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Microscopy is the workhorse of the physical and life sciences, producing crisp images of everything
from atoms to cells well beyond the capabilities of the human eye. However, the analysis of these images is
frequently little more accurate than manual marking. Here, we revolutionize the analysis of microscopy
images, extracting all the useful information theoretically contained in a complex microscope image. Using
a generic, methodological approach, we extract the information by fitting experimental images with a
detailed optical model of the microscope, a method we call parameter extraction from reconstructing
images (PERI). As a proof of principle, we demonstrate this approach with a confocal image of colloidal
spheres, improving measurements of particle positions and radii by 10–100 times over current methods and
attaining the maximum possible accuracy. With this unprecedented accuracy, we measure nanometer-scale
colloidal interactions in dense suspensions solely with light microscopy, a previously impossible feat.
Our approach is generic and applicable to imaging methods from brightfield to electron microscopy, where
we expect accuracies of 1 nm and 0.1 pm, respectively.

DOI: 10.1103/PhysRevX.7.041007 Subject Areas: Optics, Soft Matter

I. INTRODUCTION

Microscope technology has progressed to near perfection.
Crisp images speak of precisely engineered microscope
components: large-aperture and nearly aberration-free
lenses, high-frame-rate and low-noise cameras, and powerful
and uniform light sources. Nanometer-scale details boast
of super-resolution techniques thought impossible mere
decades ago: photoactivated localization microscopy
(PALM) [1], stochastic optical reconstruction microscopy
(STORM) [2], and stimulated emission depletion (STED)
[3]. The continued development of ever more powerful
techniques—structured illumination [4], lattice-light sheet
[5], and holographic microscopy [6,7]—reassures us that
resolution will continue to improve.
However, our ability to extract quantitative information

from microscopy images has not kept pace. In fields from
electron microscopy to super-resolution localization,
current methods mimic human perception with heuristic
approaches, such as looking for the centers of bright spots
or regions of contrast in an image [8–13]. The simplicity
of these methods necessarily ignores physical complexities
in the image formation. As a result, systematic errors and
inefficient estimates plague these techniques [14,15].
In this paper, we present a universal method of scientific

image analysis that extracts all the useful information

theoretically contained in a complex image. Our method,
dubbed parameter extraction from reconstructing images
(PERI), uses a detailed model of the physics of image
formation to fit experimental images. From the fit, we then
extract information about the image at the information-
theoretic limit. Importantly, since PERI relies on simple
comparisons between computationally reconstructed
images and those generated by physical experiments, it
can be broadly applied to improve precision measurements
in images generated by a wide range of techniques, from
electron microscopy to SQUID scanning-probe microscopy
[16,17]. Our method does not require modifying the
microscope or the image acquisition. As a result, any
researcher with a microscope can readily apply our tech-
nique to push their data to the information-theoretic limit.
Here, we illustrate this approach on confocal images of
colloidal spheres, measuring each particle’s position and
radius to within 3 nm, a 10–100-times improvement over
current methods, with especially large improvements for
images of dense suspensions (see Supplemental Material
(SM) [18], Sec. VI.). We use this extreme accuracy to
measure colloidal interactions at the nanometer scale,
measuring deviations from hard-sphere interactions in
dense suspensions for the first time with light microscopy.
How precisely can an object be located in an image?

The fundamental limitation in locating an object arises from
statistical noise in the image formation, not directly from
diffraction or optical limitations [19]. This limit is deter-
mined through the interplay of the image signal and noise,
as described by the Cramér-Rao bound. Specifically, the
Cramér-Rao bound states that the covariance matrix of the
estimated parameters is always larger than the inverse of
the Fisher information matrix of the noise distribution [20].
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For an image with Gaussian white noise of variance σ2,
sampled at points xk, the minimum uncertainty in the
parameters θ measured from the image is

covθij ≥ σ2
�X

k

∂IðxkÞ
∂θi

∂IðxkÞ
∂θj

�
−1
; ð1Þ

where IðxÞ is the image that would be measured in the
absence of noise.
We can use this equation to estimate the minimum

uncertainty in measuring a colloidal sphere’s radius and
position from a three-dimensional confocal image. For a
particle of radius R blurred by diffraction over a width w,
the derivatives with respect to particle radius in Eq. (1) are
only nonzero on a shell at the particle’s edge of approx-
imately 4πR2w voxels. At the particle’s edge, the intensity
changes from a characteristic brightness of approximately I
to 0 over a width of approximately w, and the derivatives
are thus approximately of magnitude I=w. Substituting
these values gives a minimum uncertainty in a particle’s
radius as σR ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w=4πR2

p
=SNR, where SNR ¼ I=σ is the

signal-to-noise ratio. Likewise, changing the particle’s
position only affects the edge voxels in the direction of
the particle’s motion. The positional derivatives will thus be
approximately of magnitude I=w only on a projected shell
of approximately πR2w voxels, giving the minimal uncer-
tainty in the particle’s position as σx ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w=πR2

p
=SNR. For

a colloidal particle of diameter 1 μm, imaged with a
confocal microscope with voxel size of 100 nm and
diffractive blur of w ≈ 200 nm at a SNR ¼ 25, these
uncertainties correspond to σR ≈ 1.5 nm and σx ≈ 3 nm,
a fantastically high precision [21].

II. RESULTS

Actually achieving this localization without serious
systematic errors requires a detailed knowledge of the
image formation process. To incorporate this knowledge,
we create a generative model of the microscope image
based on the physics of the light interacting with the sample
and with the microscope’s optical train. We then fit every
parameter in the model by comparing the image produced
by the model to the experimental image. Our model
describes the physics of image formation in the order that
it occurs: (1) Fluorescent dye is distributed unevenly
throughout the sample, (2) the dyed sample is illuminated
unevenly by the laser, (3) the resultant image is blurred
because of diffraction, and (4) the final image is noisy.
Dye distribution.—To reconstruct the image, we start

with the continuous distribution of the fluorescent dye in
the sample. For the image in Fig. 1, the dye is distributed
everywhere except in a slab, representing the glass cover-
slip slide, and in a collection of spherical lacunae, repre-
senting the colloidal particles. To represent this continuous
dye distribution on a pixelated grid, we draw these objects
in real space using a function that is tuned to match the
exact Fourier representation of a sphere (see SM [18] for an
extensive discussion of this and the rest of the generative
model). We call this correctly aliased representation on a
pixelated grid the platonic image. While we focus on
featuring only spheres in this work, PERI is flexible enough
to include any parametrizable object in the generative model,
such as ellipsoidal [22,23], rodlike [24], or polyhedral [25]
particles.
Illumination field and background.—This distribution of

dye is illuminated by a scanned laser. Because of imper-
fections and dirt in the optics, the illumination is not
uniform but instead varies in space. For instance, our

(a) (b) (c)

FIG. 1. PERI overview. A demonstration of model information recovered from real confocal microscope images of hai ¼ 1.343ð8Þ μm
colloidal spheres at a volume fraction of ϕ ¼ 0.130ð5Þ. (a) The generative model consists of a platonic image of dye distributed around
perfect spheres and a coverslip (top panels), illuminated with a spatially varying intensity (middle panels), and convolved with a physical
point-spread function (bottom panels). The left panels show the model components, and the right panels show the combined image.
(b) These components combine to form a realistic generative model (bottom right), which, aside from noise, is visually indistinguishable
from the data (top left). (c) From the fit parameters of the model, we extract information such as particle positions and radii (orange
highlights) to within a few percent of a pixel–corresponding to an accuracy of 1 and 3–4 nm, respectively. The inset zooms into the center
of the particle (white square), highlighting the precise localization and calculated uncertainty of the particle’s position.
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line-scanning confocal illumination field is highly striped,
as any imperfections in the line illumination are dragged
across the field of view. We describe this spatially varying
illumination as a continuous field that varies throughout
the image. Empirically, we find that combining a Barnes
interpolant along the scan direction and Legendre poly-
nomials in the perpendicular directions accurately describes
both the rapidly varying stripes and the slowly varying
changes in the illumination of our line-scan confocal.
Additionally, the microscope always registers a nonzero
background signal, which we include in our model.
We parametrize this background similarly to the illumina-
tion field.
Point-spread function.—Diffraction prevents the illumi-

nated dye from being imaged exactly onto the detector.
Instead, each dye molecule in the sample projects a com-
paratively large blur, known as the point-spread function
(PSF), onto the imaging camera. As a result, the image
captured on the camera is a convolution of the illuminated
platonic image with the PSF, and not simply the illuminated
dye itself. While complicated, this PSF has been calculated
exactly by many researchers for different geometries
[26–33]. For microscope samples with a refractive index
different from what the optical train is designed for, the PSF
worsens with depth, becoming significantly broader and
more aberrated. We use an adaptation of these exact PSF
calculations for a line-scanning confocal as our PSF model,
optimizing over parameters such as the numerical aperture of
the lens and the index mismatch of the sample to the optics.
Putting these components together as shown in Fig. 1(a),

our model image M sampled at pixels x is described by

MðxÞ ¼ BðxÞ þ
Z

d3x0½Iðx0Þð1 − ð1 − cÞΠðx0ÞÞ�

× Pðx − x0;xÞ; ð2Þ

where I is the illumination field, B is the background, Π is
the platonic image, and P is the spatially varying PSF; we
include a constant offset c to partially capture rapidly
varying variations in the background, as discussed in SM
[18]. The model image is highly realistic, as shown by the
comparison with real data in Fig. 1(b).
Noise.—Finally, noise degrades the image recorded on

the camera. We treat the noise using a Bayesian framework
and look for the maximum-likelihood model, given the
microscope data, complete with possible priors on param-
eter values. Since the noise is empirically Gaussian (see SM
[18]), the most likely model is the least-squares fit of the
model to the microscope image.
To find the most likely model, we least-squares fit every

parameter in our generative model to find the correct
particle positions, radii, illumination field, and point-spread
function, as illustrated in Fig. 1(c). A typical confocal
image contains a few times 103 particles, each with four fit
parameters (x, y, z, R). In addition, there are a few hundred

global parameters to optimize, such as the illumination and
PSF parameters and the z-step size of the lens along the
optical axis, resulting in approximately 104 parameters per
image—a daunting optimization problem. We begin with
an initial guess for the positions using standard particle-
locating techniques [34], and we simultaneously fit the
particle positions and the global variables using a
Levenberg-Marquardt algorithm modified for large param-
eter spaces [35–38]. From here, we ensure that we have
correctly identified every particle in the image by auto-
matically adding and subtracting particles based on the
difference between the model and the microscope image.
After finding the best-fit parameters, we can sample from
the log-likelihood using standard Monte Carlo techniques
[39] to estimate the errors in the image reconstruction. In
practice, we frequently estimate the parameter uncertainties
using the fit covariance, which provides results similar to
full Monte Carlo sampling. (See SM [18] for a detailed
description of the fitting method and numerical optimiza-
tions.) It is important to note that this fit is over all the pixels
in the image—to get a meaningful extraction of parameters,
every pixel must be described accurately. Imperfectly fit
regions—due to, e.g., severely deformed particles or PSF
leakage from objects outside the image—can bias the
extracted positions of particles in the region and even
affect the entire image reconstruction through the influence
on image-scale variables. Overall, this fit procedure takes
between 1 and 24 hours for a large confocal image,
depending on prior knowledge of the microscope’s global
parameters (see SM [18], Timing and Performance).
Using PERI to measure positions with nanometer accu-

racy requires rigorous checks on our method, with both
generated and experimental data. We first generate images
with a detailed physical model, employing an exact,
spatially varying, point-spread function [26]; experimen-
tally measured, spatially varying illumination; dense col-
lections of particles with varying radii; and a realistic
amount of noise. PERI successfully fits these generated
data, converging to the global fit minimum in the extremely
large-dimensional parameter space, despite a host of pos-
sible numerical complications, such as local minima in the
fit space or a failure of the fit to converge. From this fit, PERI
extracts both the particle positions and radii at the Cramér-
Rao bound (approximately 2 nm and 1 nm, respectively). In
contrast, current heuristic-based algorithms cannot measure
the particle positions to better than 60 nm on realistically
generated data sets. (See SM [18] for a detailed comparison
of PERI to other particle location algorithms.)
Emboldened by this success, we next test PERI on real

experimental data. We record movies of a suspension of
1.34-μm-diameter silica spheres suspended in a glycerol
and water mixture, and we measure particle positions and
radii in each three-dimensional frame of the movie with
PERI. We use the extracted positions and radii to test for
any systematic errors in PERI.
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We first analyze the residuals of our fits to the exper-
imental data. Figures 2(a) and 2(b) show these residuals in
both real and Fourier space. If our fit to the experimental
image were perfect, the residuals would be perfectly
Gaussian white noise. Instead, while the overall probability
distribution of the residuals is nearly Gaussian in both
domains (see SM [18]), in Fourier space there are distinct
wave vectors above the noise floor. Comprising roughly
10−5 of the power in the experimental image, the extremely
small size of this remaining signal demonstrates the quality
of our generative model. The deviations of our model from
the experimental data occur at length scales slightly larger

than the particle diameter but smaller than typical illumi-
nation variations. These unexplained residuals most likely
arise from approximations in models of line-scanning
point-spread functions, excess aberrations in the micro-
scope, and the artificially finite but large size we use in our
PSF calculation to speed up optimization. Additionally,
sharp peaks at high wave vectors can be seen in one slice of
the Fourier-space residuals, which arise from noise in the
scanning of the lens and the line illumination. If these
residuals were in fact perfectly uncorrelated Gaussian
noise, this would imply that we had correctly captured
all meaningful information about the system aside from the
shot noise in the detector. The remaining question is how
much these residuals affect the parameters of interest, the
particle positions and radii.
We can use the extracted particle positions and radii over

time to test the accuracy of PERI. During the movies, the
particles diffuse about, sampling different regions of the
spatially varying illumination and point-spread function
and changing the configuration of neighboring particles.
However, the true particle radii remain constant in time.
Measuring individual radii fluctuations over time provides
a stringent model-independent measurement of errors in
PERI, as the changing configuration of the particles
includes all the possible sources of systematic error.
Tracking these radii fluctuations over time suggests that
we can measure the particle radius to within 3–4 nm
[Fig. 2(c)], a fantastically high precision compared to the
672-nm particle radius and even the 125-nm pixel size.
Importantly, PERI accurately measures each particle’s
radius directly from the image. This individual-particle
measurement allows PERI to directly measure the poly-
dispersity in the particle radii; the sample in Figs. 2 and 3
has a very small polydispersity of Δa=ā ¼ 2%. A better
understanding of the image formation in the microscope
could increase the precision in measured radii even further,
to the 1.5-nm minimal error from the Cramér-Rao bound.
We can also constrain the positional errors. Since the
particle positions undergo Brownian motion, their mean-
square displacement grows linearly in time hΔx2ðtÞi ¼ 2Dt
[40]. Any error in the particle positions that is uncorrelated
with the particle position will manifest itself as a nonzero
intercept when the fitted mean-square displacement is
extrapolated to t ¼ 0. By measuring the mean-square
displacement along each coordinate direction and sepa-
rately extrapolating to zero [panel (d)], we find that PERI’s
positional errors are indistinguishable from zero and are
less than 10 nm, with this constraint being limited only by
statistics. Additionally, we check PERI on a data set of
2-μm diameter particles fixed in place via strong inter-
actions—a less demanding test since immobilizing the
particles also fixes most of the sources of systematic error.
In these data, we find x and y errors of 1–2 nm, z errors of
3 nm, and radii errors of 0.8 nm (see SM [18]). Combined,
these measurements demonstrate that we are able to
measure particle positions and radii to within 3 nm.

(b)

(c) (d)

(a)

FIG. 2. Fitting the generative model to experimental data. (a) A
representative image (lower left), its best-fit model (center), and
the difference between the two (upper right), shown as cross
sections in the xy, xz, and yz planes. The residuals show nearly
perfect Gaussian white noise at the expected signal-to-noise ratio,
demonstrating the quality of the generative model. (b) The
Fourier power spectrum of the same residuals, displayed as three
orthogonal slices in the qxqy, qxqz, and qyqz planes. In addition
to scanning noise, visible as the stripes along qx ¼ 0 and qz ¼ 0
as well as the isolated poles, excess power is visible at scales
larger than the particles themselves but smaller than the features
given by the illumination field (ILM). These residuals are
associated with the incomplete description of the point-spread
function. (c) PERI measures the particle radius within an
uncertainty of 3–4 nm, as estimated from changes in featured
particle radii with time (red histogram) measured by tracking
approximately 1200 particles over 800 time points. Improving the
description of the PSF would allow for radii to be featured at
the CRB (green histogram), with a precision of 1 nm. (d) The
experimental mean-squared displacement along the x direction
hΔx2i (black dots; error bars are smaller than symbol size) from
approximately 1200 particles measured over 800 time points
provides an estimate of PERI’s average positional errors.
Extrapolating the fitted mean-square displacement (red curve;
the shaded band denotes the fit uncertainty) to t ¼ 0 gives a
positional error indistinguishable from 0 nm. The mean-square
displacement along y and z provide the same constraints.
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Why is PERI able to measure particle positions and radii
so accurately while heuristic methods fail? Heuristic
methods produce poor measurements with large systematic
errors simply because they ignore complexities of the
image formation, such as the spatially varying illumination
and point-spread function. In contrast, PERI includes these
complexities. Fitting the entire image ensures that all the
complexities are accounted for—any portion of the image
formation not included in the model will manifest itself
as strong residuals in the fit, declaring that the model is
incomplete and suggesting what additional effect must be
included. This process of model selection is described in
detail in SM [18].
This extraordinary accuracy in measuring particle posi-

tions from microscopy images creates a new window into
nanometer-range particle interactions in dense suspensions.
When colloidal particles are suspended in an aqueous
solution, the particles charge, as the polar solvent disso-
ciates ions on the particles’ surface groups. This charge
results in an electrostatic repulsion, which is in turn
screened by counterions in the bulk [42,43]. The screening
creates an interparticle potential that deviates from a hard-
sphere potential only at nanometer separations. This poten-
tial ever so slightly biases the distributionof particle positions
away from that expected for a hard-sphere suspension.
Previous efforts measured these interactions only in

idealized, isolated surfaces such as between two surfaces
[44] or a single colloidal particle interacting with a wall
[45,46]. However, by their nature, these idealized

measurements frequently cannot include possible complica-
tions present in a real suspension, such as many-body
interactions, realistic surface asperities, or increases in
dissolved ion concentration from dissociated surface groups
onmultiple particles.Measuring the interaction potential in a
dense colloidal suspension includes these and many other
possible complications in the interaction.
We measure these nanometer-scale interactions by using

PERI to analyze a large set of images of 1.3-μm silica
spheres suspended in a water-glycerol mixture. To prevent
kinetic effects from confounding our measurements, we
allow the sample to fully sediment for an hour. This
produces an open layer of sediment approximately 2–3
particle layers deep, shown in Fig. 3(a). We then image this
suspension repeatedly over the course of several hours,
extracting simulation-level detail of approximately 720 000
particle positions and radii over all the images. The particle
interactions determine the structure of the suspension. We
quantify this structure with the probability PsðδÞ of finding
a pair of particles with surface-to-surface separation δ,
accounting for radii polydispersity and sedimentation in a
manner preferable to the usual pair-correlation function.
To reconstruct the interparticle potential, we use the
extracted particle radii and particle number from the data,
and we simulate the particle dynamics using Brownian
dynamics. We incorporate both gravitational settling and
the interparticle potential, which we model as an exponen-
tially decaying electrostatic repulsion. We then fit the mass
density and potential by simulating, reconstructing PsðδÞ

(a) (c) (d)

(b)

FIG. 3. Extracting interparticle potentials. (a) We use PERI to analyze a large ensemble of three-dimensional images of a dilute
suspension of approximately 1200 Brownian particles; a small section of these images is shown in the upper left. From these data, we
extract an experimental PsðδÞ. (b) We use molecular dynamics to create a simulated PsðδÞ, and we iteratively update the interaction
potential VðδÞ to find the PsðδÞ that best fits the experimental data. (c) The extracted PsðδÞ from PERI (gray dashed line) and from the
fitted potential (solid cyan line) agree excellently. In contrast, the PsðδÞ from a strictly hard-sphere potential (red line) does not fit the
data. The difference between these potentials depends on resolving particle separations at the nanometer level. Previous centroid-based
methods [41] (purple line) produce a PsðδÞ with nonsensical features, such as significant overlaps, that cannot be fit by a reasonable
interaction potential. We discuss the overlaps in PERI’s extracted PsðδÞ in SM [18], Sec. VII. (d) From the best-fit simulation, we extract
the interparticle potential VðδÞ. The shaded bands show the uncertainty in the potential, with the teal band describing uncertainty in the
fit and the gray band the uncertainty due to systematic errors (see SM [18] for further discussion).
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from the simulation at each set of potential parameter
values, and iterating to find the best PsðδÞ that matches
experiment [Fig. 3(b)].
The PsðδÞ from the best-fit simulation and from the

experimental data analyzed by PERI agree excellently, at
both large and small separations. At small separations,
PsðδÞ rises rapidly over the first approximately 0.1 μm near
contact in both the simulation data and the data extracted by
PERI, as shown in Fig. 3(c). At longer distances, the
probability grows because of the increased volume where
particles can be located, with slight oscillations reflecting
second- and third-nearest-neighbor interactions. In con-
trast, previous centroid-based methods [47] produce a
PsðδÞ with nonsensical features, such as significant over-
laps, that cannot be fit by a simulation.
We use the extracted PsðδÞ to measure nanometer-scale

interactions in dense colloidal suspensions for the first time.
The PsðδÞmeasured by PERI is well fit by an exponentially
decaying repulsive potential, as expected from electrostatic
repulsion in standard colloidal theory [42] [Fig. 3(c)]. From
the fit, we measure the potential’s screening length as
10.1� 2.5 nm and the repulsion strength near contact as
100� 30 kT, corresponding to surface potentials and
screening lengths similar to those previously measured
from the interaction of a single particle with a wall [45].
Our data strongly exclude hard-sphere interactions as the
interparticle potential. Importantly, this resolving power
between potentials results from the values of PsðδÞ near
contact.Without the accurate localization provided by PERI,
it is impossible to measure the potential at these separations.

III. DISCUSSION

Our technique and the ideas within it provide more than
just a description of colloidal interactions. Nanometer
accuracy in locating colloidal particle positions would
revolutionize fields as diverse as the study of colloidal
glasses and the measurement of biological forces with
force-traction microscopy. With our open-source code [48],
other researchers can immediately analyze existing images
of these systems.
The principle of accurately reconstructing an image to

extract parameters applies to a wide range of fields. While
we only demonstrate our method on a single imaging
system—3D line-scanning confocal images of nearly
monodisperse spheres in a dyed fluid—the ideas behind
our technique are generic and should apply to a wide range
of imaging modalities. As a first step, extending PERI to
describe image formation in brightfield microscopy by
correctly describing aberrations and light scattering from
the sample [49] would provide nanometer-scale precision
for a simple and widespread imaging setup. Creating an
accurate generative model of TEM or STM, by describing
the focusing and scattering of the electron beam [50] or
understanding the STM probe tip’s response [51], could
provide unprecedented detail of atomic positions. By

combining the logic from Eq. (1) with estimates of the
error and pixel size from brightfield and TEM images, we
estimate that PERI could provide localization accuracies of
1 nm for brightfield and 0.1 pm for TEM. In each case, the
general approach of comparing a computationally recon-
structed image to one that is collected using physical tools
will enable extraction of detail at the information theoretic
limit. Importantly, these improvements come by exploiting
cheap computing rather than by expensive redesigns and
modifications of the imaging system. Applying the idea of
PERI to these imaging modalities will usher in a new era of
precision measurements, for objects whose sizes range
from microns to angstroms.
The data, scripts, and output files for the experiments in

this manuscript are available upon request from Brian D.
Leahy, bdl48@cornell.edu.
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APPENDIX A: MATERIALS AND METHODS

We use a Zeiss LSM 5 Live inverted confocal micro-
scope, in conjunction with an infinity-corrected 100-times
immersion oil lens (Zeiss Plan-Apochromat, 1.4 NA,
immersion oil with index n ¼ 1.518). The LSM 5 Live
confocals operate by line scanning. Rather than rastering a
single point at a time to form the image, a line-scanning
confocal images an entire line at once. An image of a line is
focused onto the sample, and the sample fluorescence is
detected on a line CCD. Rastering this line allows images to
be collected extremely rapidly; the data in the text were
taken at 108 in-plane frames per second. However, the
different line-scanning optics worsen the point-spread
function compared to a point-scanning confocal, and they
cause illumination imperfections such as dirt to be smeared
out over one direction in the image. Importantly, our
confocal is outfitted with a hyperfine piezo scanner, which
gives precise z positioning of the lens. This precise z
positioning is important for accurate reconstruction of
images—with the less-precise standard positioning, our
image reconstruction and results suffer considerably.
Our experimental images consist of approximately

1.3-μm silica particles (MicroPearl) suspended in a mixture
of glycerol and water. The glycerol-water mixture is tuned
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to match the refractive index of the particles by minimizing
the sample scattering. For these particles, we find that the
optimal refractive index is n ≈ 1.437, corresponding to
approximately 76% glycerol and 24% water. Since glycerol
is hygroscopic, we controlled the concentration of glycerol
and water by measuring the index of refraction rather than
by measuring out the glycerol and water. We match the
index of refraction of the spheres and the suspending fluid
to within a few parts per thousand, resulting in practically
zero scattering by the spheres of either the laser or
fluorescent light. The glycerol has the additional advantage
of creating a very viscous suspension, slowing down the
Brownian motion of the particles. We add fluorescein
sodium salt to dye the suspending fluid, at a concentration
of 0.4 mg=mL. The fluorescein diffuses rapidly compared
to the particles and is effectively uniformly distributed
throughout the regions occupied by the fluid. By using a
considerable amount of dye and a low laser power, we
minimize photobleaching during our experiments.
Fluorescein sodium salt (molar weight 376.27) consists
of two sodium ions bound to a dye molecule. Thus,
this dye concentration corresponds to approximately
2 × 10−3 moles=L of monovalent sodium ions and
10−3 moles=L of divalent fluorescein ions. To this solution,
we added the 1.3-μm silica particles (MicroPearl) at a
concentration of 6.8 mg particles per 1 mL of solution.
These particles are placed in a 100-μm-deep sample cell;
since the particles sediment, the experimental volume
fraction is determined equally by settling and the sample
cell height, as opposed to simply the density of particles in
the original suspension. We allow the suspension to sedi-
ment for several hours to achieve equilibrium before taking
any measurements. The data are collected over the course
of 1–2 hours; we do not observe any change in the PsðδÞ
from the earlier samples to the later ones.

APPENDIX B: INTERPARTICLE
POTENTIAL FITTING

To extract the interparticle potential, we use molecular
dynamics simulations to find PsðδÞ and vary the parameters
to find the best-fit PsðδÞ. Since we know the particles’
positions and radii via PERI, we seed the simulation with
the featured particle positions and radii and relax the
particle positions thoroughly before sampling for PsðδÞ.
Using the extracted particle parameters enforces both the
correct amount of particle radii polydispersity and the
number density of particles. In the simulation, we use a
standard DLVO potential, consisting of nonretarded van der
Waals attractions and Debye-Hückel repulsion [52], aug-
mented by gravitational settling with the coverslip repre-
sented by a hard potential. The free parameters we fit are
the strength of the attraction, the strength and screening
length of the repulsion, and the gravitational settling
strength; physically, these correspond to the Hamaker
constant, a combination of the particle zeta potential and

salt concentration, and the average particle density. Note
that while one could incorporate additional effects, such as
charge polydispersity or dipolar interactions, we found that
the model above was sufficient to describe our data within
error bounds, and we have omitted these other interac-
tion terms.
Since the PsðδÞ is measured from the simulation as a

histogram with a finite number of samples, each simulated
PsðδÞ is somewhat noisy. In light of this noise, we use a
Nelder-Mead algorithm to find a good initial estimate of
the fit parameters. We then refine this estimate of the fit
parameters. First, we fit the ensemble of simulations to an
approximate model, which is locally linear in the fit
parameters. We then use this linear model to estimate a
new set of best-fit interaction parameters and refine our
estimate of the potential; the curve plotted in Fig. 3 of the
main text is the PsðδÞ generated from the linear model at the
best-fit parameters. To estimate uncertainties in the fit, we
repeat this process by fitting a random subset of half of the
simulations to a model and finding the new set of best-fit
interactions. Repeating this 1000 times provides an esti-
mate on the best-fit parameters as the mean of these best-fit
parameters, and the uncertainty as the standard deviation of
those parameters. Finally, we also obtain an estimate of
systematic errors due to misfeaturing of particle positions
and radii by fixing each particle’s radius to be its mean
value throughout all the images it is measured in.
Surprisingly, fixing each particle’s radius to a value that
does not fluctuate in time worsens both the reconstruction
and the experimentally measured PsðδÞ, producing about 3
times as many overlaps. This probably arises because, in
some sense, PERI directly measures the particle separations
from the microscope image—changing the separation of
two particles slightly will considerably change the fraction
of fluorescing dye separating them. Nevertheless, the fixed-
radius data give an order-of-magnitude estimate of
any systematics in the experimentally measured PsðδÞ.
In addition, we fit the interparticle interactions for several
different forms of the potential: hard spheres, electrostatic
repulsion only, electrostatic repulsion and van der Waals
attraction (DLVO theory), and DLVO theory combined
with a short-ranged hydrophilic repulsion. Also, it is of note
that the PsðδÞ data as shown in Fig. 3 of the main text
contain a non-negligible number of overlapping particles
with δ < 0. These overlaps are significantly outside of our
allowed error ranges. However, they are not of significant
concern. Tracking down the offending particles, we find
that these overlaps were caused by a small cluster of
aggregated particles tracked throughout the duration of the
experiment. As these particles are likely partially non-
spherical, the fitted overlaps are not surprising. We found
that including or excluding this group of particles did not
influence the fit parameters significantly.
Table I shows the extracted potential parameters for all

the interparticle interactions. Each interaction potential is fit
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two ways, by allowing the fitted particle’s radius to vary
with time and by fixing each individual particle’s radius to
its average value over the frames. With the exception of a
pure hard-sphere potential, all of the various interaction
potentials fit the data equally well. In particular, fitting the
data with just an exponentially decaying electrostatic
repulsion fits the data no better than including the van
der Waals interaction. However, our data do not exclude a
nonzero Hamaker constant, allowing Hamaker constants
of up to approximately 0.2–0.5 kT. A hydrophilic repulsion
is similarly not necessary to fit the data, but our data
can accommodate hydrophilic repulsion of a reasonable
strength and length scale. Since there are considerably
more overlaps in the fixed radii PsðδÞ, we use the
interaction potentials from the data set with radii fitted
by PERI as the best estimate of the fitting parameters, and
the difference between the fits as an estimate of the
systematic uncertainties from imperfect experimental data.
The fitted values are comparable to what would be

expected from electrostatic repulsion in standard DLVO
theory. Two charged spheres of equal radius a placed in a
salt solution repel each other, with a potential energyΦ that
depends on separation h as [52]

ΦðhÞ ¼ Φ0 ln ð1 − e−κhÞ; ðB1Þ

κ−1 ¼
h
ϵϵ0kT

�X
q2z2kn

b
k

i
1=2

; ðB2Þ

Φ0 ¼ 2πϵϵ0a
1

z2
ϕ2
s : ðB3Þ

At long distances e−κh ≪ 1, this potential is equivalent to a
simple exponential repulsion ΦðhÞ ≈Φ0e−κh. Here, the
screening length κ−1 and the repulsion strength Φ0 are
determined by the suspension properties, through the
suspension’s relative permittivity ϵ, the valence zk, and
bulk number density nbk of each of the dissolved ion
species, and the electrostatic potential ϕs at each particle’s
surface; q is the electron charge and ϵ0 the permittivity
of free space. For a 76∶24 mixture of glycerol [ϵð0Þ ¼ 47]
and deionized water [ϵð0Þ ¼ 80], we expect ϵ ≈ 55.

The only additional ions added to the suspension arise
from the fluorescein sodium salt, which dissociates to two
valence-1 sodium ions and one valence-2 fluorescein ion.
For 0.4 mg=mL of dissolved fluorescein sodium salt dye,
the screening length should be approximately 4.5 nm,
slightly smaller than what we measure experimentally. The
repulsion strength in Eq. (B3) depends on the effective ion
valence z. For our suspension, the ion valence is between
z ¼ 2 for the fluorescein ions and z ¼ 1 for the sodium
ions. Approximating the ion valence as z ¼ 2 and the zeta
potential the same as for silica in pure water at ϕs ¼
−40 mV gives a repulsive barrier of Φ0 ≈ 200 kT, similar
to but slightly larger than what we find experimentally.
Likewise, while we cannot measure a Hamaker constant

directly, our data are consistent with a Hamaker constant of
approximately 0.5 kT, which is what we expect for silica
particles in water. While an exact calculation of van der
Waals interactions is difficult, an approximate effective
Hamaker constant A can be calculated following
Israelachvili [43]. For an index-matched suspension like
ours, the zero-frequency component of the dielectric should
be the dominant contribution to the Hamaker constant:

Aeff ¼
3

4
kT

�
ϵ1ð0Þ − ϵ2ð0Þ
ϵ1ð0Þ þ ϵ2ð0Þ

�
2

; ðB4Þ

where ϵ1 and ϵ2 are the zero-frequency relative permittivities
of the medium and particle, respectively. For silica, ϵ2 ¼ 4,
and the suspending fluid has ϵ1 ¼ 55, giving a Hamaker
constant of Aeff ≈ 0.6kT. This value is right on the border of
our measurable uncertainty.
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