy barrier to flip a corner
spin is now 12J, because 9 of its 12 NNN spins are point-
ing down (as can be seen by counting the number of visi-
ble edges of the corner cube). However, the important
feature which enters is that there is a barrier of 4J, to flip
each additional spin along the edge. Since to flip an en-
tire edge requires that the corner spin flip and then each
edge spin flip in turn, the barriers add and the total bar-
rier to remove an entire edge is

Fp(L)=4(L+1)J, . (1.7)

(This is simply the energy difference between the initial
state with the cubic domain and the state in which all but
one of the spins along an edge of the cube have flipped.
Once an entire edge has flipped, there are other smaller
energy barriers which must be crossed to further shrink
the cube. However, in the low-T or high-L limit, the
largest of the barriers that must be crossed in sequence
dominates the time to flip the cube.) We have already ar-
gued that barriers proportional to the length scale L(¢)
will yield logarithmically slow coarsening at long times.
A quick and dirty way toLsie)Eh/isT is to note that the time
to flip a cube is t=7ge 2"", Simply inverting this
expression® by solving for L tells us that the coarsening
length grows as

L) ~-LIn(t /ry) .

4, (1.8)

3. Outline of the paper

Our argument for logarithmic growth in the 3D model
has an appealing simplicity to it. Unfortunately, howev-
er, it is only suggestive and is far from a rigorous proof.
In Secs. II and III, we will address the two major objec-
tions which we can envision.

(1) One can challenge our assertions concerning the
barrier to shrinking a cubic domain. In particular, at
nonzero temperatures, one must consider not energy bar-
riers but, rather, free-energy barriers. The effects of en-
tropy must be accounted for. In Sec. II, we will find,
through both analytic work and simulations of shrinking
cubes, that our argument indeed breaks down above a
temperature T g, which we identify as the corner-
rounding transition temperature previously studied in the
context of equilibrium crystal shapes.?’” Only below this
temperature does the free-energy barrier to depin a step

11379

from an edge scale with the length of the edge. It is im-
portant to note that such a transition occurs only when
one has the discreteness introduced by the lattice. Con-
tinuum models will not have the pinned phase (unless
they explicitly contain a term to model this discreteness).
This is why the possibility of logarithmically slow coar-
sening is overlooked by the Lifshitz-Allen-Cahn analysis.

(2) One can challenge the claim that the barriers we
have identified to shrinking cubes imply logarithmic
coarsening. The jump in logic from Eq. (1.7) to Eq. (1.8)
is, indeed, a large gap in our argument: We have
identified a special configuration in which there are ener-
gy barriers which scale with the length scale L; however,
we have not shown that, during the process of coarsen-
ing, the system will necessarily find itself in
configurations in which it will have to cross these barriers
in order to coarsen further. It is conceivable that the sys-
tem could find a way around these barriers. To construct
a proof that the barriers must be crossed is very difficult
since it requires a detailed understanding of the spin
configurations which form in a quench. Instead, in Sec.
III, we will be content to give some brief arguments ex-
plaining why we think it is plausible that the barriers can-
not be avoided, and then ultimately, as is most common
in this field, we will perform numerical simulations of the
quench to back up our arguments.

In Sec. IV, we introduce what we dub the “tiling mod-
el.” This is a 2D model for a [111] interface in our 3D Is-
ing model. This model is itself describable as an Ising
model on a triangular lattice, but has a more compelling
visual representation as a tiling of the plane by rhombi of
three different orientations. The same basic arguments
for logarithmic coarsening should hold in this model.
The model is a bit more obscure than, but has two clear
advantages over, the 3D model. The first is that, since it
is two dimensional, we can actually look at the
configurations which the system is getting stuck in. The
second is that since the larger J, energy scale is removed
naturally by introducing a constraint on the allowed
configurations, we can simulate the system out to times
which correspond to energy barriers much larger than
any elementary (single-spin-flip) energy barriers in the
model. This makes it seem unlikely that the growth of
L(t) would resume power-law behavior at longer times.

In Sec. V, we summarize, and briefly discuss some open
questions to be pursued.

Appendix A presents a brief discussion of the slow dy-
namics in glasses, our theoretical view on the matter,??
and how this view motivated our search for logarithmic-
ally slow coarsening in systems without randomness. Ap-
pendix B gives a brief summary of how to most easily
compute the energy of configurations in our 3D model.
Appendix C contains a brief discussion on the implemen-
tation of the Monte Carlo algorithm. A discussion of the
scaling and anisotropy of the correlation function for the
coarsening simulations of Sec. III is presented in Appen-
dix D.

Finally, we note that some of the work presented here
has appeared elsewhere*® in abbreviated forms. A some-
what lengthier presentation than that given here can be
found in Ref. 29.
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II. ANALYSIS OF SHRINKING CUBES

A. Numerical simulations of shrinking squares and cubes

To investigate the free-energy barrier for shrinking
square or cubic droplets at nonzero temperatures, we
turn first to Monte Carlo simulations of this process. We
start with the less interesting, 2D case. Figure 2 shows
the results of Monte Carlo simulations for the time to
shrink a square domain. (Details of the Monte Carlo al-
gorithm are given in Appendix C.) Since this is an Ar-
rhenius plot, activation over a constant free-energy bar-
rier would give a straight line with the slope equal to the
barrier height. Indeed, the low-temperature Monte Carlo
data can be fit well to a straight line. The slope of the
data is independent of the size of the domain, implying a
free-energy barrier independent of domain size. Further-
more, the form

47,/T

t=14L)e 2.1)

with 7¢(L) as a free parameter gives fine fits to the data,
thus demonstrating that the free-energy barrier is 4J,, as

expected.
Figure 3 shows the time to flip the first edge of a cubic
domain in three dimensions.’® Again the low-

temperature data are quite straight on this Arrhenius
plot, thus indicating that shrinking a cube is also an ac-
tivated process. However, in contrast to two dimensions,
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FIG. 2. Shrinking of a square domain in two dimensions.
This shows the times to shrink a square domain vs J, /7, as ob-
tained from Monte Carlo simulations with J, /J, =6. The three
sets of Monte Carlo data are for domains of size L =4, 6, and 8
(bottom to top). Each point is an average over 900 runs with
standard error smaller than the symbol size. Lines are one-
parameter fits to Eq. (2.1) using the ten lowest-temperature data
points. (If we instead make the free-energy barrier F a free pa-
rameter too, we find Fy/J,=4.00£0.01, 3.99+0.01, and
3.99+0.01 for L =4, 6, and 8, respectively.) This confirms that
shrinking a square domain involves activation over barriers of
height 4J,, independent of domain size.
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FIG. 3. Shrinking of a cubic domain in three dimensions.
Shown is the time to flip the first edge of a cubic domain of size
L vs J,/T from Monte Carlo simulations for J,/J,=100.
(J,/J,=6 yields results essentially indistinguishable from this
for T <4J,. At higher temperatures the results for these two
values of J, /J, differ markedly.) Each point is an average over
900 or 1600 runs with standard error smaller than the symbol
size. As expected, the slope of the data increases with cube size.
For each value of L, except L =24, we show one-parameter fits
to Eq. (2.2) using the 7-10 lowest-temperature points. For
small L, the fits are quite good; but for L =8 and 12, the fits are
clearly inadequate.

here the slope, and thus the free-energy barrier, is clearly
an increasing function of the size of the domain. In Fig.
3, we have tried a fit to the expected form

4J,(L+1)/T

t=ry(L)e R (2.2)

with 74(L) as a free parameter. For L =4, the fit appears
quite good at low temperatures, but for L =6 it is mar-
ginal, and for L =8 and especially L =12 the fit is clearly
inadequate (down to the lowest temperatures we can
reach).

The lack of agreement with the predicted zero-
temperature barrier is not too surprising since we expect
the free-energy barrier to decrease as the temperature is
raised. (That this is the case will be shown in Sec. II B,
and derives fundamentally from the fact discussed in Sec.
I1 D that the barrier is a step free energy, which, being an
equilibrium free energy, must decrease with temperature.)
What may seem surprising at first is that the slope of the
data is larger than the predicted slope of 4J,(L +1),
tempting us to conclude that the free-energy barrier is, in
fact, larger than predicted. That this conclusion is in-
correct can be seen by considering the general form for
Arrhenius activation over a free-energy barrier Fp(L,T):

Fg(L,T)/T

t=r14(L)e 2.3
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Taking the logarithm of this expression and
differentiating with respect to 1/T, we get that the slope
on an Arrhenius plot is

d[In(2)] _ _Tﬂ

d[1/T] "B dT
If dFy /dT is negative, the slope on the Arrhenius plot
will be greater than the free-energy barrier. Physically
this is because if the free-energy barrier increases as we
lower the temperature, then the resulting rise in the ac-
tivation time ¢ is due partly to the direct consequence of
the decrease in the temperature and partly to the fact
that the barrier itself has increased. In fact, the right-
hand side of Eq. (2.4) will be greater than the zero-
temperature barrier, Fg(L,T=0), if Fz(L,T) is concave
down over the region between 0 and 7. We expect such
negative concavity on general grounds since we anticipate
that dFp/dT=0 at T=0 and that it becomes negative
for T>0. Thus, a steeper slope than 4J,(L +1) is per-
fectly consistent with the notion that the free-energy bar-
rier Fz(L,T) is decreasing with temperature.

Returning to Fig. 3, we see that there are more features
to explain at higher temperatures. For temperatures
above T =6J,, the data appear to enter a regime where
the free-energy barrier becomes roughly independent of
size. In Sec. IID, we will explain that the temperature
marking this change from an L-dependent barrier to an
L-independent barrier occurs at the corner-rounding tem-
perature, TR, of the associated equilibrium crystal shape
problem.?” This is then the temperature at which we ex-
pect our argument for logarithmic coarsening to break
down. (The higher temperature of T =~100J,, or more
suggestively, T=J, at which the barrier appears to van-
ish altogether is most likely merely a quirk of our cri-
terion for determining when the first edge of the cube has
disappeared. This criterion becomes suspect once T /J,
is large enough for there to be a significant probability of
thermal fluctuations in equilibrium.) First, however, let
us study in more detail the behavior of the time to flip an
edge of a cubic domain in the low-temperature regime.

(2.4)

B. Analytic calculation of the time to flip an edge of a cube

The goal of this subsection is to derive an analytical ex-
pression to match the simulation results for flipping the
first edge of a cube (Fig. 3). To get the total rate for flip-
ping a cube edge, we must sum over the rates for all pos-
sible paths in configuration space which go from the state
of a complete cube to one with spins along an entire edge
(and perhaps other spins) flipped. The rate along any
such path is just Fi=I‘0,-e_E"/T. Here, E; is the energy
barrier (the maximum energy above the initial
configuration) along the given path and I'; is a prefactor
which we expect to have some weak temperature depen-
dence. (In particular, I'y; should go to a nonzero con-
stant in the limit 7—0.)

At this point, it is useful to make an analogy with equi-
librium statistical mechanics. The analogy is made by
defining a barrier partition function Z, as
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Zg= Y exp(—E;/T), (2.5)
i
where the sum ranges over the barrier configurations (see
Fig. 4), not all paths. The free-energy barrier Fy is then
given by
Fp=—TIn(Zg) . (2.6)

In terms of Fp, the average time to flip the spins along
the edge of a cube can now be written as

1 1
t=——=—-¢exp(Fy/T), 2.7)
zr‘_ T, piLp
where
2 FO,-exp( _Ei /T)
To=— (2.8)

Zp

Unfortunately, computing the prefactor I'y; for each
barrier configuration is prohibitive. Therefore, we will
make the following approximation: We set I'; equal to
an estimate of the prefactor I'y; for the lowest energy bar-
rier. This estimate, in turn, is obtained by considering
only flips of spins along an edge of the cube, occurring
sequentially starting from one corner. The problem can
then be formulated as a one-dimensional master equation,
for which an exact solution can be obtained in the limit
L — ».% The expression for T'; thus found is

= 12(1—e Y27y 2.9)
o _ — . .
|—e M2/T, ~120/T

g4

ST
i 7oA,

() (b) ()

(d) (f)

FIG. 4. Various configurations of a cube with all but one spin
along the top edge flipped. (a) shows the configuration with the
lowest possible energy barrier of 4J,(L +1). (b) shows an addi-
tional row flipped. This has an energy of 8/, higher than (a).
(c) shows two additional rows flipped. (d) shows an edge being
“eaten” away from both corners. Finally, (e) and (f) show two
configurations not counted in our computation of the free-
energy barrier. (e) is neglected because it is not a barrier
configuration. Flipping the last spin the second row lowered the
energy by 4J,. (f) is not included because spins are flipped in
more than one layer. It is thus outside our approximation of
considering only those barrier configurations in which just one
layer is being peeled away from each corner.
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Since the second lowest energy barrier is 8/, higher than
the lowest, using this expression for T, introduces an er-
ror on the order of e 2’ into our computation of ¢.

We will now present an approximate calculation for
the free-energy barrier Fg(T). Although the technique is
similar to a low-temperature expansion for the equilibri-
um free energy, two points should be kept in mind. The
first is that we want to include only “barrier
configurations.” That is, for each path in configuration
space, we are interested only in the configuration with the
maximum energy along that path. Figures 4(a)-4(d) are
examples of configurations that should be summed over,
while Fig. 4(e) is an example of one that should not be-
cause a path in configuration space passing through such
a configuration must first pass through a higher-energy
configuration.

The second point is that we are not only interested in
the thermodynamic limit (L — o) because we wish to
compare the resulting analytic expression to numerical
data for quite small cubes. In Sec. II C, we will find that
the expressions derived here simplify considerably in the
thermodynamic limit. That limit is also much more for-
giving: Many approximations (concerning which
configurations to include) are irrelevant in the thermo-
dynamic limit, but do make a significant difference for
the cube sizes (4 =L <24) in the Monte Carlo simulation.

Before proceeding with the calculation, let us summa-
rize the approximations which will be made in computing
Fy.

(1) We will work in the limit J,/J,— . This is
justified by the insensitivity of the simulation results to
J/J, in the low-temperature region where our expres-
sion will be valid.

(2) We will allow only the spins in one layer of the cube
to flip. Figure 4(f) shows an example of a neglected
configuration.  Since the number of neglected
configurations is generally smaller (i.e., grows with a
lower power of L) than the number of those with the
same energy that are included, this should be a fairly
benign approximation even for finite cubes. In the ther-
modynamic limit (and J, /J,— ), the free-energy bar-
rier (per unit edge length) computed in this way becomes
exact.

(3) We will enumerate the configurations approximate-
ly, e.g., by extending certain sums to infinity even though
they would terminate for a finite cube. These again are
the sorts of approximations which are irrelevant in the
thermodynamic limit, but which can make a difference
for finite cubes.

Finally, we remind the reader that in calculating the ac-
tivation time ¢ from Fy, we will approximate T, as given
by Eq. (2.9).

We proceed with the calculation as follows: First, we
will consider only configurations where the edge is being
“eaten away” from just one of the corners [i.e., neglecting
configurations like Fig. 4(d), which have energies at least
8J, higher than the configuration in Fig. 4(a)]. What we
are then studying is simply the energies for various
configurations of a step across the face of the cube.
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These energies can easily be computed using the two
rules given in Appendix B, which associate an energy
with each plaquette (unit area) of interface and each bend
in the interface. Since our approximations have reduced
the model to a simple one-dimensional solid-on-solid
(SOS) model, the energy of any configuration is specified
by a series of non-negative integers m; giving the
difference in the step height between successive columns,
as shown in Fig. 5. The energy associated with each such
column is simply

_ Jo if m;=0,

E .
tm;) |[43(m,+ 1) if m;>0.

(2.10)
If we ignore the finite length of the cube in the vertical
direction, then we can allow each m; to range over all
non-negative integers (independent of each other). The
partition function can thus be written as®!

—4J,(L+1)/T

Zy=e zt -1, 2.11)

where Z | is the partition function for a single column:

Z,= 3 e Em/T=14y (2.12)
m =0
where
—8J,/T
= (2.13)
y= |—p /T :

The free-energy barrier (within the approximation that
the edge is eaten away from only one of the corners) is
then

Fp=4J,(L+1)—TIn[2(1+y)E72—1]. (2.14)

If we now relax the assumption that the edge is eaten
away from only one corner and, instead, allow it to be
eaten away from both corners [as in Fig. 4(d)], the parti-
tion function can be written as

m=0 211
FIG. 5. Energies of configurations involved in approximating
the free-energy barrier Fy. If we let m; label the difference in
the step height between successive columns, as shown, then the
energy associated with the ith column is given by
E(m;)=4J,(m;+1) for m;>0 and by E(0)=0. (Of course,
there will be an overall additional energy of 4J,(L +1) from

flipping the spins along the top row.)
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—4J,(L+1)/T
e

Zy= (2zt—2-1)

L-3
+y 3 2zt -1ezi 3L -1].

L=0
(2.15)

[Note that this does include the possibility that the two
corners are peeling away two different faces, as occurs in
Fig. 4(d) where the top face is peeling away from the
right corner while the front face is peeling away from the
left corner. Such configurations are important to count
since they have the same energy as the corresponding
configurations in which the same face is being peeled
away from both corners.] Summing the geometric series,
we obtain our final result:

Fp=4J,(L+1)—T1In{3—2(1+y)t2
+HL=2)y[1+4(1+y) 3]},
(2.16)

where y is given by Eq. (2.13).

Equation (2.16) is our best approximation for the free-
energy barrier to flip the first edge of a cubic droplet.
Substituting this into Eq. (2.7) gives us the estimate of the
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FIG. 6. The same simulation results as Fig. 3, but with im-
proved theoretical forms. The solid curves are the theoretical
form of Eq. (2.7) with T given by Eq. (2.9) and the free-energy
barrier Fp given by Eq. (2.16). The dotted curves use the cruder
estimate for Fp given by Eq. (2.14), which does not include
configurations where the edge is eaten from both corners. (In
both cases there are no free parameters.) Note that in order to
get essentially perfect agreement, it is necessary to include
configurations in which the edge is “eaten” away from both
corners, even though (as discussed in Sec. IIC) such
configurations do not change the expression for Fz/L in the
thermodynamic limit L — .
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time to flip the first edge of a cube, shown by the solid
curves in Fig. 6. Clearly they are in excellent agreement
with the Monte Carlo data at low temperatures.

C. The dynamical transition temperature

Now, we will take the thermodynamic limit L — o in
order to calculate the free-energy barrier per unit edge
length, fp, to flipping the spins on an entire edge of a
very large cube. At the temperature, Tcg, where f5—0,
the time to flip a cubic domain will no longer depend ex-
ponentially on its edge length. Thus, T¢g should mark
the transition in the coarsening dynamics from logarith-
mic to ¢!/? coarsening. As will be explained in Sec. II D,
the temperature Ty we obtain is also precisely the tem-
perature for an interfacial phase transition known as the
corner-g;)unding transition (hence our use of the subscript
“CR”).

In the thermodynamic limit, Eq. (2.16) simplifies con-
siderably and the free-energy barrier per unit edge length
becomes

—8J,/T
e 2

|—o M2/T
A plot of f5(T) is shown in Fig. 7. The temperature T cg
at which fp=0 is given by“ t}lf cubic equation
x3—x2+2x —1=0, where x=e 2" CR_ This cubic has
one real root which yields the result
Ter = B 7.1124 - -J
R In(1/3-5/98)+B) »
where B=1(11+1v23/3).32 Since all the approximations
we made in deriving fp are irrelevant in the thermo-
dynamic limit, our expression for the dynamical transi-
tion temperature should be exact in the limit J, /J, — .

. FB
fp= lim —==45,—Tln |1+ 2.17)

(2.18)

fB/ JZ

_zlllllllllllllllilill

T/I,

FIG. 7. The free-energy barrier per unit edge length, fj, vs
temperature T, as determined from Eq. (2.17). The temperature
Tcr at which fz =0 is shown by a dotted line.
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Finally, we might ask about corrections to Ty for
finite J, /J,. Qualitatively, we expect T-g will drop with
decreasing J, /J, and go to zero at J, /J, =4, where the
ferromagnetic ground state becomes unstable. To obtain
a good estimate for Ty near J, /J, =4 would require in-
cluding configurations involving multiple layers (see Ref.
29, Appendix B), and thus a much more concerted attack
on the problem. We can, however, obtain an estimate of
the importance of the corrections to our estimate of T'cg
for finite J, /Ji by noting that they will come in with a

. —4(J,=4J,)/T . .
factor like e ' 7?7 R This suggests Tcgr remains
fairly close to its J, /J, — o value until J, /J, gets quite
close to 4. For example, J, /J, =12 would yield a correc-
tion to Tcg on the order of 1% or less.

We have already made several allusions to the relation
between the temperature at which the free-energy barrier
per unit length goes to zero and an equilibrium interfacial
transition known as the corner-rounding transition. In
the following subsection, we will give a brief discussion of
the interfacial phase transitions in this model and then
finally make explicit the relationship between the coar-
sening dynamics and the corner-rounding transition.

D. Connection with equilibrium crystal shapes

The nearest-neighbor Ising model on a cubic lattice has
a roughening transition at Ty ~2.45J,.333¢ Below this
transition, interfaces in equilibrium are macroscopically
smooth in the sense that the variance of the fluctuations
in the height of the interface remains bounded as the sys-
tem size is taken to infinity. Above Ty, the interface is
rough and the variance diverges as the logarithm of the
system size.

The roughening transition can be thought of in two
ways:*> Macroscopically, it is the temperature at which
the equilibrium crystal shape (ECS) loses its facets. That
is, the ECS will have (macroscopically) flat [100] facets
for T < Ty and will be rounded for T> Tx. On a micro-
scopic level, T is that temperature at which the step free
energy for steps (of all orientations) across the [100] facet
goes to zero. The step free energy is defined as the
difference between the free energy per unit area for an in-
terface with a step and the free energy per unit area of an
interface without the step. (Note that it depends on both
the orientation of the interface and the orientation of the
step.”’) When this step free energy goes to zero, the in-
terface roughens since there is no free-energy barrier to
the creation of steps which can then proliferate without
bound.

In the context of equilibrium crystal shapes, Rottman
and Wortis?"3%3% have shown that the addition of NNN
AFM bonds introduces two new transition temperatures
which we will denote by Tcg and Tgg.** At tempera-
tures T < Tcg, the ECS is a cube with macroscopically
sharp edges and corners (see Fig. 8). Above the corner-
rounding transition temperature, T g, the corners of the
cube (or, equivalently, the edges near the corners) become
rounded but at least part of the edge remains sharp. As
the temperature is increased further, the rounding near
the corners spreads out along the edges until, at Tgg, the
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T <Tecp Ter<T <Tgp

Tep<T<Tg T>Tp

FIG. 8. Qualitative thermal evolution of the equilibrium
crystal shape of the Ising model with weak next-nearest-
neighbor antiferromagnetic bonds (after Ref. 27). For T < Ty,
the crystal has flat faces with macroscopically sharp edges and
corners. Above Ty, the crystal rounds near the corners; but
up to a temperature of Tggr, at least part of the crystal edge
remains sharp. Above Ty, there are no sharp edges but there
are still flat [100] faces. Finally, at the roughening temperature
Ty, the crystal becomes completely rounded.

entire edge of the crystal is rounded. Ty is thus referred
to as the edge-rounding transition temperature.*! On the
microscopic level, Ty is defined as the temperature at
which the step free energy, f|,,,}, for a step across a [111]
interface goes to zero. Analogously, Tgy is defined as the
temperature at which the free energy, f|;);, of a step
across a [110] interface goes to zero.?

Let us now consider how these transitions affect dy-
namics. The relation of the roughening transition to dy-
namics has been known since such a transition was first
proposed. In fact, the interest in T was sparked by
studies of crystal growth from the melt.’* Below Tk,
where growing crystals have smooth facets, the growth is
quite slow. This is because the growth proceeds via the
nucleation of a group of atoms (“islands”) on the surface.
Such an island is only stable once a critical nucleus size
has been reached, and thus a large free-energy barrier
must be surmounted. Above Ty, when the surface is al-
ready rough, no such barrier exists.

We propose that the corner-rounding temperature T g
marks a similar change in dynamical behavior: Below
Tcr» there will be a free-energy barrier per unit length to
depin a step from the edge of a domain, thus leading to
logarithmically slow coarsening dynamics. How do we
Jjustify this claim that the dynamical transition tempera-
ture and the corner-rounding transition temperature
coincide? The justification comes from the recognition
that the free-energy barrier we calculated in Sec. IIC is
(up to a geometric factor*?) simply the step free energy,
Sl for a step across a [111] interface.” The result
presented there [Eq. (2.18)] for the corner-rounding tem-
perature Tg is an exact expression in the J; /J,— o
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limit. An alternative calculation of T'cg yielding precise-
ly the same result has been given by Shi and Wortis.*

III. NUMERICAL SIMULATIONS OF COARSENING

Before discussing the numerical simulations, it is
worthwhile to reexamine our argument for logarithmic
coarsening in more detail. In particular, we would like to
explain why the argument based on shrinking cubic drop-
lets may be more general than it first appears to be. The
question to be addressed in this: Having identified one
special configuration in which there are large barriers,
why do we have reason to believe that such barriers will
be present for the configurations which will occur during
the coarsening process?**

There are two points to be made in answering this
question. First, an initial droplet which is not cubic will
tend to shrink to a point where it has flat faces and sharp
edges and then get stuck. We have confirmed this numer-
ically by studying the time to shrink spherical droplets.
The time it takes to shrink such a sphere of diameter D is
in agreement with the expectation that the barrier is ap-
proximately determined by the largest cube contained in-
side the sphere, namely, one with edge length L close to
(or a little less than) D /V'3.

The second point is that the argument applies to a
more general situation than merely the shrinking of iso-
lated droplets. [This greater generality is necessary be-
cause isolated droplets (or, in the language of percolation
theory, “clusters™), except of very small size, are a rare
occurrence in the 3D Ising model. The reason is that the
density of both up and down sites (p =0.5) is well above
the percolation threshold (p,~0.312),* so the system
consists primarily of two infinite clusters.] For example,
a “handlelike” structure of size L on one of the infinite
clusters should also have an energy barrier to shrinking
which is proportional to L. We believe the fundamental
point is that below Ty there is a free-energy barrier per
unit length to depin a step from an edge. This means that
edges will tend to remain sharp and that the free-energy
barriers to flip the spins along such an edge will diverge
with the length of the edge. Since the length of edges in
the system should be proportional to the characteristic
length scale L(t), we expect that the free-energy barriers
will diverge with L (¢) and the growth of L (¢) will be log-
arithmic.

On the basis of these arguments and upon our numeri-
cal simulations of shrinking cubic droplets, we believe
that the case for logarithmic coarsening is fairly strong.
Ultimately, however, lacking a rigorous proof, we must
turn to numerical simulations of the coarsening process
in order to further test our hypothesis.

We study coarsening following an instantaneous
quench from infinite temperature to a temperature
T <T¢. Such a quench is implemented by starting with a
random spin configuration at time ¢t =0, and then evolv-
ing the system at temperature T, using Glauber single-
spin-flip dynamics [Eq. (1.6)]. Further details of the
Monte Carlo algorithm are given in Appendix C.

The most important quantity to monitor during coar-
sening is the characteristic length scale L(z). In the

11 385

literature, many ways of measuring L(¢) are dis-
cussed.!®% If scaling is obeyed, any physically reason-
able measure of L (¢) should show the same behavior. (A
discussion of the scaling of the correlation function is
given in Appendix D.) We choose one of the most com-
mon and convenient measures of L (¢), which is to take
L (t) to be proportional to the inverse of the total perime-
ter of domain boundaries. [As is further elucidated in
Appendix D, this corresponds to measuring the slope of
the correlation function C(r,t) near r=0.] That is, we
define

_ NN
Eq

Lit)=———— ,
(ENN—ENN)

(3.1)

where ENN is the energy associated with nearest-neighbor
bonds only and ENYN=—3NJ, is this energy in the
ground state.*’ The normalization of L (¢) is such that,
on average, L(¢)=1 for the random initial configuration.
Figure 9 shows the growth of L (¢) during coarsening
in two dimensions. We see that for J, =0, the simulation
results obey the ¢!/2 law quite well over the entire time.
(There are some small, but statistically significant, devia-
tions at early times.) Adding the NNN bonds changes
the behavior in exactly the manner which we expect:

T
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FIG. 9. Coarsening in two dimensions. This shows the
growth of the characteristic length scale L(¢) for the 2D model
following a quench from infinite temperature to the given tem-
perature 7. For the J,70 runs, we have chosen J,/J,=6. We
have averaged over 30 or 40 runs with error bars showing the
standard error. Numbers in parentheses give system sizes. (On
this log-log plot, some straight lines of slope % are shown to
guide the eye.) For J,=0, we see the expected ¢!/? growth law
at all times. For J,70, the system initially coarsens on very
short length scales, but then gets stuck. Little further coarsen-
ing occurs on time scales shorter than t=e“2/T (marked by ar-
rows). However, if we look at the coarsening on time scales
greater than this, the energy barriers can be crossed and the
length scale grows as ¢!72,
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After a short period of relaxation on the shortest length
scales, the system finds itself in a configuration in which
it must flip corners to coarsen further. Since the energy

barrier to flip such a corner is 4J,, the siystem is stuck
47,/

2"". However, at

and coarsens little on time scales t <<e
a time of order e JZ/T, we see a dramatic upturn on this

. . 41,/T
log-log plot. This is because on time scales t >>e *
the energy barriers can be crossed and we see ¢!/ behav-
ior. This confirms our prediction that the 2D model is a
class-2 system.’

Now let us consider Fig. 10 which shows the growth of
the characteristic length scale in three dimensions. As in
two dimensions, there is a short period of fast relaxation
on very short length scales. After that, there is a period
in which the growth is roughly a power law ¢"*" with the
effective exponent n. for the domain growth (given by
the slope on this log-log plot) ranging from O (total freez-
ing) for T /J,—0, to ~0.35 for J,=0. For T=2, 3, and
4J,, there is considerable downward curvature in the
data at late times, suggesting a crossover to logarithmic
growth. No such downward curvature is evident for
J,=0 or for T=8J, (which is above the corner-rounding
temperature T'cg) until finite-size effects lead to a quite
sharp flattening out once L(?) is roughly a third the sys-
tem size.

Two brief comments are in order. First, let us consider
the behavior for J,=T=0: The data appear to obey a

50 T IlHIHl rT‘rlmli T ||1’m‘|} Tllnﬁ rTImTrl T Hm‘n! T T TTTTm,

;=0 T =8J
T-o0 ,r‘glgﬂlﬂ (80% *
( I T =

Characteristic length scale L
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10°  10o' 10® 10® 10* 10° 10® 107
Time t (MC steps/spin)

FIG. 10. Coarsening in three dimensions. This shows the
growth of the characteristic length scale L (¢) for the 3D model
following a quench from infinite temperature. Each set of
Monte Carlo data is from an average over 10-20 runs with er-
ror bars giving the standard error. (The scatter in the data is
much less than the error bars would suggest because the error is
strongly correlated in time.) For T=8J,, we have chosen
J/J,=350, while for the rest (excluding J,=0, of course),
J,/J,=6. For T=2, 3, and 4J,, the solid curves show two-
parameter fits at late times (over the interval for which the

curve is shown) to the form L(¢t)=aln(z/ty). Arrows for

. . . T 8J, /T
T=0.75J, indicate the times at which ¢ =e"2"Tand ™27,
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power law quite well over a full two decades in time and
yet the power is found to be about 0.35, much closer to %
than to 1. This is a surprising result since it is gospel
that the nearest-neighbor Ising model obeys the Lifshitz-
Allen-Cahn law. This anomalous exponent is discussed
in more detail elsewhere.?’ Here, it will suffice to say that
similar behavior (an exponent of ~0.37) has been seen by
Amar and Family,*® in the only other study (as far as we
know) of coarsening in the 3D Ising model at zero tem-
perature. Since some of their calculations were per-
formed on very large (512%) systems, we can be confident
that this is not a finite-size effect. On the other hand, we
cannot rule out the possibility that this is simply a very
long-lived transient. This may indeed be the case, but
there exists the intriguing possibility that there is truly a
different exponent (or a breakdown of scaling altogeth-
er’*) at T=0. (The numerical evidence suggests that
the ¢!/? law will be obeyed at late enough times for any
nonzero temperature.*’)

A second comment concerns the interesting behavior
seen for T=0.75J,, where there are clearly steps in the
data. These steps are indicative of the discreteness (;5 t}lTe
energy barriers in our system. On time scales t <<e *
any spin flips which raise the energy are unlikely to
occur. Then, on time scales e *' <<t <<e8J2/T, energy
barriers of 4J, are crossed regularly, but those of 8/, are
not, and so on. The origin of these steps is thus the same
as that which leads to the 4change in behavior in the 2D

model at a time of order e JZ/T, except that here there is
more than one barrier height present in the coarsening
system. For quenches to somewhat higher temperatures,
the steps are closer together. By a temperature of
T =2J,, they have been washed out.

Now let us look more closely at the data for moderate
values of T/J,. One could conclude from these results
that at long times there will be power-law behavior with
the exponent itself a continuous function of the ratio
T /J,. However, even neglecting the considerable down-
ward curvature at late times, this scenario seems rather
unlikely to us (although certainly not forbidden) since we
know of no proposals that a coarsening system will have
a continuous set of exponents, n(7T). A more likely ex-
planation is that this is a transient behavior and that at
longer times there will either be upward curvature with a
return to t!/? behavior (as occurs in the 2D model) or
slow downward curvature compatible with our prediction
of logarithmic growth. Apparent power-law growth with
temperature-dependent effective exponents has common-
ly been seen in Monte Carlo simulations of systems which
freeze at zero temperature. It occurs both in systems
which are known to obey t'/? or ¢!/ growth laws>*° at
long g(i)mes and those believed to obey logarithmic growth
laws.

A. Evidence for logarithmic growth of L(t)

We now ask whether the data in Fig. 10 is more com-
patible with a return to z!/2 behavior or with a logarithm.
There are several reasons why we prefer the latter ex-
planation. First, one can estimate the largest barrier
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heights involved in the coarsening process out to the
times studied by noting that at ¢ = 10° MC steps/spin and
T =3J,, the time is 3 orders of magnitude larger than the
time taken for equivalent coarsening in a system with
J,=0. From this, we can get an estimate of the energy
barriers E which are being crossed by setting this ratio of
time scales equal to e £/7; this gives E ~20J,. Activation
over such large barriers suggests a process involving the
cooperative flipping of several spins. In addition, as long
as the data for J,70 has a smaller slope than that for
J, =0, this difference in time scales (and the energy bar-
riers it implies) will continue to grow.

There are two caveats which must be noted. First, the
barrier of 20J, is that associated with flipping an edge of
length 4, while L(¢) is about three times this large. We
believe this discrepancy is due to the fact that L(z) gives
only an average length scale in the system, whereas the
active processes will be determined by the shortest length
since these will be the fastest. That there are a distribu-
tion of lengths in the system is apparent when we look at
the spin configurations during the coarsening.

The second caveat is that there is, of course, a larger
energy scale than J, in our system, namely, J;. Our
simulations do not go out far enough in time to rule out
the possibility that at long times the system can avoid the
growing J, barriers by going over large, but L-
independent, J, barriers. We cannot envision such a
scenario, but have not proven its impossibility. In order
to test the sensitivity of our results to J,, we increased
the ratio of J, /J, and find that the results change only a
little (with the downward curvature becoming slightly
more pronounced). This suggests that activation over
J,— and not J;—barriers is what is important here.
Nonetheless, not being able to carry out our simulations
to times which are much greater than any single-spin J;
barriers in our problem is probably the greatest weakness
in the conclusiveness of the numerical results. Ultimate-
ly, the best evidence that J, is not relevant will be provid-
ed in Sec. IV, where we introduce the tiling model. In
that model, the energy scale J, is eliminated altogether in
a natural way by incorporating it into a constraint on the
dynamics.

Now to the second, and primary, reason for believing
the growth to be logarithmic: the downward curvature
apparent in the data at late times for T=2, 3, and 4J,. It
suggests that, as the shortest lengths in the system be-
come large enough for our arguments to apply, there is a
crossover to slower growth. In order to test whether the
growth is, in fact, becoming logarithmic, we show two-
parameter fits to the form L(¢)=a In(z/ty) over the last
two to three decades in time. There is evidence of some
systematic disagreement (with the Monte Carlo data hav-
ing less curvature than the fits), but, in general, the fits
are quite good, and are far superior to any straight-line
(i.e., power-law) fits. (Why is there still some systematic
deviation from logarithmic behavior at these latest times?
In part this may be evidence that we are still not yet quite
in the late-time, scaling regime; but some of the devia-
tions may be accounted for by the fact that in this scaling
regime we would really expect the length scale to satisfy a
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(c) Ja #0 (d)

FIG. 11. A comparison of the spin configurations in one lay-
er (a slice) of an 80° coarsening system for J, =0 and J,7#0. (a)
and (b) show configurations for J, =0, while (c) and (d) show
configurations for T=3J,. Spin up and spin down are denoted
by solid and open squares, respectively. The times have been
chosen so that L(t) is approximately equal to 6.3 in (a) and (c),
and to 9.5 in (b) and (d). As expected, the configurations for
J,7#0 show a much stronger preference for flat boundaries
aligned along the lattice directions.

differential equation of the form

—fpL/T
dL_ e’

dt L
That is, we must include the 1/L curvature force term.
This equation only asymptotically gives the form
L(t)=aIn(z /ty). Indeed, we find that fits over the same
range of times to the full form obtained from integrating
Eq. (3.2) are better than the fits shown, having virtually
no systematic deviation.’!)

The final reason for believing the long-time growth to
be logarithmic comes from observing the spin
configurations which occur during a quench. Figure 11
compares a 2D slice through a system with J, =0 to that
with J,70, at two times during the coarsening. In con-
trast to spin configurations for the unfrustrated (J,=0)
model, the configurations for J,70 are clearly “blocky,”
with a strong preference for flat faces aligned along the
simple-cubic directions. Thus, the system seems to be
getting stuck in the sort of configurations where our ar-
gument for logarithmic growth should hold.>?

(3.2)

B. Tests for finite-size effects

We will now briefly consider another possible source of
the downward curvature seen in Fig. 10 for T=2, 3, and
4J,: finite-size effects. It is apparent from the data for
J,=0 and T=8J, that the effect of the periodic bound-
ary conditions is to introduce downward curvature once
L(t) gets large. However, this curvature is qualitatively
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different than what we see for T=2, 3, and 4J,. It is
quite sharp rather than gradual, and, as a result, it cannot
be fit to a logarithmic form over any reasonable range of
times.?’ Furthermore, it occurs at a considerably larger
value of L. [In particular, compare J,=0 to T=3J,,
where both runs are on (110)* systems.] Nonetheless, the
possibility that the curvature could be due to finite-size
effects is certainly worth investigating more closely.

Why do periodic boundary conditions produce a cutoff
in the growth of L(#)? This cutoff is due to the develop-
ment of flat slabs and tubes extending the entire length of
the system (and thus, in a sense, infinite), as has been dis-
cussed by others.”> These configurations are metastable
since there are barriers of at least 4J, to flipping any
spins. Because we are studying this model at tempera-
tures T <<4J, these metastable states are very long
lived. Furthermore, they are much more common in
three dimensions than in two, since the fraction of each
type of spin, p =0.5, is far above the percolation thresh-
old for three dimensions but coincides with it for two di-
mensions.

We have studied the finite-size effects in two ways.
First, we have tried changing the boundary conditions
from periodic to antiperiodic (in all three lattice direc-
tions). This has the effect of forcing an interface in the
system and thus should rid us of the slab and tube effects.
(Of course, such boundary conditions presumably intro-
duce some of their own idiosyncrasies—we do not claim
these boundary conditions are better, but only that they
are different. In particular, since an interface is forced in
the system, the largest possible value that L [as defined by
Eq. (3.1)] can assume in an .£3 system is .£ /2,>* so there
will still be a cutoff in L due to finite-size effects.) With
these boundary conditions, there is no detectable change
in the curvature for T'=3J,. Second, we have investigat-
ed the effect of varying the system size. We have done
this most systematically for 7=3J,, where we find that
there seems to be no statistically significant difference be-
tween a 110° and an 803 system, out to at least =10’
MC steps/ spin. For a 55° system (where the run-to-run
variation at late times is quite large and the results corre-
spondingly less trustworthy), the data have a tendency to
have a bit less curvature than for the runs at larger sys-
tem sizes. On the basis of these tests, we conclude that it
is extremely unlikely that the downward curvature in Fig.
10 for T =2, 3, and 4J, is due to finite-size effects.

IV. THE TILING MODEL

A. Introduction to the tiling model: statics

In this section, we study the dynamics of what we dub
the “tiling model.”3%3>% This is a 2D model for a [111]
interface in our 3D model. A sample configuration of
this model is shown in Fig. 12. The model views the in-
terface from the [111] direction, which means that we are
seeing a corner between the [100], [010], and [001] facets
head on.

In the statistical mechanics literature, this model is
known as the [111] restricted solid-on-solid ([111]-RSOS)
model. “Restricted” here refers to the fact that in this
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FIG. 12. A sample configuration for the tiling model.
Viewed from the [111] direction, an interface in a 3D model can
be represented by a tiling of the plane by rhombi of three orien-
tations, provided that the interface has no overhangs when thus
viewed. (We have shaded the three types of rhombi differently
in order to distinguish them more easily and enhance the 3D
perspective.) If we assign an energy of 2J, to each unit length
of boundary between the different types of tiles, then the ener-
getics of this model matches that of the 3D Ising model with
next-nearest-neighbor antiferromagnetic bonds.

model interface configurations are restricted to those in
which the entire interface is visible when viewed from the
[111] direction.  (That is, configurations with
“overhangs,” an example of which is shown in Fig. 13,
are forbidden.) It is the absence of overhangs which al-
lows the interface to be represented by a tiling of the
plane with 60° rhombi of three different orientations.’’
To make the energies of the tiling configurations corre-
spond to those of an interface in our 3D model with
AFM NNN bond strength J,, we assign an energy of 2J,
for each unit length of boundary between unlike tiles.>®
Note that since the RSOS restriction forces the interfa-
cial area to remain constant, the tiling model corresponds
to the limit J, — o in the 3D model.

At low temperatures, we expect the tiles to phase
separate, representing the fact that only a sharp corner in
the 3D model is thermodynamically stable. At high tem-
peratures, the different types of tiles should intermingle
to form a thermodynamically rough [111] interface.
Clearly the phase transition in the tiling model will occur
at the point where the sharp corner rounds, i.e., at the
corner-rounding transition T g of the 3D model. In fact,
following the introduction of a related model by Blote
and Hilhorst,” the tiling model was used by Shi and
Wortis’® to study the corner-rounding transition of a

FIG. 13. An example of an interface configuration which
cannot be represented by the tiling model. Part of the interface
is hidden from view (i.e., there is an “overhang”) and this results
in some incomplete (triangular) tiles.
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sodium chloride (NaCl) crystal in equilibrium with its va-
por. Much of our introductory discussion here follows
closely that in Ref. 38.

An important feature to notice about this model
(which is also true of other restricted solid-on-solid mod-
els®) is that excitations can only occur along the bound-
ary between the domains.’® Below Ty, three “frozen
phases” coexist, corresponding to the microscopically flat
[100], [010], and [001] facets; the entropy per tile is zero
in the thermodynamic limit. Of course, in any finite sys-
tem, there will be thermal excitations along the boun-
daries between domains.

We have explained how the tiling model is viewed ei-
ther as a 2D tiling of the plane by rhombi or as the pro-
jection of an interface in three dimensions. Before dis-
cussing the dynamics of this model, we will briefly discuss
a third representation®** (which is useful for implement-
ing the dynamics): an Ising spin system on a triangular
lattice. The mapping from a tiling configuration to the
corresponding spin configuration, examples of which are
shown in Fig. 14, is made by placing a spin at each vertex
such that the spins are antiferromagnetically aligned
along the edges of the rhombi. The mapping is unique up
to an overall inversion of the spins.

Any spin configuration produced by a perfect tiling
has, for each elementary triangle, two out of three spins
aligned. Thus, the correspondence is between tilings and
ground-state configurations of the NN AFM Ising model
on a triangular lattice. The energetics of the tiling and
the corresponding spin configuration is reproduced if we
choose J, to be the bond strength for AFM NNN bonds
between the spins. Thus, the tiling model with an energy
cost of 2J, per unit length of domain boundary can be
represented by the following Ising Hamiltonian on a tri-
angular lattice:

H=J, 3 s;s;+J, 3 555, 4.1)
NN NNN
with J;— e, J,>0, and 5;=—1 or +1. Since the spin

configurations of (4.1) are far less compelling visually
than the corresponding tilings, particularly in making the
connection with our 3D model, we will make only oc-
casional reference to this representation from here on.

FIG. 14. The elementary dynamical move in the tiling model.
In the 2D spin representation, the move consists of flipping a
spin which has exactly three of its six nearest neighbors aligned.
In tiling language, it consists of a rotation of an elementary hex-
agon (shaded) by 60°. From a 3D perspective, we see that it
represents an elementary cube either added or taken away.
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However, it is the representation which is computational-
ly the most convenient in performing the Monte Carlo
simulations.

B. Dynamics

We will use Glauber single-spin-flip dynamics [Eq.
(1.6)] on the spins of Eq. (4.1). Since we are in the
J,— oo limit, the only spins that can flip are those which
have three of their six nearest-neighbors aligned. In til-
ing language, such a spin-flip corresponds to rotating an
elementary hexagon consisting of three tiles, as shown in
Fig. 14. Finally, in the original 3D Ising description, it
corresponds to adding or removing an elementary cube
(i.e., to flipping the spin that this cube represents).

From Fig. 12, we see that there are relatively few such
elementary hexagons, and thus few sites where this
dynamical move can take place. This is, of course, a
consequence of the RSOS restriction (or, in terms of the
corresponding 3D model, because we are in the limit
J 1™ (o] ).

It is important to note that, even though this model
represents an interface of the 3D model, when we study
coarsening in the two systems we are looking at different
processes. In the 3D model, we studied coarsening for an
entire 3D system, not just a single interface. In particu-
lar, we were interested in the decrease in the total interfa-
cial area over time. It was the inverse of this total area
which gave us our characteristic length scale.

Here, by contrast, we are confining ourselves to one
particular interface of a fixed area. Rather than studying
how the total interfacial area shrinks, we are instead con-
cerned with how the structure of this one interface itself
coarsens. To that end, we will quench the system from a
temperature where the [111] interface is thermodynami-
cally stable in the rough phase to a temperature where it
is unstable and thus reconstructs into pieces of [100],
[010], and [001] facets.®! We then look at the coarseness
of this reconstructing interface over time.

In the 3D model, the order parameter was not con-
served by the dynamics, and the naively expected power
law was L (t)~t!/2. However, because the coarsening in-
volved activation over barriers that grow with L (¢), loga-
rithmic growth was found to occur. In the tiling model,
the order parameter (measuring the local tile orientation)
is conserved by the dynamics, as can be seen from Fig.
14, and thus the naively expected power law is now
L(t)~t'/3. However, the method by which the interface
coarsens involves activation over precisely the same sort
of energy barriers as in the 3D model, and thus the same
arguments we made for logarithmically slow coarsening
in that model will apply here as well .5

Although the tiling model is a bit more obscure than
the Ising model on a cubic lattice, it has several advan-
tages over our 3D model, upon which we now elaborate.

(1) Since the tiling model is two dimensional, the
configurations are considerably simpler and easier to
visualize. Furthermore, since there are three types of
tiles, each has a density of p =§, which is well below the
percolation threshold. As a result, the domains are com-
pact, with structures much closer in form to cubical pro-
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jections®? than the convoluted domains in our 3D model
are to cubes.

(2) The simulations in 3D go out far enough in time to
show that the system should be crossing energy barriers
which are large in comparison to 12J,, the largest J, en-
ergy cost for flipping a single spin. However, the times
are not long enough that single-spin-flip barriers of 8 or
12J, are being crossed. Thus, the simulations themselves
do not exclude the possibility that, once barriers of 8 or
12J, could be crossed, the system would get ‘“unstuck”
and coarsen like r!”2. Therefore, strictly speaking, our
numerical work really only proves the claim of logarith-
mic coarsening in the limit of J,— . Since this limit
corresponds to T-— o, our numerical work is most
definitive in the singular limit 7/T.-—0. The tiling
model eliminates the possibility of activation over J, bar-
riers by replacing the energy scale J, entirely by a con-
straint on the dynamics. Admittedly this constraint is
equivalent to the limit J; — o, but such a limit does not
seem unreasonable since the order-disorder transition,
Ty, in this model is proportional to J,, not J,. Thus,
our argument for logarithmic coarsening can be tested
numerically over a large interval of T/Tg. (We expect
it to hold all the way up to the transition.)

(3) Finally, one might imagine that by eliminating one
spatial dimension, we should be able to get even more
convincing numerical results with the available amount
of computing power. In fact, we will see that this does
not appear to be the case. As with the 3D model, the
slow dynamics which we are studying also slows the ap-
proach to the scaling regime where L(f) assumes its
asymptotic behavior. Nonetheless, we feel the numerical
evidence is compelling enough that it would truly be per-
verse if L(¢) resumes the naively expected !/* growth at
times beyond the longest times we reach in these simula-
tions.

C. Simulations of coarsening in the tiling model

We study the coarsening following a quench from
infinite temperature (i.e., a random tiling) to a final tem-
perature T.%> Once again, we take the characteristic
length scale L(¢) to be inversely proportional to the total
perimeter of boundary between the domains. In particu-
lar, we define

Lin= 22k 42
H=———, .
E—E,

where E is the energy, and Ey= —NJ, is the energy of
the ground state (i.e., where the total perimeter of
domain boundaries is zero®). The arbitrary constant 2.5
is chosen for convenience so that L =1.0 for the initial
random tiling.

1. Configurations during coarsening

Before studying the growth of L(z) in quantitative de-
tail, let us first discuss the qualitative features of the
configurations as they evolve over time. Figure 15 shows
the evolution of the domain structure following a quench
to T=3J,. We see the expected sharp boundaries be-
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FIG. 15. Snapshots of the coarsening of the tiling model at
various times ¢ (measured in MC steps/spin) following a quench
from infinite temperature to T=3J,. This system has 1207 sites.
Only the boundaries between domains of equally oriented tiles
are shown.

tween domains. As the length of these sharp edges in-
creases, the energy barriers which must be surmounted to
further coarsen the system should increase.

One might argue that there has been significant
coarsening of the domain structure over the time period
shown. However, it is important to notice the large
range of time scales over which these snapshots have
been taken. If the system were coarsening like
L(t)~t'7, then the characteristic length scale would
have grown by a factor of almost 50 between ¢ =10* and
t=10° MC steps/spin. Instead, it has grown by only a
factor of 3.

In addition to studying still snapshots like these, we
have also made an animated “movie” of the evolution of
the system. Such a movie shows compellingly the effect
of the large activation barriers. At late times, the system
spends nearly all of its time “climbing” part of the way
up these barriers (e.g., flipping a few spins along the edge
of a domain) and then falling back down to its original
state. Only rarely does it succeed in surmounting the
barriers and finding a lower energy state.

2. Growth of the characteristic length scale

Now we will examine the growth of L(¢) quantitative-
ly. Figure 16 is a log-log plot showing the growth of the
characteristic length scale over time. We see the same
basic trend that we saw for the 3D model (cf. Fig. 10). At
the lowest temperatures, we see the steplike behavior in
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FIG. 16. Coarsening in the tiling model. This log-log plot
shows the growth of the characteristic length scale L(t) for the
tiling model following a quench from infinite temperature. For
T= %J », we study a 60? system and average over 12 runs. For
the others we study a 120” system and average over 89-170

L . . 40, /T
runs. Arrows for 7= %Jz indicate the times at which t=e 2,

8J,/T 12J2/T

e ,and e . The solid line has a slope of %

L(t) which occurs as the system reaches time scales when
it is first able to surmount barriers of height 4J,, then
8J,, and then 12J,. For higher T /J,, these steps get
washed out and the effective exponent n (the slope on
this plot), increases toward §. For a given value of T'/J,,
n.g appears to be slowly decreasing over time at late
times. [For T=4J, and especially for T=5J,, n is
lower than for T'=3J, at early times, but then increases
at moderate times before appearing to decrease again at
late times. The behavior at early and moderate times is a
result of the sensitivity of our measurement of L(t) to
thermal fluctuations along the domain boundaries. This
will be discussed further in Sec. IV C3.]

The most sensitive test of whether the growth of L(¢) is
becoming logarithmic at late times is to study a plot of
the slope, dL /d[In(t)], of the Monte Carlo data when
shown on a log-normal scale. On such a plot, an ap-
proach to logarithmic growth would be indicated by hav-
ing dL /d[In(t)] level off, i.e., become constant, at late
times. Such a plot (see Ref. 29, Fig. 4.12) shows that the
slope appears to be leveling off only a little for T=2J,
and T=3J,. For T=4J,, the slope is leveling off more
dramatically; however, since thermal fluctuations are
quite important at T=4J, even out to quite long times
(as discussed in Sec. IV C 3), this result should be regard-
ed with a bit of skepticism. We must conclude that out
to the times studied in Fig. 16 we have not yet reached
the time regime when the growth is clearly logarithmic.

In order to better determine the long-time behavior of
L(t), we have carried out a few individual runs to times
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as long as t=2X10° MC steps/spin. The results are
presented in Fig. 17. Also shown are logarithmic and
power-law fits to the Monte Carlo data of Fig. 16 over
the final decade in time (1 =10°-~10" MC steps/spin for
T=3J,, and t=10°-10° MC steps/spin for T=4J,).
Since there are large run-to-run fluctuations, it is hard to
come to any firm conclusions. However, the data gen-
erally seem to lie between the logarithmic and power-law
extrapolations. This suggests that although the data still
are not quite fit by a logarithm, the exponent for the
power-law fit (which is already very small) is continuing
to decrease. This gives us confidence that the growth at
asymptotically long times will, in fact, be logarithmic (or
at least slower than power law). Unfortunately, the same
barriers which produce this slow growth appear, not
surprisingly, to slow the approach to this asymptotic be-
havior.

In order to show that the free-energy barriers to
coarsening at these late times clearly involve the flipping
of many spins, we estimate a lower bound for these bar-
riers as follows: We consider the form L(t)=a(t /7)'/?
with 7=exp(F3 /T) and a of order 1. (In effect, we are
asking the question, “If L (¢) resumed a growth law of
t!73 at times just after we stopped our simulations, then
what would we conclude were the heights of the largest
free-energy barriers which the system had to cross during
the coarsening process?”’) Using the Monte Carlo data at
the longest times gives Fy=40J, and 55J,, for T=3J,
and 4J,, respectively (which is roughly the barrier
heights we would expect given the values of L). By com-
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FIG. 17. Coarsening in tiling model: Long times. Here we
show the growth of L(¢) for two runs at T=4J, and four runs
at T=3J, which go out to very long times. The solid lines are
fits to the logarithmic form L(#)=a In(z/t,) using the last de-
cade of the Monte Carlo data in Fig. 16 (¢=10°-10" MC
steps/spin for T=3J,, and t=10°-10° MC steps/spin for
T=4J,). The dotted lines are fits to the power-law form
L (t)=at" using the same data. (The value obtained for the ex-
ponent n is 0.09 for T=3J,, and 0.12 for T=4J,.)
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parison, the energy barrier to flip any single spin in this
model is at most 12J,, and the barrier per unit length of
edge is only 4J,.

3. Effects of thermal fluctuations and finite system size

In Sec. IV C2, we noted that T=4J, and 5J, (and for
T =3J, at very early times), there is some upward curva-
ture in Fig. 16 at short and intermediate times. The
reason for this is that when domains sizes are small, the
thermal fluctuations along the domain boundaries
lengthen the total perimeter significantly and thus de-
crease the characteristic length scale L(¢) as measured by
the inverse of this total perimeter [Eq. (4.2)]. This can be
seen clearly in Fig. 18.

We have tried to correct for these thermal fluctuations
by measuring L(?) only after first quenching the system
to T=0, or by using different measures of L(¢) which we
hoped would be less sensitive to the thermal fluctua-
tions,®> but none of these methods were completely
effective.?’ Since we have not yet found an adequate way
to correct for thermal fluctuation effects, we must ask to
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FIG. 18. Snapshots of the tiling model (system size = 120%) as
it coarsens for T=3J, and 5J,, both at ¢t =10* MC steps/spin.
The boundaries between domains are shown. Due to the
thermal fluctuations along the boundaries, the length scale L as
measured by Eq. (4.2) is slightly smaller for T=5J, than for
T=3J,, even though the system at T=5J, is clearly consider-
ably coarser.
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what extent they make our measurement for L(¢) un-
trustworthy. Fortunately, since the fluctuations occur
only along the domain boundaries, the error in the mea-
sured length scale should decrease as the domain sizes
grow. From Fig. 15, our study of alternate definitions of
L(t), and our studies of measuring L(z) after quenching
to T=0, we conclude that the data for T=3J, should be
trustworthy at least for times ¢ > 10° MC steps/spin. For
T=4J, and T =5J,, the situation is more unclear. How-
ever, even the T'=4J, results are probably quite
trustworthy at the latest times.

Finally, a few words on finite-size effects. To test for
finite-size effects, we have run simulations for T=3J, on
a system of half the linear size (60%). A comparison of
the results to those shown in Fig. 16 shows no evidence of
any systematic deviation. The Monte Carlo data for the
two systems agree within the (quite small) error bars.
Since even the 607 system shows no evidence of finite-size
effects out to at least L =7, we imagine the results on
120? systems should be trustworthy out to at least L =~ 14.
Thus, all the results we have presented should not have
any significant finite-size effects.

D. Growth of order during slow cooling

In our 3D model, there are two distinct temperatures.
One is T, below which ordering occurs. The other is
Tcg, below which free-energy barriers are proportional
to the length scale, thus slowing the dynamics. Since
Tcr <T¢, this model orders without difficulty if it is
cooled slowly. It must be gquenched from T >T¢ to
T <Tcg in order to exhibit the logarithmically slow
growth of order.

However, in the tiling model the ordering temperature
and the temperature for slow dynamics coincide. Naive-
ly, we might hope that such a model will truly behave
like a glass in the sense of having difficulty ordering even
under slow cooling. More precisely, in a glass the relaxa-
tion time scales might diverge exponentially so that the
final (T=0) size of the correlated regions would grow
only like

L(T=0)~In(1/T), (4.3)

where I'= _dT/dtlT:TCR

(For simplicity, we will consider a linear cooling
schedule, T=T,,, —I't, although our results will hold for
any cooling schedules, except pathological ones having
I'=0or ».)

Does Eq. (4.3) hold for the characteristic length scale
in the tiling model? Figure 19 shows the growth of the
characteristic length scale L upon cooling at a rate [’
from an initial temperature T, somewhat above Tcg.
We see that the length scale grows rapidly in a rather
small region of temperature below Tcgp. (Recall that
since our method of measuring L is sensitive to thermal
fluctuations, the true characteristic length scale is larger
than that which is measured at temperatures T close to
Tcr-) Now let us look at the final length scale reached as
a function of I, as shown in Fig. 20. Since Fig. 20 is a
log-log plot, we expect downward curvature if the depen-

is the cooling rate at T=T .
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FIG. 19. The growth of the characteristic length scale L for
the tiling model during cooling, for various cooling rates I'.
Each set of Monte Carlo data is from an average over 10 runs
with error bars giving the standard error. The initial
configuration for each run is random (7= ) and then the sys-
tem is quenched to either T=8J, or 10J,, at which point the
slower cooling is begun. The transition temperature Tcg is
marked by the dotted line. (The slowness of the rise in L just
below Ty is a consequence of thermal fluctuations causing the
characteristic length scale to be underestimated.)

dence of L on 1/T is logarithmic. Clearly this is not the
case here. In fact, there is some upward curvature at fast
cooling rates with some evidence that the data may be
approaching a straight line (power-law dependence) for
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Characteristic length scale L at T = 0
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Cooling rate I' [units of J,/(MC steps/spin)]

FIG. 20. log-log plot of the length scale L at T=0 as a func-
tion of the cooling rate I'. A line of slope —% has been drawn
suggestively through the data at the lowest cooling rates.
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the slowest coolings.

From the point of view of modeling a glassy system,
these simulation results are disappointing, though not
surprising once we consider the cooling problem more
closely. Assuming that, for times ¢ at which T < TR, the
characteristic length scale satisfies a differential equation
of the form

dL o T TBET

dr I (4.4)
[with f5 given by Eq. (2.17)], we will now derive an ex-
pression for the expected dependence of L(T =0) on the
cooling rate T" which should be valid in the limit of
asymptotically slow cooling rate (I'—-0). This expression
will show that (even with the assumption that the barrier
to domain growth is proportional to the characteristic
length scale) the final length scale on slow cooling should
have a power-law, not logarithmic, dependence on the
cooling rate, and in this sense the model behaves similar-
ly to models which have been studied by others.%¢ The
growing free-energy barriers do, however, change the ex-
ponent of the power law from that which we would have
expected in their absence.

To start, we note that the characteristic length scale
below Ty should initially grow like

L(t)~t'73 (4.5)
where
t=%(TCR—T) (4.6)

is the time the system has been below T =Tcg. Howev-
er, once the barriers get large, the growth of L will slow
dramatically. To a first approximation, we will imagine
that there is a sharp cutoff. That is, we assume L grows
like Eq. (4.5) down to a certain temperature T, and then
freezes. Figure 19 suggests this approximation is not too
bad: The cutoff in the growth of L(T) is quite sharp, par-
ticularly at slow cooling rates. Substituting (4.6) with
T= T, into (4.5), we find that

173

L(T;,T)~

1
?( TCR - Tf) (4.7)

What should we choose for T/? One estimate is the
temperature at which the ratio of the barrier heights to
the temperature is of order 1:

L(T,,F)fB(Tf)=l 49)
T,

This is most certainly an overestimate of T, since we ex-

pect that L will still be growing when the barriers are this

small. A second estimate is to set the time to surmount

the barriers equal to the inverse of the cooling rate:

L(T,D)fpo(T.)/T
T T T g

(4.9)
Certainly, we do not expect much further growth once
the barriers have gotten this large and, in fact, the
growth in L would have already slowed down consider-
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ably by this temperature. This is, therefore, probably an
underestimate of 7,. We believe these two cutoffs
should, in fact, provide rigorous bounds on the asymptot-
ic form of L(T=0,T").

For now we will use the latter estimate [Eq. (4.9)], al-
though we will find our final result to be very insensitive
to the choice of the cutoff T,. To make further progress,
we will also assume

T —_—
Ter =1y (4.10)
Tcr

This assumption is justified once the cooling rate becomes
small, as can be seen from Fig. 19 and will be verified
self-consistently at the end of this calculation. We make
use of (4.10) to replace T, by T'cg in the denominator of
the exponential in Eq. (4.9). We also use (4.10) to write

expressing the fact that the free-energy barrier per unit
length grows linearly with decreasing temperature near
Tcg (see Fig. 7). Substituting (4.11) into (4.9) allows us to
solve for Tcg — T

TCR

Tep—Ty=————
RS aL(T,,T)

In(1/T) . (4.12)

Finally, we substitute (4.12) into our expression for
L(Tf,I‘), Eq. (4.7), and solve. Making use of our as-
sumption that L(T=0,I'")=L(T=T,,T), we arrive at
our final result:

—~1/4
r

LT=0,00~ 11971

(4.13)

If we had used (4.8) instead of (4.9), we would have ob-
tained the same result without the factor of In(1/T).
This shows that the result is very insensitive to our exact
choice of cutoff and, in particular, that this choice should
not change the exponent. Thus, we expect that in the
limit ' —0, and up to corrections logarithmic in I, the
characteristic length scale at T=0 is®’

L(T=0,I")~T"" 4.14)
with
(4.15)

r=

-

Note that if 7, were roughly independent of I' (as
would be true if the barrier heights did not depend upon
L), we would have obtained simply » =1, since the time
¢t that L has to grow would go like 1/I". The change to
r=1 is a nontrivial result of the growing barriers. It
reflects the fact that T, rises toward T'cg as the cooling
rate becomes smaller, because the larger L means larger
barriers at a given temperature.®® In fact, Eqgs. (4.12) and
(4.13) yield

Ter —T;~T'*, (4.16)

which confirms the validity of assumption (4.10) in the
limit ©C—0.
On the basis of this calculation, we conjecture that, in
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general, a free-energy barrier which goes continuously to
zero at the ordering transition should lead to power-law,
and not logarithmic, dependence of the zero-temperature
length scale on the cooling rate. This leads us to the con-
clusion that we need one of two things in order to get a
model with length-scale-dependent barriers which
behaves like our conception of a glass upon cooling: (i) a
free-energy barrier per unit length which jumps discon-
tinuously to a nonzero value at the ordering transition,
rather than rising continuously from zero; or (ii) a free-
energy barrier per unit length which is nonzero even
above the ordering transition. The latter is what is be-
lieved to occur in the random-field Ising model."?
Whether nonrandom models with one or the other of
these characteristics exist remains an open question.

V. SUMMARY, CONCLUSIONS,
AND OPEN QUESTIONS

The main goal of this paper has been to address the fol-
lowing question: Can we have free-energy barriers to or-
dering which increase with the size of the correlated re-
gions in a system which does not contain disorder (i.e.,
randomness in the Hamiltonian)? We have focused our
attention on the growth of order in systems far out of
equilibrium, in particular, systems which have been
quenched from T =« (a random state) to a temperature,
T < T, at which the equilibrium phase has long-range
order.

Expanding on the work of Lai, Mazenko, and Valls,?
who made the underappreciated point that free-energy
barriers proportional to the characteristic length scale
will lead to logarithmically slow coarsening, we have
given two closely related examples of models, free of ran-
domness in their Hamiltonians, in which such growing
free-energy barriers and logarithmic coarsening do,
indeed, occur. Although we have not yet been able to
rigorously prove that the domain growth in the two mod-
els is logarithmic, our Monte Carlo results strongly sup-
port our heuristic arguments that this is so.

The growing barriers arise because the mechanism by
which these systems coarsen involves the creation of a
step across a flat interface. Below the corner-rounding
transition temperature, Ty, the creation of such a step
costs a free energy proportional to its length. Thus, the
coarsening dynamics in our 3D model is logarithmically
slow only below Tg. In the corresponding equilibrium
system, T cgx marks an interfacial phase transition involv-
ing the rounding of corners on the equilibrium crystal
shape. It has long been understood that a connection ex-
ists between the roughening transition and the dynamics
of crystal growth. The connection between coarsening
dynamics and the corner-rounding transition provides a
natural extension of the relation between interfacial
phase transitions and growth dynamics.

Along the way, we have also studied the 2D Ising mod-
el with AFM NNN bonds. This is a particularly clean
realization of a system with length-scale-independent ac-
tivation barriers, and thus serves as a canonical example
of such a “class-2” system.’ Finally, we have also
discovered (or actually rediscovered*®) that even the
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nearest-neighbor Ising model (no NNN bonds) in three
dimensions shows anomalously slow coarsening at zero
temperature. This could be just a very long initial tran-
sient, but there exists the possibility that the exponent for
the growth law is truly smaller (or that scaling breaks
down altogether) at T=0. This is our one simulation re-
sult which still lacks a theoretical understanding.

A. Frustration and the slow growth of order

We believe frustration to be an important feature in
producing the slow dynamics. Here we would like to ela-
borate in what sense we mean ‘‘frustration.” The Ising
model with NNN bonds is clearly frustrated in the com-
monly used sense that not all the interactions can simul-
taneously be satisfied. On the other hand, this frustration
does not manifest itself in complicated equilibrium behav-
ior: for J,/J,>2d (where d is the dimensionality), the
ground state is simply ferromagnetic.

In what way then is frustration an important com-
ponent of our models? The sense of frustration which we
are looking for is more of a dynamic one: For the models
to lower their free energy they must evolve through states
of higher free energy. That is, in order to increase their
order on long length scales, the models must first de-
crease their order on shorter length scales. In the models
we have studied here, this “dynamic frustration” comes
about because these models prefer sharp domain edges
(i.e., no steps), and in order to coarsen, the system must
necessarily pass through states in which the domain
edges are not sharp. However, it seems likely that one
can come up with other ways (still without introducing
imposed disorder) to dynamically frustrate a system.

B. Applications to experimental systems

There are two questions which arise in considering the
applications of these ideas to experimental systems.
Looking most narrowly, we can ask whether there exist
systems in which the interactions might lead to slow
coarsening of domains. Taking a broader view, we can
ponder what our work says more generally about when a
system might have diverging barriers associated with a
diverging length scale. Since the latter question is what
originally got us started on this work, we will consider it
first.

1. Relation to the glass transition

The original motivation for this work was to demon-
strate the plausibility of our speculations on the glass
transition (discussed in Appendix A and, in more detail,
in Ref. 69), by searching for models without randomness
which nevertheless have free-energy barriers that diverge
with the length scale over which the system is ordered.
We believe we have found such models. Furthermore, we
have also demonstrated the more specific point that a
low-temperature ordered phase itself can have slow dy-
namics. This result is important to explain why the dy-
namics of a liquid cooled below the glass transition might
remain slow even away from the postulated second-order
phase transition at T, where the equilibrium correlation
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length should decrease back down to microscopic values.
One might naively expect that this small correlation
length means that the ordering dynamics should speed up
again, but we have demonstrated a situation in which the
relevant length scale with which the barriers diverge is
not the equilibrium correlation length, but rather the
length scale on which the nonequilibrium system has or-
dered. Thus, if a system finds itself far out of equilibrium
in the low-temperature phase, its dynamics can remain
slow even at temperatures well below the transition.

However, in one very important respect the models
which we have studied here do not themselves behave as
our conception of glasses: they do not have a logarithmic
dependence of the final ordering length on the cooling
rate. That is, the ordering is not as slow as we would ex-
pect when the system is cooled slowly through the order-
ing transition. The reason, as discussed in Sec. IV D, is
that the free-energy barrier per unit length for the tiling
model goes continuously to zero as the ordering tempera-
ture is approached from below (and for the 3D model, the
barrier goes to zero at Ty, a temperature well below the
ordering transition). It seems likely from the analysis
presented there that any system for which this is true will
not show a logarithmic dependence of the length scale on
cooling rate.

What do we need in a model to get a real glass? The
free-energy barriers in the models of this paper arise
purely from step free energies. As such, they are expect-
ed to go to zero at the transition temperature, as in the
tiling model, or even at a lower temperature, as in the 3D
model. Our conception of glasses is somewhat different.
We imagine that the growing order in a supercooled
liquid might consist, for example, of small icosahedrally
ordered regions (“balls”). The center of these balls would
be most tightly ordered. Further out from the center of
each ball, the atoms would be more loosely held because
of the frustration induced by trying to fill ordinary space
with icosahedral order. Note that, unlike in the models
considered in this paper, here the energy density in the
ordered regions is not uniform. This nonuniformity is vi-
tally important, since it means that domain walls would
like to sit preferentially in gaps between the tightly or-
dered regions. We believe that moving a domain wall
through a tightly ordered region could then cost a free
energy proportional to the size of the ordered region even
above the ordering transition.

This picture is closely analogous to the random-field Is-
ing model, in which the free-energy barriers are believed
to diverge with the diverging correlation length even
above T¢.>?® In this model, the nonuniformity is the re-
sult of spatial fluctuations in the (quenched) random-field
variable. Such fluctuations allow the free-energy barriers
per unit size to flipping a domain to retain a nonzero
value even above the transition temperature. That simi-
lar behavior can occur in a system without disorder
remains to be shown.

2. Relation to coarsening in experimental systems

Having discussed the broader question of free-energy
barriers which diverge with any ordering length scale, let
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us now consider the specific case we have studied, name-
ly, barriers which diverge with the characteristic length
scale in a coarsening system. First, we may ask the gen-
eral question: Has unexplained slow coarsening been
seen before in any experimental systems? It is usually
found that for grain growth in annealed metals and
ceramics, the grain size L can be fit reasonably well to the
form L(¢)~1"."° However, the exponent » has often been
found to be somewhat (and occasionally, considerably)
less than 1, particularly at lower temperatures. On the
other hand, it must be remembered that experimental
systems can have slow coarsening at low temperatures
(and early enough times) simply because, unlike in the Is-
ing model, there are always length-scale-independent bar-
riers involved with the elementary dynamical process of
moving atoms around. Furthermore, there has been no
general trend for the exponent to decrease at late times
(at least, no such trend which cannot be explained trivial-
ly by effects such as the finite size of the sample). Also,
the general trend has been for the exponent to be lowest
in dirty materials and closest to I for those of high puri-
ty. This suggests that at least many of the observed low
exponents are due to impurities.

At this point we should ask whether we have any
specific reason to expect such grain growth to be logarith-
mic. In fact, we do not, since grain growth in metals and
ceramics differs in several ways from coarsening in the
models which we have studied. First, we have no reason
to suspect that the interactions in these materials are
similar to those in our models. Secondly, in the grain
growth problem there is no superimposed lattice struc-
ture like we have in our models. Instead, the local orien-
tation of the lattice is determined by the local value of the
order parameter within the grain itself.

Rather than just diving headlong into the experimental
literature in search of slow growth, let us, instead, look
for systems in which the interactions are similar to those
of the models we have studied, that is, in which interac-
tions produce domains with sharp edges and corners.
Equilibrium crystal shapes have been measured for only a
few materials. (For a summary of the experimental
difficulties faced in the study of equilibrium crystal
shapes, see, e.g., Ref. 39.) Most of the materials studied
do not exhibit nonzero edge- and corner-rounding transi-
tions. The edges between facets are rounded at any
nonzero temperature (as they are in an Ising model in
which the NNN bonds are ferromagnetic or zero). The
one exception is the ionic salt sodium chloride, NaCl,
whose crystal shape is strictly cubical at low tempera-
tures. In fact, the work of Shi and Wortis*® on the inter-
face model of Sec. IV was motivated by experimental ob-
servations’! of a corner-rounding transition at T =~ 650°C
for NaCl crystals believed to be in equilibrium with their
vapor. Furthermore, some earlier experiments on the
NaCl crystals actually looked at the coarsening of the
[111] interface of a NaCl crystal for temperatures in the
vicinity of 650°C.”> Pictures of the coarsening interface
look strikingly similar to those we obtain for the tiling
model.”

Is the slow coarsening dynamics we predict actually
seen in these experiments on NaCl? The answer is un-
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clear. The coarsening length scale observed after anneal-
ing does peak near the corner-rounding transition and
then drop at lower temperatures. These experimental ob-
servations prompted Shi and Wortis to note that “the
fact that coarsening goes away as T is further lowered
beyond [the corner-rounding transition temperature] is
probably a kinetic effect (slow equilibration at lower tem-
peratures).” This sounds very promising but several
strong caveats are in order. The first is again the re-
minder that in this experimental system there are
(coarsening-length-scale-independent) barriers to the ele-
mentary process of mass transport which might be large
enough to cause slow dynamics over the time scales of
the experiment.’* The second caveat is that the time and
temperature dependences of the coarsening which are ac-
tually reported in the experiments are difficult to inter-
pret. The final caveat is that the range and quality of the
experimental results are limited: The experiments were
only carried out in a rather narrow range of temperatures
within about 25% of the corner-rounding transition.
Furthermore, there exists the possibility that surface con-
tamination or other factors played an important role in
what was seen. (The experimentalists who studied the
equilibrium crystal shape itself’! note that the degree of
coarsening seen in these earlier experiments’? is so large
as to be inconsistent with their results.)

In the final analysis, we must conclude that while the
experiments provide some tantalizing hints that interest-
ing dynamics may be present, we cannot say that they
provide either support or refutation for our claim of loga-
rithmically slow coarsening. It seems unlikely that the
detailed study of the dynamics necessary to detect the
predicted logarithmically slow coarsening will be made
unless the experimentalists know what they are looking
for. We hope that future experiments on NaCl, or other
crystals which have a corner-rounding transition, might
look more closely at the dynamics of coarsening of a
[111] interface, and particularly at the time dependence
of the coarsening length for temperatures not too near
the corner-rounding transition. Such experiments will
likely prove difficult to perform and it may be hard to
separate the effects discussed in this paper from those due
to the large elementary energy barriers associated with
mass transport. However, we think the rewards of such
an experiment make it worthy of the attempt.

C. Open questions

Finally, we would like to leave the reader with some
open questions to ponder along two different lines.

(1) How widespread are systems with logarithmically
slow coarsening dynamics or, more generally, with free-
energy barriers to ordering which diverge with the order-
ing length scale? Have we found a few systems which are
exceptions or are such systems quite common? What
features are important in producing such barriers? In
what experimental systems might we expect to see slow
dynamics?

(2) Can we find models (without randomness) in which
the free-energy barriers occur in such a way that they
lead to slow ordering dynamics even when a system is
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cooled slowly? That is, can we find models which truly fit
our conception of glasses?
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APPENDIX A: SLOW DYNAMICS IN GLASSES

In this appendix, we will briefly discuss our specula-
tions about the glass transition and how these specula-
tions motivated us to search for models which coarsen
only logarithmically in time.?®

When a liquid is supercooled below its freezing point,
it gradually becomes more and more viscous. This con-
tinues until some temperature T, at which the time scales
for relaxation become so slow that the liquid can no
longer equilibrate on the time scales of the experiment.”*
For all intents and purposes, the system behaves as a
solid, and yet it has no long-range order. It has been apt-
ly described as ““a liquid suspended in time.””> We call
such a state a glass, and T, the glass transition tempera-
ture.

There has been little discernable progress in under-
standing the existence of the glass transition despite over
half a century of work on the problem. Many theories
have been presented but no real consensus seems to be
forming. There is one point on which everyone agrees—
the “transition” at T, itself is purely a dynamical
phenomenon. In fact, the location of the transition varies
with how one chooses to define it. A patient experimen-
talist who is willing to wait longer to allow the system to
relax (i.e., who makes a measurement on a longer time
scale) would report a slightly lower value for T,. For the
purposes of uniformity, the location of T, is convention-
ally defined as that temperature where the viscosity
reaches 10" poise.

But why does the liquid become so sluggish? One
reason systems become sluggish at low temperatures is
because movement of the atoms involves activation over
free-energy barriers. In order to test for such activated
behavior, one can plot the logarithm of the viscosity 7 (or
any other measure of the relaxation time scale, such as
the inverse of the characteristic frequency of dielectric re-
laxation or of the frequency-dependent specific heat’®) vs
1/T.* On such an Arrhenius plot, activation over a con-
stant barrier should produce a straight line. Indeed, for
some materials, like SiO,, the data can be fit well with a
straight line. However, for most other systems there is
clear upward curvature on the plot. In fact, it has long
been known that viscosity data for glasses can often be fit
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reasonably well”’ with the empirical Vogel-Fulcher (VF)
law:

A/T=Ty)

n=1nge , (A1)

where T is typically tens of degrees below T,. (For
Si0,, of course, T, =0 works quite well.)

What physics underlies this empirical law? If we still
want to interpret the data within the framework of free-
energy barriers to relaxation (which is not the only possi-
ble interpretation), we are forced to conclude that the
barriers themselves must be increasing as we lower the
temperature. If we believe Eq. (A1) holds all the way
down to T, then the barriers are, in fact, diverging. The
Arrhenius law yields Eq. (A1) if the barriers vary with
temperature as
-6

T—T
2 (A2)

T)=A4

where 6=1 gives the VF law exactly, although other
powers in the neighborhood of 1 seem to fit data about
equally well.

The power-law divergence at T, in Eq. (A2) should im-
mediately remind us of the divergences which would
occur in many measured quantities if 7T, marked a
second-order phase transition, and yet the free-energy
barriers to relaxation is not usually one of those quanti-
ties which diverges at the transition. In fact, in ordinary
second-order phase transitions, it is the time scales to re-
laxation which diverge with a power law (so-called “criti-
cal slowing down”); whereas Eq. (A1) implies that ap-
proaching T, time scales are diverging exponentially
fast.

Why might barriers be diverging at this transition?
Since the correlation length is one of the traditionally
divergent quantities at a transition, it seems natural to as-
sume that the barriers may be growing with the size of
the correlated regions. In other words, perhaps the su-
percooled liquid is trying to organize itself into some or-
dered state, but gets stuck very quickly because of the
growth of the barriers.

If such a scenario occurs in nature, why has it not been
seen before? The answer to this question is twofold:
First, the very existence of such diverging barriers makes
a close approach to the equilibrium transition at T, im-
possible since the time scales diverge exponentially fast.
The system will necessarily fall out of equilibrium well
before reaching T, (no matter how patient the experi-
mentalist is). Thus, it is not surprising that these transi-
tions would be among the last to be understood. Second-
ly, there is, in fact, at least one system in which this
scenario is believed to occur, namely, the 3D random-
field Ising model and its experimental realization, diluted
antiferromagnets. The dynamics in these systems is so
slow that one can never find the ordered state by cooling
and it took a rigorous mathematical proof’® to convince
skeptics that there is an equilibrium ordered phase at low
temperatures.” It has been suggested,”? and is now gen-
erally agreed,’ that the reason the dynamics is so slow is
that there are energy barriers to equilibration which
diverge with the size of the ordered regions. Similar, but
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even more complex, mechanisms may be at work in spin
glasses. >80

However, there is a problem with blissfully applying
these ideas to glasses: An important component in all the
above-mentioned systems is imposed disorder (i.e., ran-
domness in the Hamiltonian), whereas in glasses, imposed
disorder (due to impurities, defects, or the like) is not
thought to play a vital role. But is imposed disorder real-
ly a necessary condition to get such diverging barriers, or
will a weaker condition suffice?

The motivation for the work presented in this paper
was to investigate the possibility that frustration without
disorder can, at least in some circumstances, produce
diverging free-energy barriers to relaxation and the re-
sulting slow dynamics.2! We present heuristic arguments
and strong numerical evidence for a class of models that
have barriers which diverge with the relevant length scale
associated with the size of the ordered regions. However,
this length scale is not the equilibrium correlation length,
but rather the characteristic length scale in a coarsening
system, that is, in a system which has been quenched well
below its transition temperature. When cooled slowly,
our models are not glassy (see Sec. IV D).®! Nonetheless,
the discovery of such slow dynamics for nonrandom
coarsening systems is exciting in itself, and is also a large
step toward our more ambitious goal of producing mod-
els which behave in a glassy manner even when cooled
slowly. Finally, it is worth noting that the work present-
ed here, while motivated by our speculative ideas about
the glass transition, is in no way dependent upon the
correctness of these speculations.

APPENDIX B: CALCULATING THE ENERGY
OF CONFIGURATIONS

In this appendix, we briefly describe how we calculate
the energy of interface configurations for the 3D Ising
model with both J, and J, bonds. Recall that our con-
vention is that J; >0 and J, >0 when the NN bonds are
ferromagnetic and the NNN bonds are antiferromagnet-
ic. We compute the energy relative to a system with no
interface.

Consider a unit area of (microscopic) interface between
domains, a ‘“plaquette,” as shown by the shaded square in
Fig. 21. Each such plaquette is associated with a broken
J, bond (energy cost of 2J,) which passes through its
center. Every plaquette also has two J, bonds passing
through each of its four edges. Since each of these edges
is shared with another plaquette, we associate only four
of these eight J, bonds with each plaquette. If the pla-
quette is part of a flat interface then these four antiferro-
magnetic bonds (which are broken in the bulk) will now
be satisfied. We therefore associate with each plaquette
an energy cost of E, =2J, —8J,.

Note, however, that there is an additional energy asso-
ciated with each (unit length of) bend in the interface (see
Fig. 21). The reason is that along the edge of the pla-
quette where the bend occurs, only one rather than both
the J, bonds passing through that edge will be satisfied.
This means the energy per unit length of the bend is
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(a) (b)

FIG. 21. Two examples of interfaces between domains. We
can compute the energies of these interfaces by associating an
energy of E,=2J, —8J, with each plaquette of interface (shad-
ed) and an energy of E,=2J, with each unit length of bend
(bold solid lines) in the interface. For example, the interface in
(b) has 2 more plaquettes and 14 more bends than the interface
in (a). Therefore, the energy of (b) is 4J, +12J, higher than the
energy of (a).

E,=2J,.

We now summarize the two rules of energy account-
ing: (1) each plaquette (unit area of interface) costs an en-
ergy E,=2J,—8J,, and (2) a bend in the interface costs
an energy per unit length of E, =2J,. These two rules
provide us with a simple understanding of the T'=0
phase diagram of this model: For J,/J, <4, the fer-
romagnetic ground state becomes unstable because the
energy per plaquette is now negative. This means that it
becomes energetically favorable to form interfaces be-
tween regions of up and down spins. However, it is still
unfavorable to have bends in the interface, which is why
the ground state is striped, with alternating planes of up
and down spins (and thus flat, planar interfaces).

Also, we can see why the J, bonds lead to nonzero
edge and corner-rounding transition temperatures. The
bend energy E,=2J, produces an attraction between
steps, which stabilizes sharp edges and corners up to
nonzero temperatures.

APPENDIX C: IMPLEMENTATION
OF THE MONTE CARLO ALGORITHM

The standard method of implementing Monte Carlo
(MC) dynamics with random updating proceeds as fol-
lows: One first chooses a spin at random, and then flips
this spin with an ‘“‘acceptance probability” given by Eq.
(1.6). The traditional time unit is one MC step/spin,
defined as N such attempts, where N is the number of
spins.

This method works very well for temperatures T which
are not too small compared to the energy costs AE to flip
most of the spins, so that the “acceptance rate” (the frac-
tion of the spin-flip attempts which are accepted) is
reasonably large. This is definitely not the case in our
system. Rather, we are in the limit where almost all the
attempted flips will be rejected because most of the spins
have large energy costs AE >>T to flipping. For such sit-
uations, a much more efficient algorithm has been pro-
posed by Bortz, Kalos, and Lebowitz,? the so-called
“continuous time” Monte Carlo method. It has been
used previously to study coarsening in Potts models."
The basic insight leading to continuous time MC is that
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the standard MC method is hampered by its fixed time
step. When few energetically favorable flips are possible,
the standard MC must adjust by lowering its acceptance
rate, whereas what one would like to do is to keep the
rate of acceptance high and, instead, compensate by in-
crementing the time step by a larger amount. By doing
this correctly, one can actually make every attempt a suc-
cessful flip. The method proceeds as follows.

(1) Add together the acceptance probabilities for all the
spins in order to obtain a total flip rate I'. Increment the
time by an amount 7 (in MC steps/spin) where 7 is a ran-
dom number chosen from an exponential distribution
with mean 1/T.

(2) Choose a spin, with the probability for a given spin
to be chosen equal to its fractional contribution to the to-
tal rate. Thus, spin i with acceptance probability I"; will
be chosen with probability I'; /T .

(3) Flip this spin and go back to step 1.

The drawback of this method is that each such flip en-
tails quite a bit of overhead, particularly in step (2). In
actual practice, as Bortz et al. pointed out, the algorithm
can be speeded up by sorting the spins into classes. The
idea is that at the start of a run one classifies each spin
according to the number of nearest neighbors and next-
nearest neighbors aligned with it. (For the 3D model,
there are 91 such classes.) One then keeps a table of the
acceptance probability for a spin in each class. The total
rate I'; for a class j is then this acceptance probability
multiplied by the number of spins in the class. Choosing
which spin to flip is now done in two stages. First, a class
J is chosen with probability I'; /I". Then which spin in
this class to flip is chosen totally at random (since all
have an equal acceptance probability). One then
reclassifies this spin and its nearest and next-nearest
neighbors, calculates the resulting change in the total rate
I', and repeats the procedure of incrementing the time
and choosing the next spin to flip.

When the acceptance probabilities are high, this
method still has enough additional overhead to make it
slower than the standard method. Therefore, for
coarsening simulations we have often employed a hybrid
of the two algorithms: At short times when the domains
are small and the acceptance rate for the standard MC
method is high, we use the standard method. At later
times, we switch over to the continuous time method. At
the latest times, the savings over the standard method
can be very substantial. For example, in a system of

J

C[”O](\/Zr =-11V 2’ {S(r

+s(r;)s[r; +

where s(r;) is the value of the Ising spin at the location
r;, and r is a non-negative integer. (The trivial depen-
dence on time has been suppressed for brevity.)

It is important to notice that our measure of L(?), Eq.
(3.1), is inversely proportional to Cj;49;(0)— Cj1g01(1) (us-
ing the notation for the 3D case). Thus, when we mea-

r, H(X+§)r]+s(r)s[r; H(X—=F)r]+s(r;)s[r; +

+EZ+R)r]+s(r)s[r +E—Rr ]},
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40000 spins, there may be an average of less than one
successful flip per time unit (i.e., the acceptance rate for
the standard method is less than 1 in 10%).

The two methods yield equivalent results. This can be
seen by noting that for both methods, the ratio of the oc-
currence of flipping two spins is given by the ratio of
their acceptance probabilities. Also, for both methods,
the total number of flips per time step will, on average, be
given by I', the sum of all the acceptance probabilities.
At early times, we have compared the two methods nu-
merically and find that they do indeed give equivalent re-
sults within statistical errors.

APPENDIX D: SCALING AND ANISOTROPY
OF THE CORRELATION FUNCTION

Here, we present a short discussion of Monte Carlo re-
sults for the scaling properties of the correlation function,
C(r,t), for the model discussed in Secs. I-III. The scal-
ing hypothesis states that at late times the correlation
function C(r,?) is not a function of r and ¢ separately, but
rather depends only on the ratio r/L(t):

C(r,t)=C[r/L(1)] .

The term “scaling” is also used to refer to the stronger
statement one makes by replacing L (¢) with its asymptot-
ic form t", i.e.,

C(r,t)=C(r/t") .

(D1

(D2)

In the case of our 3D model, we would replace ¢" in Eq.
(D2) by In(z). However, we know such a form will not
hold very well for our data since we are just beginning to
see the expected asymptotic behavior of L(z) at the latest
times reached. Thus, we shall concentrate on determin-
ing whether we can see the weaker form of scaling im-
plied by Eq. (D1).

We are also interested in the existence of anisotropy in
the correlation function. To investigate this, we look at
the correlation function along a few different directions.
In two dimensions, we consider it along the lattice axes
and along the lattice diagonals. In three dimensions, we
look along the lattice directions, the face diagonals ([110]
direction), and the body diagonals ([111] direction). As
an example, here is the explicit definition we use for the
correlation function along the face diagonals in three di-
mensions:

(§+2)r]+s(r;)s[r; H(F—2)r]

(D3)

[

sure L(z) in this way, we are studying the initial slope of
the correlation function in the direction of the lattice
axes. This has important implications for the scaling
plots to be presented below: When we plot Cygq)(7,2) vs
r/L(t), we are forcing the initial slopes of the correlation
function at different times to be equal. Therefore, we will
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necessarily see good scaling near the origin. This limits
the extent to which we can determine whether or not
scaling is satisfied, particularly when we look at C(r,t)
along the lattice axes.

For the 2D nearest-neighbor (J,=0) Ising model,
Humayun and Bray?®® have recently tested scaling with
extensive simulations on systems of size 10002. They find
that scaling is well obeyed and furthermore that there is
no evidence for anisotropy in the scaling function [i.e.,
scaling plots for C(r,¢) along the lattice axes and along
the lattice diagonals fall on top of one another]. As a
check on our numerics, we have repeated this calculation
on 5007 systems and find the same results.?

Let us now consider scaling in the 2D model for J,70.
Figure 22 shows results for two values of 7'/J,. There
are three points to be made. First, there is little or no
difference seen for the two values of T/J,. Second, un-
like the case of J, =0, here we can clearly see anisotropy
in the correlation function. This should not surprise us
given the “blocky” appearance of the configurations.
However, we belie\s /tlrlat this anisotropy should disap-
pear once L(t)>>e *' ', in which case the domain boun-
daries should have a significant number of kinks in them.
For the two temperatures which we have shown in Fig.

22, we are always in the regime L(t) <e¥2’T We have
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FIG. 22. Scaling and anisotropy in two dimensions. This
shows a scaling collapse of the correlation function, C(r,1), for
the 2D Ising model. The collapse is achieved by plotting C(7,?)
vs r /L (t). Results are given for 7=0.42J, and 0.72J, from 30
runs each on a 400? system. The correlation function along
both the lattice axes (X) and the diagonals (O) is plotted.
[C(r,t) is shown at 18 times (10=<7<2X10° MC steps/spin)
and 12 times (10 <t <2 X 10* MC steps/spin) for T=0.42J, and
0.72J,, respectively. The late-time data along the diagonals
(t=2X10° MC steps/spin for T=0.42J,, and t>2400 MC
steps/spin for T=0.72J,) are shown by larger squares than ear-
lier time data.] There is clearly anisotropy in the correlation
function at these temperatures out to the latest times studied.
See text for a discussion of scaling.
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investigated the anisotropy at two higher temperatures,
T=1.8J, and T=3.6J,.”° Particularly for the latter, we

can get out to the regime L(z)>>e JZ/T, and we find the
anisotropy is indeed less pronounced, particularly at later
times. However, the shift in the curves with time is quite
small and there is still some detectable anisotropy even at
the latest times [where L (¢) = 30] for both temperatures.

The third point concerns scaling: When we look only
along the lattice axes, the correlation function appears to
scale fairly well over all times. However, we have ex-
plained above why this is a rather poor test of scaling.
When we look instead along the lattice diagonals, scaling
is fairly good only at late times, once the ¢!/ growth of
L(t) has resumed (although, as noted above, we would
predict that the curves should continue to shift very slow-
ly to the right over time to reduce the anisotropy). At
earlier times the correlation function does not satisfy
scaling, with the curves lying clearly to the left of those at
later times.

Finally, we look at scaling in the 3D model for J,50.
Figure 23 shows a scaling plot for the correlation func-
tion for T=2J, and T=3J, along the lattice axes; and
for only T=3J, along the face and body diagonals. As in
two dimensions, we can clearly see anisotropy in the
correlation function. We conjecture that, unlike what we
expect in two dimensions, here this anisotropy will
remain out to all times. Along the lattice axes, the col-
lapse of the data appears to be quite good (besides a little

1.0 T T T
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FIG. 23. Scaling and anisotropy in three dimensions. This
shows a scaling collapse of the correlation function, C(r,t), for
the 3D model along the lattice axes (X ), face diagonals (),
and body diagonals (+), for T=3J, in an 80 system, averaged
over 20 runs. The collapse is achieved by plotting C(r,t) vs
r/L(t). Results at 14 times (10 <t < 80000 MC steps/spin) are
included. Also included for the case of the lattice axes are re-
sults for T=2J,, in an 80> system averaged over 10 runs, at 18
times (10 <t <2X 10° MC steps/spin). Anisotropy in the corre-
lation function is clearly apparent. See text for a discussion of
scaling.
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deviation upward in the tails at the latest few times, prob-
ably as a result of finite-size effects), and there is no per-
ceivable dependence on the value of T'/J,. However, in
the diagonal directions, there is a tendency for the data at
early times (say, t =650 MC steps/spin) to lie below and
to the left of the later time data, gradually approaching it
as time increases. For the later times, scaling is quite
good. This suggests that the scaling regime for T =3J, is
not reached until ¢t ~10> MC steps/spin. This is about
the same time when the growth in L (¢) begins to look
roughly logarithmic.

The conclusion from our studies of the correlation
functions is that, at late times, scaling [in the weaker
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sense of Eq. (D1)] appears to be satisfied in two and three
dimensions even when J,70. However, our results are
certainly not sensitive enough to preclude the possibility
of small deviations from scaling. At earlier times, there
are some deviations from scaling. These are likely due to
the fact that the NNN AFM bonds, in slowing the
growth of L (¢), also slow the approach to the scaling re-
gime. The one clear result of the NNN bonds is to make
the correlation function anisotropic. This is not surpris-
ing given the blockiness of the configurations when
J,7#0. Our conjecture is that this anisotropy will remain
in the 3D model out to all times, while in the 2D model

. . 49,/T
the anisotropy will slowly decrease once L(z)>>e
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FIG. 1. (a) A square domain of “up” spins in a system of
“down” spins, in two dimensions. The next-nearest-neighbor
bonds introduce an energy barrier of 4J, to flipping agfofrper
spin (dark gray). As a result, it takes a time of order e ' to
shrink the entire domain. (b) A cubic domain in three dimen-
sions. (Here, for clarity, most of the individual spins have not
been shown.) There is an energy barrier of 12J, to flip a corner
spin (dark gray) and a barrier of 4J, to flip each spin along the
edge (light gray). Thus, unlike in two dimensions, the total bar-
rier to flip all the spins along an edge is proportional to the
linear size, L, of the domain; and the time to shrink the domain
is now exponential in L.



FIG. 12. A sample configuration for the tiling model.
Viewed from the [111] direction, an interface in a 3D model can
be represented by a tiling of the plane by rhombi of three orien-
tations, provided that the interface has no overhangs when thus
viewed. (We have shaded the three types of rhombi differently
in order to distinguish them more easily and enhance the 3D
perspective.) If we assign an energy of 2J, to each unit length
of boundary between the different types of tiles, then the ener-
getics of this model matches that of the 3D Ising model with
next-nearest-neighbor antiferromagnetic bonds.



FIG. 13. An example of an interface configuration which
cannot be represented by the tiling model. Part of the interface
is hidden from view (i.e., there is an “overhang”) and this results
in some incomplete (triangular) tiles.



FIG. 14. The elementary dynamical move in the tiling model.
In the 2D spin representation, the move consists of flipping a
spin which has exactly three of its six nearest neighbors aligned.
In tiling language, it consists of a rotation of an elementary hex-
agon (shaded) by 60°. From a 3D perspective, we see that it
represents an elementary cube either added or taken away.
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FIG. 21. Two examples of interfaces between domains. We
can compute the energies of these interfaces by associating an
energy of E,=2J, —8J, with each plaquette of interface (shad-
ed) and an energy of E,=2J; with each unit length of bend
(bold solid lines) in the interface. For example, the interface in
(b) has 2 more plaquettes and 14 more bends than the interface
in (a). Therefore, the energy of (b) is 4J, +12J, higher than the
energy of (a).



