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Multicanonical methods, molecular dynamics, and Monte Carlo methods:
Comparison for Lennard-Jones glasses
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We applied a multicanonical algorithm to a two-dimensional and a three-dimensional Lennard-Jones system
with quasicrystalline and glassy ground states. Focusing on the ability of the algorithm to locate low-lying
energy states, we compared the results of the multicanonical simulations with standard Monte Carlo simulated
annealing and molecular-dynamics methods. We find slight benefits to using multicanonical sampling in small
systemgless than 80 particlgswhich disappear with larger systems. This is disappointing as the multicanoni-
cal methods are designed to surmount energy barriers to relaxation. We analyze this failure theoretically and
show that(i) the multicanonical method is reduced in the thermodynamic lilaige systemsto an effective
Monte Carlo simulated annealing with a random temperature vs timéiiartde multicanonical method gets
trapped by unphysical entropy barriers in the same metastable states whose energy barriers trap the traditional
guenches. The performance of Monte Carlo and molecular-dynamics quenches were remarkably similar.
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I. INTRODUCTION pling [14], can be directly mapped onto this approath.
In systems with a strongly double-peaked probability distri-
In the past decade there has been an outpouring of interelstition of magnetization or energy statés situation often
in accelerating statistical mechanics simulations. This startetbund in systems exhibiting a first-order phase transjtion
with the work of Swendsen and collaborators: Swendsen anthe multicanonical approach has been proven to be a power-
Wang introduced a cluster-flip method for accelerating nonful tool. Simple reweighting schemes allow to overcome the
disordered spin system4,2] and Widom, Strandburg, and ‘“supercritical slowing down”[12] known from canonical
Swendsen introduced a cluster-flip for finding quasicrystalMonte Carlo simulations at a fixed temperature. For ex-
line ground states in a two-dimensional atomic simulationample, in nondisordered spin systems with a field-driven
[3]. These methods all gain a major speedup by introducindirst-order phase transitiorte.g., the Ising modglor a
mostly nonlocal update rules and often prove capable of bytemperature-driven first-order phase transitiémg., the
passing critical slowing down probleni4]. g-state Potts modglthe supercritical slowing down of ca-
During the same period, different accelerating approachesonical Monte Carlo is due to the low Boltzmann weight of
were introduced, which are based on efficient schemes tthe domain-wall states. Multicanonical sampling approaches
analyze data from traditional Monte Carlo simulati¢ds-6]  the problem by introducing a weight function, which weights
and are frequently called histogram methods. These methoddl magnetization statedsing mode) or energy stateéPotts
have expanded the applicability of various kinds of criticalmode) equally and therefore ensures that domain-wall states
phenomenon simulations, although they are not necessaribre sampled with the same likelihood as all other accessible
designed to bypass critical slowing down problems as effistates. The canonical distribution function at a fixed tempera-
ciently as, e.g., cluster algorithms. Nevertheless, substanti&lire, which contains all the thermodynamic information, can
progress can be achieved combining histogram and clustebe reconstructed. Usually multicanonical sampling uses local
flip algorithms(see, e.g., Ref.7]). update schemes along the lines of the Metropolis algorithm
More recently, so-called reweighting techniques have16]; variations using cluster-flip or other methods are fea-
been introduced, which are based on an early approach Isible and have proved usef(for a review consul{11,12]
Torrie and Valleay8]. They proposed a method to enlarge and references thergin
the sampling range of a Monte Carlo algorithm by using Of course, acceleration methods are most crucial for
nonphysical weighting functions. The general idea in theglassy systems, which otherwise can be inaccessible to nu-
more recent approaches is to change the relative weights afierical simulations(Even the experiments fall out of equi-
different configurations to sample equally in all ranges oflibrium. Think of an experiment as #bparallel atomistic
energy rather than focusing on a narrow temperature rangerocessors with picosecond clock time¥/hether one be-
The most frequently used reweighting method is multicalieves that glasses are sluggish because of large energy bar-
nonical sampling9—13], which represents the most general riers to relaxatior(rates~e®") or that the free-energy bar-
method as other reweighting methods, e.g., entropic sanmiers are due to tortuous entropically difficult routes between
the metastable configurations, a clever algorithm could in
principle jump directly between the glassy states. Instead of
*Electronic address: kamal@theorie.Physik.uni-goettingen.de  relative rates that grow as a power ©f T, acceleration
"Electronic address: sethna@msc.cornell.edu could gain us exponential speedups.
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Acceleration methods have been extensively applied t@onfigurations. We search for low-energy states of a three-
disordered spin models. These studies have focused less dimensional Lennard-Jones glass, one of the prototype
understanding the performance of the algorithms because tiggassy system$40—-43, and use the set of parameters re-
physics of the systems is less thoroughly understood. Theently introduced by Kob and Andersp#4—44. In addition
multicanonical methods have been applied to spin glasses #® that, we apply multicanonical sampling and simulated an-
two and three dimensions to calculate the zero-temperatureealing to a two-dimensional Lennard-Jones system with
entropy, ground-state energies, distribution of overlaps, et@uasicrystalline ground states, using the parameters of Ref.
(see Refs[17—25). The authors succeed in evaluating thesd 3]- We find that multlcanomcal samphng o.ffers little benefit
properties with remarkable accuracy: nevertheless, whethdf! the study of either. We argue that this is likely a general
the replica theon26] or the droplet scaling ansaf27] is effect, ap_pllcable to all S|mula_t|0_n r_nethods applied to glassy
the more appropriate picture in describing the ground-stat8YStems in the thermodynamic limit.
properties of glasses could not be resolved. The performance

of multicanonical sampling for glassy systems is clearly II. INTRODUCTION TO THE METHODS:

worse than for system with a less rugged landscape. We MULTICANONICAL METHODS AND THE

believe this failure is systematic and cannot be avoided ENTROPIC SAMPLING VARIANT

within the framework of multicanonical sampling. The standard way of implementing a Monte Carlo algo-

Berg and Celik17] argued that multicanonical methods \jhm is using importance sampling. The idea behind this
should be superior to simulated annealiggadual cooling  gnnr0ach is simple. Rather than weighting each sample in
[28], although a direct comparison was made only to canonixhase space equally, each state is weighted with a sample

cal samplingquenches to a fixed low temperatureee and o ohapility distributionl'(x), wherex denotes the sampled

Choi[29] applied multicanonical sampling to the “traveling configuration of the system. To estimate the thermal average

salesman” problem and claimed to achieve a dramatic IM5f an observabld, one calculates

provement over the traditional Monte Carlo simulated an-
nealing approach. Newmd80] has used both cluster meth-

ods[7] and multicanonicalentropig sampling[14] to study > A(x)ex — BHO)IT ~1(x)

the random-field Ising model. He finds dramatic speedups (Ay= X , (1)
from both methods, often reaching equilibrium in a few _ -1

passes through the lattice. Newman has focused on small ; exfL— AHOOIT(x)

systemgmostly 24, with a few runs for systems up to $4
and simultaneously used histogram methods to measur&¥hereH is the Hamiltonian of the systeiiso H(x) is the
critical exponents and phase boundaries for a range of disoenergyE for the statex] and 8= 1/kgT. Choosingl"(x) non-
ders and temperatures. He confirmed results of the relate¢niformly ensures that states with important contributions to
“simulated tempering” approach, developed by Marinari the partition sum are preferentially sampled and therefore the
and Parisi{31,32. Simulated tempering proved very useful number of states needed to be sampled to provide a reason-
in spin-glass simulationg33] and is similar in spirit to the able estimate oA is significantly reduced.
multicanonical approacfs4]. In standard Monte Carlo methods, i.e., canonical Monte
Acceleration methods have been used little in continuunfcarlo or simulated annealing, the weighting distribution is
atomic simulations, perhaps because of the widespread rekhe Boltzmann distributiod”=exd —BH(x)]. This has the
ance on molecular-dynamics methods. Straightforward, diadvantage of a direct physical interpretation: The computer
rect molecular-dynamics simulations of the equations of mois doing the same thermal average as an equilibrium system
tion do not converge to an equilibrium state much faster that temperature kgB3. It has an important disadvantage that
the Monte Carlo simulated annealing methods, but they areonfigurations and events that are rare in the physical system
also not noticeably worsg85] and they have a direct physi- are also rare in the simulation. In particular, if the system has
cal interpretation. Shumway and SetHi38] studied a one- a “rugged energy landscape” with large free-energy barriers
dimensional atomic system in an incommensurate sinusoidd separating physically important metastable states, the sys-
potential and developed an evolutionary algorithm that gentem will cross between these states with the same slow
erated optimal cluster moves as the system was quenched Agrhenius ratevexp(—B/T) that is found experimentally.
lower temperatures; later attempts to generalize these ideas The idea of multicanonical sampling is to circumvent this
to higher dimensions have not been successful s¢3&r  problem by choosind’(x) so that the distribution of states
Hansmann and Okamof@8] used multicanonical sampling P(H(x))~Q(H(x))I'(x) is approximately flat in energgor
and Monte Carlo simulated annealing to study the folding ofsome other variable, such as magnetiza{id]). In prin-
the peptide met-enkephalin; the multicanonical methoctiple, we want to choosd (E)=1/Q(E)=exd—SE)],
found the ground state more consistently using the samehere()(E) is the density of states at enerByandS(E) is
amount of computer time. This result underlines the generahe entropy. Of course, we do not begin the simulation
belief [17,39 that simulations in the multicanonical en- knowing the entropy as a function of energy.
semble are in many ways superior to traditional simulated In our work we use the entropic sampling algorithia],
annealing. which is a numerical and mathematical equivalent variant of
In this paper we apply multicanonical sampling to two- the multicanonical approacHL5]. The only difference be-
component Lennard—Jones systems and compare the perféween entropic and multicanonical sampling is the way by
mance with traditional simulated annealing and straightforwhich one generates estimat®E) of S(E). The entropic
ward molecular dynamics in finding low-energy sampling algorithm uses a quite straightforward recursive
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updating method(i) Initialize to zero an arrayl(E), which  glassy simulations, this distinction is presumably not impor-
will keep track of the energy of the visited statés) sample tant. The differences between the two methods near a given
states according to the curref)(E) and add the energy of state should be similar in magnitude and type to the differ-
each sampled state to the histogrinfor a reasonably long ences between the microcanonitfated-energy simulations

time, and(iii) set the newJ; ,.; according to the rule and the canonicalfixed-temperature simulations: Differ-
) ences can be seen for small systems, but disappear as the
1 (E)= Ji(E)+In[H(E)] if H(E)#0 5  System gets larger. To be explicit, for a large system the final
i+1(E)= Ji(E) if H(E)=0. 2 state of an multicanonical sampling run for which the time-

dependent energy EB(t) should be statistically equivalent to
The multicanonical sampling update scheme differs from ena simulated annealing run with randomly fluctuating tem-
tropic sampling only in the treatment of the histogram binsperatureT(E(t)). One notes also that the quench rate is not
with few entries(for an analysis of various schemes seetunable for the multicanonical method: The “diffusion con-
Refs.[13,39). The original approach introduces a constantstant” in energy space depends on the atomic step size and
slope forJ(E) below a cutoff energy, corresponding to a on the number of particles. This is potentially a serious
small constant temperature. These extra parameters are digndicap, as changing the quench rate is the primary tool
noying[39] in the implementation; however, they do tend to Used in glassy systems to find lower energy states. Thus the
keep the system from being trapped in energy regions thaower of multicanonical methods to vary the energy to fa-
have not hitherto been sampled frequently. As we will argue¢ilitate barrier crossing is, for large systems at least, no dif-
in glassy systems both algorithms will tend to get trapped irfferent from repeatedly heating and cooling the entire system.
low-energy metastable states even when the statistics are (i) Perhaps the multicanonical method might be picking
fine. (In any case our simulations spend around half the timghe heating and cooling schedule intelligently in order to
at high energies, so any algorithmic improvements can bringscape from local minima. Indeed, since the effective tem-
at best a factor of 2 in computer timén this paper we use perature becomes lower as the energy decreases, an multica-
the simpler entropic sampling method of Hf); neverthe-  nonical sampling system stuck in a high-energy metastable
less, we will refer to this method as multicanonical sampling state will have larger thermal excitatiofisigger acceptance
of upward moves in energthan one in a low-energy state
and will depart faster. This is the explanation, we believe, for
the substantial success of the multicanonical sampling
method seen in the past.

What makes people think that multicanonical sampling This preferential escape from high-energy metastable
should be an improvement over simulated annealing or mostates will unfortunately also become unimportant for large
lecular dynamics? We consider three possible reasons.  systems. One can see this most easily by considering a local

(i) Perhaps the multicanonical method is better because iegion trapped in a high-energy configuration with local en-
allows the system to cross energy barri@as is mentioned ergy e’ and with a lower energy configuratiom nearby,
frequently[9—14)). This is indeed an improvement over ca- separated by a barriér. For a small system, where the local
nonical sampling at a fixed temperature; however, a simuenergy difference’ —e is important, the effective tempera-
lated annealing method also runs at a variety of temperaures in stateg’ ande will differ, but for a large system of
tures. sizeN this temperature differendgrom the differing accep-

Indeed, the two methods aidentical in the thermody- tance ratios from the two stajewill vanish as 1IN. There
namic limit. The acceptance ratio for a given single-atomare glassy systems in which the energy barriers and energy
Monte Carlo move for multicanonical sampling B(E) differences are not all local: mean-field spin glasses, for ex-
=exgSE)—SE")]. In a large system witiN atoms, the en- ample, have energy barriers that grow as powers of the num-
tropy densityS(E)/N is a smooth function of the energy ber of spinsN [26]. However, the maximum energy barrier
density E/N; since the energy density change for a single-(and presumably the maximum energy asymmetty- )
atom move E'—E)/N is small, we may expan&(E) to  scales with a poweN“ with « strictly less than onéat least
first order inE’ — E. Using the relatiowS(E)/JE=1/T, the  in finite dimensiony so the change in effective temperature
acceptance ratio become3(E)=exd —(E'—E)/T]. Thus N¢/N still vanishes adN—x [48].

lll. THEORETICAL EXPECTATIONS
FOR RELATIVE PERFORMANCE

multicanonical sampling at the enerdy has exactly the (iii) Perhaps the multicanonical method is exploring dif-
same acceptance ratio as simulated annealing at a tempefarent energies more effectively than an externally chosen
ture T(E)=[9S(E)/9E] L. cooling schedule for simulated annealing. For example, the

Thus the local behavior, the acceptance ratio for Montemulticanonical method is guaranteed to converge to an equi-
Carlo moves from a given state, is virtually the same forlibrium density of states at each energy. The same is true for
multicanonical and canonical sampling. Near first-order trana simulated annealing run at infinitely slow cooling, but is
sitions, canonical quenches produce large changes in theot true for repeated coolings at a fixed rate, which would be
state for small changes in temperature and thus behave quiéxpected to generate metastable states repeatedly. On the one
differently from the multicanonical approachéshich by  hand, the theorems suggest that the ground state should be
varying the energy explore the interface states dirgcllilis  occupied as often as any other energy; on the other hand, it is
is one of the major applications of multicanonical samplinghard to see how a multicanonical quench to low energies can
methods. We expect that the multicanonical methods wilbypass the metastable states that trap simulated annealing
perform for these systems rather similarly to microcanonicatuns of comparable computer time.
guenches that conserve the energy; see R#fl. In our To address this issue, let us consider the characteristics of
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the random walkiE(t) that the system performs in energy
space as a function of time within the multicanonical ap-
proach. For some systems, such as the Ising model, multica-
nonical sampling does indeed produce a roughly unbiased
random walk(if one starts from a good estimate of the den-
sity of stateg As the system becomes larger, the energy
range scales wittN and the step size of the energy stays
fixed, so the time scale for diffusing from high energies to
near the ground state scalesN (distance scales with the
square root of time This behavior is confirmed in simula-
tions[9,11] studying, e.g., the first-order phase transition be-
low T, changing the Ising model from pointing up to down,
where traditional canonical methods would suffer from the
surface tension barriegL9"t= N1 and so the time
scales adl?expoNC@~YM, Bypassing this “supercritical slow-

ing down” [12] is an important application for multicanoni-
cal methods[lIt should be mentioned that the optimal ran-
dom walk time scale for diffusion through energy space has
not been observed in simulations of, e.g., the two dimen-
sional Potts model usintpcal updates; usually the system  FIG. 1. Glassy metastable states are often thought to form a
diffuses on a time scale- N2-° (see, e.g., Refd9,11)). Al- treelike structure. We anticipate that the inaccessible metastable
though the supercritical slowing down is bypassed, the optiStates will form a barrier to leaving the ground state within the
mal random walk behavior has only been observed with th@ulticanonical approach bec_ause the_ total density of states grows
aid of nonlocal update moves. much faster than the accessible density of states.

It is known numerically that this simple argument breaks
down in simulations of spin glassgk7]. The typical time to
cover the energy rangealled the ergodicity or tunneling
time in the literaturg for spin glasses scales & [19] or

Ground
State
0

Metastable States

Ground StateWell

Density of States

Temperature or Energy

(ones that diverge all— ) diverges with a power oN
[48].
The multicanonical sampling method is guaranteed to
N : 5 sample the ground-state energy just as much as any other
perhap$t [1:‘[L] mslt(e:ld 01|N - Wgy should the random walk - oo |t is easy to see, however, that once the system is in
argument not Work Tor glasses: the ground state, it will stay there for a long time. If the

We assert that the answer to vyhy the randpm walk ar guaensity of states within the ground-state ergodic component
ment breaks down can be found in the trapping of multica- a d the density of in th . .
nonical sampling due to the same metastable states explor&ti{Xg(E) and the density of states in the entire system is

in thermal coolings. Indeed, it is the metastable states that(E). then the acceptance ratio for a multicanonical sam-
the system isiot able to explorehat trap the multicanonical Pling move fromE to E” is Q(E)/Q(E"), while the prob-
sampling algorithm. The states of glassy systems are oftefP!lity Of a random move raising the energy is
described in a caricature treelike struct¢saleways in Fig. Q4(E")/Q4(E). Hence the likelihood of sampling high-
1). The horizontal axis of the tree can be thought of as eitheenergy state& within the ground-state component will fall
energy or temperature: the branches represent mutually inags ﬁg(E)/Q(E), Consider the very crude model where all
cessible ergodic components. For the Ising model, there argrgodic components are similar and stay completely separate
two major ergodic component&orresponding to the two until the glass transition enerdy, (the energy at the glass
directions for the magnetizatiprand a few domain-wall transition temperatujgeat which point they mergéFig. 2).
states. For glasses, the ergodic components are sometimesr this model, escaping from the ground-state component
thought of as regions of configuration space separated byill take a time that scales as the total number of ergodic
infinite free-energy barrier&s in the mean-field spin-glass components and hence diverges Mis-. Since multica-
models[26]) and sometimes as regions separated by energyonical sampling spends the same amount of time in each
barriers that are too large to cross in the time scale of thenergy range, the time between independent visits to the true
experiment or simulation. ground state will scale as the time needed to escape from the
The key point is that the accessible density of states for ground-state ergodic component. So we begin our explora-
glass can be very different from the total density of states. Injon with the expectation that multicanonical sampling
Fig. 1 we note that the ergodic component containing thehould be useful for small systems, but will not provide sig-
ground state has a density of states that differs from the@ificant advantages for large system sizes.
density of states for the system as a whole, starting at the
energy of the first accessible metastable states. The number
3. of these inaccessible metastable states is related to the
density of tunneling states in configurational glag<és-51] We argued in the preceding section that multicanonical
and is thought to increase exponentially with the size of thesampling will not be a fundamental improvement over re-
system M independent two-state systems with uncrossablg@eated coolings using simulated annealing, at least in large
barriers generat® =2M state$. In spin glasses, the number systems. On the other hand, entropic sampling and other
of components separated by infinite free-energy barriersnulticanonical methods have been reported to lead to sub-

IV. IMPLEMENTATION
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g = (N=20,40,60,80,100 For eachN we generated 30 low-
ZER energy configurations. The initial configurations were ran-
ESE dom in the case of simulated annealing and multicanonical
5&3 é sampling and high-temperature equilibrium configurations in
o v the molecular-dynamics case. To compare the three methods,

we defined one run length to be ®18weeps through the
system for the two Monte Carlo methods. The molecular-
dynamics runs are quenched at a rate that consumes the same
CPU time as used by the Monte Carlo sampling.

B. Two-dimensional system

In our two-dimensional simulations, we did not apply mo-
: lecular dynamicgour hard-wall boundary conditions made it
\ \¥ inconvenient. We again used a binary Lennard-Jones sys-
g N tem, introduced by Widom, Strandburg, and Swendsgn
with a slightly uncg)zrwentional E]:orm for the potential:
V,og(r)=€,5l(045/1)“—2(0,5/r)°]. The Lennard-Jones
St 18- 12 pafametersﬂare chosen to favor configurations of decagonal
Temperature or Energy order (e,,=0.5, o, =1.176, €,s=1.0, 0 s=1.0, €ss
=0.5, andoss=0.618) and the system is known to have a
%uasicrystalline ground state. The particles are initially ran-
pdomly distributed in a large cylindric box with infinitely high
dvalls. The potential was truncated 88— 2.50,5 and
shifted to zero at this point. All results are in reduced units
with € g and o 5 as fundamental units. Here four different
system sizesN=31,66,101,16pwere used, where the num-
bers of different particles were chosen to keep the ratio fixed
- o G ; close to the value of 1.06 large atoms per small atom. Wi-
stantial gains in equilibration times for small glassy spin sys dom. Strandburg, and Swends@ found that this ratio led

tems[17-25. We are interested in simulations of structuralt defect.f d states. Thi ¢ i |
glasses: collections of atoms that typically form metastable 0 defect-iree ground states. This systém provides an excel-

glassy configurations when slowly cooled. In this section Wé’ent testing ground for mult.icanonical sampling _for varipus
give a detailed description of our implementation of multi- reasons. The ground state is known to be quasicrystalline, a

canonical sampling, simulated annealing, and molecular Olyr§tn e-order periodicity. Defective configurations are easil
namics. In order to ensure a fair comparison, we have, agny P Y- 9 y

often as possible, taken cooling schedules and time and Spge_co_gnized, as the typical defects consist of triangle_s of _Iike
tial step sizes from standard references in the literature. particles. There are Plenty of metastable states with high-
energy barriers, as it takes rearrangement of a large number

of particles to disentangle the triangular defects. Widom,
A. Three-dimensional system Strandburg, and Swends¢8] have shown that simulated
annealing fails to locate ground states and always gets

Inpurthree-dimensional simulations, we applied the thre%rapped in a long-lived metastables states, a problem they
algorithms to a binary mixture of largdf and small &) circumvented using three-particle cluster flips.

particles with the same mass, interacting via the Lennard- The final minimum-energy configurations for runs of all

- _ 12
J_ones /p%tquﬁl OT the%forg]vaﬂ(r)_ﬁeaﬂ[(gal]illrl) _ three methods were optimized by starting from the lowest-
(74p/r)"]. The values ok ando were chosen as follows: 0o configurations found and quenching dowriTte0

ELL:]..O, O'LL:]..O, € 5= 15, O'LS:O.S, 65520.5, and . . . h Th | _
ogs=0.88. All results are given in reduced units, whetig S;Selgga?ecggﬁg::gdgirgdslizt_ r\r/1.et od. The resullirgO ener

was used as the length unit arg as the energy unit. The
systems were kept at a fixed density~1.2), periodic
boundary conditions have been applied, and the potential has
been truncated appropriately according to the minimum im- The multicanonical sampling method was implemented
age rulg/52] and shifted to zero at the respective cutoff. Thegenerally as described in Sec. Il. The Metropolis algorithm
minimum image rule prevents a particle from using the pe{16] was used for local updates. We developed an initial
riodic boundary conditions to “see” more than one copy of estimate](E) for the entropyS(E) with a long run(approxi-

its neighbors: Using the conventional cutoff a=2.50  mately 10 sweep} starting from a flat distribution: This
would demand at least 160 particles. The choice of paraminitial estimate was used as the starting distribution for the
eters follows recent simulations of Lennard-Jones glassesubsequent runs. In three dimensions we redid this initializa-
[44-46,53; this choice suppresses recrystallization of thetion for each system size; in two dimensions we initialized in
system on molecular-dynamics time scales. This potentiathis way for the 101 particle system and used finite-size scal-
together with this set of parameters, mimics the potential foing [13] from this distribution for initialization at other sys-
NigsP,. We looked at five different system sizes tem sizes. Finite-size scaling does not appear to work for

FIG. 2. Grossly oversimplified picture of glassy states, assumin
that all components merge at the glass transition at erigggyrhe
parameteré denotes the fraction of ergodic components at eac
energy or temperature. At the glass transition, the fraction of acce
sible ergodic components is of orde&1/thus the time to find the
ground-state ergodic compondpt leave it once foundscales with
3 asX—oo.

ate with a strong bond orientational order without a long-

C. Multicanonical sampling
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glassy systems with quenched disor{i&r,19. We did not TABLE |. T=0 energy per particle for the lowest-energy con-
include this initial computer time in the comparisons; thusfiguration found with multicanonical sampling, simulated anneal-
we err on the side of multicanonical sampling. Notice that inind, and molecular dynamics.

continuous systems it is not obvious how to set the optimat

bin size for the histogrartunlike in spin systems, where the Multicanonical Simulated Molecular
smallest energy step determines the bin)sixée therefore sampling annealing dynamics
tested several bin sizes. For the two-dimensional systems zp -0.89 -0.89 -0.89
fixed bin size of 0.001 was used and in the three-dimensionalg -4.18 -4.15 -4.16
systems we found it useful to set the bin size to AN01/ 60 -5.38 -5.36 -5.37
energy units. Our investigations suggest that larger bin sizegg -6.52 -6.56 -6.57
can introduce artificial barriers in the low-energy range and;gg 6.85 -6.86 -6.87

smaller bins lead to more noise. To set a context, the typical
successful energy step in a 20-particle simulation in three

dimensions varied from around one at high temperatures gy similar metastable states. Third, we will quantitatively

around 0.01 near the ground state. We explored energysnalyze the trapping of the multicanonical sampling algo-
dependent step sizes for the single-atom moves, but they digthm in a metastable state.

not improve performance. Multicanonical sampling demands \ye present thd=0 energies of the lowest-energy con-
an upper cutoff for the energy: We use zero for the uppefigyrations for the three-dimensional Lennard-Jones systems

limit for both two and three dimensions. in Table 1. ForN=20 particles each algorithm is able to
. . locate the same lowest-energy state, presumably the ground

D. Simulated annealing state. FoN=40 andN= 60 particles the lowest-energy state

Simulated annealing uses locally the Metropolis updatdS found by multicanonical sampling. The gain in energy
scheme with the Boltzmann factor as the sample probability E4o Over simulated annealing is around 0.03 and the gain is
distribution. The cooling schedule implemented here is simi0.02 over molecular dynamics. Fbf=80 andN= 100 par-
lar to the one used in Reff3,38], where the temperature is ticles the lowest energies are found by molecular dynamics,
repeatedly lowered by a small factor and then annealed. 18nd the gain over multicanonical sampling A€gy~0.05
our runs, we choose 50 annealing steps of 20 000 swee1d AE;oo~0.02.
each, with an initial temperature of one and a final tempera- There are three things to notice about this table. First, the
ture of 0.05; each temperature is thus cooled down by &ramatic energy difference with increasing system size is due

factor of 0.942. The initial configurations were set at ran-to the change in the cutoff in the potential given by the
dom. minimum image rule. Using the 20-particle cutoff in the

larger system sizes, we found energies that hardly varied
with system size. Second, the fact that these energies differ
) . _in the third decimal place does not mean that the differences
The molecular-dynamicViD) routine used the velocity are negligible. In Refs[53,54 the dependence of the final
form of the Verlet algorithn{52]. The unit of time is given  energy on the cooling rate for exactly this system was stud-
by (mof, /486, )% wherem is the mass of the particle; the jed using molecular dynamics: To gain an energy of 0.03
Verlet time step in these units i =0.01. The system was starting from the cooling rate we are using, they had to de-
coupled to a heat bath and the temperature was reduced ligrease the cooling rate by a factor of 10. Third, as we argued

E. Molecular dynamics

early in time according toTpan = Tsar — Ympt- NOte  in Sec. IlI, any gains given by multicanonical sampling dis-
that the cooling here is linear in time, as is traditional in theappear as the system size grows.
molecular dynamics of Lennard-Jones glas$gé]. The In Table Il we list the mean and the standard deviation of

cooling rate yyp=1.0x10"* was chosen so that the MD the energies from the 30 runs at each system size with each
runs consume an amount of computer time similar to that ofigorithm. It has been found in the literature that the fluctua-
the Monte Carlo algorithms. This cooling rate is in the tions for simulated annealing are much larger than for mul-
middle of the range explored in recent simulations, althoughicanonical sampling38]. We find this to be true both for
our system sizes are much small8,54. The initial con-  simulated annealing and for molecular dynamics. Indeed, the
figurations were equilibrated at a temperatligg,= 1.0 (at a

small cost of computer time, which we did not factor into the  tagLE 11. Mean energy per particle and the standard deviation
comparisons and cooled to the final temperaturB,a  evaluated using all low-energy configurations found by multica-

=0.05, yielding approximately 2X010° molecular- nonical sampling, simulated annealing and molecular dynamics.
dynamics steps.

Multicanonical Simulated Molecular

V. COMPARISON N sampling annealing dynamics

In this section we will first compare the performance of 20 -0.84* 0.03 -0.79+ 0.06 -0.81+ 0.04
the three methods in locating low-energy states of the two40 -4.10* 0.03 -4.07+ 0.05 -4.08+ 0.04
and three-dimensional Lennard-Jones systems. The perfogo -5.34+ 0.01 -5.33+ 0.03 -5.33+ 0.03
mance of the three methods is remarkably similar. Secondo -6.50+ 0.01 -6.51+ 0.02 -6.51+ 0.03
we will compare low-energy configurations of the two- 100 -6.83+ 0.01 -6.84+ 0.02 -6.82+ 0.02

dimensional system to show that the algorithms get trapped
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TABLE Ill. Energy per particle for the lowest-energy configu-
ration found with multicanonical sampling and simulated annealing.

N Multicanonical sampling Simulated annealing
31 2.1 2.1

66 -2.27 -2.22

101 -2.34 -2.33

160 -2.37 -2.38

average performance of multicanonical sampling remains
comparable to that of the other two methods, even at the
larger system size$where the extremal performance was
worse.

The “ultimate goal” of this field is to accelerate three-

dimensional glass simulations, bypassing barriers to relax- gig. 3. Lowest-energy configuration generated with multica-

ation. P§rhaps this is too high a Star_1dard: _Nobody h_as SUGkbnical sampling. The gray particles forming a triangle represent a
an algorithm. We now will apply multicanonical sampling to defect.

a two-dimensional Lennard-Jones system, where an effective

cluster-flip acceleration method has been develd®din  system. The defects are clusters of three large particles,
Tables Ill and IV we show the extremal and the mé&n \hich are shown in gray in Figs. 3 and 4.

=0 energies for a variety of system sizes. Again, multica-

nonical sampling is slightly better for the smaller systems,

but the advantage disappears for the largest system. VI. CHARACTERIZATION

It is remarkable how similarly the three different methods Why is multicanonical sampling not bypassing the free-
perform. Although it seems to be known that molecular dy-gnergy barriers to relaxation? In this section we present a
namics and simulated annealing are comparg8 we are  yiyiq jllustration of how the multicanonical sampling algo-

not aware of any reference providing a direct comparison. Ofjihm gets trapped in a metastable state. In the bottom half of
course, comparisons of efficiency are highly implementatiory 5'\e piot the energy as a function of time: At very short
dependent. The two Monte Carlo methods could benefit frong; o< it performs a random walk in energy space as adver-

a temperature-dependent step Siatthough we did experi- yiseq but it rapidly gets trapped in a low-energy metastable
ment with it without finding any substantial improvemgent

One could refine the cooling schedule for the two traditional

methods. One could introduce a temperature culé® in  \_ 100 particles tabulated in Tables | and Il except for two

the origi_nal multicanonigal approal:h)r use variable bin ._important differences(i) The runs of Tables | and Il ran for
sizes to improve the multicanonical sampling method. Againg s sweeps: here we ran for 1@weeps.(ii) The entropy
our experiments with bin size and cutoff were not encourag'estimateJ(E) for the runs in Tables | and Il was dynami-

ing. Our main concluspn is that the choice of methods is acally updated every fosweeps using the recursive updating
matter of taste. In particular we are encouraged by the facl oo equatiori2). Here we calculated a best estimate

that Monte Carlo methods are competitive, especially as theg— : . .
adapt easily to cluster acceleration methods. (E) from the 30 runs in the tables and used this function as

All three methods suffer from the large number of meta-
stable states prevalent in the configuration space of the two-
and three-dimensional systems and thus are not capable of
locating ground states. To show that they find similar meta-
stable states, we plot in Figs. 3 and 4 the lowest-energy con-
figuration found by multicanonical sampling and by simu-
lated annealing. These configurations are typical
representatives of metastable states for the two-dimensional

The simulation shown in Fig. 5 is the same as the runs for

TABLE IV. Mean energy per particle and the standard deviation
evaluated using all low-energy configurations found by multica-
nonical sampling and simulated annealing.

N Multicanonical sampling Simulated annealing

31 -1.97+ 0.1 -1.87+ 0.17

66 -2.24+ 0.04 -2.12+ 0.07

101 -2.29+ 0.07 -2.23+ 0.06

160 -2.34+ 0.05 -2.34+ 0.02 FIG. 4. Lowest-energy configuration generated with simulated

annealing. The gray particles forming a triangle represent a defect.
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FIG. 5. Multicanonical sampling run, showing trapping into a  FIG. 6. Expanded view of Fig. 5 at low energies. Energy vs time
metastable state. In this run, we used a fid¢#) (i.e., no dynami-  is shown in the bottom panel. From<2.0 to 1.3< 10° sweeps, the
cal updating gleaned from several previous runs of the same syssystem seems trapped in a number of states: Repeated quenches
tem. Energy vs time is shown in the bottom panel. Only the firstyield metastable energies clustering arousigk= —6.82+0.002.
quarter of the time series is shown. At short times, we observe dhe system then falls into a slightly lower state, with enegy-
random walk in energy. At times belowx21®® sweeps the system —6.8241; repeated quenches show that it stays in this single well
randomly walks through energies above the glass transition. Théor the remainder of the simulation. The equilibration within this
system then gets trapped in two successively lower metastable frelpwest well is excellent: The acceptance ratio is near 50% and the
energy wellgsee Fig. 6. The histogram IFH(E)]=AJ(E) of visited ~ system exhibits an efficient random walk in energy within the single
states measured during the simulation is shown in the upper panetell. The histogram IFH(E)]=AJ(E) of visited states is shown in
Note the large peak associated with the trapping. The second aritle upper panel as a dark line. The light line is the theoretical
third peaks are above the glass transition and correspond to moggediction assuming a single, harmonic well at enefgy=
transient states. —6.8241: Adnamonid E)=(3N/2—1)In(E—E)—J(E)+C. The
. bumps in the theoretical curve are due to the irregularities in our
a fixed entropy estimate. The best estimitg) (comprising initial estimateJ(E); the identical-looking bumps in the measured
information from 40< 10° sweeps is a sufficiently smooth data reflect the effects of(E) in weighting the histogram. Our
function that we do not expecbr observe the system to be theoretical prediction describes the measured data well for the en-
trapped in some artificial well resulting from statistical fluc- ergy range explored during the last portions of the simulation. The
tuations inJ(E). range aboveE/N~ —6.78 is underestimated as in this region the
The top half of Fig. 5 shows the logarithm of the histo- data are composed largely of states corresponding to the minima
gramH(E) tabulating the visited states as a function of en-clustered arouné,.
ergy. This function is important as it is used in the recursive
updating scheme [R(E)]=AJ(E)=J(E)ypdate— I(E)esimae  PAred directly to the histogram of sampled states in the upper
[see Eq(2)]. half of Fig. 6. The system is trapped in a single harmonic
Figure 6 shows that the system is trapped in a singlewell.
harmonic metastable state. The upper panel shows an ex- By running for shorter times and by dynamically updating
panded view of the first peak inJ(E). For times after the entropy estimate during each run, we have substantially
1.3x 10 the system exclusively samples in a single well:mitigated the trapping problem of multicanonical sampling
Repeated quenches yield the same minimum en&gy shown in Figs. 5 and 6. Imagine the entropy estimKte)
—6.8241. This is a metastable state: As seen in Table |, thafter updating it by adding [i(E)]. The acceptance ratio to
true ground state has an energy-6.87. leave the region given by I{(E) will dramatically increase
In the harmonic approximation we can analytically calcu-and thus the trapping will be bypassed, as indeed we ob-
late the density of states and compare the contribution frorserved in practice. Lingering near a state increases the esti-
the metastable state directly to the measured data. The hanate entropy in that region and eventually push the system
monic density of states has the form out. But dynamical updating should not be an essential in-
gredient of the algorithm, which is formulated presuming an
a priori knowledge of the entropy as a function of energy.
' 3) Formally dynamical updating violates the Markovian charac-
ter of the algorithm and convergence to the equilibrium state
where K involves the geometric mean of the phonon fre-is no longer guaranteed. In practical terms it is very distress-
guencies and can be thought of as a typical spring constarihg that the algorithm needs to produce a noticeable bump in
In the multicanonical sampling algorithm the probability of the density of states to escape from a metastable state. The
sampling a state in this harmonic well is given by the ratio ofcomparison against molecular dynamics and simulated an-
the density of states in the single well divided by the esti-nealing would be substantially more unfavorable for long
mated density of states €E)]. This probability is com- runs without dynamical updating.

Z(E_El) 3N/2—-1
Qharmoni((E)oc —)

K
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Figures 5 and 6 are a tangible illustration of the trappingexpectation values better than simulated annealing.
mechanism depicted in Figs. 1 and 2. The inaccessible meta- Second, the large number of inaccessible metastable states
stable states contributing t{E) form a strange type of en- imposes a bizarre entropy barrier to the multicanonical
tropic barrier around the metastable state LeavingE, via  method. The algorithm simply gets stuck in a metastable
a saddle point aE,> Epc,~ — 6.8 is suppressed by roughly state, as it might using molecular dynamics and simulated
the exponential oA J(E;) —AJ(Epead shown in Fig. 6. annealing. We underlined this point by comparing the prob-

Slow cooling in molecular dynamics or simulated anneal-ability distribution estimated by the algorithm inside the
ing can lead to trapping in metastable states due to largmetastable state with a theoretical expression derived in the
energy barriers. Entropic sampling and the other multicaharmonic approximation.
nonical methods get trapped in metastable states because of Furthermore, our results emphasize the known fact that
large entropic barriers imposed by the algorithm. In bothsimulated annealing and molecular dynamics have similar
case the algorithms are sabotaged by the large number performances in glassy systems. As a consequence, one
low-lying metastable states. Multicanonical sampling pro-should acknowledge the importance of averaging over many
vides insight into this problem, but does not provide a soludmolecular-dynamics trajectories, especially for glassy sys-
tion. tems. Averages over an ensemble of trajectories are a basic

concept in Monte Carlo simulations; the striking similarity in
VII. CONCLUSIONS performance to molecular-dynamics simulations is a hint at
the importance of similar averages in glassy molecular-

In this study we applied the multicanonical method usingdynamics simulations.
the specific entropic sampling scheme to Lennard-Jones sys- Finally, the goal of finding a method that gains an expo-
tems. We focused on the ability of the algorithm to find nential speedup of glassy simulations still remains. Our study
ground states of these glassy systems and compared the pglearly indicates that standard reweighting techniques will
formance to the two traditional glassy simulation methodspresumably be no substantial help in tackling this problem.
simulated annealing and molecular dynamics. The use ofhe complicated structure of the glassy configuration space
multicanonical sampling did not reveal any new insights intoneeds more “intelligent” algorithms, which are able not

the ground-state properties of Lennard-Jones glasses. We exnly to bypass energy barriers but also to find an efficient
plain these results on the basis of the following observationspath through the rugged energy landscape.

First, in the thermodynamic limit multicanonical methods
are locally equivalent to simulated annealing. Furthermore,
the global dy_namlcs of mL_JItlcanonlcaI sampling resembles a ACKNOWLEDGMENTS
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