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This thesis is divided into two parts. Chapters 2-5 describe work on the sta-

tistical physics of cellular membranes, motivated by experiments that suggest

they are tuned close to a two dimensional liquid-liquid critical point. Chapter

6 describes work towards an information theoretic understanding of how sim-

ple effective descriptions emerge out of systems with complicated microscopic

details. Chapter 1 gives a detailed introduction to both of these topics.

Chapter 2 presents a minimal model for a cellular membrane consisting of

a nearly critical two dimensional fluid coupled to a fixed cortical cytoskeleton.

We argue that proximity to criticality is thermodynamically necessary to explain

the presence of heterogeneity at 10− 100nm, as is commonly observed in exper-

iments. We further show that this model naturally recapitulates many of the

findings in the membrane ‘raft’ literature.

In chapter 3 we argue that proximity to criticality in the membrane is dis-

tinguished, in part, by the presence of long ranged critical Casimir forces that

act between membrane bound proteins. We estimate the form of this potential

using several techniques, and show that it is expected to be ∼ kBT over tens of

nanometers. We further argue that these forces could be playing important roles

in cellular processes.

In chapter 4 we show that the dynamics of synthetic membranes tuned close

to a critical point are in a newly predicted universality class particular to two



dimensional liquids immersed in a three dimensional, non-critical, bulk fluid.

With just a single free parameter, a model for this universality class quantita-

tively describes all of the observable time dependent correlation functions.

In chapter 5 we explore the possibility that general anesthetics act by taking

the membrane away from its liquid-liquid critical point. We present experimen-

tal evidence that shows that general anesthetics do indeed depress the critical

temperature (Tc) in cell-derived vesicles by approximately 4K. In addition, we

show that a receptor allosterically regulated by the membrane’s composition

could be sufficiently disrupted by this change in Tc to explain the most relevant

phenomenology of anesthesia- that certain ligand-gated ion channels have their

response to ligand dramatically potentiated.

In chapter 6 we apply an information theoretic framework to two models

from statistical physics, where we see the emergence of a continuum descrip-

tion of diffusion and of the universal behavior seen at the Ising critical point.

As these develop, we find that a characteristic hierarchy of parameter impor-

tance emerges, similar to that seen in ‘sloppy’ models from systems biology and

elsewhere.
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2.1 Ising criticality in the Plasma Membrane. (A) The model pre-
sented here assumes that cell plasma membranes are tuned to
the proximity of a 2-D Ising critical point with a miscibility phase
boundary given by the thick (black) line. Contours show regions
of constant correlation length. Their shapes are identical for any
system in the 2-D Ising universality class except for the slope of
the rectilinear diameter (long-dashed (green) lines tilt, see Sup-
plement), which describes how the fraction of phases changes
with temperature. Experiments in GPMVs give a critical tem-
perature around 22C and calibrate the contours [147]. Most
simulations are conducted at the (red) point which is hypothe-
sized to represent physiological conditions. (B) Below the criti-
cal temperature, intact plasma membranes on living cells appear
uniform at optical length scales ((red) arrows), while attached
plasma membrane vesicles are macroscopically phase separated
((blue) arrowheads point to phase boundaries). Detailed meth-
ods for (A) and (B) are provided in Supplementary Material at
the end of this chapter. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Membrane lateral heterogeneity is modulated by coupling to
cortical cytoskeleton. Ising model simulations were conducted
over a range of temperatures in the absence (A-C) and presence
(D-F) of coupling to a cortical cytoskeleton meshwork. Red sites
indicate locations where pixels are fixed to be white, mimicking
a position where a lipid or protein is directly or indirectly con-
nected to a fixed cytoskeleton. Below Tc the bare Ising model
is phase separated (A). Long range order is disrupted when the
model is coupled to cortical cytoskeleton (D) because the struc-
ture is cut off at the length of the cytoskeletal corrals. At Tc the
bare model has structure at all length scales (B), whereas cou-
pling to cytoskeleton cuts off the largest fluctuations (E). Above
Tc, composition fluctuations that form in the bare Ising model
(C) tend to localize along cytoskeletal filaments in the pres-
ence of coupling (F). (G) A higher magnification image (from
boxed region in F) highlights that the cytoskeleton-preferring
white phase forms channels around filaments with a width given
roughly by the correlation length (20nm). The linear pinning
density is 0.2 nm−1. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

xi



2.3 Coupling to cytoskeleton acts to entrain channels of white pixels
over filaments, leaving pools of black pixels within cytoskeletal
corrals. (A) The time averaged density of white pixels is corre-
lated with the position of the cytoskeleton at 37oC (1.05TC). In
the absence of cytoskeletal coupling (inset) the average density
is trivially uniform. (B) The spatial auto-correlation function,
G(r), is not significantly altered by the presence of cytoskeletal
coupling (compare dashed (blue) and dot-dashed (red) lines). In
each case G(r) decays over a correlation length of roughly 20nm.
In addition, the spatial cross-correlation function between white
pixels and pinning sites (solid (red) line) indicates that long
range correlations extend over roughly one correlation length.
(C) In a hypothetical membrane not tuned to the proximity of
a critical point at 37oC, but instead with a critical temperature
of −120oC, the channels gathered by the cytoskeleton are much
thinner, and their contrast is diminished. This is the expected
behavior for a well mixed membrane not near a critical point.
(D) All of the corresponding correlation functions decay over a
much shorter distance. . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Membrane dynamics and component diffusion are sensitive to
criticality and connectivity to cortical cytoskeleton.(A). Near the
critical point (Tc = 0.95T ), time-time correlation functions for
membranes without coupling decay slowly, and become uncor-
related after roughly 1s (dashed (blue) line). In the presence
of coupling to cortical cytoskeleton, fluctuations remain corre-
lated even after long times (higher dotted (red) line at infinite
times). By contrast, systems that are far from critical (dash-
dotted (green) line, Tc = 0.5T ) are uncorrelated after a fraction
of a millisecond and coupling them to the cytoskeleton makes
them decay to a small non-zero value (lower dotted (green)
line). (B) Dynamics at Tc=0.95T are also measured by track-
ing components through simulation time-steps. Tracks for sin-
gle black (light (pink)) and white (dark (blue)) strongly cou-
pled diffusers are shown (see text). (C-D) Mean squared dis-
placements (MSDs) are calculated from many traces and indi-
cate that (C) weakly coupled black lipids are slightly confined
while (D) more strongly coupled black crosses are more strongly
confined. Freely diffusing particles have MSDs that are linear in
time (dashed line in C and D with slope 1, or linear in inset). We
quantify the confinement by the ratio of D100µs to D50ms, whose
log is the length of the double sided arrow. . . . . . . . . . . . . . 31
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2.5 Confined diffusion depends upon criticality and the linear den-
sity of pinning sites. (A) The ratio of D100µs to D50ms obtained from
MSD curves like those shown in Figure 2. 4 are used to quantify
the confinement of black crosses as a function of temperature
and picket density. Near criticality, very weak pinning sites in-
duce a large amount of confinement, whereas far from criticality
even dense pinning leads to only slightly confined diffusion. (B)
Representative simulation snapshots 1 and 2 have similar lev-
els of confinement and have parameters indicated in part A. (C,
D) The ratio of D100µs to D50ms is plotted as a function of com-
position and picket density plot at 37oC (1.05Tc) for both black
(C) and white (D) traced crosses. When composition is varied,
whichever of the two types is disconnected diffuses with more
confinement (part B, images 3 and 4). The surface is a smoothed
interpolation of the values from the black data points. Kusumi
and coworkers [99, 102] report experimental values between 5
(thick gray line) and 50 (thick dashed line) which is similar to the
numbers found here. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 To demonstrate the accuracy of our time-time correlation func-
tions, we reproduce the slowest decaying curve from the figure
2.4A and plot both versions on the same graph. A slight devia-
tion is visible at very late times. . . . . . . . . . . . . . . . . . . . 47

2.7 The mean squared displacement of strongly coupled white (A)
and black (B) diffusers at 1.05Tc,with the same static properties
as in Figure 2.4 D of the main text. In each figure the black line
shows the mean square displacement for the case when both vis-
cosities are equal. In the other cases the diffuser is a component
of the high (blue) or low (red) viscosity liquid. The y-axis is nor-
malized to 1 at a time such that the traced particle has performed
on average 2000 attempted exchanges. The x-axis is normalized
so that in each case the displayed traced particles are proposed
to swap approximately 2000 times (0.5 ms in the main text) so
that all have an identical microscopic attempt rate. As can be
seen, particles that normally inhabit the low viscosity liquid see
some degree of extra confinement, and vice versa. . . . . . . . . . 56
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3.1 Effective potentials between bound inclusions are plotted on
linear (top) and log-log (bottom) graphs, for inclusions where
r1 = r2 = r. The CFT results for both like and unlike interac-
tions (thick dashed lines) and for potentials containing a free BC
agree with the power-law scaling of the two-point function (thin
black dashed line) at large lengths, but separate at small separa-
tions. We also compare to Bennett method simulations at Tc as
described in the text. We run simulations for each of the blocky
spheres shown in (C). Each curve is plotted collapsed by using
r as the distance to the farthest point from its center, with no
free parameters. The results of our Monte-Carlo pair potentials
are all shown plotted against d/r (thin solid lines with colors as
in (C)) with the theory curves in dashed lines. The CFT predic-
tion is in excellent agreement with simulation data even for very
small inclusions well past the applicability of the power law pre-
diction of the perturbative approach. The value of the potential
is fit at the farthest accessible simulation point, where we add
the CFT prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 We consider potentials of mean force in configuration (A), with
disks of radius r1 and r2 separated by a distance d with boundary
conditions A and B. We conformally map this to configuration
(B), where both disks are centered on the origin, with the first
at radius 1 and the second at radius R(d, r1, r2). We then map
this to a cylinder shown in (C) of circumference 1 and length
−iτ = log(R)/2π where we associate restricted partition functions
in an imaginary time 1 + 1D quantum model with potentials of
mean force in the original configuration. . . . . . . . . . . . . . . 66

3.3 We compare our critical results with potentials obtained from
Monte-Carlo simulations away from the critical point along the
temperature axis. As can be seen, the potentials are longest
ranged at the critical point. The repulsive interaction is also
steepest at the critical point, though the attractive one has a
larger force at short distances slightly away from the critical
point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Fluorescence micrographs of vesicles of diameter 200 µm. (A)
As temperature changes from T > Tc (T = 31.25◦C, Tc ≈ 30.9)
to T ∼ Tc (T = 31.0◦C) fluctuations in lipid composition grow.
Below Tc, at T = 28◦C, domains appear. Scale bar = 10 µm. (B)
A movie of composition fluctuations within a vesicle above Tc.
Large fluctuations persist for seconds (white arrows), whereas
small ones disappear by the next frame (black arrow). Scale bar
= 20 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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4.2 . (A and B) Rescaling experimental data closest to Tc by kzτ col-
lapses all curves to zeff = 2.8, consistent with Model HC. Normal-
ized structure factors are shown for ξ = 13 ± 2.2 µm and three
video rates: 10 frames per second (fps, solid lines), 2 fps (short
dash), and 0.5 fps (long dash). Colors denote wavenumbers k
= 1.1 µm−1 (top curve, blue) to 3.0 µm−1 (bottom, red). (C and
D) Simulations solely to verify technique. Structure factors of
Kawasaki dynamics at T = Tc blurred in time to mimic exper-
imental limitations collapse at zeff = 3.6 ± 0.2, consistent with
z = 3.75 for 2D Model B. Colors range from k = 1.1 µm−1 to 3.1
µm−1. Insets show collapses used to determine bounds for zeff

and failure of collapse at zeff = 3. . . . . . . . . . . . . . . . . . . . 75
4.3 Data is in excellent agreement with Model HC. (A) Filled sym-

bols: Dynamic exponent zeff from scaling collapse of experimen-
tal data as in Fig. 2A-B. Open symbols: Model B simulation in
which zeff approaches ∼ 3.75. (B) Decay time, defined as when
S (k, τ)/S (k, 0) = e−1. Large symbols indicate wavenumbers 1.1
and 3.3 µm−1. (C) Normalized structure factors S (k, τ)/S (k, 0). In
panels B and C, experimental data is denoted by symbols, 2D
Model B by a grey line, Model HC (HC) with Lh = 6 µm by a
solid line and Model HC with Lh = 0 by a dashed line. . . . . . . 77

4.4 In the hydrodynamic theory described here, the value of Γ(k)
does not depend strongly on the value of ξ in the static struc-
ture factor over the range explored experimentally in this study.
Experimentally measured values of ξ are on the order of 10µm
(15µm in Fig. 3B and C of the main text). This is quantified by the
ratio Γξ=10µm(k)/Γξ=∞(k), where Γξ(k) is the decay rate predicted by
the theory outlined in section 4.6 with static correlation length ξ.
This ratio is plotted over a range of k values, with the fit value of
the hydrodynamic length Lh = 5.5µm. Over the range of k values
probed experimentally (0.8(µm)−1 < k < 4(µm)−1, bounded by the
red dots), the farthest this ratio deviates from a value of 1 is by
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CHAPTER 1

INTRODUCTION

What general statements can be made about the physics of biological sys-

tems? Since the decline of explanations for life involving a vital essence, there is

agreeement that biological systems obey and are limited by the same fundamen-

tal laws of physics that govern the motion of rocks, elementary particles and

superconductors. However, just as a beautiful theory of superconductors re-

quires physics that cannot be easily derived from a quantitative understanding

of the underlying particles that make them up [2], we should expect that simple

yet quantitative theories in biology will also involve mathematical formalism

and physical quantitates that do not appear in descriptions of their microscopic

components.

One area of physics which very dramatically limits biological systems is

thermodynamics and statistical physics. The first two laws of thermodynam-

ics state that while energy must be conserved, the entropy of the universe must

increase, on average, as any physical process proceeds. Biological systems obey

these laws in the sneakiest of ways- they carry out an agenda which seems at

many levels to be reducing entropy, turning microscopic building blocks into

ordered strands of DNA and broadly organizing their microscopic components

into structures that seem to be more ordered than their inputs. They do this

by ensuring that each seemingly entropy reducing step is coupled to the move-

ment of energy from a high temperature bath (eventually in the form of photons

from the sun) to a low temperature bath (waste heat here on earth). In this re-

spect, biological systems are somewhat analogous to a heat engine, like the one

that drives a car. They are certainly subject to the same constraints relating the
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amount of work it can do given a fixed amount of chemical energy.

However, other statistical issues that biological systems face seem to have

few parallels with familiar statistical mechanical problems. What sets the accu-

racy with which your brain can determine that a face is familiar? How well can

the immune system distinguish a chemical signature of an invading pathogen

from a native ‘self’ part? At a more microscopic level, how much free energy

must be expended to accurately copy the information in a DNA strand?

A recent approach has focused on using the tools of information theory

[123, 25] to analyze statistical noise in biological systems [136, 137, 138, 163,

9, 10, 38, 54]. This approach seems very natural. The eventual goal of an or-

ganism (or its genes) is to produce copies of itself that faithfully contain the

information for making more copies. At a smaller level, all cells are involved

in information processing to varying degrees. A neuron, most obviously, must

take input from a variety of different sources and decide when to fire an action

potential [94]. Immune cells must survey their chemical environment and detect

signs of foreign substances and infection. Even muscle cells must contract reli-

ably only after receiving proper signals from other cells, and they must adjust

their metabolism accordingly. At the molecular level proteins must appropri-

ately respond to chemical signals. For example, ion channels in neurons must

open and close according to the electrical potential across the membrane, the

chemical potential of various second messengers like calcium and the presence

of specific signaling molecules. They must do this processing in the presence

of substantial noise coming from (for example) the shot noise associated with

the need to detect a concentration through the diffusion of individual parti-

cles [10, 38], and thermal noise associated with the need to distinguish chemical
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specificities which are frequently of order kBT [72, 133, 63].

My thesis can be roughly grouped into two main areas each of which hope-

fully shed light on particular ways in which the statistical mechanics of biologi-

cal systems are unique, and the ways in which they are similar to descriptions of

models from other areas of physics. Chapters 2-5 focus on the statistical physics

of cellular membranes. This work is motivated by an astonishing experimen-

tal finding- that the plasma membranes of cells seem to be tuned close to a 2D

liquid-liquid critical point [147]. Although these critical points have been the

focus of intense study in physics, cellular membranes are the first clear example

of a system which seems to be naturally tuned close to a thermal critical point.

The finding inspires a wide array of questions, which this thesis just begins to

address. A more detailed introduction to this work is provided in section 1.1.

Chapter 6 describes work towards a geometric framework for understanding

the statistics of modeling. Why is it that the behavior of biological systems is of-

ten comprehensible, despite the enormous complexity and appearent random-

ness of its microscopic parts? A quantitative answer for this is suggested by the

finding that effective models for these systems are often sloppy [59] with a hier-

archy of importance in parameter space. Chapter 6 examines multi-parameter

models from physics and shows how they become sloppy as they are observed

at coarser scales. An introduction to that work is provided in section 1.2.

1.1 Statistical physics of cellular membranes

The plasma membranes of cells are complex two dimensional soups composed

of thousands of different lipids and proteins arranged into a fluid bilayer. In

addition to separating the inside of the cell from the outside, an enormous
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number of chemical processes are carried out in the membrane itself. In par-

ticular, most signaling systems begin with the binding of a signaling molecule

to a receptor, with the first few steps of the signaling cascade occurring at the

membrane [65, 39, 124]. Early models assumed that membranes were uniform

at lengths larger than a few nanometers, the natural length of a lipid, with

lipids acting essentially as two-dimensional solvents for embedded proteins.

A wide array of recent biochemical evidence suggests, surprisingly, that bilay-

ers are actually heterogeneous with liquid structures ranging in size from a few

to hundreds of nanometers [105, 90]. Early evidence came from studies that

showed that certain detergents extracted a reproducible subset of membrane

bound components, leaving the rest intact [96]. Since then, a wide range of

techniques have seen evidence of these structures [121, 160, 107].

There is also accumulating evidence for their role in regulation, particularly

in signaling [129, 120, 90, 65, 67, 127, 4]. Cholesterol depletion and other exper-

imentally induced lipid perturbations can have profound implications on func-

tional signaling outcomes. Furthermore, the addition of signaling molecules

typically leads to changes in the spatial distribution of receptors, often initi-

ating clustering of specific components including receptors, and other neces-

sary downstream components, while excluding inhibitors in a manner sensitive

to lipid perturbations [143, 145]. Perhaps most striking, experiments from the

Baird-Holowka group performed with structurally defined trivalent DNA lig-

ands [67] showed that signaling outcomes are strongly dependent on the spatial

separation of the binding sites.

In parallel, work in Giant Plasma Membrane Vesicles (GPMVs, see

figure2.1B) isolated from living cells have shed light on the physical mecha-
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nisms underlying these biochemical findings. The first such study [6] showed

that by cooling these GPMVs below room temperature, they would phase sep-

arate into two macroscopic liquid phases. This has not been observed in intact

cells, which we argue is due to interactions with the cytoskeleton (Chapter ??

and [93]). Precedence for this type of phase separation is found in synthetic

systems of three components where the two phases are termed liquid ordered

and liquid disordered and are determined primarily by the packing of the lipid

chains, with fully saturated lipids and cholesterol prefering the liquid ordered

phase [150, 146, 71]. Quite surprisingly, further studies of these GPMVs showed

that they pass very near to a critical point in the Ising universality class on the

way to phase separation [147]. This finding was quite unexpected; these critical

points can be found in model membranes [150, 146] but require the careful tun-

ing of composition and temperature (or of two composition controls at a given

temperature). The Ising up-down symmetry is emergent at this critical point-

the two liquid phases are quite different, and so both ’magnetization’ (here re-

lated to the chemical potential of some combination of components) and ’re-

duced temperature’ (a combination of temperature and the chemical potential

of other components) must both be tuned.

In fact, the finding of criticality, though surprising, goes far in explaining the

biological findings described above. Indeed, it solves a thermodynamic puzzle.

The natural length scale of a lipid is 1nm. Given this, structures ∼ 10nm should

cost enormous free energies to maintain. Far from a critical point, assuming an

entropic cost of kBT , with no balancing energetic cost, organizing a circular re-

gion of radius 20nm should cost roughly 400πkBT . Such a structure would also

be very unstable in a liquid membrane, presumably disintegrating by diffusion

(typically D ≈ 1µm2/s) giving a lifetime of around 1ms. However, near a crit-
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Figure 1.1: We predict that the membrane is heterogeneous with fractal pud-
dles enriched in specific components (light vs dark here) all coupled to a rigid
cytoskeletal meshwork (red posts). In chapter 2 we show that this model natu-
rally explains many of the mysteries in the literature of biological membranes.
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ical point, we expect to see structures of this size as manifestations of critical

phenomenon. In [93] we propose a model (shown pictorially in figure 1.1 and

described in detail in chapter 2) wherein these critical fluctuations, coupled to

the underlying cytoskeleton are responsible for the large and long-lived struc-

tures seen in the biological literature.

Figure 1.2: In Chapter 3 we show that membrane bound proteins feel an effec-
tive force mediated by critical composition fluctuations of the membrane itself.
We show that this force decays over a length of roughly ξ ∼ 20nm, much longer
ranged than electrostatic interactions which are screened over less than 1 nm in
the ion rich environment of the cytoplasm.

How could a cell make use of such proximity to this critical point? A wide

variety of systems are thought to make use of ’lipid rafts’ and we would like to

say that most of these processes are, by extension, making use of the proxim-

ity of the cell to criticality. The hypothesis that criticality mediates these effects

allows more specific statements to be made. In chapter 3 we explore the pos-
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sibility that proximity to criticality allows proteins to exert forces on each other

over tens of nanometers. Although the magnitude of this potential is of order

the thermal energy, kBT , it is much longer ranged than more familiar electro-

static forces which die off over ∼ 1nm in the highly screened ionic environment

of the cytoplasm. This membrane-mediated force could profoundly influence

signaling cascades, and it seems possible that the cell could make use of it to

allow for information from a large number of receptors to be more rapidly and

efficiently integrated.

Alternatively, one could imagine that proteins embedded in the membrane

are able to directly read out the membrane’s order parameter, or composition,

by coupling its functional state to its boundary conditions with the surrounding

membrane. Proteins subtly change their structure, or allosteric state, either in

response to changes in their environment, or upon their modification by a non-

equilibrium event (such as phosphorylation). The prototypcical example of the

former is hemoglobin [79], which changes its affinity for oxygen in response to

pH (and by extension CO2 levels) to more efficiently deliver oxygen to more ac-

tive tissues. Other proteins are allosterically sensitive to calcium levels, voltage

(for membrane bound proteins), and a plethora of other local conditions. There

is evidence that membrane bound proteins are allosterically mediated by the

composition of the membrane they are in, and, perhaps by extension, the local

Ising fluctuations. Soubias et. al. [131], showed that Rhodopsin, (a G-protein

coupled receptor sensitive to light) adjusts the height of its membrane spanning

region to conform to its surrounding lipids, and that further, its efficiency at

transducing signals is strongly dependent on its lipid environment. More cir-

cumstantial evidence comes from general anesthesia, whose affects are thought

to be exerted through the allosteric modification of membrane bound ion chan-
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nels. There is considerable controversy as to whether this effect is directly me-

diated by the anesthetics, or as a secondary effect mediated by the membrane

itself [58]. In chapter 5 we show that one effect of anesthetics is to move the

membrane away from its liquid-liquid critical point. We further argue that this

change could have a profound affect on a membrane protein which makes use

of the critical point for allosteric regulation. In particular, we show that an ion

channel with particular boundary conditions would be ∼ 50% more sensitive to

its natural ligand under anesthetic conditions, roughly in agreement with the

findings of the anesthetic literature.

Pressing questions about the statistical physics of membranes remain unan-

swered by this thesis. Should we expect other cellular systems to be close

to thermal critical points? Work by Bialek and collaborators [98] has sug-

gested that biological systems are often tuned close to statistical and other more

broadly defined critical points, although we are not aware of any other biolog-

ical systems that seem poised at analogous thermal critical points. In addition,

a quantification of the usefulness of criticality remains elusive. Why should the

cell use critical forces to communicate between receptors, rather than by produc-

ing second messengers or by simple diffusion? Are there general reasons why a

cell might want to have its statistical state spatially entangled, as happens near

the Ising critical point 1? Finally, it would be interesting to understand, mecha-

nistically, how cells tune their membrane close to a critical point. I hope that I

can help answer these questions in future work.

1This was suggested by Paul Ginsparg, and despite much musing and discussion I think that
that the details in this thesis offer only a partial answer to the question.
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1.2 Information geometry and Sloppy models

Biology is extremely complicated at the molecular level. Composed of thou-

sands of types of molecules diffusing and carrying out complicated reactions,

a microscopic characterization of the full behavior of a single cell at the micro-

scopic level is surely an impossible task. Nonetheless, certain aspects of the

behavior of biological systems can be very predictable. Indeed, models often

quantitatively describe their behavior without any reference to the individual

molecules that make up the system.

Work by Jim Sethna’s group quantified this and shed some light on how it

occurs, by considering the dependance of observable data on the parameters of

seventeen models from the system’s biology literature [59]2. They found that

all of these models had a very striking hierarchy of importance in parameter

space. They quantified this structure by finding the best fit to data for a particlar

model, where the gradient of the cost with respect to parameters is 0. At that

point they looked at the Hessian, the second derivative of the cost with respect

to all parameters. They found that in each model the Hessian has a characteris-

tic ‘sloppy’ structure (see figure 1.3). A few ‘stiff’ parameter combinations have

large eigenvalues, corresponding to directions in parameter space that can be

readily inferred from data: in these parameter space directions, a small change

leads to a large increase in the cost. The remaining ‘sloppy’ directions are pro-

gressively harder to measure, with each successive direction harder to measure

by a similar amount from the previous one.

Mark Transtrum, Jim Sethna and I [139, 140] developed a geometric frame-

2Indeed, the sloppy spectrum they found is not limited to biological systems, and can also
be found in the parameter dependance of quantum Monte-Carlo and in interatomic potentials,
as well as in a wide range of models with many parameters.
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Figure 1.3: Eigenvalues of the Hessian are evenly spaced in log in seventeen
models from the systems biology literature (a-q). This spectrum implies a hi-
erarchy of importance in parameter space. Some ‘stiff’ parameter combina-
tions can be inferred with may orders of magnitude more precision than other
‘sloppy’ ones. Figure is from Gutenkunst et. al. [59] on which I am not an au-
thor.

work to answer additional questions about this structure. Firstly we wanted

to demonstrate that it was not simply the result of a bad choice of parame-

terization. Often, model parameters can have different units, and we wanted

to ensure that the observed sloppy spectrum wasn’t merely an artifact of our

particular choice of parameter labeling. To do this we used information geom-

etry [1] to define a manifold of possible models (a mathematical derivation of

this is provided in chapter 6) whose shape transcends the particular choice of
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Figure 1.4: Three dimensional cross-sections of the model manifold (see fig-
ure 1.6 for two alternative views) for a model consisting of a sum of expo-
nentials. Each direction of the model corresponds to the value of the function
F(t) =

∑
µ Aµ exp(−t/τµ) for a particular t, where As and τs are model parame-

ters constrained to be greater than zero. The model has a characteristic ‘hyper-
ribbon’ structure, with a long direction, a medium width and an extremely thin
third direction. Notice that all points inside of the model manifold are ‘close’
to a model boundary, where some parameter(s) are infinite or 0. Figure is from
Transtrum et. al. [139]
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parameters that label it, much as the shape of the surface of the earth transcends

the longitude and latitude lines we use to label it.

We found that typical manifolds have a characteristic ‘hyper-ribbon’ struc-

ture (see figure 1.4). This structure shows that the local parameter hierarchy is

mirrored in a hierarchy of importance in the set of all possible models. Some di-

rections in model space can be followed for long distances, defining a large one-

parameter ensemble of possible models. Other directions quickly lead to model

boundaries, where some parameters have become infinite (or zero) without dra-

matically changing model behavior 3. We furthermore showed that the widths

are roughly proportional and aligned with the Eigenvalues and Eigenvectors of

the Hessian, which, as we will see forms a metric on the model manifold (see

figure 1.5 and chapter 6)

In addition, our geometric approach led to a deeper understanding of why

these models so often have this hyper-ribbon, or sloppy structure. In [139]

we argued that typical presentations of data in least squares problems constrain

themselves. Such data often come in the form of a time-series, or other continu-

ous function sampled at discrete points. Presuming that this function is smooth,

constraining the value of the data at a few points can dramatically constrain the

value that the function can take at other points (see figure 1.6). Constraining

the value of the function at a point corresponds to taking a cross-section of the

model manifold, and this immediately implies that cross-sections of the model

tend to be much thinner in their longest direction than the manifold itself. In

[139] we showed that this naturally leads to the hyper-ribbon structure so char-

acteristic of multi-parameter models.

3Mark Transtrum is currently exploring the intriguing possibility that these boundaries can
be used to make an automatic procedure for model reduction- by iteratively moving to the
closest model boundary
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Figure 1.5: In an 8 dimensional model in which four exponentials are summed,
the manifold’s widths are mirrored in the eigenvalues of the Hessian, which
forms a metric on the model manifold(see chapter 6). Figure from Transtrum
et. al. [140]

The implications of this sloppy structure are manyfold. Firstly, it means

that it is possible to make predictive models without complete, or even partial

knowledge of the underlying microscopic details of a system. In our view, mod-

eling is best thought of as constrained interpolation, and ’good’ data should be

expected to constrain possible model behavior to a small region of the model

manifold, but not necessarily to a small region of parameter space. As such, we

also predict that most microscopic parameters cannot be inferred from data.

The work presented in chapter 6 attempts to connect these findings to mod-

els from physics, where a similar hierarchy is also often present. Continuum

limits describe many systems with seemingly very different underlying details.

For example, the collective behavior of a large number of molecules is often de-

scribed by the continuum limit of a liquid, with the macroscopic parameters of

density, viscosity and compressibility being the only ones needed to describe
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Figure 1.6: Typical data constrains itself naturally leading to the hyper-ribbon
structure of typical model manifolds. The possible value of a sum of exponen-
tials F(t) with positive decay rates is shown, under the constraints that F(0) = 1
and F(1) = 1/e. Constraining the value at F(1/2) dramatically restricts the val-
ues that F can take nearby (in black), leading to a hierarchical hyper-ribbon
structure. Figure from Transtrum et. al. [139]

most observable phenomenon. Just as in typical systems biology models, these

effective parameters are not related in any obvious way to microscopic param-

eters. The viscosity of water, for example, would be extremely difficult to calcu-

late from a molecular level description of water, and, conversely, we wouldn’t

dream of trying to infer molecular details of water by measuring the rate at

which different objects fall through it under gravity. In chapter 6 we show

that the typical ways that our measurements are limited, by spatial or temporal

blurring, selectively and anisotropically blur information about molecular level

details. The result is that coarsened data often leads to a model manifold with a

similar sloppy spectrum to that seen in least squares problems.
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CHAPTER 2

CRITICALITY AND THE CYTOSKELETON

Abstract 1 - We present a minimal model of plasma membrane heterogene-

ity that combines criticality with connectivity to cortical cytoskeleton. Our

model is motivated by recent observations of micron-sized critical fluctuations

in plasma membrane vesicles that are detached from their cortical cytoskele-

ton. We incorporate criticality using a conserved order parameter Ising model

coupled to a simple actin cytoskeleton interacting through point-like pinning

sites. Using this minimal model, we recapitulate several experimental obser-

vations of plasma membrane raft heterogeneity. Small (r ∼ 20nm) and dy-

namic fluctuations at physiological temperatures arise from criticality. Includ-

ing connectivity to cortical cytoskeleton disrupts large fluctuations, prevents

macroscopic phase separation at low temperatures (T ≤ 22oC), and provides a

template for long lived fluctuations at physiological temperature (T = 37oC).

Cytoskeleton-stabilized fluctuations produce significant barriers to the diffu-

sion of some membrane components in a manner that is weakly dependent on

the number of pinning sites and strongly dependent on criticality. More gener-

ally, we demonstrate that critical fluctuations provide a physical mechanism to

organize and spatially segregate membrane components by providing channels

for interaction over large distances.

1This chapter has been published in The Biophysical Journal with co-authors Stefanos Pa-
panikolaou, James P. Sethna and Sarah L. Veatch [93]
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2.1 Introduction

It is hypothesized that the fluid plasma membranes of mammalian cells are

heterogeneous over distances much larger than the nanometer size typical of

their lipid and protein components [128, 3]. Furthermore, it is thought that this

heterogeneity, often called lipid rafts can impact the localization and dynamics

of membrane bound proteins involved in functional processes [83, 35, 128, 3].

The physical origins and functional significance of this structure are contentious

[101, 35], and the hypothesis itself poses a thermodynamic puzzle: building an

extended fluid region rich in specific membrane components should cost a free

energy proportional to the regions area due to the loss of entropy. The same

structure potentially gains free energy proportional to its area by bringing to-

gether components which have lower interaction energies. Both of these effects

are of the order kBT per lipid area, where kB is Boltzmanns constant and T is the

temperature. Barring a remarkable cancellation, a domain with a size of 20nm

would seem extremely unstable. Either the entropic contribution should win

and the equilibrium structures should be much smaller, or energy should win,

and the structures should be permanent and macroscopically phase-separated.

One way a cell could make stable domains with dimensions in the tens to hun-

dreds of nanometers is to carefully balance the entropic and energetic contri-

butions, tuning the fluid membrane near to a miscibility critical point (Figure

2.1A). Under these conditions, structures with characteristic sizes much larger

than individual molecules naturally emerge because the free energy required for

their formation is near kBT . When not exactly at the critical point these critical

fluctuations are cut off at a size called the correlation length. In a simple system

of two components, the two parameters that need tuning would typically be
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temperature and the ratio of the two components; in multi-component model

membranes or compositionally complex cell membranes at fixed temperature,

these two parameters could be the molar fraction of any two components. Mis-

cibility critical points, and their associated long-range critical fluctuations, have

been observed experimentally in three component bilayer membranes contain-

ing cholesterol using a variety of methods [40, 68, 148, 150]. When membrane

lipid composition is carefully tuned and temperature is set above the critical

temperature, membranes are in a single yet heterogeneous liquid phase as veri-

fied by NMR and fluorescence microscopy [148, 68, 69, 150]. Below the critical

temperature, membranes contain two distinct phases, called liquid-ordered and

liquid-disordered. At temperatures below but close to the critical temperature,

the line tension is small leading to undulations of domain boundaries (< 250nm)

[40, 68]. In model membranes, manifestations of critical behavior are expected

[5] (Figure 2.1A), near critical points [148, 150]. However, compositions must be

carefully tuned to see this near-critical regime. For the vast majority of composi-

tions, the miscibility transition is observed as an abrupt appearance of a second

liquid phase either by lowering temperature or changing membrane composi-

tion [28, 149, 150].

Remarkably, there is experimental evidence that plasma membranes of

mammalian cells have compositions tuned near to a critical point at physio-

logical temperatures. Giant plasma membrane vesicles (GPMVs) isolated from

living cells appear homogenous to light microscopy at 37oC (310K), indicating

that they are uniform at optical (250nm) length scales. However, below a critical

temperature around 22oC (295K), these vesicles phase separate into two macro-

scopic fluid domains [7]. Near the transition, GPMVs undergo equilibrium

fluctuations that are visible at micron scales, in quantitative agreement with the
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Figure 2.1: Ising criticality in the Plasma Membrane. (A) The model presented
here assumes that cell plasma membranes are tuned to the proximity of a 2-D
Ising critical point with a miscibility phase boundary given by the thick (black)
line. Contours show regions of constant correlation length. Their shapes are
identical for any system in the 2-D Ising universality class except for the slope of
the rectilinear diameter (long-dashed (green) lines tilt, see Supplement), which
describes how the fraction of phases changes with temperature. Experiments
in GPMVs give a critical temperature around 22C and calibrate the contours
[147]. Most simulations are conducted at the (red) point which is hypothesized
to represent physiological conditions. (B) Below the critical temperature, intact
plasma membranes on living cells appear uniform at optical length scales ((red)
arrows), while attached plasma membrane vesicles are macroscopically phase
separated ((blue) arrowheads point to phase boundaries). Detailed methods for
(A) and (B) are provided in Supplementary Material at the end of this chapter.

fluctuations observed in purified model membranes carefully tuned to a criti-

cal point, as well as with theoretical predictions of two dimensional criticality

[147]. One prediction that arises from this past GPMV study is that cell plasma

membranes at physiological temperatures of 37oC (310K) reside only 5% above

this critical point in the absolute Kelvin units natural to thermodynamics. This

implies an experimentally extrapolated correlation length of roughly 20nm in

GPMVs at 37oC (Figure 2.1A). This experimental result motivates the current

simulation study. One major aim of our current work is to demonstrate that
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criticality in plasma membranes, normally found only in carefully tuned lab-

oratory environments, explains many experimental observations of membrane

heterogeneity typically associated with lipid rafts. Plasma membrane vesicles

differ from intact cell plasma membranes in many important ways; most no-

tably, GPMVs lack connectivity to the cytoskeleton. In intact cells, the plasma

membrane couples to cortical cytoskeleton through diverse and partially un-

derstood interactions [22, 114]. In addition to providing structural support,

there is increasing evidence that the cytoskeleton plays a role in promoting lat-

eral heterogeneity at the cell surface. It is widely speculated that connections

to the cytoskeleton prevent the large-scale accumulation of membrane compo-

nents into phase separated domains [7, 90, 65], even under conditions where

phase separation is readily observed when membrane-cytoskeleton coupling

is disrupted; macroscopic phase separation is easily observed in cell-attached

GPMVs even as the remaining intact plasma membrane remains homogeneous

(Figure 2.1B). Here we explore a minimal model for an intact plasma membrane

coupled to its cortical cytoskeleton by taking advantage of a remarkable prop-

erty of nearly critical systems called universality The shapes, sizes, and lifetimes

of fluctuations depend only on the dimensionality of the system, the universal-

ity class, and the parameters that describe the relative proximity to the critical

point (Figure 2.1A). Universality enables us to make quantitative predictions

about compositionally complex cell plasma membranes through simulations of

much simpler model systems. We stress that though cell membranes are not ex-

actly at a critical point at 37oC, they are tuned close enough to feel its universal

features.
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2.2 Methods

All simulations use a square lattice Ising model with a conserved order param-

eter implemented in the standard way. A detailed description of all methods

can be found in Supplementary Material at the end of this chapter and are

summarized below. Temperatures are calibrated by setting the critical temper-

ature of the Ising Model to 295K. All simulations are performed on periodic

400x400 arrays, with a pixel length corresponding to 2nm. Simulations per-

formed to deduce static properties use non-local dynamics to decrease equili-

bration times. Dynamical simulations use Kawasaki dynamics supplemented

with moves which swap like pixels at the same attempt frequency as unlike

pixels. Simulation steps are converted into time using a conversion factor of

approximately D = 4µm2/s. Correlation functions are normalized to one at spa-

tial infinity. We implement a cytoskeletal meshwork using a random, periodic,

Voronoi construction to generate filaments that have a width of one pixel (1nm).

The pinning sites are chosen randomly along these lines with constant density,

which is 0.4 except in Figure 2.5 where it varies. A pixel sitting on a pinning

site is constrained to be white. In diffusion experiments other white pixels are

free to swap with pixels sitting on the pinning sites. Strongly coupled objects

have infinitely strong interactions with their neighbors, forbidding any move

which ends with a black pixel as a nearest neighbor to a strongly coupled white

object or vice-versa. Modifications of the Ising Model have previously been

used to model the thermodynamic properties of purified bilayer membranes in

the vicinity of the main chain transition temperature [33], where there is some

evidence of critical behavior [49]. In these models, while membrane composi-

tion is conserved, components are allowed to flip between two or more internal
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states which in turn interact differently with neighboring components. We have

chosen to implement a standard conserved order parameter 2D Ising model to

model cell plasma membranes because it is the simplest possible model that

incorporates criticality, because its behavior is in quantitative agreement with

micron-sized fluctuations observed in isolated GPMVs and three component

model membranes [147, 68], and because it represents the expected universal-

ity class for liquid-liquid phase separation (see section 2.6).

2.3 Results

2.3.1 Overview of the model

We model the plasma membrane using a 2D Ising model as described in Ma-

terials and Methods. In our model, membrane components such as lipids and

proteins are represented as black or white pixels on a square lattice, where pix-

els of one type (e.g. white) correspond to components that tend to populate one

membrane phase (liquid-ordered vs. liquid-disordered). We implement a con-

served order parameter, meaning that the number of white (or black) pixels does

not change with time. This model does not accurately reproduce the detailed

arrangement of lipids and proteins that occur at very short distances less than

several nanometers, since their arrangement will depend strongly on detailed

molecular interactions. Consequently we choose to not refer to pixels as lipids

or proteins. Though microscopically different, the Ising model will produce an

accurate description of plasma membrane organization on larger distances, if

our basic assumption of criticality holds. Though theory and experiment sug-
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gest Ising criticality, we expect that our results would hold even if more exotic

criticality turned out to be present in the system. They arise from a large corre-

lation length and time, both of which are generically present in critical systems,

and both of which have been directly observed in GPMVs [147].

In the Ising model, the critical point occurs when there are equal numbers of

black and white pixels, with temperature tuned to the onset of phase separation.

This corresponds to a membrane that has an equal surface area of liquid-ordered

and liquid-disordered phase at the miscibility phase boundary. In most of this

study, we assume that the plasma membrane has a critical composition, with

a phase diagram similar to that shown in Figure 2.1A. We also assume that the

surface fraction of phases does not change substantially with temperature. Such

temperature dependence would lead to a tilt in the systems rectilinear diameter

(green line in Figure 2.1A). In simulations this would manifest itself as a tem-

perature dependent change in the ratio of black to white pixels. Though experi-

mental observations of GPMVs show nearly equal fractions of coexisting phases

at temperatures well below Tc(at experimentally observable Tc − T ∼ 10oC) we

theoretically expect similar results even if this ratio were to show significant

temperature dependence (see section 2.6).

We generate a cortical cytoskeleton network from a Voronoi construction (see

Materials and Methods). In the results presented here we choose an average

length of an actin defined region of 130nm which is in the range (41-230nm)

found using electron microscopy techniques [99]. We model membrane-

cytoskeleton connectivity by fixing individual pixels to be in a particular state at

random sites along these filaments. These fixed pixels represent locations where

membrane components, either proteins or lipids, are rigidly held through ei-
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ther direct or direct interactions with cytoskeleton. At these positions, there is

a strong preference for either liquid-ordered or liquid-disordered components.

This could represent a membrane protein that strongly prefers to be surrounded

by disordered phase lipids, or a lipid such as PiP2 that could prefer to be sur-

rounded by either liquid-ordered or liquid-disordered phase components. We

pin pixels of the same type (white), presuming that the interaction with the cy-

toskeleton tends to prefer one of the two low temperature phases. The linear

density of pinning sites has not been determined experimentally and is a pa-

rameter that is varied in our model, along with temperature and composition.

This description of cytoskeleton-membrane coupling is simplistic, but we

expect it to capture the qualitative behavior as long as connections on average

prefer one of the two lipid environments. In plasma membrane vesicles, critical

temperatures are typically near room temperature (Tc = 22oC = 295K) [147].

We primarily investigate physiological temperature, T = 37oC = 310K = 1.05Tc

where Tc is measured in Kelvin. To highlight the aspects of our model that

arise due to proximity to a critical point, we include simulations at physiological

temperatures for homogeneous membranes whose critical points are as low as

155K (T = 2Tc).

2.3.2 Phase separation is disrupted in the presence of cortical

cytoskeleton

Below Tc, in the absence of pinning, white and black pixels organize into do-

mains that are half the size of the simulation box, indicating that the system is

phase separated (Figure 2.2A). In the presence of cytoskeletal coupling, compo-
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Figure 2.2: Membrane lateral heterogeneity is modulated by coupling to cortical
cytoskeleton. Ising model simulations were conducted over a range of tempera-
tures in the absence (A-C) and presence (D-F) of coupling to a cortical cytoskele-
ton meshwork. Red sites indicate locations where pixels are fixed to be white,
mimicking a position where a lipid or protein is directly or indirectly connected
to a fixed cytoskeleton. Below Tc the bare Ising model is phase separated (A).
Long range order is disrupted when the model is coupled to cortical cytoskele-
ton (D) because the structure is cut off at the length of the cytoskeletal corrals.
At Tc the bare model has structure at all length scales (B), whereas coupling to
cytoskeleton cuts off the largest fluctuations (E). Above Tc, composition fluctu-
ations that form in the bare Ising model (C) tend to localize along cytoskele-
tal filaments in the presence of coupling (F). (G) A higher magnification image
(from boxed region in F) highlights that the cytoskeleton-preferring white phase
forms channels around filaments with a width given roughly by the correlation
length (20nm). The linear pinning density is 0.2 nm−1.

nents instead follow the template of the underlying meshwork (Figure 2.2D).

As a result, black and white pixels do not organize into domains that are larger

than the characteristic size of the cytoskeletal corrals. If the average meshwork

size is smaller than the optical resolution limit of light microscopy, as is the case

in a variety of cell types (41-230nm) [99, 102], then our model predicts that in-

tact cell plasma membranes would appear uniform even at temperatures where

an isolated membrane would be phase separated (Figure 2.1B).
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Our model is an example of a 2D Ising model with quenched (spatially fixed)

random field disorder. A robust feature of the 2D Ising model [57] is that af-

ter the addition of any such disorder there is no macroscopic phase separation

at any temperature. 2 This holds for arbitrarily weak (or in our case sparse)

random fields or if different pixel types are held at each pinning site. The lack

of macroscopic phase separation depends on the fixed anchoring of the pin-

ning sites, since even slowly diffusing mobile components will not necessarily

impede phase separation. A fundamental principle of statistical physics states

that the dynamics of a system do not affect its static equilibrium properties.

A consequence of this is that a slowly diffusing protein, if it is mobile at all,

will still be able to partition selectively into the low temperature phases. Note

that the GPMVs in Figure 2.1B contain substantial protein content. The addi-

tion of mobile components could either raise or lower the transition tempera-

ture depending on their microscopic interactions [132, 161]. We note that the

quenched disorder implemented here is different from the annealed disorder

investigated by Liu et al. [91] in which an actin meshwork was assembled on

a pre-existing liquid-disordered domain. In this case, the authors observe that

the actin meshwork stabilizes the liquid-ordered liquid-disordered phase sep-

aration. This is likely due to the presence of pinning sites occupying only a

fraction of the membrane surface rather than covering the entire surface. This

could be implemented in our simulations by allowing pinning sites to separate

with the membrane phases.

2Consider the energy of inserting a domain of black pixels of finite size L into a region dom-
inated by white pixels. In d dimensions, this incurs a line tension cost which is positive and
scales like Ld−1. In the presence of a random field, there is also a random change in the energy.
For large domains this random energy scales like Ld/2, the square root of the volume. For d ≤ 2
this means that the insertion of an arbitrarily large domain can lower the energy of an ordered
phase of the opposite type, so that macroscopic phase separation does not occur.
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2.3.3 Membrane fluctuations mirror the underlying cytoskele-

ton at physiological temperature.

In the absence of coupling to cytoskeleton, large composition fluctuations occur

in simulations because the free energy cost of assembling a cluster with dimen-

sions of a correlation length is roughly the thermal energy kBT . At the critical

temperature the correlation length is very large (in principle infinite, but cut off

at the size of the simulation box, Figure 2.2B), whereas at 1.05Tc the correlation

length is roughly 10 lattice spacings (Figure 2.2C). We equate one lattice spacing

with 2nm, to be in agreement with the extrapolated correlation length in GPMVs

at 37oC. When simulations are coupled to cortical cytoskeleton, the presence of

the pinning sites disrupts the largest fluctuations (Figure 2.2E,F). More strik-

ingly, coupling to cytoskeleton entrains channels of white, leaving puddles of

black pixels in the center of each cytoskeletal corral (Figure 2.2G). This occurs

even though the cytoskeleton only interacts with the membrane at local pin-

ning sites. The effect propagates over roughly a correlation length because the

system is near a critical point.

We examine the extent of cytoskeleton-induced membrane heterogeneity in

our model by averaging many snapshots like those shown in Figure 2.2. Fig-

ure 2.3A shows the time-averaged pixel value at each location in the image.

Continuous and wide channels of white pixels follow the underlying filaments

that make up the cytoskeleton. In simulations where the critical temperature is

well below physiological temperatures (Figure 2.3C, Tc = 120oC), the remain-

ing channels of white spins are thinner, have gaps, and their contrast is dra-

matically reduced. This highlights that robust channels arise only when the

membrane is tuned close to a critical point. Our observations are quantified by
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Figure 2.3: Coupling to cytoskeleton acts to entrain channels of white pixels
over filaments, leaving pools of black pixels within cytoskeletal corrals. (A) The
time averaged density of white pixels is correlated with the position of the cy-
toskeleton at 37oC (1.05TC). In the absence of cytoskeletal coupling (inset) the
average density is trivially uniform. (B) The spatial auto-correlation function,
G(r), is not significantly altered by the presence of cytoskeletal coupling (com-
pare dashed (blue) and dot-dashed (red) lines). In each case G(r) decays over
a correlation length of roughly 20nm. In addition, the spatial cross-correlation
function between white pixels and pinning sites (solid (red) line) indicates that
long range correlations extend over roughly one correlation length. (C) In a
hypothetical membrane not tuned to the proximity of a critical point at 37oC,
but instead with a critical temperature of −120oC, the channels gathered by the
cytoskeleton are much thinner, and their contrast is diminished. This is the ex-
pected behavior for a well mixed membrane not near a critical point. (D) All of
the corresponding correlation functions decay over a much shorter distance.
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evaluating pair auto-correlation functions, G(r), for the nearly critical case (Fig-

ure 2.3B) and for the far-from-critical case (Figure 2.3D). Pixels are significantly

auto-correlated in simulations performed near criticality in the presence or ab-

sence of coupling to cortical cytoskeleton, and have roughly the same shape

(dashed lines in Figure 2.3B). In simulations that are coupled to cytoskeleton,

we also evaluate cross-correlation functions between membrane pinning sites

and white pixels (solid lines in Figure 2.3B,D). In simulations near the critical

point there is an increased probability of finding a white pixel out to a dis-

tance of around a correlation length (∼ 20nm) from a pinning site (Figure 2.3B).

These long ranged correlations between the pinning sites and white pixels fill in

gaps in the meshwork making the continuous channels shown in Figure 2.3A.

In simulations far from criticality (Tc=0.5T), both the auto-correlations and cy-

toskeleton cross-correlations fall off over a few nm due to the short range of the

lipid mediated effective interactions (Figure 2.3D). These auto and especially

cross-correlation functions are predictions of our model that can be measured

experimentally.

2.3.4 Cytoskeleton stabilized membrane heterogeneity is long

lived

The lifetimes of typical fluctuations become increasingly long as the critical

point is approached [64]. In order to investigate this critical slowing down

in our model, we implemented locally-conserved order parameter dynamics,

where pixels may only exchange with their four closest neighbors. A micro-

scopic diffusion constant of around D = 4µm2/s was used to convert between
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simulation steps and seconds. This value is in the range of values reported in

studies looking at the diffusion of lipids at very fast time- or distance-scales

[99]. Our dynamics assume that the composition is locally conserved while mo-

mentum is not conserved in the plane of the membrane due to interactions with

the cytoskeleton and bulk fluid (see section 2.6). The time-time correlation func-

tions shown in Figure 2.4A measure the probability of finding a pixel of the same

type at the same location at a later time. Near the critical point with conserved

order parameter dynamics, the correlation function decays with a characteristic

time

τ ∼ ξz (2.1)

where the correlation lengthξ , is ∼ 20 nm at T = 1.05Tc and z is 3.75 [64].

This means that even in the absence of coupling to cytoskeleton, fluctuations of

20nm will on average live around 100ms which is a thousand times longer than

the time for a single pixel to diffuse through this same distance, and roughly

a million times longer than the time for a far from critical membrane to equi-

librate. In the absence of cytoskeleton, correlations decay to the uncorrelated

value of one at long times ( 1s, Figure 2.4A).

Time-time correlation functions for simulations conducted in the presence of

cytoskeleton (solid (red) and dot-dashed (green) traces in Figure 2. 4B) are qual-

itatively similar for short times, but approach a value greater than one as t → ∞.

This occurs because the locations of cytoskeletal filaments are fixed in time. In

a cellular membrane, these correlations will persist until the cytoskeleton re-

arranges, which we expect to be on the order of seconds to hours [30]. This

emergence of a slower time-scale of membrane organization correlated with the
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Figure 2.4: Membrane dynamics and component diffusion are sensitive to
criticality and connectivity to cortical cytoskeleton.(A). Near the critical point
(Tc = 0.95T ), time-time correlation functions for membranes without coupling
decay slowly, and become uncorrelated after roughly 1s (dashed (blue) line). In
the presence of coupling to cortical cytoskeleton, fluctuations remain correlated
even after long times (higher dotted (red) line at infinite times). By contrast,
systems that are far from critical (dash-dotted (green) line, Tc = 0.5T ) are uncor-
related after a fraction of a millisecond and coupling them to the cytoskeleton
makes them decay to a small non-zero value (lower dotted (green) line). (B)
Dynamics at Tc=0.95T are also measured by tracking components through sim-
ulation time-steps. Tracks for single black (light (pink)) and white (dark (blue))
strongly coupled diffusers are shown (see text). (C-D) Mean squared displace-
ments (MSDs) are calculated from many traces and indicate that (C) weakly
coupled black lipids are slightly confined while (D) more strongly coupled black
crosses are more strongly confined. Freely diffusing particles have MSDs that
are linear in time (dashed line in C and D with slope 1, or linear in inset). We
quantify the confinement by the ratio of D100µs to D50ms, whose log is the length
of the double sided arrow.
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location of cortical cytoskeleton is a direct consequence of our model that could

be measured experimentally.

2.3.5 Membrane components undergo hop diffusion

In addition to measuring the dynamics of membrane fluctuations, we also track

the dynamics of individual components. Different species can partition into

the low temperature membrane phases with non-universal partitioning coef-

ficients, which might be stronger or weaker than the partitioning coefficients

of our pixels. To explore a range of these, we track two types of objects. We

track single pixels which interact with their neighbors with the same energies

as the pixels that make up the bulk membrane. A possible example of this type

of component might be a lipid present in high abundance in the plasma mem-

brane. We also conduct separate simulations that contain a small fraction of

components that couple more strongly to their local membrane environment,

effectively forming extended cross structures with twice as many nearest neigh-

bors and three times as many bonds to their local environment. Some examples

of components which couple more strongly like this might be large transmem-

brane proteins which have contact interactions with a large number of nearest

neighbors, or minority lipid species with extreme partitioning behavior such as

long chain sphingomyelin lipids or polyunsaturated glycerphospholipids. The

model that contains strongly coupled diffusing crosses has four components

(black and white pixels and black and white crosses) but is expected to still be in

the Ising universality class. (Small changes in composition can act to effectively

change the two Ising parameters of reduced temperature and magnetization. By

adding the same number of up and down strongly couple particles at the critical
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composition, our system preserves the Ising up-down symmetry and thus only

can act as a change in reduced temperature. Because our components couple

more strongly they lower the reduced temperature. Representative tracks for

strongly coupled diffusers are shown in Figure 2.4B.

Diffusion is quantified by measuring mean squared displacements (MSDs)

for a large number (1000) of tracked diffusers. In all cases, we find instanta-

neous diffusion constants somewhat lower than that imposed by the hop rate

(4µm2/s). At longer times, MSD curves cross over to a second regime where

objects appear to undergo slower effective diffusion, indicating that they are

confined. Even in the absence of cytoskeletal coupling diffusers show slightly

confined diffusion. Including cytoskeletal coupling leads to significant confine-

ment of weakly coupled black diffusers (Figure 2.4C), and even greater confine-

ment of strongly coupled black diffusers (Figure 2.4D). This occurs even though

the cytoskeletal attachment sites have substantial gaps due to the entrainment

of the white channels. The resulting black tracer diffusion behavior resembles

the hop diffusion reported for some plasma membrane components in living

cells [99, 102].

Confinement effects are more pronounced for strongly coupled objects than

for weakly coupled objects because there is a higher energy cost associated with

having a strongly coupled object in an unfavorable local environment. In con-

trast, there is a significant probability that a single pixel will diffuse into a region

rich in pixels of the other type because the energy cost to having four unlike

neighbors is on the order of kBT .
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2.3.6 Confinement depends strongly on criticality and weakly

on pinning density

Figure 2.4 demonstrates the predictions of our model on the MSDs of diffusers

for a specific set of parameters. From this data we can get two diffusion coef-

ficients, one extracted from the value of the MSD at short times (∼ 100µs), and

another from the value at long times (50ms) [99, 102]. The ratio of these short- to

long-time diffusion constants provides a measure of confinement that depends

only weakly on the imposed microscopic diffusion coefficient. In Figure 2. 5 we

explore how this measure of confinement for strongly coupled black diffusers is

modulated by distance to criticality and pinning density, and how it varies for

both black and white objects as a function of composition and pinning density.

Figure 2.5A demonstrates that in the nearly critical region most relevant to

biological membranes, sparse pinning sites are able to effectively block strongly

coupled black diffusers. In contrast, pickets need to be extremely dense to pro-

duce confinement in membranes that are far from criticality in temperature. As

diffusion is space-filling in two dimensions, particles easily fit through open-

ings without the long ranged effective force arising from criticality. White ob-

jects show little anomalous diffusion, even near the critical point, because they

can diffuse along cytoskeletal channels. Near Tc we find values similar to those

found in the literature over a wide range of picket densities. We also examine

how the diffusion of strongly coupled black and white objects is modulated by

changing the total fraction of white and black pixels (Figure 2.5B,C). The surface

fraction of phases can be altered in plasma membranes by, for example, choles-

terol depletion with methyl-β-cyclodextrin [86]. In simulations, we probe a

wide range of compositions by varying the fraction of black and white pixels

34



Figure 2.5: Confined diffusion depends upon criticality and the linear density
of pinning sites. (A) The ratio of D100µs to D50ms obtained from MSD curves like
those shown in Figure 2. 4 are used to quantify the confinement of black crosses
as a function of temperature and picket density. Near criticality, very weak pin-
ning sites induce a large amount of confinement, whereas far from criticality
even dense pinning leads to only slightly confined diffusion. (B) Representative
simulation snapshots 1 and 2 have similar levels of confinement and have pa-
rameters indicated in part A. (C, D) The ratio of D100µs to D50ms is plotted as a
function of composition and picket density plot at 37oC (1.05Tc) for both black
(C) and white (D) traced crosses. When composition is varied, whichever of the
two types is disconnected diffuses with more confinement (part B, images 3 and
4). The surface is a smoothed interpolation of the values from the black data
points. Kusumi and coworkers [99, 102] report experimental values between
5 (thick gray line) and 50 (thick dashed line) which is similar to the numbers
found here.
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at a constant temperature. Changing membrane composition modulates both

the continuity of each pixel type and the correlation length of fluctuations (Fig-

ure 2.1A). As before, we find that strongly coupled black objects are confined

in nearly critical membranes. We more generally find that the confinement of

strongly coupled black and white objects is primarily determined by the con-

nectivity of their preferred phase. In the absence of coupling to cytoskeleton,

there is a percolation-like transition when there are equal numbers of white and

black pixels near Tc
3. The presence of white pinning sites biases this transition

towards larger fractions of black pixels. As a consequence, black objects have

confined diffusion over a broad range of membrane compositions and pinning

densities, while white objects are significantly confined only at low pinning den-

sities and large fractions of black pixels. The magnitude of confinement arising

from steric restrictions to diffusion is not expected to depend significantly on

membrane temperature or composition, making this a robust prediction of our

model.

2.4 Discussion

In this study, we demonstrate that many reported properties of heterogeneity in

cell plasma membranes are reproduced using a simple model that incorporates

critical fluctuations and coupling to a fixed cortical cytoskeleton. Critical fluctu-

ations that occur near the liquid-ordered/liquid-disordered miscibility critical

point are inherently small, heterogeneous, highly dynamic domains [105]. In

3On a 2-d hexagonal lattice a line can always be drawn horizontally from the top to the
bottom through only black pixels if and only if a line cannot be drawn from the left to right
touching only white pixels. Thus, whatever the picket density, there is a percolation-like transi-
tion at some composition where the white channels become disconnected and the black puddles
become connected.
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the absence of membrane-cytoskeleton coupling, the size, composition, and life-

time of fluctuations depends only on the relative proximity to the underlying

critical point. In the presence of membrane-actin coupling, these are also gov-

erned by the dimensions and movement of the underlying cytoskeletal mesh-

work. We propose that relatively large (∼ 20nm) and long lived (> 10ms) fluid

domains as are commonly described in the membrane literature are best under-

stood as fluctuations arising from proximity to criticality. Our model provides

a simple explanation for why macroscopic domains are not readily observed in

intact cell plasma membranes upon lowering temperature, even though macro-

scopic phase separation is routinely observed upon lowering temperature in

vesicles made from purified lipids [149], cellular lipid extracts [28], isolated

plasma membranes [7], and even in whole cells where plasma membranes are

dissociated from cortical actin using detergents [118] or detergent-free meth-

ods [92]. In our model, macroscopic phase separation is disrupted in intact cell

membranes because the size of the underlying cytoskeleton meshwork puts an

upper limit on the size of domains that can form in the membrane. At physio-

logical temperatures, in the single phase region above the critical temperature

[147], our model yields more functionally relevant predictions. The presence of

membrane-actin coupling leads to long lived fluctuations, whose lifetimes are

determined by motion of the cytoskeleton. This coupling entrains channels of

membrane components that favor cytoskeleton-membrane pinning sites, while

compartmentalizing components that are associated with the other membrane

state. We predict that liquid-ordered preferring raft proteins and lipids will be

compartmentalized within actin-bound corrals if liquid-disordered preferring

components tend to associate more closely with cytoskeleton connections. This

situation is supported by model membrane studies [91] and most closely re-
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sembles the schematic depictions of lipid rafts presented in the literature [128].

Alternatively, we expect to find liquid-disordered preferring non-raft compo-

nents more confined within actin lined corrals if liquid-ordered preferring com-

ponents tend to associate more strongly with cytoskeletal connections [66]. We

imagine that any given cell could potentially exhibit both behaviors, and that

there could be significant variation within single cells and between cell types.

The common membrane perturbation of cholesterol depletion should increase

the surface fraction of disordered components. We predict that this will lead to

increased confinement of order preferring probes and decreased confinement of

disorder preferring probes. Our model predicts that disruption of cytoskeleton

would significantly alter the localization and dynamics of membrane compo-

nents, as is frequently observed experimentally [56, 108, 84]. Our model also

provides a plausible explanation for the diversity of diffusive behaviors seen for

plasma-membrane-bound lipids and proteins. In the hop diffusion model pre-

sented in [99, 102], plasma membranes proteins and lipids are confined within

actin-lined corrals by physical barriers. We show that by including criticality,

confinement can become more robust because entrained channels fill in gaps

between neighboring pinning sites. Our model predicts that the confinement

of membrane components can depend on their preference for the two mem-

brane phases in addition to their physical size. This could have functional sig-

nificance; a membrane-bound receptor could significantly alter its localization

and mobility upon binding to a ligand if that event modulates its coupling to

a particular membrane environment. Such allosteric modulation of a receptors

coupling could be a potent regulatory mechanism near criticality, possibly lead-

ing to spatial reorganization and functional outcomes. Although it is not di-

rectly explored in this study, we also predict that larger membrane-bound ob-
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jects will tend to couple more strongly to membrane phases based on the larger

size of their interacting surface. Since each protein typically interacts with many

lipids, lipid-mediated interactions between proteins can be much stronger and

more interesting than a typical lipid-lipid or lipid-protein interaction [51]. It is

possible that the stronger coupling of larger objects is responsible for the signif-

icant changes observed for diffusing components upon cross-linking [29]. If,

in addition, cross-linked proteins or lipids become immobile, then they could

stabilize membrane domains that are rich in membrane components that prefer

the same phase, as is observed in patching experiments [66], and in cells plated

on patterned surfaces [154]. A similar mechanism could contribute to the ac-

cumulation of signaling proteins at sites of receptor cross-linking in mast cells

or at the immune synapse [65, 62]. While the predictions of our model are in

good agreement with many findings in the raft literature, several results are not

easily explained in this framework. The tight clustering of components as well

as the well-defined stoichiometry of clustering reported in EM [108] and homo-

FRET [56] studies is not explained by our model, since interaction energies that

are large compared to kBT are required to maintain this organization. Also, we

are not able to reproduce the spot-size dependent diffusive behavior of fluo-

rescently tagged sphingolipids recently reported in living cells using STED mi-

croscopy [36]. We could generate similar results if we were to allow for traced

particles to experience transient pinning events, which have been observed for

a variety of membrane proteins [84, 29]. Our model differs substantively from

other explanations of membrane heterogeneity. Unlike micro-emulsion mod-

els, we do not require the presence of line-active components that localize on

domain boundaries [7]. We expect that the inclusion of line active molecules,

either as mobile or pinned components, would modulate critical temperatures
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as has been shown previously [161, 157]. In our model, the long-range and

dynamic nature of critical fluctuations do not require that additional energy be

inserted into the system, as is needed in models that include membrane recy-

cling to disrupt macroscopic phase separation [42]. We expect that recycling of

membrane components will be important to describe the behavior at times on

the order of membrane turn-over rates (min-hours) [95], which are significantly

longer than those explored in this study. Our model also assumes that critical-

ity arises from being close to a miscibility critical point that involves only liquid

phases, and not a critical point postulated to be present near a transition to a

gel phase [49]. In our model the presence of actin-membrane coupling does not

induce phases [37], but instead it tends to gather certain pre-existing membrane

fluctuations around points of cytoskeleton contact. Our results do not require a

slower diffusion constant in the vicinity of the cytoskeleton [37, 82]. In conclu-

sion, we have presented a minimal model to explain the thermodynamic basis

of heterogeneity in living cell membranes. Our model proposes that critical

fluctuations, modulated by connectivity to cortical cytoskeleton, are both nec-

essary and sufficient to explain the phenomena associated with 10-100nm fluid

domains commonly described in the raft literature. In this new description of

lipid rafts, one major role of lipid mediated heterogeneity is to provide effective

long range forces between membrane proteins that govern their organization

and dynamics. Importantly, the cell could tune effective interactions between

proteins by modulating overall membrane composition or by specifically alter-

ing the partitioning behavior of individual proteins. In this way, membrane

heterogeneity can have direct implications on a wide range of cell functions.
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2.6 Supplemental information

Sections 2.7.1-2.7.4 of this supplement serve to give more complete details of the

methods used in the simulations. Sections 2.7.5-2.7.8 discuss theoretical details

which underlie our choice of model, discussing in more detail its benefits and

limitations. In sections 2.7.2 and 2.7.3 we discuss the construction of Figure

2.1. In section 2.7.4 we describe our simulations in sufficient detail that a reader

could reproduce figures 2.2-2.5 in the main text. In section 2.7.5 we explain why

we may, without significant effect, neglect the tilt of the rectilinear diameter in

figure 2.1A of the main text. In section 2.7.6 we give arguments justifying our

use of the Ising model to describe cell plasma membranes. In section 2.7.7, we

justify our use of model B, Kawasaki dynamics. In section 2.7.8 we discuss how

our results depend on the relative viscosities in the two phases.
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2.6.1 Calculation of correlation length contours in figure 2.1A

Following Combescot et al. [24] the correlation length as a function of thermo-

dynamic parameters has a simple form in a sort of polar coordinates [117, 122].

A coordinate transformation takes these to the more familiar axes of reduced

temperature and magnetization. We change coordinates a second time by intro-

ducing a non-zero arbitrary tilt, allowing for a non-universal correction which

arises if a change in real temperature in a membrane corresponds to a change

in both reduced temperature and magnetization in the Ising model. In the crit-

ical region this tilt is captured in a single parameter, continuous through the

critical point, called the slope of the rectilinear diameter [164], which is non-

universal and so may be different for different systems in the same universality

class. Though it has not been quantified, in GPMVs it is within experimental

bounds of zero as can be seen in the supplemental videos of [147]. It could the-

oretically be measured by looking at the change in the surface area of bright to

dark regions as temperature is lowered below the critical point. Though experi-

ments cannot differentiate the true tilt from zero, we include a small tilt here of

0.1 to stress that we do not expect it to be exactly zero. The contours all mul-

tiply a non-universal natural length scale which is taken from experiments in

plasma membrane vesicles [147]. Finally, we note that GPMVs in [147] have

a spread in their critical temperatures of around 10oC, which corresponds to a

spread in their reduced temperatures at 37oC of about .03. Though it has not

been quantified, we expect there is also some spread in their effective magneti-

zations. Together, we expect that there is some variation from cell to cell both

vertically and horizontally in the exact placement of the red dot corresponding

to physiological conditions. We choose an average value of Tc = 22oC at criti-

cal composition for this figure and most of the results in the paper. Ignoring a
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possible deviation in the magnetization is justified in section 5 below.

2.6.2 Preparation of cell attached plasma membrane vesicles in

figure 2.1B

Cell attached plasma membrane vesicles are prepared as described previously

[147, 7]. Briefly, RBL-2H3 mast cells are plated sparsely in a MatTek well (Mat-

Tek Corp. Ashland, MA) overnight. Cells are then incubated for 1h at 37oC in

the presence of active bleb buffer (2 mM CaCl2 /10 mM Hepes/0.15 M NaCl,

25 mM HCHO, 2 mM DTT, pH 7.4). Cells and attached vesicles are then labeled

with DiIC12 (Invitrogen.Eugine, OR) dissolved in methanol for 5min prior to

viewing on an inverted microscope (DM-IRB; Leica Microsystems, Bannock-

burn, IL) at room temperature. The image was taken using an EMCCD camera

(iXon 897; Andor, Belfast U.K.). Under these conditions, attached blebs contain

coexisting liquid-disordered (bright) and liquid-ordered (dark) phases.

2.6.3 Simulation details, acceptance criterion and equilibration

procedures

All simulations were run on a 400x400 bi-periodic square lattice with spin vari-

ables living on the squares (S i = ±1, white and black pixels respectively). In

all cases the standard Ising Hamiltonian is used, H =
∑
{i, j} sis j, with summation

over the four nearest neighbors. We use a conversion factor from lattice con-

stant to real distance of 1nm. Temperatures are converted to Kelvin (and by ex-
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tension Celsius) by equating the exact critical temperature given by the Onsager

solution on the square lattice, Tc = 2
log(1+

√
2)

, with the experimentally measured

Tc = 295K so that Tsim = .00769Treal/K. In a Monte-Carlo sweep 160, 000 (4002)

pairs of pixels are proposed (on average each pixel is proposed to exchange

twice). We use Metropolis spin exchanges; each pair is exchanged or not so as

to satisfy detailed balanceCYTSNewman1999. If the resulting configuration is

lower in energy, the exchange is always accepted. If the energy is raised, the

exchange is accepted stochastically with probability where ? is the inverse tem-

perature and ?H is the change in energy between initial and final states. Sites

occupied by pickets are taken to have an infinite field so that exchanges which

propose to move a black pixel onto a picket are always rejected. Where appro-

priate, strongly coupled tracers have an infinite coupling to other like pixels,

so that any move which ends with such a strongly coupled tracer touching an

unlike pixel is always rejected. This effectively converts them into cross shaped

objects (though with overlap allowed), with three times as many bonds to their

local environment and twice as many neighbors.

Two types of dynamics are employed (any dynamics which satisfy detailed

balance will lead to the same equilibrium ensemble of configurations). When

rapid equilibration is desired we employ nonlocal moves where each of a pairs

of spins are randomly chosen from all sites on the lattice. To simulate real time

we use Kawasaki dynamics where we randomly choose a spin, and then ran-

domly choose one of its four nearest neighbors to exchange with.

Equilibration is very rapid using the nonlocal dynamics, where z is near 2.

We always equilibrate for 100, 000 sweeps using nonlocal moves starting from

a distribution which observes the random field constraint but which is other-
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wise random. 100, 000 sweeps is many times longer than the decay time of the

slowest decaying system used here (the decay time is around 1000sweeps for

the pinning density in figures 2.2-2.4 at 1.05Tc as can be seen by eye looking at

snapshots at subsequent times, or quantitatively as the decay time of time-time

correlations). For simulations with strong tracers we first equilibrate without

tracers. We then add them randomly, run an additional 100, 000 iterations to

equilibrate, and then start our dynamic simulations.

In figure 2.2 no dynamics are required as only a snapshot is given. In fig-

ure 2.3, the time averaged spatial correlation figures are averaged from 1000

snapshots each separated by 1000 sweeps of the non-local dynamics. The auto-

correlation functions in figure 2.3 are produced in the standard way. We first

Fourier transform the spin configuration. We then square this to get the static

structure factor S (k). We then perform an inverse Fourier transform on S (k)

and radially average the result to get g(r) in a normalization which goes to 0 at

infinity. To convert to the normalization used here,

G(r) =
〈P+1(R)P+1(R + r)〉
〈P+1(R)〉2

(2.2)

(where R is averaged over the entire lattice and where P+1(x) is the probability

of an up spin at position x) we add one to these (since all of our correlation

functions are plotted at m=0). We assume that the lattice sits on an infinite

periodic plane so that values at infinity take the mean value of the system.

To produce the cross-correlation curves we follow the same procedure ex-

cept that we replace the square of the Fourier transform with the real part of

the product of the Fourier transform of the pixel configuration and the Fourier
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transform of the random field configuration. This leads to

Gcyt(r) =

〈
Pcyt(R)P+1(R + r)

〉
〈P+1(R)〉

〈
Pcyt(R)

〉 (2.3)

where Pcyt(x) is the probability of finding a cytoskeletal pixel at position x.

For time-time correlations shown in Figure 2.4a we take the dot product of

every pixel in the simulations value (±1) at time t with itself at a later time t + ∆t.

We average this over all pixels and all times t < tmax − ∆t, with tmax = 5, 000, 000

sweeps and add one to the value for consistency with our normalization (in

supplemental figure 2.6 two different realizations of this procedure are shown

to give the reader an idea of the expected error). To produce the dashed lines

which correspond to the asymptotic values of the correlation functions in the

presence of the random field we take the average value of the square of the mean

field pixel values from the configuration calculated from the non-local dynamics

(which are identical and faster to equilibrate, displayed in Figure 2.3A,C) and

add one to this value.

To convert from Monte-Carlo time to real time, we use a microscopic diffu-

sion constant of 1µm2/s which is in the middle of the range cited for membrane

bound lipids and proteins (though this range spans some 2 orders of magni-

tude) [36, 89, 43]. In a Monte-Carlo sweep, each pixel is proposed to swap twice

on average. If all swaps were accepted this would lead to a mean squared dis-

placement < x2 >= 2d2/sweep where d is the lattice spacing. With our value

of d = 1nm, we find that if we associate one sweep with .5µs we arrive at the

desired D = 1µm2/s in the formula for diffusion < x2 >= 4Dt. As some moves

are rejected, the effective diffusion constant even at arbitrarily short times is ac-

tually somewhat lower than this for traced diffusing pixels and slower still for

our more strongly coupled diffusers.
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Figure 2.6: To demonstrate the accuracy of our time-time correlation functions,
we reproduce the slowest decaying curve from the figure 2.4A and plot both
versions on the same graph. A slight deviation is visible at very late times.

To calculate mean squared displacements we trace 1000 particles which

diffuse on an infinite plane whose configuration is periodic with period 400.

Whenever a particle moves through a boundary in the ±x direction (for exam-

ple), its new position for the purpose of mean squared displacement calculation

is changed by ±400. This allows us to keep track of tracers which may diffuse

off of the edge of the periodic simulation. We average the mean squared dis-

placements over all traced particles.

To produce the contour plots in Figure 2.5 we extrapolate and smooth be-

tween the points where simulations are conducted by replacing each points

value by an average over all simulated points weighted by exp(−d2/d2
o)where

d0 = .1 in temperature, pinning density and magnetization.
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2.6.4 Irrelevance of a tilted rectilinear diameter to lowest order

As discussed in Calculation of correlation length contours a change in real tem-

perature near a critical point changes both of the corresponding Ising variables

of reduced temperature and magnetization. Here we show that such a tilt intro-

duces a subdominant correction to the critical properties. In particular it does

not affect the singular behavior of the correlation length

In the scaling regime, a temperature change corresponds to a change in the

reduced temperature by an amount ∆t and a change in the magnetization by

an amount ∆m = a∆t where a is the tilt of the rectilinear diameterCYTSZoll-

weg1972. We here consider a model in the scaling regime whose correlation

length is given by

ξ(t,m) = t−νF (mν/β/t) (2.4)

where F is a universal function. We note that F is not singular at zero, since

along the axis the correct scaling is given by

ξ(t, 0) ∼ t−ν (2.5)

We now set m = at which corresponds to a membrane with critical composi-

tion taken to a temperature T = (1 + t)Tc. This gives:

ξ(t, at) = t−νF (aν/βtν/β−1) (2.6)

Because ν/β = 8 > 1, the argument of F is not singular near t = 0. As F itself
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is not singular there, the scaling of the correlation length at critical composition

has singular behavior which is independent of the tilt of the rectilinear diame-

ter. (In addition to the ”analytic correction to scaling” represented by the tilting

of the rectilinear diameter proportional to, there is also a singular correction

to scaling proportional to . Since α = 0 for the 2D Ising model, our argument

above applies without modification; this correction too is subdominant. See

[122, 55, 151] for a more complete picture of subtleties involved.) This means

that the critical properties of an Ising system at critical composition but slightly

away from the critical temperature are dominated by its effective reduced tem-

perature, with its effective magnetization coming in only at a higher order in

the distance from the critical point. This calculation quantifies what can be seen

in Figure 2.1A of the paper; Near the critical point the contours are broad and

flat showing a larger dependence on the vertical reduced temperature direction

than on the horizontal magnetization direction.

2.6.5 Possible universality classes

Here we give arguments to support our use of the 2-D Ising universality class

to model the critical point seen in GPMVs [147]. We explain the theoretical

motivation for expecting Ising criticality, discuss experimental evidence for it

and argue that two other possible universality classes are unlikely to describe

cellular membranes.

The Ising Universality class is expected for any system with a scalar order

parameter, a single number which describes the system at larger length scales.

In three dimensions, the Ising model has been shown to quantitatively describe
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an enormous array of liquid-gas and liquid-liquid critical points [122] mostly

involving small molecules, but also including more exotic liquid phases con-

taining polymer blends [119]. In two dimensions there are fewer examples,

but the critical phenomenon seen in three component model membranes near

fluid-fluid critical points are in this class [68]. In each of these two and three di-

mensional examples the components (or densities) of the two low temperature

phases acts as the order parameter, which is therefore a scalar. Plasma mem-

brane vesicles are certainly more complicated than the simple systems described

above at the microscopic level, but as they phase separate into two domains

with different compositions below Tc, the composition difference between these

phases remains a good scalar order parameter. As such, the theoretical expecta-

tion is that they should also be described by 2-D Ising Universality, which is in

agreement with [147].

We cannot exhaustively dismiss other possible universality classes at

present, though several cases can be ruled out. The q-state Potts universality

class generalizes the Ising model (q = 2) to the critical point of a system which

separates into q distinct liquids below Tc [27]. For q = 3 and 4 there are 2 − D

critical points, while for q larger, there are only abrupt, first order transitions.

These models are ruled out quite simply by the GPMV experiments. The q-

state Potts model predicts that below Tc a Potts critical membrane should phase

separate into q domains of approximately equal area. To our knowledge no

more than two coexisting macroscopic liquid phases have been observed in any

membrane system. We note as an aside that Potts models with q¿2 would be

dramatically harder for a cell to tune towards. The Ising critical point contains

two parameters which must be tuned. At fixed temperature we must tune the

ratio of the two phases below Tc and their interaction energies. The 3-state Potts
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model contains five parameters that need tuning [27]. We can think of these as

two area ratios (A:B and B:C) as well as three interaction energies (A with B, B

with C and A with C).

Another possibility is that the membrane might display tri-critical Ising be-

havior. This occurs as an Ising model is tuned (along a third dimension in

parameter space) to a boundary beyond which it becomes an abrupt first or-

der transition. This model would only require tuning one additional parameter

making it at first pass more appealing. However, it predicts a value for the crit-

ical exponent of ν = 5/9 [27], in contrast to ν = 1 for the Ising model, which is

not consistent with existing experimental data [147].

Although we are not able to conclusively demonstrate that the universality

class is Ising at this time, we emphasize that our results should hold even if

the universality class turns out to be more exotic. The qualitative features of

our findings come about due to features which have been conclusively demon-

strated in GPMV experiments [147]: A correlation length which becomes large

near the critical point, and dynamics which become slow near the critical point.

Although it is outside of the scope of this work, we also note that there has

been significant theoretical progress towards a complete categorization of pos-

sible universality classes permissible in 2-D [27]. Though there are infinitely

many, they are all indexed by a unique number between zero and one, the cen-

tral charge (which is 0.5 for the Ising model). It would be an interesting project

to see which if any others might be consistent with membrane experiments.
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2.6.6 Dynamic universality and motivation for model B

The Ising universality class defines the coarse grained static correlation func-

tions of our system. However, different systems in the same universality class

can display different dynamics even in the scaling regime. These in turn fall

into different dynamic scaling universality classes [64] which are determined

by which quantities are conserved by the dynamics. In our case, we argue that

the order parameter (or composition) is locally conserved, while momentum is

not, as the fixed cytoskeleton breaks translational invariance, and may exchange

momentum with the membrane. In synthetic membranes, hydrodynamics is

certainly important4. With the order parameter conserved and momentum not,

we expect model B [64]. The Kawasaki dynamics we implement here are also in

this class [156].

Membranes are expected to have a conserved order parameter for the times

relevant to this study. The two low temperature phases contain different con-

centrations of various components. For a regions order parameter to change,

components must physically move into it from a neighboring region. Although

components are found with some probability in each low temperature phase

(and are able to move between them), this is not qualitatively different from the

Ising model where white pixels and even white pixel clusters are found in the

low temperature black pixel phase. At longer times we expect processes like

trafficking of lipids to change the order parameter [42].

We also expect that in intact cell plasma membranes momentum will not be

conserved at relevant lengths, leading to model B (rather than model H, which

arises when momentum is also conserved). There is an emerging theoretical

4See chapter 4 for a more sophisticated treatment of dynamics
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picture for the expected dynamics of model membranes near an Ising critical

point, immersed in water. In two dimensions the usual Stokes-Einstein relations

which predict the microscopic diffusion constant as a function of the diffusers

size and the viscosity of the surrounding fluid cannot be easily applied [115]

essentially because energy is not locally dissipated. For large inclusions this

means that even an arbitrarily small viscosity of the surrounding fluid enters

into the microscopic diffusion rate. It also means that this diffusion constant de-

pends only logarithmically on the size of the diffuser, crossing over to a rate de-

termined by the 3-D viscosity (which scales as 1/r) for large enough r [23]. For

lipids in a bilayer membrane, the picture is somewhat simpler. Such lipids show

an enormous temperature dependence in their microscopic diffusion rates [43]

consistent with an energy barrier of 20-30 KBT. These rates are approximately

two orders of magnitude faster than the rates predicted by the hydrodynamic

diffusion constant extrapolated from the movement of micron sized diffusers

[23] in similar liquid environments. This suggests the following picture [142]:

rather than their motion being dominated by hydrodynamic flow, lipids sit in

deep potential wells in the membrane. Their microscopic diffusion rate is set

by the likelihood of thermally hopping into the next potential well model B,

rather than model H, governs the particle diffusion rate. Thus membranes are

similar to liquids above the glass transition, where self-diffusion (mediated by

swapping particles) is much faster than bulk diffusion. (In a crystal, the latter

would be zero.)

Even though particle diffusion is dominated by model B, we must address

also the evolution of the order parameter field. Hydrodynamic flows are more

effective at stirring the order parameter field than particle exchanges. This is

reflected in the dynamical critical exponent z, which is 3.75 for model B and
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around 2 for model H in two dimensions [60, 64]. Roughly, correlation times

at a length-scale L scale as (L/L0)z (critical slowing-down). Since at the lipid

length scale of one nm the time scales for hopping and hydrodynamic rates dif-

fer by two orders of magnitude, this suggests that the hydrodynamic effects

will become competitive with the model B dynamics at roughly 10nm (where

Dlipid(L/L0)3.75 ∼ Dhydro(L/L0)2), which is roughly the equilibrium correlation

length where both power laws stop applying. In the absence of a cytoskeleton

and at the critical temperature, the hydrodynamic diffusion will dominate in

a range of lengths between this crossover and a crossover to a modified three-

dimensional model H dynamics (when the low viscosity of the surrounding

water becomes relevant, at around 1000nm) [60]. The rigid cytoskeleton will

act as a fixed boundary condition at a significantly shorter length scale in our

model, suppressing hydrodynamic flows entirely while permeable to hopping

diffusion. (The cytoskeleton should be particularly effective at suppressing the

logarithmic correlations in the 2D hydrodynamics.) Hence our model B dynam-

ics not only dominates the diffusion of small particles, it also should dominate

the dynamics of the order parameter field except for small corrections in a range

intermediate between the correlation length and the cytoskeleton confinement

scale. We finally note that coupling to a cytoplasm with many rigid objects

nearby may lead to even more suppression of bulk flow in the membrane as

discussed in [141].
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2.6.7 Effects of different viscosities in the two liquid environ-

ments

The l0 and ld phases represented by our white and black pixels have viscosities

which differ by a factor of around 4 though in some cases up to a factor of

10 [89, 77, 43]. A similar range is expected in the diffusion constant difference

seen between lipids in the two phases. In most of the manuscript we ignore the

consequences of this, but we discuss its implications here. The dynamics of the

order parameter are relatively unaffected by this as order parameter changes

always take place at the interface and so have a single rate which is presumably

somewhere in between the rates predicted by the individual viscosities.

Traced particle diffusion, however, can be affected by this viscosity differ-

ence. We consider the case relevant to our dynamics; a particle which mostly

resides in one of the two phases, but which may need to cross through the other

phase to diffuse long distances. The microscopic diffusion constant will be an

average of the diffusion constants in the two phases weighted by the time spent

in each phase. For us it will be given primarily by the diffusion constant in the

phase in which it usually resides.

To travel large distances these particles potentially needs to hop over barri-

ers of the alternative phase, which leads to the confinement seen in our simu-

lations. We separate this process into an attempt rate at crossing and a success

probability. The total amount of time spent in the unfavorable region, as well as

the success probability are determined by static energetic considerations; they

does not depend on the relative viscosities. The attempt rate, however, must

depend on the ratio of the diffusion constants in the two liquids. In particular,
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to satisfy detailed balance it must go as the ratio of the viscosity in the usual

fluid environment to that in the barrier environment. As such, particles which

mostly live in the low viscosity environment make fewer attempts at crossing

the barrier, while those which live mostly in the higher viscosity environment

make more. This can lead to some additional confinement for particles which

live in the lower viscosity phase. The extra confinement is bounded by the ratio

of the two viscosities.

Figure 2.7: The mean squared displacement of strongly coupled white (A) and
black (B) diffusers at 1.05Tc,with the same static properties as in Figure 2.4 D of
the main text. In each figure the black line shows the mean square displacement
for the case when both viscosities are equal. In the other cases the diffuser is
a component of the high (blue) or low (red) viscosity liquid. The y-axis is nor-
malized to 1 at a time such that the traced particle has performed on average
2000 attempted exchanges. The x-axis is normalized so that in each case the dis-
played traced particles are proposed to swap approximately 2000 times (0.5 ms
in the main text) so that all have an identical microscopic attempt rate. As can
be seen, particles that normally inhabit the low viscosity liquid see some degree
of extra confinement, and vice versa.

To demonstrate these theoretical predictions we run simulations where the

diffusion rates in the two liquid environments are different by a factor of four,

mimicking a factor of four change in the viscosity. We implement this by trading
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like particles in the lower viscosity liquid with a rate four times that with which

unlike particles and particles in the high viscosity liquid are traded. We run

simulations where either the white pixels or the black ones have a higher vis-

cosity. We then plot MSDs vs time (figure 2.7), for the cases where both liquids

are equivalent, and where the given particle is either a component of the lower

or higher viscosity liquid. In each case the y-axis is normalized to 1 at t=1ms (in

the equal viscosity case), and we compress the x-axis for the high viscosity case

so that the frequency of moves per unit time on the x-axis is the same. We also

plot a dashed line corresponding to a lack of any confinement. We note that in

our simulations this consequences of this effect are fairly small.
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CHAPTER 3

CRITICAL CASIMIR FORCES IN CELLULAR MEMBRANES

Abstract 1-Recent experiments suggest that membranes of living cells are tuned

close to a miscibility critical point in the 2D Ising universality class. We propose

that one role for this proximity to criticality in live cells is to provide a conduit

for relatively long-ranged critical Casimir forces. Using techniques from con-

formal field theory we calculate potentials of mean force between membrane

bound inclusions mediated by their local interactions with the composition or-

der parameter. We verify these calculations using Monte-Carlo where we also

compare critical and off-critical results. Our findings suggest that membrane

bound proteins experience weak yet long range forces mediated by critical com-

position fluctuations in the plasma membranes of living cells.

3.1 Introduction

Cellular membranes are two-dimensional (2D) liquids composed of thousands

of different lipids and membrane bound proteins. Though once thought of as

uniform solvents for embedded proteins, a wide array of biochemical and bio-

physical evidence suggests that cellular membranes are quite heterogeneous

(reviewed in [105, 90]). Putative membrane structures, often termed ‘rafts’,

are thought to range in size from 10 − 100nm, much larger than the a ∼ 1nm

size of the individual lipids and proteins of which they are composed. This

discrepancy in scale presents a thermodynamic puzzle: naı̈ve estimates predict

1This chapter will appear in Physical Review Letters with coauthors Sarah L. Veatch and James
P. Sethna.
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enormous energetic costs associated with maintaining heterogeneity in a fluid

membrane [93].

Parallel work in giant plasma membrane vesicles (GPMVs) isolated from liv-

ing mammalian cells presents a compelling explanation for the physical basis of

these proposed structures. When cooled below a transition temperature around

25oC, GPMVs phase separate into two 2D liquid phases [7] which can be ob-

served by conventional fluorescence microscopy. Quite surprisingly, they pass

very near to a critical point in the Ising universality class at the transition tem-

perature [147]. Near a miscibility critical point, the small free energy differences

between clustered and unclustered states could allow the cell to more easily

control the spatial organization of the membrane, lending energetic plausibil-

ity to the proposed structures. Although analogous critical points can be found

in synthetic membranes [150, 150, 69] these systems require the careful exper-

imental tuning of two thermodynamic parameters, as in the Ising liquid-gas

transition where pressure (equivalent to the Ising magnetization) and temper-

ature must both be tuned. Although it has been suggested that biological sys-

tems frequently tune themselves towards dynamical and other statistical critical

points [98], so far as we know membranes are the clearest example of a bio-

logical system which appears to be tuned to the proximity of a thermal critical

point.

Other plausible theoretical models have focused on 2D micro emulsions (sta-

bilized by surfactants [13], coupling to membrane curvature [116], or topologi-

cal defects in orientational order [81]) but none have emerged from direct, quan-

titative experiments on membranes from living cells. It has been argued that

Ising fluctuations should have vanishing contrast between the two phases [116].
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While this is true of macroscopic regions, a region of radius R of lipids of size

a ∼ 1nm should have contrast ∼ (R/a)−β/ν = (R/a)−1/8, leading to predicted com-

position differences of 0.7 at the physiologically relevant 20nm scale, and dif-

ferences of 0.5 at R = 400nm scale of fluorescence imaging [147]; on the length

scales of interest there is plenty of contrast. Indeed, our calculations of Ising-

induced forces take place at and above the critical point, where the macroscopic

contrast is of course zero.

How might a cell benefit by tuning its membrane near to criticality? Pre-

suming that functional outcomes are carried out by proteins embedded in the

membrane, we focus on the effects that criticality might have on them. For em-

bedded proteins, proximity to a critical point is distinguished by the presence of

large, fluctuating entropic forces known as critical Casimir forces. Three dimen-

sional critical Casimir forces have a rich history of theoretical study[45]. In more

recent experimental work [12] colloidal particles clustered and precipitated out

of suspension when the surrounding medium is brought to the vicinity of the

liquid-liquid miscibility critical point in their surrounding medium. Two di-

mensional Casimir forces like the ones studied here have been investigated for

the Ising model using numerical transfer matrix techniques [15], for a demixing

transition using Monte-Carlo [110] and for shape fluctuation using perturbative

analytical methods [158, 159]. Here we estimate the magnitude of composi-

tion mediated Casimir forces arising from proximity to a critical point, both in

Monte-Carlo simulations on a lattice Ising model, and analytically, making use

of recent developments in boundary conformal field theory(CFT) [18, 52, 27].

Our motivation is biological: in a cellular membrane, these long ranged critical

Casimir forces could have profound implications. More familiar electrostatic in-

teractions are screened over around 1nm in the cellular environment, whereas
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we find the composition mediated potential can be large over tens of nanome-

ters.

Critical Casimir forces are likely utilized by cells in the early steps of sig-

nal transduction where lipid mediated lateral heterogeneity has been shown

to play vital roles. Many membrane bound proteins segregate into one of two

membrane phases when biochemically extracted with detergents at low tem-

peratures [96], or when proteins are localized in phase separated GPMVs [147].

Furthermore, there is evidence that some receptors change their partitioning

behavior in response to ligand binding or down-stream signaling events [65].

Modeling this as a change in the coupling between the receptor protein and the

Ising order parameter predicts that these bound receptors will see a change in

their interaction partners. Supporting this view, ligand binding to receptor is of-

ten accompanied by spatial reorganization in which receptors and downstream

molecules move into close proximity of one another [105, 144], perhaps because

they now share a preference for the same Ising phase. Perturbations to the lipid

composition of the membrane, like cholesterol depletion [86], typically disrupt

this spatial reorganization [144] and have dramatic effects on the final outcomes

of signaling [125, 127, 50], in our view by taking the membrane away from its

critical point and interfering with the resulting long ranged forces.

3.2 Point-like approximation

We take three approaches to estimating the form of these potentials. We first

consider two point-like proteins which interact with the local order parameter

like local insertions of magnetic field h1 and h2 at x = 0 and x = d. To calcu-
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late the resulting potential we write a Hamiltonian for the combined system

of the Ising model with order parameter φ(x) plus proteins as H(
[
φ(x)

]
, d) =

HIsing(
[
φ(x)

]
) + h1φ(0) + h2φ(d). We then write a partition function for the com-

bined system Z(d) =
∫

D
[
φ(x)

]
e−βH((φ(x),d)) and solve to lowest order in h giving

the potential Ue f f (d) = − log(Z(d)) + log(Z(∞)) = −h1h2C(d) with C(d) = 〈φ(0)φ(d)〉

the correlation function. C(d) ∼ d−η when d � ξ with the Ising model η = 1
4 and

C(d) ∼ d−1/2 exp(−d/ξ) for d � ξ. The potential is attractive for like and repulsive

for unlike insertions of field, in agreement with the scaling of the CFT result as

we will show below. A protein which does not couple to the order parameter

can still feel a long-ranged force if it couples to the local energy density. The en-

ergy density is also correlated with a d−2 dependance. However, the magnitude

of both of these potentials, as well as their shape at distances d ∼ r require the

Monte-Carlo and CFT approaches described below.

3.3 The Bennet method on the lattice Ising model

Secondly, we numerically calculated potentials using Monte-Carlo on the lat-

tice Ising model for like and unlike disk-shaped inclusions. Although absolute

free energies are difficult to obtain from Monte-Carlo techniques, differences

between the free energies of two ensembles, δF, conditioned on a subset of the

degrees of freedom are readily available, provided the degrees of freedom in the

two ‘macro-states’ can be mapped onto each other and have substantial overlap.

This information is implicitly used in a Monte-Carlo scheme where both ‘macro-

states’ are treated as members of a larger ensemble and are switched between so

as to satisfy detailed balance. The Bennett method [8, 75], uses this information

more explicitly, noting that exp (−βδF) =
〈
e−βδE

〉
can be estimated without bias
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from either distribution.

Our ‘macro-states’ are the location of two blocky ‘disks’ as shown in fig 3.1C.

All spins either contained in or sharing a bond with these disks are constrained

to be either all up or all down. We map the degrees of freedom in one macro-

state to a neighboring one by moving all of the spin values 1 lattice spacing to

the right or left of the fixed spin region onto fixed spins on the other side. By

integrating our measured βδF = − log 〈exp(−βδE)〉 over many sites outwards to

infinity, we can in principle measure this potential to arbitrary distance. How-

ever, because the potential is long-ranged at Tc, we integrate it out to 50 lattice

spacings and add the CFT prediction for the potential at that distance as de-

scribed below. We perform simulations using the Wolff Algorithm on 500 × 500

lattices under the constraint that any cluster which intersects a disk is rejected,

enforcing our fixed boundary conditions. We supplement these with individual

spin flips near the inclusions where almost all Wolff moves are rejected. The

resulting potentials are plotted in fig. 3.1A. We collapse the Monte-Carlo curves

by using the the effective radius given by the farthest point from the origin con-

tained in the blocky lattice inclusion as the effective radius.

3.4 Conformal field theory approach at Tc

Finally, we use conformal field theory to make an analytical prediction for the

form of these potentials. Our calculation makes extensive use of the conformal

invariance of the free energy which emerges at the critical point. An element

from the global conformal group can take us from the configuration in fig. 3.2A

to that shown in fig. 3.2B where the two disks are concentric with spatial infinity

63



Figure 3.1: Effective potentials between bound inclusions are plotted on linear
(top) and log-log (bottom) graphs, for inclusions where r1 = r2 = r. The CFT re-
sults for both like and unlike interactions (thick dashed lines) and for potentials
containing a free BC agree with the power-law scaling of the two-point function
(thin black dashed line) at large lengths, but separate at small separations. We
also compare to Bennett method simulations at Tc as described in the text. We
run simulations for each of the blocky spheres shown in (C). Each curve is plot-
ted collapsed by using r as the distance to the farthest point from its center, with
no free parameters. The results of our Monte-Carlo pair potentials are all shown
plotted against d/r (thin solid lines with colors as in (C)) with the theory curves
in dashed lines. The CFT prediction is in excellent agreement with simulation
data even for very small inclusions well past the applicability of the power law
prediction of the perturbative approach. The value of the potential is fit at the
farthest accessible simulation point, where we add the CFT prediction.
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in fig. 3.2A now lying between the two cylinders on the real axis. The radius of

the outer circle R(d, r1, r2) is now given by:

R(d, r1, r2) =
x−2+
√

(x−2)2−4
2 , x =

(d+2r1)(d+2r2)
r1r2

(3.1)

The much larger local conformal group, particular to 2D, is the set of all

analytic functions. We use the transformation z′ =
log(z)

2π gluing together the

boundaries at x = 1 and x = 0 to give the cylinder shown in fig. 3.2C with a

circumference of 1 and length:

τ(d, r1, r2) = i log(R(d, r1, r2))/2π (3.2)

This transformation breaks global conformal invariance and so increases the

free energy by c log(R)/12 [52], where c = 1/2 in the Ising model. Defining a 1+1

dimensional quantum theory on the cylinder (see [52]) with ‘time’, t running

down its length, our Hamiltonian for t translation is H = 2π(L0 + L̄0 −
c

12 ), where

L0 + L̄0 is the generator of dilation in the plane.

Partition functions in this geometry are linear sums of characters of the con-

formal group. The representations of the conformal group particular to the Ising

universality class have characters given by [52, 19]:

χ0(τ) =
1+q2+q3+···

q1/48 = 1
2
√
η(τ)

[ √
θ3(q) +

√
θ4(q)

]
χ1/16(τ) =

1+q+q2+2q3+···

q1/48−1/16 = 1√
2η(τ)

[ √
θ2(q)

]
χ1/2(τ) =

1+q+q2+···

q1/48−1/2 = 1
2
√
η(τ)

[ √
θ3(q) −

√
θ4(q)

] (3.3)

where q = exp (iπτ), with η(τ) the Dedekind η function and with θ(τ) the Jacobi,

or elliptic Theta functions.

Conformally invariant boundary conditions (BCs) can be deduced by de-

manding consistency between two parameterizations of the cylinder [19]. In
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Figure 3.2: We consider potentials of mean force in configuration (A), with disks
of radius r1 and r2 separated by a distance d with boundary conditions A and
B. We conformally map this to configuration (B), where both disks are cen-
tered on the origin, with the first at radius 1 and the second at radius R(d, r1, r2).
We then map this to a cylinder shown in (C) of circumference 1 and length
−iτ = log(R)/2π where we associate restricted partition functions in an imagi-
nary time 1 + 1D quantum model with potentials of mean force in the original
configuration.

one, time moves from one BC to the other across the cylinder with the usual

Ising Hamiltonian. Alternatively, time can move around the cylinder with the

BCs now entering into the Hamiltonian. There are three allowed BCs [19] which,

by considering symmetry can be associated with ‘up’, ‘down’ and ‘free’. These

three BCs have four non-trivial potentials between them; a repulsive ‘unlike’ in-

teraction between ‘up’ and ‘down’ BCs, an attractive ‘like’ interaction between

‘ups’ and ‘ups’ or ‘downs’ and ‘downs’, an attractive ‘free-free’ (Fr-Fr) inter-

action between two ‘free’ BCs and a repulsive ‘free-fixed’ (Fr-Fx) interaction

between a ‘free’ BC and either an ‘up’ or a ‘down’.

The free energy in the configuration shown in figure 3.2A can be inter-

preted as a potential of mean force between the bound inclusions. Choosing

the convention that the potentials go to 0 as d → ∞, the potential is given by

U(d) = FAB(τ) − FAB(∞). After undoing the mapping which changes the free en-
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ergy by a central charge dependent factor so that FAB(τ) = − log ZAB(τ) + cπτ/6

(with kBT = 1) the potentials are given by:

Ulike(d, r1, r2) = − log
(
χo(2τ) + χ1/2(2τ) +

√
2χ1/16(2τ)

)
+ πτ

12

Uunlike(d, r1, r2) = − log
(
χo(2τ) + χ1/2(2τ) −

√
2χ1/16(2τ)

)
+ πτ

12

UFr-Fr(d, r1, r2) = − log
(
χo(2τ) + χ1/2(2τ)

)
+ πτ

12

UFr-Fx(d, r1, r2) = − log
(
χo(2τ) − χ1/2(2τ)

)
+ πτ

12

(3.4)

with χh as defined in eq. 4.7, and τ as defined in eqs. 3.1 and 3.2. These poten-

tials are plotted on regular and log-log graphs in figure 3.1. Their form is in

agreement with the numerical results obtained using transfer matrix methods

in [15].

At large d, we can examine the asymptotics of the potentials using the form

of each potential in eq. 3.4 and the series expansion of the characters as shown

in eq. 4.7. For fixed BCs, the leading contribution to the potential of mean force

is equal to ±
√

2(r1r2)1/4d−
1
4 , with a sign which differs depending on whether the

two BCs are like or unlike, in agreement with the point like approximation. For

potentials that involve at least one ‘free’ BC, similar analysis shows that the

leading contribution is proportional to d−2. All four potentials diverge at short

distances like ±d−1/2 where in all cases the sign is positive unless both BCs are

identical. We note that the origins of the two techniques leading to the curves

shown in fig. 3.1 are very different; arguably as different from each other as each

are from a lipid bilayer. The very close agreement, even at lengths comparable

to the lattice spacing speaks to the power of universality.

We also compare the form of the potential with Monte-Carlo results per-

formed at temperatures away from the critical point where the potential has

a range given roughly by ξ. In each case the resulting potential is a one di-
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mensional cut through a four dimensional scaling function which could depend

nontrivially on d/r1,d/r2,d/ξ and the ‘polar’ coordinate h/tβδ [117] describing the

proximity to criticality. The dashed lines show the CFT prediction for T = Tc,

with numerical results at 1.05,1.1 and 1.2Tc, all for the 2×2 block sphere shown at

right in fig. 3.3. The repulsive potential is both deepest and sharpest at Tc, while

the the attractive force is sharpest slightly above Tc, with the final potential of

very similar magnitude.

We expect our results to apply, with a few caveats, to proteins embed-

ded in real cell membranes. Proteins couple to their surrounding compo-

sition through the height of their hydrophobic regions, interactions of their

membrane-proximal amino acids with their closest lipid shell and by covalent

attachment to certain lipids which themselves strongly segregate into one of

the two low temperature phases. In simulation our proteins couple strongly to

their nearest neighbor lipids leading to potentials in excellent agreement with

CFT predictions that are very different in origin. These are expected to describe

any uniform boundary condition in an Ising liquid, in the limit where all lengths

are large compared to the lattice spacing. When separated by lengths of order a

lipid spacing (1nm) we might expect additional corrections to this form, and in

particular, a weakly coupled protein may have behavior intermediate between a

‘free’ and a ‘fixed’ BC. In addition, a protein that couples non-uniformly around

its boundary might have interesting behavior not addressed here. We note that

our boundary conditions couple to two long-ranged scaling fields- the magne-

tization field which falls off with the a power of −1/4 and the energy density

which falls off with a power of −2, both of which must be present in membranes

or any other system near an Ising critical point.
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It is interesting to compare this composition mediated force to other forces

that could act between membrane bound proteins. Electrostatic interactions are

screened over around 1nm in the cellular environment, making them essentially

a contact interaction from the perspective of the cell. There is an analogous

shape fluctuation mediated Casimir force that falls off like d−6 [158, 159], and is

therefore also very short ranged. Membrane curvature can also mediate forces

with a leading attractive term that falls off like d−2 and a leading repulsive term

that falls off like d−4. Although they decay with a much larger power than the

critical Casimir forces described above, curvature mediated potentials depend

on elastic constants and are not bound to be of order kBT allowing them to be-

come quite large at shorter distances. Using typical values [111] the potentials

are comparable at lengths ∼ 5 − 10nm to the composition mediated potential we

find here [32]. There are numerous examples of biology using these relatively

short ranged but many kBT potentials for coordinating energetically expensive

and highly irreversible events like vesiculation [111]. We propose that criti-

cal Casimir forces could mediate long ranged and reversible interactions useful

for regulating a protein’s binding partners. More generally, this work demon-

strates that the hypothesis of criticality enables a quantitative understanding of

the broad range of phenomena frequently associated with ‘raft’ heterogeneity

in cell membrane.
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Figure 3.3: We compare our critical results with potentials obtained from Monte-
Carlo simulations away from the critical point along the temperature axis. As
can be seen, the potentials are longest ranged at the critical point. The repulsive
interaction is also steepest at the critical point, though the attractive one has a
larger force at short distances slightly away from the critical point.
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CHAPTER 4

CRITICAL DYNAMICS IN SYNTHETIC MEMBRANES

Abstract1 -Near a critical point, the time scale of thermally-induced fluctuations

diverges as governed by the dynamic universality class. Accord between the-

ory and measurement of critical exponents has been found for 3D, but not 2D,

systems with conserved order parameter. Here we analyze time-dependent cor-

relation functions to show that critical dynamics of a quasi-2D lipid bilayer in

water agree with a recently predicted universality class. In particular, the effec-

tive dynamic exponent, ze f f , rises from ∼ 2 to ∼ 3 as the correlation length of

fluctuations exceeds a characteristic hydrodynamic length.

4.1 Introduction

Lipids self-assemble in water to form sheets that are two molecules thick, within

which the lipids are free to diffuse. When composed of several lipid species

these two-dimensional (2D) liquid membranes can demix into coexisting liquid

phases, termed Lo and Ld, over a range of temperatures and compositions, and

can exhibit critical behavior [150, 41, 68, 69]. Among 2D critical phenomena,

composition fluctuations in membranes are rather unique in that their large

sizes and long decay times are accessible to optical microscopy. For example,

Fig. 1 and supplementary movies show a vesicle (a spherical membrane shell)

in which correlated regions reaching 10 µm persist for seconds 4.5. Direct visu-

alization of these equilibrium fluctuations has recently been used to show that

1Most of this chapter was published in Physical Review Letters with first author Aurelia
Honerkamp-Smith and Sarah L. Keller [70]. All experiments were performed by Aurelia
Honerkamp-Smith and Sarah L. Keller, and analysis and writing was shared.
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static critical exponents for lipid membranes are consistent with the 2D Ising

universality class [68, 147]. Here we exploit the ability to visualize dynamics of

these fluctuations to examine for the first time the dynamic critical phenomena

in this system. We find that although the statics are 2D phenomena, the critical

dynamics are modified by hydrodynamic coupling to the surrounding 3D fluid.

Static critical exponents, which describe how observables such as correla-

tion length vary as the critical point is approached, are identical for all sys-

tems in a given universality class, independent of their detailed microscopic

physics [53, 122]. For example, although membranes have a conserved or-

der parameter and ferromagnets do not, membranes exhibit static exponents

ν = 1.2±0.2 and β = 0.124±0.03, consistent with the expected 2D Ising values of

ν = 1 and β = 1/8 [68]. Results in plasma membrane vesicles are also consistent

with 2D Ising exponents ν = 1 and γ = 7/4 [147]. Systems that are in the same

static universality class can fall into different dynamic universality sub-classes

determined by conservation laws constraining how fluctuations dissipate [64].

The critical exponent z for each dynamic subclass quantitatively describes the

scaling of the dynamics. It relates how the correlation time τs diverges as tem-

perature T approaches the critical temperature Tc, such that τs ∝ |(T − Tc)/Tc|
−νz

where ν is the static critical exponent. Experiments measure an effective ex-

ponent zeff that approaches z as T → Tc and ξ → ∞. Dynamic sub-classes rele-

vant to 2D systems with conserved order parameter are notable equally for their

wealth of theoretical predictions [64, 60, 74] and for the lack of experiments that

systematically test those predictions.

Only a few previous measurements of dynamic critical exponents in 2D

systems exist. Most experiments have been conducted on magnetic films.
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Figure 4.1: Fluorescence micrographs of vesicles of diameter 200 µm. (A) As
temperature changes from T > Tc (T = 31.25◦C, Tc ≈ 30.9) to T ∼ Tc (T = 31.0◦C)
fluctuations in lipid composition grow. Below Tc, at T = 28◦C, domains appear.
Scale bar = 10 µm. (B) A movie of composition fluctuations within a vesicle
above Tc. Large fluctuations persist for seconds (white arrows), whereas small
ones disappear by the next frame (black arrow). Scale bar = 20 µm.

Using ferromagnetic films of ∼ two monolayers, Dunlavy and Venus found

νz = 2.09 ± 0.06, with ν = 1 [34]. Fewer experiments have been conducted on

systems with conserved order parameter. Careful attempts to measure z were

made in thin films of lutidine and water, but were unable to reach the 2D criti-

cal regime [20]. In plasma membrane vesicles from living rat basophil leukemia

cells, fluctuation decay times were reported to be consistent with z ≈ 2 [147].

Here we obtain zeff as T approaches Tc in a lipid membrane surrounded by

water and compare to theory recently developed for an analogous system: a 2D

critical binary fluid embedded in a non-critical bulk fluid [60, 74].
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4.2 Theoretical overview

This new theory incorporates three essential features of lipid bilayer dynamics:

conserved order parameter, collective hydrodynamics, and hydrodynamic cou-

pling between the bilayer and bulk [60, 74]. Inclusion of only the first feature

within an Ising model yields Model B, in which composition fluctuations dis-

sipate through diffusion of microscopic constituents [64]. 2D Model B predicts

z = 4−2β = 3.75 [64], and numerical schemes give z = 3.80 and z = 3.95 [156, 162].

Inclusion of the first two features, such that collective hydrodynamic motion re-

places single particle diffusion as the dominant mechanism of order parameter

relaxation, yields Model H. 2D Model H with coupling to only 2D momentum

modes predicts z ≈ 2 [64]. Inclusion of all three features yields Model HC, where

HC denotes hydrodynamic coupling of the membrane to the bulk. This new

version extends Model H to account for modes in both the 2D membrane and

the 3D bulk fluid, with the result that z = 3 [60, 74].

Intuition for the role of the coupling between the membrane and bulk

within Model HC can be gleaned from an approximation for 3D Model H by

Kawasaki [78]. Critical fluctuations are treated as spherical inclusions of diame-

ter ξ that diffuse a distance ξ to equilibrate [64, 78, 76, 126]. As such, correlation

time varies as τ ∼ ξ2/D(ξ), where D(ξ) is the inclusion’s diffusion constant in

a non-critical fluid. In 3D, D(r) ∼ 1/r, where r is the inclusion’s radius. Using

τ ∝ |(T − Tc)/Tc|
−νz
∝ ξz yields z ≈ 3. A more sophisticated theoretical treatment

gives z = 3.065 [126]. Applying the same reasoning to 2D Model H, in which

diffusion of inclusions has only a logarithmic dependence on r, yields z ≈ 2.

Again, more sophisticated treatments produce similar values; see 4.5 for more

detail. This argument can be extended to predict the value z should take in a 2D
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critical system embedded in a bulk fluid. Classic work by Saffman and Delbrück

examined diffusion of an inclusion in a 2D liquid of viscosity η2D immersed in

a bulk fluid of 3D viscosity η3D, where hydrodynamic length Lh = η2D/η3D is an

important parameter [115, 73]. When r � Lh, dissipation is primarily into the

bulk and D(r) ∝ 1/r as in 3D Model H. When r � Lh, dissipation is primarily

into 2D hydrodynamic modes and D(r) ∝ ln(Lh/r), similar to 2D Model H. Two

groups have independently noted that when Lh is considered, zeff for a 2D criti-

cal binary fluid embedded in bulk liquid crosses over from zeff ≈ 2 when ξ � Lh

to zeff ≈ 3 when ξ � Lh [60, 74].

Figure 4.2: . (A and B) Rescaling experimental data closest to Tc by kzτ col-
lapses all curves to zeff = 2.8, consistent with Model HC. Normalized structure
factors are shown for ξ = 13 ± 2.2 µm and three video rates: 10 frames per sec-
ond (fps, solid lines), 2 fps (short dash), and 0.5 fps (long dash). Colors denote
wavenumbers k = 1.1 µm−1 (top curve, blue) to 3.0 µm−1 (bottom, red). (C and
D) Simulations solely to verify technique. Structure factors of Kawasaki dy-
namics at T = Tc blurred in time to mimic experimental limitations collapse at
zeff = 3.6±0.2, consistent with z = 3.75 for 2D Model B. Colors range from k = 1.1
µm−1 to 3.1 µm−1. Insets show collapses used to determine bounds for zeff and
failure of collapse at zeff = 3.
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4.3 Results

The next four paragraphs demonstrate that experimental results here are in ex-

cellent agreement with the recent predictions of Model HC, namely that ze f f

crosses over from ∼ 2 to ∼ 3 as T → Tc and ξ → ∞. Further experimental details

follow the results.

A time series of the order parameter, m(r, t), was extracted from videos of

vesicles collected via fluorescence microscopy. For membranes, m(~r) is the devi-

ation from average composition as reported by an image’s pixel grey scales. A

time-correlation function C(r, τ), and its Fourier transform in space, the structure

factor S (k, τ), were calculated for each wavenumber k.

Curves of S (k, τ)/S (k, 0) vs kzeffτ were plotted for a range of zeff values. Fig.

2B illustrates how the correct zeff was identified: for a single value of zeff, all

experimentally-measured curves at different k values (Fig. 2A) collapsed most

fully onto a single curve, here at zeff = 2.8 ± 0.2. Fig. 3A shows zeff values ex-

tracted in this manner from data over the entire measurable range of correlation

lengths. In Fig. 3A, zeff rises from from near 2 to near 3 as T → Tc, in accord with

Model HC [60, 74].

Fig. 2C-D validates this method by showing that standard simulations of

Model B Kawaski dynamics that are blurred to mimic experimental limitations

and then analyzed in the same way as the experimental data give z = 3.6 ± 0.2

in agreement with the expected value of z = 3.75 (see 4.5 for details). Simula-

tions were run on a 400x400 bi-periodic square lattice. Blur was achieved by

averaging snapshots over 200 consecutive Monte Carlo sweeps, leaving a break

of 800 sweeps without snapshots, and repeating the process, which reproduced
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the effects of a camera shutter opening for 100 ms of every 500 ms.

Figure 4.3: Data is in excellent agreement with Model HC. (A) Filled symbols:
Dynamic exponent zeff from scaling collapse of experimental data as in Fig. 2A-
B. Open symbols: Model B simulation in which zeff approaches ∼ 3.75. (B) Decay
time, defined as when S (k, τ)/S (k, 0) = e−1. Large symbols indicate wavenum-
bers 1.1 and 3.3 µm−1. (C) Normalized structure factors S (k, τ)/S (k, 0). In panels
B and C, experimental data is denoted by symbols, 2D Model B by a grey line,
Model HC (HC) with Lh = 6 µm by a solid line and Model HC with Lh = 0 by a
dashed line.

Excellent agreement between predicted and measured structure factors pro-

vides even stronger evidence that Model HC describes critical dynamics in

membranes. Inaura and Fujitani give a prediction for the entire time-dependent

structure factor S (k, τ) for Model HC, taking as input η2D, η3D, and a mean-field

approximation for the static structure factor, S (k, 0) [74]. The ratio S (k, τ)/S (k, 0)

and its decay time will be compared between theory and experiment below. A
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feature of S (k, τ)/S (k, 0) is that it needs no correction due to the microscope’s

point spread function. Ratios of S (k, τ)/S (k, 0) in the critical Ising model and in

the mean-field approximation are similar, and do not depend strongly on corre-

lation length, as will be shown in a future manuscript.

The HC model with Lh = 6 µm fits the data over all experimentally accessible

wavenumbers. Fig. 3C shows the ratio S (k, τ)/S (k, 0) at wavenumbers 1.1 µm−1

and 3.8 µm−1. Fig. 3B shows decay times, defined as when S (k, τ)/S (k, 0) =

e−1. All other models are excluded. Fig. 3A rules out 2D Model H because the

measured zeff rises close to 3, well above the predicted value of 2 for 2D model

H. Fig. 3B-C rules out 2D Model B because measured decay times are orders of

magnitude shorter than the model predicts.

Developing Model HC to completely describe membranes requires deter-

mining only membrane viscosity, η2D, as an input since the viscosity of water,

η3D, is known. Fig. 3C indicates that η2D must be nonzero. In the small k limit,

Inaura and Fujitani [74] predict a structure factor that depends only on η3D.

This parameter-free prediction, equivalent to taking η2D = 0, underestimates

time decays by a factor of 5 − 10 (dashed curve, Fig. 3C). Setting the unknown

η2D (or equivalently, Lh = η2D/η3D) as a single fit parameter within Model HC

over the entire measured range of k yields Lh = 6.0 ± 1.5 µm. This value is

within the range found by tracking diffusion of liquid domains across vesicle

surfaces [23, 104] and is similar to values (2-4 µm) found by other methods, al-

beit for different lipid mixtures [17, 31]. An essentially equivalent method of

finding Lh is to calculate the Model HC structure factor using the formalism of

Hohenberg and Halperin [64], and to thereby extend Model HC to incorporate

Ising rather than mean field statics. Within experimental uncertainty, this mod-
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est change has no effect (Lh = 5.5 ± 1.5 µm). This and other extensions of Model

HC, each leading to small corrections to the ratio S (k, τ)/S (k, 0), will appear in a

future manuscript.

4.4 Methods

Using lipid bilayers to measure critical exponents introduces both complexi-

ties and advantages, which are outlined further in 4.5. The first complexity is

that the simplest bilayers that exhibit critical phenomena contain ternary lipid

compositions. Strictly speaking, the ternary mixtures used here pass through

isothermal critical mixing (plait) points rather than critical (col) points. A fea-

ture of 2D systems is that, unlike in 3D systems, no measurable change in critical

exponents arises from the presence of a third component. Briefly, a small correc-

tion to scaling arises in systems that contain a third component at fixed compo-

sition rather than fixed chemical potential. Hence, Tc changes, and many effec-

tive critical exponents are renormalized by a factor of 1/(1−α), as discovered by

Widom [153] and generalized by Fisher [44]. For the 2D Ising case here, where

α = 0, theory predicts only a logarithmic correction to singular behavior [153].

The second complexity is that when T is changed (as required in previous stud-

ies to find ν and β [68], but not required here), a bilayer with fixed composition

does not necessarily follow a path with constant 〈m(~r)〉 [164]. However, since

membrane phase diagrams are relatively symmetric over the range of tempera-

tures probed and since measured values of ν and β were consistent with the 2D

Ising model [68], deviations from a path of constant 〈m(~r)〉 are likely minor.

The first advantage of using lipid bilayers is that it avoids challenges of other
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systems. For example, lipid monolayers have confounding effects of dipole in-

teractions, and the task of achieving simultaneous tunability and stability of sur-

face pressure in a stationary monolayer is formidable. The second is that corre-

lation lengths are large, partly because ξ0 within the relation ξ = ξ0 |(T − Tc)/Tc|
−ν

is on the order of the length of a lipid molecule rather than of an atom. Sepa-

rately, there is an advantage in using 2D (or quasi-2D) experimental systems

over 3D systems. The critical region is larger in 2D liquid-liquid critical sys-

tems than in analogous 3D ones, partially due to differences between critical

exponents in 2D vs 3D Ising classes (ν = 1 and β = 1/8 in 2D vs ν ≈ 0.630 and

β ≈ 0.325 in 3D [53]).

Methods used to produce the results in Fig. 3 follow. To optimize movie

quality, vesicles were spherical, free-floating, unilamellar, of radius >100 µm,

and electroformed by standard methods detailed in [68]. Vesicles were formed

from mixtures along a line of plait points centered at 30% diphytanoylphos-

phatidylcholine (DiPhyPC), 20% dipalmitoylphosphatidylcholine (DPPC) and

50% cholesterol (chol), with 0.5% fluorescent dye Texas red dipalmitoylphos-

phatidylethanolamine (TR-DPPE). Only vesicles near a plait point were an-

alyzed, identified by micron-scale composition fluctuations visible over the

largest observed range of temperatures (> 1◦C) and by equal areas of coexist-

ing liquid phases below Tc. Each vesicle analyzed fell on a slightly different

plait point, so each had a slightly different Tc [149].

Images of membranes were captured via an epifluorescence microscope with

a temperature-controlled stage and a mercury lamp source. Light exposure was

minimized by employing a SmartShutter (Sutter Instrument, Novato CA) con-

trolled through NIS-Elements (Nikon, Melville NY) and by recording movies for
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at least two different frame rates at each temperature. Each frame was exposed

100-150 ms, with the shutter open 10 ms before and after exposures. Movies

were collected from high to low temperature in steps of ∼ 0.2◦C, equilibrated

for at least 2 min. No consistent trend in intensity was observed throughout

each movie, implying that the low light procedures used here eliminated sig-

nificant photobleaching. To correct for lamp flickering, mean brightness was

subtracted from each frame. Spatial intensity gradients due to other vesicles

outside the focal plane were removed by a long wavelength filter of 100 pixels.

Images were analyzed via custom MATLAB code (The Mathworks, Nat-

ick, MA). Vesicles were tracked and centered to remove drift (typically <

25µm/min). By eye, features exhibit no net translation, which implies no sig-

nificant vesicle rolling. No difference in mean intensity or noise between pixels

at edges vs. centers of cropped images was observed, implying that vesicles are

so large that membrane curvature over images can be neglected [68]. Curvature

corrections in smaller vesicles were minor [147].

The structure factor S (k, τ), the Fourier transform in space of the time-

dependent correlation function, was found as previously described [68, 135].

Briefly, a discrete transform was performed for each movie image, with a buffer

of zero values to correct for image non-periodicity. Transformed images were

divided by the microscope’s finite point spread function to yield m(~k, t). The dy-

namic structure factor was generated at each τ by S (~k, τ) = 1/2
〈
m(~k, t)m(~k, t ± τ)

〉
,

where m(~k, t) is the complex conjugate of m(~k, t) [80]. S (~k, τ) was then radially av-

eraged to yield S (k, τ).

Structure factors were employed in two ways. First, correlation lengths, ξ,

were found by analyzing structure factors at τ = 0. Specifically, a one-parameter
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fit for ξ was made until all data for k(7/4)S (k) vs. kξ collapsed onto the single

curve for the exact numerical solution of the 2D Ising model [155, 68]. Second,

effective dynamic scaling exponents, zeff, were found by collapsing curves of

S (k, τ) (see results above and 4.5 for details). Collapse works because, according

to the dynamic scaling hypothesis, structure factors within the scaling regime

can be written in the form S (k, τ, ξ) = k−2+ηΩ((kξ)−1, kzτ) where Ω is a univer-

sal function of (kξ)−1 and kzτ [64]. Near Tc, where (kξ)−1 is near 0, curves of

S (k, τ)/S (k, 0) vs kzτ collected over many wavenumbers k should collapse via a

one-parameter fit to produce the correct value of z. Here, Ω can also depend

on kLh, so that S (k, τ, ξ) = k−2+ηΩ((kξ)−1, kzτ, kLh). For collapses in Fig. 2A-B, zeff

refers to an effective z value which varies as ξ/Lh is changed. In Fig. 3B-C, com-

paring the entire form of the structure factor to theoretical predictions directly

verifies the value of z as well as the dependence of the universal function on kLh

and kzτ.

Summary: Directly imaging composition fluctuations enables measurement

of effective dynamic critical exponents of a lipid membrane embedded in bulk

water. Experimental structure factors are in excellent agreement with an emerg-

ing theoretical prediction in which 3D hydrodynamics affects critical slowing

down in a 2D membrane. The theory invokes hydrodynamic coupling between

the membrane and bulk fluid such that Ising degrees of freedom are coupled to

momentum modes [60, 74]. As predicted, a shift in zeff from ∼ 2 to ∼ 3 as T → Tc

and ξ → ∞ is observed.
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4.5 Supplemental material

4.5.1 Introduction

This supplemental section contains details regarding analysis, calculation, and

theory not found in the main text. Two movies are also included as supple-

mentary material, where Movie 1 is at 30.25◦C, and Movie 2 is at 29.75◦C, with

Tc ≈ 29.5◦C. Both movies are 35µm wide. Section 4.5.2 contains additional

information on analysis procedures. Section 4.5.3 explains why Fisher renor-

malization does not affect the observed static critical exponents in 2D Ising sys-

tems, and why lipid membrane systems can have larger correlation lengths than

binary liquids in 3D. Section 6.7 details the Ising model simulations that we

used to verify our analysis. Section 4.5.5 reviews previous theoretical results for

purely 2D critical hydrodynamics.

4.5.2 Details of analysis

In the definition of S (~k, τ) =

〈
m(~k, t)m(~k, t + τ)

〉
, the value of S (k, τ = 0) is guar-

anteed to be real not only as an expectation value but from run to run since

each term appears with its complex conjugate. For τ , 0, the expectation value
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of the imaginary part of S is guaranteed to be real by time-reversal invariance

expected of systems in equilibrium. However, each term contributes an imag-

inary component. Adding the complex conjugate and dividing by two leads

to an effective measurement of 1/2(s(k, τ) + s(k,−τ)), which for an equilibrium

system is equal to S (k, τ). The inclusion of zeros required to pad the raw data

in m(k, t) introduces a small error in the calculation of S (k, τ) which can be cor-

rected for by dividing S (k, τ) by the correlation function of pure ones and zeros

in the real space correlation function. For calculations in k-space, there is no

simple correction (the real space correction has an ill-posed Fourier transform

and so introduces unacceptable noise in k-space). Nevertheless, any correction

is expected to be small (values of S (k, τ) were similar when calculated with vs

without zero padding). More importantly, any correction would cancel out of

the main results presented here because values are divided by S (k, τ = 0). For

movies at the slowest frame rate, 0.5 fps, noise in S (k, 0) caused an offset from

the rest of the structure factor. For calculations made with those data sets, the

measured value of S (k, 0) was replaced by the value extrapolated from an expo-

nential fit to the 2nd through 5th points in S (k, τ).

4.5.3 Experimental advantages of lipid bilayers

This section explains why Fisher renormalization does not affect the observed

static critical exponents in 2D Ising systems, and why lipid membrane systems

can have larger correlation lengths than binary liquids in 3D.

Widom-Fisher rescaling leads to only an immeasurably small correction to 2D crit-

ical exponents: Concentration fluctuations consistent with static 2D Ising criti-
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cal exponents were previously observed in membranes over our entire range

of kξ [68]. As we show below, this observation is not at odds with the fact

that our ternary system is subject to rescalings first discovered by Widom [153]

and generalized by Fisher [44]. Rescaling corrections apply to any system with

a quantity whose chemical potential smoothly affects the critical temperature.

When a component is instead held at fixed composition (as our three compo-

nents are) then the observed critical behavior receives non-analytic corrections,

essentially because the chemical potential of the third component has singular

behavior near the critical point when held at fixed composition. As a result, the

singular form of the coexistence curve near the critical point is changed from

its usual exponent β to β′ = β/(1 − α). Here α is the static critical exponent for

specific heat. Other critical exponents that relate singular behavior of a quantity

to the distance in temperature from the fixed point (for example α, β, ν and γ) re-

ceive similar corrections. For example, the specific heat exponent itself becomes

α′ = α/(1 − α)[44]. The rescaling correction is not confined to ternary systems:

binary systems held at fixed density, rather than fixed pressure undergo simi-

lar rescalings, as does any system in which a density variable is held fixed in a

phase diagram rather than it’s conjugate field.

Fortunately for the current study, Widom-Fisher rescaling in the 2D Ising

model leads to an immeasurably small change in the singular behavior and no

change in the critical exponents themselves. As noted above, α is the static crit-

ical exponent for specific heat, C, which diverges as C ∼ ((T − Tc)/Tc)−α. In the

2D Ising model, specific heat diverges as C ∼ log((T − Tc)/Tc), which is slower

than any power law divergence, so that α is said to be zero. As explicitly dis-

cussed in both [153] and [44], there is potentially a logarithmic correction to the

singular behavior of quantities whose critical exponents are usually multiplied
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by (1 − α)−1. For example, the correlation length ξ, which is usually written as

ξ ∝ (T−Tc
Tc

)−ν, becomes ξ ∝ (− log (T−Tc)(T−Tc)
Tc

)−νafter rescaling. In this case, ν′ = ν,

so rescaling does not change the critical exponent. For a system described by

the 3D Ising model (rather than the 2D Ising model as in the current study),

α ≈ 0.11 [44, 21], such that the effect of rescaling is small but observable in the

critical exponents.

Although the effect of rescaling on the dynamic exponent z is not discussed

explicitly in the literature, we expect that z would not be affected by rescaling

even for systems in which α , 0. The dynamic exponent z describes scaling of

the time scale as the length scale is changed, with τsystem ∝ ξz. The product νz

describes critical slowing with respect to temperature, where τsystem ∝ (T−Tc
Tc

)νz.

As such, νz does describe the singular behavior of a quantity (here the time

scale) as temperature is changed and it receives a correction of 1
1−α through the

parameter ν.

Values of static critical exponents β and ν allow for a large correlation length ξ:

Correlation lengths ξ ∼ 10µm are regularly observed in vesicle membranes.

These correlation lengths are larger than those typically observed in 3D binary

mixtures, even though control over lipid composition in membranes is coarser.

As described in the main text, 2D critical exponents allow for coarser tuning

in temperature and composition for a given correlation length. Also, lipids

are molecules with length scales of ξ0 ∼ 1nm, whereas molecules employed

in many studies of 3D critical phenomena are an order of magnitude smaller,

with ξ0 ∼ 0.1nm. The length scale ξ0 is a prefactor for the correlation length

as seen in the scaling form of the correlation length: ξ = ξ0t−νU
(
φ1/βt−ν

)
where

t = (Tc/(T − Tc)) and where φ, the magnetization, is linearly related to compo-

86



sition. U(x) is a universal function that is monotonically decreasing in x. For

large x,U(x) ∼ 1/x, and it can be normalized such thatU(0) = 1.

4.5.4 Simulation details

Simulation procedures were standard [103, 122] and briefly explained here. The

standard Ising Hamiltonian given by H = −
∑
{i, j} sis j was used, with spin vari-

ables si = ±1 and summation over the four nearest neighbors ( j) of every state

(i). Temperatures were in terms of the exact critical temperature given by the

Onsager solution [106], TC = 2/ log(1 +
√

2) so that a reduced temperature

t = (T − Tc)/Tc corresponds to a simulation temperature of Tsim = 2.269(1 + t). In

this section, T and ∆H correspond to temperature and to the change in energy

between initial and final states, respectively. Both are in dimensionless units.

In a Monte-Carlo ’sweep’, 160, 000 (4002) pairs of spins were proposed to be

swapped, such that each spin was proposed twice. Metropolis spin exchanges

were used; each pair was exchanged or not to satisfy detailed balance [103, 122].

If the resulting configuration was lower in energy, the exchange was accepted.

If energy increased, the exchange was accepted stochastically with probability

exp(−∆H/T ).

Note that any dynamics that satisfy detailed balance will lead to the same

equilibrium ensemble of configurations [122]. To rapidly equilibrate the system,

’nonlocal’ moves were employed in which each of a pair of spins were chosen

from all sites on the lattice. Equilibration is very rapid using these nonlocal

dynamics since they approximate ”Model A” for large systems where z is near

2 [64]. The system was equilibrated for 100, 000 sweeps using nonlocal moves
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starting from a distribution that contained the desired fraction of up spins but

was otherwise random. 100, 000 sweeps is much longer than the decay time of

the slowest decaying system used here. The decay time is approximately 1000

sweeps at 1.05TC, which can be seen qualitatively by inspecting successive snap-

shots or quantitatively by inspecting the decay of time dependent correlation

functions. Once the system was equilibrated, dynamics relevant for the locally

conserved order parameter (Kawasaki Dynamics) were employed. In this case,

a single spin and one of its four nearest neighbors were chosen to form a pair

proposed to be swapped.

4.5.5 Predictions for binary liquids in 2D

Model H for binary fluids in 2D predicts z ≈ 2 using z = 4 − η − xλ, where

η = 2β is a static critical exponent and xλ must be calculated from an epsilon

expansion (where ε = 4−D, and D is the number of dimensions). This yields xλ =

18/19(1− (constant)ε +Oε2) where the constant is either 0.033 [126] or 0.039 [61].

Since the constant is small, it is plausible that the expansion applies even when

ε = 2, yielding z = 2.00 (which also arises from a much simpler mean field

argument) or 1.98. Simulations in 2D binary liquids are reportedly challenging

and we know of none that either verify or contradict the prediction that z = 2.

Measurements in bulk 3D liquids far from Tc find that ze f f = 2 (e.g. [85, 134, 16]).
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4.5.6 kξ of order 1 is a small correction to Γ(k)

This section shows that the seemingly drastic approximation of (kξ)−1 = 0 in

the calculation of the decay rate leads to only a small correction to Γ(k). As

such, the approximation is made in the bulk of our analysis so that one less fit

parameter is carried. For plots in the main text, the exact static susceptibility

at Tc of χm(k) = k−2+η is used, with η = 1/4. (As can be seen in equations 4.13

and 4.14, the absolute scale of χm does not enter into Γ or µ). However, the

actual structure factor approaches a constant, rather than infinity as k → 0. To

understand the effects of the approximation, a simple form is used that is similar

to one commonly used when η = 0: χm(k) = (ξ−2 + k2)−1+η/2. Using this static

structure factor, a comparison is possible between Γξ(k) when the correlation

length ξ is finite vs. infinite. In Supplement Fig. 4.4, the ratio Γξ=10µm(k)/Γξ=∞(k)

vs k is plotted for values of k from nm−1 to mm−1. As with Fig. 3B and C of the

main text, Lh = 5.5µm is used. In the experimentally probed region (bounded

by the red dots) the ratio Γξ=10µm(k)/Γξ=∞(k) is always within ±0.03 of the value

of 1, which justifies dropping it from most analysis. Interestingly, in the region

kξ ∼ 1 there is a local minimum in the ratio. This means that for a small range

of k vectors near k ∼ ξ−1, moving closer to a critical point actually increases the

speed with which some modes relax. For k << ξ−1, Γ(k) becomes proportional to

k2 rather than k3, so that the ratio increases like 1/k for sufficiently small k.

4.6 Hydrodynamic mode coupling calculation

We use a perturbative mode coupling calculation similar to that for 3D flu-

ids [64, 126] and for 2D membranes in water [74]. To [74] we add the use of the
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Figure 4.4: In the hydrodynamic theory described here, the value of Γ(k) does
not depend strongly on the value of ξ in the static structure factor over the range
explored experimentally in this study. Experimentally measured values of ξ
are on the order of 10µm (15µm in Fig. 3B and C of the main text). This is
quantified by the ratio Γξ=10µm(k)/Γξ=∞(k), where Γξ(k) is the decay rate predicted
by the theory outlined in section 4.6 with static correlation length ξ. This ratio is
plotted over a range of k values, with the fit value of the hydrodynamic length
Lh = 5.5µm. Over the range of k values probed experimentally (0.8(µm)−1 < k <
4(µm)−1, bounded by the red dots), the farthest this ratio deviates from a value
of 1 is by 0.03.

Ising static structure factor and the formalism used in [64, 126], which allows us

to take into account the back-action of Ising degrees of freedom on momentum

modes in the limit where the membrane viscosity is zero. The model H variant

contains order parameter modes and momentum modes with the following free

energy functional:

F = F0 {m (r)} +
∫

d3~r

∣∣∣W(~r)
∣∣∣2

2ρ3D
+

∫
d2~r

∣∣∣V(~r)
∣∣∣2

2ρ2D

+

∫
d2r(−hm(r)m(r) − hV(r)V(r)) (4.1)

Here F0 {m (r)} is the free energy functional for the Ising modes m(r). The hy-

drodynamic modes W(r) describe the local 3D momentum density, where ρ3D

is the density of water. The 2D momentum modes are related to the 3D ones

by: V(x, y) = (ρ2D/ρ3D)W(x, y, 0). The applied fields, h, are used in defining the

susceptibilities, 〈V(k, ω)〉 = χV (k, ω) hV(k, ω) and 〈m(k, ω)〉 = χm (k, ω) hV(k, ω). The
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fluid momentum modes are vectors, but the incompressibiliy condition makes

them effectively scalars here. In k-space, the modes must be tranverse, which

in 2D allows for only a single polarization. In 3D, there are always two al-

lowed polarizations. However, a flat membrane enforces the condition that the

z-component of the velocity be identically 0 at z=0, and so the z-component of

the velocity does not couple to the membrane. Each k-vector in 3D then has a

single allowed polarization perpendicular to both ẑ and k̂−1.

The dynamics are specified by diffusion of the order parameter (which is

not relevant), viscous dissipation of the hydrodynamic modes, and a Poisson

bracket relation between the momentum modes and the order parameter, which

enforce that the velocity field carries the order parameter along with it. The

defining equations are given by:

∂tm(z=0) = λ0∇
2
2D
δF
δm
− g0∇2Dm ·

δF
δW

(4.2)

∂tW(z,0) = T

[
η3D∇

2
3D
δF
δW

]
(4.3)

∂tW(z=0) = T

[
η2D∇

2
2D
δF
δW
− g0∇2Dm ·

δF
δm

+ η3D
∂

∂z
(
δF
δW

) |z=0+ − η3D
∂

∂z
(
δF
δW

) |z=0−

]
(4.4)

where noise terms to enforce equilibrium statistics are not written, and where

η2D and η3D are the viscosities of the 2D membrane and the 3D bulk, respec-

tively. The operator T enforces the incompressibility condition and in k-space

reads (Tk)ab = (δab −
kakb
k2 ). The constant g0 will eventually be set to 1, and the

calculation will be in powers of g2
0. The term proportional to λ0 gives a diffusive

contribution that is sub-dominant, and that we henceforth drop. We wish to find

the frequency dependent susceptibilities of the 2D momentum modes V and the

Ising modes m. The susceptibility of a mode is related to its structure factor by

the fluctuation dissipation theorem (see [64] for a discussion), which relates the
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Fourier transforms in time of the structure factor, Ŝ and susceptibility, χ̂:

Ŝ (~k, ω) =
2kBT
ω

Imχ̂(~k, ω) (4.5)

An important corrolary relates the static structure factor to the zero frequency

susceptibility:

S (~k, t = 0) = kBT χ̂(~k, ω = 0) (4.6)

As in [64], we assume that these have the form:

χ−1
m (k, ω) = (1 − iω/Γ (k))χ−1

m (k) (4.7)

χ−1
V (k, ω) = ρ2D − iω/µ (k) (4.8)

where χm(k) is the static susceptibility of the Ising modes. This form gives a

time dependent structure factor that decays exponentially in time. It remains to

find the unknown µ(k) and Γ(k), the decay rates of the 2D momentum and Ising

modes. First, the form of µ(k) is found to zeroth order in g0, which is called µ0(k).

To do this, solutions for V of equations 4.3 and 4.4 were found with applied

field in the ŷ direction hV(r, t) = hV(k, ω)eikx−iωt. This is solved by the following

momentum field in 3D:

W =
ρ3D

ρ2D
χV (k, ω) exp (ikx − iωt − k̃z)hV(k, ω) (4.9)

with k̃ =

√
k2 − i

ρ3D

η3D
ω ≈ k for ω <<

η3Dk2

ρ3D
(4.10)

and χV (k, ω) = ρ2D
−iω

2η3Dk + 2η2Dk2 (4.11)

where ω << η3Dk2

ρ3D
≈ 106(µm2/s)k2 is valid over the range of ω and k values that

are relevant here. This yields:

µ0(k) = η2Dk2 + 2η3Dk = η3D(2k + k2Lh) (4.12)

where Lh = η2D/η3D. An identical result was obtained in [74] by assuming that

the three dimensional flow is given by the steady state Stokes flow with the

velocity field in the membrane acting as a boundary condition for the bulk fluid.
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To calculate the susceptibilities to second order in g0, integration was per-

formed over mode couplings. Vertices proportional to g0 couple two Ising

modes and a velocity mode. The result is a pair of self-consistent equations

(see [64] for details):

Γ(k) = g2
0χ
−1
m (k)

∫
d2 p

(2π)2χm(p+)
kTpk
µ(p−)

(4.13)

µ (k) = µ0(k) +

g2
0

∫
d2 p

(2π)2

χm (p−) [χ−1
m (p+) − χ−1

m (p−)]pTk p
Γ(p+) + Γ(p−)

(4.14)

where p± = p ± k/2. From these equations, several limits can be seen. In the

limit where Lh = 0 (when the membrane viscosity is 0), Γ(k) ∝ k3, and µ(k) ∝ k.

When η3D can be neglected, Γ(k) ∝ k2, and µ(k) ∝ k2 are found, both of which are

in agreement with the scaling arguments discussed in the main text and as first

argued in [60].

At present, solutions to equations 4.13 and 4.14 have not been found for a

general set of parameters. Instead, here the equations are solved in two lim-

its. In both cases, the Ising critical static structure factor is used at its critical

point, χm(k) = k−2+η to minimize fit parameters, although using an off-critical

structure factor gives quantitatively indistinguishable results (discussed in sec-

tion 4.5.6). In the limit in which Lh = 0, both µ(k) and Γ(k) are power laws with

prefactors that can be algebraically found after numerically solving the two in-

tegrals. In that case, µ(k) = 2.21η3Dk = 1.11µ0(k) and Γ(k) = (.094kBT/η3D)k3. It

is this complete solution to the pair of equations at Tc that is used within this

work for all theory predictions labeled with Lh = 0. At finite Lh no method of

self-consistently solving the equations was found even when ξ = ∞. Instead

µ0(k) was used in place of µ(k), following [74]. We hope to present a complete

self-consistent numerical solution that considers ξ and Lh in a later publication.
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Although it is of theoretical interest, it is expected that inclusion of the full µ(k)

rather than of only µ0(k) will be a small correction. In the case in which Lh = 0, Γ

is simply reduced to ∼ .9 of its value without viscosity renormalization, and the

scaling exponent is unchanged. By contrast, in purely 3D systems the viscosity

renormalization does change the scaling exponent z, although by only a very

small amount.
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CHAPTER 5

CRITICALITY AND ANESTHESIA

Abstract 1 Giant Plasma Membrane Vesicles (GPMVs) taken from living Rat

immune cells are tuned close to a liquid-liquid critical point that can be found

by lowering temperature to around 295K. We demonstrate that the n-alcohol

series of general anesthetics depress the transition temperature of these GPMVs

by ∼ 4K. This change is much larger than similar changes seen in synthetic

lipid systems after addition of anesthetics, and we argue that it is sufficient

to potentially explain the phenomenology of anesthesia, without the need for

any specific binding of anesthetics to particular proteins. In addition, we pro-

pose a simple model for an allosteric receptor that couples to the composition

of the membrane surrounding it through its boundary conditions. Such a re-

ceptor would generically have its sensitivity to ligand changed by the addition

of anesthetics. Our simulations predict changes to the dose-response curve of

a hypothetical GABA sensitive channel that are similar to the changes seen in

GABA-A channel conductance that are thought to mediate the effects of anes-

thesia.

5.1 Background

An enormous range of molecules, spanning inert noble gasses, diatomic nitro-

gen and more complicated organic molecules like Isoflurane all produce clin-

ically similar anesthesia in higher animals, with potency well predicted by

their partition coefficient in olive oil [97]. This ‘generalness’ led to efforts to

1This chapter is in preparation for submission with co-authors Elly Gray, James Sethna and
Sarah Veatch. I aided in early experiments in Sarah Veatch’s lab, but the bulk of the experimental
work was performed by Elly Gray.
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explain anesthesia as a biophysical perturbation acting on the membrane it-

self [58]. Anesthetics were shown to decrease the viscosity of synthetic mem-

branes [11, 88], and to take single-component membranes away from a liquid-

gel transition [100], both in a manner that correlated well with their potency as

anesthetics. However, these affects tended to be small- in each case, they could

be reproduced by raising temperature by less than 1oC [46]. Recent work has fo-

cused on protein based mechanisms [47] and in particular, on ligand-gated ion

channels many of which have been shown to have their conductance changed

by anesthetics [48]. Attention has focused on the GABA-A channel in partic-

ular, whose sensitivity to the inhibitory neurotransmitter GABA increases dra-

matically at anesthetic concentration. Although an interpretation of this data

in terms of an anesthetic binding site on the GABA-A receptor itself is appeal-

ing, such a model suffers from at least two philosophical issues: Why should

the GABA-A receptor have a binding site that can accommodate such a diverse

set of molecules? Furthermore, why should so many ion channels in so many

species have binding sites for these molecules?

Here we present experimental evidence for a model of anesthesia that can

explain the observed conductance data without the need for a specific anesthetic

binding site on the GABA-A receptor. Recent work in diverse areas has sug-

gested that lipid mediated heterogeneity often plays a regulatory role [90]. This

ubiquitous ‘lipid raft’ regulation plays a functional role in many signaling path-

ways, and GABA-A in particular is thought to be localized and regulated in

part by changing its interaction with the local membrane environment [87, 130].

We hypothesize that anesthetics disrupt this regulation, leading to the observed

sensitization of receptors to GABA.

96



Figure 5.1: Giant Plasma Membrane Vesicles (GPMVs) taken from Rat Ba-
sophilic Leukemia (RBL) cells [7, 147] are placed in buffer with varying con-
centration of anesthetic. The fraction of vesicles that appear phase separated at
a fixed temperatures are counted from images taken using optical microscopy.
(Counting is ’single blind’-the counter does not know the temperature or anes-
thetic concentration of the vesicles being observed, but the microscopist does.)
The resulting data is fit to a single parameter, the critical temperature. Shown
are two curves, a control, and 1x ethanol. The insets show two images from
control and 1x ethanol conditions respectively. At this temperature, most of the
ethanol treated vesicles remain uniform, while most of the control vesicles are
phase separated.

5.2 Results

To test this we took giant plasma membrane vesicles (GPMVs) from intact rat

immune (RBL) cells following [7, 147]. These GPMVs go through a critical point

slightly below 37oC into two two-dimensional (2D) liquid phases [147]. In previ-
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ous work we argued that proximity to this critical point is thermodynamically

necessary for lipid mediated regulation at 10-100nm scales as is often seen in

the raft literature [93]. Here we add clinically relevant concentrations of the

n-alcohol series of anesthetics to these GPMVs and measure the effect on their

transition temperature (see figure 5.1). Our results, presented in figure 5.2,

show that these anesthetics have a concentration dependent effect on the tran-

sition temperature that is scaled well by their potency, and not by their molar

concentration in solution2. At ED50, the concentration at which 50% of tadpoles

lose their righting reflex, transition temperatures are lowered by approximately

4oC, much larger than effects seen in previous lipid measurements. Our re-

sponse is likely larger because our cell-derived blebs are very close to a thermal

critical point, a non-generic region of thermodynamic space where the system

is very sensitive to perturbations3 [122].

5.3 Model

In addition to demonstrating that anesthetics lower Tc in cell-derived blebs, we

performed computer simulations that we intend to serve as a proof of princi-

ple that this change in Tc would be sufficient to lead to the observed changes

in conductance. We model highly simplified hypothetical GABA receptors im-

2It should be stated that, as demonstrated by the Meyer and Overton relationship, if we plot-
ted our results vs. the molar fraction in the membrane we might have a similarly good correlation.

3Although a 4o shift is much larger than is seen in most lipid based measurements, it is
still susceptible to the argument that it is not large enough. In particular, a human with a 4oC
fever is unhappy, but conscious, and cold blooded animals which presumably tolerate much
larger temperature variations show similar sensitivities to anesthetic. We note that the model we
propose here does not necessarily predict that a change in temperature would mimic this change
(unlike a theory where viscosity changes mediate anesthesia). If the protein’s two functional
states have different entropies, than biology could tune this entropy difference to compensate
for temperature changes to the membrane’s properties. This compensation would not buffer the
effects of anesthetics.
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Figure 5.2: The long chain alcohols depress the transition temperature of GP-
MVs taken from RBL cells, in a manner that strongly correlates with their po-
tency as an anesthetic. On the left the change in transition temperature is plotted
as a function of molar concentration of anesthetic in water, with DMSO, which
does not have significant anesthetic effects plotted as a control. On the right,
the same curves are plotted but with concentrations given as fractions of their
AC50- the concentration at which 50% of tadpoles lose their righting reflex (see
Table 1 of [109]). This rescaling approximately collapse the curves of Tempera-
ture shift vs. Anesthetic concentration.

mersed in a nearly critical two dimensional fluid (implemented in simulation on

a lattice Ising model). Our model proteins prefer to be surrounded entirely by

liquid-ordered (or equivalently disordered) membrane phase when not bound

by GABA, and they have no preference for the local liquid environment when

bound and conducting (see figure 5.3). This hypothetical protein would have

an increased sensitivity to a ligand preferring the conducting state if the critical

point were lowered at fixed temperature roughly because at higher tempera-

tures the fluid becomes more uniform, favoring the bound state (see section 5.4

for details). As shown in figure 5.4, a protein 11nm in diameter (approximately

the size of the GABA-A receptor) would be sufficiently large to recapitulate the

observed changes in conductance seen in dose-response curves of the actual
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GABA-A receptor (compare to measured curves, for example in [48]).

Figure 5.3: In our model a simplified ligand gated ion channel 10nm across
can can exist in an agonist bound, conducting state (red) or an unbound non-
conducting state (blue). We assume that the conducting state has no prefer-
ence for its local liquid environment (a free boundary condition) while the non-
conducting state has a strong preference for ordered lipids along its boundary.
This leads to an increase in the number of ordered and disordered lipids that
share boundaries, and a corresponding increase in both the energy density and
the local concentration of anesthetic molecules. We map the average value of the
resulting energy density around these two boundary conditions. Our model is
equivalent to a direct binding model, with anesthetic ‘binding sites’ distributed
amongst the lipids that surround the receptor. A detailed explanation of our
model is provided in section 5.4.

Our results suggest an explanation for the generalness of anesthesia. Anes-

thetic potency is a measurement of how effective a small molecule is at taking

the membrane away from its critical point. This change in membrane proper-

ties affects the large number of proteins that are regulated by their preference

for the local membrane environment. Larger proteins regulated in this man-

ner are likely to be more sensitive to this perturbation, perhaps explaining why

GABA-A, a large, multi-subunit protein seems to show the largest effect. Al-

though we don’t expect that our boundary conditions accurately describe the
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Figure 5.4: Our model predicts that the response of a hypothetical receptor to
GABA, as described in figure 5.3 and section 5.4will be potentiated by anes-
thetic by an amount dependent on its size. A receptor 5.5nm in radius (marked
with X, close to the size of the GABA-A receptor) would have its response po-
tentiated by about 50% at anesthetic concentration [A] = [A]EC50. For such a
receptor with binding affinity for GABA of .35mM (similar to GABA-A’s) we
plot the response vs GABA concentration at [A] = 5[A]EC50 and at [A] = 0. Fi-
nally, we show how such a receptor would respond to varying concentrations
of anesthetic, [A] at fixed [GABA] = .3mM. These results are similar to those seen
for the GABA-A receptor [48].

GABA-A channel, we do demonstrate that our observed change in Tc are suf-

ficient to lead to the observed changes in channel function in an allosterically

modulated hypothetical channel sensitive to its lipid environment.
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5.4 Simulation details

We model a hypothetical receptor R which can exist in two states: an active

state Ra in which it is bound to a single GABA molecule and an inactive one Ri

in which it is not. We allow for these two states to interact differently with the

surrounding membrane.

In thermal equilibrium the probability for the combined system of the recep-

tor and the surrounding membrane (with state {M}) to be in a particular state

P(R, {M} |[GABA]) is given by a Boltzmann factor for the combined system:

P(R, {M} |[GABA]) = 1
Z([GABA])e

−βE0(R,[GABA])−βHR({M})−βHM({M})

Z([GABA]) =
∑

R,{M}
e−βE0(R,[GABA])−βHR({M})−βHM({M})

(5.1)

where HM describes the energy of all of the membrane degrees of freedom that

are independent of the receptor’s state, HR describes the energy dependance of

the membrane on the state of the receptor R and where E0(R) describes the de-

pendence of the (free) energy of the receptor configuration on the concentration

of GABA, [GABA]. Our interest is purely in the (experimentally observable and

functionally relevant) activity as a function of [GABA], P(R|[GABA]), which we

can in principle calculate by summing over the membrane’s degrees of freedom

as follows:

P(R|[GABA]) =
∑
{M}

P(R, {M} |[GABA]) (5.2)

Presuming that an activated receptor always binds a single molecule of

GABA we can write the ‘bare’ free energies of the receptor as βEo(Ri) = −log(k0
d)

and βE0(Ra) = − log([GABA]), allowing us to write:
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P(Ra) = 1
Z([GABA])

∑
{M}

e−βHRa ({M}−βHM({M}

= [GABA]e−βFa

k0
de−βFi +e−βFa [GABA]

e−βFa =
∑
{M}

e−βHRa ({M})−βHM({M})

e−βFi =
∑
{M}

e−βHRi ({M})−βHM({M})

(5.3)

Where Fi/a is the free energy of the membrane conditioned on the the recep-

tor being in an inactive or active state respectively. This gives a Hill equation

for the probability of the receptor being active:

P(Ra) = [GABA]
[GABA]+kd

kd = k0
de−β(Fi−Fa)

(5.4)

We want to observe the dependance of kd on a perturbation to HM ({M}), the

piece of the Hamiltonian that does not explicitly couple to the state of the recep-

tor. This corresponds to a change in the response of the receptor to anesthetic

that is not directly mediated by binding of anesthetic to receptor. (Direct binding

could be modeled as a change to either HR or E0(R, [GABA]).) Consider making

a small change in the Hamiltonian by an amount δH′M ({M}). This would change

the log of kd by an amount:

∆ log(kd)
∆H′M

= −β
∆Fi

∆H′M
+ β

∆Fa

∆H′M
(5.5)

If small, this can be expressed as the difference in the expectation value of

the change in the hamiltonian averaged over the ensemble of membrane config-

urations defined by each receptor state:

−β ∂Fi
∂H′M

+ β ∂Fa
∂H′M

=< H′ ({M}) >i − < H′ ({M}) >a (5.6)
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where the expectation values

〈 f ({M})〉i/a = eβFi/a
∑
{M}

f ({M})e−βHRi/a ({M})−βHM({M}) (5.7)

are over the ensemble of membrane configurations defined by the inactive and

active form of the receptors.

Our experimental results can be interpreted as measuring H′ 4. We model the

membrane as a 2D Ising model with nearest neighbor interactions, and we take

H′ to be the change in the nearest neighbor coupling that would lead to the ob-

served changes in Tc. We model receptors as blocky spheres like the one shown

in figure 5.3 that sit on that square lattice Ising model and with active and inac-

tive forms differing onlyin their boundary conditions. In the active form, there

is no energetic coupling between the membrane and receptor (the boundary

conditions are ‘free’). In the inactive form, the boundary conditions are fixed, so

that all lattice sites sharing a bond with the boundary are constrained to be spin

up.

We generate ensembles conditioned on these receptors using the Wolff al-

gorithm on 64x64 lattices with bi-periodic boundary conditions. We run our

simulation at 1.05Tc as motivated by experiments [147]. The Wolff algorithm

can implement a fixed boundary condition along a receptor by rejecting an en-

tire cluster whenever a site in contact with the receptor added to it (see chapter

3). For efficiency we buffer this with Heat bath moves near the receptor, where

almost all Wolff clusters are rejected. In addition the Wolff algorithm can im-

plement a free boundary condition at the edge of a receptor by rejecting the

addition of any spin to a growing cluster that lies within the receptor, while not

4a large family of perturbations change Tc in the Ising model, but here we assume that only
the nearest neighbor interaction is changed by the addition of anesthetic.
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rejecting the entire cluster. We generate equilibrium ensembles with 100, 000

independent samples for each distribution.

As the simulation proceeds, we keep track of the average energy density

< ρ(x) >i/a, which is plotted as a heat map in figure 5.3. Since the perturba-

tion arising from anesthetics H′ is a nearest neighbor coupling we can relate

〈ρ(x)〉i/a = (T/∆Tc) < H′(x) >i/a which can be interpreted as proportional to the

increased (or decreased) density of ’binding sites’ for anesthetic. The output of

our simulation is the change in the log of kd which is given by equations 5.5 and

5.6. This and equation 5.4 are used to generate the plots in figure 5.4, where we

have taken Tc = 300K, T = 310 and ∆Tc = 4K[A]/[A]EC50 throughout.
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CHAPTER 6

DIFFERENTIAL GEOMETRY AND COARSENING

Abstract 1 - We reformulate the continuum limit and the renormalization

group- two key tools underpinning emergent theories in the hard sciences - to

focus on quantifying what information remains available after coarsening. We

study the susceptibility of macroscopic observables to changes in parameters

of a microscopic model. We find that macroscopic behavior is sensitive to just

a few ‘stiff’ directions in parameter space, and explain emergent simplicity in

terms of a broad range of sloppy eigenvalues corresponding to unimportant

parameter combinations. Similar models from systems biology and other soft

sciences have exhibited a similar enormous range of eigenvalues, perhaps pro-

viding a unified information theoretic explanation for why relatively primitive

models in both hard and soft sciences can often capture the behavior of complex

interacting systems.

6.1 Introduction

What makes Nature comprehensible? In high-energy physics, physical theo-

ries form a nested hierarchy. Non-relativistic quantum mechanics emerges as

an effective theory for quantum electrodynamics which gives a low energy ap-

proximation to the electroweak model, itself a low energy approximation to

a GUT. Each theory explains a variety of experiments within a large range of

lengths and energies, and each higher-energy, more ‘fundamental’ theory typ-

ically has more symmetry and unity than its descendants. Condensed matter

1A version of this chapter is being prepared for submission with co-authors Ricky Chachra,
Mark Transtrum and James Sethna
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physics shares with high-energy physics the hierarchy of broken symmetries,

with superconductors inside Fermi liquid theory inside non-relativistic quan-

tum mechanics, but here the descendent theories tend to be more elegant and

comprehensible than their complex, microscopic underpinnings – comprehensi-

bility can emerge from complexity. But what about theories of systems biology,

economics, and ecology, where the underlying complexity seems irreducible

(and yet the behavior is nonetheless fruitfully modeled)?

In both high-energy and condensed-matter physics, the underlying reason

for comprehensibility lies in the independence of the behavior on the underlying

microscopic theory. If solving string theory was necessary for understanding

the behavior of mesons, or solving Schrödinger’s equation was necessary for

understanding magnets or superconductors, comprehensibility would be only

of philosophical interest. In high-energy physics, this becomes the principle

of renormalizability — each renormalizable theory can stand on its own in the

high-energy limit, demanding bigger and bigger accelerators to directly probe

for the higher scales. In condensed-matter physics, this is expressed by contin-

uum limits (for behaviors within phases) and by the renormalization group (for

behavior at a continuous phase transition) — the long-wavelength, low-energy

behavior of a material is largely independent of the microscopic behavior. Flu-

ids composed of a wide variety of molecules all obey the Navier-Stokes equa-

tions at scales large and slow compared to the molecules, with only the viscos-

ity and mass density depending on the molecular details. Comprehensibility, at

root, lies in this information compression- the complex microscopic properies

of these materials only enter into the large and slow properties through their

projections onto a few relevant macroscopic observables.
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Recent studies of nonlinear multiparameter models – the foundation of sys-

tems biology, ecology, climate science, and parts of economics – have shown

that they share striking common features. The behavior of a systems biology

model with thirty interacting proteins and 48 undetermined reaction rate pa-

rameters will depend strongly on only a few linear combinations of its parame-

ters [14]. Seventeen other systems biology models [59, 152], models from math-

ematics and quantum Monte Carlo variational wavefunctions, and neural net-

work models [140] all share this behavior. The models are all sloppy, with a range

of stiffnesses (eigenvalues of the covariance matrix) spanning six to twelve or-

ders of magnitude — with only a few directions constrained substantially by

the data, and a large space of sloppy directions which would describe the ob-

served behavior equally well. This sloppiness would seem a kind of information

compression too, without the elegant emergent theory: most of the microscopic

details are unimportant to understanding the collective behavior. Indeed, one

can argue that none of these multiparameter models are ‘correct’ — yet their

predicted behaviors can be robust to changes in the details of our understand-

ing of the underlying microscopic rules. Sloppiness may at root explain why

one can predictively model complicated systems in biology (or economics, or

climate) long before the parameters and even all the underlying components

are discovered.

In this chapter, we will quantitatively tie our understanding of the compre-

hensibility of our physical world to the fuzzier comprehensibility of the softer

sciences. We will adapt our analytical tools developed to study sloppiness in

multiparameter models to study the emergence of simple physical laws from

complex underpinnings. We shall treat both a prototypical continuum limit

(the diffusion equation) and a continuous phase transition (the Ising model),
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and will show that, on long length scales, the emergence of simple laws can

be traced precisely to the formation of a hierarchy of stiff (macroscopic, impor-

tant) and sloppy (microscopic, irrelevant) degrees of freedom. In each case we

quantify the information that is preserved or lost from observables viewed at

progressively coarser scales. By calculating the susceptibility of these macro-

scopic observables to changes in microscopic parameters, we find that a similar

sloppy spectrum emerges as information about the microscopic parameters is

anisotropically discarded. This gives an information theoretic explanation for

the success of simple models in the hard physical sciences: coarse-grained be-

haviors of these systems depend only on a few parameter combinations in a mi-

croscopic model. The similarity between this emergent spectrum and the ones

seen in diverse models from the soft sciences suggests that a similar philoso-

phy underlies the success of models there- apparent model complexity is often

reduced to just a few relevant macroscopic observables.

In section 6.2 we provide an overview of the information theoretic tools that

we use to quantify distinguishability. In section 6.3 we apply this formalism to

a model of stochastic motion from which the diffusion equation emerges, and

in sections 6.4 to 6.7 we apply it to the Ising model.

6.2 Information geometry and the Fisher metric

How different are two probability distributions, P1(x) and P2(x)? What is the

correct measure of distance between them? To answer this question, imagine

being given a sequence of independent data points {x1, x2, ...xN}, with the task of

inferring which of the two models would be more likely to generate the data.
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As probabilities multiply, the probability that P1 generated the data is given by:

∏
i

P1(xi) = exp

∑
i

log P1(xi)

 (6.1)

and by calculating this for each of the two distributions, which could see which

model would be more likely to have produced the observed data.

How difficult should one expect this task to be? Presuming N to be large we

can estimate the probability that a typical string generated by P1 would be pro-

duced by P1. To do this we simply take a product similar to that in equation 6.1

but with each state x entering into the product NP1(x) times:

∏
x P1(x)NP1(x) = exp

(
N

∑
x P1(x) log P1(x)

)
= exp(−NS 1)

(6.2)

where we note that this gives an alternative definition of the familiar entropy S 1

of P1 (in nats). We can also ask how likely P2 is to produce a typical ensemble

generated by P1. This is just given by:

∏
x

P2(x)NP1(x) = exp

N
∑

x

P1(x) log P2(x)

 (6.3)

We can ask how much more likely a typical ensemble from P1 is to have come

from P1 rather than from P2. This is given by:

∏
x

(P1(x)/P2(x))NP1(x)

= exp
(
N

∑
x

P1(x) log
(

P1(x)
P2(x)

))
= exp (−NDKL(P1||P2))

(6.4)

This defines the Kullback-Liebler Divergence, the statistical measure of how
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different two probability distributions are [25]:

DKL(P1||P2) =
∑

x

P1(x) log
(

P1(x)
P2(x)

)
(6.5)

This measure has several properties that prevent it from being a proper math-

ematical distance measure, most obviously that it does not necessarily satisfy

DKL(P1||P2) = DKL(P2||P1)2 . However, for two ‘close-by’ models DKL does be-

come symmetric. Consider a continuously parameterized set of models Pθ

where θ is a set of N parameters θµ. The infinitesimal Kullback-Liebler diver-

gence between models Pθ and Pθ+∆θ can be shown to take the form 3:

DKL(Pθ, Pθ+∆θ) = gµν∆θµ∆θν + O∆θ3 (6.6)

where gµν is the Fisher Information, given by:

gµν(Pθ) = −
∑

x

Pθ(x)
∂

∂θµ
∂

∂θν
log Pθ(x) (6.7)

The quadratic form of the KL-divergence at short distances motivates using

the Fisher Information as a metric on parameter space. This defines a Rieman-

nian manifold where each point on the manifold specifies a probability distribu-

tion. The tensor gµν can be shown to have all of the necessary requirements to be

a metric- it is symmetric (derivatives commute) and positive semi-definite (in-

tuitively because no model can fit any model better than that model fits itself).

It also has the correct transformation laws under a reparameterization of P. Dis-

tance on this manifold is (at least locally) a measure of how distinguishable two

models are from their data, in dimensionless units of standard deviations. This
2A distance measure should also satisfy some sort of generalized triangle inequality- at the

very least D(A, B) + D(B,C) ≥ D(A,C) which is not necessarily satisfied here.
3It is an interesting exercise to show that there is no term linear in ∆θ. The crucial step uses

that Pθ is a probability distributions so that ∂µ
∑

x Pθ(x) = 0. The result, though intuitive, is not
completely trivial. It means that the model most likely to reproduce typical data from any given
model is that model itself.
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already gives one important difference between information geometry and the

more familiar use of Riemannian geometry in General Relativity. In GR dis-

tances are dimensionful, measured in meters. While certain functions of the

manifold (notably the Scalar curvature) are dimensionless and can appear in in-

teresting ways on their own, a distance is only large or small when compared

to some other distance. In information geometry, by contrast, distances have an

intrinsic meaning- Probability distributions are distinguishable from a typical

measurement provided the distance between them is greater than one. Below

we consider two special cases.

6.2.1 The metric of a Gaussian model

First, motivated by non-linear least squares we consider a model whose output

is a vector of data, yi (for 1 < i < M). Taking the data to be normally distributed

with width σi (so that the ‘cost’ or sum of squared residuals is proportional

to the log of the probability of the model having produced the data) around a

parameter dependent value, ~y0(θ) we can write the probability distribution of

data y given a set of parameters θ as:

Pθ(~y) ∼ exp

−∑
i

(yi − yi
0(θ))2/2σi2

 (6.8)

Defining the Jacobian between parameters and scaled data as:

Jiµ =
∂

∂θµ
yi

0(θ)
σi (6.9)

The Fisher information for least squares problems is simply given by 4 [139, 140]:

gµν =
∑

i

JiµJiν (6.10)

4This assumes that the uncertainty σi does not depend on the parameters, and that errors are
diagonal. Both of these assumptions seem reasonable for a wide class of models, for example if
measurement error dominates.
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This particular metric has a geometric interpretation: distance is locally the

same as that measured by embedding the model in the space of scaled data ac-

cording to the mapping y0(θ) (it is induced by the Euclidian metric in data space).

It is exactly this metric that was shown to be sloppy in seventeen models from

the system’s biology literature [59, 139, 140]

6.2.2 The metric of a Stat-Mech Model

Second, we consider the case of an exponential model, familiar from statistical

mechanics, defined by a parameter dependent Hamiltonian that assigns an en-

ergy to every possible configuration, x, and a temperature (which we will set

to 1). Each parameter θµ controls the relative weighting of some function of

the configuration, Φµ(x), which together define the probability distribution on

configurations through5:

P(x|θ) = exp(−Hθ(x))/Z

Z(θ) = exp(−F(θ)) =
∑
x

exp(−Hθ(x))

Hθ(x) =
∑
µ
θµΦµ(x)

(6.11)

Putting the Hamiltonian into this form is a coordinate choice, at least locally and

it is chosen for convenience in calculating the metric, which is written [26, 113] 6.

5Though perhaps unfamiliar, typical models can be put into this form. For example, the 2D
Ising model of section 6.4 has spins S i, j = ±1 on a square LxL lattice with the configuration
x =

{
si, j

}
being the state of all spins. The magnetic field, θh multiplies Φh(x) =

∑
i, j si j, and the

nearest neighbor coupling multiplies Φ01(x) + Φ10(x) =
∑

i, j si, jsi+1, j + si, jsi, j+1
6Several seemingly reasonable metrics can be defined for systems in statistical mechanics and

all give similar results in most circumstances [113]. Most differences occur either for systems
not in a true thermodynamic (N large) limit, or for systems near a critical point. As far as
we are aware, Crooks [26] was the first to stress that the one used here can be derived from
information theoretic principles, perhaps making it the most ‘natural’ choice. In [26] Crooks
showed that when using this metric ‘length’ has an interesting connection to dissipation by way
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gµν =
〈
−∂µ∂ν log(P(x))

〉
= ∂µ∂ν 〈H(x)〉 + ∂µ∂ν log(z)

= ∂µ∂ν log(z) = −∂µ∂νF

(6.12)

It might be noted that the last line does not transform like a metric under general

reparameterizations. We have taken advantage of the fact that the Hamiltonian

is linear in parameters θµ.

6.3 A Continuum Limit: Diffusion

With these definitions in hand, we turn to a specific problem where information

about microscopic details is lost in a coarse-grained description. A prototypical

example of such a continuum limit is the emergence of the diffusion equation in

a system consisting of small particles undergoing stochastic motion. Diffusion

effectively describes the motion of a particle provided that there is translation

invariance in time and space. Microscopic parameters that describe details of

the medium in which the particle is diffusing and the molecular details of such

an object enter into this continuum description only through their effects on

the diffusion constant, or, if it is present, the rate of drift. Furthermore, know-

ing molecular details (for example the bond angle of a water molecule in the

medium through which a particle is diffusing) that might enter into a micro-

scopic description of the motion would be extremely unhelpful in predicting a

particle’s diffusion constant.

To see how this comes about we consider a ‘microscopic’ model of stochastic

motion on a discrete lattice of sites j. Our model is defined by 2N +1 parameters

of the Jarzynski equality [75].
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θµ, for −N ≤ µ ≤ N which describe the probability that in a discrete time step a

particle will hop from site j to site j + µ. We presume that we start our particles

from a distribution ρ0( j), and that our measurement data consists of the number

of particles at some later time t, ρt( j).

We first consider taking ‘microscopic’ measurements of our model parame-

ters, by starting with an initial probability distribution ρ0( j) = δ j,0, and observing

the distribution after one time step, ρ1( j). This distribution is just given by:

ρ1( j) = θ j (6.13)

Presuming our measurement uncertainty is Gaussian, with width σmess = 1 7 we

can calculate the Fisher metric on the parameter space using the Least Squares

metric defined in equations 6.9 and 6.10:

Ji,µ = ∂µρ1(i) = δi,µ

gµν =
∑

i Ji,µJi,ν

= δµν

(6.14)

This metric has 2N + 1 eigenvalues each with value λ = 1. All of the parameters

in this model are measurable with equal accuracy. Additionally, if we wanted

to understand the behavior at this microscopic level, there is no reason to think

that a reduced description of the model should be possible; each direction in pa-

rameter space is equally important in determining the one step evolution from

the origin.

We consider two ways of coarsening our data. Firstly, we could imagine that

our measurement apparatus has some uncertainty in locating the starting and
7We could carry out a more complicated calculation assuming our uncertainty comes from

the stochastic nature of the model itself, but presuming we start with many particles, this ap-
proach would yield similar but less transparent results. Changing the measurement uncertainty
from 1 to σmeas will multiply all calculated metrics by a trivial factor of 1/σ2

meas and is omitted
for clarity.
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ending positions of the particles, and secondly, we could imagine that we are

unable to make instantaneous observations and are restricted to a measurement

at time tm > 1.

6.3.1 Coarsening the diffusion equation by blurring in space

The first case can be treated by starting with an initial distribution that is gaus-

sian with width σobs, given by 8:

ρ0( j) ∝
1
σobs

exp(− j2/2σ2
obs) (6.15)

After a single time step, the density of particles is given by:

ρ1( j) ∝
1
σobs

N∑
µ=−N

exp(−( j − µ)2/2σ2
obs)θ

µ (6.16)

The Jacobian and metric are given by:

J j,µ ∝
1

σobs
exp(−( j − µ)2/2σ2

obs)

gµν ∼ 1
σ2

obs

∑
i

exp(−(( j − µ)2 + ( j − ν)2)/2σ2
obs)

∼ 1
σobs

exp(−(µ − ν)2/4σ2
obs)

(6.17)

Notice that in our model the parameter N plays the role of the molecular

scale, while σobs plays the role of the observation scale. For a typical measure-

ment of diffusion in (say) water, the molecular scale, N is in angstroms, while

8This is exactly equivalent to starting from a delta-function distribution but stochastically
observing a particle at a position jobserved with a probability given by the same gaussian centered
on its actual position jactual
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the observation scale is set by the wavelength of light, ∼ 400nm, so that our in-

terest lies in the limit where σobs >> N. In this limit, we can expand the matrix

in powers of N/σobs. To leading order we have:

gµν ≈ N/σobs (6.18)

This has a single non-zero eigenvector, vµ0 = 1/(2N+1), with eigenvalue ∼ N/σobs.

We can interpret this as measuring the non-conservation of particle number,

which is least blurred by our coarsening, and which is often constrained to be

zero by conservation of particle number9. To order 1/σ2
obs we get:

gµν ≈ N/σobs(1 − ((µ − ν)/4σobs)2) (6.19)

This matrix has one new non-zero eigenvalue with eigenvector vµ1 ∼ µ whose

eigenvalue is given by λ1 ∼ (N/σobs)3. This measures the drift, and it is indeed

dominant over diffusion in systems where it is not constrained by a spatial sym-

metry to be zero (for example for a particle falling through a liquid under the

influence of gravity, where it might be reasonable to neglect diffusion entirely

in an effective model).

To the next order we get

gµν ≈ 1/σobs(1 − ((µ − ν)/2σobs)2 + ((µ − ν)/2σobs)4/2!) (6.20)

which contributes another eigenvector, given approximately by vµ2 ∼ µ
2 − N2/3!

and eigenvalue λ2 ∼ (N/σobs)5. This eigenvector measures changes in the diffu-

sion constant, which is the dominant parameter in a model for a system in which

particle number is conserved and in which the system obeys the symmetry of

spatial inversion.

9Intuition might state that non-conservation of particle number would not decay at all. How-
ever our noise comes from measurement error in the individual lattice sites, and this does in-
deed become larger with distance.
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Further terms measure higher order cumulants of the final distribution, and

have eigenvectors that approach the Hermite polynomials in a suitable contin-

uum limit. The eigenvalues scale like λn ∼ (N/σobs)2n+1. These terms never ap-

pear in a continuum description, because they are always harder to observe

than the diffusion constant by a factor of the ratio of the observation scale to the

diffusion constant raised to a large power 10. It is also worth noting that careful

observation of a particular θµ, somewhat analogous to knowing the bond-angle

of a water molecule, would give very little insight on the relevant observables.

6.3.2 Coarsening the diffusion equation by observing at long

times

The molecular timescale is also typically much faster than the typical timescale

of a measurement. We can also ask how our ability to measure microscopic

parameters changes with experiment time. This question seems in some ways

more natural- while blurring in space is an experimental limitation, the map-

ping from short time parameters onto late time observables is certainly a prop-

erty of the system that is independent of experimental limitations.

To calculate the density of particles at position j and time t, ρt( j), it is useful

to introduce the Fourier transform of the hopping rates, as well as the Fourier

10It is not possible for the diffusion constant, as defined here to be 0 while any higher cu-
mulants are non-zero, explaining why though drift and the diffusion constant both appear in
continuum limits, the physical parameter that describes the third cumulant of a typical random
does not. The third parameter does measure the Skew of the resulting density distribution, the
next one measures the distribution’s Kurtosis, and further parameters do not even have names
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Figure 6.1: The metric’s eigenvalues are plotted for a 21 dimensional model
(N = 10) as the uncertainty, σ, is varied, as described in the text. When the
uncertainty is comparable to the lattice spacing all parameters can be inferred
with similar accuracy. However, as the uncertainty grows the system develops
a typical sloppy spectrum, as in figure 1.3. The largest eigenvalue’s eigenvector
roughly measures non-conservation of particle number, the next one measures
the drift, and the third one measures the diffusion constant.

transform of the particle density at time t

θ̃k =
N∑

µ=−N
e−ikµθµ

ρ̃k
t =

∞∑
j=−∞

e−ik jρt( j)

ρt( j) = 1
2π

π∫
−π

dkeik jρ̃k
t

(6.21)

In a time step the density distribution is convoluted by the hopping rates. In

Fourier space this is simply written as:

ρ̃k
t = θ̃kρ̃k

t−1 (6.22)
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We choose initial conditions with all particles at the origin ρ0( j) = δ j,0, then:

ρ̃k
t = (θ̃k)t

ρt( j) = 1
2π

π∫
−π

dkeik j(θ̃k)t
(6.23)

The Jacobian and metric at time t can now be written:

Jt
jµ = ∂µρt( j) = t

2π

π∫
−π

dkeik( j−µ)(θ̃k)t−1

gt
µν = t2

2π

π∫
−π

dkeik(µ−ν)(θk)t−1(θ̃−k)t−1
(6.24)

The metric now depends on the θ themselves. Presuming the (positive) hopping

rates θµ values sum to 1 with at least two non-zero, then all of the θ values are

less than one and the late time behavior of gt
µν is dominated by small k values

appearing in the integrand (equation 6.24). At small values of k:

θ̃k = 1 − ik∆ − k2

2 Σ + O(k3)

= exp(−ik∆ − D k2

2 ) + O(k3)

∆ =
∑
µ µθ

µ

Σ =
∑2
µ θ

µ

D = Σ − ∆2

(6.25)

where in going from the first line to the second we note these two equations

are the same to second order in k. Note that ∆ is the drift and D is the diffusion

constant. From this approximation we can estimate gt
µν:

gt
µν ≈

t2
2π

∞∫
−∞

dkeik(µ−ν)e−(t−1)Dk2
(6.26)

We can expand this in powers of the small parameter k(µ − ν). This gives

gt
µν ≈

t2
2π

∞∑
n=0

(µ − ν)2n (−1)n

2n!

∞∫
−∞

dk(k)2ne−(t−1)Dk2
(6.27)

This separates into exactly the same eigenvectors as in the previous case, but

the eigenvalues are different. Here they scale like:

λn ∼ t2
(Dt

N

)−n−1/2

n ≥ 0 (6.28)
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Figure 6.2: The exact metric’s eigenvalues are plotted for a 7 dimensional model
of diffusion (N = 3 as described in the text) with all parameters θµ = 1/7 for mea-
surements after a certain number of discrete time steps. After a single time step,
all parameters can be measured with equal accuracy. However, after multiple
time steps, as with temporal blurring, a hierarchy develops. The largest eigen-
value, corresponding to non-conservation of probability becomes substantially
easier to measure with time, with its eigenvalue growing like t3/2. The drift be-
comes easier to measure, though with its power growing like t1/2. The diffusion
constant becomes slightly harder to measure with eigenvalue proportional to
t−1/2. At long times, as in the models shown in figure 1.3, the Fisher Information
develops a very sloppy spectrum.

Dt plays a similar role to the one σ2
obs played when we blurred spatially. Just

as σobs can be thought of as setting the length scale associated with observations,
√

Dt is the scale set by the distance a particle will diffuse in the time it takes to

make a measurement. An extra factor of t2 reflects that a changed parameter has

t chances to influence the final distribution. For example, longer times would

make it much easier to see if particle number is not conserved. In figure 6.2

the exact metric’s Eigenvlaues are shown after multiple time steps for a 7 di-

mensional model (N = 3) for uniform hopping parameters θµ = 1/7. A sloppy

spectrum is clearly developing as time proceeds.
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6.4 A critical point: The Ising model

The success of the continuum limit might be said to rest on the ’boringness’

of the large-scale behavior. All of the fluctuations in the system are essentially

averaged at the scale of typical observations. This fails to be true near critical

points of systems, where fluctuations remain large up to a characteristic scale

ξ which diverges at the critical point itself. Perhaps surprisingly, even at these

points these systems have behavior that is universal. The Ising model, for ex-

ample, provides a quantitative description of both Ferromagnetic and liquid-

gas critical points, describing all of the statistics of the observable fluctuations

of both systems, even though they have entirely different microscopic compo-

nents. Just as in diffusion, the observed behavior at these points can then be

described by just a few ‘relevant’ parameters (two in the Ising model; the bond

strength and the magnetic field).

The Ising model discussed here takes place on a square lattice (with lattice

sites 1 < i, j < L ), with degrees of freedom si, j taking the values of ±1. The

probability of observing a particular configuration on the whole lattice (denoted

by
{
si, j

}
) is defined by a Hamiltonian (H

{
si, j

}
) that assigns each configuration of

spins an energy (see equation 6.11).

The usual nearest neighbor Ising Model has two parameters: a coupling

strength (J), and a magnetic field (h) through the equation:

H(
{
si, j

}
) = J

∑
i, j

si jsi j+1 + si jsi+1 j + h
∑

i, j

si j (6.29)

Here we consider a larger dimensional space of possible models, by including

in our Hamiltonian the magnetic field (θh), the usual nearest neighbor coupling

term, and 12 ’nearby’ couplings parameterized by θαβ (see figure 6.3). We addi-
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tionally allow the vertical and horizontal couplings to be different. In the form

of equation 6.11:

H(x) =
∑
α,β
θαβΦαβ

({
si, j

})
+ θhΦh

({
si, j

})
Φαβ

({
si, j

})
=

∑
i, j

si jsi+α j+β

Φh

({
si, j

})
=

∑
i, j

si j

(6.30)

We calculate the metric along the line through parameter space that describes

the usual Ising model (where θ01 = θ10 = J and θαβ = 0 otherwise) in zero mag-

netic field (θh = 0).

Figure 6.3: We consider a square lattice Ising model, with a magnetic field, and
12 ‘nearby’ neighbor couplings (blue and red) which extend the usual nearest
neighbor couplings (red only). We always calculate the metric in this higher
dimensional space of possible parameters along the line defined by the usual
nearest neighbor Ising Hamiltonian in zero magnetic field.
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6.5 Measuring the Ising metric

Using equation 6.12 we can rewrite the metric in terms of expectation values of

observables (where except when necessary we condense the indexes αβ and h

into a single µ).

gµν = ∂µ∂ν log z =
〈
ΦµΦν

〉
−

〈
Φµ

〉 〈
Φν

〉
(6.31)

Furthermore, given a configuration x =
{
si, j

}
we can readily calculate Φµ(x),

which is just a particular two point correlation function (or the total sum of

spins for Φh) 11.

To estimate the distribution defined in equation 6.31 we used the Wolff al-

gorithm to very efficiently generate an ensemble of configurations xp =
{
si, j

}
p
,

for 1 < p < M for systems with L = 64. We also exactly enumerated all possible

states on lattices up to L = 4 lattices to compare with our Monte-Carlo results.

With our ensemble of M lattice configurations, xi we simply measure:

gµν =
1

M2 − M

M∑
p,q=1,p,q

Φµ(xp)Φν(xp) − Φµ(xq)Φν(xp) (6.32)

The results are plotted in figure 6.4. Away from the critical point in the high

temperature phase (small βJ) the results seem somewhat analogous to those we

found for the diffusion equation viewed at its microscopic scale. All of the pa-

rameters that control two spin couplings (θαβ) are roughly as distinguishable as

each other, with θh having different units. However, as the critical point is ap-

proached, the system becomes extremely sensitive both to θh and to a certain

combination of the θαβ parameters. This divergence has been previously shown

11Φh

({
si, j

})
=

∑
i, j si, j is very simple and efficient to calculate for a given configuration

{
si, j

}
.

Φαβ

({
si, j

})
is only slightly harder. One defines the translated lattice s′i, j(α, β) = si+α, j+β, in terms of

which we write Φαβ

({
si, j

})
=

∑
i, j si, js′i, j(α, β).
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Figure 6.4: The eigenvalues of the metric for the enlarged 13 parameter Ising
model described in the text is plotted along the line defined by the usual Ising
model with βJ as the only parameter, and h = 0. Two parameter combinations
become large near the critical point, each diverging with characteristic expo-
nents describing the divergence of the susceptibility and specific heat respec-
tively. The other eigenvalues vary smoothly as the critical point is crossed, and
furthermore they have a characteristic scale and are neither evenly spaced nor
widely distributed in log.

for the Ising model [113]. In fact, as we will see in the next section, these two

metric eigenvalues diverge with the scaling of the susceptibility (χ ∼ ξ7/4, whose

eigenvector is simply θh) and specific heat (C ∼ log(ξ), whose eigenvector is a

combination of θαβ proportional to the gradient of the critical temperature, ∂Tc
∂θαβ

), respectively. From an information theoretic point of view, these two parame-

ter combinations seem to become particularly easy to measure near the critical

point because the system’s behavior becomes extremely sensitive to them. The

behavior of these two eigenvalues seems to have no parallel in the diffusion

equation viewed at its microscopic scale.
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6.5.1 Scaling analysis of the Eigenvalue spectrum

To understand our Monte Carlo results for the eigenvalues of the metric, we

apply a more standard renormalization group analysis to our calculation. To

do this it is useful to use the form gµν = −∂µ∂νF, and in particular we focus on

the critical region, close to the renormalization group fixed point θ0. After a

renormalization group transformation that reduces lengths by a factor of b the

remaining degrees of freedom are described by an effective theory with param-

eters θ′ related to the original ones by the relationship θ′µ − θ
µ
0 = T µ

ν (θν − θν0) 12

where T has left eigenvectors and eigenvalues given by eL
α,µ and byα . It is conve-

nient to switch to the so-called scaling variables, uα =
∑
µ eL

α,µθ
µ, which have the

property that under a renormalization group transformation

u′α = byαuα (6.33)

It is also convenient to divide our free energy into a singular piece and an ana-

lytic piece, so that:

F(θ) = A f s(uα(θ)) + A f a(uα(θ))

f s = ud/2y1
1 U(r0, ..., rα)

rα = uα/u
yα/y1
1

(6.34)

where f s are free energy densities, A is the system size and where f a andU are

both analytic functions of their arguments. Notice that by construction the rs

do not transform under an RG transformation. The Fisher Information can be
12θ′µ − θ

µ
0 = T µ

ν (θν − θν0) is strictly true only if the parameters span the space of possible Ising
Hamiltonians, but our analysis holds for gµν on the space of the original parameters provided
the θ′ span all possible models, which we can assume in this analysis. Said differently, there is
no need for T to be square, and it is sufficient for the analysis presented above to assume that T
is 13 by infinite dimensional.
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similarly divided into two parts, yielding:

gµν = gs
µν + ga

µν = −A∂µ∂ν f s − A∂µ∂ν f a

gs
µν = A

∑
α,β(

∂uα
∂θµ

∂uβ
∂θν

)u(yα+yβ−d)/y1

1
∂
∂rα

∂
∂rβU

= A
∑
α,β

(∂uα
∂θµ

∂uβ
∂θν

)Ms
αβ(u)ξyα+yβ−d

ga
µν = A

∑
α,β

∂uα
∂θµ

∂uβ
∂θν

∂
∂uα

∂
∂uβ

f a

= A
∑
α,β

(∂uα
∂θµ

∂uβ
∂θν

)Ma
αβ(u)

(6.35)

where ξ is the correlation length, which diverges like u−y1
1 . Both∑

α,β(
∂uα
∂θµ

∂uβ
∂θν

)Ma
αβ(u) and

∑
α,β(

∂uα
∂θµ

∂uβ
∂θν

)Ms
αβ(u) are tensors in parameter space with

two lower indices that are expected to vary smoothly as their argument is

changed, with no divergent or singular behavior, and eigenvalues that all take

a characteristic scale. As such, we expect that as the critical point is approached

the matrices eigenvalues will scale like:

λs
i ∼ Aξ2yi−d

λa
i ∼ A

(6.36)

As the critical point is approached we expect the singular piece to dominate

provided 2yi − d ≥ 0 . In the 2D Ising model, this is true for the magnetic field,

which as the critical point is approached becomes the largest eigenvector e0 = θh

(with yh = 15/8) and for the eigenvector given by e1 = ∂µu1 whose eigenvalue

is y1 = 1 (in this case 2yi − d = 0 and there is a logarithmic divergence, as with

the Ising model’s specific heat). The remaining eigenvectors of the gµν are domi-

nated by analytic contributions, where, just as in the diffusion equation viewed

at its fundamental scale, we expect the eigenvectors to cluster together at a char-

acteristic scale and not exhibit sloppiness (though not necessarily to be exactly

the identity). This analysis seems to quantitatively agree with the Monte Carlo

results plotted in figure 6.4.
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6.6 Measuring the Ising metric after coarsening

The diffusion equation became sloppy only after coarsening. Viewed at its

microscopic scale all parameters could be inferred with exactly the same pre-

cision. However, when observed at a time or length scale much larger than

this microscopic scale a hierarchy of importance developed, with particle non-

conservation being most visible, drift being the next most dominant term and

the diffusion constant being the next most observable parameter. Further pa-

rameters became geometrically less important, justifying the use of an effective

continuum model containing just the first of these parameters with a non-zero

value.

What happens in the Ising model? Does a similar hierarchy develop? Do

the ’relevant’ parameters in the Ising model behave differently under coarsen-

ing from the irrelevant ones? To answer these questions we ask how well we

could infer microscopic parameters of the model from data that is coarsened in

space 13. In particular, we restrict our measurements to observations of spins

that remain after an iterative checkerboard decimation procedure (see figure

6.5 14). In the usual RG picture a new effective Hamiltonian is constructed that

describes the observable behavior at these lattice sites. Here we instead calcu-

late the Fisher Information in the original parameters, but only using informa-

tion remaining at the new, coarsened level.

Specifically, we wish to measure gµν = −
〈
∂µ∂ν log (P(xn))

〉
where xn ={

si, j

}
for {i, j} in level n as defined in figure 6.5. We define the mapping to level

13there is no sense of ‘time’ in the Ising model, since it does not specify dynamics.
14We use this checkerboard decimation scheme rather than a block spin scheme (say) as it is

easier to implement the Compatible Monte-Carlo described below.
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Figure 6.5: On the left, ‘mean field’ spin configurations are shown for ensembles
that coarsen to the same state at a given level. In our implementation of iterative
checkerboard decimation only a subset of spins can be observed while trying to
infer parameters that describe the configuration of the entire spin ensemble. At
level 0 all spins can be observed. At level 1 only the red spins can be observed.
At level 2 only the green spins can be observed. At level 3 only the blue spins
can be observed. Level 4 leaves purple spins, level 5 leaves orange spins and
level 6 leaves just the black spin. This 8x8 chunk of lattice is tiled to make the
full 64x64 bi-periodic lattice used in simulations, so that at level 6, for example,
an observation is limited to an 8x8 lattice of remaining spins.

n, determined by the configuration of all spins x at level 0, as xn = Cn(x) 15. It is

useful to write P(xn) in terms of a restricted partition function :

P(xn) = Z̃(xn)/Z

Z̃(xn) =
∑
x

exp(−H(x))δCn(x),xn

(6.37)

where Z̃(xn) is the coarse-grained partition function conditioned on the sub-

lattice at level n taking the value xn while summing over the remaining degrees

15The mappingCn(x) here simply discards all of the spins that do not remain at level N, leaving
an L/2n/2xL/2n/2 square lattice for even N and a rotated ‘diamond’ lattice for odd N. However,
this formalism would also apply to other schemes, such as the commonly used block-spin pro-
cedure.
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of freedom. We also introduce notation for an expectation value of an operator

defined at level 0 over configurations which coarsen to the same configuration

xn

{Q}xn =

∑
x

Q(x)δCn(x),xn exp(−H(x))

Z̃(xn)
(6.38)

We can now rewrite the metric at level n as:

gn
µν = −∂µ∂ν

〈
log (P(xn))

〉
= ∂µ∂νZ −

〈
∂µ∂νZ̃(Cn(x))

〉
= gµν −

〈{
ΦµΦν

}
Cn(x)

〉
+

〈{
Φµ

}
Cn(x)
{Φν}Cn(x)

〉
=

〈{
Φµ

}
Cn(x)

{
Φν

}
Cn(x)

〉
−

〈{
Φµ

}
Cn(x)

〉 〈{
Φν

}
Cn(x)

〉
(6.39)

This quantity
〈{

Φµ(x)
}
Cn(x)

{
Φν(x)

}
Cn(x)

〉
can be measured by taking each mem-

ber of an ensmble, xq, and generating a sub-ensemble of x′q,r according to the

distribution defined by:

P(x′q,r|xq) =

∑
x

exp(−H(x))δCn(x′q,r),Cn(xq)

Z̃(Cn(x))
(6.40)

Techniques for generating this ensemble, using a form of ‘compatible Monte-

Carlo’ [112] are discussed in section 6.7. From this ensemble we calculate:

gn
µν =

1
(M2 − M)(M′2 − M′)

M,M′∑
1<q,p<M, 1<r,s<M′, q,p, r,s

Φµ(x′q,r)Φν(x′q,s) − Φµ(x′q,r)Φν(x′p,s)

(6.41)

The results of this Monte Carlo presented for a 64 × 64 system at its criti-

cal point in figure 6.6. The irrelevant and marginal eigenvalues of the met-

ric continue to behave much as the eigenvalues of the metric in the diffusion

equation, becoming progressively less important under coarsening with char-

acteristic eigenvalues. However, the large eigenvalues, dominated by singular
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Figure 6.6: At the critical point the twelve dimensional subspace of eigenvlaues
are plotted (the eigenvalue for θh is not shown) vs. the level of coarsening. The
largest eigenvalue, which is dominated by a singular piece does not substan-
tially shrink under coarsening. This means that the information from which we
infer the temperature of the Ising model is carried in long wavelength modes,
and is not lost under coarsening. All of the other eigenvalues shrink rapidly
under coarsening, leading to a broad sloppy spectrum. Just as in the diffu-
sion system, these irrelevant parameters decay with a characteristic power law
which in section 6.6.1 we predict should scale like

√
2Level(2yi−d), with irrelevant

and marginal yi in the Ising model taking the values 0 (line with predicted slope
shown in green) -2 (line in red) and -4 (line in yellow)

corrections, do not become smaller under coarsening, presumably because they

are measured by their collective effects on the large scale behavior, which is pri-

marily measured from large distance correlations.
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6.6.1 Eigenvalue spectrum after coarse-graining

To understand the values of the metric we observe after coarsening, we apply

a more standard RG-like analysis to our system. We do this by constructing

an effective Hamiltonian in a new parameter basis, repeating our analysis for

the metric’s eigenvalues in the coordinates of the parameters of that Hamilto-

nian, and finally transforming back into our original coordinates. After coarse-

graining for n steps each observation yields the data xn =
{
si, j

} ∣∣∣∣
{i, j} in level n

where

only the spins {i, j} remaining at level n are observed. The probability of observ-

ing xn can be written:

P(xn) =
exp (−Hn(xn))

Z(An, un)
(6.42)

where Hn is the effective Hamiltonian after n coarse-graining steps. Hn has new

parameters most conveniently written in terms of the scaling variables defined

in equation 6.33 where we can write un
α = byαnuα. In addition, the area of the

system is reduced to An = b−dnA 16 and ∂un
α/∂θ

µ = byα∂uα/∂θµ.

After rescaling the entropy of the model is smaller by an amount ∆S n from

the original model’s entropy. It is customary in RG analysis to subtract this

constant from the Hamiltonian, so as to preserve the Free energy of the system

after rescaling:

Fn = Fn,s + Fn,a + ∆S n = F s + Fa = F (6.43)

Note that the new model’s Hamiltonian would still be linear in these new

parameters, allowing us to use the algebra of equation 6.12, if we were to re-

move the constant ∆S from the new Hamiltonian. This would of course be an

identical model, since the addition of a constant does not change any observ-

16we keep our rescaling factor b general here, but in our system b =
√

2
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ables. This change allows us to express the metric for the new observables, in

terms of the original parameters, taking

gn
µν(θ) = ∂µ∂ν( f n,s + f n,a) = ∂µ∂ν( f s + f a − ∆S ) (6.44)

After some algebra we see that:

gs,n
µν = gs

µν

ga,n
µν = A

∑
α,β

√
2(yα+yβ−d)n(∂uα

∂θµ
∂uβ
∂θν

)Ma
αβ(u

n)
(6.45)

The singular piece is exactly maintained. This means that the singular piece

of the free energy is exactly the piece which describes information carried in

long wave-length information. On the other hand, the analytic piece is smaller

by ∂µ∂ν∆S n. Thus, after n rescalings:

λn,s
i ∼ A(ξ)2yi−d

λn,a
i ∼ Abn(2yi−d)

(6.46)

To ensure that the Fisher information is strictly decreasing in every direction

on coarsening 17 ga
µν must be negative semidefinite in the subspace of scaling

variables where 2yi − d > 0. For these relevant directions, with i = 0, 1 λn
i ∼

Aξ2yi−d − b2yi−dn, where the second term only becomes significant when bn ∼ ξ

(when the lattice spacing is comparable to the correlation length). For irrelevant

directions, or relevant ones with 0 < 2yi < d (corresponding to i ≥ 2 in the

Ising model), the analytic piece will dominate as the critical point is approached,

17In each coarsening step gn
µν − gn+1

µν must be a positive semidefinite matrix. This is because no
parameter combinations can be more measurable from a subset of the data available at level n
than from its entirety.
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yielding λi ∼ Ab2yi−d. These results are in quantitative agreement with those

plotted in figure 6.6.

6.7 Simulation details

To generate ensembles xp that are used to calculate the metric before coarsening

we use the standard Wolff algorithm, implemented on 64x64 periodic square

lattices. We generate M = 10, 000 − 100, 000 independent members from each

ensemble, and calculate gµν as described above.

To generate the ensemble x′p,r we use variations on a method introduced in

[112] which they termed ‘compatible Monte-Carlo’18. Essentially, a Monte-Carlo

chain is run with any move which proposes a switch to a configuration x′p,r for

which Cn(x′p,r) , Cn(xp) is summarily rejected. For us this means that no spins

which remain at level n are ever allowed to be changed. We introduce several

additional tricks to speed up convergence which we describe below.

Consider the task of generating a random member x′p,r for a given xp at level

1. Because the spins which are free to move only make contact with fixed spins,

each one can be chosen independently. As such, if we choose each ‘free’ spin

according to its heat bath probability then we arrive at an uncorrelated member

xp,r of the ensemble defined by xp.

This trick can be further exploited to exactly calculate the contribution to a

metric element at level 1 from a level 0 configuration x. In particular, by re-

18Ron, Swendsen and Brandt used this technique for entirely different purposes. They gener-
ated large equilibrated ensembles close to the critical point, essentially by starting from a small
‘coarsened’ lattice and iteratively adding layers to generate a large ensemble.
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placing all of the spins with their mean field values, defined by s̃i, j(x) =
{
si, j

}
Cn(x)

(which we can calculate in a single step) we can immediately write:

{
Φαβ

}
Cn(x)

=
∑
i, j

s̃i, j(x)s̃i+α, j+β(x)

{Φh}Cn(x) =
∑
i, j

s̃i, j

(6.47)

As such, it is possible to exactly calculate the level one quantities{
Φµ

}
C1(x)

{
Φν

}
C1(x)

for any microscopic configuration x and corresponding checker-

board configuration C1(x).

Beyond level 1 it becomes necessary to use compatible Monte-Carlo, but we

can still take advantage of the independence of the free spins at level 1. In

particular, we continue to leave the spins that are free at level 1 integrated out,

so that we effectively make use of the level 1 partition function. This partition

function is most conveniently written in terms of the number of up neighbors,

nup
i, j that each integrated out spin has in the spins that do remain at level 1:

log Z̃(C1(x)) =
∑

i, j not in level 1
log (z(nup

i, j ))

z(nup) = cosh ((βJ)(2 − nup))
(6.48)

Additional spins that are not integrated out at level n are flipped using a heat

bath algorithm (to avoid marching effects) with the ratio of partition functions

in an ‘up’ vs ‘down’ configuration used to determine the transition probability.

This is possible because these spins only interact with spins that are integrated

out from level 1.

The probability of a spin (at level ≥ 2) transitioning to ’up’ after being pro-

posed from the down state is given by zup
i, j/(z

up
i, j + zdown

i, j ) with
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zup
i, j =

∑
{k,l} n.n. of {i, j}

z(nup
k,l + 1)

zdown
i, j =

∏
{k,l} n.n. of {i, j}

z(nup
k,l)

(6.49)

6.8 Conclusions

In this chapter we have explicitly seen the emergence of the ubiquitous sloppy

spectrum from two microscopic models. In each case the model was not sloppy

when all of its behavior could be observed perfectly. At this microscopic scale all

of the parameters (in diffusion) could be measured to a similar level of accuracy.

(In the Ising model two parameter combinations describing emergent properties

already stood out at this microscopic scale). However, if we restricted ourselves

to an experimentally feasible coarsened set of data, we found that rather than

destroying all information equally, our coarsening selectively preserved just a

small subset of the data, leading to a sloppy spectrum. Typical presentations of

data selectively preserve or blur information about microscopic system parame-

ters, leading to the ubiquitous sloppy spectrum seen in a wide range of effective

models.
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