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I. OVERVIEW

In this supplemental material we describe the details of our method for extracting parameters from experimental
confocal images at the highest resolution possible without modifying the microscope itself. To achieve maximal
resolution, we build a generative model which aims to describe the value of every pixel in the experimental image.
That is, we create simulated images by explicitly modeling every relevant aspect of image formation including particle
positions and sizes, the location of dirt in the optics, amount of spherical aberration in the lens, and the functional
form of the point spread function. We describe each of these model components in detail in Section III and how we
decided on these particular components in Section IV. In order to fit this model to the experiment, we adjust all model
parameters until the features present in the true experimental image are duplicated in the simulated one. We decide
when the fit is complete and extract errors of the underlying parameters by using a traditional Bayesian framework
which is described in general terms in Section II. This high dimensional optimization is in general very difficult and
so we describe our algorithmic improvements and particular techniques in Section V. Finally, we assess the accuracy
of this method in extracting underlying parameters and compare its performance with traditional featuring methods
in Section VI.

Overall, this document is meant to provide a roadmap for other researchers to follow when adapting this technique
to other types of microscopy and other types of samples in order to extract the maximal amount of information from
their experimental images.

II. BAYESIAN FRAMEWORK

When fitting a model to noisy data, it is useful to adopt a Bayesian framework in which we rigorously treat the
noise as part of our model. In the case of our featuring method, we fit a model of each image pixel Mi to experimental
data di, which can be described as a combination of signal and noise di = Si + ηi. This noise is present due to
the detection of a finite number of photons by the microscope sensor, noise in the electronics, etc. and can be well
described for our system by uncorrelated 〈ηiηj〉 = 2σ2δij , Gaussian noise ηi ∼ N (0, σ) (see Section III).

In a Bayesian framework, the likelihood that an individual pixel is correctly described by our model is given by the
Gaussian likelihood,

L(Mi | di) =
1√

2πσ2
i

e−(Mi−di)/(2σ2
i ) (1)

For uncorrelated pixel noise, the entire likelihood of the model given the image is given by the product over all pixels,
L(M | d) =

∏
i L(Mi | di). We are ultimately interested in the probability of the underlying parameters given the

image we record. According to Bayes’ theorem, we can write this as

P (θ | d) ∝ P (d | θ)P (θ)

∝ L(M(θ) | d)P (θ)

where P (θ) are priors that allow us to incorporate extra information about the parameters θ. These priors can be
as simple as the fact that the particle radius is positive definite or that a group of images share similar PSFs. For
example, an overlap prior Poverlap(xi,xj , ai, aj) = H(ai + aj − |xi − xj |), where H is the Heaviside step function, can
be used to impose the physical constraint that particles cannot overlap. However, we found that the overlap prior
only becomes relevant when the free volume of a particle is small compared to the average sampling error volume
(when a particle is caged by ∼ 1 nm on all sides) and so we ignore it most of the time.

We primarily work with the log-likelihood function logL because the number of pixels in the image can be very
large, on the order 107. For Gaussian noise, the log-likelihood is precisely the square of the L2 norm between the model
and the data. Therefore, we are able to maximize this log-likelihood using a variety of standard routines including
linear least squares and a variety of Monte-Carlo sampling techniques. After optimizing, we can determine errors with
one of two methods. First, we can use estimate the covariance matrix of the errors by from JTJ , where Jiµ = ∂µri
is the derivative of the residuals with respect to the fit parameters. (i.e. the Jacobian of the transformation from
parameter space to data space). Second, we can use standard Monte-Carlo algorithms to sample from the posterior
probability distribution to extract full distributions of the model parameters.

In this way, any quantity of interest that is a function of particle distribution can be calculated using Monte-Carlo



4

integration by

〈O(θ)〉 =

∫
O(θ)P (θ | d) dθ

=
1

N

N∑
i

O(θi)

Here, θi is a parameter vector sampled fairly from the posterior probability distribution and O(θi) is an observable
such as the pair correlation function, packing fraction, or mean squared displacement. Calculating higher-order
moments provides estimated errors and error correlations on these observables. This is one of the more powerful
aspects of this method – one can generate a probability distribution for each parameter and directly apply these
distributions to any observable that can be inferred from the parameters.

Given this Bayesian framework, the main idea of this work is to create a full generative model for confocal images
of spherical particles and provide algorithmic insights in order to implement the model on commodity computer
hardware.

III. GENERATIVE MODEL

Most of the difficulty in our method lies in creating a generative model that accurately reproduces each pixel in an
experimental image using the fewest number of parameters possible. Our model is a physical description of how light
interacts with both the sample and the microscope optics to create the distribution of light intensity that is measured
by the microscope sensor and rendered as an image on the computer. In this section, we describe the model which we
use to generate images similar to those acquired by line-scanning confocal microscopy of spherical particles suspended
in a fluorescent fluid.

Our generative model aims to be an accurate physical description of the microscope imaging; it is not a heuristic.
Creating this model requires a detailed understanding of image formation of colloidal spheres in a confocal microscope.
In the simplest view, our samples consist of a continuous distribution of dye distributed throughout the image. If
the fluid is dyed (as for the images in this work), due to diffusion the dye is uniformly distributed through the fluid.
The fluid-free regions, such as those occupied by the particles, are perfectly dye-free. The sample is illuminated
with a laser focused through an objective lens. This focused laser excites the fluorescent dye only in the immediate
vicinity of the lens’s focus. An objective lens captures the dye’s emitted light, focusing it through a pinhole to further
reject out-of-focus light. The collected light passes through a long-pass or band-pass filter, which eliminates spurious
reflected laser light before collection by a detector. This process produces an image of the sample at the focal point
of the lens. Finally, rastering this focal region over the sample produces a three-dimensional image of the sample.

However, the actual image formation is more complex than the simple view outlined above. Excessive laser illumi-
nation can cause the dye to photobleach. Due to dirt and disorder in the optical train, the sample is not illuminated
uniformly. Diffraction prevents the laser light from being focused to a perfect point and prevents the objective lens
and pinhole from collecting light from a single point in the sample. Aberrations are present if the sample’s refractive
index is not matched to the design of the objective lens, broadening the diffractive blur deeper into the sample. Both
the illuminating and fluorescing light can scatter off refractive index heterogeneities in the sample due to the particles.

Some of these complications can be eliminated by careful sample preparation. In practice, we eliminate photo-
bleaching by using an excessive amount of dye in our samples and illuminating with a weak laser light. We eliminate
scattering by matching the refractive index of the particles to the suspending fluid – it is fairly easy to match the
refractive indices to a few parts in 103. Since the scattering is quadratic in the index mismatch, the effect of turbidity
due to multiple-scattering is very weak in our samples. However, the rest of these complications must be accurately
described by the generative model.

Based on this physical setup, we can describe the confocal images through three main generative model components:

• Platonic image Π(x) – the physical shape of the dye distribution in the sample (unmodified by perception of
light).

• Illumination field I(x) – the light intensity as a function of position, including both laser intensity variation
from disorder in the optics and intensity attenuation into the sample.

• Point spread function P (x; x′) – the image of a point particle due to diffraction of light, including effects from
index mismatch and finite pinhole diameter.

plus three minor additional fit model components:
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• Image Background c, B(x) – the overall exposure of the image c and the background values corresponding to a
blank image without dye, B.

• Rastering Step Size zscale – the displacement distance of the lens as it rasters along the optical axis.

• Sensor noise σ – the noise due to shot noise from finite light intensity reaching the sensor or electronic noise at
the sensor.

These components are combined to form the image through convolution

M(x) = B(x) +

∫
d3x′ [I(x′)(1−Π(x′)) + cΠ(x′)]P (x− x′; x) (2)

which is sampled at discrete pixel locations to give the final image Mi =M(xi).
Here, we describe each part of our model in detail along with our explanations and motivations behind any sim-

plifications. In subsequent sections we will also discuss other aspects of image formation which may result in other
model choices and why we omit them from the final form of the model.

A. Platonic image

The Platonic image must accurately represent the continuous distribution of fluorescent dye in the sample on the
finite, pixelated image domain. The colloidal sample consists of a collection of spherical particles embedded in the
solvent, with either only the particles or only the solvent dyed. Our Platonic image should then consist of the union
of images of individual spherical particles, with their corresponding radii and positions. Thus, if we have a method
to accurately represent one colloidal sphere, we can easily construct the Platonic image in our generative model.

A näıve way to generate the Platonic image of one sphere would be simply to sample the dye distributions at the
different pixel locations, with each pixel being either 0 (if it is outside the sphere) or 1 (if it is inside the sphere) with
no aliasing. This method will not work, since a pixel value in the Platonic image can only change when a sphere’s
position or radii has shifted by one pixel. This method of Platonic image formation would produce a generative model
that does not adequately distinguish between particle locations separated by less than 1 pixel or 100 nm! Simply
multiplying the resolution and corresponding coarse-graining of the boolean cut by a factor of N in each dimension
increases the resolution of this method to 1/N pixels. However, calculating these high resolution platonic spheres is
computationally expensive, requiring 109 operations to draw spheres capable of determining positions within 0.01 px.

To find the correct representation of a Platonic sphere, we examine the mechanism of image formation in Eq. 2.
The final image results from a convolution of the Platonic image with the point-spread function P (x− x′; x). Thus,
we need a representation of a sphere that will produce the correct image after being convolved with the point-spread
function. To do this, we recall that a convolution is a multiplication in Fourier space. However, creating the image
of the sphere in Fourier space is problematic since there will be undesirable ringing in the Platonic image due to the
truncation from the finite number of pixels (i.e. Gibbs phenomenon). Moreover, each update of one particle requires
updating all the pixels in the image, which is exceedingly slow for large images.

Instead, we look for a functional form in real space that approximates the numerically-exact truncated Fourier series,
where the truncation arises due to a finite number of pixels. For a sphere with radius a at position p, this truncated
Fourier series is given by Π̃(q; p, a) = 4πa3(j1(q)/q)eiq·p, where q is sampled only at frequencies in the image. We can
view the truncation operation as a multiplication in Fourier space by a boxcar H(1−|qx|)H(1−|qy|)H(1−|qz|), where
q is the variable inverse to position, measured in px−1. By the convolution theorem, this truncation corresponds to
a convolution in real space with sinc(x) sinc(y) sinc(z), using the inverse Fourier transform of the boxcar as the sinc
function. Thus, the numerically exact image of a sphere would be the analytical convolution of sinc(x) sinc(y) sinc(z)
with a sphere of radius a at position p, represented on a discrete grid. However, the convolution with the sinc
function is analytically intractable. To circumvent this, we approximate the sinc function by a Gaussian. This gives
a representation of the correctly-aliased Platonic image Π(x; a) of a sphere of radius a as

Π(x) = S(x) ∗
[(

2πσ2
xσ

2
yσ

2
z

)−1/2
e−x

2/2σ2
xe−y

2/2σ2
ye−z

2/2σ2
z

]
(3)

where S(x; p, a) = H(|x − p| − a) where H(x) is the Heaviside step function, which is either 0 or 1 depending on
whether |x − p| > a or < a, and ∗ denotes convolution. The Gaussian widths σ should be approximately 1 px;
however, if the ratio of the z pixel size to the xy pixel size zscale 6= 1, then σz will not be the same as σx and σy.

While Eq. 3 does not generally admit a simple solution, there is a closed-form functional form for the symmetric
case σx = σy = σz. In the symmetric case (zscale = 1) Eq. 3 takes the form

Π(x) =
1

2

[
erf

(
a− r
σ
√

2

)
+ erf

(
a+ r

σ
√

2

)]
− 1√

2π

σ

r

[
e−(r−a)2/2σ2

− e−(r+a)2/2σ2
]

(4)
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where r is the distance from the particle’s center. The first bracketed group of terms corresponds to treating the
sphere as a flat surface, and the second bracketed group corresponds to the effects of the sphere’s curvature on the
integral. In each sub-grouping, the first term that depends on r − a reflects the contribution due to the particle’s
nearer edge, and the second term that depends on r + a reflects the contribution due to the particle’s farther edge.
We then fit σ in Eq. 4 to best match the exact Fourier space image of a sphere, giving a value σ ≈ 0.276.

Although Eq. 3 does not admit a simple solution for zscale 6= 1, we can use the exact form for zscale = 1 to construct

an approximate solution. Since both erf(x) and e−x
2

approach their asymptotic values extremely rapidly, and since
at the best fit σ ≈ 0.276, the argument (a + r)/σ � 1 for even moderately small radii, we approximate the terms

erf((a + r)/σ
√

2) ≈ 0.5 and exp(−(r + a)2/2σ2) ≈ 0 to an excellent accuracy. We then write the position vector in
terms of its direction from the sphere’s center x̂ and a vector δx as x ≡ ax̂ + δx; the vector δx is the distance of
the point from the sphere’s surface, and the vector ax̂ is the location on the sphere’s surface closest to the point x.
Finally, we replace (a− r)/σ in Equation (4) by δ =

√
(δx/σx)2 + (δy/σy)2 + (δz/σz)2, where δx is the projection of

δx on the ith coordinate axis and σi is the pixel blurring along each direction; σz = zscaleσx for our geometry with
identical x and y pixel sizes and a varying z pixel size. Combining all these produces the following equation for a
Platonic sphere:

Π(x) =
1

2
[1 + erf (δ)]− 1√

2π

σ

r
e−δ

2/2 (5)

Note that this approximation is exact in the limit of infinite sphere radii. Empirically, we find that this approximation
works quite well, giving differences in the Platonic image of a few percent from a numerical solution to Eq. 3 as well
as high resolution boolean cut real-space spheres (see Fig. 1).

While this implementation of the Platonic image correctly captures most of the effects of finite-pixel size, there are
still some minor details that need to be fixed to give unbiased images. By construction, Eq. (4) conserves volume –
its integral over all space is 4/3πa3 since the Gaussian kernel is normalized. However, when Π(x) is sampled on a
pixelated grid, its sum is not exactly 4/3πa3 but is slightly different, depending on the position of the particle’s center
relative to a voxel’s center. The slight change in volume is important for two reasons. First, the convolution with the
PSF in our image generation (see next subsection) suppresses high-frequency portions of the image, but it does not
affect the q = 0 component, i.e. the image sum or the particle volume. Since we aim to create a Platonic image that
accurately represents the final image, we need the q = 0 component of the Platonic image to be correct. Secondly,
as discussed in section IV the real microscope image is actually an integral over a finite pixel area. As such, the
image recorded on the detector preserves the particle’s volume or the q = 0 component of the image. To circumvent
this issue of incorrect particle volume, instead of drawing the particle at its actual radius we draw it with a slightly
different radius that preserves the particle’s volume, which we accomplish with an iterative scheme. The results of this
iterative scheme are shown in Fig. 1 along with the errors it introduces. Incidentally, the effects of image pixelation
on image moments higher than 〈1〉, e.g. 〈x〉 and its effects on the particle positions, are much smaller than the noise
floor in our data at a moderate SNR (see section IV).

The representation in equation 4 is the best method for forming Platonic spheres on a pixelated grid that we have
found. However, there are other, simpler methods which work almost as well as the Platonic sphere. Aside from the
important curvature term, equation 4 is basically an erf() interpolation between particle and void at the particle’s
edge. Other interpolation schemes can provide similar results. For instance, the spheres could be constructed by
ignoring the curvature term and replacing the erf with a logistic 1/(1+exp((r−a)/α)), a linear interpolation between
particle and void at the pixel edge, or a cubic interpolation at the pixel edge. We have also implemented these methods
for generating Platonic images of spheres, fitting the parameters to match the exact Fourier representation. For the
logistic we fit α, for the linear interpolation we fit the slope, and for the cubic we fit one parameter and constrain the
other two such that the Platonic image and its derivative are continuous. While all of these methods are functional,
they are not significantly faster than the exact Gaussian approximation in equation 4 and result in slightly worse
featuring errors (see table I). As a result, we use the exact Gaussian approximation, but include these other options
in our package for ease of use with more complicated shapes where the integral in equation 3 might not be analytically
tractable.

The Platonic image needs to represent accurately all objects in the image, not just the spheres. In particular, when
the solvent is dyed, the image usually contains a dark coverslip or its shadow from the point-spread function. We
model this dark coverslip as a slab occupying a half-space. The slab is characterized by a z-position and by a unit
normal n̂ denoting the perpendicular to the plane. To capture accurately sub-pixel displacements of the slab, we
use the image of a slab convolved with a Gaussian as above for a sphere; for the slab this gives a simple error (erf)
function.
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FIG. 1: Platonic sphere generation. A comparison of our approximate platonic sphere generation method to a sphere created
by performing a boolean cut Π(x) =

∫
pixel

dx′H(|x − x′ − p| − a) on a lattice 100× higher in resolution in each dimension

compared to the final image. On the left we show the super resolution sphere with fractional volume error δV/V = 10−6 and an
inset displaying the jagged edges caused by discrete jumps in distance. This is in contrast to the iterative approximate platonic
sphere with volume error δV/V = 10−16 drawn at an effective radius with change δa/a = 2 × 10−4. The differences between
individual pixels along the center of the sphere (right panel) show a high frequency structure with a maximal relative value
0.08. These high frequency features are dramatically reduced later in the image formation process through the convolution
with the point spread function.

B. Illumination field

In order to illuminate the sample, confocal microscopes scan a laser over the field of view using several distinct
patterns including point, line, and disc scanning. This illumination laser travels through the optics train and interacts
with fluorescent dye in the suspension causing it to emit light in a second wavelength which is then detected. The
intensity of this illumination pattern depends on the aberrations in the optics, variation of intensity due to photo-
bleaching, as well as dirt in the optical train which creates systematic fluctuations in illumination across the field
of view. Accounting for these variations is important as they can account for most of the intensity variation in an
image. In the case of our line scanning confocal microscope, these patterns manifest themselves as stripe patterns
perpendicular to the scan direction, as the line-scan drags dirt across the field of view, overlaid on aberrations and
optical misalignments which cause the corners of the image to dim.

Confocal microscopes image by rastering in z, illuminating each xy plane separately. Ideally, the microscope
illuminates each plane identically. In practice, aberrations due to refractive index mismatches cause a dimming of
the illumination with depth into the sample [1]. Since this overall dimming only depends on the depth z from the
interface and not on the xy position in the sample, it is natural to describe the illumination field as a product of an
xy illumination and a z modulation:

I(x) = Ixy(x, y)× Iz(z) . (6)

Empirically we find that illumination fields of this form can accurately describe our real confocal images, without
incorporating any coupling between xy and z.

We describe each of the separate functions Ixy and Iz by a series of basis functions. Since the modulation in z is
fairly smooth [1], we describe Iz(z) by a polynomial Pz(z) of moderate order ≈ 7-11 for 50-70 z-slices; typically we
use a Legendre polynomial as the orthogonality accelerates the fitting process. The in-plane illumination of a confocal
is determined by its method of creating images. Our confocal is a line-scanning confocal microscope, which operates
by imaging a line illumination parallel to the x axis and simultaneously collecting the line’s fluorescent image. This
line is then scanned across the image in y. As a result of this scanning, any dirt in the optics is dragged across the
field of view, creating the illumination with stripes along the x-direction visible in Fig. 2. To model these stripes, we
treat the variation along x and y differently. We write the xy illumination field as

Ixy(x, y) =
∑
k

B(x; ck)× Pk(y) , (7)
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FIG. 2: Illumination field residuals. A blank confocal image and its fit to the Barnes ILM in equation 8 over varying
number of coefficients. Fitting the illumination with a low-order ILM of (3, 3) Barnes points removes the large fluctuations over
the image but clearly shows stripes in the image. The notation (n0, n1, n2, ...) corresponds to a Barnes ILM with n0 coefficients
in the expansion for P0(y), n1 coefficients for P1(y), etc. Increasing the number of points to (7, 7, 5, 5, 5) or (14, 9, 7, 5, 5, 5)
removes the overall modulation in y but leaves clear stripes in the image. Only at high orders of (50, 30, 20, 12, 12, 12, 12) or
(200, 120, 80, 50, 30, 30, 30, 30, 30, 30, 30) do these stripes disappear. The residuals shown in the figure are all at the same scale
and are averaged over the image z for clarity.

where Bk(x; ck) is a Barnes interpolant in x and Pk(y) a Legendre polynomial in y. Barnes interpolation is a method
of interpolating between unstructured data using a given weight kernel [2], similar to inverse distance weighting,
using a truncated Gaussian kernel to allow for strictly local updates to the high frequency illumination structure.
We use an interpolant with equally spaced anchor points in x throughout the (padded, see section III C) image.
The kth Barnes interpolant has a large number of free parameters, described by the vector ck; the size of ck is
equal to the number of anchoring points in the Barnes. To account for the fine stripes in the image, we use a
large number of points for the Barnes associated with low-order polynomials, and decrease the number of points for
higher-order polynomials. For a typical image of size (z, y, x) = (50, 256, 512) pixels, we use coefficient vectors of
length (c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10) ≈ (200, 120, 80, 50, 30, 30, 30, 30, 30, 30, 30). While this is a large number
of coefficients, there are orders of magnitude fewer coefficients than pixels in the image. As a result, all of the ILM
parameters are highly constrained (on the order of a few parts in 105, varying wildly with the parameter), and we do
not overfit the image.
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Putting this all together, we use an ILM given by:[∑
k

Bk(x; ck)Pk(y)

]∑
j

djPj(z)

 . (8)

This ILM accurately describes measured confocal illuminations, as determined both from blank images and from
images with colloidal particles in them. While the Barnes structure of this ILM is optimized for line-scanning
microscopes, it can easily be changed. For ease of use for different microscopes or imaging modalities we have
implemented various ILMs consisting of simple Legendre polynomial series, as functions Pxy(x, y)×Pz(z), Pxy(x, y)+
Pz(z), and as Pxyz(x, y, z). Other illumination structures – such as a radially or azimuthally striped ILM for spinning-
disk confocals – could also easily be incorporated into PERI’s framework.

How well do these functional forms fit to experimental data for a line-scanning confocal microscope? We acquire
blank images of a water-glycerol mixture as a function of depth and fit these data with Barnes illuminations of the
form Eq. 8. As a function of the number of Barnes points in x and the polynomial degree in y, we look at the
magnitude and patterns of the residuals. In Fig. 2, we see large scale structure in the ILM residuals, suggesting that
high-order polynomials and Barnes interpolants with a large number of points are necessary. Fitting out the low-order
background reveals the find stripes in x emerge due to the line-scan nature of our machine. Finally, at higher orders
of interpolants and polynomials we are able to adequately capture all illumination variation independent of depth
into the sample.

Fitting the ILM correctly is essential for finding the correct particle positions and radii. Fig. 3 demonstrates the
effect of featuring a real confocal image with an illumination field of insufficient order. In the left panel is an image
featured with a high-degree polynomial illumination of 9th order in the x-direction and of 5th order in the y- and z-
directions. While these polynomials are high-order, they are not high enough to capture all of the structure in the
light illumination. There is a clear bias in the featured radii, with particle radii being systematically larger on the
edge of the image and smaller in the middle. These biases arise from large stripes in the confocal illumination due to
the line-scanning nature of our confocal. Using a higher-order 25th degree polynomial in the x-direction (upper right
panel) eliminates the effect of these stripes, as visible in the featured particle radii plotted as a function of x in the
bottom panel. Note that the particle radii may be biased by as much as 1 px or 100 nm due to effects of the spatially
varying illumination field.

C. Point spread function

Due to diffraction, the illuminating laser light focused from the microscope’s lens and the detected fluorescent light
collected from the sample are not focused to a single point. Instead, the light is focused to finite-sized diffraction-
limited blur. To reconstruct an image correctly we need to account for the effects of diffraction in image formation.

A confocal microscope first illuminates the sample with light focused through the microscope lens. The lens then
collects the light emitted from fluorophores distributed in the sample. As a result, the final image of a point source on
the detector results from two separate terms: an illumination point-spread function Pilm that describes the focusing of
the incoming laser light, and a detection point spread function Pdet that describes the focused fluorescent light collected
from the emitted fluorophores. Since a fluorophore is only imaged if it is both excited by the laser illumination and
detected by the camera, the resulting point-spread function for a confocal with an infinitesimal pinhole is the product
of the illumination and detection point-spread functions: P (x) = Pilm(x)Pdet(x). For a confocal with a finite-sized
pinhole, this product becomes a convolution over the pinhole area. The two separate point-spread functions (PSFs)
Pilm and Pdet can be calculated from solutions to Maxwell’s equations in the lens train [1, 3–5]. The PSFs can be
written as integrals over wavefronts of the propagating light.

An additional complication arises from the presence of an optical interface. Most microscope lenses are essentially
“perfect” lenses, creating a perfect focus in the geometric optics limit. However, refraction through the optical
interface destroys this perfect focus and creates an image with spherical aberration. In addition, the refracted rays
shift the point of least confusion of the lens from its original geometric focus. For a confocal geometry, this spherical
aberration and focal shift depend on the distance of the nominal focal point from the optical interface zint.

All of these effects have been calculated in detail by many previous researchers [1, 3–5]. The PSFs depend on several
parameters: the wave vectors of the incoming and outgoing light kin and kout, the ratio of the indices of refraction
nsample/nlens of the sample and the optical train design, the numerical aperture of the lens or its acceptance angle α,
and the distance focused into the sample zint. For completeness, we repeat the key results here. In polar coordinates,
the illumination PSF Pilm(ρ, φ, z) for illuminating light with wave vector kin traveling through a lens focused to a
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FIG. 3: ILM generated biases. Using an incorrect illumination field results in significant biases. The upper left panel shows
an image featured with a (9, 5, 5) order polynomial in (x, y, z). In the foreground are the featured particle radii, color-coded
according to their difference from the mean. In the background is the residuals of the featured image. Clear stripes are visible
in both the featured radii and the residuals. The particles are systematically much larger on the left side of the image, before
decreasing in size in the middle and increasing again in a small stripe on the image’s right side. In contrast, when the image is
featured with a higher-order (25, 5, 5) degree polynomial, shown in the upper right, these systematic residuals disappear. The
bottom panel shows the particle radii and image residuals for the two illumination fields as a function of the image x direction.
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FIG. 4: PSF widths vs depth. The x (left panel), y (center panel), and z (right panel) widths of a line-scanning confocal’s
PSF with an NA=1.4 lens as a function of distance from the interface, for various refractive index mismatches. The width of
the point-spread function generally increases with depth and with index mismatch due to increased spherical aberrations. The
width is broadest in the z (axial) direction, and is narrower in the y direction than along the x direction of the line illumination.
In each panel, the width plotted is the distance between the first and third quartiles of the PSF.

depth zint from the interface is [1]

Pilm(x) = |K1|2 + |K2|2 +
1

2
|K3|2 + cos 2φ

[
K1K

∗
2 +K2K

∗
1 +

1

2
|K3|2

]
, where K1

K2

K3

 =

∫ α

0

√
cos θ′ sin θ′e−ikinf(z,θ′)

 1
2 (τs(θ

′) + τp(θ
′) cos θ2)J0(kinρ sin θ′)

1
2 (τs(θ

′)− τp(θ′) cos θ2)J2(kinρ sin θ′)
J1(kinρ sin θ′)τp(θ

′)n1

n2
sin θ′

 dθ′

f(θ) = zint cos θ − n2

n1
(zint − z)

√
1−

(
n1

n2

)2

sin2 θ

(9)

Here τs(θ
′) and τp(θ) are the Fresnel reflectivity coefficients for s and p polarized light, Jn is the Bessel function of

order n, and θ2 is the angle of the refracted ray entering at an angle θ′ (n2 sin θ2 = n1 sin θ′). To derive this equation
from equation (12) in Ref. [6], we used the additional assumption that all distance scales in the image (including zint)
are small compared to the focal length of the lens. The corresponding detection PSF Pdet is identical to Pilm except
for the removal of the

√
cos θ and the replacement of kin by the wave vector of the fluorescent light kout. For an

infinitesimal pinhole, the complete PSF is the product of these two point spread functions:

P (x; zint) = Pilm(x; zint)Pdet(x; zint) . (10)

The expressions in equations 9-10 are for a perfect pinhole confocal, whereas our confocal is a line-scanning confocal.
While there have been several works describing line-scanning confocals [7, 8], these authors have treated where the
line is focused onto the sample by a cylindrical lens. In our confocal, however, an image of a line is focused onto the
sample through the large-aperture objective lens. As such, the illumination PSF in equation 10 is replaced by the
integral of the detection PSF over a line in the x direction. These PSFs are illustrated in figure 4, showing the width
of the PSF as a function of the index mismatch and the distance of the focus from the optical interface. The shift in
the nominal focus position counteracts the slight decrease in the PSF’s width close to interface for n2/n1 < 1.

We use this model for a line-scanning point spread function with aberrations as our model for our exact PSF, fitting
the paramters that enter into equations 9-10. These parameters are the acceptance angle α of the objective lens, the
wavelength of the laser, the ratio of energies of the fluorescent light to the excitation light, the index mismatch n1/n2 of
the sample to the optics, the position of the optical interface zint, and the amount that the lens is moved as the scan is
rastered in z. In principle, other details could be included – polychromaticity and distribution of the fluorescent light,
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finite pinhole width of the illuminating line, etc. – but we find that these parameters are both relatively unconstrained
by the fit and have little impact on the other reconstructed parameters, such as particle positions and radii.

In addition, for initial featuring we occasionally use a Gaussian approximation to the PSF. Based on calculations of
the exact PSF, ≈ 90% of the function can be described by a Gaussian [4]. We verified this for PSFs calculated from
Eq. 9, and found that although the presence of aberrations from the interface worsens the Gaussian approximation,
generally a Gaussian accounts for ≈ 90% of the PSF except for in the most aberrated cases (large index mismatch
imaging deep into the sample). Our simplest approximation of the PSF is as an anisotropic Gaussian with different
widths in x, y, and z, with the widths changing with distance from the interface. In this simple approximation, we
parameterize the Gaussian widths as a function of depth,

P (x; z) =
∏
i

e−x
2
i /2σ

2
i (z)

√
2πσi(z)

(11)

where each width σi(z) is described by a polynomial in z, typically a second order Legendre polynomial.

FIG. 5: PSF generated biases. Using an incorrect point-spread function results in significant biases, as PSF leakage affects
neighboring particle fits. Moreover, since the PSF gets significantly broader with depth, using a spatially constant PSF, there
are systematic biases with depth in both the z positions (left panel) and a characteristic drift in the fitted radii errors with
depth (right panel), as shown for the delta-function (identity), an (x, y, z) anisotropic Gaussian, and a depth-varying Gaussian
point-spread function. In contrast, using the correct Chebyshev PSF eliminates the errors in both the radii and z positions
(data points forming thin orange line).

Figure 5 shows the effects of ignoring these details about the point-spread function on the extracted positions.
We generate confocal images using a simulated, exact PSF with random distribution of particles up to a depth of
30 µm. Featuring these data using a 3D anisotropic Gaussian, we find a strong depth-dependent bias in the featured
z position and radii measurements. Using a low order z-dependent Gaussian PSF decreases this bias only slightly.
Interestingly however, ignoring the effects of diffraction completely and replacing the PSF with a Dirac delta-function
does not cause significantly worse results than treating the PSF as a spatially-varying Gaussian. As shown by Fig. 5,
an exact PSF is required to locate particle’s positions and radii to within 20 nm (0.2 px). Therefore, we employ the
full line-scan PSF calculation into our model.

The point-spread function defined in equations 9-10 decays extremely slowly with z and somewhat slowly in ρ. To
accurately capture these long-tails of the PSF in our generative model, we calculate the PSF on a very large grid for
convolutions, corresponding to ≈ 40×25×30 px or ≈ 6×3×4 µm in extent, which is considerably larger than the
size of the 5 px radii particles. The long tails of the PSF bring information about structure far outside the image
into the image region. As such, our generative model is defined not only in regions corresponding to the interior
microscope image but also in an exterior padded region, which is cropped out when comparing to the model. For
completeness, we still define the ILM and Platonic image (including exterior particles) in the exterior padded region;
however parameters confined to this exterior region of the image are relatively unconstrained. We make up for this loss
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FIG. 6: Experimental background image. The measured background from our line-scan confocal microscope captured by
adjusting the exposure to a full brightness image, removing the sample, and capturing a set of images with no illumination
including room lights. Note that the range of values is from 1 to 7 out of a maximum 255 given by the 8-bit resolution of the
CCD. While only a variation of 3%, we have seen in the illumination field section that this can create a bias that significantly
alters our inference as a function of the position in the field of view. To remove this bias we fit the background field to a low
order polynomial and add it to our model image.

in speed due to the increased size by doing an extremely accurate but approximate convolution based on Chebyshev
interpolation, as described in a future paper.

D. Background

Due to background, the detector CCD pixels always read a non-zero value even when there is no light incident on
them. We incorporate this into our generative model by fitting a nonzero background level to the images. Ideally,
this background would be constant at every pixel location. Empirically, however, we find from blank images that this
background varies with pixel location in the detector (see Fig.6). For our confocal microscope, we find the background
is slowly-varying in the optical plane, perhaps due to different dwell times for different regions of the line scan and
different sensitivies of different pixels; the background does not vary in z. As a result, the background is well-modeled
by a low-order polynomial in x and y.

However, due to the long-tails of the PSF, the coverslip slab affects the image in a much larger z region than that of
a typical particle. Rather than dealing with this by using an even larger point-spread function, we use the calculated
point spread function to capture the effects of the PSF’s moderate tails on the particles and slab, and fit a polynomial
in z to capture the residual slab correction. This residual correction is mathematically the same as a background
level in the detector. As a result, while the “true” background in the image is P (x, y), our model uses a background
P (x, y) + Pslab(z), as the coverslip is usually oriented along the z direction.

E. Offset

In addition to a spatially-varying background field, we include an “offset” parameter c; this parameter captures
rapid variations in the background. To demonstrate why we use an offset parameter, consider the model in equation 2.
If there were no particles, Π = 0 and the model image would simply be B(x) +

∫
d3x′ [I(x′)P (x − x′; x). Since B

and I are arbitrary fields with no particles these two are degenerate in the fit space, regardless of the shape of the
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point-spread function P . When there are objects present and Π is not everywhere zero, this degeneracy is lifted. Here
the model image will be M(x) ≈ I(x) in regions where there is dye, and M(x) ≈ B(x) where there are particles, if
we ignore the effects of the point-spread function and do not include an offset (c = 0). Again, if this is all there were,
this parameterization would be complete, and there would be no need for an offset c.

The use for an offset begins to appear when we settle on a fixed parameterization of I(x) and B(x). In our usage
of PERI, we describe the background B with a fairly low-order polynomial, causing B(x) to vary slowly with x,
and we describe I(x) with a rapidly-varying field with many stripes. However, the real background in our confocal
microscope does contain rapidly-varying structure. Including a constant offset c allows us to cheaply account for some
of the rapid variations in B by coupling them to the rapid variations in I. For instance, consider the artificial case of
an identity point-spread function. Then with an offset c equation 2 gives the model image as M(x) = B(x) + cI(x)
in the regions where there are no particles, i.e. the offset includes some of the rapid variations of I(x) in this region.
Empirically, we find that including an offset parameter c significantly improves our reconstructed images and our
extracted parameters. In addition, using an offset fitting parameter is considerably faster and more robust than
attempting to reconstruct all of a spatially-varying background that is nearly degenerate with the illumination in
much of the image.

M(x) = B(x) +

∫
d3x′ [I(x′)(1−Π(x′))]P (x− x′; x) (12)

F. Sensor noise

The last feature of the generative model is our understanding of the unrecoverable parts of the image: noise. To
study the intrinsic noise spectrum of the confocal microscope, we subtract the long wavelength behavior from the blank
image of Fig. 2. After removing the background we find that the noise appears white and is well approximated by a
Gaussian distribution (see Fig. 7). There are, however, some highly localized non-Gaussian parts to the noise spectrum,
arising due to the specific nature of our confocal. For instance, at high scan speeds slight intensity fluctuations in the
laser’s power couple to the dwell time on each stripe of line-scanned pixels. This produces periodic stripes across the
image with a wavevector mostly parallel to the scan direction, but with a random noisy phase. How can we handle
these sources of correlated noise and do they affect the quality of our reconstruction?

In principle, these correlated noise sources can be represented in the Bayesian model by introducing a full noise
covariance matrix. That is, instead of writing that log-likelihood as the product of all pixel values, we can write

logL(M | d) = −1

2
(Mi − di) Λ−1

ij (Mj − dj) (13)

where Λ−1
ij is the covariance matrix between each pixel residual in the entire image. In our optimization, we would

form a low dimensional representation for this covariance matrix and allow it to vary until we find a maximum. In
doing so, we would reconstruct the image and the correlated noise simultaneously. In practice, this introduces a large
computational overhead due to the need for a full image convolution during each update as well as many new free
parameters that need to be optimized.

Therefore, when desired we address the effect of correlated noise by working in reverse – we identify the several
intense Fourier peaks in the confocal noise spectrum and remove them from the raw data before the fitting process.
An example of this noise pole removal is given in Fig. 7. There, we can see that removing only 5 distinct poles
(Fig. 7(d)) removes almost all visible correlated noise structure while changing the overall noise magnitude by a
negligible amount. This small shift in estimated noise magnitude only affects the estimate of the errors associated
with parameters such as positions and radii in a proportional way. Since these errors are very small and do not bias
our inferred parameters, we often ignore the confocal’s noise poles in our analysis entirely.

IV. MODEL CONSIDERATIONS

Here, we investigate several complexities of image formation in confocal microscopes and systematically analyze
whether or not it is necessary to include them in our generative model. In particular, we will first analyze how much
complexity we must introduce into the model elements listed in the previous section, including the platonic image,
illumination field, and point spread function. We will also look at elements of image formation which we have not
explicitly included in our model. First, confocal microscopes build a 3D image by rastering in 1, 2, or 3 dimensions
(see section III). There is noise in this rastering procedure that affects the image formation process. Second, the



15

F
IG

.
7
:

N
o
is

e
sp

e
c
tr

u
m

(a
)

R
ea

l-
sp

a
ce

p
lo

t
o
f

re
si

d
u
a
ls

re
p
re

se
n
ti

n
g

th
e

in
tr

in
si

c
n
o
is

es
g
en

er
a
te

d
in

li
n
e-

sc
a
n
n
in

g
co

n
fo

ca
l

m
ic

ro
sc

o
p
y.

T
h
is

n
o
is

e
sp

ec
tr

u
m

w
a
s

g
en

er
a
te

d
b
y

su
b
tr

a
ct

in
g

th
e

b
a
ck

g
ro

u
n
d

fr
o
m

a
b
la

n
k

sa
m

p
le

a
s

in
F

ig
.2

.
N

o
ti

ce
th

a
t

w
h
il
e

m
o
st

o
f

th
e

si
g
n
a
l

a
p
p

ea
rs

to
b

e
w

h
it

e
n
o
is

e,
th

er
e

is
a

sy
st

em
a
ti

c
m

o
d
u
la

ti
o
n

a
lo

n
g

th
e
x

co
o
rd

in
a
te

a
n
d

h
ig

h
fr

eq
u
en

cy
fe

a
tu

re
s

in
th

e
y

sc
a
n

d
ir

ec
ti

o
n
.

(b
)

F
o
u
ri

er
p

ow
er

o
f

th
e

n
o
is

e
sp

ec
tr

u
m

g
iv

en
in

(a
).

T
h
e

h
ig

h
fr

eq
u
en

cy
m

o
d
u
la

ti
o
n

ca
n

n
ow

b
e

se
en

a
s

tw
o

sm
a
ll

‘p
o
le

s’
in

th
e

F
o
u
ri

er
p

ow
er

sp
ec

tr
u
m

.
N

o
te

th
e

d
a
rk

b
ox

in
th

e
ce

n
te

r
o
f

th
e

sp
ec

tr
u
m

is
cr

ea
te

d
b
y

su
b
tr

a
ct

in
g

th
e

h
ig

h
o
rd

er
p

o
ly

n
o
m

ia
l

b
a
ck

g
ro

u
n
d

fr
o
m

th
e

b
la

n
k

im
a
g
e.

In
(c

)
a
n
d

(d
)

w
e

p
re

se
n
t

th
e

re
a
l

a
n
d

F
o
u
ri

er
sp

a
ce

n
o
is

e
a
ft

er
re

m
ov

in
g

se
v
er

a
l

d
is

cr
et

e
p

ea
k
s

in
th

e
F

o
u
ri

er
in

te
n
si

ty
th

a
t

re
p
re

se
n
t

co
rr

el
a
te

d
n
o
is

e
so

u
rc

es
.

T
h
e

re
m

ov
ed

si
g
n
a
l

ca
n

b
e

se
en

in
(e

)
sh

ow
in

g
th

e
st

ri
p

es
cr

ea
te

d
b
y

th
e

sc
a
n
n
in

g
n
a
tu

re
o
f

th
e

co
n
fo

ca
l

m
ic

ro
sc

o
p

e.
In

(f
)

w
e

sh
ow

th
e

h
is

to
g
ra

m
o
f

re
si

d
u
a
ls

fr
o
m

(a
)

a
n
d

(c
).

In
so

li
d

re
d

w
e

p
lo

t
th

e
d
a
ta

a
n
d

in
d
a
sh

ed
b
la

ck
li
n
es

w
e

p
lo

t
a

G
a
u
ss

ia
n

fi
t

to
th

e
re

si
d
u
a
ls

w
it

h
a

w
id

th
σ

=
0
.0

3
9
8
,

sh
ow

in
g

th
a
t

th
e

n
o
is

e
sp

ec
tr

u
m

is
w

el
l

a
p
p
ro

x
im

a
te

d
b
y

a
G

a
u
ss

ia
n

d
is

tr
ib

u
ti

o
n

a
ft

er
ta

k
in

g
in

to
a
cc

o
u
n
t

lo
n
g

w
av

el
en

g
th

b
a
ck

g
ro

u
n
d

fe
a
tu

re
s.



16

final image that comes from this scan is a cropped view of a much larger sample; the edges of this cropped image are
influenced by the excluded exterior particles. Third, while the actual distribution of light intensity is a continuous
field, the detector only measures a pixelated representation of this field. Fourth, while the exposure is made by the
camera, particles undergo diffusional motion, blurring their apparent location. In this section, we address each of
these image formation complexities and their effects on the inferred parameters.

We would like to systematically investigate at what level omitting a detail of the image formation from the model
affects the fitted parameters. We can understand this quantitatively by examining the optimization procedure. Let us
assume that the true image formation is completely described by a set of N parameters Θ. Then, near its maximum,
the log-likelihood is approximately quadratic: logL = 1

2

∑
ij HijΘiΘj , where the true value of the parameters is

arbitrarily set to Θ = 0. Empirically, we find that with the starting parameter values provided by our initial
featuring, the log-likelihood is extremely well-approximated by a quadratic.

If our model were complete, then the maximum of logL would be exactly at the true parameter values Θ = 0.
However, our model is incomplete. This means that, instead of fitting all N parameters Θ, we only fit the first (say)
M parameters, which for convenience we denote as θ. Thus we can write the log-likelihood as three separate terms:

logL =
1

2

M∑
i,j=1

Hijθiθj +

N∑
i=M+1

M∑
j=1

HijΘiθj +
1

2

N∑
i,j=M+1

HijΘiΘj . (14)

The first term, containing only the parameters θ that we are fitting, is the quadratic in the reduced space, with a
maximum at the true parameter values. The unimportant third term reflects the separate contribution to logL of the
unknown or ignored portions of the model, and is constant in the θ space. However, the second term mixes both the
fitted parameters θ and the unknown parameters Θj . This mixing results in a linear shift of logL in the θ space away
from the true parameters, and causes a systematic bias due to an incomplete model. Minimizing logL with respect
to θ gives the fitted values of the parameters gives an equation for the best-fit incomplete model parameters θ:

θj =

M∑
k=1

H̄−1
jk

N∑
i=M+1

HikΘi (15)

where H̄−1 is the inverse of the sub-block H̄ of the Hessian matrix H that corresponds to the fitted parameters θ.
We can use equation 15 to estimate the effect on one of the estimated parameters θj , if we ignore one aspect of the

generative model Θk. Ignoring the off-diagonal terms in H−1 to capture the scaling gives θj ≈ HkjΘk/Hjj . Thus,
the error in the fitted parameter θj is proportional to both the coupling Hkj between that parameter and the ignored
aspect of the generative model, and the magnitude of the error of the generative model Θk.

A. Component complexities

There are several choices one can make concerning the form and complexity of each of the components of our model
image. As discussed in the Section III, we have implemented many forms of the platonic image, illumination field, and
point spread function and each one of these forms has a varying number of parameters with which to fit. How do we
decide which form to use and at which complexity (number of parameters) to stop? To decide on a per-image basis,
we could employ Occam’s factor, which is a measure of the evidence that a model is correct given the data [9]. In
practice, however, we are mainly concerned with how these models influence the underlying observables which we are
attempting to extract. That is, we wish to use knowledge of the physical system to check which model best predicts
the particle locations and sizes. To do so (as mentioned in the main manuscript), we often turn to particle sizes versus
time as well as particle overlaps, both physical statements that assert almost no assumptions on our system.

We can also get a sense of the magnitude of the effect these choices have on inferred positions and radii by creating
synthetic data and fitting it using a simpler model. In Fig. 8 we show the residuals of such fits for various simplifications
made to the platonic form, illumination field, and point spread function. In the left columns of the figure we see the
reference image formed using the most complex image model available and in each row the residuals for each choice
with a description of that choice above the panel. For all but the last column, in which we fit the image with the
exact model once again, we can see systematic errors in the fit. We compute how much these residuals influence the
extracted positions and radii and report these errors in Table I. In particular, most choices of platonic image aside
from the naive boolean cut do not influence particle featuring below an SNR of 30. However, the complexity of the
illumination field always matters until all long wavelength structure is removed from the image. Finally, the choice
of PSF is crucial, requiring the use of a calculated confocal PSF to even approach the CRB.
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Fitting model type Position error (px) Radius error (px)

P
la

to
n
ic

fo
rm

Boolean cut 0.03376 0.01577

Linear interpolation 0.00778 0.00386

Logistic function 0.00411 0.00352

Constrained cubic 0.00674 0.00249

Approx Fourier sphere 0.00000 0.00000

Il
lu

m
in

a
ti

o
n Legendre 2+1D (0,0,0) 0.18051 0.13011

Legendre 2+1D (2,2,2) 0.06653 0.03048

Barnes (10, 5) Nz = 1 0.13056 0.06997

Barnes (30, 10) Nz = 2 0.04256 0.02230

Barnes (30, 10, 5) Nz = 3 0.00074 0.00022

P
S
F

Identity 0.54427 0.57199

Gaussian(x, y) 0.47371 0.14463

Gaussian(x, y, z, z′) 0.34448 0.04327

Cheby linescan (3,6) 0.03081 0.00729

Cheby linescan (6,8) 0.00000 0.00000

TABLE I: Position and radii errors by model complexity. Here we tabulate the position and radius errors associated
with the model component choices made in Fig. 8. Note that while the components with the largest impact on determining
underlying parameters are the ILM and PSF, the choice of platonic image cannot be ignored in order to reach the theoretical
maximum resolution. Interestingly, in the case of PSF selection, Gaussian(x, y, z, z′) (3+1D) is almost no better at extracting
particle positions than Gaussian(x, y) (2D). However, its ability to extract particle sizes increases by 3 since it takes into
account the variation of the PSF in space. Additionally, in the case of the ILM, capturing the stripes in the illumination using
a 30 control point Barnes increases the resolution by 3 whereas capturing the illumination’s dependence in depth causes the
resolution to increase 10 fold.

B. Scan jitter

Confocal microscopes operate by taking an image with the lens at a fixed z position to create one layer of the
three-dimensional image, then moving the lens up a fixed amount to take the next layer. In our generative model, we
assume that these steps of the lens (and the resultant image slices) are perfectly equally spaced by an amount which
is fitted internally. However, a real confocal microscope will have some error in the vertical positioning of the lens.
As a result, the actual image taken will not be sampled at exactly evenly spaced slices in z, but at slices that are
slightly shifted by a random amount.

To test the effect of this z-scan jitter on our parameter estimation, we simulate images taken by a confocal microscope
with imperfect z-positioning. Instead of sampling the image at a deterministic z position, we instead sampled the
image at a z position shifted from the ideal position by an uncorrelated Gaussian amount of varying standard deviation.
A representative image of a 5 px radius particle with a step positioning error of 10% is shown in Fig. 9(a). There
is very little difference between this image with z jitter and the perfectly-sampled image, as shown by the difference
image in panel b. We then fit an ensemble of these images at varying image SNR levels, over a random sampling of
image noise, z-jitter noise, and random shifts of particle positions by a fraction of a pixel.

The results of these fits are shown in Fig. 9c, showing the actual error in the featured positions versus the size
of the z-positioning noise. For our confocal which is equipped with a hyper-fine z-positioning piezo, we expect the
z positioning error to be a few nm, or a few percent of a pixel. For a 3% error in positioning, the signal-to-noise
ratio must be ≈ 100 for the effects of z-positioning jitter to be comparable to the theoretical minimum effect from
the image noise. This small effect of the error is partially due to the large size of our particle. If each z slice of the
image is randomly displaced with standard deviation σ, then we expect roughly a σ/

√
N scaling for the final error in

the particle’s z-position, where N is the number of z slices the particle appears in. A 5 px diameter particle with a
4 px axial point-spread function occupies ≈ 18 difference slices, decreasing the effect of scan noise by a factor of ≈ 4
and putting it below the CRB for our data.

As the error in z-positioning increases, however, the effect on the featured particle positions increases correspond-
ingly. The error due to a ≈ 10% z jitter is comparable to the CRB for image noises of SNR = 20. For exceptionally
large z-jitters of 40% the error due to the lens positioning dominates all other sources of error. However, even with
this large error in lens positioning, the error in featured positions is still only 10% of a pixel, or about 10 nm in
physical units.
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FIG. 9: Lens Positioning Jitter (a) The xz cross-section of a simulated image of a 5 px radius colloidal particle taken with
a 10% error in the lens positioning. (b) The difference between the image with positioning error and a reference image with
zero positioning error. The differences between the images are both random and small, for this image no more than 7% of the
perfect image intensity. (c) The effect of lens positioning error on featured particle positions, at signal-to-noise ratios of 20,
50, 200, and 500. The solid symbols and dashed lines show the position error for images with imperfect lens positioning, while
the solid lines denote the Cramer-Rao bound for an image with no positioning error. At lens positioning errors of ≈ 10% or
larger, the error in featured positions from the z-slice jitter dominates that from the simple image noise, even for an SNR of
20. However, the featuring error due to a z jitter of ≈ 1% is less than the error due to image noise, for any noise level than can
be captured by an 8-bit camera.

C. Missing and Edge particles

The point spread function delocalizes the particle’s image over a region larger than the particle’s size. As a result,
if two particles are close enough together, their images can overlap. This overlapping is a significant problem for
heuristics such as centroid fitting, as the true particle centers do not coincide with the fitted centroid. In contrast,
PERI’s accuracy is negligibly affected by the presence of a second, close particle, since PERI correctly incorporates
close particles in its generative model. The CRB of two touching, 5 px diameter particles increases by only ≈ 3%,
and PERI finds particles to this accuracy when close.

However, large systematic errors can affect PERI when one of these particles is missing in the generative model.
This situation is illustrated in its simplest form in Fig. 10. If one of the two touching particles is missing from the
generative model, then the second particle will be enlarged and drawn into the first particle’s void to compensate, as
shown in panel b. As a result, the missing second particle will severely bias the fitted positions and radii of the first
particle. Fig. 10c shows the magnitude of this effect. For particles separated by 1 px or less, significant biases on
the order of 0.4 px appear in the identified particle’s featured position. These biases matter at essentially all values
of the SNR, only being comparable to the CRB for SNR < 1. As a result, it is essential for PERI to identify all the
particles in the image to return accurate results. For this reason, we take extra precaution and thoroughly search the
image for missing particles before fitting, as detailed in section V.

The biases caused by missing particles appear whether or not the missing particle is located inside or outside the
image. As a result, accurately locating edge particles requires identifying all their nearby particles, even ones that
are outside the image! We attempt to solve this problem by padding the Platonic and model images and the ILM by
a significant portion, and including this padded extra-image region in both the add/remove and relaxation portions
of the PERI algorithm. Nevertheless, it is extremely difficult to locate all the particles outside the image, for obvious
reasons. As such, there is the possibility for moderate systematic errors to enter for particles located at or near the
edge.

Nevertheless, if the exterior particle is identified, PERI correctly locates the interior particle, as shown in Fig. 11.
To demonstrate this, we create simulated images of two particles near the boundary of an image. One particle is
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FIG. 10: Effect of missing particles. (a) The xz-cross section of an image of two 5 px radius particles placed in contact.
(b) The difference image for a bad generative model that includes only the particle on the left. To minimize the effect of
the missing right particle, the left particle is drawn to the right and expanded in radius. This effect is visible as the red and
blue ring on the right border of the left particle. (c) The error in position along the separation axis, as a function of true
surface-to-surface distance, for a model with a missing particle. When the particles are separated by ≈ 10 px the featured
particle is located correctly. However, as the particles get closer than ≈ 2 px significant biases start to appear. These biases
saturate at a separation of ≈ 0.1 px, corresponding to a featuring error of ≈ 0.4 px.

placed at z = a so that its edge just touches the boundary while the other is placed at z = −(a+ δ) on the other side
of the border. We plot the CRB of the interior particle and the measurement errors of both PERI and trackpy [10]
as a function of the exterior particle’s coordinate in Fig. 11. While the CRB only changes by a factor of 2 as the
particles come within contact, the featuring errors grow drastically for traditional featuring methods due to biases
introduced by the exterior particle. For this same data set, PERI featuring errors follow the CRB allowing precise
unbiased featuring of particles at the edge of images.

This apparent conundrum of edge particles presents an interesting positive side-effect. Missing edge particles affect
the fits because they contribute a significant amount to the image. As such, we might expect that a particle outside
the field of view can still be located very precisely. This prediction is borne out by a calculation of the Cramér-Rao
bound, as shown in Fig. 12. Until the particle and PSF fall off the edge of the image (distance > 1R), the CRB
remains constant for all particle parameters. When the particle is centered on the image edge (distance of 0), the
CRB is twice that of the bulk, intuitively corresponding to a loss of half of the information about the particle. As the
volume of the particle leaves the image, the CRB decreases as 1/δ2 until the particle is no longer part of the image.
Interestingly, Fig. 12 shows that the PSF constrains the particle position to within 0.1 px even when the particle is
entirely out of the image! If correctly seeded with a moderate guess for the particle position outside the image, PERI
will locate the particle to a precision of the Cramér-Rao bound. However, in practice it is very difficult to seed these
particles into PERI, as a slight change of the intensity at the image edge could be either a missing particle outside
the image or a slight variation in the ILM near the image edge. Nevertheless, PERI is very good at locating particles
that are partially outside the image.

D. Pixel intensity integration

Our generative model considers the image formed on the camera as if the camera pixels had an infinitesimal size.
In reality, the camera pixels have a finite extent. As a result, the image at each pixel on the camera is not a discrete
sampling of the light intensity, as in our generative model, but is instead an integration in the detector plane over the
pixel’s size.

To check whether the effect of pixel integration matters, we generated images that were up-sampled by a factor of
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FIG. 11: Influence of particles outside of the image. Here we place one particle at x = a and a second particle at
x = −(a+ δ) so that one is completely inside the image and the other outside. We plot the CRB for the x, y, and z positions
and radius a of the interior particle as well as measured errors for PERI in triangles and a centroid algorithm (trackpy [10])
in circles as a function of the position of the second particle. When the exterior particle is further than a pixel outside the
image we see that the measurements of the interior particle are constant. However, as the PSF of the exterior particle begins
to overlap the interior particle the CRB and all measured errors increase dramatically. While PERI’s measured error continues
to follow the CRB, trackpy’s error increases beyond pixel resolution. Note that pixel separations at the edge are generic in
colloidal images especially in dense suspensions.

8 in the xy-plane. We then numerically integrated these images over the size of each pixel. A representative image is
shown in Fig. 13a. There is very little difference between the xy-integrated image and the generative model, as visible
in panel b. We then fitted an ensemble of these xy-integrated pixel images, both over an ensemble of noise samples
and over an ensemble of particle positions shifted by a random fraction of a pixel. The results are shown in Fig. 13c.
We find that there is no discernible effect of pixel integration at a SNR of 200 or less. The error due to neglecting
pixel integration becomes comparable to that due to noise only for SNR ≥ 400, which is significantly higher than the
maximum allowed by an ordinary 8-bit camera. Thus, the effect of integrating over a pixel size for a colloidal particle
essentially always has a negligible effect on the fitted parameters.

E. Diffusional motion

A typical colloidal particle is not fixed in its location, but diffuses about due to Brownian motion. For an isolated
colloidal particle, this Brownian motion results in a random walk with mean displacement 〈x〉 = 0 and a mean-square
displacement 〈x2〉 = 6Dt that is linear in time, with a diffusion constant D = kT/6πηR where η is the solvent viscosity
and R the particle radius. As a result, the microscope takes an image not of a colloidal particle at a single position,
but of an integrated image of the colloidal particle over the trajectory that it has diffused.

First, at what length- and time- scales is a colloidal particle de-localized due to Brownian motion by a scale that
is larger than the resolution? For a 1 µm diameter particle in water to diffuse the 1 nm resolution provided by PERI
takes a fantastically small time of t = 1 nm2/D ≈ 10µs. Even for our relatively viscous samples of ≈ 80% glycerol
and 20% water this time slows down to only ≈ 600µs. These times are orders of magnitude faster than the ≈ 5ms
required by our confocal to take a 3D image of the particle, corresponding to a 8 nm displacement. Thus, a freely
diffusing particle has always diffused much further than the positional featuring uncertainty intrinsic to PERI.

However, this does not mean that the precision past 8 nm is empty. The particle’s positions are Gaussian distributed
about its mean value during the exposure time. While the extent of the distribution is much larger than the PERI
featuring errors, the particle’s mean position during the exposure time is well-defined. Moreover, the actual image on
the camera from the diffusing particle is a convolution of the particle’s trajectory with a single particle image. Since
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FIG. 12: CRB of edge particles. Here we calculate the Cramér-Rao bound of the x, y, and z positions as well as radius
(in red, blue, green, purple respectively) for an isolated particle as a function of its distance to the edge of the image. For
positive displacement (inside the image) we see very little change with position as expected. As parts of the PSF leak out
of the image (displacements close to zero, positive) we see that the expected error increases slightly since information is lost.
Finally, as the particle itself leaves the image, information is lost more dramatically as indicated by a sharp rise in the CRB.
However, note that even at a displacement of one radius a, the PSF allows us to locate the particle outside of the image to
within a pixel. While in practice it is difficult to identify these particles systematically, their presence can greatly influence the
measured positions of other edge particles.

this convolution is like an averaging, we might expect that the small Brownian excursions are averaged out in the
image formation, and that the image allows for accurate featuring of the particle’s mean position.

We can use the formalism of Eq. 15 to show that Brownian motion does not affect our featuring accuracies. Let the
particle’s mean position be x̄0, and its Brownian trajectory be x0(t). Then the actual image I(x)on the detector is

I(x) =
1

texp

∫ texp

0

I0(x0(t)) dt = I0(x̄0) +
1

texp

∫ texp

0

I0(x0(t))− I0(x̄0) dt (16)

where I0(x) is the image of one particle at position x and texp is the camera exposure time. We view the actual image
as I(x) = I0(x̄0; θ) + (1−Θ)∆I, in terms of a group of fitted parameters θ and an additional parameter Θ describing
the effects of Brownian motion ∆I. For the true image Θ = 0 but for our model image Θ = 1. Then equation 15
says the error will be θj ≈ Hkj/Hjj , where HΘj = ∂Θ∂θjI = ∂θj∆I. However, for small displacements the effect of
Brownian motion on the image is

∆I =
1

texp

∫ texp

0

∂I(x̄0)

∂xi
(x− x̄0) dt = 0

since ∂I(x̄0)/∂xi does not depend on time. As a result, ∂θk∂ΘI = 0 and there is no effect of Brownian motion on the
image to first order in the displacements, i.e. when the particle displacement is moderately small compared to the
radius.

Finally, in Fig. 14 we show empirically that the effect of Brownian motion is negligible for our exposure times. To
create an image of a diffusing particle captured by a slow camera, we simulated a 200 point Brownian trajectory of a
R = 5 px radius particle, generating an image for each point in the particle’s trajectory. We then took the average of
these images as the noise-free image captured by the microscope. One such image is shown in Fig. 14a. Once again,
there is a slight difference (10%, as shown in panel b) between the slow image of a diffusing particle and the reference
image taken of a particle at a single location. We then fitted an ensemble of these images, over a variety of both
Brownian trajectories and noise samples. Fig. 14c shows the results of these fits as a function of the mean displacement
during the collection τexposure/(R

2D), where τexposure is the exposure time of the camera and D the particle’s diffusion
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FIG. 13: Pixel Integration (a) The xz cross-section of a simulated image of a 5 px radius colloidal particle, where each
pixel contains the light intensity integrated over its area instead of sampled at its center. (b) The difference between the
pixel-integrated image and a reference image sampled at the center of the pixels. The differences between the images are small
(10%) and centered in a ring which has mean 0 and is positioned at the particle’s edge. (c) The effect of pixel integration on
featured particle positions as a function of particle radius, at signal-to-noise ratios of 20, 200, and 2000. The solid symbols and
dashed lines show the position error for images generated with pixel integration and fit without, while the solid lines denote
the Cramer-Rao bound for the images (without pixel integration). Integrating over a pixel area has no effect on the featured
positions for any SNR compatible with an 8-bit depth camera. The effect of pixel integration only starts to matter for an
SNR ≥ 400 (not shown).

constant. Brownian motion has a negligible effect on the featured positions for our experimental images of freely-
diffusing particles (camera exposure time of 100 ms and D = 0.007 µm2/s corresponding to a 1 µm particle in 80:20
glycerol:water, corresponding to τexposure/(R

2D) ≈ 10−3). Interestingly, however, to achieve a higher localization
accuracy at a higher SNR of ≈ 200, Brownian motion must be correctly taken into account in the image formation.
Incorporating Brownian motion at these high signal-to-noise ratios would allow the teasing out of information about
the particle’s trajectory from a single image.

V. IMPLEMENTATION

A typical confocal image is roughly 512 x 512 x 100 pixels in size and contains 104 particles meaning that the number
of degrees of freedom in our fit is roughly 107 described by 105 parameters, a daunting space to optimize. On modern
hardware using the highly optimized FFTW, the typical time for an FFT the size of a single image is ∼ 1 sec.
Given this time, a single sweep through all parameters would take an entire week while a full optimization would
consume a year of computer time. However, since particles have finite size, we are able to optimize most of these
parameters locally with a small coupling to global parameters (ILM, PSF). Additionally, the finite intensity resolution
of microscope sensors, typically 8 or 16 bits, allows us to make further simplifications to our model. Here we describe
the practical algorithmic optimizations that we have made as well as the optimization schedule that we have devised
to quickly reach the best fit model.

A. Partial image updates

First and foremost, we optimize our fitting procedure by working in image updates and only updating parts of the
image that are required at any one time. In order to modify the position of one particle by a small amount, the
number of pixels that are affected is simply (2a+w)3 where a is the particle radius and w is the PSF width, both in
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FIG. 14: Brownian Motion (a) The xz cross-section of a simulated image of a 5 px radius colloidal particle undergoing
strong Brownian motion τexposure/(R

2D) = 0.01 during the image formation. (b) The difference between the diffusing-particle
image and a reference image without diffusion. The differences between the images are small (10%) and are mostly in a ring
with mean 0 at the particle’s edge. (c) The effect of Brownian motion on featured particle positions as a function of exposure
time, at signal-to-noise ratios of 20, 50, 200, and 500. The image exposure time for our camera is located in the shaded grey
band for 20/80 water/glycerol and blue band for pure water. The solid symbols and dashed lines show the error between the
fitted positions and the mean position in the particle’s trajectory, while the solid lines denote the Cramer-Rao bound for the
generated images. At our exposure times and SNR of 20, the effects of Brownian motion are small compared to those from
noise in the image. Interestingly, for higher SNR or slower exposure times, Brownian motion starts to have a noticeable effect
and must be incorporated into the image generation model.

pixels. For a typical particle, the ratio of this volume to the entire image volume is typically 10−2 which represents
a speed up of the same factor due to the roughly linear scaling of FFT performance with problem size (N logN).
In addition, since the PSF decreases with distance from a particle’s center, a localized object produces only a weak
signal in regions far away from it. For confocal microscope PSFs, the distance scale associated with this signal change
is only a few tens of pixels. Therefore, we employ a technique common applied to inter-atomic potentials in molecular
dynamic simulation – we simply cutoff the PSF at this distance scale allowing for exact partial updates. By cutting
off the PSF, we are able to incrementally apply image updates in an exact procedure (up to floating point errors).
For example, when moving a single particle from x0 to x1, we must simply calculate the local image change given by

∆M(x) =

∫
d3x′ [I(x′)(1− c)(Π(x; x1)−Π(x; x0))]P (x− x′; x) , (17)

cf. equation 2, then calculate M+ ∆M only in a small local region around the particle being updated. We are able
to use similar update rules for all variables except for those effecting the entire image such as the PSF, offset, zscale,
and estimate of the SNR.

Additionally, in our code, we generously employ the principle of “space-time trade-off” in which we cache inter-
mediate results of all model components and reuse them later in the computation. In particular, we maintain a full
platonic image and illumination field, which we update along with the model image. We also cache the calculated
PSF so that we may utilize previous results until the PSF is sampled. In doing so, we are limited in our current
implementation by the speed of the FFT, which takes 70% of the total runtime.

B. Optimization of parameters and sampling for error

Once an approximate initial guess is obtained by more traditional featuring methods [11], we optimize the parame-
ters by fitting using a modified Levenberg-Marquardt routine. Our Levenberg-Marquardt algorithm uses previously-
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reported optimization strategies designed for large parameter spaces [12]. However, a Levenberg-Marquardt mini-
mization requires the matrix Jiα ≡ ∂m(xi)/∂θα, which is the gradient of each pixel in the model with respect to all
the parameters. For the ≈ 105 parameters and 107 pixels in our image, this matrix would be many thousand times
too large to store in memory. Instead, we construct a random approximation to Jiα by using a random sub-section
of pixels xi in the image to compute J . This approach works well for the global parameters (PSF, ILM, etc) but
fails for the particles, which appear in a relatively small number of pixels. For the particles, we instead fit small
groups of adjacent particles using the full Jiα for the local region of affected pixels. As the global parameters and
particle parameters are coupled, we iterate by optimizing first the globals, then the particles, and repeating until the
optimization has converged.

Once the model is optimized, we can employ two different methods to extract the errors associated with each
parameter. Since we calculated the gradients J during the optimization procedure, we can use this to find the
covariance matrix (JTJ)−1 which gives the correlated sensitivities of each parameter. In practice this is the faster
method and yields accurate results and, as such, is our method of choice. However, additionally, we may use Monte
Carlo sampling to estimate parameter errors. Our Monte Carlo sampler sweeps over each parameter and updates
the particle position, accepting or rejecting based on the change in the log-likelihood of the model. We use slice
sampling to produce highly uncorrelated samples, allowing an excellent error estimate from only a few sweeps. Our
error sampling doubles as a check for convergence. If the log-likelihood increases after sampling, then the optimization
has not converged and either more Monte Carlo sampling or more traditional optimization is needed. In practice,
when desired we check with ≈ 5 − 10 Monte Carlo sweeps, and ensure that the log-likelihood remains the same or
fluctuates by a few times

√
N , where N is the number of parameters in the model.

C. Identifying missing and mis-featured particles

Fitting the entire image allows us to easily identify any missing or mis-identified particles. To do this, we first
start with an initial guess for the particle positions from a standard centroiding algorithm, and we fit those particle
parameters and global microscope parameters moderately well, using the procedure described above. (We do not fit
the image completely here to save time.) At this point, regions of the image with all particles correctly identified are
fairly well-fit. In contrast, regions with missing or extra particles are poorly fit. In these poorly-fit regions the residuals
appear either as isolated missing particles, as isolated additional particles, or as a combination of the two – e.g. two
nearby particles falsely featured as one large particle. In addition, optimizing the particle positions and radii usually
causes some of the particles parameters to move to suspicious values, such as nearly-zero radii for particles that should
not be added, particles with excessively large radii that really should be two particles, or particles positions placed
well outside the image. We take advantage of the conspicuous differences in the residuals and of suspicious parameter
values to correct any missing or mis-featured particles automatically. Our module for fixing missing and mis-featured
particles contains two functions, one which we use when there are many missing and mis-featured particles, and a
second function which we use to correct mis-featured particles that are tough to identify.

The first function proceeds in two stages. First, it removes any suspiciously large or small particles, or particles
that are placed well outside the image. This removes most of the incorrectly added particles (false positives). Second,
it runs a centroid algorithm on the fit residuals, and takes the 50 most promising particles and checks to see if they
should be added to the model. The function does this by adding a particle at a typical radius (using the median
radius of the current particles as the default) at the featured positions, optimizing only the particle’s position, and
keeping the new particle if the fit error reduces by at least a certain threshold; a threshold of 3× the estimated noise
level and 20% of the change in the fit’s error suffices. The particle’s radius is not optimized as changing the radius
to a very small or very large value can occasionally reduce the error when the particle should not be added. The
module iterates over these first two steps (removing suspicious particles and adding particles based on vacancies in
the residuals) until convergence; at this point almost all of the particles are correctly identified. However, occasionally
there are a few mis-featured particles which are not fixed by this procedure. For instance, sometimes two particles
are very close to each other and are featured as one large particle. If this particle is not large enough to be identified
as suspicious in part 1, then further iterations will not fix this mis-featuring. Even if the large particle is removed,
the two particles may be close enough to be identified as only 1 particle by a centroid algorithm, and iterating the
procedure will not fix the mis-featuring.

The second function fixes these tough mis-featured particles. It identifies local regions of the image that are poorly
fit, by convolving the square of the residuals with a 5 × 5 × 5 pixel-cube boxcar. It then removes all the particles
in this poorly-fit region and repeatedly centroid-fits only the local region, checking and adding the featured particles
one-by-one as before until the region is well-fit. With a combination of these two functions, our method is usually able
to correctly identify every particle in the image. After all the particles have been added, the model is then optimized
to completion.
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D. Timing and performance

As discussed previously, the calculation of a single image scales with the number of pixels N as N logN due to
the use of FFTs in our calculations. While the components of a model (platonic image, illumination, etc) may be
calculated independently over a particular pixel several times, the dominant source of computational complexity is
the convolution with the point spread function via FFTs. The time scale for optimization therefore would naively
be PN logN where P is the number of parameters, since for each parameter a separate image update must be
computed for calculate the gradient. Typically P is huge, P ∼ 104, representing a huge prefactor in performance.
However, essentially all of these parameters are computed over independent (slightly overlapping) sections of the
image. Therefore, the optimization in reality takes MN logN where M is the number of global model components
(platonic image, illumination field, PSF) and is relatively small.

Starting from scratch (no priors on any parameter), the optimization takes roughly 16-24 hours on a quad core
i7 CPU for a large (512x256x64) confocal image. Due to the N logN scaling, smaller images can be analyzed from
scratch much quicker. In fact, we recommend and often do employ small sections of images to first optimize the point
spread function and exposure parameters that we later transfer to the full image for faster convergence. By analyzing
a smaller image and transferring its global parameters to a large image, we can speed up this initial convergence to
approximately 10 hours of computer time.

On the other hand, featuring is often used on many frames of a movie. In this case, we are able to transfer global
parameters between frames and optimize on a new set of particles in roughly 1-3 hr on an i7. In the future we
anticipate being able to offload inner-loop calculations on the GPU using CUDA for an improvement of roughly 8x
but have not begun the implementation.

E. Source code

A complete implementation of this method is provided in a Python package called peri, whose source can be
found online [21] along with extensive documentation about the particulars of its implementation. Additionally, it is
available at PyPI.org, the central repository for Python packages outside of the standard library.

F. Available models and extensions

We view the theory of PERI and its corresponding software implementation as an encompassing framework and
toolkit, which provide a tangible, guided practice for maximal precision feature extraction. However, we also emphasize
that due the importance of accounting for the physics of image formation, no one model will perform well in all
experimental scenarios.

At the time of writing this manuscript, the PERI software package implements only a select few imaging models
based on usage patterns within our lab as well as common usage scenarios in the community which were easy to
accommodate. In the main text, we discuss our primary use case of 3D line-scanning microscope images of nearly
mono-disperse silica particles in a dyed fluid. However, with simple modifications, we are able to include several
different variations on this model in our released software package. We discuss those here. Note that due to the
modular nature of our software package the elements we discuss here can be combined in any fashion so the available
number of additional models is actually a product over all individual elements in different categories.

1. Alternative PSFs

Since the line-scan PSF is implemented as a point-scan PSF integrated in along one dimension, we include the point-
scan PSF with no additional effort within our source distribution. However, due to availability and time constraints,
we have not directly verified its accuracy against an experimental system. The accuracy of the line-scan PSF indicates
that implementation is most likely correct. With small modifications, a spinning disc confocal can be accommodated
within our system just as the line-scan was created from the point-scan. It is not implemented as of the time of
submission of this manuscript.

In our source distribution we also include various physically incorrect PSFs such as a 2D, 3D, and z-varying 3D
Gaussian point spread function that can be used for testing purposes or improved convergence time.
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2. Particle types and fluorescence

Currently PERI implements spherical particles of any polydispersity down to ∼ 200 nm, limited by our ability to
draw spheres smaller than a pixel size while maintaining volume and location accuracy. However, PERI is able to
accommodate any polydispersity and has been tested with particle mixtures ranging from amax/amin from ∼ 1.1 to
∼ 10 though in principle this is only limited by the pixel size on the smallest scale and window size on the largest. To
remove the size limitations at the smallest scale a new type of model must be employed with a substantial deviation
from our current confocal image model, which we may address in a later publication.

Another common imaging setup is for the particles to be fluorescently dyed rather than fluid. We include an
implementation of this scenario in our source distribution but have not checked its accuracy as rigorously as the
imaging system presented in this manuscript. There are several concerns which should be examined thoroughly
before using in production, the primary being heterogeneous distribution of the dye either between particles or within
a single particle. The problem of different particles being dyed a different amount can be fixed by augmenting the
description of a particle with a dye concentration, in addition to its position and radius. If instead there are dye
heterogeneities within a particle, then one could fit them using a generative model, perhaps composed of spherical
harmonics on a per-particle level. On the other hand, if there is a systematic radial bias among all the particles then
disentangling these systematics from PSF effects or the illumination field could become challenging. We leave these
studies for a later publication as well.

3. 2D confocal images

Our software implementation natively supports 2D confocal images in addition to the 3D images studied in this
manuscript. It is important to note that just like the 3D version, the particles outside of the image as well as coverslip
must be included in the analysis. While 3D images give a sense of whether these particles are above or below the
image, the nearly symmetric point spread function makes it difficult to determine direction in the case of 2D images.
This introduces local minima in the fit landscape. However, there is a competing effect – if we are able to account for
the signal due to the missing particles, it doesn’t matter if we got their positions correct. Therefore, in practice, we
can often fit 2D images without issue especially when the sample is nearly two dimensional.

Additionally, the resolution in these 2D systems scales as σ2D ∼ σ3D

√
N3D/N2D where σ3D is given by Eq. 1 in

the main text and N is the number of pixels that the particles occupies in the image. Given in terms of the particle
radius at the optical section in pixels R, σ2D ∼ σ3D

√
R. Therefore, for a 1 µm diameter particle at SNR = 20, the

positional accuracy would go from ∼ 1 nm to ∼ 2 − 3 nm depending on the particle’s position with respect to the
viewing plane.

4. External models

Along with these included models and extensions, there exist other models in the development process that are not
included in the software package at the time of publishing. In particular, other researchers are extending the PERI
framework to work with scanning SQUID microscopy as well as STEM images for both image registration and particle
featuring. The authors are in the process of developing a 2D brightfield microscope model as well.

5. Creating a new model

Given the modular nature of the software package, it is particularly easy to implement, optimization, and examine
the performance of new models. In our documentation, we provide an extensive tutorial on the best practices to use
when creating a model for a new imaging system not present in the official distribution. We encourage others authors
to contribute their models back into the official package so that other researchers may benefit from their work.

VI. BENCHMARKS OF FEATURING ALGORITHMS

In the main text, we claim that PERI locates particles to within 3 nm, and that this constitutes an improvement
of a factor of 10-100x over current methods. Clearly this statement implies that current methods locate particles
to within 30-300 nm. In contrast, most current methods claim sub-pixel accuracy of about 10-30 nm. Occasionally,
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FIG. 15: Accuracy benchmark. We compare the featuring errors of PERI and a traditional centroid (Crocker Grier or CG)
featuring method with the optimal featuring parameters. The panels show the featuring errors vs. particle separation (upper
left panel), vs PSF aberration through the index mismatch n2/n1 (upper right panel), vs. particle radius (lower left panel),
and vs. the suspension volume fraction (lower right panel).

model-independent checks, such as measuring particles’ mean-square displacement and extrapolating to ∆t = 0 [13],
corroborate the standard methods’ stated accuracies. However, these checks do not imply that the standard featuring
methods provide 10-30 nm accuracies in all situations. By generating extensive data, we have found empirically that in
dilute suspensions, with unaberrated point-spread functions, constant illumination fields, etc, that standard methods
can locate particles accurately to within 30 nm or so – i.e. 10x worse, not 100x worse, than PERI. However, as the
imaging conditions become more realistic (and more complicated), these other techniques do not perform well. In
dense suspensions, we find that a straightforward application of a standard centroid algorithm frequently mis-identifies
some particles with 200-300 nm (i.e. ≈ 2-3 px) errors, especially along the optical z-axis. These errors are almost
completely systematic, arising from sources such as nearby particles whose diffraction pattern overlap, so the errors
are not always easily measured by extrapolating the mean-square displacement or by fixing particles and measuring
fluctuations in the fitted positions. In this section, we present some of our findings on the performance of standard
algorithms in various imaging situations, and we compare their results to results from PERI.
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A. Generated Data

We check PERI by benchmarking it against physically realistic image models, as shown in Fig. 15. For maximal
realism, we generate these images with every model component in equation 2 as realistic as possible. We use our exact
calculation for line-scanning confocal microscopes, with physical parameters expected from an experiment. From the
structure of our fitted line-scan confocal images, we re-create a random illumination field that closely mimics the
power spectrum of our actual confocal. We position the particles randomly, without placing them preferentially on
the center or edge of a pixel. Since real images have particles that are also outside or partially inside the image, we
generate the image on a large region before cropping to an internal region, resulting in edge particles and particles
outside the field of view. [22]

We then fit these algorithms both with PERI and with traditional featuring algorithms. When we fit these images
with PERI we start with initial guesses that are not near the correct parameter values, to ensure that our method
is robust to realistic initial guesses. There are many heuristic algorithms and variants therein for locating colloidal
particles [11, 13–18]. Ideally, we would compare our results to a standardized database with highly realistic images
analyzed by each of the algorithms in existence. Without this database, it is difficult to accurately compare PERI
to other methods, especially since many of the other methods have nuances and parameters that must be tuned by
the user. Instead, we compare PERI against the most commonly used of these versions, a centroid-based method as
implemented by Crocker and Grier [11] in the IDL language. All of these centroid algorithms require the user to select
various parameters, such as a filter size for smoothing of the noisy image and a mask size for finding the centroid
positions. As is well-known in the colloid community, using the incorrect parameters can result in significantly poorer
results. To overcome any possible limitation from using the incorrect parameters, we fit all the possible parameters [23]
in the Crocker-Grier (CG) algorithm and use only the ones that produces the best global featuring of the data, as
compared to the correct particle positions. (Centroid methods do not accurately find particle radii). Needless to
say, an actual experimenter does not have access to the ground truth or to the optimal parameters for the featuring.
Moreover, even with these optimal parameters, the centroid algorithm frequently misses a large fraction of particles,
even in simple images. As such, we view the centroid featuring errors as unrealistically optimistic and probably not
attainable with centroid methods even by experts. The results of these comparisons are shown in Fig. 15.

When two particles are close, their images overlap due to the breadth of the point-spread function. This overlap
causes centroid methods considerable difficulty. To compare the effects of PSF overlap on both PERI and CG featured
positions, we generate an ensemble of realistic images with isolated pairs of particles at random orientations and at
a fixed particle edge-to-edge separations. The upper-left panel shows these results for edge-to-edge separations from
0.01 px to 2.0 px, with a fixed noise scale of about 0.05 of the illumination amount. As the randomly-generated
illumination fields vary from image to image, and the illumination varies from region to region within an image, there
is not truly a global SNR for all of the images; the fluctuations in this SNR from image to image are the origins of
the fluctuations in featuring error throughout Fig. 15. PERI features particles at the Cramer-Rao bound regardless
of their separation. In contrast, even at large separations of 2 px, CG has significant errors due to particle overlaps.

Aberrations due to index mismatch significantly affect image quality and extracted particle locations. The upper
right panel shows the effect of these aberrations on localizing isolated particles, as measured by the ratio between the
index of refraction of the optics n1 and of the sample n2. Moving the ratio n2/n1 away from 1 increases aberration
in the image. While increasing the aberrations in the lens negatively affects PERI’s ability to feature particles, the
localization accuracy always remains excellent. In contrast, CG methods perform poorly throughout, with extremely
poor performance as the aberrations increase.

Since the CRB decreases with particle radius, we expect that increasing the particle radius should result in an
increase in localization accuracy. The lower-left panel of Fig. 15 shows that PERI’s precision improves with increasing
particle radius. In contrast, the Crocker-Grier precision worsens with increasing particle radius. We hypothesize
this arises due to the flat intensity profile near the center of a large particle, whereas a centroid method assumes
that the intensity is peaked at the particle center. As a result, slight noise can significantly worsen a large particle’s
localization with centroid methods. Conversely, centroid algorithms improve for small particles, performing only 3×
worse than PERI’s localization accuracy for particles with radius 2 px. For particles small to the PSF size, the image
is essentially a single peak, which centroid methods work well for.

Realistic images taken with confocal microscopes consist of particles randomly distributed, occasionally close to-
gether and occasionally far apart. To examine the localization in these images, we use a Brownian dynamics simulation
to create a random distribution of particles at volume fractions from φ = 0.1 to φ = 0.6. PERI localizes particle
positions and radii excellently in all of these images, as visible in the lower-right panel. In contrast, centroid methods
perform uniformly poorly, with localization accuracies of approximately half a pixel. Interestingly, these centroid algo-
rithms do not localize significantly worse for dense suspensions despite the presence of more close particles, although
they do frequently fail to identify particles.

Finally, we check how the complexity of our synthetic data affects the accuracy of standard featuring methods. In
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Polydispersity Illumination field Point spread function Position error

0.0 Legendre 2+1D (0,0,0) Identity 1.458

0.0 Legendre 2+1D (2,2,2) Gaussian(x, y) 1.218

0.01 Barnes (10, 5), Nz = 1 Gaussian(x, y, z, z′) 1.015

0.05 Barnes (30, 10), Nz = 2 Cheby linescan (3,6) 0.819

0.10 Barnes (30, 10, 5), Nz = 3 Cheby linescan (6,8) 1.085

TABLE II: Crocker-Grier featuring errors. We show the effect of image complexity on position error for the CG featuring
method using synthetic data. Surprisingly, there is a non-monotonic behavior of error with complexity, hitting a maximum for
highly striped images that don’t vary strongly with depth.

FIG. 16: Featuring Stuck Particles. The raw image of the 2 µm sample of fixed particles (left), and the residuals to the
fit (right), shown in xy, yz, and xz cross-sections. Not only is the sample extremely dense, but as the image is quite deep the
index mismatch between the sample and the confocal optics creates strong aberrations deep into the sample. Despite these
complications, PERI is able to fit this complex image and to accurately locate particles in it.

Table II we see, surprisingly, that there is a non-monotonic relationship between positional error and image complexity,
becoming optimal when there is significant striping in the image but little variation in depth. However, the rate of
missing particles decreases significantly with simpler models and rising to as much as 40% for our most complex model
images. The effective resolution of CG is never much smaller than a single pixel in these synthetic tests, most likely
due to pixel edge biases.

B. Fixed Particles

Next, we check PERI on a sample of fixed particles. The sample is prepared by first making a dyed solution of
2 µm silica particles in an index-matching mixture of glycerol and water and loading the sample into a sample cell.
At the edge of the sample we then add an equal amount of water-glycerol mixture saturated with salt (NaCl) and
allow it to diffuse into the bulk of the sample over the course of a two weeks. As the salt diffuses in, it locally reduces
the screening length and causes particles to strongly bind together. By letting the salt diffuse into the sample rather
than mixing it in directly, the particles are able to sediment first before becoming fixed to each other, creating the
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dense sediment shown in Fig. 16. We then image these particles with a five-second delay between images and analyze
the resulting images using PERI. The particle positions fluctuate by 2.9 nm, 1.7 nm, and 1.2 nm (median value) for
z, y, and x, respectively, bounding the errors from above. (It is possible that some of the particles are not fixed to
less than 2 nm.) We find radii fluctuations of 0.8 nm.

C. Other Model-independent Checks

In addition to testing the fit residuals for structure, analyzing the MSD of positions, and looking at the fluctuations
of radii in time, we also looked at nearest neighbor isotropy. To do this, we constructed the 3D pair correlation
function g(r) using the extracted positions, scaled by the fit zscale. In Fig. 17, we see in the left panel that the nearest
neighbor displays no orientation dependence in the plane of the coverslip. The center panel of the same figure shows a
cross section perpendicular to the coverslip, which shows the nearly 2D nature of the sample with approximately two
layers of particles visible in the pair correlation. Finally, the right panel shows the distribution of in-plane azimuthal
angles φ between nearest neighbors. We find no evidence of orientational biases due to pixelization present in the
data [19]; the distribution of bond angles is isotropic as measured by a Kolmogorov-Smirnov test (p-value of 0.66).

As another model-independent check of PERI’s ability to extract particle positions and radii at nanometer precision,
we compared a sample of similar silica particles bonded to a substrate imaged both with SEM and our line-scanning
confocal. While this comparison was able to place an upper bound on particle size measurements of 10-30 nm, we
were greatly limited in by two confounding factors:

• Charging effects – Haloing from charge accumulation made precise measurements difficult with the SEM images.
Using the furthest halo edge created particle overlaps while using our best estimate of the particle surface did
not allow for any contacting particles. Using constrained fitting (enforcing the constraint that particles cannot
overlap) yielded inconsistent results where the identified edges of particles varied in brightness from particle to
particle. This variation meant that different parts of the charge-induced halo had been identified as the particle
edge, leaving no consensus on the location of the true edge among the particle population.

• Substrate deterioration – The particle binding process left gouges in the coverslip that negatively impacted the
particle positions and radii extracted from the confocal images using PERI. These gouges resulted in severe
particle overlaps and poorly fit regions plainly visible in the fit residuals, which caused us to abandon the
comparison. While in principle we could account for these divots using a more complicated generative model,
their non-uniform appearance in the SEM images meant that they would be difficult to capture effectively in
practice.

FIG. 17: Nearest neighbor isotropy. Left, center: Two different slices of the 3D g(r) calculated from the experimental
results presented in the main text. The (left) in-plane (parallel to the coverslip) cross-section shows no anisotropy in nearest
neighbor bonds while (center) the out-of-plane cross-section highlights the nearly two dimensional nature of the colloidal sample.
Right: The distribution of azimuthal bond angles φ between nearest-neighbors, with φ = 0 corresponding to the x-axis. The
bond angles show no sign of pixelization bias.

Finally, after verifying the particle parameters, we compared the global parameters to known microscope parameters.
We measure the index of refraction of our suspension to be n2 = 1.437 with a refractometer before starting the
experiment. Using the known refractive index of the immersion oil and lens train, we expect n2/n1 ≈ 0.95, with little
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uncertainty. Instead, we fit the index mismatch to be about 0.97, with tight error bounds on the fit. While reasonably
close, these two values are excluded under the fit uncertainties. Why? One possible reason is a degeneracy in the
description of the PSF. From Eq. 9 in the SI, it is easy to show, in the limit of weak aberrations (n2/n1 near 1),
that the aberrations depend only on the product of (n2/n1 − 1) and the distance from the optical interface, creating
a soft direction. PERI finds the optimal fit for the PSF along this soft direction, fitting the effective position of the
optical interface lower than it actually is. This trade-off presumably helps account for higher-order aberrations in the
lens. (The best fit found by PERI fits the data better than the “sticker values” of the lens parameters.) Similarly,
the aberrations in the lens also depend on the lens’ acceptance angle or its NA, which causes the NA to drift slightly
from its sticker value.

In general, the effects of model incompleteness on parameter values can be considered a form of “parameter renor-
malization” [20]. In this case, higher order aberrations are incorporated into the fit as part of a renormalized index
of refraction, interface location, and other model parameters. While it is decidedly incorrect for precisely measuring
properties of the microscope, the main issue for scientific application is more pointed – how do these renormalized
parameters affect particle parameters? Generally speaking, global parameters tend to more strongly couple with
other global parameters; however, there can be additional couplings to the particles through e.g. the particle radii.
Couplings of this nature highlight the importance of independent parameter checks – SNR level of the fit residuals,
number of overlapping particles, MSD extrapolation, and measuring fluctuations and drift in an individual particle’s
extracted radius. Though the fit value of the index of refraction is off by 2%, we know through our other checks that
particle radii are off by no more than roughly 0.3%, the level of error that we quote throughout the paper.
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