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Multicanonical methods, molecular dynamics, and Monte Carlo methods:
Comparison for Lennard-Jones glasses

Kamal K. Bhattacharya* and James P. Sethna†

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501
~Received 30 June 1997!

We applied a multicanonical algorithm to a two-dimensional and a three-dimensional Lennard-Jones system
with quasicrystalline and glassy ground states. Focusing on the ability of the algorithm to locate low-lying
energy states, we compared the results of the multicanonical simulations with standard Monte Carlo simulated
annealing and molecular-dynamics methods. We find slight benefits to using multicanonical sampling in small
systems~less than 80 particles!, which disappear with larger systems. This is disappointing as the multicanoni-
cal methods are designed to surmount energy barriers to relaxation. We analyze this failure theoretically and
show that~i! the multicanonical method is reduced in the thermodynamic limit~large systems! to an effective
Monte Carlo simulated annealing with a random temperature vs time and~ii ! the multicanonical method gets
trapped by unphysical entropy barriers in the same metastable states whose energy barriers trap the traditional
quenches. The performance of Monte Carlo and molecular-dynamics quenches were remarkably similar.
@S1063-651X~98!09102-8#

PACS number~s!: 02.50.Ng, 61.43.Bn, 02.70.Ns, 02.70.Lq
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I. INTRODUCTION

In the past decade there has been an outpouring of inte
in accelerating statistical mechanics simulations. This sta
with the work of Swendsen and collaborators: Swendsen
Wang introduced a cluster-flip method for accelerating n
disordered spin systems@1,2# and Widom, Strandburg, an
Swendsen introduced a cluster-flip for finding quasicrys
line ground states in a two-dimensional atomic simulat
@3#. These methods all gain a major speedup by introduc
mostly nonlocal update rules and often prove capable of
passing critical slowing down problems@4#.

During the same period, different accelerating approac
were introduced, which are based on efficient scheme
analyze data from traditional Monte Carlo simulations@4–6#
and are frequently called histogram methods. These meth
have expanded the applicability of various kinds of critic
phenomenon simulations, although they are not necess
designed to bypass critical slowing down problems as e
ciently as, e.g., cluster algorithms. Nevertheless, substa
progress can be achieved combining histogram and clu
flip algorithms~see, e.g., Ref.@7#!.

More recently, so-called reweighting techniques ha
been introduced, which are based on an early approac
Torrie and Valleau@8#. They proposed a method to enlarg
the sampling range of a Monte Carlo algorithm by usi
nonphysical weighting functions. The general idea in
more recent approaches is to change the relative weigh
different configurations to sample equally in all ranges
energy rather than focusing on a narrow temperature ra
The most frequently used reweighting method is multi
nonical sampling@9–13#, which represents the most gener
method as other reweighting methods, e.g., entropic s
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pling @14#, can be directly mapped onto this approach@15#.
In systems with a strongly double-peaked probability dis
bution of magnetization or energy states~a situation often
found in systems exhibiting a first-order phase transitio!,
the multicanonical approach has been proven to be a po
ful tool. Simple reweighting schemes allow to overcome t
‘‘supercritical slowing down’’ @12# known from canonical
Monte Carlo simulations at a fixed temperature. For e
ample, in nondisordered spin systems with a field-driv
first-order phase transition~e.g., the Ising model! or a
temperature-driven first-order phase transition~e.g., the
q-state Potts model! the supercritical slowing down of ca
nonical Monte Carlo is due to the low Boltzmann weight
the domain-wall states. Multicanonical sampling approac
the problem by introducing a weight function, which weigh
all magnetization states~Ising model! or energy states~Potts
model! equally and therefore ensures that domain-wall sta
are sampled with the same likelihood as all other access
states. The canonical distribution function at a fixed tempe
ture, which contains all the thermodynamic information, c
be reconstructed. Usually multicanonical sampling uses lo
update schemes along the lines of the Metropolis algorit
@16#; variations using cluster-flip or other methods are fe
sible and have proved useful~for a review consult@11,12#
and references therein!.

Of course, acceleration methods are most crucial
glassy systems, which otherwise can be inaccessible to
merical simulations.~Even the experiments fall out of equ
librium. Think of an experiment as 1023 parallel atomistic
processors with picosecond clock times.! Whether one be-
lieves that glasses are sluggish because of large energy
riers to relaxation~rates;eB/T) or that the free-energy bar
riers are due to tortuous entropically difficult routes betwe
the metastable configurations, a clever algorithm could
principle jump directly between the glassy states. Instead
relative rates that grow as a power ofT2Tc , acceleration
could gain us exponential speedups.
2553 © 1998 The American Physical Society
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2554 57KAMAL K. BHATTACHARYA AND JAMES P. SETHNA
Acceleration methods have been extensively applied
disordered spin models. These studies have focused les
understanding the performance of the algorithms because
physics of the systems is less thoroughly understood.
multicanonical methods have been applied to spin glasse
two and three dimensions to calculate the zero-tempera
entropy, ground-state energies, distribution of overlaps,
~see Refs.@17–25#!. The authors succeed in evaluating the
properties with remarkable accuracy; nevertheless, whe
the replica theory@26# or the droplet scaling ansatz@27# is
the more appropriate picture in describing the ground-s
properties of glasses could not be resolved. The performa
of multicanonical sampling for glassy systems is clea
worse than for system with a less rugged landscape.
believe this failure is systematic and cannot be avoid
within the framework of multicanonical sampling.

Berg and Celik@17# argued that multicanonical method
should be superior to simulated annealing~gradual cooling!
@28#, although a direct comparison was made only to cano
cal sampling~quenches to a fixed low temperature!. Lee and
Choi @29# applied multicanonical sampling to the ‘‘travelin
salesman’’ problem and claimed to achieve a dramatic
provement over the traditional Monte Carlo simulated a
nealing approach. Newman@30# has used both cluster meth
ods@7# and multicanonical~entropic! sampling@14# to study
the random-field Ising model. He finds dramatic speed
from both methods, often reaching equilibrium in a fe
passes through the lattice. Newman has focused on s
systems~mostly 243, with a few runs for systems up to 643)
and simultaneously used histogram methods to meas
critical exponents and phase boundaries for a range of d
ders and temperatures. He confirmed results of the rel
‘‘simulated tempering’’ approach, developed by Marina
and Parisi@31,32#. Simulated tempering proved very usef
in spin-glass simulations@33# and is similar in spirit to the
multicanonical approach@34#.

Acceleration methods have been used little in continu
atomic simulations, perhaps because of the widespread
ance on molecular-dynamics methods. Straightforward,
rect molecular-dynamics simulations of the equations of m
tion do not converge to an equilibrium state much faster t
the Monte Carlo simulated annealing methods, but they
also not noticeably worse@35# and they have a direct phys
cal interpretation. Shumway and Sethna@36# studied a one-
dimensional atomic system in an incommensurate sinuso
potential and developed an evolutionary algorithm that g
erated optimal cluster moves as the system was quench
lower temperatures; later attempts to generalize these i
to higher dimensions have not been successful so far@37#.
Hansmann and Okamoto@38# used multicanonical samplin
and Monte Carlo simulated annealing to study the folding
the peptide met-enkephalin; the multicanonical meth
found the ground state more consistently using the sa
amount of computer time. This result underlines the gen
belief @17,39# that simulations in the multicanonical en
semble are in many ways superior to traditional simula
annealing.

In this paper we apply multicanonical sampling to tw
component Lennard–Jones systems and compare the pe
mance with traditional simulated annealing and straightf
ward molecular dynamics in finding low-energ
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configurations. We search for low-energy states of a thr
dimensional Lennard-Jones glass, one of the protot
glassy systems@40–43#, and use the set of parameters r
cently introduced by Kob and Andersen@44–46#. In addition
to that, we apply multicanonical sampling and simulated
nealing to a two-dimensional Lennard-Jones system w
quasicrystalline ground states, using the parameters of
@3#. We find that multicanonical sampling offers little bene
for the study of either. We argue that this is likely a gene
effect, applicable to all simulation methods applied to glas
systems in the thermodynamic limit.

II. INTRODUCTION TO THE METHODS:
MULTICANONICAL METHODS AND THE

ENTROPIC SAMPLING VARIANT

The standard way of implementing a Monte Carlo alg
rithm is using importance sampling. The idea behind t
approach is simple. Rather than weighting each sample
phase space equally, each state is weighted with a sam
probability distributionG(x), wherex denotes the sample
configuration of the system. To estimate the thermal aver
of an observableA, one calculates

^A&5

(
x

A~x!exp@2bH~x!#G21~x!

(
x

exp@2bH~x!#G21~x!

, ~1!

whereH is the Hamiltonian of the system@so H(x) is the
energyE for the statex# andb51/kBT. ChoosingG(x) non-
uniformly ensures that states with important contributions
the partition sum are preferentially sampled and therefore
number of states needed to be sampled to provide a rea
able estimate ofA is significantly reduced.

In standard Monte Carlo methods, i.e., canonical Mo
Carlo or simulated annealing, the weighting distribution
the Boltzmann distributionG5exp@2bH(x)#. This has the
advantage of a direct physical interpretation: The compu
is doing the same thermal average as an equilibrium sys
at temperature 1/kBb. It has an important disadvantage th
configurations and events that are rare in the physical sys
are also rare in the simulation. In particular, if the system
a ‘‘rugged energy landscape’’ with large free-energy barri
B separating physically important metastable states, the
tem will cross between these states with the same s
Arrhenius ratenexp(2B/T) that is found experimentally.

The idea of multicanonical sampling is to circumvent th
problem by choosingG(x) so that the distribution of state
P„H(x)…;V„H(x)…G(x) is approximately flat in energy~or
some other variable, such as magnetization@12#!. In prin-
ciple, we want to chooseG(E)51/V(E)5exp@2S(E)#,
whereV(E) is the density of states at energyE andS(E) is
the entropy. Of course, we do not begin the simulat
knowing the entropy as a function of energy.

In our work we use the entropic sampling algorithm@14#,
which is a numerical and mathematical equivalent varian
the multicanonical approach@15#. The only difference be-
tween entropic and multicanonical sampling is the way
which one generates estimatesJ(E) of S(E). The entropic
sampling algorithm uses a quite straightforward recurs
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updating method:~i! Initialize to zero an arrayH(E), which
will keep track of the energy of the visited states,~ii ! sample
states according to the currentJi(E) and add the energy o
each sampled state to the histogramH for a reasonably long
time, and~iii ! set the newJi 11 according to the rule

Ji 11~E!5H Ji~E!1 ln@H~E!# if H~E!Þ0

Ji~E! if H~E!50.
~2!

The multicanonical sampling update scheme differs from
tropic sampling only in the treatment of the histogram b
with few entries ~for an analysis of various schemes s
Refs. @13,39#!. The original approach introduces a consta
slope for J(E) below a cutoff energy, corresponding to
small constant temperature. These extra parameters ar
noying @39# in the implementation; however, they do tend
keep the system from being trapped in energy regions
have not hitherto been sampled frequently. As we will arg
in glassy systems both algorithms will tend to get trapped
low-energy metastable states even when the statistics
fine. ~In any case our simulations spend around half the t
at high energies, so any algorithmic improvements can b
at best a factor of 2 in computer time.! In this paper we use
the simpler entropic sampling method of Eq.~2!; neverthe-
less, we will refer to this method as multicanonical sampli

III. THEORETICAL EXPECTATIONS
FOR RELATIVE PERFORMANCE

What makes people think that multicanonical sampl
should be an improvement over simulated annealing or
lecular dynamics? We consider three possible reasons.

~i! Perhaps the multicanonical method is better becaus
allows the system to cross energy barriers~as is mentioned
frequently@9–14#!. This is indeed an improvement over c
nonical sampling at a fixed temperature; however, a sim
lated annealing method also runs at a variety of temp
tures.

Indeed, the two methods areidentical in the thermody-
namic limit. The acceptance ratio for a given single-ato
Monte Carlo move for multicanonical sampling isP(E)
5exp@S(E)2S(E8)#. In a large system withN atoms, the en-
tropy densityS(E)/N is a smooth function of the energ
densityE/N; since the energy density change for a sing
atom move (E82E)/N is small, we may expandS(E) to
first order inE82E. Using the relation]S(E)/]E51/T, the
acceptance ratio becomesP(E)5exp@2(E82E)/T#. Thus
multicanonical sampling at the energyE has exactly the
same acceptance ratio as simulated annealing at a tem
ture T(E)5@]S(E)/]E#21.

Thus the local behavior, the acceptance ratio for Mo
Carlo moves from a given state, is virtually the same
multicanonical and canonical sampling. Near first-order tr
sitions, canonical quenches produce large changes in
state for small changes in temperature and thus behave
differently from the multicanonical approaches~which by
varying the energy explore the interface states directly!. This
is one of the major applications of multicanonical sampli
methods. We expect that the multicanonical methods
perform for these systems rather similarly to microcanon
quenches that conserve the energy; see Ref.@47#. In our
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glassy simulations, this distinction is presumably not imp
tant. The differences between the two methods near a g
state should be similar in magnitude and type to the diff
ences between the microcanonical~fixed-energy! simulations
and the canonical~fixed-temperature! simulations: Differ-
ences can be seen for small systems, but disappear a
system gets larger. To be explicit, for a large system the fi
state of an multicanonical sampling run for which the tim
dependent energy isE(t) should be statistically equivalent t
a simulated annealing run with randomly fluctuating te
peratureT„E(t)…. One notes also that the quench rate is n
tunable for the multicanonical method: The ‘‘diffusion co
stant’’ in energy space depends on the atomic step size
on the number of particles. This is potentially a serio
handicap, as changing the quench rate is the primary
used in glassy systems to find lower energy states. Thus
power of multicanonical methods to vary the energy to
cilitate barrier crossing is, for large systems at least, no
ferent from repeatedly heating and cooling the entire syst

~ii ! Perhaps the multicanonical method might be picki
the heating and cooling schedule intelligently in order
escape from local minima. Indeed, since the effective te
perature becomes lower as the energy decreases, an mu
nonical sampling system stuck in a high-energy metasta
state will have larger thermal excitations~bigger acceptance
of upward moves in energy! than one in a low-energy stat
and will depart faster. This is the explanation, we believe,
the substantial success of the multicanonical samp
method seen in the past.

This preferential escape from high-energy metasta
states will unfortunately also become unimportant for lar
systems. One can see this most easily by considering a l
region trapped in a high-energy configuration with local e
ergy e8 and with a lower energy configuratione nearby,
separated by a barrierb. For a small system, where the loc
energy differencee82e is important, the effective tempera
tures in statese8 ande will differ, but for a large system of
sizeN this temperature difference~from the differing accep-
tance ratios from the two states! will vanish as 1/N. There
are glassy systems in which the energy barriers and en
differences are not all local: mean-field spin glasses, for
ample, have energy barriers that grow as powers of the n
ber of spinsN @26#. However, the maximum energy barrie
~and presumably the maximum energy asymmetrye82e)
scales with a powerNa with a strictly less than one~at least
in finite dimensions!, so the change in effective temperatu
Na/N still vanishes asN→` @48#.

~iii ! Perhaps the multicanonical method is exploring d
ferent energies more effectively than an externally cho
cooling schedule for simulated annealing. For example,
multicanonical method is guaranteed to converge to an e
librium density of states at each energy. The same is true
a simulated annealing run at infinitely slow cooling, but
not true for repeated coolings at a fixed rate, which would
expected to generate metastable states repeatedly. On th
hand, the theorems suggest that the ground state shou
occupied as often as any other energy; on the other hand,
hard to see how a multicanonical quench to low energies
bypass the metastable states that trap simulated anne
runs of comparable computer time.

To address this issue, let us consider the characteristic
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2556 57KAMAL K. BHATTACHARYA AND JAMES P. SETHNA
the random walkE(t) that the system performs in energ
space as a function of time within the multicanonical a
proach. For some systems, such as the Ising model, mul
nonical sampling does indeed produce a roughly unbia
random walk~if one starts from a good estimate of the de
sity of states!. As the system becomes larger, the ene
range scales withN and the step size of the energy sta
fixed, so the time scale for diffusing from high energies
near the ground state scales asN2 ~distance scales with th
square root of time!. This behavior is confirmed in simula
tions @9,11# studying, e.g., the first-order phase transition b
low Tc changing the Ising model from pointing up to dow
where traditional canonical methods would suffer from t
surface tension barriersLd215sN(d21)/d and so the time
scales asN2expsN(d21)/d. Bypassing this ‘‘supercritical slow
ing down’’ @12# is an important application for multicanon
cal methods.@It should be mentioned that the optimal ra
dom walk time scale for diffusion through energy space
not been observed in simulations of, e.g., the two dim
sional Potts model usinglocal updates; usually the system
diffuses on a time scale;N2.5 ~see, e.g., Refs.@9,11#!. Al-
though the supercritical slowing down is bypassed, the o
mal random walk behavior has only been observed with
aid of nonlocalupdate moves.#

It is known numerically that this simple argument brea
down in simulations of spin glasses@17#. The typical time to
cover the energy range~called the ergodicity or tunneling
time in the literature! for spin glasses scales asN4 @19# or
perhapseN @11# instead ofN2. Why should the random walk
argument not work for glasses?

We assert that the answer to why the random walk ar
ment breaks down can be found in the trapping of multi
nonical sampling due to the same metastable states exp
in thermal coolings. Indeed, it is the metastable states
the system isnot able to explorethat trap the multicanonica
sampling algorithm. The states of glassy systems are o
described in a caricature treelike structure~sideways in Fig.
1!. The horizontal axis of the tree can be thought of as eit
energy or temperature: the branches represent mutually i
cessible ergodic components. For the Ising model, there
two major ergodic components~corresponding to the two
directions for the magnetization! and a few domain-wall
states. For glasses, the ergodic components are some
thought of as regions of configuration space separated
infinite free-energy barriers~as in the mean-field spin-glas
models@26#! and sometimes as regions separated by ene
barriers that are too large to cross in the time scale of
experiment or simulation.

The key point is that the accessible density of states fo
glass can be very different from the total density of states
Fig. 1 we note that the ergodic component containing
ground state has a density of states that differs from
density of states for the system as a whole, starting at
energy of the first accessible metastable states. The num
S of these inaccessible metastable states is related to
density of tunneling states in configurational glasses@49–51#
and is thought to increase exponentially with the size of
system (M independent two-state systems with uncrossa
barriers generateS52M states!. In spin glasses, the numbe
of components separated by infinite free-energy barr
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~ones that diverge asN→`) diverges with a power ofN
@48#.

The multicanonical sampling method is guaranteed
sample the ground-state energy just as much as any o
energy. It is easy to see, however, that once the system
the ground state, it will stay there for a long time. If th
density of states within the ground-state ergodic compon
is Ṽg(E) and the density of states in the entire system
V(E), then the acceptance ratio for a multicanonical sa
pling move fromE to E8 is V(E)/V(E8), while the prob-
ability of a random move raising the energy
Ṽg(E8)/Ṽg(E). Hence the likelihood of sampling high
energy statesE within the ground-state component will fa
as Ṽg(E)/V(E). Consider the very crude model where a
ergodic components are similar and stay completely sepa
until the glass transition energyEg ~the energy at the glas
transition temperature!, at which point they merge~Fig. 2!.
For this model, escaping from the ground-state compon
will take a time that scales as the total number of ergo
components and hence diverges asN→`. Since multica-
nonical sampling spends the same amount of time in e
energy range, the time between independent visits to the
ground state will scale as the time needed to escape from
ground-state ergodic component. So we begin our explo
tion with the expectation that multicanonical samplin
should be useful for small systems, but will not provide s
nificant advantages for large system sizes.

IV. IMPLEMENTATION

We argued in the preceding section that multicanoni
sampling will not be a fundamental improvement over
peated coolings using simulated annealing, at least in la
systems. On the other hand, entropic sampling and o
multicanonical methods have been reported to lead to s

FIG. 1. Glassy metastable states are often thought to form
treelike structure. We anticipate that the inaccessible metast
states will form a barrier to leaving the ground state within t
multicanonical approach because the total density of states g
much faster than the accessible density of states.
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stantial gains in equilibration times for small glassy spin s
tems@17–25#. We are interested in simulations of structur
glasses: collections of atoms that typically form metasta
glassy configurations when slowly cooled. In this section
give a detailed description of our implementation of mu
canonical sampling, simulated annealing, and molecular
namics. In order to ensure a fair comparison, we have
often as possible, taken cooling schedules and time and
tial step sizes from standard references in the literature.

A. Three-dimensional system

In our three-dimensional simulations, we applied the th
algorithms to a binary mixture of large (L) and small (S)
particles with the same mass, interacting via the Lenna
Jones potential of the formVab(r )54eab@(sab /r )12

2(sab /r )6#. The values ofe ands were chosen as follows
eLL51.0, sLL51.0, eLS51.5, sLS50.8, eSS50.5, and
sSS50.88. All results are given in reduced units, wheresLL
was used as the length unit andeLL as the energy unit. The
systems were kept at a fixed density (r'1.2), periodic
boundary conditions have been applied, and the potentia
been truncated appropriately according to the minimum
age rule@52# and shifted to zero at the respective cutoff. T
minimum image rule prevents a particle from using the
riodic boundary conditions to ‘‘see’’ more than one copy
its neighbors: Using the conventional cutoff atr 52.5s
would demand at least 160 particles. The choice of par
eters follows recent simulations of Lennard-Jones glas
@44–46,53#; this choice suppresses recrystallization of t
system on molecular-dynamics time scales. This poten
together with this set of parameters, mimics the potential
Ni80P20. We looked at five different system size

FIG. 2. Grossly oversimplified picture of glassy states, assum
that all components merge at the glass transition at energyEg . The
parameterj denotes the fraction of ergodic components at e
energy or temperature. At the glass transition, the fraction of ac
sible ergodic components is of order 1/S, thus the time to find the
ground-state ergodic component~or leave it once found! scales with
S asS→`.
-
l
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e
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e
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r

(N520,40,60,80,100!. For eachN we generated 30 low-
energy configurations. The initial configurations were ra
dom in the case of simulated annealing and multicanon
sampling and high-temperature equilibrium configurations
the molecular-dynamics case. To compare the three meth
we defined one run length to be 106 sweeps through the
system for the two Monte Carlo methods. The molecul
dynamics runs are quenched at a rate that consumes the
CPU time as used by the Monte Carlo sampling.

B. Two-dimensional system

In our two-dimensional simulations, we did not apply m
lecular dynamics~our hard-wall boundary conditions made
inconvenient!. We again used a binary Lennard-Jones s
tem, introduced by Widom, Strandburg, and Swendsen@3#
with a slightly unconventional form for the potentia
Vab(r )5eab@(sab /r )1222(sab /r )6#. The Lennard-Jones
parameters are chosen to favor configurations of decag
order (eLL50.5, sLL51.176, eLS51.0, sLS51.0, eSS
50.5, andsSS50.618) and the system is known to have
quasicrystalline ground state. The particles are initially ra
domly distributed in a large cylindric box with infinitely high
walls. The potential was truncated atr cutoff52.5sab and
shifted to zero at this point. All results are in reduced un
with eLS and sLS as fundamental units. Here four differen
system sizes (N531,66,101,160! were used, where the num
bers of different particles were chosen to keep the ratio fi
close to the value of 1.06 large atoms per small atom. W
dom, Strandburg, and Swendsen@3# found that this ratio led
to defect-free ground states. This system provides an ex
lent testing ground for multicanonical sampling for vario
reasons. The ground state is known to be quasicrystallin
state with a strong bond orientational order without a lon
range-order periodicity. Defective configurations are eas
recognized, as the typical defects consist of triangles of
particles. There are plenty of metastable states with hi
energy barriers, as it takes rearrangement of a large num
of particles to disentangle the triangular defects. Wido
Strandburg, and Swendsen@3# have shown that simulate
annealing fails to locate ground states and always g
trapped in a long-lived metastables states, a problem t
circumvented using three-particle cluster flips.

The final minimum-energy configurations for runs of a
three methods were optimized by starting from the lowe
energy configurations found and quenching down toT50
using a conjugate gradient method. The resultingT50 ener-
gies are compared in Sec. V.

C. Multicanonical sampling

The multicanonical sampling method was implemen
generally as described in Sec. II. The Metropolis algorith
@16# was used for local updates. We developed an ini
estimateJ(E) for the entropyS(E) with a long run~approxi-
mately 107 sweeps! starting from a flat distribution: This
initial estimate was used as the starting distribution for
subsequent runs. In three dimensions we redid this initial
tion for each system size; in two dimensions we initialized
this way for the 101 particle system and used finite-size s
ing @13# from this distribution for initialization at other sys
tem sizes. Finite-size scaling does not appear to work
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glassy systems with quenched disorder@17,19#. We did not
include this initial computer time in the comparisons; th
we err on the side of multicanonical sampling. Notice that
continuous systems it is not obvious how to set the optim
bin size for the histogram~unlike in spin systems, where th
smallest energy step determines the bin size!. We therefore
tested several bin sizes. For the two-dimensional system
fixed bin size of 0.001 was used and in the three-dimensio
systems we found it useful to set the bin size to 0.01N
energy units. Our investigations suggest that larger bin s
can introduce artificial barriers in the low-energy range a
smaller bins lead to more noise. To set a context, the typ
successful energy step in a 20-particle simulation in th
dimensions varied from around one at high temperature
around 0.01 near the ground state. We explored ene
dependent step sizes for the single-atom moves, but they
not improve performance. Multicanonical sampling deman
an upper cutoff for the energy: We use zero for the up
limit for both two and three dimensions.

D. Simulated annealing

Simulated annealing uses locally the Metropolis upd
scheme with the Boltzmann factor as the sample probab
distribution. The cooling schedule implemented here is si
lar to the one used in Refs.@3,38#, where the temperature i
repeatedly lowered by a small factor and then annealed
our runs, we choose 50 annealing steps of 20 000 swe
each, with an initial temperature of one and a final tempe
ture of 0.05; each temperature is thus cooled down b
factor of 0.942. The initial configurations were set at ra
dom.

E. Molecular dynamics

The molecular-dynamics~MD! routine used the velocity
form of the Verlet algorithm@52#. The unit of time is given
by (msLL

2 /48eLL)1/2, wherem is the mass of the particle; th
Verlet time step in these units isdt50.01. The system wa
coupled to a heat bath and the temperature was reduced
early in time according toTbath 5 Tstart 2 gMDt. Note
that the cooling here is linear in time, as is traditional in t
molecular dynamics of Lennard-Jones glasses@54#. The
cooling rategMD51.031024 was chosen so that the MD
runs consume an amount of computer time similar to tha
the Monte Carlo algorithms. This cooling rate is in th
middle of the range explored in recent simulations, althou
our system sizes are much smaller@53,54#. The initial con-
figurations were equilibrated at a temperatureTstart51.0 ~at a
small cost of computer time, which we did not factor into t
comparisons! and cooled to the final temperatureTfinal
50.05, yielding approximately 2.03106 molecular-
dynamics steps.

V. COMPARISON

In this section we will first compare the performance
the three methods in locating low-energy states of the t
and three-dimensional Lennard-Jones systems. The pe
mance of the three methods is remarkably similar. Seco
we will compare low-energy configurations of the tw
dimensional system to show that the algorithms get trap
l
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in similar metastable states. Third, we will quantitative
analyze the trapping of the multicanonical sampling alg
rithm in a metastable state.

We present theT50 energies of the lowest-energy co
figurations for the three-dimensional Lennard-Jones syst
in Table I. For N520 particles each algorithm is able t
locate the same lowest-energy state, presumably the gro
state. ForN540 andN560 particles the lowest-energy sta
is found by multicanonical sampling. The gain in ener
DE40 over simulated annealing is around 0.03 and the gai
0.02 over molecular dynamics. ForN580 andN5100 par-
ticles the lowest energies are found by molecular dynam
and the gain over multicanonical sampling isDE80;0.05
andDE100;0.02.

There are three things to notice about this table. First,
dramatic energy difference with increasing system size is
to the change in the cutoff in the potential given by t
minimum image rule. Using the 20-particle cutoff in th
larger system sizes, we found energies that hardly va
with system size. Second, the fact that these energies d
in the third decimal place does not mean that the differen
are negligible. In Refs.@53,54# the dependence of the fina
energy on the cooling rate for exactly this system was st
ied using molecular dynamics: To gain an energy of 0
starting from the cooling rate we are using, they had to
crease the cooling rate by a factor of 10. Third, as we arg
in Sec. III, any gains given by multicanonical sampling d
appear as the system size grows.

In Table II we list the mean and the standard deviation
the energies from the 30 runs at each system size with e
algorithm. It has been found in the literature that the fluctu
tions for simulated annealing are much larger than for m
ticanonical sampling@38#. We find this to be true both for
simulated annealing and for molecular dynamics. Indeed,

TABLE I. T50 energy per particle for the lowest-energy co
figuration found with multicanonical sampling, simulated anne
ing, and molecular dynamics.

Multicanonical Simulated Molecular
N sampling annealing dynamics

20 -0.89 -0.89 -0.89
40 -4.18 -4.15 -4.16
60 -5.38 -5.36 -5.37
80 -6.52 -6.56 -6.57
100 -6.85 -6.86 -6.87

TABLE II. Mean energy per particle and the standard deviat
evaluated using all low-energy configurations found by multic
nonical sampling, simulated annealing and molecular dynamics

Multicanonical Simulated Molecular
N sampling annealing dynamics

20 -0.846 0.03 -0.796 0.06 -0.816 0.04
40 -4.106 0.03 -4.076 0.05 -4.086 0.04
60 -5.346 0.01 -5.336 0.03 -5.336 0.03
80 -6.506 0.01 -6.516 0.02 -6.516 0.03
100 -6.836 0.01 -6.846 0.02 -6.826 0.02
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average performance of multicanonical sampling rema
comparable to that of the other two methods, even at
larger system sizes~where the extremal performance w
worse!.

The ‘‘ultimate goal’’ of this field is to accelerate three
dimensional glass simulations, bypassing barriers to re
ation. Perhaps this is too high a standard: Nobody has s
an algorithm. We now will apply multicanonical sampling
a two-dimensional Lennard-Jones system, where an effec
cluster-flip acceleration method has been developed@3#. In
Tables III and IV we show the extremal and the meanT
50 energies for a variety of system sizes. Again, multi
nonical sampling is slightly better for the smaller system
but the advantage disappears for the largest system.

It is remarkable how similarly the three different metho
perform. Although it seems to be known that molecular d
namics and simulated annealing are comparable@35#, we are
not aware of any reference providing a direct comparison
course, comparisons of efficiency are highly implementat
dependent. The two Monte Carlo methods could benefit fr
a temperature-dependent step size~although we did experi-
ment with it without finding any substantial improvemen!.
One could refine the cooling schedule for the two traditio
methods. One could introduce a temperature cutoff~like in
the original multicanonical approach! or use variable bin
sizes to improve the multicanonical sampling method. Aga
our experiments with bin size and cutoff were not encour
ing. Our main conclusion is that the choice of methods i
matter of taste. In particular we are encouraged by the
that Monte Carlo methods are competitive, especially as t
adapt easily to cluster acceleration methods.

All three methods suffer from the large number of me
stable states prevalent in the configuration space of the
and three-dimensional systems and thus are not capab
locating ground states. To show that they find similar me
stable states, we plot in Figs. 3 and 4 the lowest-energy c
figuration found by multicanonical sampling and by sim
lated annealing. These configurations are typi
representatives of metastable states for the two-dimensi

TABLE III. Energy per particle for the lowest-energy configu
ration found with multicanonical sampling and simulated anneali

N Multicanonical sampling Simulated annealing

31 -2.1 -2.1
66 -2.27 -2.22
101 -2.34 -2.33
160 -2.37 -2.38

TABLE IV. Mean energy per particle and the standard deviat
evaluated using all low-energy configurations found by multi
nonical sampling and simulated annealing.

N Multicanonical sampling Simulated annealing

31 -1.976 0.1 -1.876 0.17
66 -2.246 0.04 -2.126 0.07
101 -2.296 0.07 -2.236 0.06
160 -2.346 0.05 -2.346 0.02
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system. The defects are clusters of three large partic
which are shown in gray in Figs. 3 and 4.

VI. CHARACTERIZATION

Why is multicanonical sampling not bypassing the fre
energy barriers to relaxation? In this section we presen
vivid illustration of how the multicanonical sampling algo
rithm gets trapped in a metastable state. In the bottom ha
Fig. 5 we plot the energy as a function of time: At very sho
times it performs a random walk in energy space as ad
tised, but it rapidly gets trapped in a low-energy metasta
state.

The simulation shown in Fig. 5 is the same as the runs
N5100 particles tabulated in Tables I and II except for tw
important differences.~i! The runs of Tables I and II ran fo
106 sweeps; here we ran for 107 sweeps.~ii ! The entropy
estimateJ(E) for the runs in Tables I and II was dynam
cally updated every 105 sweeps using the recursive updatin
scheme equation~2!. Here we calculated a best estima
J(E) from the 30 runs in the tables and used this function

FIG. 3. Lowest-energy configuration generated with multic
nonical sampling. The gray particles forming a triangle represe
defect.

FIG. 4. Lowest-energy configuration generated with simula
annealing. The gray particles forming a triangle represent a de
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a fixed entropy estimate. The best estimateJ(E) ~comprising
information from 403106 sweeps! is a sufficiently smooth
function that we do not expect~or observe! the system to be
trapped in some artificial well resulting from statistical flu
tuations inJ(E).

The top half of Fig. 5 shows the logarithm of the hist
gramH(E) tabulating the visited states as a function of e
ergy. This function is important as it is used in the recurs
updating scheme ln@H(E)#5DJ(E)5J(E)update2J(E)estimate
@see Eq.~2!#.

Figure 6 shows that the system is trapped in a sing
harmonic metastable state. The upper panel shows an
panded view of the first peak inDJ(E). For times after
1.33106 the system exclusively samples in a single we
Repeated quenches yield the same minimum energyE15
26.8241. This is a metastable state: As seen in Table I,
true ground state has an energy<26.87.

In the harmonic approximation we can analytically calc
late the density of states and compare the contribution f
the metastable state directly to the measured data. The
monic density of states has the form

Vharmonic~E!}S 2~E2E1!

K D 3N/221

, ~3!

where K involves the geometric mean of the phonon fr
quencies and can be thought of as a typical spring cons
In the multicanonical sampling algorithm the probability
sampling a state in this harmonic well is given by the ratio
the density of states in the single well divided by the e
mated density of states exp@J(E)#. This probability is com-

FIG. 5. Multicanonical sampling run, showing trapping into
metastable state. In this run, we used a fixedJ(E) ~i.e., no dynami-
cal updating! gleaned from several previous runs of the same s
tem. Energy vs time is shown in the bottom panel. Only the fi
quarter of the time series is shown. At short times, we observ
random walk in energy. At times below 23105 sweeps the system
randomly walks through energies above the glass transition.
system then gets trapped in two successively lower metastable
energy wells~see Fig. 6!. The histogram ln@H(E)#5DJ(E) of visited
states measured during the simulation is shown in the upper p
Note the large peak associated with the trapping. The second
third peaks are above the glass transition and correspond to
transient states.
-
e

-
x-

:

e

-
m
ar-

-
nt.

f
-

pared directly to the histogram of sampled states in the up
half of Fig. 6. The system is trapped in a single harmo
well.

By running for shorter times and by dynamically updati
the entropy estimate during each run, we have substant
mitigated the trapping problem of multicanonical sampli
shown in Figs. 5 and 6. Imagine the entropy estimateJ(E)
after updating it by adding ln@H(E)#. The acceptance ratio to
leave the region given by 1/J(E) will dramatically increase
and thus the trapping will be bypassed, as indeed we
served in practice. Lingering near a state increases the
mate entropy in that region and eventually push the sys
out. But dynamical updating should not be an essential
gredient of the algorithm, which is formulated presuming
a priori knowledge of the entropy as a function of energ
Formally dynamical updating violates the Markovian chara
ter of the algorithm and convergence to the equilibrium st
is no longer guaranteed. In practical terms it is very distre
ing that the algorithm needs to produce a noticeable bum
the density of states to escape from a metastable state.
comparison against molecular dynamics and simulated
nealing would be substantially more unfavorable for lo
runs without dynamical updating.

-
t
a

e
e-

el.
nd
re

FIG. 6. Expanded view of Fig. 5 at low energies. Energy vs ti
is shown in the bottom panel. From 23105 to 1.33106 sweeps, the
system seems trapped in a number of states: Repeated que
yield metastable energies clustering aroundE2526.8260.002.
The system then falls into a slightly lower state, with energyE15
26.8241; repeated quenches show that it stays in this single
for the remainder of the simulation. The equilibration within th
lowest well is excellent: The acceptance ratio is near 50% and
system exhibits an efficient random walk in energy within the sin
well. The histogram ln@H(E)#5DJ(E) of visited states is shown in
the upper panel as a dark line. The light line is the theoret
prediction assuming a single, harmonic well at energyE15

26.8241: DJharmonic(E)5(3N/221)ln(E2E1)2J(E)1C. The
bumps in the theoretical curve are due to the irregularities in
initial estimateJ(E); the identical-looking bumps in the measure
data reflect the effects ofJ(E) in weighting the histogram. Our
theoretical prediction describes the measured data well for the
ergy range explored during the last portions of the simulation. T
range aboveE/N;26.78 is underestimated as in this region t
data are composed largely of states corresponding to the min
clustered aroundE2.
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Figures 5 and 6 are a tangible illustration of the trapp
mechanism depicted in Figs. 1 and 2. The inaccessible m
stable states contributing toJ(E) form a strange type of en
tropic barrier around the metastable stateE1. LeavingE1 via
a saddle point atE2.Epeak;26.8 is suppressed by roughl
the exponential ofDJ(E2)2DJ(Epeak) shown in Fig. 6.

Slow cooling in molecular dynamics or simulated anne
ing can lead to trapping in metastable states due to la
energy barriers. Entropic sampling and the other multi
nonical methods get trapped in metastable states becau
large entropic barriers imposed by the algorithm. In bo
case the algorithms are sabotaged by the large numbe
low-lying metastable states. Multicanonical sampling p
vides insight into this problem, but does not provide a so
tion.

VII. CONCLUSIONS

In this study we applied the multicanonical method us
the specific entropic sampling scheme to Lennard-Jones
tems. We focused on the ability of the algorithm to fin
ground states of these glassy systems and compared the
formance to the two traditional glassy simulation metho
simulated annealing and molecular dynamics. The use
multicanonical sampling did not reveal any new insights in
the ground-state properties of Lennard-Jones glasses. W
plain these results on the basis of the following observatio

First, in the thermodynamic limit multicanonical metho
are locally equivalent to simulated annealing. Furthermo
the global dynamics of multicanonical sampling resemble
random heating and cooling of the sample. Thus, for la
systems simulated annealing and multicanonical samp
must have the same properties. In principle, multicanon
sampling has the advantage of providing the density
states, which allows one to evaluate the canonical distr
tion function. In glasses this feature is not necessarily he
ful, as the multicanonical methods sample phase spac
slowly as the annealing methods; thus, in practice, mult
nonical sampling will not be able to extract any equilibriu
e
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expectation values better than simulated annealing.
Second, the large number of inaccessible metastable s

imposes a bizarre entropy barrier to the multicanoni
method. The algorithm simply gets stuck in a metasta
state, as it might using molecular dynamics and simula
annealing. We underlined this point by comparing the pro
ability distribution estimated by the algorithm inside th
metastable state with a theoretical expression derived in
harmonic approximation.

Furthermore, our results emphasize the known fact t
simulated annealing and molecular dynamics have sim
performances in glassy systems. As a consequence,
should acknowledge the importance of averaging over m
molecular-dynamics trajectories, especially for glassy s
tems. Averages over an ensemble of trajectories are a b
concept in Monte Carlo simulations; the striking similarity
performance to molecular-dynamics simulations is a hin
the importance of similar averages in glassy molecu
dynamics simulations.

Finally, the goal of finding a method that gains an exp
nential speedup of glassy simulations still remains. Our st
clearly indicates that standard reweighting techniques
presumably be no substantial help in tackling this proble
The complicated structure of the glassy configuration sp
needs more ‘‘intelligent’’ algorithms, which are able n
only to bypass energy barriers but also to find an effici
path through the rugged energy landscape.
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