
MATERIALS SIMULATIONS AT THE

ATOM-CONTINUUM INTERFACE: DISLOCATION

MOBILITY AND NOTCHED FRACTURE INITIATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Nicholas Patrick Bailey

January 2003

2

MATERIALS SIMULATIONS AT THE ATOM-CONTINUUM INTERFACE:

DISLOCATION MOBILITY AND NOTCHED FRACTURE INITIATION

Nicholas Patrick Bailey, Ph.D.

Cornell University 2003

We have solved three problems with a common theme of interfacing atomistic

models with continuum models. The first is measuring the Peierls barrier for dislo-

cation glide in a two dimensional material. The key features of this work are (1) ef-

ficient extrapolation of the infinite system limit from small simulations, through

the use of multipole relaxation at the atom-continuum interface, and (2) the repre-

sentation of the dependence on external parameters (in this case applied stress) in

a compact way using a physically motivated functional form. The second problem

is the initiation of fracture at sharp notches in single crystal silicon, a problem of

current experimental interest in microfabrication. It is found that when expressed

in atomic-scale units the critical stress intensity factor is almost independent of

notch opening angle, as long as the interatomic potential does, in fact, produce

brittle fracture. The third problem is the challenge of incorporating atomistic

simulations in an adaptive manner in large scale continuum (finite element) sim-

ulations. Our method involves embedding such simulations within elements in an

overlapping sense, and avoids some of the complexity associated with alternative

methods. We solve these three problems through the development of a flexible,

modern, powerful molecular dynamics package, known as DigitalMaterial. We de-

scribe the design of the software, which is fully object-oriented. What makes this

package different from others is the use of a component-based approach based on

software engineering methods known as Design Patterns. The interfaces for these

components are very clearly defined, allowing components to be interoperable and

to be easily driven from a high level scripting environment.

Biographical Sketch

Nicholas Bailey was born in 1974 in Dublin, Ireland, to Mary and Patrick Bailey.

He attended the Irish speaking school Scoil Bhride before entering the Jesuit-run

Gonzaga College SJ, at which time his knowledge of the Irish language started

to decrease linearly with time, although he was happy to learn French, Latin and

Greek, and become interested in science, in particular physics. In 1992 he entered

University College Dublin’s science Faculty, graduating in 1996 with a B. Sc. in

Mathematical Physics and Experimental Physics. Having been accepted into Cor-

nell University to pursue graduate study, Nicholas arrived in Ithaca, NY on August

23, 1996, one day after completing his last undergraduate examination. After five

semesters of teaching, which he enjoyed very much, especially the classes for physics

majors, he joined Professor James Sethna’s group doing software development for

multiscale modeling of materials. Much programming in C++ and Python took

place, along with learning how to design a large scientific code properly, as well as

thinking about dislocations and cracks and finite elements.

During all this time spent being educated he participated in a range of contact

sports, starting with rugby (Gonzaga College Senior Cup Team 1991-1992, Old

Belvedere R. F. C. McCorry Cup team 1992-1994), adding during college Shotokan

karate (ITKF 2nd kyu (brown) 1995) and in graduate school competitive ballroom

iii

dance (collegiate competitions, gold level in Spring 2002). His interest in dance

extends also to swing, modern, tap and more.

Nicholas has accepted a post-doctoral position in the Technical University of

Denmark (DTU) working with Karsten Jacobsen and others in the Center for

Atomic Scale Materials Physics (CAMP). He will be leaving for Denmark within

a day or two of defending this thesis, thus echoing the manner in which he first

arrived in Ithaca.

iv

To my parents, and to Wendy

v

Acknowledgements

In the last six years many people have contributed to the great time I have had

here at Cornell. First I should mention my adviser Jim Sethna, who has kept me

interested in my work, making it exciting all the time, always having new ideas,

to the point that I sometimes felt like my current projects were like a large pile of

books I was carrying in my arms, barely able to see over the top of them, but more

or less managing to hold onto them; encouraging me when I questioned the validity

of my work and helping me believe in myself. The members of our group, the post-

docs Thierry Cretegny and Drew Dolgert, with whom I collaborated intensely and

productively on software development, as well as Markus Rauscher, who helped

me understand how to be a scientist; and students Lance Eastgate and Connie

Chang with whom I had many useful conversations. I owe a debt to Chris Myers

of the Cornell Theory Center for teaching me about software design in general and

the benefits of Python and SWIG in particular, as well as always being available

to help with sticking points regarding their use. I remember quite distinctly the

moment when I found I could understand Chris’s discourses on software design

notions. In my extended research group I would like to mention Tony Ingraffea,

who is probably most responsible for my appreciation of engineering problems and

methods, as well as Paul (Wash) Wawrzynek, Gerd Heber and Erin Iesulauro for

vi

helpful advice and discussions.

In the rest of the physics department I would especially like to mention former

house-mates Tom Glickman, Cayce Butler, Kevin O’Neill, Mike Quist and Aash

Clerk and all the people who regularly appeared in the donut room, E18 Clark

Hall, between 4.00 and 4.30 every weekday (except Monday and Tuesday during

the semester) and participated in the most random conversations about everything.

I think 90% of my understanding of the America and Americans is based on those

conversations, possibly along with the many Friday nights spent at the Statler bar

drinking pitchers of Saranac.

I would like to thank my parents and brother and sister for regular phone calls ,

occasional visits, and constant support. I would like to thank my girlfriend Wendy

McRae for much advice and support during times of self-doubt, and particularly

for her careful proof-reading and editing of most of chapters 4 and 5 in the late

stages of their preparation. One large group of people which should definitely not

go unmentioned or unthanked is the Cornell Ballroom Dance Club, a group of

people and an activity which most definitely helped keep me sane while working

hard. I truly discovered a new side of myself through them, and something I will

enjoy doing forever: ballroom dance, whether in the context of social dancing,

competing or teaching.

Finally I would like to thank the weather, for not being as bad, in winter, as I

initially feared when coming from Ireland.

vii

Table of Contents

Biographical Sketch . iii
Dedication . v
Acknowledgements . vi
Table of Contents . viii
List of Tables . xii
List of Figures . xiii

1 Introduction 1
1.1 Multiscale modeling . 4
1.2 Parameter Passing: small scales to large 12

1.2.1 Examples: some specific defects 14
1.3 Mixed atomistic/continuum modeling:

to couple, to embed, to extend . 17
1.3.1 Coupling to finite elements 17
1.3.2 The quasi-continuum method 19
1.3.3 FE meets Digital Material: OFE/MD 21

1.4 Object-oriented, Design Patterns-enabled
molecular modeling: Digital Material 22
1.4.1 Python drives C++ creates power with control 25

2 Dislocation Mobility: Accurate Peierls Barriers 28
2.1 Introduction : mobility of dislocations 28

2.1.1 Flexible boundary conditions 31
2.2 Boundary kinematics: Flex-S with moving center 34

2.2.1 Linear elasticity: general solution in 2D 35
2.2.2 Multipole coefficients and center as boundary degrees of

freedom . 42
2.3 Energetics . 45

2.3.1 Atomistic energy: “cut-Lennard-Jones”
interatomic potential . 46

2.3.2 Continuum energy: linear analysis 49
2.3.3 Continuum energy: nonlinear analysis 52
2.3.4 Blending of atomistic and continuum energy

functionals . 54
2.3.5 Accounting for external stress 57

viii

2.4 Dynamics of embedded dislocation system 61
2.5 Computing the energy barrier . 64

2.5.1 Initial and final states . 65
2.5.2 Formulation of Nudged Elastic Band for extended system . . 67
2.5.3 Running the simulation . 75

2.6 Representing the data: Functional Forms 77
2.6.1 Symmetry . 79
2.6.2 Singularity . 80
2.6.3 Simple model . 81
2.6.4 Subtleties, extra physics . 83
2.6.5 Dependence on σxx and σyy 84
2.6.6 Fitting procedure . 84

2.7 Results and discussion . 85
2.7.1 Size dependence; . 85
2.7.2 Stress dependence . 88

2.A 2D versus 3D elasticity . 93
2.B Lagrangian versus Eulerian coordinates 95
2.C Transforming Eulerian to Lagrangian coordinates in continuum en-

ergy analysis . 98
2.D Relating changes in elastic energy to work done on boundaries . . . 101

3 Fracture of Notched Single Crystal Silicon 104
3.1 Introduction . 104

3.1.1 Elastic fields near a notch 105
3.2 Simulation . 108

3.2.1 Geometry . 108
3.2.2 Potentials . 110
3.2.3 Boundary Conditions . 111
3.2.4 Critical stress intensities . 113

3.3 Results . 114
3.3.1 Observed fracture behavior 114
3.3.2 Critical stress intensities . 121

3.4 Discussion . 123
3.4.1 Critical stress intensities . 123

3.5 Summary . 129
3.6 Acknowledgments . 129
3.A Units and Conversions . 130
3.B Stroh formalism for notches . 131
3.C Subtleties associated with taking powers of complex numbers 134
3.D Crystal orientations . 137
3.E Subtlety in defining mode I/mode II in crack case (no reflection

symmetry) . 137

ix

4 Digital Material, A Modern Molecular Dynamics Code 141
4.1 Introduction: The complexities of today’s simulations, as driven by

multiscale materials modeling . 141
4.1.1 Digital Material design goals 143

4.2 Components . 146
4.2.1 ListOfAtoms . 146
4.2.2 Potential . 149
4.2.3 Mover and Transformer . 151
4.2.4 NeighborLocator . 155
4.2.5 BoundaryConditions . 159
4.2.6 Constraint . 161
4.2.7 AtomsInitializer . 167
4.2.8 ListOfAtomsObserver . 170

4.3 Infrastructure . 173
4.3.1 Parallelization . 173
4.3.2 Serialization . 179
4.3.3 Graphics/Visualization . 185

4.4 Summary . 189

5 Overlapping Finite Elements/Molecular
Dynamics (OFE/MD) 190
5.1 Motivation and purpose . 190
5.2 Principles of the coupled OFE/MD model 194

5.2.1 Kinematics . 194
5.2.2 Energetics . 196
5.2.3 From energy to forces . 198

5.3 Dynamics and algorithms . 201
5.3.1 Zero temperature algorithm 203
5.3.2 Finite temperature algorithm 204
5.3.3 Applying the displacement field to core atoms 205

5.4 Model geometries . 206
5.4.1 One-Brick; sphere of atoms 206
5.4.2 Two-Brick; layer of atoms 209
5.4.3 Cracked silicon plate . 209
5.4.4 Cracked Cube . 211

5.5 Technical details . 212
5.5.1 Partial Stiffness Matrices . 212
5.5.2 Linear solve step . 228
5.5.3 Subtleties . 230

5.6 Infrastructure . 238
5.6.1 Software engineering . 238
5.6.2 Interfacing with a continuum model via data base 240
5.6.3 Diagnostics, visualization and

feature detection . 244

x

5.7 Future applications of OFE/MD . 245
5.7.1 Cohesive law extraction . 246
5.7.2 Dislocations/surface/grain boundary interactions 247
5.7.3 Continuum crack growth . 248

5.A Quadratic shape functions for
hexahedral (brick) elements . 249

5.B Quadratic shape functions
for wedge elements . 252

5.C Quadratic shape functions for
tetrahedral elements . 253

5.D Transformations between natural
coordinates in cracked-cube model 255

5.E Symmetry considerations for internal
relaxation parameter in a
diamond-cubic lattice . 259

5.F Nodal forces due to symmetric force dipole at the center of a cubic
element. 260

xi

List of Tables

1.1 Defects and their dimensionalities. 8

2.1 Cut-Lennard-Jones parameters. 47
2.2 Quadratic and cubic elastic constants for our cut-Lennard-Jones

potential and for that of Holian et al. 49
2.3 Displacement, strain, energy density and total energy within a ra-

dius R for different multipoles and pairings of multipoles–linear
analysis. 51

2.4 Simulation parameters for Figs. 2.7 and 2.8. 76
2.5 Fit parameters for CLJ potential. 92

3.1 Surface energies for silicon according to mSW, EDIP and MEAM
potentials. 112

3.2 Critical stress intensity values for different geometries and poten-
tials, including experimental data from Refs. [66, 67]. 124

3.3 Angles of slip planes and crack planes and ratio of shear to normal
stress for different geometries. 127

3.4 Unit conversion factors for K. 131

4.1 Methods for Serializable, DMWriter and DMReader. 182

5.1 Internal relaxation parameters K123 and ζ for Si potentials. 233
5.2 Transformation vectors and matrices for transforming tetrahedron

natural coordinates. 255
5.2 Transformation vectors and matrices for transforming tetrahedron

natural coordinates. 256
5.2 Transformation vectors and matrices for transforming tetrahedron

natural coordinates. 257
5.2 Transformation vectors and matrices for transforming tetrahedron

natural coordinates. 258

xii

List of Figures

2.1 Division of atomic model into different regions when using fixed
boundaries, original Flex-S scheme and extended Flex-S scheme.
rc is the cutoff distance of the potential. 31

2.2 Plots of the n = 1 displacement fields; clockwise from top left:
j = 0, 1, 3, 2. 41

2.3 Transition function with limits | ~X| = 6 and | ~X| = 16. 55
2.4 Undeformed and dislocated lattice with the lattice vectors, and lines

indicating the choice of inserted half-planes, as well as the mirror
plane. 64

2.5 Effective potential for dislocation glide in (a) infinite crystal, (b)
“centered” simulation and (c) “offset” simulation. 67

2.6 Effect of using climbing image (CI) technique in the Nudged Elastic
Band method. The number of MDmin iterations was 1000 in both
cases. 74

2.7 Typical barrier energy profile from simulation. 77
2.8 Parameter values along transition path. 78
2.9 Schematic of dislocation potential energy under shear stress σ. . . . 79
2.10 Plot of barrier versus stress for sinusoidal potential. 83
2.11 Dependence of zero-stress barrier height on core region size, for

different numbers of boundary parameters (CLJ potential), without
continuum energy. 85

2.12 Zero-stress barrier height vs. core region size, far field energy in-
cluded. 86

2.13 Zero stress barrier with and without continuum energy terms, with
eight boundary parameters. 88

2.14 Contour plot of Peierls barrier (σxx − σxy). 90
2.15 Contour plot of Peierls barrier (σyy − σxy). 90
2.16 Contour plot of Peierls barrier (σxx − σyy). 91
2.17 Contour plot of Peierls barrier (pressure-σxy). 91
2.18 Histogram of fractional errors in multidimensional nonlinear fit to

barrier data. 92
2.19 When the dislocation glides a distance b, the work done on the

boundary of squares S1 and S2 is 0.58σxyb
2, that on circles C1 and

C2 2σxyb
2/3. On rectangle R1 it is very nearly σxyb

2. 102

xiii

3.1 (a) Notch schematic and notation; (b) silicon crystal with a notch;
darker layer is fixed boundary atoms. 106

3.2 Normal (a) and shear (b) stresses on radial planes as functions of
plane angle, for γ = 70◦. 109

3.3 mSW-crack. 115
3.4 EDIP, crack. 116
3.5 MEAM, crack. 116
3.6 mSW-70◦. 117
3.7 EDIP-70◦. 118
3.8 MEAM-70◦. 119
3.9 mSW-90◦. 119
3.10 EDIP-90◦. 120
3.11 MEAM-90◦. 120
3.12 mSW-125◦. 121
3.13 EDIP-125◦. 122
3.14 MEAM-125◦. 123
3.15 Computed critical stress intensities for the three potentials and

experiment. 125
3.16 Det(K) versus λ using difference of logs. 136
3.17 Det(K) versus λ using log of the quotient. 136
3.18 Angular dependence of σyy for the crack, using Sih and Stroh for-

malisms. The Stroh curve has the higher peaks. 140

5.1 Two-dimensional atomistic region embedded entirely within a sin-
gle element, and “natural coordinates” of the element. 195

5.2 Meshes for “OneBrick” and “TwoBrick” models. 207
5.3 Stress-strain curves for One-Brick model, first with x-displacements

only, then with lateral relaxation allowed. 208
5.4 Stress-strain curves for Two-Brick model, first with x-displacements

only, then with lateral relaxation allowed. 208
5.5 2D Mesh for Silicon thin plate, in deformed configuration. 211
5.6 Mesh for cracked-cube model. 213
5.7 15-noded wedge element with quarter-points. 218
5.8 Natural coordinates and node numbering for wedge element. 220
5.9 Wedge configuration in real space, and natural coordinates corre-

spondingly rotated. 221
5.10 Natural coordinates and node numbering for a tetrahedron, and

possible locations of the atomistic region. 224
5.11 Coordinate systems for first four tetrahedron orientations. 226
5.12 Class diagram for OFE/MD simulation software. 241
5.13 Use of a relational data base. 242
5.14 Web interface to OFE/MD simulations. 243
5.15 Simple cohesive zone model, with expanded view of the cohesive

zone. 247

xiv

5.16 A crack growth step. Moving the actual node means changing how
things look even in undeformed coordinates. 249

5.17 Node-numbering for 20-noded wedge elements. 251
5.18 Node-numbering for 15-noded wedge elements. 252
5.19 Node-numbering for 10-noded tetrahedron elements. 254

xv

Chapter 1

Introduction

In this thesis we present two physics problems and two problems in software for

multiscale modeling of materials. The first physics problem, the subject of chap-

ter 2, is the computation of the Peierls barrier of a single dislocation in an infinite

medium as a function of applied stress. This quantity is a crucial ingredient in

a rule for specifying the velocity of a dislocation as a function of stress, such as

would be required in a dislocation dynamics simulation. Our focus is on getting

results as accurate as possible from simulations as small as possible. The ability to

use small simulations, containing of the order of hundreds of atoms, is significant

because it makes possible the use of ab initio methods such as the local density

approximation (LDA) to compute these quantities, thus achieving accuracy in the

sense of obtaining a believable representation of real materials. For the purpose of

developing the technique, we have chosen to work with a two-dimensional crystal

and use a very simple interatomic force law, the Lennard-Jones pair potential. The

motivation for studying small systems stems also in part from a wish to avoid com-

peting with those groups whose specialty is very large systems. The state of the

art in atomistic simulations involves billion atom simulations on massively parallel

1

2

computers. These are impressive, beautiful simulations, but given the comput-

ing resources and time needed to perform just one simulation, it is not generally

possible to perform a systematic study of a particular system under all possible

conditions. A whole computer budget can be used up getting a result for one

particular material, in one particular geometry with one particular set of external

conditions (temperature, applied stress, etc.) It is not clear what useful results

can be taken away from the outcome of a single such simulation.

The second physics problem, the subject of chapter 3, is a computation of the

threshold for fracture initiation from notched samples of single crystal silicon. The

threshold refers to a quantity called the stress intensity factor which characterizes

the linear elastic state (displacement and stress fields) near a notch, in a manner

analogous to standard fracture mechanics (a crack is just the limiting case of

a notch whose opening angle is zero). This has been inspired by some recent

experiments, some recent theoretical work seeking to explain the apparent large

dependence, of critical stress intensity factor, Kc, on notch opening angle, and

the observation by Sethna that because the units of the stress intensity factor

actually depend on the opening angle, the apparent angle dependence is largely

a consequence of using inappropriate units. When atomic-scale units are used,

such as eV and Å, the plot becomes almost flat. This turns out to be more the

case in the simulation data than in the experimental data, mainly because of one

point in the experimental data noticeably deviating from the apparent almost-flat

curve. In this work the limitations of interatomic potentials for silicon are made

clear, in particular regarding the question of whether a potential produces brittle

fracture, like real silicon, or not. Only one of the three potentials used produces

satisfactorily realistic behavior.

3

Chapter 4 is a fairly detailed presentation of the design principles of the molec-

ular dynamics (MD) software package we have developed, called DigitalMaterial.

We have attempted to make as much use as possible of modern software engineer-

ing ideas, and to think carefully about the key components of an MD code, with a

view to providing maximum flexibility to the user. Flexibility means allowing not

just different interatomic potentials, but different types of boundary conditions,

different kinds of constraints, different kinds of dynamics and different kinds of

tools for computing quantities of interest. A user of the code should rarely have

to delve into the inner workings of it, but only have an understanding of what the

various components are, and how their interfaces operate.

The work described in chapter 5 is of a somewhat hybrid nature, its aim being

partly to develop a new technique for coupling finite elements to atomistic sim-

ulations, and partly to develop software which is “adaptive”, meaning that the

code allows atomistic simulations to be dynamically incorporated into continuum

simulations. The state of development of this work is such that it is poised to

applied to interesting computational materials problems.

In the rest of this chapter we provide background for the field of multiscale

modeling of materials, starting from general concepts and proceeding to a descrip-

tion of the “parameter passing” paradigm in the context of specific defects. We

then describe some approaches to coupling atomistic simulations with finite ele-

ment models, including our own approach, Overlapping Finite Elements/Molecular

Dynamics (OFE/MD). Finally we introduce the ideas constituting our approach

to software design: object-orientation, design patterns and the use of high level

scripting languages.

4

1.1 Multiscale modeling

In recent times two fields of scientific endeavor have emerged as grand arenas of

interdisciplinary research: materials science and biology. Materials science has

been interdisciplinary since its emergence as a field; biology, the oldest science

apart from astronomy, has become so in recent decades. Both increasingly count

physicists, mathematicians, computer scientists and engineers among their prac-

titioners, as advances in experimentation and computation have begun to permit

detailed analysis at atomic scales in both fields. In fact the distinction between

the fields, for practical purposes, might well be gone in another twenty years —by

then we could be designing materials almost as complex and structured as living

tissue.

We are not at that stage yet, but there is already enough structure—as much

by design as by nature—in real materials to make modeling them a challenge.

The realistic modeling of materials is important for innumerable engineering ap-

plications, ranging from semiconductor devices to aircraft fuselages. It is desired

to understand the response of the material under the various conditions that the

engineered part will be subject to in its lifetime. Specifically one needs to be able

to answer the questions: (1) Will the part perform in the manner desired? and (2)

Under what circumstances is the part likely to fail (and how can we then maximize

its lifetime)? The kinds of properties that are relevant in a real application include

mechanical, chemical, electronic, thermal, thermodynamic, etc. We will restrict

our focus to mechanical properties. In large scale engineering applications, these

are typically the most important and/or the most difficult to reliably account for.

Engineers are plagued by the variability of mechanical properties such as strength

and toughness.

5

To illustrate this point, consider a steel airplane wing. Suppose we have a

design for the wing, specifying the shapes and sizes of all the components. Let

us ask the question: what is the total mass of the wing/bridge? We know the

density of steel and can add up the volumes of the pieces to get the total volume,

then multiply by the density to get the mass. Suppose next we ask the question:

How much will the structure bend under its weight, or subject to some applied

force? This is little harder, but knowing the elastic moduli of the material we can

use a finite element program to do a stress analysis of structure subject to the

load and compute displacements. This can be done fairly reliably—the main error

source, namely, the discretization into elements, can be systematically improved

by refining the finite element mesh (under we run out of computer power). What

if we now ask the question: If the structure is subjected to a periodic applied

force, how many cycles can we expect to take place before the structure will fail

by fracture? Or even without considering cyclic loading, suppose a small crack

somehow appears somewhere on the structure, how fast will it grow–and can the

plane land before this happens? Given our experience with density and elastic

properties, we might guess at the existence of a property called fracture toughness,

which might be more than one number, characterizing the growth of small or

large cracks, under cyclic or monotonic loading. We would do a stress analysis,

employing the concepts of fracture mechanics (which explains how to characterize

the stress state near a crack and relate it to fracture toughness).

Fracture toughness is indeed a property that engineers talk about. The problem

is that one cannot find a value characteristic of, say, a particular kind of steel, such

that a fracture mechanics analysis will then give a reliable prediction. It is very

hard to measure fracture toughness experimentally; fracture mechanics texts[4]

6

devote many pages to specifying precise rules for the geometry to be used in mea-

suring toughness, because the measured values depend rather more on geometry

than a true material property ought to. This is very unlike the case for elastic con-

stants. Because of this poorly understood dependence, when it comes to designing

structures, engineers have to use the so-called safety factor approach: rather than

design the structure so that the load during its lifetime will never exceed the load

that will cause failure, design so that the load will never exceed, say, one third

(safety factor = 3) of the load needed to cause failure, or equivalently design so

that the load required to cause failure is three times the maximum load anticipated

during the lifetime. Including the safety factor compensates for the fact that the

estimate of the load required to cause failure is uncertain because our understand-

ing of the mechanical properties of the materials is limited. This approach works

for the most part, but there are two problems. First, over-engineering in this way

often means using more material or more expensive material than might actually

be necessary, so that the cost of the structure is significantly more than it could

otherwise safely be. Second, even with an apparently reasonable safety factor,

structures still fail at loads below the design load (see [4], chapter 1, for examples).

Thus it is very desirable to be able to accurately understand and model mechanical

properties of materials for the purpose of predicting failure.

Let us now consider why there is such variability between samples. This is

the point where we need to start looking deep inside the material, on various

length scales. Different length scales present different material processes, and

contribute differently to the observed macroscopic behavior. First, the smallest

scale of interest is the atomic scale, where distances are measured in nanometers

and the motion of individual atoms is under consideration. The interaction between

7

atoms is important for determining this motion. From the atomic interactions come

macroscopic properties such as the density, elastic constants and melting point.

At a scale where a relatively small number of atoms are under consideration, the

material looks the same from one point to another. For this reason the elastic

constants of the macroscopic body are quite well defined1. We say this property

is dominated by the atoms. However for a property such as fracture toughness

of a metal, it is not the atoms as such, but rather the defects that dominate the

behavior.

Let us consider metals as our main engineering materials of interest. An atomic

description of a metal is in terms of a crystal, but materials (metals) used in engi-

neering applications are never single crystal; they are polycrystal. This introduces

questions involving the size distribution of the individual crystals—now called

grains—and the properties of their boundaries. Furthermore even the individual

grains are not perfect single crystals, because they have point defects: vacancies

(missing atoms) and interstitials (extra atoms) or impurities (atoms substituted

with atoms of a different element) as well as line defects—dislocations. Finally,

most engineering metals are not pure, but rather are alloys. A steel for example,

is iron with a range of other elements making up a small percentage of the total

composition. The other elements often are not spread uniformly throughout the

host metal (matrix) but are clumped together as relatively large (on the atomic

scale) particles known as inclusions or precipitate particles (since the process of

their forming is known as precipitation). We may think of these as volume defects.

1It does matter, though, whether it is a single crystal or polycrystal–in the for-
mer case, the anisotropy of the elastic constants will be apparent on the macroscale,
whereas in the latter case the macroscopic elastic constants will be an average over
orientations.

8

Table 1.1: Defects and their dimensionalities.

Dimension Defect types

0 vacancy, interstitial, impurity atom

1 dislocation (edge/screw), grain boundary junction, crack front

2 grain boundary, surface (e.g. from a crack)

3 precipitate particle, voids

We now have defects of all dimensionalities, as illustrated in table 1.1.

Now for the key issue: metal that is used in engineering applications is full of

all of these kinds of defects. They make up a structure within the metal known

as the microstructure. From a macroscopic point of view the microstructure may

be considered as the internal state. Its existence is the cause of perceived history

dependence of a material, namely the history of its processing. If we think that we

only need a few macroscopic variables (stress, temperature, material constants) to

describe a material and notice a history dependence in the relationship between

them, what this tells us is that our description of the state is not complete: the

microstructure is not accounted for. This is in contrast to the statistical mechan-

ics of say a gas, where a few macroscopic variables, and an equation of state,

really are enough to describe the macroscopic behavior. A (crystalline) solid is

different because it has defects, which are generally non-equilibrium phenomena,

and particularly because on experimental time scales they do not equilibrate away.

The microstructure may be quantified in terms of densities of defects (dislocation

density, density of precipitate particles), or an orientation distribution function

(for grains). A key issue for developers of continuum theories of microstructure

evolution is to determine what the appropriate variables are for describing the

9

microstructure. This is very non-trivial because simple averages (such as concen-

tration) are not necessarily sufficient: defect-driven processes tend to be governed

by extreme-value statistics, where the tails of distributions are more important

than the means. For example, crack initiation might be determined by the size of

the largest microcrack present in the material, rather than the mean microcrack

size.

It is important to realize that although we use the word “defects”, it should

not be assumed that defects are bad. In fact materials are often engineered to have

a particular microstructure, for example a specific density of precipitate particles

of a specific size, or a particular grain size, or dislocation density. In general such

things increase the hardness (resistance to plastic flow) and fracture toughness,

etc. of the material (thus pure metals are never used in structural engineering).

For example, if the grains are small then dislocations can travel less distance before

hitting a grain boundary, which impedes their motion. Thus the material is harder.

Another cause of hardness in a material, at least in a metal, is the interactions

between dislocations. Dislocations will move under applied stress, giving rise to

macroscopic plasticity. However at large strains when the dislocation density is

high, they eventually become tangled in each other, which drastically impedes

further motion. Because this process happens as the material is “worked”, it is

called work hardening. A simple example of work hardening can be observed when

you try straighten out a paper clip.

We see that the dynamics of a material on microscopic scales are very compli-

cated. This is the challenge of materials modeling: the number of processes that

take place, on many length scales. There are two contexts, roughly speaking, in

which materials scientists seek to usefully model material microstructure. First is

10

the processing of the material, which may consist of various treatments involving

heating and working the material (“heat ’n’ beat”). The aim of processing is to

produce a microstructure which gives desirable material properties such as high

toughness, or creep resistance, etc. The second context is modeling the material as

part of an engineered structure in order to ascertain its performance and likelihood

of failure under working conditions. Clearly if one had the power to model both the

processing and operational behavior of a material one could then design materials

at will using a computer. This is the holy grail of materials science. Without it,

there is as much artistry as science. New materials are developed by experiment,

literally creating and testing hundreds or thousands of variations in composition

and processing in order to find the optimal values.

In the last five years the so-called multiscale modeling has been much publi-

cized as the key to modeling materials realistically. In its broadest sense it simply

means any method of modeling a system which explicitly takes into account the

disparate length scales ranging from the atomic (or even electronic) at one end

to the macroscopic/engineering length scale at the other end. Explicitly taking

the different length scales into account generally involves the use of different de-

scriptions of the material at different length scales. This for example means the

positions and velocities of atoms at the atomistic scale, the positions and configu-

rations of point, line and surface defects at the mesoscopic scale, and continuum

fields at the macro-scale. Fracture is the archetypal multiscale process, since the

defining events, namely the separation of atoms (“bond-breaking”) are atomic-

scale phenomena, while the source of energy driving these events is large scale

elastic deformation.

Two paradigms of multiscale modeling have emerged. The first, called by some

11

the Coupling of Length Scales refers to simulations which use different simulation

techniques simultaneously to model different parts of the system in a hierarchical

manner. For example a simulation of fracture involving tight-binding (quantum-

mechanical) molecular dynamics for the atoms closest to the crack tip, classical

potential molecular dynamics for a much larger layer of atoms surrounding these,

and continuum mechanics (involving finite element calculations) to deal with the

outermost and largest part of the system. The second kind of modeling has been

referred to as parameter-passing sequential modeling (see MRS Bulletin, March

2001, Editorial), or more frequently as the transfer of information across length

scales. In this case a simulation only involves one length scale and one description

of the material at a time. The output of one simulation is used to give parameters

for another simulation at a larger length scale. Given a simulation of a material

at some relatively small scale, the “micro-scale”, what information is needed for

a complete description at the larger length scale (which we shall call the meso-

scale—although either or both scales might be termed micro- or meso- in a different

context)? There are two aspects to consider: choosing a description at the meso-

scale, for example a continuum description in terms of fields and defects, and

devising rules for the evolution of these quantities—field equations (PDEs), or

equations of motion for defects (ODEs). These rules should contain as completely

and as accurately as possible the physics from the micro-scale, to be extracted

somehow from micro-scale simulations. In many cases what it comes down to is

choosing a functional form to fit data from the lower scale simulation (in some

cases the data come from experiment) for use in the upper scale simulation.

12

1.2 Parameter Passing: small scales to large

Matter, upon sufficiently close examination, is seen to consist of atoms. In metals

these are not arranged randomly, but for the most part are arranged in a regular

lattice, or crystal. Atoms in a crystal2 do not give rise to particularly complicated

macroscopic behavior; it is not hard to tune an empirical law for the atomic in-

teractions (usually known as an interatomic potential) to yield the correct (i.e.

experimental) density/lattice constant, first order (linear) elastic constants, etc.

at least at zero temperature. It takes a little more work to get correct temperature

dependence, nonlinear elastic constants, phonon dispersion curves etc. However

these quantities are all readily available from experiment and it is straightforward

to construct continuum theories from them. For atoms in a crystal, the atomic

description offers little advantage. This is particularly the case given that from a

macroscopic point of view there are way too many atoms for practical simulation.

As we emphasized in the previous section, it is the defects of a crystal, of various

kinds, that tend to dominate material deformation, fatigue and failure beyond

linear elasticity. This is the case even though the number density of defects is

much smaller than that of atoms. It seems that we need an atomic description to

satisfactorily describe defects—since their very definition is terms of atoms—but

given that most of the atoms in a material are in regions of homogeneous or nearly

homogeneous deformation relative to a perfect crystal, we would still seem to be

wasting a lot of computational effort in simulating them. There are ways around

this conundrum. One is to retain an atomic description close to defects, and use

a continuum description far away. This is the first type of multiscale modeling

mentioned above, which will be discussed further in the next section.

2assuming the crystal to be large so that surface effects are small

13

The other type of multiscale modeling is based on idea that the various de-

fects can be represented as various lower-dimensional entities which can be located

within the continuum and assigned their own dynamics: rules of formation, mo-

tion, interaction, destruction, etc. An important point to which we shall return

again and again in this thesis, is that the rules must include dependence on all

possible parameters. This includes the geometry of the defect as well as back-

ground fields like stress/strain, temperature, electric field, impurity concentration

etc. Such information is carried implicitly by the atoms in the atomistic descrip-

tion, but we have to make it explicit in the continuum description. Thus we make

a transition or paradigm shift from a defect being an emergent property from an

atomistic description to being a primary entity in a continuum simulation. There

are several common features of this transition:

1. Though we are reducing the description by leaving out atoms, the description

of a continuum entity is usually more complicated geometrically necessitating

functions of many variables. For example, diffusion along a grain boundary

involves three functions (three diffusion constants in 2D) of five variables (5

parameters needed to specify a grain boundary).

2. The continuum description is mathematically more precise, requiring for ex-

ample, one to define the exact location of the vacancy, dislocation or crack

tip, which can only be obviously identified to within a lattice constant in the

atomistic description. Subtleties emerge due to this ambiguity which require

care in the construction of rules.

3. There is generally some singularity in the continuum description, usually

associated with the basic physics of the defect.

14

4. Efficient functional forms are needed to represent rules. These functional

forms are fit to data from atomistic simulations. By efficient is meant that

the form has a minimum number of fitting parameters, capable of being

determined with a minimum number atomistic calculations. Often, efficiency

is achieved by building the form of the singularities into the function.

5. One needs to pay attention to possible new physics associated with the sin-

gular points of the continuum description.

1.2.1 Examples: some specific defects

1. Vacancies. A vacancy is a missing atom. In an atomistic simulation its

presence can be inferred by identifying a set of surrounding atoms as bound-

ing a “perfect” subset of the crystal and comparing the actual number of

atoms within the boundary with the number expected from the crystallog-

raphy. At not too high temperatures this can be done quite close to the

vacancy—almost one unit cell, thus allowing the location to be specified to

within a lattice constant. This leads to the continuum description of a va-

cancy as a point object. Atomistic calculations are needed then to determine

the rate of formation of vacancies3, the energy barrier (which gives the rate

of diffusion of the vacancy), the elastic fields (which determine interactions

with other defects such as dislocations) and the rate of annihilation with an

interstitial—all as a function of external stress, temperature, etc.

2. Dislocations. A dislocation is defined by a nonzero Burgers vector, which is

the amount by which a path around the dislocation line, in locally “good”

3actually vacancy-interstitial pairs

15

parts of the crystal, fails to close when translated to a perfect crystal. Again,

this path can be brought quite close to the dislocation line allowing a spec-

ification of its location to within a lattice constant. Parameters of the con-

tinuum description include a rate of dislocation nucleation, various energy

barriers determining the motion of the dislocation (e.g. Peierls barrier, kink

formation and migration barriers), the elastic fields carried by the dislocation

(which determine its interaction with other defects) and a rate of annihila-

tion with another dislocation or with a surface—all a functions of external

stress, temperature, orientation, curvature etc. In chapter 2 of this thesis we

present work on 2D dislocations whose aim is to extract a accurate descrip-

tion of the Peierls barrier as a function of external stress. One of the features

of that work is the flexibility built into the boundary conditions by use of

elastic multipoles, whose purpose is to accelerate the convergence (with sys-

tem size) of the measurement of this particular quantity. The ability the

obtain accurate results with a minimal system enhances our ability to most

efficiently extract information from one length scale and communicate it to

the next.

3. Cracks. A crack is a curve bounding two internal free surfaces of the ma-

terial. It can be parameterized as a curve along with a unit vector defined

at each point on the curve specifying the local normal to the crack surface.

The principal rule that is desired in a meso- or macro- scale simulation of

a crack is the crack growth law. Present understanding of crack growth

laws is not complete enough to be able to systematically obtain parameters

from atomistic simulations. Some of the relevant parameters are known from

fracture mechanics [4]: the stress intensity factor (which characterizes the

16

stress concentration near the crack front) or energy release rate (related to

the stress intensity factor: defined in terms of how much elastic energy is

released per unit growth of the crack). However these are properties of the

large scale state of the crack—they characterize how much energy is available

to advance the crack from far away loading. The challenge is then to know

what material properties are to be combined with the loading information

to make a prediction for crack growth. For a brittle material, the caricature

at least is that atomic planes cleave, and all of the elastic energy released

goes into the appropriate surface energy. In this idealization a knowledge of

surface energies of different crystallographic orientations along with barrier

heights for crack advance in different directions within a plane (lattice trap-

ping) is in principle enough to predict the growth law; real brittle materials

do not necessarily cleave perfectly, but their damage zone is small—of or-

der atomic length scale. In a ductile material, a large amount of dislocation

nucleation and motion—plastic flow—takes place, leading to very damaged

crack surfaces–the damage zone might be of order microns. Also, it means

that a lot of released elastic energy—most of it, in fact—goes into plastic flow

and not into surface energy, making ductile materials much tougher in gen-

eral than brittle ones. “Toughness” measures the energy release rate when a

crack actually grows4. Because ductile fracture involves large-scale disloca-

tion activity, typically spread over cubic microns or more, it is not practical

to extract crack growth laws directly from atomistics; intermediate-scale sim-

ulations involving dislocations are necessary.

4If the loading is such that the energy release rate is lower than than the tough-
ness, then the crack will not grow; the meaning of energy release rate is then how
much elastic energy would be released by a virtual extension of the crack.

17

In this section I have concentrated solely on passing from atomistic descriptions

to defect-based descriptions, because this thesis is mostly concerned with these two

levels. However the concepts also apply to parameter passing at larger scales. In

this case one seeks to get rid of even the defects and represent them by fields, such

as dislocation density replacing discrete dislocations, or an orientation distribution

function (also known as texture) replacing grain boundaries. The methodology

here is much less well developed; it is still far from clear what the appropriate

field description is in many cases. It also not understood how best to extract

the parameters—the constitutive laws—from defect simulations to pass to purely

field-based simulations.

1.3 Mixed atomistic/continuum modeling:

to couple, to embed, to extend

The other side of multiscale modeling involves keeping atoms, but only some of the

atoms. One maintains an atomistic description where necessary (in the vicinity

of defects), and uses a coarser description elsewhere. The coarser description can

be either a standard continuum modeling method such as finite elements, or a

description deriving directly from coarse-graining the atomistic description. I will

briefly mention examples of both.

1.3.1 Coupling to finite elements

An example of coupling of standard (time dependent) finite elements to empirical

potential MD (which itself was coupled further in to tight-binding MD) is the work

of Abraham et al. [2, 1, 14]. The system is a piece of silicon containing a inter-

18

nal crack. The central region containing the crack is treated atomistically. It is

surrounded by a finite element region. The sample volume represented by finite el-

ements is more than an order of magnitude greater than that represented by atoms,

but only one quarter the number of degrees of freedom (nodes/atoms). There are

two aspects to any coupling algorithm: kinematics and energetics; these can be

associated with two independent approximations made in going from an atomistic

model to a continuum/coarse-grained model, namely the kinematic approxima-

tion, by which the number of degrees of freedom is reduced, and the energetic

approximation which is whatever approximation is made to avoid calculating the

energy of the continuum/coarse-grained region in a fully atomistic manner. The

kinematics are coupled in this case by making the finite element mesh refine to

the atomic length scale in the vicinity of the boundary; then the nodes become

coincident with atoms. Their energetic approximation is to use the linear elastic

energy computed from the continuum displacement field (given by finite element

nodal displacements and shape functions). The energetic coupling consists of kind

of averaging of linear elastic contributions and interatomic potential contributions

to finite element cells at the boundary. The most important feature of this averag-

ing is that there is indeed a well defined Hamiltonian function of the entire system,

from which forces are derived by differentiation. This importance is emphasized

in Refs. [2, 1, 14].

The advantage with such coupling is that one can make use at least of existing

and standard finite element techniques, and possibly of existing finite element soft-

ware. Going further one could imagine making use even of existing simulations—

that is having a finite element simulation adapt in real time by introducing an

atomistic simulation. Our work in this context is the subject of chapter 5.

19

The drawback in implementations such as that of Abraham et al. is that the fi-

nite element mesh has to be designed with the atomistic simulation in mind because

it needs to be refined to the atomic length scale near the boundary. This makes it

somewhat difficult though not impossible to adapt a finite element simulation to

make a hybrid finite-element/atomistic simulation.

1.3.2 The quasi-continuum method

The quasi-continuum method developed by Tadmor et al. [70, 69, 51] is described

as being all atomistic, in that at no point is a constitutive law used to calculate

energies—all energies are purely atomistic. It is derived as a coarse-graining of

standard atomistics a subset of atoms, say of a crystal, is identified as being master

atoms, whose positions are independent degrees of freedom. These atoms are taken

to form the nodes of a finite element mesh, the positions of other atoms, known

as slave atoms being given by interpolation using standard finite element shape

functions. Fully atomistic regions are identified as regions where all atoms are

master atoms, typically near defects. Clearly the kinematic coupling between

coarse-grained and fully refined regions is of the same type as with Abraham et

al, namely a refining of the mesh in the coarse-grained region to the atomic length

scale, although the boundary is more of an emergent property than an explicit

one in this case. In its energetics, the is atomistic everywhere. However it is

still necessary to avoid computing forces on every atom in the standard MD way

(force calculations, after all, are what dominate the time in standard MD). This is

done by ignoring the nonlocal nature of the interatomic potential in coarse-grained

regions, and assigning each element an energy equal to its volume times the energy

density of an infinite crystal homogeneously strained according to whatever the

20

strain in that element is (this being a function of the master atoms’ positions

only). Thus atoms in the coarse-grained region are called “local atoms”, and those

in the fully refined region “non-local atoms”. Some care is taken to match and

weight contributions from boundary atoms. However it is found that the ideal

lattice is not the ground state of the resulting energy functional. This is because

a non-local atom near a boundary with local atoms (where “near” means “within

a potential cutoff-distance of”) does not receive the same force contributions from

the non-local atoms on one side of it as from local atoms on the other and thus

is not balanced. Corrective forces are therefore added, known as “ghost forces” in

order to balance the discrepancy and stabilize the perfect lattice; however these do

not derive from a energy functional, which is the principal weakness of the method.

In particular it makes dynamics (as opposed to statics—incremental loading and

relaxation) impossible because energy is not conserved and standard algorithms

go unstable[41].

In the quasi-continuum method there is no clear separation between coarse-

grained and fully-refined regions, they are more or less intermingled. When a

dislocation wants to leave the fully refined region, a refining of the mesh ahead of

it, to convert coarse-grained material into refined material, must take place. Then,

to avoid having trails of fully-refined material everywhere, wasting computer time,

the material must be coarsened again after the dislocation has passed through,

which turns out to be almost as computationally intensive as leaving it refined

[19].

21

1.3.3 FE meets Digital Material: OFE/MD

In our implementation of a coupling between MD and finite elements described

in chapter 5, we seek to overcome the problems in the above two methods by

using a somewhat simpler approach. One of the motivating factors in the work

the idea that an MD simulation could be created within a previously existing

continuum (finite element) simulation. This would happen when some detection

mechanism locates a local hot-spot of stress or temperature or both, from which it

is anticipated that new physics at the atomistic level might play a significant role

in the further evolution of the material. To be specific, for testing, the continuum

model is a finite element mesh with a crack. The MD simulation is to be placed

in a small region on the crack front. In contrast to the other hybrid methods, the

mesh is not refined to the atomic scale—it cannot be, since it existed before the

MD simulation did, and we wish not to have to change it to accommodate the MD

simulation. In fact, the MD region overlaps the continuum region in that this part

of space is both occupied by atoms and covered by parts of finite elements. The

Hamiltonian of the combined system is carefully constructed, using a transition

function to control the weighting of the contributions to the energy density from

the atomistic and continuum models. Note that in contrast to the quasi-continuum

method we do have a well-defined Hamiltonian. Ghost forces are still apparent, but

their effect on atomistic processes is reduced because the boundary between local

and non-local energy is typically far from the region of interest, and is smoothed

out by the transition function.

22

1.4 Object-oriented, Design Patterns-enabled

molecular modeling: Digital Material

A key part of this work is the attention paid to software development. We have de-

veloped a powerful molecular dynamics (MD) package, known as Digital Material,

which will be described in some detail in chapter 4. The main reason for adopting

a modern software engineering approach to designing an MD package is that re-

cently, in particular, MD has become a lot more than it once was. Traditional MD

simulations, as described for example by Allen and Tildesley [3], involve mostly

using periodic boundary conditions and doing time averages of various quantities

to compute thermodynamic properties of solids and liquids. However, multiscale

modeling requires much more than this. Coupling to continuum models requires

different kinds of boundary conditions and constraints. Understanding long time

dynamics involves identifying local minima of the potential, computing energy

barriers, transition states and paths. For example, the method of Temperature

Accelerated Dynamics of Voter and Sorenson [61] combines running molecular dy-

namics at a high temperature, identifying transitions from one local minimum to

another, reflecting trajectories back into the initial well (in order to sample more

barriers) and computing energy barriers between minima, in order to extrapolate

the low temperature long time dynamics. Thus the method combines standard

MD, minimization and techniques for finding barriers (several techniques exist;

see [30]), as well as infrastructure-operations such as making copies of a system,

comparing two states of a system, etc. Furthermore the barrier finding methods

themselves often involve making copies, modifying forces and other non-standard

manipulations. Thus in the context of materials modeling using MD or more gen-

23

erally, atomistics5 we see that flexibility is needed on many fronts, given the variety

of:

• Ways we want to organize the atomic variables, meaning mainly the position

and velocity arrays (for the purposes of having different subsets for boundary

atoms or core atoms, or for making copies for the Nudged Elastic Band

method, etc.)

• Types of boundary conditions (periodic, or embedded in continuum)

• Constraints that may be put on the system

• Adjustments to be made to the forces (e.g. for the Nudged Elastic Band

method)

• Ways of evolving the system (accelerated rather than real time)

• Analyses that can be carried out, including visualization, computing statis-

tical averages, stress intensity factors (for cracks).

We have always needed a variety of interatomic potentials to represent different

materials. In old-style scientific programming, this was achieved by substituting

in one subroutine for another, and recompiling. The variety of combinations now

possible, and the need for a large degree of interoperability, mandates an object-

oriented programming (OOP) approach, paying great attention to the design of

the software. In the last decade the software-engineering community has realized

how good OOP techniques tend to recur in different contexts. This has led to

5Many people take MD to mean strictly standard dynamics, which does not
include for example, minimization techniques and barrier finding techniques, which
are naturally all part of the same package. When I feel the need to be explicitly
general I will use the term “atomistics” rather than MD.

24

the concept of Design Patterns, introduced by the book of the same name [24].

A design pattern is an abstraction of a successful OOP technique. It is a named

protocol for what classes should exist, and what relationships they should have with

each other in order to solve a certain class of problem, in a way that optimizes code

readability, maintainability and re-usability. In the context of named patterns, a

programmer can more quickly identify which one will best suit his needs for a

particular situation—without the name as a handle for a previously tried and

tested method, he or she may have eventually reached a similar design, but not as

quickly. The naming and categorizing of successful techniques is a powerful aid.

In chapter 4 of this thesis, we describe our MD package, DigitalMaterial, that

has been designed with these principles in mind. It is important to note that no

performance compromise has been made; this is due to the use of vectorized ar-

ray operations at the lowest level whenever possible, although a user of the code

generally does not need to be aware of how this is done. Two main examples of

Design patterns that have been used include the Strategy Pattern in the context of

the NeighborLocator component and the Observer pattern in the context of mea-

surements and analyses to be made on the system, including visualization. Others

include Singleton, Factory Method, Iterator and Mediator. As well as providing

a variety of interatomic potentials, boundary-conditions, “mover”-algorithms, we

also have provided tools for setting up simulations, classes which fill a given shape

in space with atoms occupying sites of an arbitrary lattice. We have seen codes

which were fixed to only deal with one particular crystal orientation, or similar,

and have found this kind of flexibility of great use when starting a new application.

25

1.4.1 Python drives C++ creates power with control

While the use of object-oriented languages such as C++ has been growing steadily

in the last decade, a relatively more recent development is the recognition of the

advantages offered by scripting languages, particularly Python[53]. Scientists in

the past have used for example Perl to manage simulation jobs, dealing with input

and output files etc. Python, like Perl, is a scripting language, but with full

object-oriented capability, as well as a much more user-friendly syntax. There is a

large and growing list of available modules for Python, including Numeric Python

(NumPy), offering fast array and matrix operations. But by far what most makes

Python useful for our purposes is the existence of David Beazley’s program SWIG

(Simplified Wrapper and Interface Generator) [68], which allows easy interfacing

of Python to C or C++ code. In particular, classes in a C++ library, such as our

Digital Material library, can be shadowed in Python thus allowing almost real-time

control using the python interpreter. The ability to directly manipulate the C++

objects through python is of great benefit for debugging applications, because the

compile cycle is avoided. Apart from this, applications which use the underlying

C++ library can be quickly developed using Python.

Two other MD packages which combine Python with C/C++, that have been

developed recently are SPaSM (Scalable Parallel Short-range Molecular dynamics)

by Beazley and Lomdahl of Los Alamos National Lab [11]and MMTK (Molecu-

lar Modeling Toolkit) by Hinsen [33]. SPaSM was originally written in C, and

hence is not object-oriented. Its primary strength is that it has been optimized for

large scale parallel simulations. From what the author has seen of its source code,

it does not seem to particularly flexible in terms of boundary conditions or the

range of algorithms that can be applied. Wrappers for Python were subsequently

26

added—in fact this was the origin of SWIG, David Beazley being an author of

SPaSM. MMTK had quite a different story: it was written primarily in Python,

with performance critical parts being written as C extensions. It is designed in

a fully object-oriented manner, and incorporates several of the design principles

that Digital Material does, such as separating the code for calculating forces from

the code that implements specific algorithms for dynamics or energy minimiza-

tion, separating out the boundary conditions (“universes”) and using third-party

libraries when possible for standard tasks (e.g. LAPACK for linear algebra and

NetCDF for binary storage, both of which are used by Digital Material). The data

structures in MMTK reflect the chemistry background of its author, which facility

included for atoms, groups, peptides, and proteins. The interatomic potentials it

has reflect this type of application, and do not include the potentials commonly

used for metals or other materials (e.g. silicon) of interest to the materials modeling

community.

In designing Digital Material, we have chosen to put most of the work into

C++ code, providing a library that can either be used by a pure C++ application

[the user provides a main() function], or as a module to be imported into Python

[the user writes a Python script6]. The amount of Python code in applications in

the author’s experience is between 500 and 1000 lines. The latter figure echoes a

target declared at a project meeting for another materials-modeling/engineering

software project [5], where the stated goal of the project was to develop a set of

software tools such that a new graduate student with no prior experience could

within a month, using less than 1000 lines of code, write an application that could

6Indeed the process of converting a C++ main function to a python script is
almost trivial: the addition/removal of semi-colons, the replacement of periods by
arrows or vice versa, and the altering of syntax for for loops are most of the work.

27

solve engineering problems involving complex geometry, coupled solid and fluid

simulations, involving a variety of mathematical models.

As an example of the power offered by Digital Material, the author was asked by

an experimentalist to run simulations of scattering of atoms by a surface. A version

of the Python script which worked, to some extent, took two hours to complete.

A re-implementation of the “Safari” algorithm [27] for efficient sampling of impact

parameters took only another few hours. There was of course a certain amount of

debugging to be done, but the limits at this point were more to do with the science

than with programming; and this is exactly what we seek: to allow a researcher

to concentrate on the novel aspects of a problem rather than be spending time

re-implementing and debugging code which has been written many times before

before in a different context.

Chapter 2

Dislocation Mobility: Accurate

Peierls Barriers

2.1 Introduction : mobility of dislocations

The work described in this chapter falls within the “parameter-passing” kind of

multiscale modeling. It concerns the accurate calculation of dislocation mobility

from atomistic simulations. Dislocation mobility has particular importance in

multiscale modeling, in view of its fundamental role in plasticity, which is often

the key ingredient in multiscale phenomena. Dislocation dynamics simulations[21,

56, 75] model dislocations explicitly as points in 2D or discretized curves in 3D,

with rules for calculating the force on each dislocation or part of a dislocation from

the local stress, rules for specifying the velocity in terms of the forces and rules

for dealing with the creation, destruction and intersections of dislocations. The

motion of a dislocation is governed by configurational changes near the core, and

hence atomistic modeling is the natural technique to study it. The aim of such

modeling is to determine velocity (or equivalently mobility, the ratio of velocity to

28

29

force) of dislocations in response to an applied stress at a particular temperature,

when subject as well to other fields: electric field, impurity concentration etc.

The velocity of a dislocation moving under an applied stress field is generally

assumed to depend only on the component of the stress which shears the slip

plane, called the resolved shear stress (RSS). It is known that the driving force on

a dislocation depends only on the RSS, but this does not preclude a dependence

of the mobility on other components of the stress tensor—the distinction being

one between kinetics and thermodynamics. Experimentally, the dependence of

dislocation velocity on stress is typically fit with an equation of the form

v = v0

(

τ

τ0

)m

(2.1)

where τ is the RSS, τ0 is called the critical resolved shear stress (CRSS) and v0

is the velocity when τ = τ0. The fitting parameters are τ0, v0 and the exponent

m and these in turn depend on temperature as well as the crystallographic slip

system[42]. Furthermore different values are measured for a crystal in tension than

for one in compression; this is known as the tension-compression asymmetry, and

is an sign of the dependence of the mobility of dislocations other parts of the stress

field.

It is well known[34] that at low temperatures and stresses the dynamics of dis-

location are primarily due to glide and in some elements are dominated by the

existence of an energy barrier, the Peierls barrier, between neighboring configura-

tions (some transition metals, like Cu, have absurdly small Peierls barriers). In 3D

the glide process cannot happen along the whole dislocation line at once, but oc-

curs as a result of kink-pair nucleation and kink-migration. However in 2D, where

the dislocation is a point-like object, overcoming the Peierls barrier is a single step

30

process, and the resulting mobility is well characterized by an Arrhenius law:

v(σ, T) = bν exp(−EB(σ)/KBT) (2.2)

where b is the Burgers vector, ν is an attempt frequency, and σ is the applied stress

tensor. We must calculate the energy barrier EB as a function of σ, and present

the information in a compact functional form. We have focused on dislocations in

two-dimensional crystal (which are necessarily edge dislocations) so that we could

develop a flexible boundary method of evaluating energy barriers in the context of

a relatively simple system.

There is another aspect of modeling defect dynamics directly which has only

been minimally included in existing simulations. This is the effect that the defect

has on its environment. In a dislocation dynamics simulation it is important to be

able to calculate the stress field due to a dislocation. To leading order this is given

by the standard solution from linear elasticity, known as the Volterra solution,

which gives the stress field due to a single dislocation at the origin:

u(V)
x =

b

2π

[

tan−1 y

x
+

xy

2(1 − ν)(x2 + y2)

]

, (2.3)

u(V)
y = − b

2π

[

1 − 2ν

4(1 − ν)
log(x2 + y2) +

x2 − y2

4(1 − ν)(x2 + y2)

]

. (2.4)

However this may not be enough when two dislocations approach close to one

another—the stress field close to a dislocation is not necessarily the simple leading

order formula but may have higher order terms (i.e. terms which fall off as a

higher power of r). In principle the complete description of a dislocation, or of

any defect, when represented as a primitive object in a simulation, must include all

terms of the stress field. If the stress field is expressed as a multipole series, then the

31

rc

core

boundary

rc rc

region 2

region 3

region 1

rc

rc

region 3

region 2

(core)

region 1

Figure 2.1: Division of atomic model into different regions when using fixed bound-

aries, original Flex-S scheme and extended Flex-S scheme. rc is the cutoff distance

of the potential.

coefficients of the terms in the series should be considered as extra numbers ‘carried’

by the dislocation as it moves in the simulation, in addition to the Burgers vector.

This notion has influenced our choice of boundary conditions in our atomistic

simulations. In embedding our atomistic model in an infinite continuum, we do

indeed employ a multipole series to represent the elastic displacement field, rather

than for example use a Greens function technique. The purpose is to be able to

quote the values of the coefficients as properties of the dislocation (which may

depend on external fields).

2.1.1 Flexible boundary conditions

The earliest work on dislocation core structure [39, 26] employed boundary condi-

tions consisting of a surrounding layer of atoms fixed in positions determined by

the anisotropic linear elastic (Volterra) displacement field of a dislocation (see the

first diagram in Fig. 2.1.1). Details of the core structure turned out to depend

32

significantly on the size of the system and did not converge until the system was

quite large. This is despite the fact that the displacements at the boundaries are

accurately described by the Volterra solution even when the system size is small.

For example, the Volterra solution displacements are off by 1% of a lattice con-

stant at distances of five lattice spacings, and 0.1% at ten lattice spacings, but the

computed energy barrier for Lennard-Jones potentials changes by a factor of three

(partially because the true barrier is rather small).

Sinclair[59] was among the first to employ flexible boundary conditions in dis-

location core-structure calculations. He started with a general solution of linear

anisotropic elasticity[23] consisting of the logarithmic (O(r0)) Volterra terms as

well as a series of terms going like rn where n ranges over all integers. The terms

with n > 1 do not appear in an infinite system; the n = 1 term, which gives rise

to a constant stress at infinity, to be interpreted as the applied stress, which we

use but Sinclair did not. By including a truncated set of the negative-n terms in

the formulas for the boundary displacements, and allowing the coefficients of these

terms to vary as part of the minimization to find the core structure, Sinclair was

able to get accurate results with a much smaller system. In Sinclair’s method there

are three regions, numbered I, II and III (middle diagram in Fig. 2.1.1). Region

I contains unconstrained “core” atoms. Regions II and III contain constrained

boundary atoms, each region having a thickness equal to the cutoff distance. The

energy is taken to be the atomistic energy of the infinite crystal; forces on the

boundary parameters being determined by weighted sums of the forces on all con-

strained atoms in the crystal. Because the constraining displacement field satisfies

linear elasticity, atoms outside region II are assumed to be in equilibrium and

therefore have zero force, thus the sum needs to include only region II atoms. The

33

purpose of region III atoms is to provide a full set of neighbors for region II atoms.

Because of the approximation of zero forces outside region II; the generalized forces

acting on the displacement coefficients are not derived from a well-defined energy.

Following this, Sinclair and other workers[25, 60] developed several alternative

schemes for employing flexible boundaries with names such as Flex-I, Flex-II etc.

The latter, Flex-II, has been more widely used[54] as it was found to be more

computationally efficient. Rather than represent the continuum displacement field

in terms of a general solution to the elasticity equations, Flex-II at each step

in the minimization uses a Green’s function technique to compute corrections to

the displacement field arising from force imbalances at the coupling region (the

boundary–equivalent to region II). The assumption regarding forces outside region

II also features in the Green’s function methods. The original method, known

as Flex-S, has gone somewhat out of fashion for the purposes of dislocation core

structure calculations.

The aim of the present work is to compute the energy barrier associated with

the transition from one local minimum of energy to a neighboring one; this is the

Peierls barrier. Since now we consider motion of the dislocation it is clear that at

the very least, the boundaries should be flexible enough to allow for the motion

of the dislocation. From the point of view of the elastic displacement field this

appears as a change in the center with respect to which the distance and angle

appearing in the formulas are computed. Ohsawa and Kuramoto[50] implemented

a Flex-S scheme in order to measure the Peierls stress for a dislocation. They

kept a fixed nominal center of the dislocation—all the variation of the boundary,

including effective motion of the center was in the coefficients of the higher order

34

terms1.

2.2 Boundary kinematics: Flex-S with moving

center

For our Peierls barrier calculations we have employed a Flex-S type scheme. How-

ever our method differs from Ohsawa and Kuramoto or Sinclair in that we allow

the center of the dislocation, that is the center with respect to which the terms

in the displacement field are calculated, to move. The motivation for this was

discussed above. Since the series expansion of the displacement field is a general

solution without varying the center—translation of the field configuration can be

represented by appropriate changes in the coefficients of the terms—this introduces

two extra unnecessary parameters into the description of the continuum field. In

order to have well defined parameters, we need to place two constraints on the

higher order coefficients. This is an arbitrary choice, and thus quoted coefficients

must always refer to this choice, although ultimate quantities, such as the mobility,

should be independent of it. This is somewhat analogous to a gauge transformation

in electromagnetism. In addition to the “negative-n” terms in the general solution

(those which die away with distance), we include the first positive-n term, which

is the constant strain term, which couples to the applied stress at infinity. Even

higher n terms could be included for the purpose of simulating a nearby surface

for example. Our method also differs in the way in which the dynamics of the

boundary is derived; in particular there is a well-defined energy functional which

1Note that the coefficient of the Volterra term cannot vary, as it is determined
by the Burgers vector.

35

blends atomistic energy from the core of the dislocation with continuum elastic

energy from the far-field region. Region III still defines the boundary of atoms

represented in the simulation, but region II only exists for a practical reason2 and

no longer has a role in defining the energetics. The boundary of atomistically

counted energy is a separate boundary one cutoff distance within the boundary of

region III (see the third diagram in Fig. 2.1.1).

In the following sub-sections we review the general solution to two-dimensional

elasticity and describe the kinematic details of how this is used to define atomic

positions. In subsequent sections we describe our atomistic potential, our contin-

uum elasticity analysis to determine the far-field contribution to the energy, our

coupling technique and details on how barriers are computed (some adjustments

to the Nudged Elastic Band method are required to deal consistently with the

boundary parameters.). Then we describe our method of compactly representing

the barrier data for many stresses before presenting results and discussion.

2.2.1 Linear elasticity: general solution in 2D

Since we have chosen to use a simple pair potential (Lennard-Jones) in two di-

mensions, the lattice is triangular and the linear elastic constants are isotropic3.

Sinclair and other workers modeling dislocations used potentials with anisotropic

elastic constants and thus used the general solution developed by Eshelby et al.[23]

for the case of linear elasticity in a three dimensional material but where there is a

direction along which fields do not vary. However it is not straightforward to apply

2namely, to make dynamics of core atoms more efficient by excluding atoms
beyond one potential cut-off distance.

3The triangular symmetry forces the lowest order elastic constants to be
isotropic

36

the anisotropic formulas to the case of an isotropic material. Solutions which are

different in the anisotropic case merge and become the same when elastic constants

corresponding to isotropy are inserted, and thus half of the solution space is miss-

ing. Thus we use a separate solution presented by Timoshenko for the isotropic

case. It has the following form4 (see appendix 2.A for a discussion on the relations

between elastic solutions and elastic constants in 2D and 3D materials):

u = − 1

4(1 − ν)
y ψ + 1

2
Φ + ψ1 (2.5)

v = − 1

4(1 − ν)
y φ+

1 − 2ν

4(1 − ν)
Ψ + φ1 (2.6)

where φ+iψ = f0 and φ1+iψ1 = f1 are arbitrary analytic functions and Φ+iΨ = F

is the integral of φ+ iψ = f0. Using analyticity we can write

f0(z) =

∞
∑

m=−∞
C(0)

m zm (2.7)

f1(z) =

∞
∑

m=−∞
C(1)

m zm (2.8)

At this stage we will write a particular term, C
(0)
−1 , as b

πi
, anticipating the interpre-

tation of b as the Burgers vector. Integrating the series we have

F =
b

πi
log(z) +

∞
∑

m=−∞,m6=1

C
(0)
m

m+ 1
zm+1 + const (2.9)

The various terms in the Laurent series of f0 and f1 give rise to terms in the

displacement field which have corresponding r-dependence, namely rm for integer

4Timoshenko presents the solution for plane stress. From a comparison of his
eqns. (91) and (92) we see that the substitution 2

1−ν
→ 2(1−ν)

1−2ν
, equivalent to

ν → ν
1−ν

will convert to the plane strain case.

37

m. For each power m, there are four real parameters, two from the appropriate

term in each Laurent series. Note in eqns. 2.5 and 2.6 that because the function

f0 appears both integrated as well as unintegrated but multiplied by y, the index

of its coefficients contributing to a given power of r in the displacement field are

off by one compared to those of f1. It is convenient to consider m > 1, m = 1,

m = 0 and m < 0 separately. Terms with n > 1 cannot appear in an infinite

crystal because the energy associated with them grows faster then the volume (the

energy density goes like r(m−1)2). In a finite crystal they would be required in

order to satisfy boundary conditions, but would be very small near the dislocation

core. The m = 1 terms correspond to constant strain (and rotation) and are

important for specifying an applied stress. m = 0 includes constant terms as well

as logarithmic terms, such as the Volterra formula for the displacement field of

a dislocation. Terms with m < 0 are called the multipoles of the elastic field.

Because the displacement field of these terms dies away quickly they are generally

not associated with boundary conditions at the physical boundary of the crystal

but rather are determined by the structure of the dislocation—if the non-elastic

core is removed then they may be considered as arising due to boundary conditions

on the surface so created. The elastic energy associated with such terms is finite

at infinity, but would diverge at the origin were it not cut off by the core.

We now present explicit expressions for the different powers of r in the displace-

ment field, in terms of the Laurent or multipole series coefficients, not including

m > 1. For m = 1, when we take the constant part of f0 and the part of f1 that

is linear in z, we get as we must a linear function of position. There is no point in

writing the expressions in terms of the Cs since it is much more straightforward to

simply specify a symmetric constant strain tensor. For m = 0, taking the constant

38

term in f1 clearly just gives a constant term in the displacement field which we

choose so that in combination with the other m = 0 terms from f0 we get the

standard Volterra formula, eqns. 2.3 and 2.4; specifically, from f0 we need the 1/z

term, whose coefficient we have already written as b/(πi). The two real parame-

ters correspond to the components of the Burgers vector; by taking b to be real we

make the Burgers vector lie in the x-direction. Then we have:

u = − 1

4(1 − ν)
yIm

(

b

πiz

)

+ 1
2
Re

(

b

πi
ln(z)

)

=
b

2π

(

θ +
1

2(1 − ν)

xy

x2 + y2

) (2.10)

v = − y

4(1 − ν)
Re

(

b

πiz

)

+
1 − 2ν

4(1 − ν)
Im

(

b

πi
ln(z)

)

= − b

2π

(

1 − 2ν

4(1 − ν)
ln(x2 + y2) − y2

2(1 − ν)(x2 + y2)

) (2.11)

which becomes the Volterra solution (eqns. 2.3 and 2.4) when the constant trans-

lation −b
8π(1−ν)

is added to v. Now let us consider m < 0. Since we will no longer

be concerned with m > 0 we will make a slight notation change, and from now on

refer to terms as 1/rn, with n > 0. For the most part we will deal separately with

the linear (constant strain) term because it couples to the applied stress, except

in a few places where it will be necessary to use m rather than n. Using n, the

indexing of the Laurent coefficients will contain minus signs and will remind us

that we are talking about negative powers of r. So for the multipoles we take

f0 =
C

(0)
−(n+1)

zn+1
⇒ F (z) = −

C
(0)
−(n+1)

nzn
and f1 =

C
(1)
−n

zn
(2.12)

Upon taking the real and imaginary parts and putting everything in terms of r

and θ, we arrive at the following formulas:

39

u = − 1

4(1 − ν)

sin(θ)

rn

(

−ReC(0)
−(n+1) sin((n + 1)θ) + ImC

(0)
−(n+1) cos((n+ 1)θ)

)

− 1

2nrn

(

ReC
(0)
−(n+1) cos(nθ) + ImC

(0)
−(n+1) sin(nθ)

)

+
1

rn

(

ReC
(1)
−n(− sin(nθ)) + ImC

(1)
−n cos(nθ)

)

(2.13)

v = − 1

4(1 − ν)

sin(θ)

rn

(

ReC
(0)
−(n+1) cos((n+ 1)θ) + ImC

(0)
−(n+1) sin((n+ 1)θ)

)

− 1 − 2ν

4(1 − ν)

1

nrn

(

ReC
(0)
−(n+1) − sin(nθ) + ImC

(0)
−(n+1) cos(nθ)

)

+
1

rn

(

ReC
(1)
−n(cos(nθ)) + ImC

(1)
−n sin(nθ)

)

(2.14)

At this point let us change notation for the coefficients and set d
(n)
0 = ReC

(0)
−(n+1),

d
(n)
1 = ImC

(0)
−(n+1), d

(n)
2 = ReC

(1)
−(n) and d

(n)
3 = ReC

(1)
−(n). We now write the general

solution for negative multipoles as

~u = (u, v) =
∑

n,j

d
(n)
j ~u

(n)
j =

∑

n

~d(n) · ~U (n) (2.15)

where ~u
(n)
j = (u

(n)
j , v

(n)
j) and

40

u
(n)
0 =

1

rn

(

sin(θ) sin((n+ 1)θ)

4(1 − ν)
− cos(nθ)

2n

)

(2.16)

v
(n)
0 =

1

rn

(

−sin(θ) cos((n+ 1)θ)

4(1 − ν)
+

(1 − 2ν) sin(nθ)

4n(1 − ν)

)

(2.17)

u
(n)
1 =

1

rn

(

−sin(θ) cos((n+ 1)θ)

4(1 − ν)
− sin(nθ)

2n

)

(2.18)

v
(n)
1 =

1

rn

(

−sin(θ) sin((n + 1)θ)

4(1 − ν)
− (1 − 2ν) cos(nθ)

4n(1 − ν)

)

(2.19)

u
(n)
2 =

− sin(nθ)

rn
(2.20)

v
(n)
2 =

cos(nθ)

rn
(2.21)

u
(n)
3 =

cos(nθ)

rn
(2.22)

v
(n)
3 =

sin(nθ)

rn
(2.23)

To illustrate the form of each terms, the four n = 1 fields are plotted in Fig. 2.2.

The easiest to understand are the j = 2 and j = 3 fields. Here the angular

dependence is simply that the direction of the displacement field vector rotates n

times as the field point makes one full rotation about the origin. The difference

between them is whether the displacement is tangential (j = 2) or radial (j = 3)

at θ = 0. The n = 1, j = 3 field is important because it represents a constant

volumetric expansion (the integral around a circle is independent of radius).

We also use the derivatives of these expressions with respect to the field vari-

ables x, y 5, however we will not reproduce the expressions for the derivatives here.

5note that although we simplify expressions by writing them in terms of r and θ
we are considering our coordinates to be Cartesian for the purposes of derivatives,
etc.

41

Figure 2.2: Plots of the n = 1 displacement fields; clockwise from top left: j =

0, 1, 3, 2.

42

2.2.2 Multipole coefficients and center as boundary de-

grees of freedom

We wish to define the degrees of freedom for the boundary atoms as the center

of the dislocation (2 parameters) as well as the coefficients of the multipole terms

up to some order N (4N parameters). However as mentioned above, if we allow

the center to move there are too many parameters in the solution. The general

solution is complete with respect to any center, so simply allowing the center

to move will not gain flexibility but rather destroy uniqueness (and thus cause

numerical problems). The number of parameters must be conserved. We can

see the relationship between the motion of the center and changes in multipole

coefficients by taking the general solution referred to a center ~c = (c1, c2) and

Taylor expanding about the origin. In eqn. (2.15) we introduced the notation

~d(n) = (d
(n)
0 , d

(n)
1 , d

(n)
2 , d

(n)
3) and ~U (n) = (~u

(n)
0 , ~u

(n)
1 , ~u

(n)
2 , ~u

(n)
3); we will use this now

for convenience. We consider only negative (and zero6) multipoles indexed with

nonnegative n.

~u(~x− ~c) =
∞

∑

n=0

~d(n) · ~U (n)(~x− ~c) =
∞

∑

n=0

∞
∑

m=0

~d(n) · (−1)m

m
(∂ici)

m~U (n) (2.24)

(∂i = ∂/∂xi). Consider differentiating ~U (n) in the direction ~c. This term goes

like 1/rn, so its derivative, and hence the first order correction term in the Taylor

series, goes like 1/rn+1. Moreover, this correction is also a solution of the equations

of elasticity7. But we know the four “basis functions” for solutions that go like

6The meaning of ~u
(0)
j and d

(0)
j will be clarified below.

7The sum of the Taylor series corrections is the difference between two solutions,
and so is a solution, and the division of a solution into terms with different powers
of r is unique, so each term is itself a solution.

43

1/rn+1, they constitute the term ~U (n+1). Thus we can write the derivative along ~c

as a linear combination of components of ~U (n+1):

(ci∂i)~U
(n) = M(~c, n) · ~U (n+1) (2.25)

M(n) is a matrix that is determined by a straightforward analysis. For n > 0 we

have

M(~c, n) =





















cx(n+ 1) cy(n + 1) cy

4(1−ν)
0

−cy(n+ 1) cx(n + 1) 0 cy

4(1−ν)

0 0 cxn cyn

0 0 −cyn cxn





















(2.26)

The n = 0 (Volterra) term is fit into this scheme by defining ~U (0) = (~u(V),~0,~0,~0)

and d(0) = (1, 0, 0, 0). Identifying the derivatives of ~U (0) among the ~U (1) terms

leads to M(0).

M(~c, 0) =





















cy
b
π

−cx b
π

0 −cyb
4π(1−ν)

0 0 0 0

0 0 0 0

0 0 0 0





















(2.27)

Repeated derivatives give a chain of matrix products acting finally on the appro-

priately “down-shifted” ~U . Now we rewrite the Taylor series:

~u(~x− ~c) =

∞
∑

n=0

∞
∑

m=0

~d(n) (−1)m

m
M(~c, n) . . .M(~c, n+m− 1)~U (n+m) (2.28)

We wish to identify the transformation of coefficients ~d(n) that corresponds

shifting the center from ~c back to the origin. We re-sum the series, defining p =

44

n+m. This gives

~u(~x− ~c) =

∞
∑

p=0

p
∑

m=0

(−1)m

m
~d(p−m)M(~c, p−m) . . .M(~c, p− 1)~U (p) (2.29)

which implies

~d(p) −→ ~d(p)′ =

p
∑

m=0

(−1)m

m
~d(p−m) ·M(~c, p−m) . . .M(~c, p− 1)

= ~d(p) +

p
∑

m=1

(−1)m

m
~d(p−m) ·M(~c, p−m) . . .M(~c, p− 1)

(2.30)

Now, back to the question of allowing the center to move: to compensate for the

introduction of extra parameters we must take two parameters away. The fields

that can cancel (to lowest order) a motion of the dislocation center are ~u
(1)
1 for

motion in the x-direction and the combination ~u
(1)
0 − ~u

(1)
3 /4(1 − ν) for motion in

the y-direction. These are set to zero—what this means in practice is that we

have two parameters associated with n = 1: one is the coefficient d
(1)
2 , multiplying

~u
(1)
2 , the other multiplies the “orthogonal”8 combination (1/4(1 − ν))~u

(1)
0 + ~u

(1)
3 .

With this prescription we can now define the “center of the dislocation” from the

continuum point of view, as the value of the center-parameters when a minimization

has taken place. This suggests a way to extract dislocation positions from general

atomistic simulations: having identified by a coarse method a region in which the

dislocation is known to be located, a copy of this region could be made, with a

circular boundary. Then the outer layers could be constrained up to boundary

degrees of freedom as in the present work, and the inner atoms fixed completely.

8The n = 1 multipoles are indeed orthogonal to each other the way trigono-
metric functions are (i.e., in terms of integrating their products from 0 to 2π) but
in general the different terms are not orthogonal.

45

Minimization with respect to the boundary parameters would yield a value of the

dislocation center. It must be emphasized that this definition depends on the

choice we made in fixing the two n = 1 parameters associated with motion of

the center. We fixed them to be zero, but we could easily have fixed them to

some non-zero values. This is similar to fixing the gauge in electromagnetism. The

minimized position of the center and the minimized values of the other parameters,

are gauge-dependent quantities—but the Peierls barrier is not.

A final note about the multipoles: They can be classified according to whether

they are even or odd under reflection in the y-axis9. Reflection in the y-axis means

changing the sign of the x-component of either position or field, and leaving the

y-component unchanged. To be even means that the actual field at the reflected

point is the reflection of field of the original point; to be odd means that it is the

negative of the reflection of the field. For even n, the odd fields are j = 0 and j = 3;

for odd n, the odd fields are j = 1 and j = 2. In the infinite periodic system odd

multipoles vanish, because the dislocation core structure preserves the reflection

symmetry of the lattice; in the finite simulation however, whenever the dislocation

is not at the center of the system we should expect to need odd multipoles due to

the asymmetry between the position of the boundary with respect to the position

of the dislocation. This is discussed further in section 2.5.1.

2.3 Energetics

We have now described the kinematics of our model, but this is just a skeleton—let

us put flesh on it and make it move. We derive the dynamics of the model from a

9Actually, the x-axis in the simulation, since we have chosen the glide direction
to be parallel to the y-axis.

46

Hamiltonian, in particular from a potential energy functional. This functional has

the form of an interatomic potential in the central region and a continuum energy

density in the far field region (all the way to infinity). The transition from one

region to the other is managed through the use of a smoothing function (called the

transition function).

2.3.1 Atomistic energy: “cut-Lennard-Jones”

interatomic potential

Since our immediate concern is not to simulate a particular material, but rather

to learn how to best compute certain material properties, we choose not to use

realistic metal potentials, opting instead to use a simple pair potential, namely

Lennard-Jones with a cutoff: “cut-Lennard-Jones” or CLJ, for short. The form of

the cutoff was devised by Chen[18]. It differs from other truncated Lennard-Jones

potentials in that the cutoff, 2.7σ, includes more than nearest neighbors. In 2D

it includes up to third neighbors of the ground state lattice (in 3D it includes

up to sixth!). The usual form of the Lennard-Jones potential is (in dimensionless

form10).

VLJ(r) = 4

(

1

r12
− 1

r6

)

(2.31)

where r is the distance between two atoms. An overall cutoff rc2 is chosen to

lie between the third and fourth neighbor distances. To implement the cutoff

smoothly—meaning continuous, with continuous first derivative, so that both en-

ergy and forces are continuous—we introduce a second cutoff rc1 within the main

10That is, all lengths are understood to be expressed in units of a length scale σ
and all energies in units of a scale ǫ.

47

Table 2.1: Cut-Lennard-Jones parameters.

rc1 2.41308778858241

rc2 2.7

α 0.01257815434637538

β -0.19971848731103492

γ 0.05134165513433732

δ -0.0035213755236171

one. The form of the adjusted potential VCLJ(r) is

VCLJ(r) =































VLJ(r) + α r ≤ rc1

PCLJ(r) rc1 ≤ r ≤ rc2

0 r ≥ rc2

(2.32)

where PCLJ(r) is a quartic polynomial:

PCLJ(r) = β + γr2 + δr4 (2.33)

Having only even powers of r aids efficiency by avoiding the need for square roots.

The parameters rc1, rc2, α, β, γ, δ are given11 in Table 2.1.

For the purposes of embedding within a continuum model we need elastic con-

stants, so that those of the continuum can be chosen to match. For a simple

lattice (one atom per unit cell) these can be found analytically by differentiating

11Some may question the appropriateness of quoting so many decimal places
given that they are meaningless in terms of representing real materials. The pa-
rameters have been chosen to ensure that the derivatives of the potential, i.e., the
forces, are continuous to machine precision. Not including all decimals may cause
numerical problems.

48

the energy of a lattice with respect to a homogeneous strain. These are shown

in Table 2.2. Because the lattice is hexagonal the constants for linear elasticity

(called the quadratic constants because they are associated with quadratic terms

in the free energy expansion) are isotropic12, and therefore can be written in terms

of the Lamé constants λ and µ. Furthermore for a central force (pair) potential,

λ = µ (Cauchy relation). Since we include third order (cubic) nonlinear terms in

the continuum analysis below, we also require the cubic elastic constants. There

can be up to 10 independent components in a general two-dimensional material13,

but the symmetry of the triangular lattice reduces that number to 4: which we

take to be the following quantities: α ≡ C111, β ≡ C112, γ ≡ C133, δ ≡ C111 − C222.

C111, C222, C112, C133
14. The equality of C112 and C133 is presumably a Cauchy-like

relation15.

For comparison, and to use a potential which is already in the literature, we

have also used in our simulations the cut-Lennard-Jones devised by Holian et al.

[36], whose cutoff only includes nearest neighbors. We quote the elastic constants

for that potential as well in Table 2.2.

12Shown by requiring the elastic constant tensor to be invariant under a six-fold
rotation.

13C111, . . . , CIJK , . . . , C333, where I < J < K.
14The other CIJK are obtained from C113 = C123 = C223 = C333 = 0 and

C111 − C222 = C122 − C112 = C233 − C133 = δ.
15Note that the nonlinear constants are mostly negative; this is natural since at

large positive strain (say xx) atoms are getting pulled far apart, and the force curve
is beginning to flatten out, whereas at large negative strain, atoms are being pushed
together and seeing increasing hard core repulsion. Thus, from this asymmetry, a
third order elastic constant is allowed, and moreover should have a negative sign.

49

Table 2.2: Quadratic and cubic elastic constants for our cut-Lennard-Jones poten-

tial and for that of Holian et al.

our CLJ CLJ of Holian et al.

a 1.113201303556460427 21/6

λ 27.833155072804617 24.745133465974831

µ 27.833155072804617 24.745133465974831

C111(α) -1842.81 -1883.43

C222(α− δ) -1497.17 -1540.99

C112(β) -161.182 -171.221

C133(γ) -161.182 -171.221

2.3.2 Continuum energy: linear analysis

The continuum energy functional must be the continuum limit of the interatomic

potential energy. The goal is to obtain expressions for the total (i.e., integrated

out to infinity) continuum energy in terms of the boundary parameters, which can

then be used in the simulation. By including at least the lowest order part of

the continuum energy we can accelerate the convergence of the energy barrier (or

any other quantity) with system size. To make the integrals doable , we use the

formulas from section 2.2.2 to transform the center to the origin (the transition

function, to be introduced below, and which plays a role in the integration, is

centered on the origin of the system), so the task is to compute the energy outside

a given (undeformed) radius R as a function of the applied strain and multipole

coefficients. Ignoring the ground state energy, the lowest order term is the linear

elastic energy, quadratic in infinitesimal strain. This is isotropic for a hexagonal

50

lattice:

F(x) = µǫijǫij + 1
2
λ(ǫii)

2 (2.34)

where ǫij = 1
2
(∂uj/∂Xi + ∂ui/∂Xj) is the infinitesimal strain tensor (the finite

strain tensor, which includes the “geometrical nonlinearity” term, is defined in

eqn. 2.35); Xi are undeformed coordinates. The Lamé constants λ and µ are

chosen to match the interatomic potential being used.

Let us consider the expected contributions to the elastic energy from the dif-

ferent order terms in the multipole series, within the context of linear elasticity

(below we consider nonlinear issues, such as the geometrical nonlinearity and the

distinction between deformed and undeformed coordinates). At first sight we have

a problem in that the lowest order terms, the logarithmic and linear (constant

strain) ones, give energies which are infinite when integrated over all of space: the

constant strain term gives a uniform energy density and hence a quadratic diver-

gence, while the logarithmic term gives a 1/r energy density and a logarithmic

divergence. However these are constant as far as the parameters of the model go:

the coefficients of the linear terms are fixed, and the position of the dislocation

only affects higher order terms—the size of the logarithmic divergence is controlled

by the Burgers vector which is also fixed. In table 2.3 we show how the various

combinations of multipole terms contribute to the energy. E(R) represents the

energy contained within a radius R, for diverging terms, or integral from radius

R to infinity for the converging terms (the point is to show which terms are im-

portant, not to express precise results). In the bottom table, the pairs (m1, m2),

etc. represent combinations from rm1 and rm2 displacement fields16. m1 = m2

16We use the index m here because both positive and negative powers of r are

51

Table 2.3: Displacement, strain, energy density and total energy within a radius

R for different multipoles and pairings of multipoles–linear analysis.

Field m = +1 m = 0(log) m = −1 m = −2

u r log(r) 1/r 1/r2

σ, ǫ r0 1/r 1/r2 1/r3

Terms (+1,+1) (+1,0) (+1,-1) (0,0) (0,-1) (0,-2) (-1,-1) (-1,-2)

F(r) r0 1/r 1/r2 1/r2 1/r3 1/r4 1/r4 1/r5

E(R) R2 R log(R) log(R) 1/R 1/R2 1/R2 1/R3

represents a self-energy; m1 6= m2 represents a cross term. As explained above,

the (+1,+1), (0, 0) and (+1, 0) terms are constant, so we do not need to compute

them. There is another apparent divergence, coming from the cross terms between

the Volterra (m = 0) term and the applied strain (m = +1) terms. This turns

out to give zero when the angular integration is done, although these terms are

important for calculating the work done by external sources when the coefficients

change. See section 2.3.5.

Thus the most important terms in the continuum energy are the (0,−1) cross

terms between the Volterra term and the first multipole (m = −1 or n = 1). It

is expected to be linear in the coefficients d
(1)
j and the Burgers vector, and give a

contribution to the total energy of order 1/R2. Having identified this candidate as

the most important, let now consider the effects of non-linearities.

involved

52

2.3.3 Continuum energy: nonlinear analysis

What is wrong with a linear analysis of the elastic energy? The most obvious

problem is that when one tries to calculate the energy contributions in a straight-

forward way, one gets zero for the terms that are of interest. This comes because

the energy density terms have a trigonometric angular dependence that gives zero

upon integrating around a circle. A nonlinear analysis would distinguish the de-

formed and undeformed geometries. Generally the nonlinear elastic energy density

is formulated in undeformed coordinates, so the region of integration should be

the undeformed body. In a system with a dislocation with the cut at −90◦ to the

Burgers vector as ours is, the undeformed geometry has a gap of width one Burg-

ers vector, corresponding to the material that was removed. Angular integration

should start on one side of this gap, at Θ ∼ −π/2+b/(2r), and go around the body

to the far side of the gap, at Θ ∼ 3π/2 − b/(2r). This gives a non-zero integral,

but also reduces the over contribution from that term by a power of r.

However, once we start down the path of nonlinearity, we must take care to be

consistent, meaning that we must make sure to include all terms contributing to a

given power of r. Thus we do a full nonlinear analysis of the continuum energy, but

at each stage keep only terms up to a certain order in small quantities17. Many

terms are generated during, for example, the transformation from the Eulerian

displacement field to the Lagrangian displacement field, and it is very important

to truncate those whose r-dependence is such that they will not appear in the

energy at the order we seek, otherwise the number of terms can become too large

even for a symbolic computation tool such as Mathematica. The question is then:

17This is not inconsistent with the fact that our degrees of freedom are the
solutions of linear elasticity—they can still be considered as trial functions for a
different PDE.

53

what are the small quantities? Since we are calculating the far-field energy, we

may take b/r to be a small parameter. The upper limit on this quantity is b/Λ1,

which is typically or order 0.1−0.15. The other small quantity that appears in the

expressions is the applied strain ǫ, that is, the constant strain tensor associated

with the applied stress. This also tends to be at most of order 0.1. Thus we may

treat 1/r and ǫ on equal footing in the expansions, although in practice we set an

independent limit on the power of ǫ that may appear in any term.

The nonlinear elastic energy density is a function of the finite strain tensor (see

for example Ref. [72]), which is defined in terms of undeformed coordinates18:

Dij = 1
2

(

∂uj

∂Xi

+
∂ui

∂Xj

+
∂uk

∂Xi

∂uk

∂Xj

)

(2.35)

Thus to calculate it, we must transform our formula for the displacement field of

the boundary region, which are in Eulerian/deformed coordinates, into a formula.

See appendix 2.C for the details of this procedure. By analyticity the energy

density can be written as a power series in D, of which the quadratic term is the

lowest one. Since we have third order constants for our interatomic potentials we

also include the third order terms in the continuum energy density—in fact, this

is necessary to be consistent because terms involving third-order elastic constants

appear in the final expressions at same order as those involving second order elastic

constants. A priori we expect such terms simply because the lowest order part of

the strain, coming from the Volterra field, should contribute a 1/R3 term to the

energy density; however, it is not clear a priori that we should expect terms which

depend on the boundary parameters (recall that we only need to worry about terms

18We use small letters x, y, r, θ for Eulerian/deformed coordinate, and capital
letters X, Y,R,Θ for Lagrangian/undeformed coordinates.

54

in the final expression which depend on the boundary parameters). The energy

density we use is

F(x) = µDijDij + 1
2
λ(Dii)

2 +
1

3!
CijklmnDijDklDmn (2.36)

After carrying out the analysis using Mathematica, despite going through stages

involving expressions with hundreds of terms, we arrive at the relatively simple

collection of terms

Econt =

∫

dR(1 − T (R))
(b2(λ+ µ)d

(1)
0

9πR3
− b2(α+ γ)d

(1)
0

108πR3

+
b

3R2
((λ(ǫxx + ǫyy) + µ(ǫxx + 3ǫyy))d

(1)
0

+ 4ǫxyµd
(1)
1 + 12ǫxyµd

(1)
2 − 6(ǫxx − ǫyy)µd

(1)
3)

)

(2.37)

There is something else we are leaving out of the continuum description: due

to the non-locality of the interatomic potential, associated with a length scale of

the lattice constant a, we expect terms involving gradients of D to also appear in

the elastic energy (a strictly local energy functional is an integral of the density

only, not its derivatives). Such terms might be considered in the future.

2.3.4 Blending of atomistic and continuum energy

functionals

The basis of our technique for embedding an atomistic simulation in a continuum

is a function called the “transition function”. We have defined an atomistic energy

functional and a continuum energy functional. We need to combine these to make

a “blended functional”. Within an inner radius Λ1 we wish to only count atom-

istic energy, while outside an outer radius Λ2 we wish to only count continuum

55

5 10 15 20

0.2

0.4

0.6

0.8

1T(|X|)

|X|

Figure 2.3: Transition function with limits | ~X| = 6 and | ~X| = 16.

energy. To blend them, we write down formally an atomistic energy density G(X)

consisting of a sum of delta functions centered on the atoms. Next we introduce

a function T (X), called the transition function, which is unity within the inner

radius Λ1, zero outside the outer radius Λ2 and between them goes smoothly from

unity to zero. The blended energy is then defined as follows

E =

∫

space

H(~X) =

∫

space

(1 − T (~X))F(~X) + T (~X)G(~X)d2X (2.38)

This blending removes to a large extent the ambiguity inherent in defining a

mathematical boundary to a region of discrete points. The transition function we

use is

T (~X) =























1 if | ~X| < 0

exp
(

1
1−x−3

)

if 0 < | ~X| < 1

0 if | ~X| > 1

(2.39)

where x = (| ~X| − Λ1)/(Λ2 − Λ1). This is plotted in figure (2.3). There are two

restrictions on the choice of the boundary radii. (1) Λ1 must be at least the radius

of region 2 in order that T (X) be unity throughout region 1 and region 2; thus

56

when region 1 is minimized, the forces are exactly as if there was no transition

function, and standard algorithms for minimization can be directly applied. (2)

Λ2 must be at least one cutoff distance less than the outermost boundary (the

boundary of the atoms actually in the simulation); equivalently we could say that

the atoms in the simulation must extend this distance beyond Λ2. This is necessary

to ensure that all atoms with nonzero transition value have a full complement of

neighbors.

We evaluate the transition function at undeformed positions ~X, this being

easier to implement than evaluating it at current positions19. The dislocation-cut

is along a line perpendicular to the Burgers vector; thus the discontinuity along

the cut is perpendicular to the radial direction and hence there will be only a small

discontinuity in transition values in the dislocated crystal. The transition values

must be assigned after the dislocation is introduced, because this process removes

atoms and changes their numbers. Thus it is necessary to compute the undeformed

position by evaluating the displacement fields in the current positions, yielding the

original lattice positions.

In computing the continuum contribution to the energy we need expressions

which have been integrated (analytically) with respect to Θ but left as a function

of R since that integration depends on the Λ1 and Λ2 which are not known until

run-time. The Θ integration reduces the entire energy expression to a sum of terms

involving powers of 1/Rn. At run-time the R-integration from Λ1 to Λ2 (where the

energy density is multiplied by (1 − T))is done numerically, and that from Λ2 to

19One consequence of the latter would be to add terms in the atomistic and
elastic forces involving the gradient of the transition function—these should can-
cel each other out, but would not cancel completely. Evaluating at undeformed
positions means that the transition values on the atoms need only be evaluated
once.

57

infinity analytically, being trivial.

2.3.5 Accounting for external stress

When considering the Peierls barrier for a dislocation in the presence of an ap-

plied shear stress we must be careful about how we define the barrier. For a

system under constant pressure or stress, as opposed to one with fixed volume or

size/shape, the appropriate thermodynamic energy is the Gibbs free energy. At

zero temperature this is equal to the enthalpy, which is the internal energy—at

zero temperature, potential energy—minus a work term, which is −PV for a gas

system with just a pressure, and σαβǫαβV for say a solid system with skew-periodic

boundary conditions characterized by a shear tensor ǫαβ .

In the context of elasticity it is more intuitive, I find, to take a mechanistic

point of view and think directly in terms of work being done on the system by

external agents. This work is associated with a potential energy, and the work

term that appears in the thermodynamic function is just the extra contribution

to the potential energy from the external forces. It is a function of the external

stress and the state of the boundary—therefore of the boundary parameters, the

dislocation center and the multipole coefficients.

We have been considering an infinite system, but for the purpose of this discus-

sion let us assume that the system is finite but large, with a circular boundary, of

radius R. The applied stress that is felt within the system is due to actual traction

forces applied at the boundary. In general for a finite system, the elastic solution

may have extra positive multipoles, which are needed to satisfy arbitrary boundary

conditions. If the applied tractions are chosen to equal the tractions due to the

linear displacement (m = 1) term, then the amounts of positive multipoles that

58

appear are very small, being just what is necessary to cancel the stress remaining

from the m <= 0 multipoles20

So for a large enough boundary radius we can consider just the work done by

integrating the traction times the displacement change from each multipole term

around the boundary. First assume the multipole coefficients are fixed, but the

dislocation center moves. We will consider contributions from each term separately

to see which actually contribute.

First the positive m = 1 term: this certainly contributes the most to the

total energy of the system and to the displacements at the boundary, but we have

centered this term on the system center independently of the dislocation position,

so these displacements do not change when the dislocation moves and hence there

is no contribution to the work done.

Next the m = 0 (Volterra) term: This has displacements which are order r0 or

log(r), thus the change in displacements is of order 1/R at the boundary. When

multiplied by the tractions and integrated around the boundary we get a factor of

R which cancels that in the denominator, so we are left with a constant. We will

calculate this below.

Next, the −n terms (negative multipoles). These have displacements of order

1/rn and hence changes in displacement of order 1/r(n+1). The contribution to

the work is therefore 1/Rn. Thus by taking the boundary radius to be arbitrarily

large we see that we only need consider the work done by the tractions due to the

20For example, the stress at r = R from a negative multipole ~u(−n) is of order
1/R(n+1). To match the angular the dependence, canceling positive multipoles u(n)

and u(n+2) are needed, with coefficients of order 1/R2n and 1/R2n+2 respectively.
The total energy associated with both canceling terms is of order 1/R2n. Formulas
for canceling the Volterra (n = 0) term are given on page 79 of Ref. [34] (note
that the energy associated with the canceling term in this case is independent of
R, even though the coefficient goes like 1/R2).

59

applied stress on the change in displacements associated with the Volterra term.

Let us see what this is.

Call the change in displacement at the boundary ∆~u and the applied traction

~t. The work done is

W =

∮

r=R

~t · ∆~udl =

∮

r=R

(σ · ~n) · ∆~udl (2.40)

= σij

∫ 2π

0

nj∆uiRdθ = σij

∫ 2π

0

nj∆cα
∂ui

∂cα
(2.41)

= σij∆cα

∫ 2π

0

1
2

(

nj
∂ui

∂cα
+ ni

∂uj

∂cα

)

(2.42)

where we have used the fact that the applied tractions are those given by the stress

from the linear term in the displacement—since this stress is constant it can be

taken outside the integral—as well as the symmetry of the stress tensor. We then

plug in the derivative of the Volterra displacement field, and write the normal as

~n = (cos θ, sin θ). Doing the integral gives the following expression:

W =
b

8(1 − ν)
(2σxy(3 − 4ν)∆cx + (σyy(1 − 4ν) − σxx(5 − 4ν))∆cy) (2.43)

Note that this expression assumes the Burgers vector to be in the x-direction. If

we set ν = 1/4 as appropriate to our central-force potential we get:

W =
2b

3
(σxy∆cx − σxx∆cy) (2.44)

Consider the case of pure glide, i.e., ∆cy = 0. Then the work done is two-thirds

of the Burgers vector times the shear stress times the distance moved. Since we

know the glide force on a dislocation to be just the Burgers vector times the shear

stress, the factor two-thirds might seem puzzling. The glide force is derived by

60

considering the work done on the slip plane by the applied stress as the dislocation

moves. We have calculated work done on a circular boundary; the value is different

for a rectangular boundary—for a square it is about 0.576bσxy∆cx. The difference

between these the different boundary integrals can be accounted for by considering

the change in elastic energy density (from the center moving) integrated over the

area bounded by the two different curves—e.g. the area between the square and

the circle (this comes from the divergence theorem in two dimensions); for details

see appendix 2.D.

We must also consider the work done when multipole coefficients change. Since

these terms are linear in the coefficients (obviously) the change in displacement

at the boundary due to a change in the coefficient has the same R-dependence as

the multipole itself. Repeating the arguments from before we see that the only

contribution will come from terms which die at most as 1/R, namely the n = 1

terms. In particular this includes the volume expansion term (j = 3), which couples

directly to the pressure part of the stress. This is important because it gets large

right at the saddle point. We again do the integral in 2.42 with cα replaced by

the appropriate parameters—recall that the j = 0 term and the j = 3 one are tied

together and governed by a single parameter. The j = 2 term turns out to give

zero work. We get:

W1 = p
(1)
0/3π

(

σxx

16(1 − ν)2
+

σyy(2 + 3ν)

32(4 − ν)(1 − ν)2
+ (σxx + σyy)

)

(2.45)

To implement correct accounting of the work done by external sources, we

subtract the work expressions in 2.43 and 2.45 from the potential energy of the

system, recalling that work done on the system corresponds to a decrease in the

potential energy of the external agents. Corresponding terms are added to the

61

forces on the dislocation center and the n = 1 multipole coefficients.

2.4 Dynamics of embedded dislocation system

We follow Ohsawa and Kuramoto [50] in implementing a dynamics for the em-

bedded dislocation system. We are not interested in real dynamics, but need a

dynamical formalism in order to implement the MDmin21 technique of minimiza-

tion. Since we have defined an energy functional of the coupled system, forces

follow straightforwardly by differentiation. This defines one side of the equations

of motion. The other side contains the accelerations coupled by a mass matrix.

To see what the form of the mass matrix is let us derive the equations of motion

from a Lagrangian. The degrees of freedom are core positions {~ri} and boundary

parameters {pα}. The positions of boundary atoms will be denoted by {~ri′}.

L =
∑

i

1
2
m|~vi|2 +

∑

i′

1
2
m|~vi′|2 − V ({~ri}, {pα}) (2.46)

where ~vi(
′) is the velocity of atom i(′). There is a question about how many

atoms to include in the i′ sum, since in principle the boundary degrees of freedom

represent all atoms in the infinite system. However for practical purposes we only

sum over atoms actually represented in the simulation, which are all atoms out to

one potential cutoff distance past the point where the transition function vanishes.

We will discuss this point more below. Next, let us call the i′ sum K ′ (since it is

a kinetic energy), and use the chain rule to rewrite it in terms of the parameters

{pα}.
21See for example Ref. [43]. We have found it better to keep the whole velocity

when it has positive dot product with the force, rather than take just the parallel
component.

62

K ′ =
∑

i′

1
2
mi′

d~ri′

dt
· ~ri′

dt
=

∑

i′

1
2
mi′

∑

α

d~ri′

dpα

dpα

dt

∑

β

d~ri′

dpβ

dpβ

dt
= 1

2

∑

α,β

Mαβ
dpα

dt

dpβ

dt

(2.47)

where the time-dependent mass matrix Mαβ , which is symmetric and positive

definite, is given by

Mαβ =
∑

i′

mi′
d~ri′

dpα

d~ri′

dpβ
(2.48)

If we apply the Euler-Lagrange equations to the Lagrangian L, we get the usual

mi~̈ri = ~fi = −∂V/∂~ri. For parameter pα, we get

∑

β

Mαβ p̈β = − ∂V

∂pα
(2.49)

To make separate force equations for the parameters we premultiply both sides of

2.49 by the inverse of the mass-matrix, yielding

p̈α = −
∑

β

(M−1)αβ
∂V

∂pβ

(2.50)

Now we have a simple force equation for the {pα} and we can use whatever dy-

namics algorithm (e.g. Verlet) we choose to evolve the coupled system. Returning

to the issue of how many atoms should properly be included in the i′ sum, con-

sider the diagonal elements of the mass matrix. Roughly speaking these are the

“effective masses” for the corresponding parameters:

meff,α =
∑

i′

mi′

(

∂~ri′

∂pα

)2

(2.51)

The question to consider is whether this sum converges as more and more atoms

are included. For the parameters corresponding to the center of the dislocation

63

the derivative22 goes like 1/r. Squaring and replacing the sum by an integral gives

a logarithmic divergence in the effective mass. The coefficients of the 1/r multi-

poles also have logarithmically diverging effective masses. Higher order negative

multipoles have convergent effective masses (e.g. the coefficient of a 1/r2 term

has an effective mass that converges like 1/R2). For a diverging effective mass

there must be some cutoff. Physically one can always find a length scale at which

to cut off logarithmic divergences associated with dislocations (the energy is also

logarithmically divergent), such as the distance to the nearest sample boundary

or other dislocation. The value of the cutoff does not matter very much since log

dependence is weak. Such a distance would be much larger than our simulation,

but since we are not concerned with true dynamics—we are mostly interested in

minimizing the energy—it is not necessary to have a physically realistic cutoff for

the effective mass, and we simply include all simulated boundary atoms in the

sum. This seems to work well23.

22from the Volterra term; the derivative with respect to center of the other
multipoles is of lower order.

23There is reason to understand the importance of the the effective mass cutoff
better, however. We have experimented a little with making the linear displace-
ment terms dynamic, with additional force terms to couple them to the applied
stress—this is somewhat analogous to Parinello-Rahman dynamics. The effective
mass in this case is very strongly divergent—like R4, because changing the linear
displacement clearly involves moving many atoms significant distances. Even with
our short effective mass cutoff, the effective masses of these terms turns out to
be several orders of magnitude higher than those of the other terms (depending
strongly of course on how big a system is simulated), which made their dynamics
very slow. Simply replacing the diagonal components of the mass matrix with
smaller values had a bad effect—convergence to the minimum was completely ru-
ined, and the system went unstable. It would be worth understanding this better.

64

Figure 2.4: Undeformed and dislocated lattice with the lattice vectors, and lines

indicating the choice of inserted half-planes, as well as the mirror plane.

2.5 Computing the energy barrier

We use the Nudged Elastic Band method [43] to compute the energy barrier. The

method requires both the initial and final state to be specified, in order that a

chain of states be constructed between the initial and final states and minimized

in such a way that it relaxes to the minimum energy path (MEP). See Ref. [43]

for the original prescription for “nudging”. Variations and improvements from the

original version [31, 32] concern the way the tangent vector at each point on the

chain is computed, as well as the formula for computing the spring force. Our

choices for these are discussed below. First we consider the choice of the initial

and final states. In this work we have chosen the orientation of the lattice such

that the basis vectors are a1 = aĵ; a2 = a(−
√

3
2
î + 1

2
ĵ); where î and ĵ are unit

vectors in the x- and y-directions respectively, and a is the lattice constant. This

make the Burgers vector, and hence the glide plane, be in the ĵ direction. See

Fig. 2.4.

65

2.5.1 Initial and final states

A major theme in this work is the idea of simulating an infinite system using a finite

system with careful attention to boundary conditions. A dislocation moving in an

infinite system is subject to the full translational symmetry of the lattice; thus the

barrier between any two adjacent minima is the same—the effective potential in

which the dislocation moves is something like the first diagram in Fig. 2.5, in the

case of zero applied stress. We cannot, however, completely eliminate the effects

of the finite boundary—if the dislocation were to glide to a position close to the

edge of region I, the energy would be higher because atoms near the dislocation

center would not be able to relax fully, some of them being constrained atoms.

The effective potential is therefore more like the second of Fig. 2.5, where there is

superimposed a background potential which is minimum at the center. Here the

origin of the lattice has been chosen so that one of the minima for the dislocation

position is at the center of the simulation region. Notice that there is a noticeable

difference between the energy of this minimum and either adjacent one, one of

which must be involved in an NEB calculation. To eliminate this effect we choose

the origin of the lattice, and the initial position of the dislocation center, to be

offset—half a lattice constant below the center. This location corresponds to one

local minimum; another is located at a symmetric position above the center and the

effective potential looks like the third diagram in Fig. 2.5. This way we minimize

the distance from the center that the dislocation needs to explore in the barrier

calculation.

Now, the triangular lattice has a reflection symmetry about any line parallel

to the x-axis and through an atom. The dislocation core configuration should

preserve this symmetry, and only terms in the elastic solution which are even

66

under the symmetry should appear in the far field of the infinite system. However

when the dislocation is off-center, the symmetry is broken (there is asymmetry

of the boundary with respect to the dislocation); this has an effect on the core

configuration since there are constrained atoms—and therefore unbalanced forces—

closer to it on one side than on the other. Relaxing the unbalanced forces due to

the constraints is the whole point of adding higher order multipoles. Clearly when

these forces are asymmetric, there should be asymmetric terms in the displacement

field. The coefficients of these terms change sign as the dislocation glides to the

corresponding position on the opposite side of the region’s center. Moreover they

are observed to decrease in magnitude as the size of region I is made larger.

To actually create the dislocation we take an initial uniform lattice divided into

the three regions. The Volterra displacement field–interpreted in the Lagrangian

sense—is applied to all atoms, taking the branch cut to be 90 degrees to the Burg-

ers vector. This leads to a layer of overlapped atoms which are then pruned. An

iterative procedure is then used to put the atoms in their positions as determined

according to an Eulerian interpretation. To find the initial state an iterative pro-

cedure is used which alternately relaxes the core atoms for about 100 time steps

of the MDmin algorithm and makes a single MD step for the boundary degrees of

freedom. This is continued until the sum of the squares of core atom forces and

boundary forces is smaller than 10−10. The resulting set of core atom positions

and boundary parameters constitutes the initial state. To create the final state the

following transformation is applied to the core atoms: For each core or boundary

atomic position in the initial state, a new position is considered, determined by

adding the Burgers vector to the given position. The closest atom to the new

67

Edisl Edisl Edisl

XdislXdisl Xdisl

(a) (b) (c)

Figure 2.5: Effective potential for dislocation glide in (a) infinite crystal, (b) “cen-

tered” simulation and (c) “offset” simulation.

position is found24, and if this atom is a core atom, its position is set to this new

position. This effectively recreates the dislocation configuration, shifted upward

by one Burgers vector, although no atom moves more than a small fraction of

the Burgers vector. The boundary atoms are transformed by adding the Burgers

vector to the dislocation position and changing the signs of the coefficients of the

reflection-odd multipoles (if the signs are left unchanged they change anyway un-

der minimization, but it takes longer). The resulting configuration is minimized

in the same way as for the initial state.

2.5.2 Formulation of Nudged Elastic Band for extended

system

We now discuss the formulation of the NEB method in the context of having

boundary degrees of freedom as well as individual atomic positions. We would

like to treat all degrees of freedom in an equivalent way. However, we cannot

literally apply the method pretending that the new degrees of freedom are atomic

24We found it useful to define “closest” to be with respect to a different distance
measure, which weights the sum of the squares unequally: distance perpendicular
to the shift direction (the Burgers vector) counts more than distance along it.

68

positions. They have different units, so we must be careful when (i) constructing

vectors out of the parameters, (ii) computing lengths and angles and (iii) projecting

out perpendicular and parallel parts of force vectors. To see this, consider a two-

dimensional system consisting of a position variable x and an angle variable φ.

Imagine a potential function which has two minima and consider a point on the

MEP between them. The force (due to the potential, not the elastic band) on

this point points along the MEP, i.e., is parallel to the tangent vector. Now if we

change the unit of length, dividing it by a factor Λ, then the numerical values of

lengths are multiplied by Λ. in the new units the potential landscape is stretched

by Λ in the x direction but not in the φ direction. The MEP will similarly be

stretched, and we would expect the transformed force at the (transformed) point

of consideration to continue to point along the MEP. Now, since force has units of

energy over length, and we do not change the unit of energy, the force associated

with x, fx is divided by Λ, while the force associated with φ, fφ does not change.

If Λ > 1 the φ component of the tangent vector increases while that of the force

decreases, so the two vectors appear to rotate in opposite directions, destroying

the parallelism.

What is wrong with this picture? Once we start applying transformations

which are non-orthogonal, such as rescaling in different directions, we cannot treat

vectors as Cartesian vectors; their transformation properties are different. In par-

ticular we must now distinguish between contravariant and covariant vectors (and

tensors), as well as introduce a metric tensor. The fact that the position (and

related) vectors and force vectors transform differently indicates that they are of

opposite types, and we should not be comparing them (e.g. deciding if they are par-

allel) directly. Position vectors are “naturally” contravariant, and their “natural”

69

components are indicated with a superscript, as xµ. Forces, which are derivatives

with respect to positions, are covariant vectors, have subscript indices, as fµ. The

metric tensor is a covariant second rank tensor denoted gµν , symmetric in its two

indices. When µ or ν corresponds to a core atom coordinate, we take gµν to be

the identity tensor, δµν . We shall discuss the appropriate choice of the metric

coefficients for the boundary parameters below. A physical interpretation of the

metric is that it gives the length squared of contravariant vectors (summation on

repeated indices is understood except where explicitly stated otherwise):

ds2 = gµν∆x
µ∆xν (2.52)

If we consider transformations of coordinates of the form xµ → x′µ = Λµ
νx

ν , then

contravariant vectors transform in the same way and covariant vectors and tensors

transform thus:

fµ → (Λ−1)ν
µfν ; gµν → (Λ−1)α

µ(Λ−1)β
νgαβ (2.53)

We can take dot products directly between contravariant and covariant vectors;

this is “contracting” an upper index with a lower index. A dot product is invariant

under Λ transformations. Thus, when using the natural components of a force and

a displacement vector, if we had concluded they were perpendicular by consider-

ing the dot product, this would be a valid conclusion. However we cannot infer

parallelism using the natural components—as evidenced from the two-dimensional

example described above. Parallelism implies that one vector is a multiple of an-

other. To check this we compare the components of the two vectors, but this only

makes sense when comparing two vectors of the same type:

70

~a q
~b ⇔ aµ = λbµ (2.54)

for some λ. To compare a force and a displacement vector for parallelism we require

a means to convert a contravariant vector to a covariant one and vice versa. This

is done with the metric tensor; for example we define the covariant components of

a displacement and the contravariant components of a force as follows:

xµ = gµνx
ν ; fµ = gµνfν (2.55)

where gµν are the contravariant components of the metric—obtained by taking the

matrix inverse of gµν . In the NEB we concerned with constructing forces, so we are

lowering indices more than often raising them. Before explaining the modifications

needed for a “covariant” formulation of NEB, let us review how tangent vectors and

spring forces are computed. In the original formulation of the NEB, the tangent

vector was computed from the following expression:

τ̂i =
Ri+1 − Ri−1

|Ri+1 − Ri−1|
(2.56)

which is the difference vector between replicas, made into a unit vector. In Ref.

[31] the following slightly improved method is suggested:

τ̂i =
Ri −Ri−1

|Ri −Ri−1|
+

Ri+1 −Ri

|Ri+1 −Ri|
(2.57)

where the difference vectors are first normalized. This expression must then be

normalized to produce a unit vector. In our application we do not notice any

significant difference between the two. We have not implemented the further im-

provement in Ref.[31] in which the choice of tangent vector involves the relative

71

energies of adjacent replicas. Another choice concerns the definition of the spring

force, given the tangent vector. In the original formulation this was:

Fs
i = [k+(Ri+1 − Ri) − k−(Ri − Ri−1)] · τ̂iτ̂i (2.58)

namely, a direct spring coupling between all degrees of freedom, but projected onto

the tangent vector. However, regions of high curvature can necessitate adding back

part of the perpendicular component of the spring force. As an alternative, Ref.

[31] suggests the following expression:

Fs
i = [k+|Ri+1 − Ri| − k−|Ri − Ri−1|]τ̂i (2.59)

which maintains an equal spacing of replicas (when all springs have the same

spring constant k) even in regions of high curvature. However we have noticed

some difficulties with this method, namely that large curvature seems to develop

near the top of the barrier, so we have kept with the original spring force-method.

We can now list the necessary modifications to the NEB algorithm:

1. Difference vectors between states are constructed in the usual way, including

the boundary parameters. These are contravariant vectors.

2. To make unit vectors, divide by the square root of the length squared, com-

puted via eqn. 2.52

3. Construct the tangent vector from the difference vector or unit difference

vectors in the usual way, since it is contravariant. Make it a unit vector by

computing the length via (2.52).

4. The spring force (original method) is constructed as the sum of difference

vectors, multiplied by spring constants and projected onto the tangent vector.

72

Since difference vectors are contravariant and forces are covariant, we must

multiply by the metric to lower the index, both to take the dot product with

the tangent, and then to make the uncontracted tangent vector covariant:

Fs
µ = gνρ[k+(∆ν

i,i+1) − k−∆ν
i−1,i)]τ

ρgµστ
σ (2.60)

5. To remove the tangential component of the potential force, take the dot

product with tangent vector in the usual way (since they are of opposite

types) and again use the metric to make the uncontracted tangent vector

covariant:

FU
qµ = FU

µ − (FU
ν τ

ν)gµρτ
ρ (2.61)

Choice of metric

The only question remaining is how to choose the metric coefficients. A natural

choice is such that the contribution to the total length squared of a difference

vector between two configurations from the boundary parameters is equal to that

which would be obtained by adding up the contributions from all of the constrained

atoms. This turns out to give exactly the mass matrix:

ds2
parameters =

∑

i′

|∆~ri′|2 = gµν∆p
µ∆pν (2.62)

where gµν is the (non-diagonal) metric given by

gµν =
∑

i′

∂~ri′

∂pµ
· ∂~ri′

∂pν
(2.63)

73

This automatically gives the metric components the correct units. However, there

are two issues to consider. First, the mass matrix varies slightly from replica to

replica, and from iteration to iteration. Presumably the metric should be fixed.

At the very least it should be the same for each replica. Our choice has been to

take average of the mass matrix from the initial and final states after each has

been minimized. Second, it must be remembered that the boundary parameters

are meant to describe not just boundary atoms in the simulation, but all the

material out to infinity. However not all of the mass-matrix elements converge as

the sum is extended over constrained atoms going out to infinity—the elements

associated with n = −1 multipoles, and motion of the center, are logarithmically

divergent (see the discussion in section 2.4). This divergence should be regularized

somehow. Of course, by summing only over the atoms actually in the simulation

we are indeed regularizing it. However we observe that the NEB method tends to

become unstable when the boundary region is large compared to the core region,

and so we regularize further by setting the metric equal to half of the (average of

the) mass matrix.

Further NEB details.

We have also implemented the “Climbing Image” technique of Henkelman et al.

[32]. After a small number of iterations the highest energy replica is chosen to

be a “climbing replica”, that is, the component of the potential force along the

tangent is not removed, but reversed, such that it seeks the saddle point (given

that the tangent defined by it and its neighbors is approximately along the MEP).

The climbing replica is not subject to the spring forces.

When not using the climbing image (CI) method, to estimate the barrier height

74

0 0.2 0.4 0.6 0.8
Chain arc length

0

0.005

0.01

0.015

R
ep

lic
a

en
er

gy

Region I radius = 7, no continuum energy

CI−NEB
NEB (no CI)

Figure 2.6: Effect of using climbing image (CI) technique in the Nudged Elastic

Band method. The number of MDmin iterations was 1000 in both cases.

we fit the top four points of the energy profile to a cubic polynomial, whose maxi-

mum we solve for analytically. When using CI, it often turns out that the climbing

replica converges more quickly to the saddle point that do its neighbors to their

corresponding positions on the MEP, with the result that the energy profile appears

to have a small minimum at the saddle point; see Fig. 2.6. This is because the

adjacent replicas are not on MEP, and therefore not downhill. That the climbing

replica is in fact on or very close to the saddle point can be checked by checking

that the total force is close to zero25 and that one eigenvalue of the Hessian matrix

is negative.

25We use the sum of the forces squared as a measure of convergence; we do not
compute this quantity correctly (i.e., using the metric) since we only care that it
decreases, and one positive definite matrix is as good as another for this purpose.
When using the CI method, we notice that even though the rate of convergence
of the climbing replica and of energy barrier itself is increased, the overall rate
convergence of the chain seems to decrease. To check this definitively we should
probably compute the correct invariant sum of squared forces, though it is also
evident from the minimum in the energy profile.

75

2.5.3 Running the simulation

We use the MDmin method of minimization to relax the whole chain. At the end

of the calculation we compute the energies of the replicas, in particular that of the

saddle point. The difference between the saddle-point energy and that of the initial

state gives the “forward barrier”; the difference between it and the energy of the

final state gives the “backward barrier”—the barrier to move back from the final

state to the initial state, which by periodicity (of the real system) is equal to the

barrier to move backwards from the initial state. It is also equal to the barrier for

moving forwards but under negative shear stress, since in the absence of shear both

glide directions are equivalent, so changing the sign of the shear stress must be

equivalent to switching forward and backward. Thus for a single NEB calculation

we get two barriers, one for each sign of the shear stress (they are equal at zero

shear).

We calculate barriers in batches, where a batch (corresponding to one execution

of the main program) calculates barriers at several values of σxy, for particular

values of σxx, σyy. It is convenient to calculate successive values of σxy in the same

run because the initial and final states for one value are used as initial guesses

for the next—if this is not done the dislocation, being started in the zero-shear

configuration might move more than one lattice spacing while being relaxed to the

given value of σxy.

Fig. 2.7 shows the barrier energy profile for a single barrier computation.

Fig. 2.8 shows the values of the different boundary parameters as a function of

replica index, including the end points (the numbering here calls the starting con-

figuration 1). The simulation parameters are listed in table 2.4. The replica with

is designated the “climbing image” tends to converge quite quickly to the saddle

76

Table 2.4: Simulation parameters for Figs. 2.7 and 2.8.

core radius 10

transition zone 5Rc = 13.5

free atoms 277

boundary atoms 181+1954

boundary parameters 8

applied stress (0, 0, 0)

continuum energy none

Nreplicas 19

climbing image yes

NEB steps 1500

point, in the last stages of the minimization, outpacing its neighbors. This leads to

the apparent dip in energy in the minimum energy path—which means of course

that the system has not converged to the MEP yet. If the full MEP is desired,

more iterations should be run. The lagging behind of the non-climbing replicas

is also evident in the profiles of parameters which have the same initial and final

states, in the corners that form at the climbing replica. If full convergence of the

whole MEP was obtained, these corners would be rounded out. The final con-

vergence (squared force summed over atoms, boundary DOFs and replicas) was

0.0085; thus the average remaining force per degree of freedom was about 10−7

(the sum of squared forces on the climbing replica was a factor of 10 lower than

that on its neighbors).

77

0 0.2 0.4 0.6 0.8 1
Path length

0

0.002

0.004

0.006

0.008

0.01

E
ne

rg
y

Figure 2.7: Typical barrier energy profile from simulation.

2.6 Representing the data: Functional Forms

In parameter-passing multiscale modeling, a key issue is the formulation of rules for

continuum models which efficiently communicate information from smaller scales.

Such rules are formulas which encode the results of large numbers of atomistic

calculations. For the present work, we seek a formula—a functional form—which

represents the stress dependence of the Peierls barrier. From experience in this

context and others we have developed a general philosophy for producing functional

forms [6]. The aim is to come up with functional forms requiring the fewest fitting

parameters, and which can be fit with the smallest possible number of data points

(these are of course not independent), given that there are typically so many

independent variables. There are five ingredients of this philosophy: (1) Symmetry

that is known to be present in the data, such as crystal symmetry (e.g. cubic), must

be built into the functional form. (2) Singularities which are known to be in the

data, such as cusps, must also be built into the form. A naive approach to fitting

78

0 5 10 15 20
Replica index

0.2

0.3

0.4

0.5

Dislocation center, X−coordinate

0 5 10 15 20
Replica index

−0.75

−0.25

0.25

0.75

Dislocation center, Y−coordinate

0 5 10 15 20
Replica index

−0.001

−0.0005

0

0.0005

0.001

Multipole coefficient d_0_2

0 5 10 15 20
Replica index

0.1

0.11

0.12

0.13

Multipole coefficient d_0_0/d_0_3

0 5 10 15 20
Replica index

−0.2

−0.1

0

0.1

0.2

Multipole coefficient d_1_0

0 5 10 15 20
Replica index

−1

−0.8

−0.6

−0.4

−0.2

Multipole coefficient d_1_1

0 5 10 15 20
Replica index

−0.8

−0.79

−0.78

−0.77

Multipole coefficient d_1_2

0 5 10 15 20
Replica index

−0.04

−0.02

0

0.02

0.04

Multipole coefficient d_1_3

Figure 2.8: Parameter values along transition path.

79

x

Edislocation

b

σ
2

b
E (−)σ

B

E ()
B

σ

Figure 2.9: Schematic of dislocation potential energy under shear stress σ.

data would be to use some kind of analytic expansion, but such an expansion takes

many terms to reproduce a singularity well. (3) To actually choose a functional

form one looks for a very simple physical model of the defect. Often a model that

is too simple to be of quantitative use can suggest appropriate functional forms

which have the right symmetries and singularities. The last two ingredients of

the philosophy are (4) subtleties in definitions—e.g. of the position of a defect,

or other features of the continuum description that are missing from the atomistic

description—and (5) new physics associated with singularities.

2.6.1 Symmetry

In the case of stress-dependent Peierls barriers, considering first only the σxy-

dependence, the symmetry comes from the periodicity of the lattice. As we have

seen, each NEB calculation gives us two barriers, for positive and negative shear,

which correspond also to the barrier in the forward direction and the barrier in

the backward direction; see Fig. 2.6.1. Since these barriers are equivalent by peri-

80

odicity, the difference between their energies has nothing to do with atomic con-

figuration and everything to do with the work done by the external stress on the

dislocation in moving it from one maximum to the next. This is just the force on

the dislocation—the resolved shear stress times the Burgers vector—times the dis-

tance moved (b), thus the symmetry is (here σxy > 0 gives a force in the “forward”

direction):

EB(−σxy) −EB(σxy) = σxyb
2 (2.64)

⇒ EB(−σxy) + 1
2
(−σxy)b

2 = EB(σxy) + 1
2
σxyb

2 (2.65)

(2.66)

which means that EB(σxy) + 1
2
σxyb

2 is an even function of σxy, or EB(σxy) =

−kσxy +h(σxy), where k = 1
2
b2 and h(x) is even function of x. Based on symmetry

alone one might consider expanding h in even powers of its argument.

2.6.2 Singularity

At high enough shear stress the barrier vanishes as the unstable maximum in energy

merges with the stable minimum. We call the value of σxy at which this happens

the critical shear σc. At this point continuous sliding down the potential slope can

happen and the dynamics is no longer governed by eqn. 2.2. The vanishing of the

barrier at σc is the singularity. The merging of stable and unstable equilibrium

points like this is known as a saddle-node bifurcation in dynamical systems theory

(see for example Refs. [63, 28]). The normal form for this kind of bifurcation,

Ẋ = −ǫ +X2, when put in terms of potential energy (from which the right hand

side is derived as a force) shows that to lowest order, the energy barrier (difference

81

between a maximum and a adjacent minimum of energy) in the vicinity of σc is a

3/2 power law in σc − σxy:

EB(σxy) ∼ (σc − σxy)
3/2 (σxy . σc) (2.67)

By adding other terms to the normal form, or considering an exact solution of a

one-dimensional model (see below) we can show that in general we expect a series

of half-integer powers of (σc−σxy), starting with 3/2. A functional form suggested

by consideration of the singularity alone would be:

EB(σxy) = α3/2(σc − σxy)
3/2 + α5/2(σc − σxy)

5/2 + · · · (2.68)

where σc, α3/2, α5/2, . . . are fitting parameters.

2.6.3 Simple model

To get a functional form incorporating both the symmetry and the singularity we

consider the following one-dimensional potential, non-dimensional position x and

shear stress s:

E(σxy, x) =
E0

2

(

1 − cos

(

2πx

b

))

− σxybx (2.69)

where b corresponds to the Burgers vector, σ to the shear stress and E0 to the zero

stress barrier. The exact energy barrier between adjacent extrema for this system

is

EB(σxy) = E0

√

1 −
(

σxyb2

πE0

)2

+
σxyb

2

πE0
arcsin

(

σxyb
2

πE0

)

− 1
2
b2σxy (2.70)

82

which is shown in Fig. 2.10. In this figure E has been scaled by E0 and σxy by σc,

which is πE0/b
2. Here there is a simple relation between E0 and σc, but we do not

expect this in general. We do, however, wish σc to be a fitting parameter, so we

rewrite eqn. 2.70 in terms of σc. Also, we replace b2 with 2k—recall that k is not

a fitting parameter!

EB(σxy) =
2σck

π

√

1 −
(

σxy

σc

)2

+
2σxyk

π
arcsin

(

σxy

σc

)

− kσxy (2.71)

An expansion about σxy = σc gives the expected half-integer series. To generalize

this functional form to accommodate real data we wish to identify a part of it

that can be expanded in a power series while preserving the symmetry and correct

singularity of the basic form. This is not trivial: the linear term is fixed, and

the requirement that EB vanish at σc constrains the arcsine term; actually, if you

expand the arcsine term about σc you get constant and linear terms (which cancel

the linear term in the overall function) as well as a series of half-integer powers,

starting with the square root. The square root term also expands to a series of half-

integer powers starting with square root—its first term cancels that of the arcsine

term. Thus the arcsine term has three pieces which cancel parts of the other terms.

We cannot multiply it by an analytic function without destroying this, but we can

multiply the square root term by an analytic function h(σxy). What limitations

are there on h? To satisfy symmetry requirements it must be even. Furthermore

being analytic in σxy implies being analytic in σc − σxy. Consider multiplying the

expansion of h by the expansion of the square root term. The latter has a square

root term which cancels with the corresponding term from the arcsine term–we

must not interfere with this. Since this is the first term we can preserve it by

making the constant term in h be unity, in other words h(σc) = 1. A simple choice

83

0 0.2 0.4 0.6 0.8 1
dimensionless shear (s)

0

0.2

0.4

0.6

0.8

1

di
m

en
si

on
le

ss
 b

ar
rie

r
he

ig
ht

 (
E

_B
)

Figure 2.10: Plot of barrier versus stress for sinusoidal potential.

is h(σxy) = 1+
∑

An(1− (σxy/σc)
2)n. Ideally only one or two terms in the h series

are needed for accurate fits; we generally take two terms, giving three parameters

for the σxy-dependence. Our resulting functional form for the σxy-dependence of

the Peierls barrier is therefore:

EB(σxy) =
2k

π



h(σxy)σc

√

1 −
(

σxy

σc

)2

+ σxy arcsin(σxy/σc)



 − kσxy (2.72)

where the fitting parameters are σc and the An in h(σxy) .

2.6.4 Subtleties, extra physics

The subtlety associated with the definition of the dislocation center has been dis-

cussed in section 2.2.2. The extra physics here is the fact that as the barrier

vanishes, single hops over the barrier are not the whole story—one must consider

also double and multiple jumps, and eventually continuous sliding, at which point

the dislocation motion becomes dominated by dynamic effects.

84

2.6.5 Dependence on σxx and σyy

The dependence on σxx and σyy is less interesting than that on σxy, having no

apparent singularities. To include it in the full functional form we allow the pa-

rameters in eqn. 2.72 to depend on σxx and σyy and expand that dependence in

a low order polynomial—a quadratic. Thus each parameter eqn. 2.72 becomes a

function involving six parameters, thus

σc(σxx, σyy) = σ00
c + σ10

c σxx + σ01
c σyy + σ11

c σxxσyy + σ20
c σ

2
xx + σ02

c σ
2
yy

An(σxx, σyy) = A00
n + A10

n σxx + A01
n σyy + A11

n σxxσyy + A20
n σ

2
xx + A02

n σ
2
yy

(2.73)

We use three parameters (σc, A1 and A2) in the basic functional form, giving 18

parameters for fitting the full stress dependence.

2.6.6 Fitting procedure

The data from different σxx, σyy batches are fit first for their σxy-dependence. The

fitting algorithm is nonlinear least squares (Levenberg-Marquardt). The values of

σc, A[n], . . . obtained from these initial fits are then fit to quadratic polynomials

for their σxx, σyy-dependence. The resulting parameters are then used as initial

guesses for a single fit of the whole data-set to the full fitting function. By fitting

differences between positive and negative barriers to a linear dependence on σxy

we can check that the difference is correctly given by the constant k = 1
2
b2. In this

way each σxx, σyy pair yields a value of k. For the CLJ potential, the mean value

is 0.6317± 0.003 which is greater than the ideal value 0.6196 by 0.012 or 2%. It is

not clear if this difference is significant. We used the ideal value to fit the data.

85

0 10 20 30 40
Radius of core region

0.005

0.01

0.015

0.02

0.025

P
ei

er
ls

 b
ar

rie
r n=1 (4 parameters)

n=1,2 (8 parameters)
n=1,2,3(12 parameters)

Figure 2.11: Dependence of zero-stress barrier height on core region size, for differ-

ent numbers of boundary parameters (CLJ potential), without continuum energy.

2.7 Results and discussion

The zero-stress Peierls energy for the CLJ potential is 0.0082 ± 0.0002; this value

comes from the largest system sizes we have simulated, using eight boundary pa-

rameters. This is rather small, as the depth of the pair potential well is unity (in

natural units, otherwise ǫ). The Peierls stress is the order of 0.2% of the shear mod-

ulus, which makes 2D Lennard-Jonesium intermediate between covalently bonded

materials (typically 1% of µ) and ductile fcc metals (typically 0.01% of µ).

2.7.1 Size dependence;

Fig. 2.11 shows the size dependence of the zero-stress barrier for the CLJ poten-

tial, for different numbers of parameters: 4, 8 and 12, corresponding to keeping

up to n = 1, 2, 3 multipoles respectively (it makes sense to add all parameters for

86

0 10 20 30 40
Radius of core region

0.005

0.01

0.015

0.02

0.025

0.03

P
ei

er
ls

 b
ar

rie
r

Far field energy included

n=1 (4 parameters)
n=1,2 (8 parameters)
n=1,2,3(12 parameters)

Figure 2.12: Zero-stress barrier height vs. core region size, far field energy included.

a given r-dependence at a time). In these data no continuum contribution to the

energy was included. Fig. 2.12 shows the corresponding data for the case where

the continuum energy was included. There is not a dramatic difference; to make

a comparison it is better to examine the data with and without continuum energy

together, as shown in Fig. 2.13, for the case of 8 boundary parameters. The con-

tinuum energy terms seem to make a noticeable improvement in the convergence,

but not enough to get a good result with a radius smaller than about 10. One

surprising aspect of the continuum-energy-included data is that the size depen-

dence ceases to be monotonic. This may be due to difficulties in convergence at

the largest system sizes, both the initial and final states, and the transition chain

itself.

Notice that while eight parameters seems to give a noticeable improvement

87

over 4 parameters, the increase of flexibility to 12 parameters makes no further

improvement. This is possibly due to the following: the continuum energy terms

that we have included depends only on n = 1 coefficients. The additional flexibility

in the boundary gained by including higher order multipoles allows lowering of

energy in the atomistic region, without any cost in the continuum region. Therefore

it likely that by including higher multipoles without including appropriate terms

in the continuum energy, one over-relaxes the energy in the atomistic region, and

does not get a closer approximation to the far field energy. A simple calculation

involving the n = 1, j = 3 multipole, which is the simple volume expansion term,

indicates that when the appropriate far field energy is included, the error in the

Peierls barrier should go like 1/R3
1, if R1 is the size of region 1, because the energy

associated with not relaxing it goes like 1/R2
1. Assuming that the same holds

for all n = 1 multipoles, we should expect the energy barrier computed using 4

parameters to converge to the infinite system limit as 1/R3
1. In fact, if the barrier is

plotted against 1/R3
1, a reasonably straight line results (not shown). Although the

magnitude of the error certainly decreases at small R1 with eight parameters, it still

appears to decrease like 1/R3
1. The gain in accuracy when using eight parameters

is therefore seen to be fortuitous, since we should expect converge at a faster rate

(we have not computed the expected power law for n = 2 multipoles, but it should

presumably be of higher order that for just the n = 1 multipoles). Work is in

progress to iron-out these details and ensure that there is consistency between the

flexibility of the boundary and the terms included in the far field energy.

88

0 10 20 30 40
Radius of core region

0.007

0.009

0.011

0.013

P
ei

er
ls

 b
ar

rie
r no continuum energy

continuum energy included

Figure 2.13: Zero stress barrier with and without continuum energy terms, with

eight boundary parameters.

2.7.2 Stress dependence

Our main results for are a system with region I radius of 10, and a transition

region-width (Λ2 − Λ1) of six cutoff distances, with no continuum terms included.

It should be noted that the system orientation in the simulations was such that the

Burgers vector, and hence also the glide direction, were in the y direction. The for-

mulas given for multipole displacements and stress-dependent terms in the energy

assumed the Burgers vector was in the x-direction. In the software, the rotation

of the elasticity formulas is accomplished by referring them to arbitrary basis vec-

tors and setting the basis vector accordingly. To implement the stress-dependent

terms correctly the components of the applied stress must be appropriately trans-

formed.are: σxx and σyy are interchanged while σxx changes sign. With regard

to signs, in presenting the stress-dependent data, we have chosen the following

89

sign convention: the diagonal components are positive for a stress which tends to

compress the system, and the shear stress is positive when it tends to make the

dislocation glide in the forward sense. Otherwise, all of the stresses we quote would

have extraneous minus signs.

In Figs. 2.14, 2.15, 2.16 and 2.17 we show contour plots of the fitted barrier

height function for the CLJ potential in three different planes cutting stress space.

These are σxx −σxy, σyy = 0, σyy −σxy, σxx = 0 and σxx −σyy , σxy = 0 respectively.

The fit parameters are listed in table 2.5. The ranges of σxx and σyy in the plots

correspond to the range explored in the computations. The limit of σxy for a given

σxx − σxx pair was whatever it took to make the barrier go to zero, which is the

Peierls stress. White represents zero barrier, thus the line bordering the white

region in the σxx−σxy and σyy −σxy give the Peierls stress as a function of σxx and

σyy, respectively. The first feature to note is that the Peierls stress, and thus the

Peierls barrier in general, increases with σxx (i.e., as the material is compressed

perpendicular to the slip plane) and decreases with σyy (i.e., as the material is

compressed parallel to the slip plane). At the larger values of σxx the Peierls stress

begins to saturate. It would be interesting to push the value of σxx up further to

see if the Peierls stress remains saturated or begins to rise again.

The errors in the fit can be quantified by making a histogram of the fractional

errors. Because we consider barriers which are close to zero, many of the fractional

errors are large, and in fact the mean fractional error for the CLJ data is 0.318.

However the median fractional error is only 0.028. A histogram of the fractional

errors is shown in Fig. 2.18.

90

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

σxx

σxy

σ (σ)
P xx

E = 0B

Figure 2.14: Contour plot of Peierls barrier (σxx − σxy).

0 0.02 0.04 0.06 0.08
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035σxy

E = 0B

σyy

σ (σ)
P yy

Figure 2.15: Contour plot of Peierls barrier (σyy − σxy).

91

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175
0

0.02

0.04

0.06

0.08σyy

σxx

Figure 2.16: Contour plot of Peierls barrier (σxx − σyy).

0 0.02 0.04 0.06 0.08
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

E = 0B

σxy

σ
P

p

(p)

Figure 2.17: Contour plot of Peierls barrier (pressure-σxy).

92

Table 2.5: Fit parameters for CLJ potential.

A00
1 0.451238 A00

2 -0.645441 σ00
c 0.0321618

A01
1 5.09441 A01

2 -8.1819 σ01
c -0.386674

A02
1 34.1911 A02

2 -42.4789 σ02
c -0.236238

A10
1 -5.93857 A10

2 8.79044 σ10
c 0.292252

A11
1 -27.0486 A11

2 36.7874 σ11
c 0.609572

A20
1 19.6471 A20

2 -23.8286 σ20
c -0.301861

0.1 0.2 0.3 0.4 0.5

20

40

60

80

100

Figure 2.18: Histogram of fractional errors in multidimensional nonlinear fit to

barrier data.

93

2.A 2D versus 3D elasticity

In the Volterra formula for the displacements of a dislocation there appears the

Poisson ratio ν; this also appears in the other terms of the general elasticity solu-

tion. We need to choose this in accordance with the interatomic potential being

used. There is a formula for ν in terms of for example the Lamé constants, but

this formula also depends on the dimension of space, D:

νD(λ, µ) =
λ

2µ+ (D − 1)λ
(2.74)

Taking λ = µ for a central potential we have ν2 = 1/3 and ν3 = 1/4. However

even though we have a two-dimensional material, it turns out that the ν in the

Volterra solution should be the 3D one, ν = 1/4. A re-derivation of the Volterra

formula following that in Hirth and Lothe [34] for a purely two dimensional material

shows that when written in terms of the Lamé constants, the combination of λ and

µ that appears in the solution is exactly the 3-dimensional formula for ν. For a

central potential λ = µ so we use ν = 1/4.

Alternatively, in order to make use of solutions derived for three-dimensional

materials directly, consider the relationship between a purely two-dimensional

material and a three dimensional material of unit thickness26 undergoing two-

dimensional deformation. For the latter there are two possibilities: plane stress

(σzz = 0, ǫzz 6= 0) and plane strain (σzz 6= 0, ǫzz = 0)27. Plane stress is generally as-

sociated with thin plates, because material is free to strain in the third dimension;

while plane strain is associated with structures which are long in the third direc-

26So we can avoid factors of the thickness which are only necessary to make the
units correct.

27There are other possibilities—for example setting the zz component of the
appropriate field to something other than zero—but these are the standard cases.

94

tion, because material far from the ends is constrained by surrounding material to

have no displacement in that direction. For an isotropic 3D material with given

Young’s modulus E3 and Poisson ratio ν3, the resulting two-dimensional behavior

is also isotropic. In plane stress and the effective E and ν are the just E3 and ν3;

in plane strain they are modified:

Eeff
2 = E3/(1 − ν2

3); νeff
2 = ν3/(1 − ν3) (2.75)

Going the other way we can choose to map a two dimensional material onto

a three-dimensional one, either in plane stress or in plane strain by choosing the

relationship between the 2D and 3D elastic constants appropriately. The Volterra

solution presented in Hirth and Lothe was derived for plane strain (we also use the

plane strain general solution to get the multipoles), so to use it we should map our

two dimensional material to a 3D one in plane strain. Inverting 2.75 we get

Eeff
3 = E2

1 + 2ν2

(1 + ν2)2
; νeff

3 = ν2/(1 + ν2) (2.76)

It turns out that this mapping is equivalent to the relations between the 2D and

3D E and ν for fixed Lamé constants. Since neither the Volterra formula nor the

multipole formulas depend on the Young’s modulus28 we only need the expression

for νeff
3 —or, we can just remember to use the 3D formula when calculating the

Poisson ratio from the Lamé constants.

One final note: we saw that E and ν are unchanged in the mapping between

3D plane stress and 2D. The results of the last paragraph are equivalent to the

28This is the benefit of the E, ν expression of the elastic constants for an isotropic
material—it separates them into a dimensional number which sets a quantitative
scale for the relation between stress and strain, and a dimensionless number, which
characterizes the elastic response in a purely qualitative way.

95

statement that the Lamé constants are unchanged in the mapping between 3D

plane strain and 2D, which is also clear if one compares the elastic free energy,

which is naturally expressed in terms of the Lamé constants, of a 3D material of

unit thickness which is in plane strain with a 2D material. If we were working with

plane strain solutions expressed in terms of the Lamé constants we would not have

to worry about using the “3D” version of anything, but if we were working with

plane stress solutions involving the Laméconstants we would have to worry.

2.B Lagrangian versus Eulerian coordinates

In modeling the far field of the dislocation using the general solution of two-

dimensional linear elasticity, we need to make a choice of interpretation, namely

whether the formula is to be interpreted as referring to undeformed positions (La-

grangian) or deformed/current positions (Eulerian). We choose the latter for one

important reason, and in this we follow Sinclair et al.[60]—with a Lagrangian in-

terpretation the positions become sensitive to the choice of the branch cut of the

logarithm (corresponding to the imaginary cut through the material to make the

dislocation), and also the positions obtained do not have the crystallographic sym-

metry associated with the inserted half-plane. Gehlen et al. [26] used Lagrangian

formulation, treating atoms near the cut in a careful way in order to maintain

symmetry. However their approach is not feasible for our context where the center

of the dislocation is variable. Using Eulerian coordinates makes all these prob-

lems disappear, at the expense of needing to use an iterative means to compute

the actual current position of an atom, given the displacement field. This will be

described now.

96

We describe the displacement of a material particle, ~u = ~x− ~X, using a func-

tion ~F . In a Lagrangian description, ~F depends on the undeformed position X

as well as some parameters {pα}. In an Eulerian description, ~F depends on the

current position X, but the functional form remains the same. Thus for a given

functional form, such as the Volterra formula for the displacement field of a dislo-

cation, choosing the position variable for ~F to be X or x specifies an Lagrangian

or an Eulerian description respectively. Interpreting the formula this way makes

a difference to the actual positions (of the atoms) as a function of the parame-

ters {pα}. Actually displacing the atoms is simple for the Lagrangian description:

given the parameter values and the undeformed position of an atom, one inserts

these into the formula for ~F and obtains the displacement, which is then added to

X to get the current position x. In the Eulerian description, x appears on both

sides of the equation:

~x = ~X + ~F (~x, {pα}) (2.77)

and thus we need to solve for x. In the simulations we do this iteratively. As a

first approximation we simply apply the formula in a Lagrangian sense to get the

first guess for x, x0. Thereafter, we apply the following procedure:

1. Evaluate ~F at the current position to get the supposed displacement

2. Subtract this from the current position to get a supposed undeformed posi-

tion.

3. Find the closest lattice point to get the actual undeformed position and hence

actual displacement.

97

4. The difference between the supposed displacement and the actual displace-

ment is taken as the correction to the current position. Increment the position

by the amount. Accumulate the sum of squared differences as the error.

5. While the error is larger than tolerance, repeat.

Note that we assume the undeformed positions are the sites of a Bravais lattice.

If this was not true we could store the undeformed positions explicitly. If there are

many terms in the displacement field, they are summed at each iteration—there is

no way to do them one at a time. In general the procedure converges very quickly

to machine precision (less than 10 iterations). Next, apart from being to able

to put the atoms in the correct positions according to the Eulerian description,

we need the gradient of the position with respect to the parameters (to calculate

effective forces on parameters). In a Lagrangian description this would simply be

the derivative of ~F with respect to {pα}. In the Eulerian description we need

to differentiate eqn. 2.77 with respect to {pα} implicitly (the index i refers to a

Cartesian coordinate):

∂xi

∂pα

= 0 +
∂Fi

∂xj

∂xj

∂pα

+
∂Fi

∂pα

⇒
(

δij −
∂Fi

∂xj

)

∂xj

∂pα

=
∂Fi

∂pα

(2.78)

⇒ ∂~x

∂pα
= (1 − ~∇ ~F)−1 ∂

~F

∂pα
(2.79)

98

2.C Transforming Eulerian to Lagrangian coor-

dinates in continuum energy analysis

As discussed in appendix 2.B we use displacement formulas expressed in Eule-

rian/deformed coordinates to define the positions of the boundary atoms. These

also represent the displacement field of the imagined material all the way to in-

finity. We use a nonlinear continuum elasticity analysis to calculate the energy

contribution from this material. The first step in the analysis is to convert the

Eulerian displacement field, which is the sum of the linear strain field, the Volterra

field and the multipole fields, to a Lagrangian displacement formula. The link

between Eulerian and Lagrangian descriptions is that the actual displacement of

a particular material point is the same in either description. This gives us the

following rule

~uL(~X) = ~uE(~x) = ~uE(~X + ~uL(~X)) (2.80)

For simple displacement fields this can be solved exactly for ~uL(~X). Otherwise we

must use an iterative procedure. We could insert eqn. 2.80 into itself to get

~uL(~X) = ~uE(~X + ~uE(~X + ~uL(~X))) (2.81)

However a more practical and efficient procedure consists of starting with the

expression ~uL(~X, iterating the following three steps: (1) apply eqn. 2.80 to every

occurrence of ~uL(~X). (2) Replace every occurrence of ~uE(~X+~uL(~X)) by its Taylor-

expansion truncated at an order large appropriate to whatever order of 1/R is being

kept. This depends on the lowest order that appears in the Eulerian formula. The

formula will now be a mixture of ~uLs, ~uE and derivatives of the latter.(3) Again

99

using knowledge of what the lowest order in the actual expression will be, remove

terms which will be of too high an order in 1/R. The maximum order allowed in

the displacement field is chosen in accordance with the maximum order desired

in the energy density. For 1/R4 terms in the density, we need up to 1/R2 in the

displacement field. Steps (1), (2) and (3) are repeated until there are no more

~uLs left. At this point the actual ~uE field and its derivatives can be substituted

in. It is necessary then to pass the resulting expression through a function which

removes terms of too high order, which can now be done completely, since the

actual expressions are available. The truncation procedure is used in several other

parts of the analysis, where high order terms are generated from multiplying strains

together, etc.

The second aspect of the transformation from Eulerian to Lagrangian coordi-

nates involves the domain of integration. As mentioned in the main text, we need

only to do the Θ-integration at fixed R. But we need to know for a given value

of R, what values of Θ correspond to the two sides of the gap from the missing

material. An exact, explicit formula for the boundary in undeformed coordinates

is not easy to obtain for the full Eulerian field involving linear strain field and

multipoles. The boundary is defined by x = 0, and θ(deformed) = −π/2 or 3π/2,

which define coincident straight lines in the deformed configuration, but will be

two curves in undeformed coordinates; furthermore if there is applied shear these

curves will be skewed away from the negative y-axis.

We can begin to solve for the boundary by writing the relation between de-

formed and undeformed coordinates in the form (X, Y)+(u(x, y), v(x, y)) = (x, y),

where X = R cos(Θ);Y = R sin(Θ). We call the value of Θ on the positive x side of

the cut Θ−, since it is a negative number; the value for the other boundary is Θ+.

100

Rather than solving for say, deformed positions in terms of undeformed positions,

in this case we know one coordinate of each: we know x = 0, with y unknown, and

we know R with Θ± unknown. Thus we have the following two equations:

R cos(Θ±) + u±(0, y) = 0

R sin(Θ±) + v±(0, y) = y

(2.82)

with u±, v± are given by

u±(0, y) = ± b
2

+ ǫxyy −
d

(1)
1

6y
− d

(1)
2

y

v±(0, y) = ǫyyy −
b

2π
(−1

3
+

log(y2)

6
) +

d
(1)
0

2y
+
d

(1)
3

y

(2.83)

where only n = −1 multipoles have been included. The solution when the ds and

ǫij are zero is Θ± = cos−1(−b/(2R)). From this was can we how the integration

with respect to Θ brings terms down by a power of R. We have tried to solve

eqn. 2.82 using a power series expansion (of cos Θ± and 1/y in terms of b/R) but

the logarithm makes this problematical. Assuming that using the exact solution

will make a difference only to terms in the energy expression of higher order than

those we are interested in, we have used the zero-order solution for Θ± in doing the

Θ-integration. A possible problem with this is that term in the integrand which

are of low order in 1/R, but independent of the boundary parameters may acquire

such a dependence from the higher order terms in Θ±, and still be low enough

order in 1/R to count. Thus it would be worth trying harder to solve eqn. 2.82.

101

2.D Relating changes in elastic energy to work

done on boundaries

This appendix continues the discussion in section 2.3.5 regarding the differences

between the work done on different shaped boundary curves. This can be accounted

for by considering energy changes within the area enclosed by the two curves in

question. What follows is a linear elasticity analysis, and the curves we consider

are rectangles and circles centered on the dislocation. Taking just the linear and

logarithmic (Volterra) terms in the displacement field, we find the change in energy

density as the dislocation center moves: since the energy density is quadratic in

the strain, there are three terms. One is the energy of the linear displacement field,

which is independent of the dislocation center. One is the dislocation self-energy

(the divergence does not matter for this part of the argument), which depends

on the center but for the symmetric boundary integrals we are considering, the

changes ahead of and behind the dislocation have opposite signs and cancel out

(since this energy is essentially “carried along” by the dislocation. Finally there is

a cross term which is linear in the applied stress and in the burgers vector. This

term accounts for the changes in the integrals. It turns out to be proportional

to cos(4θ)/r2, and the integral over the area between a square and a surrounding

circle gives the difference in the work done on these respective curves, and vice

versa.

This is a little confusing given the fact that there is no difference for integra-

tion paths of the same shape but different sizes. A corollary of this is that the

integral of the energy density change between a circle and any surrounding square

is the negative of the integral between a square and any surrounding circle; see

102

S1

C1

S2

C2

R1

Figure 2.19: When the dislocation glides a distance b, the work done on the bound-

ary of squares S1 and S2 is 0.58σxyb
2, that on circles C1 and C2 2σxyb

2/3. On

rectangle R1 it is very nearly σxyb
2.

figure 2.19. Note that the connection between line integral and area integral—

the divergence theorem—does not apply when the area includes the logarithmic

singularity29, that is, the dislocation itself, so we cannot directly integrate the

energy change within the circular boundary to find the missing one-third of the

work done on the dislocation when the center moves. Interestingly it does show

up in the simulation—without including the work terms, we find a difference be-

tween the forward and backward barriers equal to one third of the expected value

σxyb
2. The other two-thirds comes from the external work done. With the cir-

cular boundary, when the dislocation glides by one Burgers vector, the external

sources do work 2σxyb
2/3, the elastic energy within the boundary is decreased by

an amount σxyb
2/3, so that the work done on the slip plane is the expected amount

29The divergence theorem requires the integrands to be continuous and differ-
entiable at every point in the domain.

103

σxyb
2. It should be possible to integrate the energy density change over the circle

minus a thin strip which includes the slip plane (or do a semi-circle minus this

strip, and double the result) but it was not obvious how to do this in Mathemat-

ica. Experiments with rectangular regions make it clear how as the aspect ratio of

the rectangle increases, say by making the rectangle thinner and thinner, the work

calculated by the line integral approaches the limit σxyb
2, with the difference as

the width is changed being exactly accounted for by the appropriate area integral.

The work done on the slip plane does not end up as stored energy anywhere; it is

dissipated as heat.

Chapter 3

Fracture of Notched Single

Crystal Silicon

3.1 Introduction

Recently there has been experimental[22, 66, 67] and theoretical[76] interest in

fracture in sharply notched single crystal silicon samples. Such samples have tech-

nological importance because silicon is a commonly used material in the fabrication

of MEMS devices; the etching process used tends to create atomically sharp cor-

ners due to highly anisotropic etching rates [67]. Failure in such devices is often

a result of fracture which initiated at sharp corners[65]. In the case of a notch,

there exists a parameter K analogous to the stress intensity factor of traditional

fracture mechanics, which parameterizes the elastic fields in the vicinity of the

notch. Suwito et al.[66, 67] have carried out a series of experiments which have

(i) established the validity of the stress intensity factor as a fracture criterion in

notched specimens and (ii) measured the critical stress intensities for several notch

geometries. On the theoretical side Zhang[76] has carried out an analysis which

104

105

models the separation of cleavage planes by a simple cohesive law, and thereby de-

rived a formula for the critical stress intensity as a function of notch opening angle.

The material properties which enter this formula are the elastic constants and the

parameters of the cohesive law, the peak stress σ̂ and the work of separation Γ0.

This recent interest has prompted us to investigate the phenomenon of fracture

in notched silicon using atomistic simulations: In this chapter we present direct

measurements of the critical stress intensity for different geometries (i.e., notch

opening angles) and compare them to the experimental results of Suwito et al.

We apply a load by specifying a pure K-field of a given strength (stress intensity

factor) on the boundary of the system; we do not have to infer a value of K from

some arbitrary far-field load and system geometry (this is the power of atomistic

simulations, although in other respects, such as the accuracy of the interatomic

potential, that power is limited). In doing this we are effectively using the result

of Suwito et al. that the notch stress intensity factor is indeed the quantity which

determines fracture initiation, so we can ignore higher order terms in the local

stress field.

3.1.1 Elastic fields near a notch

The essential geometry of a notch is shown in Fig. 3.1. The notch opening angle

is denoted γ and the half-angle within the material, which is the polar angle de-

scribing the top flank, is β (thus β = π − γ/2). As discussed in detail by Suwito

et al. [66, 67], it is fairly straightforward to solve the equations of anisotropic

linear elasticity for a notched specimen. The formalism used is known as the Stroh

formalism [73], which is useful for dealing with materials with arbitrary anisotropy

in arbitrary orientations, as long as none of the fields depend on the z coordinate

106

a)

x

y

θ
r

β
γ

b)

Figure 3.1: (a) Notch schematic and notation; (b) silicon crystal with a notch;

darker layer is fixed boundary atoms.

(this will be the out-of-plane coordinate; note that this does not restrict the defor-

mation itself to be in-plane). Here we only consider mode I (symmetric) loading.

The displacement and stress fields for a notch can be written as

ui = Krλgi(θ) (3.1)

σij = Krλ−1fij(θ) (3.2)

where λ plays a role like an eigenvalue; its value is determined by applying the

traction-free boundary conditions to the notch flanks. There is an infinity of pos-

sible values for λ of which we are interested in those in the range 0 < λ < 1, which

give rise to a singular stress field, often known as the K-field, at the notch tip.

This is entirely analogous to the singular field near a crack tip, which is simply

the limiting case where the notch opening angle goes to zero (or the angle β goes

to π), and λ becomes one half. Further details of the Stroh formalism are given in

107

appendix 3.B. The complete elastic solution involves the whole infinity of values

for λ, corresponding to different multipoles of the elastic field. Negative values of λ

correspond to more singular fields which are associated with properties of the core

region stemming from the non-linear atomistic nature of this region; they do not

couple to the far-field loading. λ > 1 corresponds to fields which are less singular,

and do not influence conditions near the notch-tip, since the displacements and

stress vanish there. They are, however, essential to represent the full elastic field

throughout the body, and ensure that boundary loads and displacements (what-

ever they may be) are correctly taken into account. This is the basis for asserting

that only the K-field is important. This field is unique among the multipoles in

that it both couples to the far-field loading and is singular at the notch tip. Thus

the stress intensity factor must characterize conditions at the crack tip, and there-

fore a critical value, Kc, is associated with the initiation of fracture. The validity

of this approach hinges on the validity of linear elasticity to well within the region

in which the K-field dominates.

From eqn. 3.2 we see that the units of K and therefore Kc are stress/lengthλ−1

which depends continuously on the notch angle γ through λ. Hence the shape of

a plot of Kc against notch angle depends on the units used to make the plot. In

metric/SI unitsKc changes by an order of magnitude between 70◦ and 125◦ whereas

if an atomic scale unit of length is used the plot is nearly flat (Fig. 3.15). The most

interesting feature of this is that it seems to provide a direct link from macroscopic

measurements to a microscopic length scale. From a continuum point of view, one

incorporates atomistic effects into fracture via a cohesive zone, a region ahead of

the crack tip where material cleaves according to a specified force-separation law.

One of the parameters of such laws is the length scale—the distance two surfaces

108

must separate before the attractive force goes to zero—which for a brittle material

is an atomic length scale. It is this scale that one would identify from the plot of

Kc versus angle. Note that one can only identify a scale, and not an actual length

parameter, in particular because the different geometries that are involved in the

plot involve different fracture surfaces, with presumably different force-separation

parameters.

Fig. 3.2 shows the normal and shear stresses on radial planes (perpendicular

to the plane of the sample) emanating from the notch tip, for unit K and r (i.e.,

they are derived from the tensor fij appearing in eqn. 3.2). The figures show

the functions for the γ = 70◦ case; the other geometries have the same qualitative

behavior. Both stresses vanish at the maximum angles, corresponding to the notch

flanks; this is in accordance with traction-free boundary conditions. What is most

important to note is that the normal stress, which presumably is most relevant for

cleavage on a radial plane, has its maximum at θ = 0. The shear stress, which is

relevant for possible slip behavior (dislocations) which could compete with cleavage

as a means of relieving stress, is zero at θ = 0, and has a maximum at intermediate

angles. If there is an easy crystal slip plane in the vicinity of the maximum, slip

could conceivably compete with cleavage.

3.2 Simulation

3.2.1 Geometry

We simulated a cylindrical piece of silicon with a notch, making a ‘PacMan’ shape

as in Fig. 3.1(b), consisting of an inner core region and an outer boundary region.

By focusing on just the initiation of fracture we avoid the need for large systems

109

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

0.5 1 1.5 2 2.5

0.5

1

1.5

2

b)a)

θθ

σ σsn

Figure 3.2: Normal (a) and shear (b) stresses on radial planes as functions of plane

angle, for γ = 70◦.

since we are not interested in the path the crack takes after the fracture (if we

were, we would have a problem when the crack reached the edge of the core region

and hit the boundary which is only a few lattice spacings away). We consider three

notch geometries, which we call the 70◦ (actually 70.5288◦), 90◦ and 125◦ (actually

125.264◦) geometries respectively, referring to the notch opening angles. The 70◦

sample has {111} surfaces on the notch flanks and the plane of the sample is a

{110} surface. The 90◦ sample has {110} surfaces on the flanks and the plane is

a {100} surface (in this case the crystal axes coincide with the coordinate axes).

The 125◦ sample has a {111} on the bottom flank and a {100} surface on the top

flank, while the plane of the sample is a {110} plane. In addition, we studied the

zero degree notch geometry, corresponding to a standard crack. The crack plane is

a {111} surface and is the xz plane in the simulation, and the direction of growth

is the 〈211〉 direction, which is the x direction in the simulation. The radius of the

inner, core region in almost all the cases presented is 5 lattice spacings or about

27Å. The exceptions were the crack geometry for the EDIP potential (core radius

was 7.5 lattice spacings—the larger size makes the ductile behavior of the potential

110

more obvious) and the 90◦ geometry with the MEAM potential (core radius was

four lattice spacings because this potential is computationally more demanding).

The coordinate system in each case is oriented so that the plane of the sample is

the xy plane and the notch is bisected by the xz plane.

3.2.2 Potentials

We have used three different silicon potentials. The first is a modified form of the

Stillinger-Weber [62] potential (mSW), in which the coefficient of the three body

term has been multiplied by a factor of 2. This has been noted by Hauch et al.

to make the SW potential brittle; they were unable to obtain brittle fracture with

the unmodified SW potential. However it worsens the likeness to real silicon in

other respects such as melting point and elastic constants[37, 38, 29]. The second

potential is a more recent silicon potential known as “environment-dependent in-

teratomic potential” (EDIP)[10, 44], which is similar in form to SW but has an

environmental dependence that makes it a many-body potential. Bernstein and

coworkers[12, 1, 13] have used EDIP to simulate fracture in silicon. They reported

a fracture toughness about a factor of 4 too large when compared with experiment,

and that fracture proceeds in a very ductile manner, accompanied by significant

plastic deformation and disorder. On the other hand, using tight-binding molec-

ular dynamics near the crack tip they successfully simulated brittle fracture in

silicon. In view of failure failure of many empirical potentials to simulate brittle

fracture, Pérez and Gumbsch[52] used density functional theory to simulate the

fracture process, measuring lattice trapping barriers for different directions of crack

growth on different fracture planes. A reason for the failure of empirical potentials

that has been proposed in Ref. [13] is that their short-ranged nature necessarily

111

requires large stresses to separate bonds. This however is not the case in our third

potential, which is the modified embedded atom method (MEAM) of Baskes[8].

This is a many-body potential similar to the embedded atom method but with

angular terms in the electron density; it has been fit to many elements including

metals and semi-conductors. A significant feature of this potential is its use of

“three-body screening” in addition to the usual pair cut-off distance. This means

that atoms in the bulk see only their nearest neighbors, while surface atoms, on

the other hand, can see any atoms above the surface (for example on the other

side of a crack) within the pair cut-off distance. The pair cut-off has been set to 6

Å to allow the crack surfaces to see each other[9] even after they have separated.

The MEAM potential has been used successfully to simulate dynamic fracture in

silicon[9], and we have found it to be the most reliable potential in our studies

of notch fracture. In table 3.1 we list the low-index (relaxed, unreconstructed)

surface energies for the three potentials.

3.2.3 Boundary Conditions

The boundary conditions are as follows: in the z-direction (out of the page) there

are periodic boundary conditions. The thickness of the sample in this direction is

always one or two repeat distances of the lattice in that direction. For the 70◦ and

125◦ geometries the repeat distance is
√

2a where a is the cubic lattice constant;

for the 90◦ geometry it is 2a. In the plane, the boundary conditions are that an

layer of atoms on the outside of the system has the positions given by the analytic

formula (3.1) for displacements from anisotropic linear elasticity, with a specified

stress intensity factor K. The thickness of the layer is twice the cutoff distance of

112

Table 3.1: Surface energies for silicon according to mSW, EDIP and MEAM po-

tentials.

potential surface atomic units SI units

mSW 111 0.1718 1.3593

mSW 110 0.2105 1.6649

mSW 100 0.2976 2.3545

EDIP 111 0.06538 1.0475

EDIP 110 0.08194 1.3128

EDIP 100 0.1320 2.1150

MEAM 111 0.07668 1.2285

MEAM 110 0.09030 1.4469

MEAM 100 0.08126 1.3019

113

the potential, in order that the core atoms feel properly surrounded by material1.

We interpret the displacement formulas in terms of Eulerian coordinates, using

an iterative procedure to compute the current positions. The numbers of core

atoms were 890, 894, 1260 and 892, for the 0◦ (crack), 70◦, 90◦ and 125◦ systems

respectively (except for the EDIP/crack case where the core radius was 7.5 lattice

constants; there the number of core atoms was 2002). The number of boundary

atoms depends on the potential (through the cutoff distance); it is typically about

500 atoms. For the most part no special consideration was given to the lattice

origin, which meant that by default it coincided with the notch tip2. In a few

cases it was necessary to shift the position of the origin in order to make sure that

the notch flanks were made cleanly, in particular so that the {111} flanks in the

70◦ and 125◦ geometries were complete close packed {111} surfaces, rather than

having dangling atoms.

3.2.4 Critical stress intensities

The simulation consists of alternating the following two steps: (1) We increment

the value of K by a small amount, changing the positions of the boundary atoms

accordingly. (2) We relax the interior atoms as follows. First we run about 50 steps

of Langevin molecular dynamics with a temperature of 500-600 K; the purpose of

this is to break any symmetry (the 70◦ and 90◦ samples are symmetric about

the xz plane). It is still a zero temperature simulation; these finite temperature

steps are simply a way to introduce some noise. Next we run 500 time steps of

the dynamical minimization technique known as “MDmin” (a Verlet time step is

1It has to be twice because of the three- and many-body terms in the potential.
2When applying singular elastic deformations, a check ensures that an atom

sitting at the location of the singularity is simply not displaced.

114

carried out, but after each velocity update, atoms whose velocities have negative

dot-products with their forces have their velocities set to zero). Finally 500 time

steps of conjugate gradients minimization are carried out. We observe that the

combination of both types of minimization is more effective (converges to a zero

force state more quickly) than either alone. The procedure generally results in the

atoms having forces of around 10−5eV/Å.

The initial value for K could be zero; however it turns out to be possible to

start from a fairly large value of K by applying the analytic displacements to

the whole system at first. When the critical K value, Kc, is not yet known the

increment size is chosen reasonably large to quickly find the Kc. When this has

been found, the simulation is restarted from a value below the critical value with

smaller increments and a more accurate value for Kc found. The increment is a

measure of the uncertainty in Kc.

3.3 Results

3.3.1 Observed fracture behavior

We observe brittle cleavage of the simulated crystals at definite values of K for all

geometries using the mSW and MEAM potentials, but only for the 70◦ geometry

when using the EDIP potential. Figures 3.3-3.14 show snapshots of the simulation

process for the different geometries and potentials. In most cases three snapshots

are shown: one of the configuration immediately before crack initiation, one of the

configuration immediately after initiation, and one of a “late-stage” configuration,

to illustrate the fracture plane more vividly; generally this was chosen to be the

configuration corresponding to the highest applied load, which depended on how

115

(a) K = 0.841 (b) K = 0.842 (c) K = 1.05

Figure 3.3: mSW-crack.

long the simulation was run past the initiation point. For the EDIP potential,

which gives unphysical ductile behavior (except in one case, the 70◦ geometry),

more snapshots are shown, in order to illustrate the plastic behavior more com-

pletely, since a variety of stages is involved.

The behavior in crack geometries is shown in Figs. 3.3-3.5. The initial applied

load must be such that no crack healing takes place upon relaxation, so that the

location of the crack corresponds to the center of the system (in reference to which

the boundary displacements are calculated). In this case we are not investigating

crack initiation (since the notch is already a crack)but crack growth; the critical

Kc is defined as that at which the crack advances, or when the next bond across

the crack plane breaks. This is somewhat hard to see in the figures; one must

count atoms along the crack surface and compare from one figure to another to

see that growth has occurred.

The mSW and MEAM potentials produce similar, brittle, fracture behavior.

The EDIP potential produces quite different behavior; the crack propagates in a

ductile manner. Frame (a) shows the configuration before any plastic deformation

has taken place. Frame (b) shows what appears to be the nucleation of a dislocation

onto the {110} slip plane which is at an angle of 54.6◦ to the positive x-axis.

116

(a) K = 0.3 (b) K = 0.4 (c) K = 0.56

(d) K = 0.6 (e) K = 0.66 (f) K = 0.76

Figure 3.4: EDIP, crack.

By frame (c) the crack tip has blunted noticeably, and in frame (d) a growth of

the blunted crack by about a lattice constant has taken place–we take the stress

intensity at this stage to be the critical value. Frames (e) and (f) show a void

nucleating and growing behind the crack tip, which would under further loading

join with the crack—such coalescence of voids the essence of ductile crack growth.

(a) K = 0.183 (b) K = 0.1835

Figure 3.5: MEAM, crack.

117

(a) K = 1.066 (b) K = 1.067 (c) K = 1.199

Figure 3.6: mSW-70◦.

In the 70◦ system (Figs. 3.6-3.8) fracture occurs along a {111} plane. There are

two choices for this, symmetrically placed with respect to the xz plane. Here all

three potentials produced brittle behavior; this was the only geometry in which the

EDIP potential did so. Possible reasons for this exception are discussed in section

3.4. However,when the origin was not shifted as mentioned in section 3.2.4, so that

the notch flanks had dangling atoms, the EDIP-behavior was quite different: the

notch blunted to a width of several atomic spacings.

The behavior for 90◦ models is shown in Figs. 3.9-3.11. We get three different

behaviors for three different potentials—providing a cautionary demonstration of

the limitations of empirical potentials. The easy cleavage planes available here

are the {110} planes which are extensions of the notch flanks. The mSW model

starts to cleave along the lower of these (the extension of the upper flank) but the

crack advances only one atomic before cleavage switches to an adjacent parallel

plane. The net result is a kind of “unzipping” along the hard {100} plane. This is

presumably because the peak in the normal stress across this plane, compared to

the normal stress at the 45◦ angle, outweighs the increased cost of cleavage (but

note that the surface energy ratio γ100/γ111 is in fact lower for MEAM, which cleaves

118

(a) K = 0.2455 (b) K = 0.2465 (c) K = 0.3

Figure 3.7: EDIP-70◦.

on the {110} plane—see table 3.1 for the energies of the different surfaces according

to the different potentials). The EDIP potential deforms plastically in this case,

as depicted in the six frames of Fig. 3.10. It is harder to identify specific processes

here than in the 70◦ case, including where crack growth starts, though it seems to

have definitely started by the frame (c)(Kc = 0.6). The MEAM potential behaves

in the manner most consistent with experiment, namely cleaving on {110} planes,

and switching from one to the other—this is illustrated dramatically in the third

frame of Fig. 3.11. Experimentally switching between planes, when it happens,

occurs over longer length scales (25µm for the 70◦ case[66]), although the behavior

at atomic length scales has not been examined. Too much should not be read into

the switching we observe, because once cleavage has occurred over such distances

the proximity of the boundary probably has a large effect on the effective driving

force on the crack.

For the 125◦ geometry (Figs. 3.12-3.14), there are again two {111} planes to

choose from but they are not symmetrically placed. Fracture occurs for the mSW

and MEAM potentials on the one closest to the xz plane, i.e., closest to the plane

119

(a) K = 0.266 (b) K = 0.268 (c) K = 0.298

Figure 3.8: MEAM-70◦.

(a) K = 1.096 (b) K = 1.097 (c) K = 1.099

Figure 3.9: mSW-90◦.

of maximum normal stress, which is the (111̄) plane. The direction of growth is

[211̄], and growth proceeds much more readily than in the other notch geometries,

presumably because it is along the high stress plane. In the EDIP system, plastic

deformation is favored over cleavage. This appears to proceed as follows: First

slip occurs on the (111̄) plane in the [211̄] direction, as a single edge dislocation is

nucleated (frame (a)-frame (b)). Next, slip occurs on the other {111} plane, the

(11̄1) plane, in the [211̄] direction, with two dislocations being nucleated (frame (b)-

frame (c)-frame (d)), on adjacent (11̄1) planes. In the last two frames a void

appears and grows.

120

(a) K = 0.451 (b) K = 0.491 (c) K = 0.511

(d) K = 0.521 (e) K = 0.531 (f) K = 0.6

Figure 3.10: EDIP-90◦.

(a) K = 0.293 (b) K = 0.2935 (c) K = 0.34

Figure 3.11: MEAM-90◦.

121

(a) K = 0.998 (b) K = 0.9985 (c) K = 1.0045

Figure 3.12: mSW-125◦.

3.3.2 Critical stress intensities

The values of Kc, for the different potentials as well as from experiment, are

listed in table 3.2 and plotted in Fig. 3.15. The increment size for K is listed as an

estimate of the error inKc. The values for ductile fracture from the EDIP potential

are marked with an asterisk as a reminder that the definition of Kc in these cases

is problematic. The experimental value for the crack geometry is from Ref. [17].

Notice that the critical stress intensities for difference angles are almost the same in

atomic units, and differ by more than a factor of ten in standard units3. To check

for finite size effects, we repeated the measurement on the 70◦ geometry, but with

larger radius of 8 Å, using the MEAM potential. In this case Kc was determined

to be 0.262, or about 1.7% lower than the value from the smaller system. This

3Note that the exact conversion factor depends on the eigenvalue λ which de-
pends on the potential (see appendix 3.A), but for a given angle the dependence
on potential is quite small.

122

(a) K = 0.43 (b) K = 0.44 (c) K = 0.52

(d) K = 0.57 (e) K = 0.58 (f) K = 0.59

Figure 3.13: EDIP-125◦.

123

(a) K = 0.2195 (b) K = 0.22 (c) K = 0.28

Figure 3.14: MEAM-125◦.

indicates that finite size effects are small, but not negligible. To compensate for

them without using larger systems a flexible boundary method as described in

chapter 3 might be used, involving “multipoles” appropriate for the notch.

3.4 Discussion

3.4.1 Critical stress intensities

Comparisons are easier to make when looking at the data plotted using atomic scale

units. Then the data for the two brittle potentials is a gentle, almost horizontal,

curve. The experimental data mostly lies between that for the MEAM potential

and that for the mSW potential, but significantly closer to the former. The excep-

tion is the 90◦ case where the experimental value jumps to higher than the mSW

value. Since the curves from the two potentials are very similar in shape—the main

difference seems to be an overall shift or factor—and the jump in the experimental

124

Table 3.2: Critical stress intensity values for different geometries and potentials,

including experimental data from Refs. [66, 67].

Potential Geometry Atomic Units Error Griffith SI Units

mSW 0 0.842 0.001 0.53543 4.9 × 105

mSW 70 1.067 0.001 - 9.6 × 105

mSW 90 1.097 0.001 - 1.78 × 106

mSW 125 0.9985 0.0005 - 1.07 × 107

EDIP 0 0.6* 0.02 0.14634 9.6 × 105

EDIP 70 0.2465 0.001 - 6.1 × 105

EDIP 90 0.5-0.6* 0.0005 - 2.4 − 2.8 × 106

EDIP 125 0.5-0.6* 0.001 - 1.5 − 1.8 × 107

MEAM 0 0.184 0.0005 0.16406 3 × 105

MEAM 70 0.2665 0.0005 - 6.57 × 105

MEAM 90 0.2935 0.0005 - 1.42 × 106

MEAM 125 0.22 0.0005 - 6.47 × 106

Expt 0 0.2060 - 0.1776 3.3 × 105

Expt 70 0.31 10% - 7.6 × 105

Expt 90 0.43 10% - 2.1 × 106

Expt 125 0.22 10% - 6.5 × 106

125

0 50 100 150
Notch opening angle beta (degrees)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
rit

ic
al

 s
tr

es
s

in
te

ns
ity

 (
at

om
ic

 u
ni

ts
)

modified SW
MEAM
EDIP
Experiment

(a) Units based on eV and Å

0 50 100 150
Notch opening angle beta (degrees)

0

5

10

15

C
rit

ic
al

 s
tr

es
s

in
te

ns
ity

 (
10

^6
 S

I u
ni

ts
)

modified SW
MEAM
EDIP
Experiment

(b) SI units

Figure 3.15: Computed critical stress intensities for the three potentials and ex-

periment.

126

value at 90◦ is a departure from this shape, it would not be meaningful to assert

that the mSW potential does a better job in predicting the 90◦-Kc. For the other

angles the MEAM values are more or less within experimental error of experiment:

the error (standard deviation across all the tested samples) is close to 10% in all

cases (the error is not available for the crack case), and the percentage differences

of the MEAM values with respect to the experimental values are -10%, -14%, -32%

and -0.5% for the 0◦, 70◦, 90◦ and 125◦ geometries respectively. The 0.5% is clearly

fortuitous. Note that the experimental error bar is not enough to account for the

anomalously high value for the 90◦ case; there must be some feature of the physics

or energetics of fracture initiation in this geometry that is missing from the others.

An interesting question is why the EDIP potential behaves unlike the other

potentials and experiment except at one particular geometry, the 70◦ one. Possibly

there is some feature of this geometry that suppresses the nucleation of dislocations.

Dislocation Burgers vectors in silicon are always in 1
2
〈110〉 directions, since these

are the shortest perfect lattice vectors in the diamond lattice[34]. The periodic

boundary conditions constrain possible dislocation lines to be out of the plane.

Moreover, since we are considering only mode I and II loading, we expect slip to

be within the plane, so we are considering edge dislocations. In the 70◦ geometry

the 1
2
〈110〉 direction that is available within the plane at at an angle of 90◦ to the

x-axis, while the cleavage plane is at an angle of 35.26◦. Looking at Fig 3.2, we can

see that the shear stress and normal stresses on these planes respectively are both

near their maximum values, although the ratio of shear stress to normal stress is

0.43 (both plots are normalized with respect to K and r.). Without knowing the

values of stress needed to initiate slip or cleavage on these respective planes, this

ratio is not enough to explain anything. What we can do is compare the same ratio

127

Table 3.3: Angles of slip planes and crack planes and ratio of shear to normal

stress for different geometries.

geometry slip plane crack plane shear/normal

70 90◦ 35.26◦ 0.43

90 45◦ 45◦ 0.52

125 27.34◦ −7.90◦ 0.34

0 54.6◦ 0◦ 0.37

for the other geometries and check if it is higher in other cases, thereby tending

to make slip more favorable than cleavage, for a given potential (namely, EDIP).

The numbers—angles for slip and cleavage and the appropriate stress ratio—are

shown in table 3.3. Unfortunately, there is no conclusive trend. The ratio for 90◦ is

indeed higher than that for 70◦ but the others are lower, and EDIP notches suffer

plastic deformation in all of the other cases.

For the crack cases we can make a comparison of our results with the so-called

Griffith criterion for crack propagation. This comes from setting the energy release

rate equal to twice the surface energy. An expression for the mode I energy release

rate in terms of the stress intensity factor is given in [58]; setting it equal to twice

the surface energy leads to the following expression for the critical stress intensity

factor.

KGriffith =

(

2γ

πb22Im((µ1 + µ2)/(µ1µ2))

)

1
2

(3.3)

where µ1 and µ2 are the roots of a characteristic polynomial which depends on the

elastic constants (see appendix 3.E) and b22 is an element of the compliance tensor

128

for plane strain . The ratio Kc/KGriffith is associated with lattice trapping, when

fracture is brittle. This ratio is 1.57 for the mSW potential and 1.12 for MEAM.

These values are respectively somewhat larger and somewhat smaller than the

ratio 1.25 determined by Pérez and Gumbsch using total energy pseudopotential

calculations[52] (ourKc corresponds to theirK+). In the EDIP case, where fracture

proceeds only accompanied by significant plastic deformation, Kc is four times the

Griffith value.

In our simulations, for a given potential, only one fracture behavior is observed,

in contrast to what was observed in the experiments of Suwito et al.[66]. Specifi-

cally, in the case of the 70◦ geometry, they observed three different “modes” (not to

be confused with loading modes), including propagation on the (110) plane, yet we

have observed cleavage only on {111} planes in this geometry. It is possible that

finite temperature, and the relative heights of different lattice trapping barriers,

play n important role here. More likely it is related to experimental microcracks

or defects near the crack tip. In any case, it would be of great benefit to system-

atically calculate the barriers for different processes that can occur at a notch (or

crack) tip, as a function of applied load.

A further point to note, and a warning, is this: In comparing simulations

involving such very small length scales (27Å) to experiment it is appropriate to

consider the question of whether the experimental notches are indeed as sharp as

we have made our simulated notches. Suwito et al.[66] could only put an upper

limit of 0.8µm on the radius of curvature of their notches, although notch radii

of the order of 10nm have been reported in etched silicon4. The addition of just

a few atoms right at the notch tip would presumably have a significant effect on

4This fact is mentioned without any citation in Ref. [67].

129

the energetics of cleavage initiation. The success of our simulations provides an

important indication that these notches are indeed atomistically sharp.

We have not made any investigation of this, and this question should be borne

in mind given the absence of experimental data characterizing the notch tip at the

atomic scale.

3.5 Summary

We have determined by atomistic simulation the critical stress intensities to initiate

fracture in notched single crystal silicon samples. The samples had angles of 0◦ (a

crack), 70.5233◦, 90◦ and 125.264◦—chosen so that the flanks of the notches were

low index crystal planes. These geometries correspond to those studied experimen-

tally in measurements of critical stress intensities for fracture initiation. Of the

three potentials used, modified Stillinger-Weber (mSW), environment-dependent

interatomic potential (EDIP) and modified embedded atom method (MEAM),

MEAM produced the most realistic behavior. The mSW potential produced brit-

tle fracture, but its resemblance to silicon in other respects is quite weak. Except

in the case of the 70◦ notch, the EDIP potential gives ductile fracture with a crit-

ical stress intensity factor, which is much higher than that determined using the

other potentials, or by experiment.

3.6 Acknowledgments

We thank Zhiliang Zhang for inspiration and helpful discussions, and Noam Bern-

stein for helpful discussions. We also thank Mike Baskes for help in coding the

MEAM potential. This work was financed by NSF-KDI grant No. 9873214 and

130

NSF-ITR grant No. ACI-0085969.

3.A Units and Conversions

Three different sets of units are used in this paper. To each atomic potential

(Stillinger-Weber, EDIP, MEAM) is associated a set of atomic units (EDIP and

MEAM use the same units); also we often wish to use SI units to compare to

experiment. In the context of this paper there is the further subtlety that the

units of the chief quantity under consideration, namely the stress intensity factor

K, are not simple powers of base units but involve a non-trivial exponent λ which is

a function of geometry and potential. In fact the SI units units for K are Pam1−λ

which for brevity we simply refer to as ‘SI units’ throughout the chapter.

The units for an atomic potential are determined by specifying the unit of

energy and that of length (for dynamics the unit of time is determined from these

and the particle mass). The SW potential as originally written down did not have

units built into it. By taking the energy unit to be ǫ = 2.1672eV = 3.4723×10−19J

and the length unit to be σ = 2.0951 Å, the authors modeled molten silicon[62].

However other authors[7] have taken the energy unit to be ǫ = 2.315eV . The

difference is not really important since we have modified the potential itself to

make it more brittle so the resemblance to real silicon is reduced noticeably. We use

the second scaling which seems to be more common. The EDIP potential[10, 44]

on the other hand has the electron-Volt (ǫ = 1eV = 1.60217733 × 10−19J) and

Angstrom (σ = 10−10m) built in as its units. Since σ ∼ Krλ−1, the units of K are

[stress]/[length]λ−1 = [energy]/[length]2+λ, so to convert a value for K in atomic

units to SI units, one uses the conversion factor ǫ/σ2+λ. Table 3.4 gives the factors

131

for the mSW and EDIP potentials and the geometries studied in this paper.

Table 3.4: Unit conversion factors for K.

Potential geometry λ factor

mSW 0 0.5 584000

mSW 70 0.51954 902000

mSW 90 0.54597 1626000

mSW 125 0.63047 10690000

EDIP 0 0.5 1602000

EDIP 70 0.51922 2490000

EDIP 90 0.54708 4730000

EDIP 125 0.62844 30840000

MEAM 0 0.5 1602000

MEAM 70 0.51875 2467000

MEAM 90 0.54794 4832000

MEAM 125 0.62639 29420000

3.B Stroh formalism for notches

Here we summarize the application of the Stroh formalism to the notch problem.

More details are available in Refs. [66, 67] and [47]. We can write the solution

for the displacement field u and the stress function φ as

u =
6

∑

α=1

aαfα(zα) (3.4)

132

φ =
6

∑

α=1

bαfα(zα) (3.5)

The independent variable here is the complex variable zα = x1 + pαx2. The stress

function φ determines the stresses through σi1 = −φi,2 and σi2 = φi,1. The pα, aα

and bα come from solving the following eigenvalue problem5.

(Q + p(R + RT) + p2T)a = 0 (3.6)

where

Q =













C11 C16 C15

C16 C66 C56

C15 C56 C55













R =













C16 C12 C14

C66 C26 C46

C56 C25 C45













T =













C66 C26 C46

C26 C22 C24

C46 C24 C44













(3.7)

The above is general within the context of two-dimensional anisotropic elasticity.

To specify the notch problem we choose a form of the arbitrary function f to which

we can apply the boundary conditions of the problem, which are that notch flanks

are traction-free. The following choice does the trick:

fα(zα) =
1

λ

zλ
α

ξα(−β)λ
bT

αq =
1

λ
rλ

[

ξα(θ)

ξα(−β)

]λ

bT
αq (3.8)

where ξ(θ) = cos(θ) + pα sin(θ) and q is to be determined. The traction with

respect to a radial plane at angle θ is given by

5This is not quite an eigenvalue problem in the usual sense, but it behaves very
much like one.

133

t = rλ−1
6

∑

α=1

[

ξα(θ)

ξα(−β)

]λ

bαb
T

αq =
λ

r
φ (3.9)

With the above form the traction condition is already satisfied on the bottom flank

θ = −β. Applying the condition on the top flank leads to a matrix equation

K(λ)q(λ) = 0 (3.10)

The appropriate value of λ is determined by setting the determinant of the matrix

equal to zero and solving the resulting equation numerically. Two values can be

found corresponding to modes I and II. For a given λ, the vector q is determined

up to a normalization which is related to how one defines the stress intensity factor

K.

For the purpose of the simulations described in this paper, we calculated the

Stroh parameters as follows. For each potential, the elastic constants were de-

termined by standard methods (straining the supercell, relaxing, measuring the

relaxed energy per unit undeformed volume and fitting to a parabola). This gives

C11, C12 and C44, which are the three independent constants for a cubic crystal. In

the formulas for the displacements and stresses given above, the coordinate system

is aligned with the notch (in that the negative x-axis bisects the notch itself) and

not with the crystal axes. So we must transform the elastic constants accordingly.

Once we have the transformed constants we can construct the Stroh matrices Q,

R and T, and compute the Stroh eigenvalues and eigenvectors as above.

134

3.C Subtleties associated with taking powers of

complex numbers

Some subtleties emerge when using a Mathematica script to evaluate the Stroh

formulas for the notch, particularly in the context of taking powers of complex

numbers. Like the C++ function pow for complex numbers pow(x, y) = xy, Math-

ematica’s power function takes the modulus ρ and argument θ of the base x and

then uses the definition

xy = exp(y log(x)) = exp(y(log(ρ) + iθ))

The subtlety is the definition of the argument θ since any multiple of 2π can be

added to this for a given x. The presence of extra multiples of 2πi does affect

the value of the power. In C++ the argument of x is given by the function

atan2 (imag (x), real (x)). This function always returns a value between −π

and π. Now in the formulas for the notch displacement and stress fields there are

factors of the form

(

ξα(θ)

ξα(−β)

)λ

= exp

(

λ log(
ξα(θ)

ξα(−β)
)

)

= exp(λL)

where λ is real and ξα are complex. For now assume β < π (the case β = π, which

is a crack, is special in its own right and will be considered below). The value

of the first Stroh eigenvalue for the crystal orientation in the 70 degree sample,

using the EDIP potential, is p1 = 1.16436i, which is approximately equal to i; this

is the case for all of the Stroh eigenvalues, except the complex conjugate ones (α

even) which are approximately −i (they do not all have vanishing real part). Thus

ξα(θ) ∼ exp(iθ) is like a phase factor for the angle with respect to the x-axis—

135

taking the imaginary part of the log of ξα gives an angle equal to θ at 0 and π and

approximately equal in between. By rewriting the power of the quotient as the

exponential of the exponent λ multiplied by the difference of the logs, we get an

expression which is formally identical, but leads to different values when evaluated

on the computer

exp(λ(log(ξα(θ)) − log(ξα(−β))))

i.e., we take L = log(ξα(θ)) − log(ξα(−β)). From this expression we can see that

L is approximately equal to i times the equal measured from the bottom notch

flank. Let us call the case where we take the log of the quotient “case Q” and that

where we take the difference of the logs “case D”. In case D, the imaginary part is

between 0 and 2π, whereas in case Q the imaginary part is necessarily between −π

and π. They agree in the lower half-plane, where the physical angle θ is negative,

but differ by 2π in the positive-θ region. The difference between the two cases can

be thought of as a difference in where we take the branch cut of the final quantity

L (rather than the individual logs). Since they agree for negative θ but not for

positive θ we can take a look at what happens as we pass θ = 0. In case Q the

value of L jumps by 2πi at this point—the branch cut is at θ = 0; in case D the

imaginary part of L (the real part is well behaved) is continuous all the way from

the lower flank (where it is zero) up to the upper flank. In this case the branch

cut is actually outside the material.

The question is then to decide which way is correct. Since we expect continuous

displacements and stresses, we should clearly choose case D. So in the Mathematica

script, everywhere we have this log of a quotient in the formulas, we replace it with

the difference of the logs. This works also for the complex conjugate terms where

136

0.2 0.4 0.6 0.8 1

-0.1

-0.05

0.05

0.1

0.15

0.2

0.25

Figure 3.16: Det(K) versus λ using difference of logs.

0.2 0.4 0.6 0.8 1

0.01

0.02

0.03

0.04

Figure 3.17: Det(K) versus λ using log of the quotient.

pα ∼ −i. There is one more subtlety. For the case of zero notch angle (β = π),

when applying boundary conditions to determine the appropriate value of λ, if

you blindly follow the procedure that works for finite notch angle you get zero

for the matrix K, because then ξα(β) = ξα(−β) = −1. What’s happening is

that the notch flanks have come all the way around to meet each other, and more

particularly, to meet the branch cut. Here we must recognize that we need to put

in 2π by hand. (This gives us factors like sin(2πλ) in the determinant, which are

zero when λ = 1
2
, as it should be for a crack).

137

3.D Crystal orientations

We list here for reference the rotations applied to the crystal to achieve the appro-

priate orientations in each case.

70 degree geometry Only a rotation of π/4 about the x-axis is needed, which

makes the in-plane vertical direction and out-of-plane direction both {110}

surfaces. The in-plane horizontal direction remains 〈100〉.

90 degree geometry No rotation is necessary, since the notch flanks are {110 }

surfaces and the plane of symmetry a 〈100〉 surface.

125 degree geometry The same rotation about the x-axis as in the 70 degree

case is employed, and in addition to this (and following it) a separate rotation

about the z-axis by an amount 1
2
arccos(1/

√
3)

3.E Subtlety in defining mode I/mode II in crack

case (no reflection symmetry)

We have seen how there are two singular modes in the vicinity of a notch which

have singular stresses. For finite notch angle the singularities are different, and thus

we can make a clear distinction between the two modes of in-plane deformation,

mode I and mode II. In the case of zero notch angle, i.e., a crack, the singularities

are equal, namely one-half, and the analysis by which mode I and mode II are

distinguished for notches does not apply: the matrix K is zero and hence cannot

give a relation between the components of the vector ~q. So how do we distinguish

modes I and II? Traditionally these are known as the symmetric and antisymmetric

138

mode respectively, meaning that if one applies a reflection through the crack plane

(or the plane which bisects the notch) the mode I displacement field becomes

itself, and the mode II field becomes minus itself (you can also think of it as the

values of the field at two points related by a reflection through the crack plane are

themselves related by the same reflection, or by the reflection plus a sign change,

respectively). It is possible to choose solutions which are even or odd under this

reflection because the governing equations are invariant under this symmetry. In an

isotropic material, and for certain planes in a cubic material, this is true. It is not

true for the 〈111〉 plane, which is the crack plane in the case of the crack geometry.

This can can seen by noticing that the elastic constant C45 ≡ Cyzxz, which changes

sign under a reflection in the x − z plane (i.e., y → −y, and there is an odd

number of y in this component), is not zero, thus the material is not invariant

under this reflection6. The elastic constant is small (about 5% of C11), so this is

an approximate symmetry, and indeed the q1 and q2 parts of the displacement field

are almost antisymmetric and symmetric respectively.

To define linear combinations which we will call mode I and mode II respec-

tively, we follow Sih et al. [58], who present solutions for cracks in anisotropic

bodies. Their mode I solution has the feature that the shear stress in the θ = 0

plane is zero (i.e., the crack plane, ahead of the crack), and their mode II solution

has vanishing normal stress in the same plane. These are of course both properties

of the symmetric and antisymmetric solutions when these exist. These linear com-

binations mix a small amount of the q1 field into the q2 field for mode I, and little

bit of the q2 field into the q1 field for mode II. The definition of the stress intensity

6This can be seen be staring at cube long enough to see that this reflection
doesn’t take the cube to itself. If you follow it with a rotation of 60 degrees about
the 111 direction then you get back the cube.

139

factors in Sih et al. differs from that used for the notches by a factor of
√

2, so

a factor of 1/
√

2 appears in their expressions for stresses and displacements. We

have taken this into account when quoting their expression for the energy release

rate to obtain the Griffith criterion. The numbers µ1 and µ2 which appear in

the energy for the energy release rate are two roots of the following equation not

related by complex conjugation:

b11µ
4 − 2b16µ

3 + (2b12 + b66)µ
2 − 2b26µ+ b22 = 0 (3.11)

where bij = aij − ai2ai3/a33 for i, j = 1, 2, 6 and aij are the elastic compliances

(elements of the inverse of the elastic constant matrix). The subtraction is ap-

propriate for plane strain problems, which is what our fixed-thickness periodic

boundary condition corresponds to.

A slight anomaly appears in the comparison of the crack solutions of Sih et al.

to those obtained from the notch formulas in the limit of a crack: the stress and

displacements are not identical, even when the modes are defined appropriately

as described above, and with the correct normalization. An example is shown in

Fig. 3.18. The reason for the discrepancy is still under consideration.

140

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

1.2

Figure 3.18: Angular dependence of σyy for the crack, using Sih and Stroh for-

malisms. The Stroh curve has the higher peaks.

Chapter 4

Digital Material, A Modern

Molecular Dynamics Code

4.1 Introduction: The complexities of today’s

simulations, as driven by multiscale materi-

als modeling

Simulations1 of materials continue to become increasingly complex, driven by the

need for greater modeling fidelity and the opportunities provided by advances

in available computational resources. In recent years, this complexity seems to

have advanced at an even faster rate, as powerful-but-unwieldy parallel computing

platforms have become widely available for high-performance computation, and as

1This chapter is based on the work of several people, and in fact will be pub-
lished with the following author list: Nicholas P. Bailey, Thierry Cretegny, Andrew
J. Dolgert, Christopher R Myers, Jakob Schiøtz and James P. Sethna. Most of it
has been written by N. B., apart from sections 4.1, written by C. M. 4.2.1 and
4.2.4, which were written by T. Cretegny, subsequently edited by N. B.

141

142

researchers have reached across disciplinary boundaries to address the multiscale

nature of material behavior.

Material structures and phenomena are inherently multiscale, so the desire for

greater realism in materials modeling has driven a growing interest in multiscale

materials modeling techniques. In some cases, these techniques explicitly link to-

gether disparate numerical models (at different length and/or time scales) to form

hybrid meta-models. In other cases, simulation results from one scale are implicitly

incorporated into computational models at other scales (e.g., in the form of con-

stitutive descriptions). Investigation of material behavior across scales can involve

treatment of more complex simulation geometries, boundary conditions, consti-

tutive models, and numerical algorithms. Furthermore, optimal models and/or

numerical methods are in many cases not yet known, and need to be discovered

through numerical experimentation. All of these trends conspire to suggest a need

for more sophisticated software frameworks to support the generation of complex

material models, the construction of compound and hybrid numerical methods,

the structuring of code for high performance on modern supercomputers, and the

flexible control and interrogation of simulations and data.

Complexity in the multiscale investigation of materials can arise from many

sources, and has many implications for the software development process. Whereas

much of atomistic modeling to date has involved relatively simple simulation ge-

ometries, the desire to provide input to processes active at larger scales (e.g.,

plasticity and fracture) increasingly requires construction of atomistic models with

more complicated geometries, involving, say, sets of interacting dislocations or a

grain boundary of a specified misorientation. Furthermore, extracting useful in-

formation from small-scale atomistic simulations for use in larger scale theories

143

or models requires careful treatment of boundary effects. This has led to the

development of hybrid numerical methods for finding the structure of atomistic

defects (e.g., dislocation cores); these hybrid methods can involve both atomistic

and continuum degrees of freedom which are simultaneously acted upon.

Our efforts in developing software frameworks for materials modeling fall un-

der the general rubric of Digital Material (DM), which connotes both a general

approach to software development for materials simulation and specific software

systems for particular types of simulation. Our focus in this paper is on the atom-

istic modeling system that we have developed; we describe elsewhere [48] a related

framework for the modeling of texture in polycrystalline systems. Prior to describ-

ing the specific details of the DM atomistic modeling system, we present some of

the high-level design and implementation goals that characterize the DM effort

broadly.

4.1.1 Digital Material design goals

We aim to build a system that is flexible, expressive, and extensible, while not

sacrificing computational performance. We believe it is important to support com-

position of many computational modules, both to enable the construction of hybrid

models and methods, and to facilitate the development of simulation software. For-

tunately, there are a number of recent software engineering developments which

we can exploit to build such a system.

Design patterns [24] represent an important set of object-oriented design tech-

niques to have emerged in the last decade. These patterns address the collabora-

tions among computational objects, in such a way as to support software change

and reuse. An important element of these design patterns is that they aim to sup-

144

port additive rather than invasive change. That is, if a new piece of functionality

is desired, it is preferable to be able to add (plug in) a new module rather than

change (rip up) an existing one. Developing the correct decomposition of desired

functionality to facilitate change of this sort is one of the central tasks in building

such a system. As such, describing such a decomposition lies at the heart of this

paper. In this introduction, we introduce some of the more general patterns which

guide the overall structure of the system.

Materials simulations typically involve one or more material “samples” (instan-

tiations of the relevant modeling degrees-of-freedom, e.g., atoms, grains, displace-

ment fields, etc.) which are acted on by some model of a physical processes (e.g.,

applying loads, following a time evolution). We have therefore chosen to separate

our description of material samples from the “movers” that act to modify those

samples. This allows us to identify a material state independently of the models

used to modify that state, and to switch different sorts of movers in and out as

we develop complex models and algorithms. (In a similar fashion, computational

probes which interrogate the state of a material sample are also separated out as

“observers” of the underlying state.) Furthermore, we have chosen to subdivide

the description of a material sample into one or more sets of geometric entities

with associated sets of attributes. In particular, our ListOfAtoms, is not an array

of objects of a class Atom, but rather is an array of positions, plus an array of

velocities, etc. This is useful for several reasons. First, for reasons of performance,

it is necessary to act on aggregates of data in tight numerical kernels (the “inner

loops”) without the cost of higher-level overhead and control. In atomistic model-

ing, the positions of the atoms (which constitute the geometry of the sample) are

accessed to compute neighbor lists and forces, and we wish to be able to access that

145

geometric information independently of other attributes (e.g., masses or velocities)

for optimal performance. Second, there are other operations (e.g., visualization, or

computation of local atomic coordination number) where only geometric informa-

tion is necessary, and we would like to be able to extract that information without

striding over all other atomic attribute data. Finally, inherent in many approaches

to multiscale modeling is the need to treat different material objects in different

contexts at different scales: a dislocation line, for example, is a collective and emer-

gent feature in an atomistic simulation, while being explicitly represented as part

of the computational model in a dislocation dynamics simulation. The power of

multiscale modeling often lies in the ability to factor a complex description (e.g.,

a constitutive model at one scale) into a geometric piece and a different set of less

complex descriptions: the quasicontinuum method, for example, replaces complex

continuum constitutive descriptions of solids with an alternate description, involv-

ing the mutual self-organization of collections of atoms (a geometric structure)

interacting via interatomic potentials (a less complex constitutive description).

Another important software engineering development which has had a signifi-

cant impact on our research is the growing use of high-level interpreted scripting

languages to control and steer compiled numerical simulation frameworks. Promi-

nent examples demonstrating the value of this approach include SPaSM,[11] a

system for molecular dynamics simulations of solids, and the Molecular Modeling

Toolkit (MMTK)[33], for biomolecular simulations. Like these other projects, we

use the Python programming language to develop high-level interfaces to our sim-

ulation kernels, and to glue together applications composed from disparate pieces

(for numerical algorithms, data storage, visualization, graphical interfaces, etc.). A

lightweight, programmable interface layer like Python supports our need for flexible

146

prototyping, control and interrogation, without impacting low-level computational

performance.

4.2 Components

In this section, which makes up most of the chapter, we systematically describe

the components we have identified as being logically separate pieces of a molecular

dynamics code, starting with the main data structure, ListOfAtoms, and contin-

uing with Potential, Mover/Transformer, NeighborLocator, BoundaryConditions,

Constraint, AtomsInitializer and ListOfAtomsObserver. In section 4.3 we describe

aspects of the code which are considered “infrastructure”: serialization, paralleliza-

tion and graphics.

4.2.1 ListOfAtoms

Responsibilities

The primary responsibility of a ListOfAtoms is to store and provide access to the

current state and properties of the atoms in the simulation. The base class stores

simply the positions.

The secondary responsibilities of a ListOfAtoms are notifications:

1. it ensures the validity of its current state by passing on changes to the Con-

straints and BoundaryConditions (which may for example project the atoms

back into the supercell),

2. it warns the NeighborLocator of changes in state (so it may need to check

e.g. whether its neighbor list needs to be rebuilt),

147

3. it acts as a Subject which, when prompted by the user, will notify a stored

list of Observers (for visualization, or any kind of analytical measurement,

. . .).

Examples

Velocities are not always necessary in an atomistic simulation (energy minimiza-

tion), but are often important so our main derived class, DynamicListOfAtoms,

adds velocities to the state. A more sophisticated example comes from our imple-

mentation of the quasicontinuum method, which mixes MD with finite elements.

Here we have derived slave and master atoms classes, so that each slave atom can

know the element it belongs to and each master atom has its own weighting factor,

e.g. for the energy calculation.

Implementation, Efficiency, Flexibility

Cache performance led us to favor arrays of native types for storage. The cache

on current processors loads an entire line of contiguous data whenever a value is

fetched, so storing all the position information in separate array (rather than in

an atom class, mingled with velocities and other attributes) reduces the number

of cache misses.

Pipelining leads us to store all atoms of a given type together (and atoms

subject to the same constraint together). The concurrent processing of multiple

sequential instructions, is easiest for the compiler to optimize when simple tasks are

repeated in regular patterns (facilitating loop unrolling, ...). Control statements

(like “if (atom.type()==..”) typically cause pipelines to stall. By putting the

atoms of a given type together, these control statements are implemented once per

148

type outside the loop over atoms.

We implement ListOfAtoms as a tree structure, with each atom type (subject

to each kind of constraint) on its own leaf. By making each branch and leaf

of the ListOfAtoms a ListOfAtoms, other classes can work on subtypes of the

atoms without modification (graphics, correlation functions, ...). Constraints can

be applied to sublists of ListOfAtoms without the constraint class being aware of

the surrounding atoms. We also chose to store the data for the atoms in a tree

structure (the DMArray class), which mirrors the tree structure of ListOfAtoms.

Alternative Choices

Our tree-structure array class has ended up being quite complex. Some of the com-

plexity is needed because of the need to support parallel processing. The entries

in temporary force arrays in the AtomsMovers, for example, need to be registered

with the base class so that their entries are automatically transferred to other

processors when the atoms cross processor boundaries. Some of the complexity,

however, could have been avoided by storing the data for all the sublists con-

tiguously in memory. This has the disadvantage that each time atoms migrate the

entire list of atoms must be shuffled up or down to make room. On the other hand,

the current implementation demands extra overhead for computing the address of

the neighboring atoms in force loops.

The DMArray class also makes heavy use of templates. In an application where

all attributes of atoms were of type double (or double[DIMENSION]) this could

have been avoided, making the class easier to read (but reducing the flexibility).

There are also many other freely available templated C++ array classes (such as

BLITZ++[74]), but they do not support the kinds of hierarchies in storage that

149

we needed here.

Finally, there are other models for notification that we could have used. In-

stead of having ListOfAtoms call BoundaryConditions and Constraints and notify

NeighborLocator these responsibilities could have been left to a “MotherBoard”

simulation class.

4.2.2 Potential

This is the modularization that is most likely to be already implemented in existing

codes: most people want to have the freedom to change potentials. Different

potentials represent different materials, so the number of Potential classes one

implements is only limited by the number of materials one wishes to simulate.

Responsibilities

The primary responsibilities of the Potential class are two. Given a ListOfAtoms

object and whatever arrays are necessary:

1. it calculates the current forces on the atoms, putting them into the passed

array.

2. it calculates the potential energy of the current configuration, returning it as

a double.

Other methods that a Potential may have include one to calculate both energy

and forces together (there are cases where both are needed and where it is much

faster to calculate them together), to calculate the atomic energy (for a given

atom), the atomic stress or the Hessian matrix. Not every function needs to

be implemented; they are implemented in the base class as functions which do

150

nothing except throw an exception. Thus client code may test the potential to see

if it has the function. However at the minimum, a new potential should include

CalculateForces and CalculateEnergy.

Examples

We currently have two versions of Lennard-Jones, one our own, and one by Holian

et al.[36]. They differ in how they are cut-off; these are pair potentials of course.

We have the Stillinger-Weber[62] potential for silicon, which includes three-body

terms as well as the EDIP[10, 44] Si potential which is a many body potential.

We also have the Effective Medium Theory for FCC transition metals, with our

implementation specifically including Al, Cu, Ag, Au, Ni, Pd and Pt, and recently

added Baskes’s Modified Embedded Atom Method (MEAM) potential, with pa-

rameters for 26 elements (it needs to be modified still to allow multiple types to

be simulated).

Implementation, Efficiency, Flexibility

When say, the CalculateForces function is called, the potential is passed the

ListOfAtoms and an array for the forces. It gets a pointer to the NeighborLocator

of the atoms. If it is a pair potential, it loops over all atoms, and for each one calls

HalfNeighbors on the NeighborLocator, which returns the neighbors j of atom i

with j > i to avoid double counting. The NeighborLocator also returns the relative

displacements (vectors and squared lengths) of the neighbors of atom i, which the

Potential object uses to compute the corresponding pair contributions to the forces

or the energy. In the case of the forces these are added to the force array for atom

i, and their negatives to the force of each neighbor. For non-pair potentials, the

151

looping is done differently but the interaction with the NeighborLocator is similar

(in some cases one calls Neighbors rather than HalfNeighbors, e.g. for the three

body terms of Stillinger-Weber).

For extra efficiency, the interface to the NeighborLocator has been designed so

that rather than computing all the force or energy contributions involving atom i

before going onto the next atom in this loop, one can continue to fill the arrays (of

displacements and squares of displacements) with neighbors of successive atoms i

in the loop, until some pre-determined size limit on the array has been reached (as

indicated by the return value of the NeighborLocator function which is boolean).

Then if the potential involves only floating point operations these can be done

faster when the data is packed into fewer, larger arrays as described. Our EMT

(Effective Medium Theory) potential works this way. On the other hand this will

not help if the potential involves cutoffs within the main cutoff, as in for example

our CutLennardJonesPotential. Here the potential takes the usual form within the

inner cutoff but has a different form between the inner and outer cutoffs. Because of

this “if” statements are necessary, and so the operations are not all floating-point.

Another efficiency point is that when possible the parameters of each potential

class are declared as constant variables, thus the compiler is allowed to make

optimizations that it might not otherwise make. This is not possible in potentials

such as EMT and MEAM where different choices of parameters are allowed.

Alternative Choices

4.2.3 Mover and Transformer

The algorithms associated with time evolution of the ListOfAtoms are encapsulated

as AtomsMovers. Every class of this family has a function called Move which uses

152

the potential to evolve the ListOfAtoms according to the appropriate algorithm

some number of time steps of some length. The Move function can be considered

a transformation of the ListOfAtoms, but of a particular type—one associated

with time steps and potentials, what we might refer to as “dynamics”. For all

other transformations on the ListOfAtoms we have another family of components

called Transformers which have a similar interface, with the function being called

Transform in this case.

Responsibilities

The responsibilities of a Mover are less well defined than with components such

as NeighborLocator and Potential. Particularly in the case of the NeighborLoca-

tor, the information returned should be independent of which implementation of

a NeighborLocator one has used. For a potential, of course the forces and energy

will vary from one potential to another but the meaning of CalculateForces and

CalculateEnergy is the same for all (for instance the forces are always the nega-

tive gradient of the energy). For movers, there are not such specific requirements.

Several movers implement time stepping algorithms, but it is not required that

these give identical results for a given ListOfAtoms. Some do not even perform

an operation corresponding to physical time evolution but rather perform energy

minimization. Nevertheless it is understood that all Movers are linked to a Poten-

tial object, and store a value of time step, and number of steps to perform. The

time steps performed in a single call to Move are what are sometimes called the

minor time steps. Each call to move, made from some outer loop, constitutes a

major time step.

The responsibilities of a Transformer are none at all, other than to provide a

153

function called Transform, to which is passed a pointer to a ListOfAtoms.

Examples

Our Movers include a slightly non-standard Verlet time-stepping algorithm, as

well as the Gear Predictor-Corrector algorithm. For thermalized time-stepping

there is a LangevinAtomsMover (which implements the Langevin equation with

a given temperature and friction), a HooverAtomsMover[35], a VerletThermal-

izeAtomsMover which randomizes velocities before performing the time steps. We

also implement the QuickMin algorithm for minimizing a molecular dynamics sys-

tem as a Mover since it is closely related to the Verlet algorithm. To implement

Conjugate-Gradients (CG) minimization we provide an interface class (Mediator

Design Pattern) which allows a general purpose CG class to operate on a given

ListOfAtoms using a given Potential.

Since Transformer is so general, we have many examples. Some, such as Void-

Maker, NotchMaker and OverlapPruner cut away parts of a ListOfAtoms defined

by some geometrical criterion. These are frequently used in conjunction with an

Initializer, where one first creates a simple shape filled with atoms and then cuts

away pieces to achieve the actual desired geometry. A subclass of Transformer is

ElasticFieldTransformer, which covers Transformers whose transformation is asso-

ciated with a displacement field as in continuum elasticity. In these the Transform

function is passed to a separate function called ElasticField. This is useful in cases

where one wants to be able to evaluate the ElasticField function without actually

transforming any atoms. Also, the EulerCoordinateTransformer class keeps a list of

ElasticFieldTransformers and iteratively determines using their ElasticField func-

tions, the resultant displacement given by the elastic field formula interpreted as an

154

expression in Eulerian coordinates. Examples of ElasticFieldTransformers include

(Anisotropic)DislocationMaker, which implements the standard displacement for-

mulas for straight edge and screw dislocations in (an)isotropic elasticity theory;

NotchFieldDisplacer, which implements the displacement field for a notched or

cracked sample, and (An)isotropicMultipoleField which supplies the entire set of

terms in the general solution for quasi-two-dimensional elastic theory in a circular

geometry, apart from the dislocation (log) terms, and the terms which grow with

distance from the origin.

Implementation, Efficiency, Flexibility

For movers, the implementation is for the most part as straightforward as writ-

ing out the formulas for the algorithm in terms of functions on ListOfAtoms

and potential, taking care only to do use the array versions of operations on the

ListOfAtoms—one should never write a for loop in which the positions are updated

one by one. Apart from the loop overhead, each call to SetCartesianPosition() or

IncrementCartesianPosition() (no s) entails a call to the NeighborLocator to up-

date its internal variables, which will possibly involve initiating communication

between processors in a parallel simulation. Clearly this is bad.

Thus the loop for VerletAtomsMover is not much more than a call to Calcu-

lateForces (Potential) followed by a call to IncrementVelocities and a call to Incre-

mentPositions (both ListOfAtoms). At the beginning and end of the loops there

are increments by half a time step to correctly implement the Verlet algorithm and

have the velocities and positions correct and consistent when the function exits.

Extra details concern the handling of constraints (see section 4.2.6). For trans-

formers of course there is little one can say in general about implementation, but

155

the point about using array operations to change atomic positions is just as valid.

So in the case of applying an elastic displacement for example, the increments

should be computed as a separate array which is then added to the positions using

IncrementCartesianPositions().

4.2.4 NeighborLocator

Responsibilities

It is very natural to assign the task of identifying which atoms are located within

some cutoff distance of a given atom to an individual component: a NeighborLoca-

tor.

It is possible to set clear responsibilities to a NeighborLocator and to decouple

it almost totally from the other components. In principle it doesn’t need to know

anything about the atoms themselves, their possible constraints, or the details of

their interaction: we have a well defined geometrical problem, and all the input

that is needed is

1. a collection of points in space (the atoms/molecules location),

2. a cutoff distance,

3. the boundary conditions.

With this input, the NeighborLocator must primarily be able to return all the

neighbors of a given atom. In addition, because a force calculation uses Newton’s

third law, the NeighborLocator can be requested to return only “half” of the

neighbors: when looped over all atoms, this HalfNeighbor function returns all the

bonds exactly once (for example, for atom i, HalfNeighbors may return all the

neighboring atoms with index j > i). This is particular useful for pair potentials.

156

As a secondary responsibility, we found it extremely useful if the Neighbor-

Locator is able to return the index of all the atoms which are located within a

given distance of a given point (not necessarily an atom). It is useful because it

allows e.g. extensions of a NeighborLocator to deal with type-dependent cutoffs

(see below) and it is a natural responsibility since a NeighborLocator usually stores

the information that is needed to answer this question (like a cell list).

Finally, for efficiency reasons as well as for flexibility, we also included in the

NeighborLocator’s tasks the possibility of returning only the neighbors of a certain

type.

Examples

The most trivial example of NeighborLocator is the one that tests each time all

the atoms whether their separation is shorter than the cutoff distance. A force

calculation using this type of “SimpleNeighborLocator” would be O(N2). It has

the advantage that it certainly works under any circumstances. In addition having

such a simple component is handy when the number of atoms we have to work

with is small.

In the opposite case, however, more clever methods must be implemented. The

principles of such tricks like Verlet neighbor lists and cell lists are well documented

in textbooks [3]. However making them as efficient as possible and decoupled

enough from the other components is oftentimes delicate (see below).

Separating a NeighborLocator component from the others is extremely useful

because it can be used for far more than just the regular force calculation between

atoms. One could use it for other tasks, like the localization and visualization

of crystalline defects based on the coordination. A NeighborLocator could also

157

perform more sophisticated tasks. For example we may want to break a subset

of the atomic bonds (e.g. remove atoms from the neighbor list which lie across

a half-plane in order to open a crack from a crystal). This could be done by

a specially designed NeighborLocator that would post-process the calculations of

any NeighborLocator (it would “decorate” another NeighborLocator, in the Design

Pattern’s language); there would be no need to dig in, or rewrite the Potential.

Implementation, Efficiency, Flexibility

The NeighborLocator is primarily used by the Potential to calculate forces and

energies. It is a means to make the force calculation more efficient by avoiding

unnecessary computation. In addition, the Potential generally must also compute

the vector separating a pair of interacting atoms, as well as their separating dis-

tance. However these quantities are also computed by the NeighborLocator so it

is very natural that an inquiry for the neighbors of an atom, say i returns at least:

1. the index of the neighboring atoms,

2. the separation vector between atom i and its neighbors,

3. the squared distance between atom i and its neighbors.

The NeighborLocator generally stores some internal data. Depending on the

concrete type of NeighborLocator, this could be a list of neighbors for each atom,

or a cell list (a region enclosing the atoms is decomposed into cells, associated with

each of which is a list of the atoms it contains). This data may become invalid

after the atoms have moved too much; at this time, the NeighborLocator must

rebuild its data. A nice way to make sure that the data is always up to date is to

implement a Subject/Observer-kind of relationship between the atomic positions

158

and the NeighborLocator: each time the positions are changed a signal is sent

to the NeighborLocator that their “subject” was modified and that it must check

whether its internal data is still accurate. This signal typically is an “Update”

function; a SimpleNeighborLocator would do nothing, but a NeighborList would

compute the maximum atomic displacement since the last building of the neighbor

list and decide whether of not the list should be rebuilt.

As we said many times earlier the overall goal is to make the components of our

MD program as independent as possible and concrete instances of a component

as interchangeable as possible. This means in particular that a NeighborLocator

should work without the knowledge of which kind of boundary conditions is in

effect (of course the associated overhead must be acceptable). If we want to build

a cell list (this is also true for a neighbor list, because to make a neighbor list, it is

more efficient to use a cell list), one must be careful to correctly identify which cells

are within the “sphere of influence” of another. In fact this question is so closely

related to the original one, that a general method is to make no assumption about

which cells are neighbors and delegate the determination of neighboring cells to

another “upper” NeighborLocator with a suitable cutoff. The center of the non-

empty cells (squares/cubes or rectangles) are given to the upper NeighborLocator,

which a cutoff cup

cup = c+ Diagonal of the cells, (4.1)

where c is the original cutoff. This way one builds a whole hierarchy of Neighbor-

Locators until the number of cells is small enough that a SimpleNeighborLocator

can be effectively used. The nice aspect of this approach is that it works with any

kind of boundary conditions, even if images (via the boundary conditions) of cells

159

overlap.

Note that if two cells are separated by a distance less than the cutoff cup, they

are not necessarily relevant neighbor cells (i.e. it is possible to make sure that no

atoms they contain can be closer than c). So it is possible to get rid of some of

these neighboring cells by applying a criterion based on the vector between the

center of one cell and the corners of the other.

Alternative Choices

The most efficient NeighborLocator is called CellNeighborList, since it uses a cell

list to construct neighbor-lists which are then used to provide neighbor information.

Neighbor-lists have a large number of ints or pointers per atoms and tend to

dominate the memory requirements. It was thought that CellNeighborLocator, a

neighbor-locator based on cell lists along, would be quite useful for larger systems,

but while it does take dramatically less memory, there are so many candidates for

being neighbors that it is too slow. The problem is that one needs not only to

search the current cell (say, with a cell length equal to the cutoff distance) but 26

other cells surrounding it. So, instead of 4
3
πr3, the volume to be searched is 27r3,

a ratio of almost 6.5.

There are still unresolved problems in the case of time-dependent boundary

conditions, for example when a periodic supercell is sheared. This can cause un-

necessary rebuilds of the neighbor-lists. Ideally one should allow for the shearing

of the old positions in computing the maximum distance moved.

160

4.2.5 BoundaryConditions

Responsibilities

The boundary conditions have basically two clear responsibilities.

1. They must make sure that the position of every atom satisfy the boundary

conditions: we later refer to this task as EnforceBoundaryConditions.

2. They must determine the actual separation between a pair of atoms, identi-

fying their closest images through the boundary conditions. We’ll call this

DifferenceBoundaryConditions.

Examples

The traditional type of boundary conditions employed in an MD simulation is Pe-

riodicBoundaryConditions. We have implemented a few variants of these, offering

for example the choice to switch off wrapping in certain directions, or allowing a

general parallelepiped shape rather than a rectangle—this being useful for studying

systems under shear for example, or studying surfaces of various orientations.

The simplest kind of boundary conditions is the kind that does nothing at all,

known as as FreeBoundaryConditions. This is useful in simulations where an re-

gion of freely moving atoms is surrounded by a region of fixed or constrained atoms

which provide effective boundaries. Examples of the use of FreeBoundaryCondi-

tions form the subjects of Chapters 2 and 5.

Implementation, Efficiency, Flexibility

Because of the cache limitations (and because the functions are typically virtual)

it’s much more efficient to enforce the boundary conditions on large contiguous

161

arrays of data. The same is true for DifferenceBoundaryConditions: it’s a good

idea to stack the requests for the distance to the closest image of an atom and

compute then all at once.

Alternative Choices

A frequently used technique in MD when using periodic boundary conditions is to

stored “scaled” positions which take values between zero and one in each direction.

This allows certain tricks to be used in applying periodic boundary conditions, such

as adding and subtracting a “magic” number which has the effect of putting a value

outside the interval (0, 1) back into it in the appropriate way2. This avoids the

need for “if” statements which in principle are detrimental to performance. It has

the disadvantage that positions must be re-scaled in order to compute energies and

forces. In our experience the performance difference has been negligible, and we

feel that using real space coordinates is simpler and more intuitive.

To use the most general kinds of boundary conditions, one may have to add

some responsibilities to the BoundaryConditions component. For example one

can think of some complicated boundary conditions for which the two positions

must be provided to get their separation vector (not just the difference between

them). Another example is reflecting boundary conditions, where the velocities of

the atoms should be changed (note however that this kind of BoundaryConditions

could also be implemented as a Constraint).

2This is processor dependent.

162

4.2.6 Constraint

The simplest MD application uses periodic boundary conditions (PBC). There are

tricks one can use to allow application of stress or strain to the system using PBC,

but there are often cases, particularly when an atomistic simulation is coupled

to a larger length scale simulation, when more physical boundary conditions are

necessary, such as a layer of atoms which is fixed, or moves uniformly, or has a

constant force on it. To effect such behavior we add a Constraint to the appropriate

branch of the ListOfAtoms.

Responsibilities

There currently exist two interfaces to Constraint objects. They are not both

implemented for all existing Constraints, because the nature of some constraints

makes it difficult to implement one or the other; in some case it is even ambiguous

how exactly a given interface should behave for a particular constraint (e.g., the

generalized coordinates for a FixedCenterOfMassConstraint, where one would have

to make an arbitrary choice in order to define the generalized coordinates).

The “Adjust” Interface This is the most commonly used method of incorporat-

ing the constraints. Constraint classes provide methods to Adjust position,

velocity and force arrays. As long as these functions are called (for example

by a mover) any time that the positions and velocities are incremented or

set, or any time that the forces are calculated, the appropriate Adjust func-

tion will ensure that the positions satisfy the constraint, and the velocities

and forces are such that the positions continue to satisfy the constraint when

the velocities or forces are used to increment them. Some constraints deal

explicitly with velocities and forces rather than positions (e.g. Uniformly-

163

MovingBody and ExternalForceConstraint) . These are not constraints in

the usual mechanics sense, although if the velocities (or momenta) are con-

sidered on an equal footing with positions, then a velocity constraint has an

equivalent status to a position constraint. A constraint on forces—our ex-

ample involves the addition of additional force, as in an external force—is in

principle really a change of the potential, but it is more easily implemented

as a constraint using the Adjust interface.

The Generalized Coordinates Interface This interface is less well developed;

it more explicitly corresponds with the classical notion of a constraint on dy-

namical degrees of freedom (DOFs). To use this interface means rather than

using the standard interface with the ListOfAtoms (IncrementCartesianPo-

sitions, IncrementCartesianVelocities etc) and calling instead IncrementGen-

eralizedCoordinate and CalculateGeneralizedForces. At this time there is no

method to access the generalized velocities, which if one was properly using

generalized coordinates would be stored instead of, or in addition to actual

velocities (which would be slaved to the generalized velocities).

Examples

The base class Constraint is itself a valid constraint—it is the null constraint, in

that its Adjust functions do nothing. A ListOfAtoms is born having its Constraint

object be a base class instance. To set a new constraint, the new constraint is

created externally, then passed in a call to ListOfAtoms::SetConstraint(), which

deletes whichever constraint was previously there, and reassigns the LOA’s pointer.

The most frequently used Constraint3 is FixedBody. When this is attached

3at least by the author

164

to a ListOfAtoms, subsequent calls to change the positions will have no effect.

The Adjust interface simply stores the initial positions and whenever the positions

are changed and Adjust is called, they are changed right back. The Generalized

Coordinate interface exists in that it returns zero as the number of independent

DOFs and thus allows no changes to the positions.

For simulations which involve applying traction to the surface of a sample, one

separates the outer few layers of atoms into a separate branch of the ListOfAtoms

tree, and adds an ExternalForceConstraint to that branch. Only the AdjustForces

method does anything; it adds a given external force divided by the number of

atoms in the branch to each atom in the branch. A weakness with this is that

if one called AdjustForces more than once per call to CalculateForces from the

Potential, the actual extra force would be several times what was intended. Ideally

an Adjust function should be idempotent—calling it several times should have the

same effect as calling it once.

Implementation, Efficiency, Flexibility

Movers do not communicate with the constraint directly. In the case of Adjust-

Positions, nothing extra needs to be done because this is handled by the Set-

CartesianPositions() and IncrementCartesianPositions() methods. These call an

AdjustPositions() method of the ListOfAtoms, which does two things: calls the

corresponding method on its own Constraint, and calls the corresponding method

on its branches. IncrementVelocities() works the same way4. AdjustForces is called

by Movers, since it is they that own force arrays. Again first the method of the

LOA’s own Constraint is called on the whole list, then the same method on each

4Although it is not automatically called by Set/IncrementCartesianVelocities–
not sure why not.

165

branch of the LOA is called on the corresponding branch of the force array.

We have to add an additional Adjust function to allow certain movers to behave

properly: AdjustForceIncrements. This is applied to for example the random

amounts that are added to the forces by LangevinAtomsMover, in order to zero

out or average certain components of the force array. It is mostly identical to

AdjustForces, except for ExternalForceConstraint where it is important not add

the external forces—since these are separately added to the force array, and must

only be added once!

Alternative Choices

The Constraint component is very incomplete. It is easy to imagine constraints

which cannot easily be implemented using either interface and movers which would

break the present mechanism for enforcing constraints. Also for each currently

existing constraint one can imagine possibly more efficient alternative implemen-

tations. A case where the present mechanism is demonstrably weak is the Fixed-

Body constraint. The AdjustForces function of this constraint zeros the forces

for a ListOfAtoms with this constraint. This is clearly necessary if one is us-

ing LangevinAtomsmover because the algorithm for Langevin dynamics has a step

which requires incrementing the positions by an amount proportional to the forces.

However in some applications one might want to know the forces on those atoms

for reasons other than to move them—these being the reaction forces required to

hold these atoms in place, which are often of interest. In particular, sometimes

the atoms in the FixedBody do move; they are not moved my an MD algorithm,

but rather by an external object, such as an ElasticFieldTransformer whose pa-

rameters are being evolved by some high level algorithm. The high level algorithm

166

might need to calculate forces on those parameters, which forces are a function of

the atomic forces. To avoid zeroing the forces one might make a separate call to

calculate forces and not call AdjustForces(). However this might result in unneces-

sary repetition of the force calculation. Furthermore if the high level procedure is

taking place in Python, it may not be possible to control whether the constraint is

applied or not—the current interface to CalculateForces for all Potential objects,

from Python, includes a call to AdjustForces. To get around this one needs to

remove the FixedBody Constraint (which is done in practice by replacing it with

a base class Constraint object). However this requires the user to be more aware

of the details of what Constraints are attached to what ListOfAtoms objects than

is desirable, although maybe not more aware than is necessary; that is to say, such

specificity may be unavoidable.

It may be safer to give the constraints more responsibility instead of having

the post-processing step we currently use. So rather than IncrementPositions and

then Adjust, pass the Increment call on to the constraint so that it can handle

the entire process. This would speed up the FixedBody for example, because then

the Constraint could simply not pass on the instruction—which saves time on

incrementing and then resetting to the original positions. The same could be said

for UniformlyMovingBody.

For ExternalForceConstraint, it would be safer to pass the CalculateForces com-

mand to the constraint which would calculate the potential forces from scratch and

then the external force. Subsequent calls would repeat this rather than accumulate

many times the desired external force.

Rather than having two interfaces within one class, it might make sense to sep-

arate them into two different classes. This has been done in other MD implementa-

167

tions by Jakob Schiøtz, where the GeneralizedCoordinate interface corresponds to

a “Filter” class. Other objects, such as minimizers interact with the ListOfAtoms

through a Filter object which connects the generalized coordinates to the actual

atomic positions.

4.2.7 AtomsInitializer

While not as crucial as Potential and NeighborLocator, a certainly significant com-

ponent of our software is the AtomsInitializer. Since for the most part, initializa-

tion is something that occurs once in a simulation, efficiency is not the key issue

here. The purpose of AtomsInitializer classes is to save user time rather than

computer time. If one were to have to think about the coding details of getting

orientations of crystals and axes right every time one wanted a new simulation,

one might be tempted not to change the simulation geometry very frequently. The

key benefit of having a set of Initializer classes implemented is that with very little

work—generally a few lines of a python script—one can set-up a wide variety of

configurations. The flexibility comes from separating the lattice to be used for fill-

ing from the shape defining which region of space is to be filled. Further flexibility

derives from the facility to compose different shapes in various ways.

Responsibilities

An AtomsInitializer must possess a Create function. An empty ListOfAtoms is

passed to the Create function after which it is no longer empty but has a number of

atoms and a set of positions and velocities determined by what type of initializer it

is, and what parameter values were passed to it. Typically one wants to fill regions

of space with atoms. For solids typically studied using atomistic modeling these

168

are in a crystalline array. This necessitates a lattice class of some sort. Our lattice

class is called BravaisLatticeWithBasis and gives a general crystalline lattice, with

arbitrary lattice vectors and arbitrary number and positions of atoms within a

unit cell. Subclasses with specific lattice vectors and bases have been defined for

the common lattices: SimpleCubic, FCCLattice, DiamondLattice etc. Methods

include rotations and translations, operations to convert between real coordinates

and lattice coordinates etc.

The most important type of Initializer is the ClusterInitializer. This is a base

class for several different concrete subclasses (see below for examples). The base

class provides the Create() function, and takes a BravaisLattice as a constructor

argument. The subclass must provide an Inside() function, which takes a point in

space and returns a boolean value if the point is inside the region to be filled.

If the initial state of a simulation is not a homogeneous crystal occupying

some region of space, but perhaps has a strain field of some sort applied, or has

one or more defects (dislocations, notches, cracks, vacancies, etc.) one uses an

initializer such as a ClusterInitializer and subsequently applies a Transformer to

the ListOfAtoms. Transformers are designed to make geometrical and topolog-

ical changes to an already existing ListOfAtoms; see section 4.2.3 for more on

Transformers.

Implementation, Efficiency, Flexibility

Since, as we have said, initialization is only performed once, efficiency is not as cru-

cial as with the NeighborLocator or the Potential. However there is one important

place where some thought can be usefully spent in order to reduce start-up time.

The Inside() of a ClusterInitializer can only say whether a given position is or is

169

not within the region to be filled. It does not by itself give suggestions for can-

didate positions. Since we cannot loop through every lattice position in space we

need a reasonably good estimate of a bounding region which has a simple shape,

which can be looped over, passing each lattice position to the Inside() function

to be tested. This bounding box is defined by the values of the arrays maxSize

and minSize which are computed by the function SetMaxSize(), which must be

implemented separately in each subclass. These arrays specify upper and lower

bounds for indices (corresponding to lattice vectors) to take for the purposes of

looping to find candidate positions. Care has to be taken to ensure that the region

of space thus defined definitely includes the region to be filled, regardless of how

skewed the lattice vectors are. Another point of care here is the proper treatment

of positions on the boundary itself. This is important for example when filling a

rectangular region with atoms and applying periodic boundary conditions to that

region—it is very easy to end up having two different atoms occupying sites which

are equivalent by periodicity, so the two atoms are effectively on top of each other

(this is bad!). We treat these situations by not including sites near the “negative”

boundary, while including sites near the positive one.

Further flexibility is achieved with the CompositeClusterInitializer class. This

allows one to have as the region to be filled the union, intersection or difference of

two other regions, defined by other ClusterInitializers. This is very useful in mixed

atomistic-continuum simulations where the central region of atoms is a sphere or

disk or cylinder, and this is to be surrounded by a shell or annulus of constrained

atoms. The Inside() function of the CompositeClusterInitalizer performs the ap-

propriate boolean operation on the results from the Inside() functions of the other

ClusterInitializers.

170

Examples

Examples include

• SphericalClusterInitializer: fill a sphere of given center and radius.

• RectangularClusterInitializer: fill a rectangular region with sides parallel to

coordinate axes given center and lengths of the sides.

• CylindricalClusterInitializer: fill a cylinder of given center, radius and height.

• PolyClusterInitializer: fills a simple (by default convex) polygon or polyhe-

dron in two or three dimensions respectively.

• ParallelepipedClusterInitalizer: fills a parallelepiped or specified edge vectors

and center.

• AtomicSurfaceInitializer: this was designed for a more specific application,

measuring surface energies. It sets up layers of atoms of specified thick-

ness and orientation relative to crystal axes. It also sets the lengths of the

boundary conditions appropriately.

4.2.8 ListOfAtomsObserver

A key innovation of our work is the separation of core computation from measure-

ment. The code for these is often found together but it does not need to be. One

should be able to code an AtomsMover without thinking about what measure-

ments are to be made on the system during a simulation run. To implement this

separation we have used the so-called Subject-Observer Design Pattern [24]. For

the purpose of this pattern, a measurement is any function or operation that looks

171

at the simulation’s (ListOfAtoms’s) data but does not modify it. This includes

statistical averaging of various kinds, graphics and visualization, saving simulation

states to disk and others.

Responsibilities

The subject observer pattern designates one class, in our case ListOfAtoms, as

a subject. As a subject, ListOfAtoms has a function AddObserver(), to which

a ListOfAtomsObserver (referred to as Observer for brevity) object is passed. A

pointer to it is then kept on a list by the ListOfAtoms. The other part of the pattern

on the ListOfAtoms side is a function called Notify. A subclass of Observer must

provide an Update function. When Notify is called on the ListOfAtoms, it iterates

over the list of attached Observers calling each Update function in turn, passing

itself (the ListOfAtoms) as an argument. The observer can then access data of the

ListOfAtoms and perform its task. It may not alter the ListOfAtoms.

Implementation, Efficiency, Flexibility

The implementation of the Subject-Observer pattern in the Digital Material follow

Ref. [24] quite closely. The Notify function is generally called at the outer level

as part of the outer loop. Thus suppose one wants to run a simulation for 10000

time steps, recording the potential and kinetic energy every 100 steps. One first

would attach an EnergyObserver to the ListOfAtoms, set the number of steps in

the AtomsMover to be 100, and then have an outer loop with 100 iterations, in

which one calls first the Move function of the Mover and then Notify() on the

ListOfAtoms.

An enhancement to the standard Observer pattern that we have implemented

172

is to associate in integer, called the notify level, to each observer as it is created.

The default value of the notify level is 0. The Notify() function of ListOfAtoms

now takes an integer argument, called notifyLevel, also with a default value of

zero. For nonzero argument, only those observers whose own notify levels are less

than or equal to the notifyLevel argument of Notify(), are actually updated. For

example, suppose we want to measure the energy for the purposes of averaging

(other some other function of the atomic state) every 10 time steps, and save the

atomic configuration to a file every 100 time steps. These processes would be

handled by say an EnergyObserver and a FileObserver, respectively. We could

create the EnergyObserver with a notify level of 0 and the FileObserver with a

notify level of 1. In the main loop, having set the minor time step to be 10, when

the major time step is a multiple of 10 we call Notify with an argument of 1,

otherwise we call it with an argument of zero. Alternatively we could imagine

a more complicated high level control structure with nesting of loops, the inner

one(s) calling Notify with argument 0 and the outer one(s) with argument unity.

In general if an observer is not to be always updated, it should have a notify level

greater than zero.

Examples

• EnergyObserver: measures potential and kinetic energy and stores totals for

the purpose of statistical analysis of these quantities (mean, variance and

related quantities).

• PlotAtomsObserver: plots atoms using the PlotAtoms package.

• RasMolObserver: same using the RasMol package

173

• CheckPointObserver: a simple implementation of saving the state of a sim-

ulation to disk, using Serialization (see 4.3.2 below).

• StressIntensityObserver: for crack simulations, it computes an estimate of

the stress intensity factor around a crack.

• PythonLOAObserver: this is very important as it allows new observers to

be defined purely within Python and be attached and Notified exactly as if

they were C++ observers. The Python observer creates an instance of this

class, passing a pointer to its own Update function.

4.3 Infrastructure

4.3.1 Parallelization

It is clear that any modern MD code must be parallelizable. Modern scientific

computation is relying more and more on clusters of processors, especially as it

becomes easier to build these from “off-the-shelf” hardware. Furthermore, MD as

used for materials modeling lends itself very well to parallelization since interac-

tions are typically short-ranged. Thus if different processors handle distinct regions

of space, a given processor needs only to know about the positions of atoms on

“neighboring” processors which are within a cutoff distance of itself. For a large

enough number of atoms per processor, this is a reasonably small fraction of a

processor’s atoms whose positions need to be communicated to other processors

each time step.

We have implemented parallelization in a way which is almost transparent to

the user. To make an application (either a main function or a Python script) run

174

in parallel, typically only a few lines have to be added. These involve creating

parallel versions of Potential, NeighborLocator and AtomsInitializer, which wrap

the serial versions of these—thus, it is still necessary to create the ordinary serial

object. But then one passes its address to the parallel version and from then on

refers to the parallel version (e.g. the AtomsMover is given the ParallelPotential,

and the ListOfAtoms is given the ParallelNeighborLocator).

To implement parallelization we need the following:

1. A means of defining which atoms belong to which processors

2. A means of distributing atoms among processors

3. A way for a processor to know the positions of atoms on other processors

that it needs to properly compute forces on its own atoms

4. A way to redistribute atoms between processors when their positions have

changed sufficiently, which must also take redistribute corresponding items

in related arrays (velocities, forces, etc.)

Ghost Atoms and Synchronization

All the atoms of the system are distributed somehow among the processors, such

that each atom “belongs” to exactly one processor. The definition of “belongs” is

assigned to the DomainSubdivision abstract class, which so far has one subclass,

HomogeneousDomainSubdivision, which divides a rectangular space equally into

domains, and associates each domain with a processor. A processor is responsible

for computing the forces on all of its own atoms, as well as updating velocities

and positions. All processors are running the same program, and thus work with

ListOfAtoms objects of identical tree structure. However the number of atoms on

175

each leaf will differ from processor to processor. The function GetNumber() will

return just the number for that processor—to get the total number of atoms, an

AllReduce-type operation must take place. To calculate forces, a processor needs

to know the positions of certain atoms belonging to other processors. Such atoms

are called “ghost atoms” from that processor’s point of view. The process of ob-

taining information about ghost atoms (their amount, types and positions) is called

Synchronization, and is handled by the Synchronizer class. This information is ac-

cessed by a given DMArray through the SynchronizationKit class, which provides

an extension of a DMArray, containing separate DMArrays ghostAtoms (which

will actually contain the ghost atoms’ data), and extendedArray, which exists to

be a parent array for the given array and ghostAtoms. It the extendedArray which

eventually is seen by the serial NeighborLocator on each processor. Synchronizer’s

main methods are (1) Rebuild(), which constructs for the current processor the

lists of its own atoms which are “interesting” to each other processor—it consults

the DomainSubdivision for the definition of “interesting”—and (2) Synchronize(),

which communicates the positions of the interesting atoms to the appropriate pro-

cessor.

Migration

The process of transferring atoms between processors when their positions have

changed appropriately is called Migration, handled by the Migrator class. We need

to be careful about what it means to “transfer atoms”. In some OOP implemen-

tations of MD, there is an Atom class, which contains the position, velocity, force,

mass etc. As discussed in subsection 4.2.1 this is not efficient when it comes to up-

dating the positions or the velocities, but it would make more obvious what block

176

of data should be transferred to the other processor. We could say that what ever

arrays are in a given ListOfAtoms should be transferred, but that would leave the

force arrays, which are managed not by the ListOfAtoms, but by the AtomsMover,

unchanged. The mechanism we have designed to automatically handle the transfer

of all atomic data between processors is called the sibling mechanism. DMArrays

which are siblings of each other will all be migrated when one is—the one being

the position array, typically. The information about what siblings an array has is

stored in the SynchronizationToken class. An array is made a sibling of a previ-

ously existing one if the old array is passed to the constructor of the new one. The

Migrate() function of Migrator assembles data to be communicated, from all its

sibling DMArrays, in the communication buffers, makes an AllToAll communica-

tion, transfers the newly received data from other processors to its own DMArrays.

Finally it calls the Synchronizer’s Rebuild() function to recreate the lists.

For the user: parallelization wrapper classes

A user writing a Python script or main function for a parallel simulation must

create instances of DomainSubdivision, Synchronizer and Migrator, and as well

of parallelization “wrappers” around the usual AtomsInitializer, NeighborLocator

and Potential:

ParallelAtomsInitializer: The regular AtomsInitializer (e.g. RectangularClus-

terInitializer) is passed to this as a constructor argument. When Create()

is called, the regular AtomsInitializer’s Create() is called on processor zero

only. On other processors, copies of the resulting ListOfAtoms with the same

tree structure, but empty leave, are created. The first call to the Neighbor-

Locator to update will lead to atoms being Migrated for the first time. This

177

happens before any neighbor lists are constructed, so processor zero will not

need to provide the large amount of memory that storing these for the whole

system. However, the fact that it briefly stores the positions of all other

atoms does put an eventual limit on the scalability; once the total number of

atoms approaches 108, the procedure would probably have to be modified.

ParallelNeighborLocator: Wraps around the regular NeighborLocator. Its Up-

dateMyData() function calls the Migrate() and Synchronize() as well as the

regular NeighborLocator’s UpdateMyData(). Also, its SetPositionArray()

causes arrays to be allocated for ghost atoms’ positions, calls Migrate() and

Synchronize(), and calls the regular NeighborLocator’s SetPositionArray(),

passing it the extendedArray (i.e. including the ghost positions) obtained

from the SynchronizationKit.

ParallelPotential: Wraps around the regular potential. The only extra tasks it

performs are to sum the energy from all processors, and to ask the Synchro-

nizationKit to allocate the ghost-atom arrays.

Interaction with MPI through DMProtocol

We have used MPI to send messages between processors, but have added a layer

of abstraction between Digital Material code and MPI, known as the Protocol, so

that the use of MPI is not hard-wired into the code. The base class DMProtocol

provides an interface with methods such as Broadcast(), AllToAll(), GetNum-

berOfProcessors, GetProcessorNumber(), etc. These are overloaded in subclasses

MPIProtocol, which connects these methods to actual MPI calls, and LocalPro-

tocol, which has trivial implementations of the above methods for use in serial

operation (i.e., return 0 for processor number, 1 for number of processors, do noth-

178

ing for other methods, etc.). General DigitalMaterial code only ever knows about

a global pointer, dmProtocol, to the base class DMProtocol. This points to the

Protocol object currently in use. Creation of the Protocol object is controlled by

the class ProtocolFactory (Singleton pattern—only one object ever exists), whose

SetProtocol() method allows different Protocols to be set. At present the only pro-

tocols are MPIProtocol and LocalProtocol, but the system could handle a different

message-passing system if one were available. When using Python for a parallel

application, a special version of the python executable must be used, known as

mpipython. This is necessary in order that MPI Init() be called before anything

else. When the ProtocolFactory is instantiated (this happens statically) it checks

if MPI Init() has been called; if so it sets the Protocol as MPI. This will be the

case in a Python application; the user need not do anything. In a pure C++ ap-

plication, near the start of main() should be a call to MPI Init() followed by a call

to the ProtocolFactory::SetProtocol(), passing “ProtocolFactory::World” which is

an enumerated type representing MPIProtocol.

Parallelization and new Digital Material classes

For the researcher who wishes to write a new interatomic potential within the

DigitalMaterial framework, there is very little that needs to be kept in mind for

the purposes of parallelization, since the ParallelNeighborLocator takes care of

most details. The main thing is to be aware in force calculations that some of the

neighbors returned by the NeighborLocator will have atom numbers apparently

too high (i.e., j > nAtoms), these being ghost atoms. For such atoms no space

exists in that processor’s force array and a dummy variable should be used to hold

their forces:

179

double dummyForce[DIMENSION];

...

if(j<nAtoms) forceJ = (*forces)[j];

else forceJ = dummyForce;

Incidentally, this is the reason that the HalfNeighbors() function of Neighbor-

Locator returns neighbors j with j > i, rather with j < i—it allows ghost atoms

to be included.

In writing transformers, it is even more necessary to use array access to the

ListOfAtoms; that is, use SetCartesianPositions() rather than looping and call-

ing SetCartesianPosition(), since the latter entails the NeighborLocator updating

itself, and thus communication between processors, for each loop iteration.

Alternative choices

We have not implemented any kind of dynamic load-balancing scheme. In solid

mechanics atoms do not tend to move a whole lot, nor does density tend to change

much so that if the atoms are well distributed at the start of the simulation they

will more or less remain so. However if one wanted to implemented load balancing,

which would amount to redefining processor boundaries dynamically, one could

implement a new subclass of DomainSubdivision which would implement whatever

algorithm was to be used for the load-balancing.

4.3.2 Serialization

Serialization is the process of storing objects, generally containing the data of the

simulation, to a file, such that they can be recreated by the application running

again at some later time. The term “serialization” comes from the fact that in a

180

file data is represented as a linear stream of bytes, and it is not necessarily trivial

to determine how a complex data structure should be put into such a form. In

molecular dynamics simulations we often wish to save the state of the system at

regular intervals, perhaps every N time steps. There are two possible reasons for

this: (1) We wish to defer certain analyses until after the simulation run and (2) We

wish to be able to restart a simulation at the point where it left off, or perhaps from

some intermediate point, but changing some parameters. Apart from the atomic

state (positions and velocities, as well as the tree structure of the ListOfAtoms,

type-names, masses etc.) it is useful to be able to save other objects in the system,

such as the Potential, Mover, NeighborLocator, etc, so that if restarting at some

time in the future there will be no doubt about which parameters are associated

with which runs. Since Digital Material is intended to be run from a scripting

language such as Python, the basic parameters of a given simulation will typically

specified in the Python script. Ideally the values of all Python variables would be

saved with the C++ objects in an automated way such that there is never any

confusion associating C++ objects to appropriate parameters. Presently this is

not the case, and applications must arrange their own manner of coordinating the

saving of basic simulation parameters and C++ objects. A typical method is at

each time step to store the main C++ objects (ListOfAtoms, Potential, Mover,

etc.) in one file, and save the Python variables using the pickle module, in a

different file but with a clearly related name (e.g. the C++ filename with .pickle

appended.

181

Serializing C++ objects in Digital Material

We will now focus on how we serialize and de-serialize (restore from a file) C++

objects in Digital Material. In the spirit of OOP, we have separated the interface

of the Serialization from the implementation. The interface is defined by three

abstract base classes (two of which are closely related), Serializable, DMWriter

and DMReader. The methods of these classes are shown in table 4.3.2 (most of

the arguments are declared const, but this has been dropped in the table to save

space, as has void for return values).

Thus a DMWriter provides methods for saving the primitive data types: inte-

ger, double, bool, etc. as well as arrays of these. In addition there is a Put function

which takes a pointer to a Serializable object and saves the state of that object

(the work will actually be work by the various Put functions). The DMReader

provides methods for reading the same primitive types from a given file, as well

as two functions for restoring Serializable objects: Get and Fill. The difference

between them is that Get takes a name (a string), creates the appropriate class

object and restores its state from the file; Fill takes a pointer to an already cre-

ated, but “empty” Serializable object of the appropriate type, and “fills in” its

member data. Note that a string-name is associated with every piece of data that

is saved/put or loaded/gotten, including the entire object.

For a class to be Serializable, it must derive from the base class Serializable,

and thus implement the three methods in table 4.3.2. Two have obvious purposes:

the Save and Load methods, upon being passed a pointer to a DMWriter or DM-

Reader respectively, call the latter’s methods in order to save or load the individual

primitive objects making up the object’s state. The GetType() function always

returns a string equal to the name of the class. The purpose of this is to allow

182

Table 4.1: Methods for Serializable, DMWriter and DMReader.

Serializable DMWriter DMReader

Save(DMWriter *) Open() Open()

Load(DMReader *) Close() Close()

string &GetType() Put(Serializable *, string&) string GetType(string &name)

PutBool(bool, string&) bool Fill(Serializable *, string &name)

PutInt(int, string &name) int GetInt(string &name)

PutDouble(double, string &name) double GetDouble(string &name)

PutString(string &name, string &name) string GetString(string &name)

PutIntArray(int , vector〈int〉 &, string &name) int GetIntArray(vector〈int〉 &, string &name)

.

183

objects of an appropriate type to be created given a string containing the class

name. This is straightforward in Python (using the exec command for example)

but requires some mechanism in C++, which for which we have used the Design

Patterns “Abstract Factory” and “Factory Method”, with Abstract Factory itself

using the “Singleton” pattern. The description of the process is a little complex

to describe, but it uses surprisingly little code. When high level code wishes to

serialize an object, it creates a DMWriter, and calls its Put() method, passing the

Serializable object (as a pointer), as well as a name, by which the object can be

retrieved (the name is necessary since one could save more than one object of the

same type to a given file, so a means of distinguishing them is necessary. For ex-

ample the name for a ListOfAtoms could be ‘‘LOA 00012’’ for the 13th (counting

from zero) ListOfAtoms to be saved to this file. The DMWriter gets the type name

for the Serializable (e.g. ‘‘DynamicListOfAtoms’’) and saves this along with the

name that was passed. Next it calls the Save() method of the Serializable, passing

itself. The Save method uses methods of the DMWriter to save all of its data.

The magic comes when we come to recreate an object from a file. Having

created an appropriate DMReader, passing the appropriate file name, we call Get(),

passing the same that was used to save the object originally (e.g. ‘‘LOA 00012’’).

The DMReader looks at the file and finds a string containing the class name. The

thing is now to create an object of that type. For this two classes are used.

SerialFactory is a singleton class (meaning only one instance of it ever exists at a

time) which can take a string containing a class name and return a pointer to a

newly created object of that type. It can do this because for each Serializable class

there exists a corresponding class SerialBuilder; the correspondence being through

a template argument. A global instance of the SerialBuilder is created for each

184

Serializable type (by a line at the top of its implementation file). The SerialBuilder

has one chief method, called Build(). This method dynamically creates (using the

new operator) a new object of the same type as its template argument and returns

the pointer. There is one more piece of the mechanism: When each SerialBuilder is

created, it registers itself with the (unique, a là Singleton) instance of SerialFactory,

providing both the string containing the appropriate class name, and a pointer to

itself. Thus the SerialFactory has a map from strings (containing class names) to

pointers to objects which can create the corresponding objects.

To make this work, there is one more requirement of a Serializable (in addi-

tion to providing the three member functions listed in table 4.3.2: It must have a

public constructor that takes no arguments. Otherwise the corresponding Serial-

Builder would not be able to construct one. In general not every single member

variable is saved/loaded: only those data which cannot be recreated later. For

example, when a NeighborLocator is serialized and then de-serialized (restored

from file) the actual neighbor-lists are not saved, because these can be recreated

when the NeighborLocator is reconnected to a ListOfAtoms. This brings up a

point which is a general issue in Serialization: what do with references (pointers)

to other objects. In Digital Material, the main object references are that from

a ListOfAtoms to its BoundaryConditions and NeighborLocator (and vice versa

for the latter) as well as from an AtomsMover to the Potential. One cannot save

the actual pointer value because this will certainly not be the same when the

pointed-to object is recreated. One could imagine mechanisms whereby a map

“objectNamePtrs”, mapping strings (containing object names) to pointers (to the

respective objects) would exist within the simulation, as well as a map “nameT-

oNameRefs” of strings to strings representing object references. nameToNameRefs

185

would be serialized, but not objectNamePtrs, since the pointer values would be

meaningless later. objectNamePtrs would be recreated as each object was de-

serialized, and once nameToNameRefs was de-serialized from it the pointers could

be reset. However it is not clear that this could be done is a truly general way and

we have decided for now to let the “high-level” application reconnect the objects by

calling SetNeighborLocator(), SetBoundaryConditions(), etc., after de-serializing

the respective objects.

In Digital Material, we have implemented two concrete classes (pairs of classes)

as subclasses of DMWriter/DMReader. One saves everything in an ASCII format.

The other uses the freely available binary file format known as NetCDF [49].

4.3.3 Graphics/Visualization

Visualization is an important tool for the analysis of MD simulation results. Par-

ticularly in large scale simulations one does not know a priori what processes

are going to take place (e.g. dislocation motion). Ideally the software would be

able to automatically identify defects and extract their properties and trajectories

from the atomistic data. However we are not able to do this yet. Human visual

analysis is still crucial. This requires visualizing the atoms in such a way that a

person can identify features such as dislocations, cracks, and other defects. This

generally comes down to choosing an appropriate way to color the atoms (where

“color” can include transparent, i.e., leaving them out). This is turn involves

constructing functions whose values near defects are clearly distinct from those

in defect-free regions. The simplest such functions are the atomic energy and

the (mis-)coordination number (number of neighbors within a cutoff distance).

These two differ in their conceptual basis, one being purely geometrical in nature,

186

while the other depends upon the interatomic potential. Other potential-based

functions include various components of the local (atomic) stress tensor, or in a

dynamical simulation the force magnitude (which is zero for all atoms in relaxed

state of course). A recently introduced geometrical measure of mis-coordination is

the “centro-symmetric deviation” [45] which can be applied to materials in whose

ground state lattice the neighbors of each atom occur in oppositely positioned pairs.

The quantity computed is the sum over such pairs of neighbors of the square of

the sum of the deviations of their positions from their ideal lattice positions with

respect to the given atom. This quantity is zero for a homogeneous deformation.

In keeping with our general intent not to re-invent the wheel—namely, not to

re-implement features which have already been well implemented by others, but

rather to make use of existing freely available packages for standard tasks (linear

algebra, binary file storage) we have not developed our own visualization package,

but sought to make it easy to use existing packages. We have not made an extensive

investigation of all the different packages (OpenDX, VMD, etc.) that are in use

for MD visualization, but we have learned some things about how to incorporate

visualization into the simulation of materials.

There are two “modes” of visualization that may be employed in MD simu-

lations: real-time visualization and post-processing visualization. Real-time visu-

alization is only feasible when the system is small enough that the state of the

system changes noticeably over the period during which the simulator cares to

observe it. However it has some important uses: (1) demonstration applications

of the software (2) educational applications of the software and (3) debugging of

scientific applications, where if it is known that “something bad happens” within

a short time of starting a simulation, visualization of the atoms can often give

187

an immediate understanding of the problem (e.g., the time step was too big and

atoms ended up overlapping too much and thus the system exploded).

We have used the following three visualization tools, the first two of which have

been implemented as Observers of the ListOfAtoms.

PlotAtoms A simple two-dimensional program written as part of the LASSPTools

package[57]. Its strength is its smooth presentation of real-time updates of

the atomic state.

RasMol [55] A powerful program for visualizing molecules—it has features for

highlighting parts of proteins etc.—which is useful too for materials MD

simulations. Its strength is its 3D rendering, and its facility for the user to

interactively translate, zoom and rotate the “molecule”. It is not particu-

larly suitable for real-time visualization, and when used for such, presents a

flickering image.

Chime [55] An enhancement to Rasmol, designed to run as a plug-in for the

Netscape web browser. Our experience with it is fairly limited. An advan-

tage over bare Rasmol is that it supports animations made from separate

configuration files concatenated into a single multiple-frame file. However it

is not clear that it can handle real time updates as well as PlotAtoms.

For real time visualization, say in the case of a demonstration application with

a few hundred atoms, we can attach the appropriate observer (PlotAtomsObserver,

RasMolObserver) in the Python script, and the graphics display will update ev-

ery major time step (assuming Notify() is being called on the ListOfAtoms every

major time step). When real time visualization is not practical, we can make use

188

of an Observer which saves the state of the ListOfAtoms (and the NeighborLoca-

tor, Potential, . . .), every major time step, or at whatever interval is considered

appropriate (see Serialization, subsection 4.3.2 above). Using a separate Python

script we can read these snapshots from disk, attach the appropriate Observer and

display the snapshots in sequence, creating an effectively real-time animation of

the trajectory. From the same script we can create configuration files in formats

appropriate to other visualization tools if desired. We also also perform elementary

transformations of the positions such as rotations and translations, or take subsets

of the configuration (this is necessary for PlotAtoms, but not for RasMol).

ColorMethod

As discussed above it is crucial to be able to “color” the atoms in a useful way. The

process of coloring is abstracted as the ColorMethod base class, whose subclasses

implement the coloring methods described above: EnergyColorMethod, Coordi-

nationColorMethod, etc. The chief requirement for subclasses is to overload the

function call operator to take a ListOfAtoms and an integer (an atom number) and

return a double, representing a color value. Subclasses are also allowed to have an

Update() function, taking a list of atoms, which is intended to be used for calcu-

lating the colors of all atoms at once rather than one at a time as requested by the

graphics observer class. This can be important for efficiency in real time visualiza-

tion. At this time we actually have PlotAtomsObserver implemented both in C++

(with Python wrappers provided by SWIG) and in Python, which is somewhat re-

dundant. The pure Python implementation allows pure Python ColorMethods to

be defined which is convenient, except that it may often be the case that efficiency

requires a C++ implementation. An alternative method of coloring is according

189

to which branch or leaf a given atom is on, which is useful when it is desired

to indicate boundary atoms, for example. This is the default coloring method of

PlotAtomsObserver when no ColorMethod is specified (the user can choose which

leaves have which colors, including the value -1 for “do not display”).

4.4 Summary

We have given a fairly detailed exposition of our view to write a modern molecular

dynamics code, paying strict attention to modern software design principles. Some

examples of its use will be presented in subsequent chapters. We hope that with

the descriptions provided in this paper, a person could implement a code more or

less similar to ours, although this would probably not be the case for parallelization

and serialization, which involve more detail than has been described here.

We would like to point out a further benefit of using Python. One of the magic

things about Python is that a function call only needs the function name to be

correct in order to work—there is no type checking. This means that if a another

MD code was written with quite different low level details, but with the same high

level interface as the Digital Material, existing Python scripts could be used with

the other code. Python scripts which implement applications at a high level could

be shared between researchers using different core MD code.

Chapter 5

Overlapping Finite

Elements/Molecular

Dynamics (OFE/MD)

This chapter presents the development of a simulation tool which embeds molecular

dynamics simulations within finite element continuum models. Since a key feature

of the formulation is the atomistic and continuum regions overlap, it is being

termed Overlapping Finite Elements/Molecular Dynamics or OFE/MD.

5.1 Motivation and purpose

The motivation for this research comes from the Adaptive Software Project (ASP),

an engineering and computer science collaboration, which aims to develop software

for solving large complex modeling problems. The problems envisaged involve

solid mechanics (finite element elasticity and heat flow), fluid mechanics, complex

geometries, multi-scale phenomena, and require the software to adapt in various

190

191

ways. Levels of adaptivity include (1) the system level, which involves adapting

to changes in hardware resources (such as a change in the number of processors

available, or a failure of one or more processors, necessitating some kind of recovery

scheme) (2) the algorithmic level, which involves the usual kinds of changes of

grid spacing and time step and (3) the application level, which involves changes

in the mathematical model, i.e., the governing equations, used to describe the

physical system. It is the latter kind of adaptivity which inspires the current work.

Specifically, the idea is that a high level control mechanism in the software would

decide that at some moment in the time evolution of the model, and at some

particular region within the model, the continuum model—in this case a finite

element (FE) elasticity model—has become singular and needs to supplemented

with new physics. This new physics is to emerge from a smaller scale model,

involving for example treatment of individual grains in a polycrystalline material

[40], or in this case, a molecular dynamics (MD) simulation.

Thus the aim of this work is to develop some capability to “spawn” an MD

simulation from a continuum simulation. The purpose is as much an exercise in

adaptive software as it is to develop a useful simulation tool. That, being said,

it is of course true that coupling continuum models to atomistic models is a very

fashionable pursuit (the theme of this thesis being a case in point). In the context

of developing innovative software, a choice was made to work with a coupling

mechanism which is fairly simple compared to say, the quasi-continuum (QC)

method. Nevertheless, this coupling mechanism seems to be new, and moreover,

seems to be free of some of the difficulties plaguing the QC method.

Once an MD simulation has been spawned it can have one of two purposes,

which we shall refer to as contexts : Context (1) is to perform a diagnostic com-

192

putation, in order to answer a question such as “will a seed crack in this location

grow, given the stress and temperature conditions at this point and time?” or

“will the material melt, given the stress and temperature conditions at this point

and time?”. In this case an answer to the question will signify the end of the

MD simulation and further simulation of the model as a whole will involve only

continuum mechanics. Context (2) is for the MD simulation to become a part of

the overall dynamical model, enhancing it in the sense of correcting the contin-

uum equations by including effects of nonlinearity as well as effects of inherently

atomistic processes like melting, fracture or plasticity. These effects would be the

weakening (from fracture or melting) or hardening (as in work hardening) of the

material, but they not necessarily be identified as such (unlike context (1), whose

point is to identify specific processes).

Both from a physical point of view and from a numerical point of view, con-

text (2) is not practical when the region simulated with MD—called the atomistic

region—is a very small fraction of the total model, which would be the case in

typical (for example aerospace) engineering applications. This is because the con-

tribution of a typical atomistic region of the model to the overall forces on the

continuum degrees of freedom is almost negligible. Thus the difference between

the linear and nonlinear contributions, even where significant atomistic processes

take place, is indeed negligible—in such applications even individual elements are

much larger than atomic sizes. In these applications only context (1) makes sense.

However in the age of nanotechnology one can imagine that there will be engineer-

ing applications with significantly smaller length scales, which will not be so much

larger than the atomistic length scale. Furthermore, given that this is primarily a

software project, the techniques developed and insights gained from the experience

193

of coupling these two different kinds of models in at least a semi-automated way

is expected to be of general benefit.

In the meantime it is envisaged that context (2) will be more useful in physics

and materials science applications, where it is desired to study some particular

atomistic process(es) with realistic boundary conditions produced by embedding

the simulation in a continuum model. It is worth noting that the simulation

techniques involved in these two contexts are not as different as one might think.

In context (1) we effectively freeze the main simulation while carrying out the

MD simulation. This would seem to imply that the atomistic simulation will

have fixed-displacement boundary conditions (as we will see when we formulate

the model), since the the finite element nodal displacements will be fixed. This

would also imply that forces on the continuum degrees of freedom due to the

atomistic configuration are not needed. However fixed displacement boundary

conditions are not physical; in the real material the boundary of a small region

will experience fixed stress, just as the correct thermodynamic boundary conditions

are fixed temperature rather than fixed energy1. Therefore we actually need to

create a separate continuum model consisting a small subset of the main mesh,

which includes the atomistic region. It could be defined simply as the set of

elements which contain any atoms. Applied to the outer surfaces of this miniature

continuum model are traction boundary conditions inferred from the stress state

of the main continuum model. The coupled FE/MD simulation is then carried out

on this reduced model and the atomistic region contained within. Therefore in

both contexts (1) and (2) we need an FE/MD model which is truly coupled.

1By “fixed” here I mean constant on the time and length scale of the MD
simulation.

194

5.2 Principles of the coupled OFE/MD model

In this section we present the formulation of our model. A model of a physical

system consists of two parts: the specification of the degrees of freedom and the

rules governing their evolution. Since this is a mechanical model these rules will

be dynamical equations of motion, and since we wish the model to have a firm

physical basis, these will be derived from an energy functional, a Hamiltonian.

In the next three subsections we present the kinematics (definition of degrees of

freedom), energetics (energy functional) and derivation of forces.

5.2.1 Kinematics

In this subsection we will describe the atomistic degrees of freedom and their

connection to the finite element degrees of freedom (nodal displacements). Termi-

nology will be introduced and defined.

The sample is a region of space filled with solid material. The continuum

model is a finite element model whose mesh, defined by set of Nn nodes and Ne

elements connecting the nodes, covers the space occupied by the sample. The

displacements of the nodes form a vector of length 3Nn denoted q. The atomistic

region is a subset of this region, containing all of the atoms explicitly represented

in the simulation. It consists of a core region and a boundary region. The

atoms in the core region are known as free atoms, unconstrained atoms or

core atoms. The atoms in the boundary region are known as fixed atoms,

constrained atoms, slaved atoms or boundary atoms. The distinction be-

tween free atoms and fixed atoms is as follows: The positions of the free atoms,

denoted by {~ri}, are new independent degrees of freedom in the coupled model.

195

ξ

η

(−1,−1)

(+1,+1)(−1,+1)

(+1,−1)

0 (42)

3 (94)

1(6)

2 (17)

node numbering: local (global)
natural coordinates

0 1

23

q

q

q

q q
42x 42y

q
94y

94x

q

q

6x 6y

17x 17y

R42

R94

R17

R6

Figure 5.1: Two-dimensional atomistic region embedded entirely within a single

element, and “natural coordinates” of the element.

The positions of the fixed atoms, however, are determined entirely by the current

values of the nodal displacements via interpolation using the finite element shape

functions, so these positions are not new degrees of freedom in the model. The

position of a fixed atom whose undeformed position is in element e will always be

determined by the displacements of the nodes of e. The purpose of the fixed atoms

is to provide a boundary for the core atoms, and to determine the forces acting on

the nodes due to the atoms. We call the number of core atoms Nc, the number of

boundary atoms Nb and their sum, number of atoms in the simulation Nat. When

we need to refer to the positions of all atoms, and not just the independent ones,

we will use a prime: {~r′i}. Fig. 5.1 shows a simple case in a 2D model where the

atomistic region is entirely within a single element

Let us note two further points concerning the geometrical relationship between

the atomistic region and finite element mesh: (1) The atomistic region is small com-

196

pared to any element and could generally fit inside an element, except that often it

will be located near element boundaries at cracks, notches or sample boundaries,

and thus several elements could contain parts of the atomistic region (i.e. atoms).

(2) The atomistic region overlaps the finite element mesh. This contrasts with

other instances of coupled finite elements and molecular dynamics, in which the

mesh does not overlap2, and where the mesh is refined down to the atomic length

scale near the atomistic region or where indeed the mesh is very much tied to

the atomic lattice, as in the quasi-continuum method [70, 69, 51]. Because of the

overlap, it is important not to double count the energy within the overlap region.

5.2.2 Energetics

Having defined degrees of freedom (DOFs) we now define an energy functional. If

there were no atomistic region (and no DOFs other than the nodal displacements)

the energy would be the continuum elastic energy. To begin with we consider only

linear elasticity. The elastic energy is a sum over elements:

Eelastic =
∑

e

1
2
qT

e · Ke · qe = 1
2
qT · K · q (5.1)

where subscript e denotes elemental quantities: Ke is an element stiffness matrix;

qe is the vector of nodal displacements for the element e. We have also written the

energy as a single matrix expression where K and q are now the global stiffness

matrix and displacement vectors, respectively. The stiffness matrix is calculated

by doing an integral of the elastic energy density and factoring out the nodal

displacements.

2Except possibly at a very thin (one atomic distance thick) boundary region at
the boundary of the atomistic region [2, 1, 14]

197

As we did in chapter 2, in the atomistic region we will replace the elastic energy

density with the full atomistic energy density3. To avoid an abrupt transition

from one energy density to the other—necessary since one is the integral of a

continuous function while the other is a sum over discrete points—we will again

use a smooth transition function T (X). Again, the capital X indicates that the

transition function is evaluated at undeformed positions. Let us temporarily omit

explicit reference to qs and ~ri: since both the elastic energy and (formally at least)

the atomistic energy can be written as a volume integral of an energy density we

can write the total energy as follows:

E =

∫

sample

d3X (T (X) G(X) + (1 − T (X)) F(X)) (5.2)

where G(X) is the atomistic energy density at undeformed position X and F(X)

is the linear elastic energy density. G(X) is really a sum of delta functions—

one at each undeformed atomic position—weighted by the ratio of that atom’s

current energy to the atomic volume (volume per atom in the perfect crystal); the

transition function T (X) is a weighting function equal to unity within the part

of the atomistic region occupied by free atoms, zero in the continuum region, and

varying smoothly between the two in the border part of the atomistic region4. If

we group terms which multiply T (X),

E =

∫

d3X (F + T (G − F)) , (5.3)

3It is important to note that we may speak of the atomistic energy density
even away from the atomistic region, since one may always imagine decorating the
continuum region with atoms and calculating the energy at a point corresponding
to an atom location as the energy of the atom.

4It turns out that the region where T (X) = 1 does not correspond exactly with
the core region. The reasons will be explained in the next subsection

198

then we can view the total energy as being the full linear elastic energy plus a

correction from the atomistic region, namely the difference between the elastic

energy and the atomistic energy there. We now reintroduce the nodal displace-

ments q and the atom positions {~r′i} (recall that the prime refers to fixed atoms

as well as core atoms—the positions of all atoms needed to completely evaluate

the atomistic energy). For the purposes of computation, we write the total energy

as a sum of three terms: (1) the full elastic energy, which is as we saw above

a matrix expression, where we now call stiffness matrix Ktotal to signify that it

gives the elastic energy of the whole sample; (2) the atomistic energy, now written

in its natural form as a sum of atomic energies weighted by transition function

values,Eatomistic =
∑

i T (~r0
i)Ei and (3) a term which is the elastic energy weighted

by the transition function, also written as a matrix expression, where the matrix is

called the partial stiffness matrix. It is assembled from elemental partial stiffness

matrices (one for each element which contains a part of the atomistic region). We

have:

E = 1
2
qT ·Ktotal · q +

∑

i

T (~r0
i)Ei − 1

2
qT · Kpartial · q (5.4)

5.2.3 From energy to forces

Given an energy functional the forces on the DOFs are obtained by differentiating

with respect to them. Consider forces acting on the core atoms first. These forces

come from terms which depend on the free atom positions ~ri, namely Eatomistic. It

is desirable that these forces be the same forces that are calculated by standard

MD functions is being used so that no new coding is needed. This means that the

force on a core atom should not be affected by any atoms whose transition value

199

is not unity. Since atoms near the edge of the core are affected by the nearest

atoms of the boundary region, this means that the transition function should be

unity for a depth into the boundary region equal to the cutoff distance of the

potential. This is true not just for pair potentials (e.g. Lennard-Jones) but also

for three-body potentials (e.g. Stillinger-Weber) and many body potentials (e.g.

EAM, MEAM or EDIP). It is true that for non-pair potentials the forces on core

atoms will depend on the positions of boundary atoms up to two cutoff distances

away, but only through the energies of atoms less than one cutoff distance away, so

these contributions are still weighted by T = 1. In the following, letters i, j, k . . .

denote atom indices, letters a, b, c . . . denote Cartesian coordinates, and Greek

letters α, β, γ denote nodes. We have:

~Fi = −dE
d~ri

= −
∑

k

dEk

d~ri
(5.5)

where the sum over k will include all atoms within one cutoff distance of atom i,

as long as the transition function is unity for all of these atoms! Next, to derive

the forces on the nodal displacements, first let us denote the displacement of the

α-th node as a vector qα with Cartesian components qαa, a = 1, 2, 3. All three

terms in equation 5.4 depend on the qs. For the matrix expressions this is simply

a quadratic dependence, which gives linear terms on differentiation. To obtain the

atomistic contribution we employ the chain rule:

~Fαa = −∂E
atomistic

∂qαa
= −

∑

i′

Ti′
∂Ei′

∂qαa
= −

∑

i′,k′

Ti′
∂Ei′

∂rj′b

∂rj′b

∂qαa
(5.6)

where Ti′ = T (~r0
i′) is the transition function evaluated at the undeformed position

of the i′th atom, the prime again signifying that in principle we sum over all

atoms in the simulation, not just free ones. Consider the last factor in the last

200

expression,
∂rj′b

∂qαa
. This can only be nonzero if the undeformed position of atom j′

is in an element containing node α. When this is the case, since the interpolation

gives the atomic displacements (and hence current positions) as a linear function

of the nodal displacements, the derivative with respect to the latter is just the

coefficient—the shape function:

∂rj′b

∂qαa
= Nα([~rj′])δab (5.7)

The Kronecker delta appears because the interpolation maps the ath coordinate

of the nodal displacements to the ath coordinate of the atomic displacements.

The square brackets are a reminder that the the shape function is not an explicit

function of the real space position—an intermediate step to convert into the ele-

ment’s natural coordinates is required. The finite element library we use contains

a function which takes a set of point forces within an element, makes the appro-

priate products with shape functions and returns the contribution to the nodal

forces from that element. It remains for us to recognize that the point forces to

be passed are not the “bare” atomic forces, but the atomic forces weighted in a

certain way by the transition function—not that the force on a particular atom

is multiplied by the transition value for that atom, but the contributions coming

from different atoms’ energies are weighted by their transition function. Thus we

need to have a way of obtaining from the Potential class not the complete set of

forces, but the forces due to a single atom’s energy. For this purpose a member

function AtomicForcesEnergy has been added to the Potential interface5.

Apart from that the implementation is simple. Let us call the resulting vector

5This need not involve extra code as in many cases the force calculations are
already coded as a loop over such atomic energy contributions.

201

forces on the nodes due to the atomistic energy ~F node-atomic. Finally, we also include

in the nodal forces constant loading forces, possibly derived from pressures/stresses

acting on element surfaces, denoted Fload. Now that we have forces we can write

down equations of motion:

m
d2~ri

dt2
= ~Fi (5.8)

M · q = −Ktotal · q + ~F node-atomic +Kpartial · q + Fload (5.9)

Here M is a mass matrix for nodal displacements which could be calculated by

integrating the product of the density and the acceleration field over each element.

We have so far only considered quasi-static situations rather than true dynamics

so we do not need to calculate this mass matrix—we generally set the left hand

side of equation (5.9) to zero.

5.3 Dynamics and algorithms

The nodal DOFs correspond to masses of material, which are large compared

to atoms, thus their characteristic time scales are much longer—these are slow

degrees of freedom. Because of the difference in time scales, it does not make sense

to implement the coupled equations directly. If we did, the time step would be

limited to the atomic time scale (femtoseconds) and as a consequence the amount a

nodal displacement could change at once would be limited to atomic lengths. Thus,

for instance, in the case of finding the equilibrium length of a uniaxially loaded

beam with an atomistic region in the center, one would have to slowly increment

the force in steps small enough that at no point would the nodal displacements

ever change by more than an atomic distance. If the continuum model is much

202

larger than the atomistic region this would be appallingly slow. Clearly, this is not

the way to go. Therefore we do not do direct dynamics; rather, given the natural

distinction between the two sets of degrees of freedom (fast and slow), we make

a distinction in how they are evolved in the simulation. Consider again the beam

loaded uniaxially, and at zero temperature. The approach we take is analogous to

“integrating out high frequency degrees of freedom” in statistical mechanics. We

integrate out (literally) the atomic degrees of freedom for a given configuration of

the coarse degrees of freedom q. Mathematically we now have a model containing

only the slow degrees of freedom, and we do separate dynamics on that.

In statistical mechanics, the thermodynamics of a system emerges from evalu-

ating a partition function, which is a sum over all states of all degrees of freedom:

Z =
∑

{q},{~ri}
exp(−H({q}, {~ri})/T) =

∑

{q}





∑

{~ri}
exp(−H/T)



 (5.10)

The renormalization group concept is based on doing this sum a little piece at

a time. Our procedure is analogous to a discrete renormalization transformation

where we do the sum over the atomic degrees of freedom only. At zero temperature

there is only one term6 in the partition function, the state with minimum potential

energy. That is, if for any given configuration of qs we minimize the system

with respect to the atomic degrees of freedom then we have a well defined model

involving only the qs. The forces on the qs in this case of zero temperature are

simply the forces determined in subsection 5.2.3 by differentiating the energy, once

the minimization with respect to free atoms has taken place.

6I’m speaking loosely here; in a system with continuous degrees of freedom the
partition function is an integral rather than a sum, so one cannot literally talk
about “one term in the sum”.

203

5.3.1 Zero temperature algorithm

Having integrated out the free atoms we have a nonlinear energy functional of the

qs. Consider a static load applied to the system; we wish to find the equilibrium

displacements (thus this is a problem in statics rather than dynamics). The load

appears in the energy as terms linear in q. In terms of forces the loads are put on

the right hand side and we have an equation like

Kfull · q + ∇qE
atomistic −Kpartial · q = Fload (5.11)

which is a non-linear equation to be solved for q. We use a modified Newton

method given by the following algorithm:

1. Construct the full and partial stiffness matrices and the right hand side vector

from the load, using standard finite element procedures, along with a new

routine for evaluating the integrals for the partial stiffness.

2. Solve linear problem with Ktotal to give nodal displacements qn.

3. Displace boundary atoms according to qn.

4. Relax core atoms (minimize).

5. Compute full (nonlinear) forces.

6. Increment RHS by (load - force).

7. Repeat from step 2 until a an overall convergence criterion is satisfied.

This algorithm is a modification of Newton’s method because the same stiffness

matrix (which is the gradient at zero displacement) is used at every step, whereas

the true Newton method involves computing the exact derivative (of the forces,

204

in this context)each time. The modified method is commonly used in nonlinear

finite element modeling because although it takes more iterations to converge,this

is more than compensated for by not having to compute the exact derivative of the

forces each iteration, which would involve second derivatives of (in our case)the

interatomic potential.

5.3.2 Finite temperature algorithm

At finite temperature, one has to sum the part of the partition function corre-

sponding to the atomic degrees of freedom; this leads to an effective Hamiltonian

for the qs at that temperature. If we separate the linear and nonlinear parts of

the “microscopic Hamiltonian” as H({q}, {~ri}) = Hlin({q})+Hnonlin({q}, {~ri}) we

can write the partition function as follows

Z =
∑

{q}
exp(−Hlin/T)

∑

{~ri}
exp(−Hnonlin/T) =

∑

{q}
exp(−Heff({q})/T) (5.12)

where

Heff({q}) = Hlin({q}) + F~r({q}) (5.13)

exp(−F~r({q})/T) =
∑

{~ri}
exp(−Hnonlin/T) (5.14)

Taking derivatives of Heff({q}) with respect to q gives the effective forces on

the nodal degrees of freedom as a standard thermodynamic average of the “bare

forces” with respect to the atomic degrees of freedom. In practice this can be

implemented as a time average. Thus, the zero-temperature algorithm for finding

205

the equilibrium state under a static load described above can be generalized to

finite temperature by replacing steps 4 and 5 with the following

i. Initialize average nodal-forces to zero.

ii. Run thermal MD simulation on the free atoms for nminor time steps.

iii. Compute full (nonlinear) forces and add to average.

iv. Repeat nmajor times.

v. Divide by nmajor to get the force average.

5.3.3 Applying the displacement field to core atoms

Separated out the fast dynamics as described above still does not overcome the

obstacle of having to make very small increments in nodal displacements. Sup-

pose we move only the boundary atoms when updating the nodal displacements.

If they move more than a fraction of an atomic distance, they will be moved on

top of core atoms, or even far away from them, leaving them behind; so we must

move the core atoms as well. In the first iteration of the algorithm as described

in section 5.3.1, we may displace the core atoms along with the boundary atoms,

using interpolation from the nodal displacements. We do not lose any information

then because the core atoms have not been allowed to evolve yet, but we can-

not do so again without losing the information carried by the core atoms. Now,

interpolation from the nodal displacements corresponds to a slowly varying back-

ground displacement field as far as the atoms are concerned. We would like to

be able to add this to the core atom positions while preserving the detailed local

arrangements corresponding to whatever atomistic processes and relaxations have

206

happened so far. This is achieved by referring, not to the original undeformed

positions, but to the positions at the previous major iteration. The appropriate

displacement field is just the difference between the current nodal displacements

and the previous nodal displacements. Using this to interpolate allows us to move

the core atoms along with the boundary atoms. It is a kind of shortcut of the full

dynamics, but shortcuts are what a coupled FE/MD simulation is all about.

5.4 Model geometries

5.4.1 One-Brick; sphere of atoms

Here the finite element model consists of a single brick element with nodal posi-

tions chosen to form a cube in real space a cube (Fig. 5.2). The atomistic region

is a sphere whose center coincides with the cube’s. One face is held fixed, while

the opposite face is loaded in tension. The advantages of this model are: (1) the

mesh is simple so it is easy to see what is going on; it is also easy to set up ho-

mogeneous deformations; (2) by constraining nodes to zero displacement in the y

and z directions we have an effectively one-dimensional problem; (3) the atomistic

region does not intersect any boundaries of the body, thus we do not need to worry

about periodic boundary conditions or the possible effects a free surface will have.

Rather we can be sure that the atomistic effects will be limited to those associated

with homogeneous deformations in the bulk. We have used both a linear element

(8-noded) and a quadratic element (20-noded). The reason for using the linear

element (these are generally considered to be poor elements) was that in the linear

case any set of nodal displacements gives a homogeneous deformation; otherwise

only certain combinations of nodal displacements do. In trying to obtain approx-

207

Figure 5.2: Meshes for “OneBrick” and “TwoBrick” models.

imate agreement between the atomistic energy and elastic energy, as discussed in

subsection 5.5.1, it is important to have homogeneous deformations.

Figure 5.4.1 shows a stress strain curve for the One-Brick model in the case

that only displacements in the direction of loading are allowed. The sphere of

atoms must fit entirely within the cube. Because of the region of zero transition

value, this condition limits the volume fraction of atoms to 20%7 This explains why

the OFE/MD curve is closer to the linear elasticity curve than to the atomistic

curve: it is a weighted average (80:20) of the two. In a sense the OFE/MD is

an interpolation between linear elasticity and a full atomistic calculation. The

width of the cube in this case was 13.5, the radius of the non-zero transition value

region was 5.0, and the potential was Holian’s Lennard-Jones potential (cutoff 1.7;

the nearest neighbor distance (FCC) is 1.107). There were no free atoms (for a

homogeneous deformation, there is essentially no difference compared to having

free atoms).

7This ratio is that of the sum of transition values over all atoms times the
atomic volume divided by the cube’s volume.

208

0 0.1 0.2 0.3 0.4
Strain

0

10

20

30

S
tr

es
s

Stress−strain, one−brick
only x−displacements

mixed atomistic−continuum
pure atomistic
linear elasticity

0 0.1 0.2 0.3 0.4 0.5
Strain

0

5

10

15

20

S
tr

es
s

Stress−strain, one−brick
lateral displacements allowed

mixed atomistic−continuum
linear elasticity

Figure 5.3: Stress-strain curves for One-Brick model, first with x-displacements

only, then with lateral relaxation allowed.

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Strain

0

5

10

15

20

S
tr

es
s

Stress−strain curve, two−brick
x−displacement only

mixed atomistic−continuum
linear elasticity

Figure 5.4: Stress-strain curves for Two-Brick model, first with x-displacements

only, then with lateral relaxation allowed.

209

5.4.2 Two-Brick; layer of atoms

This model is a rectangular block whose long faces are free surfaces. It is fixed at

one end and loaded in tension or compression at the other (see Fig. 5.2). The FE

mesh consists of two cubic 20-noded hex elements with a total of 32 nodes (there

being 8 nodes in common). Like the One-Brick model, this can be used as an

effective one-dimensional model. The main difference is that the atoms have a free

surface and therefore there might be additional effects due to surface relaxations

or stresses. At first, periodic boundary conditions were imposed in the directions

perpendicular to the long axis but it was realized that these are inconsistent with

the simple finite element models used so far. It should be possible, however, to

make periodic boundary conditions work—see section 5.5.3 for further discussion.

5.4.3 Cracked silicon plate

This is our first example containing a crack. It is a thin silicon plate, only one

layer of elements thick. The mesh was generated using the Franc2D program

for fracture analysis in 2D[15] as a 2D mesh containing a crack surrounded by

quarter point 6-noded triangular elements. The rest of the mesh consists of 8-noded

quadrilaterals and standard 6-noded triangles; there are in total 194 elements and

1181 nodes. Fig. 5.5 shows the 2D mesh in the deformed state due to an applied

tensile load on the top and bottom edges. A 3D mesh can be generated in a

straightforward manner by mapping triangles to (15-noded) wedge elements and

quadrilaterals to (20-noded) hexahedral “brick” elements. The thickness cannot

be too small if we wish to use the faster iterative solver to solve the matrix because

a large aspect ratio means a more singular matrix (eigenvalues associated with out

of plane deformations will be much smaller than those associated with in-plane

210

deformations). The atomistic region is situated at the tips of the wedge elements

near the crack tip. It is a cylinder of radius about 40 Å with thickness equal to

that of the mesh. The xy plane is the plane of the plate, with the z-axis coming

perpendicularly out of it, and the lattice orientation is such that the 〈1̄11̄〉 surface

is the xz plane, with the 〈211̄〉 direction coinciding with the x-axis, and being the

direction of crack growth. The common thickness is chosen to be an integer number

of lattice repeat distances (the repeat distance being a/
√

2 where a is the lattice

constant for silicon in the z-direction, with this lattice orientation). Three lattice

repeat distances (about 23 Å) were sufficient to obtain reasonable convergence with

the iterative solver.

Several atomistic effects show up in this model. Since the upper and lower

planes are free surfaces their surface energy contributes to the OFE/MD energy,

raising it significantly above the purely elastic energy. Similarly, once the model

has been loaded and the first linear solve completed, the crack is opened and more

surface energy is created. However if the loading is not sufficient for the surfaces to

fully clear each other, there will be significant closure forces coming from the atoms.

Finally, something which is, more of a technical problem than an effect, is an issue

emerging from the use of Silicon with its diamond lattice. When a diamond lattice

is strained homogeneously the atoms do not all respond according to the Cauchy-

Born rule. The underlying Bravais lattice must respond according to the applied

strain, but since there are two atoms per unit cell, they have some freedom of

motion in addition to the applied strain. For a diamond lattice symmetry reduces

this freedom to a single parameter (see appendix 5.E). The problem is that placing

the boundary atoms according linear elasticity becomes non-trivial, since to do this

correctly the internal relaxation should be included as well. See the discussion in

211

Figure 5.5: 2D Mesh for Silicon thin plate, in deformed configuration.

section 5.5.3.

5.4.4 Cracked Cube

As a test of the capability to interface with a non-trivial finite element model, we

have applied OFE/MD to a model cube developed by the Cornell Fracture Group.

In fact this is the principal model geometry for the purposes of the Adaptive

Software Project, because the atomistic simulation has to be specified to fit the

previously existing finite element model. It consists of 7243 10-noded tetrahedral

elements, defined by 1531 vertices. The total number of nodes (vertices and edge-

212

nodes) is 10855. The mesh is shown in Fig. 5.6. The crack plane is parallel to

the xz plane, and the crack front parallel to the x-axis. No physical units are

associated with the mesh; the coordinates of the corners are just (±1,±1,±1),

so that the volume is 8. In these coordinates the crack plane has y = 0 and

extends from the front of the crack, z = 1 to one-quarter of the way in, z = 0.5.

The mesh is obtained by accessing a data base. Available from the data base, in

addition to the list of nodal positions and element connectivities, is information

about which edges are part of the crack front and other qualitative details like

that. The OFE/MD software chooses an edge near the middle of the crack and

places the atomistic region halfway along this edge. We interpret the coordinates

of the cube as thousands of atomic units, and so scale all lengths by a factor of

1000. This allows the placing of a sphere of a few thousand atoms on the chosen

crack edge without it intersecting any tets than the ones which contain that edge.

5.5 Technical details

5.5.1 Partial Stiffness Matrices

In this section we show how the partial stiffness integrals are calculated. At present

this is done case by case—it is desirable to have an automated method. The energy

integral for an element e is

E =

∫

e

d3X T (X)F(X) =

∫

e

d3X T (1
2
σijǫij) =

∫

e

d3X T (1
2
cijklǫklǫij) (5.15)

In Voigt two-index notation where ǫ11 → ǫ1, ǫ22 → ǫ2, ǫ33 → ǫ3, ǫ23 → 1
2
ǫ4, ǫ13 → 1

2
ǫ5

and ǫ12 → 1
2
ǫ6, the integral is written

213

x

y

z

Figure 5.6: Mesh for cracked-cube model.

E =

∫

e

d3X T (X)1
2
CIJǫIǫJ =

∫

e

d3X T (X)1
2
ǫT · C · ǫ (5.16)

Now in the finite element formulation, the displacement field is prescribed through-

out the element as a function of the internal “natural” coordinates of the element

ξ1, ξ2, ξ3, which is an interpolation of nodal displacements ~qn,

ui(ξ1, ξ2, ξ3) =

Nsh
∑

n=1

Nn(ξ1, ξ2, ξ3)qni (5.17)

where n is the node index, and Nsh is the number of nodes which equals the

number of shape functions. The same shape functions8 are used to interpolate the

real space position of a point given its natural coordinates:

8We consider only isoparametric shape functions—whose definition is that the
same shape functions are used to interpolate both positions and displacements.

214

xi(ξ1, ξ2, ξ3) =
∑

n

Nn(ξ1, ξ2, ξ3)xni (5.18)

where xni is the ith coordinate of the nth node. The Jacobian matrix is the

derivative of real space position with respect to natural coordinates:

Jij =
∂xj

∂ξi
=

∑

n

Ain(ξk)xnj (5.19)

where Ain = ∂Nn

∂ξi
. The inverse of J is the derivative of the inverse function:

J−1
jk = ∂ξk

∂xj
. When we differentiate ui to get the strains, the qs stay outside;

∂ui

∂xj
(ξk) =

∑

n

∂Nn

∂ξk

∂ξk
∂xj

qni =
∑

n

AknJ
−1
jk qni ⇒ ∂uji = J−1 · A · q = D · q (5.20)

Finally, to get the strain vector ǫJ , we take certain linear combinations of ∂ui

∂xj
.

This can be written as a matrix B multiplying a column vector q—the nodal

displacements written out in single-column format with elements q11, q12, q13, q21

etc. B is a 6 × (3Nsh) matrix which has the following structure:

B =



































D11 0 0 D12 0 0 . . . D1n 0 0

0 D22 0 0 D22 0 . . . 0 D2n 0

. . .

0 D31 D21 0 D32 D22 . . . 0 D3n D2n

. . .

. . .



































(5.21)

We can now substitute for the strain vector in eqn. 5.16, giving

E = 1
2
qT ·

(
∫

e

d3X TBT · C ·B
)

· q = 1
2
qT · Kpartial · q (5.22)

215

which defines the partial stiffness matrix in terms of integration over the element

e. Without the factor of T (X) this is the usual elemental stiffness matrix; with

it the domain of the integration is effectively restricted to a fraction of the full

element. Now, let us consider how to do the integral numerically. Since the matrix

B is naturally calculated as a function of natural coordinates, we do the integral

in these coordinates:

Kpartial =

∫

e

d3ξ|J |T (X(ξ))BT(ξ) · C · B(ξ) (5.23)

where |J | is the determinant of the Jacobian matrix. Evaluation of the integrand

is straightforward and is the same procedure for any type of element, as long as

the type is specified so that the shape functions and their derivatives for that type

can be calculated for arbitrary ξk. The transition function is a “user”-provided

function in the sense that it must be provided for each geometry; it is given as a

function of real space and is straightforward to calculate as a function of ξk by first

evaluating the shape functions to obtain the real space position.

The hard part of the integral is determining the boundary of the domain in

natural coordinates. In fact there are two boundaries: an “inner” boundary within

which T (X) = 1 and an outer one—between the two T (X) is a smooth function

of real space position. We will cover the different models one at a time.

One-Brick: sphere in a cubic element

Our simplest case, a single cubic finite element, has a spherical atomistic region

whose center coincides with that of the cube (section 5.4.1). The cube is an

quadratic element, with 20 nodes (8 corner nodes and 12 midpoint nodes). The

transition function is a function of distance from the center. Two “boundary radii”

216

are specified, Λ1 and Λ2. T = 1 is one for r < Λ1 and T = 0 for r > Λ2. Because

T depends only on R it is convenient to use spherical polar coordinates. This

is true even in the natural elemental coordinates because the origin of the latter

coordinates is also at the center of the sphere. The spherical polar coordinates

corresponding to the ξk are ρ, θ, φ. The integral can then be broken into a radial

part and an angular part. We do the radial part “first” (meaning it is the innermost

loop of the computation). We need the values of ρ corresponding to Λ1 and Λ2.

This is simple, for even though the shape functions are quadratic, because the

edge nodes are at the midpoints between corner nodes, they do not contribute to

the position interpolation. Therefore position is simply a linear interpolation of

the corner nodes and thus a linear function of ξk. Then, because the shape of the

element in real space and natural coordinate space is the same and the origins

coincide, the linear relationship is simply a scaling factor. The natural coordinates

of the corners are (±1,±1 ± 1), giving a width of 2. So to convert from radial

distance in real space to ρ we scale by 2/L where L is the real space width of the

cube.

For a given angular position (θ, φ), then, we do the radial integral in the T = 1

region and then the 0 < T < 1 region, using standard Gauss quadrature. Only a

few Gauss points are needed for the T = 1 region because the integrand is a low

order polynomial–we have used 4 points9. In the varying T region we use 10 Gauss

points, which seems to be sufficient. This procedure is enclosed in an outer loop

for the angular integration, for which we use a degree-11, 50-point formula from

Ref. [64], rather than separate loops over θ and φ.

9Probably two points would be enough: the displacements are quadratic (in ξk),
so the strains are linear; the energy density being quadratic in strains is therefore
quadratic in ξk.

217

Two-brick: Slab, two brick-elements

The second case is more complicated in that there are two elements, but the

integration is easier than the One-Brick model, since there is no angular integration.

The transition function depends on x only–the coordinate along which the two

elements are stacked. x = 0 corresponds to the boundary between the elements.

T = 1 for |x| < X1, T = 0 for |x| > X2, and smoothly interpolates between X1 and

X2 (using the same function as in the One-Brick/sphere case). For each element

we calculate the partial stiffness integral by separate integrations over the three

natural coordinates ξ1, ξ2, ξ3. The ξ1 integration corresponds to the x integration

and is the innermost loop. The integration is done exactly like the ρ integration

in the One-Brick model. The only thing different is how the limits are obtained—

even though the transition function is symmetric with respect to the global x = 0

plane, this plane has a different relation to the natural coordinates for the two

elements. In one element it is ξ1 = 1 and in the other it is ξ1 = −1. Thus the

function that finds the integration limits must be passed the nodal positions for

the current element; then it decides whether the element is to the “left” or “right”

of x = 0, and chooses the ξ1 limits accordingly.

Silicon plate: apices of wedge elements

In the Silicon-plate model, the elements containing the atomistic region are 15-

noded wedge elements, see Fig. 5.5.1; see appendix 5.B for the shape functions.

Moreover the edge nodes on in-plane edges connecting to nodes at the prescribed

crack-tip are at the quarter-points, rather than the mid-points. This makes the

relationship between natural coordinates and real space position quadratic rather

218

T(X) = 0

15−noded 1/4−point wedge

Domain of integration

T(X) > 0

R2

Figure 5.7: 15-noded wedge element with quarter-points.

than linear10; see Fig. 5.5.1, which shows the coordinates within a ξ3 = const

plane. The edge nodes on edges pointing out-of-plane are still at the midpoints11,

so there is still a linear relationship between real space and natural coordinates

in this direction. We use cylindrical natural coordinates ρ, φ, ζ . The transition

function depends on the real space radial coordinate r in an identical way to how

it does on the spherical radial coordinate in the One-Brick model. Thus again we

do the radial integral first (innermost), followed by the angular integral, then the

height integral. The limits for the radial integral need to be computed at run-time.

Those for the angular integral turn out to be 0 < φ < π/4 (this will be shown

below), and for the height integral, −1 < ζ < +1.

To find the limits of integration in ρ at a given angle φ we need the inverse

of the shape functions. Because the wedges are constructed by replicating a

triangular 2D element, the in-plane nodal coordinates are independent of plane

10This is also what generates the square root singularity at the wedge ends.
11as are the edge nodes on sides of the triangles making up the upper and lower

faces of the element which are furthest from the designated crack tip.

219

(top/middle/bottom). This means that for the purposes of determining the in-

plane position as a function of in-plane natural coordinates, which we need to

determine integration limits, we can use the triangle shape functions. This can

be seen by summing over shape functions corresponding to nodes with the same

in-plane coordinates, which removes the ζ- (ξ3-)dependence and yields the trian-

gle functions (they can also be obtained by setting ζ = −1 and identifying the

non-zero functions). The standard numbering of the triangle functions comes out

almost automatically. Here are the triangle functions; the numbers in parentheses

indicate which wedge functions are summed to obtain them. The full set of wedge

functions is listed in the appendix.

N0 = (1 − ξ1 − ξ2)(2(1 − ξ1 − ξ2) − 1) (0, 3, 12) (5.24)

N1 = ξ2(2ξ2 − 1) (1, 4, 13) (5.25)

N2 = ξ1(2ξ1 − 1) (2, 5, 14) (5.26)

N3 = 4ξ2(1 − ξ1 − ξ2) (6, 9) (5.27)

N4 = 4ξ1ξ2 (7, 10) (5.28)

N5 = 4ξ1(1 − ξ1 − ξ2) (8, 11) (5.29)

This definition corresponds to numbering the nodes as shown in Fig. 5.5.1. Notice

that the numbering goes clockwise. However the real space positions of crack-tip

elements in the simulation are arranged in a counter-clockwise order, and the node

actually at the crack-tip is node 1 (counting from zero!)12 for each element, as

shown in Fig. 5.5.1. The element shown has one side on the x-axis; obviously this

will not be true in general. It turns out,however, that we do not need to deal with

12This is just how the mesh generator ordered the nodes.

220

Natural coordinates

ξ

η

(1,0)
0

2

43

5

(0,1)
1

Figure 5.8: Natural coordinates and node numbering for wedge element.

the orientation explicitly. To convert from polar coordinates with origin at node 1,

it is convenient to introduce alternative Cartesian natural coordinates ξ∗1 , ξ
∗
2 with

origin at node 1. Thus, ξ∗1 = ρ cos(φ), ξ∗2 = ρ sin(φ). The transformation to then

get the standard ξ1, ξ2 is then ξ1 = (ξ∗1 − ξ∗2)/
√

2, ξ2 = 1 − (ξ∗1 + ξ∗2)/
√

2. It is

clear from the right hand diagram in Fig. 5.5.1 that the range of φ is (0, π/4). All

of the crack-tip elements in the model also have 45◦ angles about the crack tip,

although this need not be assumed for the integration. Note that the boundary

circles r = R1, R2 are not circles in natural coordinates. This is easily seen from

the fact that the distances between nodes 0 and 1 and nodes 1 and 2 are equal

in the model, whereas the corresponding lengths in natural coordinates are 1 and

√
2, respectively.

What is assumed for the integration is the following: the ordering of the nodes

(i.e., node 1 is at the crack tip—the origin for the integration, and the counter-

clockwise order), and that the triangles are isosceles with the edges containing

node 1 both having length L. Denote the unit vectors along these edges by n̂1, n̂2

and the angle between them by γ (so n̂1 · n̂2 = cos γ). Now we can write the nodal

221

n
2

n
1

ξ2*

ξ1*

L

y

R

θ

Real space
0

1
2

5

4

R2
R1

3

y

Ρ

1
2

Crack−tip

φ

4

5

Natural coordinates

0

ξ2 ξ1

R2

3

x

R1

L

Figure 5.9: Wedge configuration in real space, and natural coordinates correspond-

ingly rotated.

positions, with respect to the origin of the polar coordinates, in terms of these, as

~R0 = Ln̂2, ~R1 = ~0, ~R2 = Ln̂1, ~R3 = (L/4)n̂2, ~R4 = (L/4)n̂1, ~R5 = 1
2
L(n̂1 + n̂2)

(5.30)

Multiplying by the shape functions, summing and rearranging, we get the position

within the plane in terms of in-plane natural coordinates ξ1, ξ2

~r = L(1 − ξ2)(ξ1n̂1 + (1 − ξ1 − ξ2)n̂2) (5.31)

Next we substitute for ξ1, ξ2 in terms of ξ∗1 , ξ
∗
2 giving

~r = L 1√
2
(ξ∗1 + ξ∗2)(

1√
2
(ξ∗1 − ξ∗2)n̂1 +

√
2ξ∗2 n̂2) (5.32)

= L(ξ∗1 + ξ∗2)(
1
2
(ξ∗1 − ξ∗2)n̂1 + ξ∗2 n̂2) (5.33)

= Lρ2(cosφ+ sinφ)(1
2
(cosφ− sinφ)n̂1 + sinφn̂2) (5.34)

We need the relationship between real space radial distance, which is |~r|, and ρ,

for any given value of φ. Thus we take the magnitude of ~r:

222

|~r| = Lρ2(cosφ+ sinφ)

(

1

4
(cosφ− sin φ)2 + sin2 φ+ (cosφ− sin φ) sinφ cos γ

)

1
2

(5.35)

which gives ρ in terms of a real space radius R (such as one of the boundary radii

R1, R2 in the definition of the transition function) and φ:

ρ =





R

L(cosφ+ sinφ)(1
4
(cosφ− sinφ)2 + sin2 φ+ (cosφ− sinφ) sinφ cos γ)

1
2





1
2

(5.36)

Now, when doing the integral, in the innermost loop, there is a particular value of

ζ(= ξ3) and φ. Eqn. 5.36 is used to provide the limits for ρ for the T = 1 part

(0 < R < R1) and then for the T < 1 part (R1 < R < R2). For each ρ, φ, ζ triple,

first the alternative Cartesian natural coordinates ξ∗1 , ξ
∗
2 , ξ

∗
3 = ζ are computed, then

the normal natural coordinates ξ1, ξ2, ξ3 = ξ∗3 , then the shape functions and their

derivatives are used to generate real space positions and the stiffness integrand,

etc.

Cracked cube: sections of tetrahedra

In the previous case matters were simplified somewhat by the fact that the same

geometrical relation between the integration region and the natural coordinates

holds for all atom-containing elements, and thus the same coordinate transforma-

tion could be used in all cases. This was fortuitous; we should not expect this in

general, and indeed, it is not the case for the tetrahedra (“tets”)in the Cracked-

Cube model. Of course, the geometry is still quite special: the atomistic region

is a sphere centered on the midpoint of an edge between two nodes. The atom-

223

containing elements are all tetrahedra which contain this edge; there turn out to

be five, though it does not matter to the code. The other thing that does mat-

ter, the other assumption being made, is that the cube is small enough so that

it does not intersect any other tets outside the five. The integration is done as a

series of integrals in spherical polar (natural) coordinates ρ, θ, φ (we use ρ as the

radial coordinate as a reminder that these are natural coordinates rather than real

space coordinates). These coordinates are always chosen so that the polar axis

corresponds to the mesh edge containing the center. As an aid in constructing

the transformation rules an alternative set of Cartesian natural coordinates ξ′a is

introduced, where ξ′1 = ρ sin θ cosφ, ξ′2 = ρ sin θ sinφ, ξ′3 = ρ cos θ.

The outermost integration is the azimuthal angular φ one, then the polar an-

gular θ one, then the radial one. The limits for the θ integral are always 0 to 2π.

Those for φ depend on the node ordering, and turn out to be one of two possibili-

ties. The ρ integral, as in previous cases, is broken into two parts, one for for T = 1

and one for 0 < T < 1, the bounds of these regions being set by the boundary

radii. The corresponding limits for ρ are again found by inverting an expression

for R in terms of ρ, θ, φ. A further complication, compared to the wedge case, is

that this must be done numerically.

The midpoint nodes for the tetrahedra in this model are all in fact at the mid-

points in real space of their edges, and so do not play a role in the relation between

natural coordinates and real space position. Thus we need only be concerned with

the corner nodes (0,1,2,3). The problem is then for a given tet, which nodes are

which: there are 4! = 24 different possibilities, corresponding to the different per-

mutations of (0, 1, 2, 3). Looking in natural coordinate-space, as in Fig. 5.5.1, the

atomistic sphere can be on the midpoint of any of the six edges. Notice that at

224

ξ1

2
ξ

3
ξ

(1,0,0)

(0,1,0)

(0,0,1)

0

1

2

A

B
3

(0,0,0)

Figure 5.10: Natural coordinates and node numbering for a tetrahedron, and pos-

sible locations of the atomistic region.

three of these positions, such as that marked A in the figure, the planes forming

the edge meet at right angles, whereas at the other three (e.g. position B) the

planes meet at a different angle, which turns out to be cos−1(1/3).

To determine the transformation from ξ′a to ξ, and the limits for φ, we must

consider each of the 24 cases in turn. To organize the labeling, consider labeling

the nodes in terms of their real space positions as in Fig. 5.5.1. We imagine looking

at the crack front from the front of the cube (the face into which the crack has been

cut, which happens to be the face with normal (0, 0, 1). The two nodes bounding

the mesh edge on which the atomistic region is sited we call L and R. These are

common to all of the tets containing atoms. To label the other two nodes for each

tet we make a loop over the tets tarting from the one touching the upper crack

surface. For each tet we label the non-LR nodes A and B in the order encountered

225

L
R

A

B

captionLabeling of nodes according to real space positions.

when making this loop. We have some choice in the orientation of the ξ′a—we

have already chosen the polar axis (ξ′3) to lie along the given mesh edge, but we

must also choose the orientation of ξ′1 and ξ′2 axes, equivalently the origin for φ.

For cases where the range of φ is π/2, it makes sense to have the ξ′1 and ξ′2 axes

coincide with the planes forming the edge. When the angle between the planes

is cos−1(1/3), we can only choose one of the axes to coincide with a plane. We

choose the plane which is a coordinate plane (i.e., a 〈100〉-type plane) to include a

ξ′ axis (the other plane being 〈111〉 plane). Which axis (i.e., ξ1 or ξ2) is determined

by the requirement that the ξ′ coordinate system be right-handed13 and that the

range of φ within the tet is within the range 0 < φ < π/2. The actual ranges are

then either 0 < φ < cos−1(1/3) or π/2 − cos−1(1/3) < φ < π/2. This is simply a

choice that was made—other choices of defining the orientation would be equally

valid.

13Note that what really has handedness are the transformations between coor-
dinates and real space positions, not the coordinate systems themselves, since we
can always make a diagram of coordinate axes and draw them in a right-handed
sense, even if they are left-handed. Standard usage calls a coordinate system right
handed if the unit vectors in real space which point in the respective directions
of increasing coordinate form a right-handed triad. The ξ (no prime) system is
left handed for half of the 24 cases and right-handed for the rest, but by our
prescription the ξ′ is right-handed in all 24.

226

1
ξ

ξ
2

ξ
3

ξ
2 ’ ξ

3 ’

1
ξ

ξ
2

ξ
3

1
ξ

ξ
2

ξ
3

1
ξ ξ

2

ξ
3

1
ξ ’L=0 L=0

R=1

A=2

B=3

A=3

B=2

R=1

L=0

R=2

A=1

B=3

L=0

R=2

A=3

B=1

3

1 2

4

Figure 5.11: Coordinate systems for first four tetrahedron orientations.

We label the different cases by the list of internal node-numbers corresponding

to nodes L,R,A,B respectively. For example, case 1 is labeled 0123, meaning node

L has internal node number 0, node R has internal node 1, A and B internal nodes

2 and 3 respectively. Fig. 5.5.1 illustrates the setting up of the ξ′ coordinate system

for the first four cases (0123, 0132, 0213 and 0231).

From studying each figure one can write down expressions for the ξ′ in terms of

the ξ. For case 1 we have

227

ξ′1 = ξ2 (5.37)

ξ′2 =
1√
2
− 1√

2
(ξ1 + ξ3) (5.38)

ξ′3 =
1√
2
(−ξ1 + ξ3) (5.39)

the inverse of which is

ξ1 = 1
2
− 1√

2
(ξ′2 + ξ′3) (5.40)

ξ2 = ξ′1 (5.41)

ξ3 = 1
2
− 1√

2
(ξ′2 − ξ′3) (5.42)

The transformations for all 24 cases can be written in terms of a vector v and a

matrix m, where ξa = va + mabξ
′
b. The complete table of v and m is listed in

appendix 5.D.

Testing the partial stiffness matrices

In order to test that we have coded the integration correctly, we first replace the

stiffness integrand by a matrix filled with ones, set the two boundary radii to be

equal (so that there is a sharp cutoff in the transition function) and check that

the result of the integration is the volume of the portion of the element within the

boundary radius. The next check is to load the system so that there is a strain,

making all of the atoms constrained and thus subject to the nodal displacements,

and check whether the partial elastic energy (the elastic energy computed using

the partial stiffness matrix and the nodal displacements) roughly agrees with the

atomistic energy. The nodal forces may also be compared. Of course they should

228

not agree exactly—the difference is the whole point—but for small deformations

one would expect reasonably close agreement. However several things can interfere

with this.

1. Free surfaces cause a large contribution to the atomistic energy which is not

reflected in the elastic energy. For testing, sometimes periodic boundary

conditions can be applied to remove these effects.

2. When using quadratic elements, the strain is in general inhomogeneous, un-

less special care is taken to set up a homogeneous strain. Because the inter-

atomic potential is non-local, it is sensitive to strain inhomogeneities in way

that the continuum elastic energy is not (being purely local). The energies

agree when a homogeneous strain is applied, but even then the nodal forces

differ noticeably.

3. When the lattice is not a simple Bravais lattice—Silicon, for example, if the

actions to be described in section 5.5.3 have not been taken, for a proper

comparison between atomistic and continuum elastic energy, it is important

to use the “unrelaxed” elastic constants of the potential, which are higher

than the relaxed ones (the latter being the correct ones, presumably close to

the experimental values).

5.5.2 Linear solve step

The linear solve step solves the equation

Ktotal · q = F′
load (5.43)

229

where the right-hand side (RHS) vector, F′
load, is the applied nodal loads plus the

corrections coming from previous iterations of the OFE/MD process. Eqn. 5.43

is subject to displacement boundary conditions (there need to be always sufficient

displacement boundary conditions to obtain a unique solution, given that the stiff-

ness matrix always has six zero eigenvalues corresponding to rigid-body motions.).

These are discussed in the next section. The solver we use depends on the size

of the matrix. For our small models, One-Brick and Two-Brick, it is convenient

to use Python’s Linear Algebra module, which ultimately uses Lapack routines to

solve the equations. For the Cracked-Cube model, however, this does not work, be-

cause there over 10,000 nodes, and thus 30,000 degrees of freedom. Storing the full

matrix would require space for a billion doubles, or 8 Gigabytes of RAM. Luck-

ily this is not necessary, because the stiffness matrix is sparse (matrix elements

between different degrees of freedom are non-zero only if they come from nodes

on the same element). The finite element library we use includes a sparse matrix

class, and a sub-class designed specifically for elasticity—the difference being that

matrix elements are stored in 3 × 3 blocks (reflecting the three components of

displacement for each node, hence nine pairings for each pair of nodes). The solver

associated with this class is an iterative one, and uses the conjugate gradients

algorithm to find the solution. For meshes that are large but can still be solved

directly, the sparse solver much faster, although when there are elements with large

aspect ratios (such as in the silicon model if the thickness is chosen too small) it

has difficulty converging.

230

Adjustments for boundary conditions

To account for displacement boundary conditions three things need to be done in

the linear elasticity equations:

1. For each fixed displacement (out of a possible 3Nnodes) the elements of the

corresponding row and column of the stiffness matrix need to be set to zero,

and the diagonal element replaced with unity. This effectively removes this

degree of freedom from the coupled set of equations.

2. The corresponding entry in the right hand side vector should be replaced by

the fixed value that that displacement is supposed to hold; because of the 1

on the diagonal of the stiffness matrix this value will simply be copied into

the solution vector.

3. If the fixed value of the boundary condition is not zero, terms corresponding

to those which were set to zero in the stiffness matrix need to be added (with

a minus sign) to the corresponding elements of the right hand side vector

(see Ref.[16], p. 65).

Items (1) and (3) need only be done once, at the beginning of the iteration

procedure (the existence of the nonlinear terms does not change these). Item (2)

needs to be applied to each correction term that gets added to the right hand side.

5.5.3 Subtleties

Subtleties with periodic boundaries

If the atomistic region has periodic boundary conditions in some direction, the lo-

cation of the boundaries should correspond with the finite element model’s bound-

231

aries. To make the finite model consistent with periodic boundaries, some adjust-

ments should be made to the finite element model. First, corresponding boundary

nodes on opposite sides from each other should be constrained to have equal dis-

placements, and zero displacement in the periodic directions14. The degrees of

freedom associated with these nodes would be reduced in number; for example

if there were periodic boundaries in the y and z directions, corner nodes with

common x-position would be considered one node, with one degree of freedom:

displacement in the x-direction. Accordingly the forces on the four nodes would

be summed to give the force on the constraint degree of freedom.

Placing atoms “according to linear elasticity”

Generally when we wish to apply a displacement formula from a linear elastic

solution to find displaced atomic positions, we calculate a displacement by plugging

the undeformed position into the formula for a Lagrangian description or do as

described in Chapter 2 for an Eulerian description. However this is only correct as

it stands for lattices with just one atom per unit cell (primitive Bravais lattices).

Otherwise there may be internal relaxation within the unit cell which cannot be

predicted by linear elasticity. This has been discussed in the context of the quasi-

continuum method by Tadmor et al.[71]. Let us consider the case of silicon. The

primitive lattice is FCC and there are two atoms per unit cell. If we choose one,

atom 0, to be at the origin then the other, atom 1, is at (1/4, 1/4, 1/4) (in units

of the lattice constant). We can think of the whole lattice as being composed of

two FCC sublattices A and B, with origins at positions of atoms 0 and 1 just

mentioned. We can characterize the internal relaxation in different ways, one way

14Though it may be possible to implement variable periodic lengths in the man-
ner of Parinello-Rahman dynamics.

232

being the following. Suppose a uniform strain ǫab is applied. Each lattice will

be deformed according to this strain, and in addition there will be some relative

displacement of the lattices.

Without loss of generality we can set the relaxation displacement of sublattice

B (which has a site, atom 1, at (1/4,1/4,1/4)) to be zero—we say this sublattice

deforms normally ; then we ask what the displacement of atom 0 is. Note that

atom 0 does not move in normal deformation since it is at the origin. Using lower

case for current positions and upper case for undeformed positions, we can write

for a general atom in sublattice A:

~x(1) = ~X(1) + ǫ · ~X(1) + ~v(ǫ) (5.44)

where lengths are in units of the (undeformed) lattice constant. We assume the ~v

is an analytic function of the strain and consider linear response. Thus

vi =
∑

j,k

Kijkǫjk (5.45)

for some tensor K. Symmetry considerations (see appendix 5.E) show that K has

the form

Kijk = K123|ǫijk| (5.46)

where ǫijk is the usual alternating tensor. K123 is quite straightforward to measure

within a script which calculates elastic constants. Values for silicon potentials

are shown in table 5.1. Note that if we changed which sublattice was held fixed,

the definition of K would change by a minus sign. In the literature there exists

another characterization of the internal strain. Kleinman[46] defines a parameter

ζ in terms of the relaxation along the [111] direction during a uniaxial strain in

233

Table 5.1: Internal relaxation parameters K123 and ζ for Si potentials.

potential K123 ζ

SW(1) -0.81 1.63

SW(2) -0.70 1.40

EDIP -0.26 0.52

MEAM -0.37 0.74

that direction. It is zero for zero relaxation and unity for the amount of relaxation

which makes the nearest neighbor bond lengths equal. The experimental value[20]

of ζ is 0.73. It is straightforward to relate K123 to ζ ; the relation turns out to be

simply a factor of -2, which is evident in table 5.1.

What consequences does internal relaxation have for OFE/MD? They are the

following: we can no longer simply apply the calculated elastic displacements (in-

terpolated from the nodal displacements) to the undeformed positions of the atoms

to get their correct current positions. We should also add the internal relaxation,

which we know as a function of strain. From a practical point of view, the first

thing this means is treating the two sublattices separately. The DigitalMaterial

framework naturally handles this since the ListOfAtoms class can have an arbi-

trary tree-structure. Thus the branch that contains the constrained atoms would

be split into two separate branches, one of which would be sublattice A, the other

sublattice B. The second practical issue is that the relaxation is a function of the

strain, which should therefore be available along with the displacement—this is

straightforward to compute from the shape function derivatives, which are avail-

able. Finally, a conceptual point: first, to avoid favoring one sublattice over the

234

other, it would probably be best to give half of the relative displacement to each

one, that is, apply a relaxation-displacement of 1
2
~v to sublattice A atoms, and one

of −1
2
~v to sublattice B atoms. These relaxation displacements have not yet been

included in the OFE/MD software, but they should certainly be among the next

steps in its development.

Ghost forces

The term “ghost forces” comes from the quasi-continuum method, where it is

observed that the ground state lattice for the interatomic potential being used is

not, in fact, the ground state structure of the quasi-continuum model, which is clear

from the fact that starting with an unstrained perfect lattice, atomic relaxations

occur, yielding a different (and non-periodic) structure as the minimum energy

structure. The cause can be traced to atoms near the boundary between “local”

and “non-local” regions. Non-local atoms contribute their own atomic energy to

the total energy. Take a non-local atom within a cut-off distance of a coarse

element. It has a full set of neighbors from which to compute its energy. However

some of these neighbors are in the coarse element. In the perfect lattice this atom

should have zero force—not just because forces due to its neighbors cancel out, but

because forces on this atom due all atomic energies which depend on its position,

the atomic energies of all its neighbors, cancel out. Thus it makes a difference

if the atomic energy of one or more neighbors is not counted. This is precisely

the case for those neighbors which lie in the coarse element. Their energies are

not counted individually. Rather the energy of the whole element is given as

a function of the strain. Thus an imbalance arises which is entirely due to the

difference between a local energy functional (even if it contains the nonlinearity of

235

the interatomic potential for homogeneous deformations) and the true non-local

interatomic interactions. The term “ghost-forces” was originally introduced to

describe non-conservative forces added to cancel the imbalance, although it is also

used to refer to the force imbalances themselves. Adding non-conservative forces

is undesirable because it makes dynamics difficult if not impossible (instabilities

tend to occur).

Do ghost forces occur in OFE/MD? The answer is yes, but the real question

is what effect they have on simulations. Their effects are most easily seen when

no load forces are applied to the nodes. Initially the nodal displacements are zero

and the atoms are in their perfect-lattice undeformed positions. The partial/full

stiffness matrices cannot contribute to nodal forces, but there are non-zero forces

on atoms near where the transition function is varying. Because atoms in the

varying T region have different weights, the forces on them do not cancel out.

Force appear on all the constrained atoms in the simulation (even those with zero

transition function).

To quantify the ghost forces and their affects, consider the One-Brick model,

and assume the atomistic region is a small fraction of the cubic element’s volume.

We can quantify the dependence of the strain at the element center when the ghost

forces have been relaxed in terms of the radius of the core region Rcore, the width

of the transition region (over which T goes from 1 to 0), wT and the element size

L. The atomic forces are distributed more or less evenly and symmetrically about

the sphere; the total force is of course zero. The distribution may be characterized

by its dipole moment tensor

mab =
∑

i

Xafb (5.47)

236

where the sum is over all atoms (only constrained atoms contribute). It turns

out that this tensor is proportional to the identity matrix, so the distribution is

characterized by a single number, m. m is observed to be a positive number, and

a quadratic function of Rcore (not surprising given that the number of boundary

atoms varies as Rcore2) as well as a quadratic function of wT . The sum involves

a good bit of cancellation—typical terms are 3 orders of magnitude greater than

the final total—so it is hard to estimate this sum analytically. From the observed

quadratic dependence and dimensional analysis it must have a form like

m =
∑

i,a

Xafaα ∼ E0(βR
2
core + γwT 2)/a2 (5.48)

where E0 is an atomic energy, a the lattice spacing and α, β, γ are numerical

constants; α in particular is very small. Let us estimate the strain that a force

characterized by m causes. This is where the approximation that the atomistic

sphere is small compared to the cubic element comes in: we can calculate the effect

of a point dipole moment, consisting of six equal point forces ±m/(3δ) placed at

positions (±δ/2, 0, 0), . . . in natural coordinates, for convenience (taking be care

to put the coordinate scale factor L/2 in the right place), and take the limit

δ → 0. If the atomistic region were not small, higher order moments would have

to be included. This is straightforward, involving products of the point forces

and the shape functions evaluated at the appropriate points, and gives a well-

defined set of forces on the nodes, proportional to m/L, with coefficients of order

0.1 (see appendix 5.F). Applying these forces as a right hand side for the finite

element equations, using the boundary conditions of the One-Brick model gives

nodal displacements from which we can calculate the strain at the center of the

237

element15. Since K ∼ CL, where C is an elastic modulus, the strain is ǫ ∼ q/L ∼

(f/(CL))/L = f/(CL2) ∼ 0.1m/(CL3). For an element size of 30, using Holian’s

Lennard-Jones potential, this is about 10−6m. In fact, in this case the ghost-force-

strain tensor is

ǫGF = m10−6













1.098 0 0

0 2.06 −0.0165

0 −0.0165 2.06













(5.49)

For Rcore, wT of order (10, 3), for this potential, m is of order 0.01; thus the strains

are of order 10−8, and therefore unlikely to affect the simulation to any extent.

Note that cubic symmetry is broken by the boundary conditions being applied to

the x = −L/2 face. Since the ghost-force-strain scales as 1/L3, it should decrease

as 1/L if the element and atomistic region are scaled together (since in that case,

m ∼ L2). To get a significant strain, say 10−3, Rcore would certainly have to be

greater than L, which cannot be (assume α = 1, E0 ∼ Ca3, then (R/L)2 would

have to be greater than 10(L/a)).

Presumably a similar picture holds for other geometries. The scaling with L is

certainly general. The full force-moment tensor would be required in non-spherical

geometries, but the point that the force distribution can be characterized in this

way is still valid (subject of course to the assumption regarding the relative size of

atomistic region and element). The dependence of the force-moment of the size of

the atomistic region may be different when non spherical shapes are used, or when

it is less symmetrically placed within the element.

15This is of course a linear analysis—the actual nodal displacements upon relax-
ing the system will be different because atomistics will be involved; however the
difference is probably no bigger than the error from concentrating the dipole at
the origin.

238

5.6 Infrastructure

5.6.1 Software engineering

We will now describe, without going into excessive detail, the software design.

From a software point of view OFE/MD may be considered an application which

uses the DigitalMaterial MD library as well as a library, FemLib, developed by Paul

Wawrzynek to carry out the computation of elemental quantities such as elemental

stiffness matrices, integration of surface tractions, etc. It also includes a sparse-

matrix class incorporating a conjugate gradient solver. Like DigitalMaterial, it

has a Python interface (although this was hand-coded, without using SWIG). A

python class PyFemModel provides acts as a container for mesh information, which

it reads from a file. All of the OFE/MD application code is written in Python.

For the most part there is no performance penalty associated with this: most of

the time is spent solving the matrix (C++, sparse solver) and doing the atomistic

dynamics/minimization (DigitalMaterial).

The Python code is organized in various classes, whose names and relationships,

and some of whose functionality, is indicated in the class diagram in Fig.5.6.1.

There are three main classes which are independent of the particular problem being

considered: FEMMD Mover, FEMMD MainObjects and FEMMD Coupling. I

will briefly describe these:

FEMMD Mover Implements the iterative algorithms described in section 5.3.

This has been separated from the rest in the anticipation that future movers

will be implemented for different dynamical algorithms, but will interact with

the main data structure in the same way.

FEMMD MainObjects The main data structure, a container for the primary

239

pieces of the simulation: the ListOfAtoms, the potential, the mover for the

MD as well as the PyFemModel. FEMMD MainObjects also contains a

FemLib solver object—which contains the full stiffness matrix (adjusted for

displacement boundary conditions) and has methods for solving the linear

stiffness equations, the partial stiffness matrix, and a list of the values of the

transition function for all of the atoms. As well as access to these objects,

the FEMMD MainObjects provides some methods which do some computa-

tion16): CalculateWeightedForces() and CalculateWeightedEnergy() for the

atomic forces and energy, and SolveMatrix() which is a wrapper around the

solve method of the SparseCG object. Having such functions in the same

class as the data is appropriate since these will be always involved no matter

what mover algorithm is employed, whereas the mover algorithm is expected

to be variable and should be separated from those aspects which are not.

FEMMD Coupling Provides the lowest level methods for computing atomistic

quantities from finite element quantities and ice versa. These methods are

(1) the constructor, to which is passed the list of undeformed positions of the

atoms and which makes lists containing the elements containing each atom,

the natural coordinates within the element for each atom, which elements

contain atoms, which atoms a given element contains, and so forth; (2) Get-

Displacements, which given an array of nodal displacements, returns the dis-

placements for all atoms, computed from the shape function and (3) Nodal-

ForcesFromAtomic, which returns nodal forces having been passed atomic

forces, again having used the shape functions. The class has been imple-

mented in terms of NumPy arrays rather than data structures peculiar to

16thus it is not strictly a container class

240

the MD or FEM libraries to avoid it depending on their interfaces.

5.6.2 Interfacing with a continuum model via data base

A direction the Adaptive Software Project has taken is toward the use of relational

data base, such as those used in the commercial world, for storing data associated

with computations. This include mesh and boundary condition data used to specify

the computation, as well as the results of a stage of the computation: displace-

ments, temperatures, etc. We have therefore arranged the OFE/MD application

to communicate with the data base in the case of the cube test model—since the

mesh information for this model had been entered into the data base previously.

Thus we obtain the mesh information from the data base, including details such as

the location of the crack, so that the user does not need to know this separately,

and the MD region will be placed at the crack front. At the end of the calculation,

results from the MD computation are placed in the data base, to be made available

to other computational modules.

Another designed feature of the Adaptive Software Project is the ability to run

simulations via HTML, for example using a web browser. In the end, a researcher

should be able to create and run large complicated jobs sitting at a terminal with

a web browser, and the software needed to create the initial geometry of a model.

The different parts of the computation, taking place at geographically remote

locations will be scheduled automatically, with data being posted as 〈XML〉 files

available through http. As an intermediate step, the researcher will be still in the

loop to facilitate the transfer of data from one step to the next—this is intended

to be done using a web browser. We have implemented a simple web-interface to

the OFE/MD application. It works as follows (see Fig. 5.14):

241

Run()

FEMMD_Mover

MDObjectMaker

CreateMDObjects()

FEMMD_Coupling

CalculateNodeForces()

Run()

FEMMD_MainObjects

CreateFullStiffnessMatrix()
CreatePartialStiffnesMatrix()

GetDisplacements()

atomsInElements
elementsOfAtoms

AtomsGeometry

CalculatePartialStiffnessMatrix()
CalculateTransitionFunction()

center,radius, etc ...

atoms, potential, MDmover, ...

CreateLeaves() [of atoms]

OneBrick SiCrackedPlate CrackedCube

PyFemModel

GetElemInfo()

Figure 5.12: Class diagram for OFE/MD simulation software.

242

mesh DB

Data base server

material constants DB

EDIP, SW, L−J,

Perl script (DBI module) Perl script (DBI module) Perl script (DBI module)

SQL Queryies/updates information back

FEM/MD
(Python)
modules

Mesher

Retrieve mesh
information from
DB and put in a
file so can be read
by PyFemModel

AtomsGeometry

to the crack in
and tets are close
Find which nodes

order to place the
atoms

GetElasticConsts

apply appropriate

Get unrotated elastic
consts from DB, then

rotation

Also: write results to DB: nodal displacements, atomic positions and other atomic data

Vertices, tetrahedra, boundary conditions, ...

Figure 5.13: Use of a relational data base.

243

User

Web browser

Web server

Data base
Computational

nodes

CGI script

Figure 5.14: Web interface to OFE/MD simulations.

1. The user enters simulation parameters in a standard HTML form. These

include the type of model, the location of the data base where mesh details

are to be found, the type of material (interatomic potential), the crystal

orientation for MD, the size of the atomistic region, etc.

2. The web server passes the parameters to the main OFE/MD program and

runs it. Eventually it will send the job to specialized computational nodes

rather than do the computation itself.

3. Results are returned in one or all of three ways: (i) simulation output may

be used to update quantities such as displacements on the data base; (ii)

print statements converted to HTML may be shown on the user’s browser;

(iii) a file containing simulation output may be emailed to the user.

244

5.6.3 Diagnostics, visualization and

feature detection

An important intended feature of this software is the ability for the software to

infer information about changes in the state of the system—at least in the atom-

istic region—at a high level. By “high level” we mean information that could be

used to make decisions to adapt at the application level. Simply returning the

final displacements of the nodes of the atomistic elements, which is the kind of in-

formation available from the software at this stage, is not particularly useful; this

is very low-level. The next step would be to report changes in material properties

such as stiffness and hardness by calculating stress-strain relations. Ultimately we

would like the software to be able to identify features such as the following:

1. Nucleation of dislocations, characterized by the appearance of Burgers vec-

tors around reasonably small loops of material.

2. Nucleation of voids, characterized by the appearance of points within the

material which have no neighboring atoms.

3. Initiation or continuation of cleavage, characterized by the breaking of bonds

across a given plane.

4. Change of phase, for example, melting, characterized by correlation func-

tions/structure factors.

There do not exist algorithms, let alone software for most of these functions,

except the last, since equilibrium thermodynamics, phase diagrams, etc., have long

been applications of MD [3]. The automatic detection of different kinds of defects,

particularly dislocations, is an area of active research by many researchers. We

245

have implemented a simple algorithm (as a class of type ListOfAtomsObserver,

named CrackPlaneObserver) which monitors bond lengths across a given plane.

It is not clear what is the most suitable function of the bond lengths across a

whole plane to use to infer the growth of a crack. Perhaps the direction of growth

should also be specified (a crack system, like a slip system requires two vectors to

specify it fully: the normal of the crack plane and the direction of crack growth).

The question then arises as to which crack system to monitor. Should one try to

monitor all possible systems? This is probably too expensive. It is clear that there

is much work to be done in determining the most efficient means to detect crack

growth.

It is clear that we are not near the fully-automated stage; this is the case in

the other aspects of the ASP also. It is recognized that it is appropriate to assume

that humans will still be in the loop for a little longer. In the context of feature

detection, this means using visualization to answer high-level questions about the

state of the system. That is what has been used so far to identify crack growth

in the model geometries (those which involve a crack). In this case it is known a

priori where the crack is, and so a particular slice of the atomistic region can be

visualized to highlight the crack.

5.7 Future applications of OFE/MD

Apart from use as a tool in the context of engineering-type modeling, we believe

our formulation of coupling finite elements to molecular dynamics could be useful

for physics applications—investigations of specific material processes, in particular

with the aim of extracting parameters for high-level material descriptions. Some

246

possibilities are now discussed.

5.7.1 Cohesive law extraction

A typical technique used in continuum models of fracture is the cohesive zone.

This replaces the picture of strictly stress-free crack faces near the crack tip; the

faces within the cohesive zone feel an attractive force determined by some force-

separation law—the cohesive zone law. Simple piecewise linear forms are usually

used for the cohesive laws. In principle the parameters for these should emerge

from atomistic simulations; however differences between the atomic length scale

and the length scale of continuum models of fracture make it difficult to obtain

realistic parameter values. The atomistic models are generally too small to contain

the amount of damage (dislocations, voids, impurities) that exist in real materials,

and thus the stress required to cause decohesion is unnaturally high. A technical

problem that arises concerns the application of the load to the system—if forces

are applied to atoms far from the crack region, at the high strain-rate generally

required by atomistic calculations, separation of the pulled atoms from the free

atoms can take place, which is not physical. Use of our OFE/MD formulation may

alleviate this problem because there is more control over the whole region due to the

overlapping descriptions. The simplest scheme would involve something like our

existing “Two-Brick” model, but with a zero-volume cohesive zone element inserted

between the two bricks on a larger scale containing significantly more atoms. A

typical simple cohesive zone law would govern the separation of its two faces. The

role of this would be to control the separation of the two halves. The actual

force-displacement law would be expressed as the actual relative displacements

experienced by the nodes in the cohesive zone as a function of the loading on the

247

Figure 5.15: Simple cohesive zone model, with expanded view of the cohesive zone.

far faces of the model. In such an application periodic boundary conditions within

the cleavage plane would be appropriate (see section 5.5.3). It would be possibly

useful also to have several elements within the plane, to allow inhomogeneous

separation across the plane.

5.7.2 Dislocations/surface/grain boundary interactions

While two of the model geometries presented have involved cracks, nothing done so

far has involved dislocations. A goal of all designers of mixed atomistic-continuum

formulations is to be able to study dislocations, and their interactions with each

other and with other defects (such as surfaces or grain boundaries). In many cases

atomistic simulations involving dislocations have free surfaces, making sure these

are sufficiently far away that surface effects to not interfere with the dislocation

behavior. One of the primary advantages of embedding an atomistic simulation in

a continuum model is to provide realistic, physical boundaries to the core atoms,

248

and this is something that OFE/MD does well, without getting in the way of the

dynamics of the core atoms. In order to apply OFE/MD to dislocation physics, it

makes sense to choose a geometry that involves some nontrivial large scale elastic

deformation, to make use of the capabilities of the finite elements. An example

might be a free surface with an corner.

5.7.3 Continuum crack growth

An appealing possible application of the OFE/MD presented here is the direct

measurement of crack growth from the simulation. The idea would be to make the

position (not just the displacement) of the crack tip node(s) a dynamical degree of

freedom. In a pure linear-elastic continuum model this would give a force tending

to grow the crack because this relieves the elastic strain energy. With the atoms in

the picture this would be opposed by the cohesive forces between atoms. One could

then study the force and trajectory of this degree of freedom to obtain information

about the crack growth at the continuum level, based on atomistic input. There

would have to be significant enhancements made to OFE/MD to incorporate this

new degree of freedom; changes in the position of a node cause changes in the

natural coordinates of the atoms within their elements (and atoms near element

boundaries may cross them)—these would have to be updated each time the node

was moved (note that this need not be as frequently as updates are made to the

nodal displacements). The derivatives of the natural coordinates would also need

to be calculated in order to compute the force on the node. Furthermore the

partial stiffness matrices would have to be recalculated each time—and derivatives

of these with respect to the nodal position would also be required.

249

Undeformed

Deformed

Figure 5.16: A crack growth step. Moving the actual node means changing how

things look even in undeformed coordinates.

5.A Quadratic shape functions for

hexahedral (brick) elements

Here are the shape functions for 15-noded (quadratic) wedge-elements. Figure 5.A

shows the location of the nodes by number.

250

N0 =
1

8
(1 − ξ1)(1 − ξ2)(1 − ξ3)(−ξ1 − ξ2 − ξ3 − 2)

N1 =
1

8
(1 − ξ1)(1 − ξ2)(1 + ξ3)(−ξ1 − ξ2 + ξ3 − 2)

N2 =
1

8
(1 − ξ1)(1 + ξ2)(1 − ξ3)(−ξ1 + ξ2 − ξ3 − 2)

N3 =
1

8
(1 − ξ1)(1 + ξ2)(1 + ξ3)(−ξ1 + ξ2 + ξ3 − 2)

N4 =
1

8
(1 + ξ1)(1 − ξ2)(1 − ξ3)(ξ1 − ξ2 − ξ3 − 2)

N5 =
1

8
(1 + ξ1)(1 − ξ2)(1 + ξ3)(ξ1 − ξ2 + ξ3 − 2)

N6 =
1

8
(1 + ξ1)(1 + ξ2)(1 − ξ3)(ξ1 + ξ2 − ξ3 − 2)

N7 =
1

8
(1 + ξ1)(1 + ξ2)(1 + ξ3)(ξ1 + ξ2 + ξ3 − 2)

N8 =
1

4
(1 − ξ1)(1 − ξ2)(1 − ξ2

3)

N9 =
1

4
(1 − ξ1)(1 + ξ2)(1 − ξ2

3)

251

ξ
1

ξ
2

ξ
3

0

1

2

3

4

5

6

7

8

9

11

12

13

14

15

16

18

19

17

10

(−1,−1,−1)

(1,1,1)

Figure 5.17: Node-numbering for 20-noded wedge elements.

N10 =
1

4
(1 + ξ1)(1 − ξ2)(1 − ξ2

3)

N11 =
1

4
(1 + ξ1)(1 + ξ2)(1 − ξ2

3)

N12 =
1

4
(1 − ξ1)(1 − ξ2

2)(1 − ξ3)

N13 =
1

4
(1 − ξ1)(1 − ξ2

2)(1 + ξ3)

N14 =
1

4
(1 + ξ1)(1 − ξ2

2)(1 − ξ3)

N15 =
1

4
(1 + ξ1)(1 − ξ2

2)(1 + ξ3)

N16 =
1

4
(1 − ξ2

1)(1 − ξ2)(1 − ξ3)

N17 =
1

4
(1 − ξ2

1)(1 − ξ2)(1 + ξ3)

N18 =
1

4
(1 − ξ2

1)(1 + ξ2)(1 − ξ3)

N19 =
1

4
(1 − ξ2

1)(1 + ξ2)(1 + ξ3)

252

ξ3

ξ
1

ξ2

0

1

2

3

4

5

7

8

9

10

11

12

13
14

6

Figure 5.18: Node-numbering for 15-noded wedge elements.

5.B Quadratic shape functions

for wedge elements

Here are the shape functions for 15-noded (quadratic) wedge-elements. Figure 5.B

shows the location of the nodes by number.First define τ = (1 − ξ1 − ξ2).

253

N0 = 1
2
τ((2τ − 1)(1 − ξ3) − (1 − ξ2

3))

N1 = 1
2
ξ2((2ξ2 − 1)(1 − ξ3) − (1 − ξ2

3))

N2 = 1
2
ξ1((2ξ1 − 1)(1 − ξ3) − (1 − ξ2

3))

N3 = 1
2
τ((2τ − 1)(1 + ξ3) − (1 − ξ2

3))

N4 = 1
2
ξ2((2ξ2 − 1)(1 + ξ3) − (1 − ξ2

3))

N5 = 1
2
ξ1((2ξ1 − 1)(1 + ξ3) − (1 − ξ2

3))

N6 = 2ξ2τ(1 − ξ3)

N7 = 2ξ1ξ2(1 − ξ3)

N8 = 2ξ1τ(1 − ξ3)

N9 = 2ξ2τ(1 + ξ3)

N10 = 2ξ1ξ2(1 + ξ3)

N11 = 2ξ1τ(1 + ξ3)

N12 = τ(1 − ξ2
3)

N13 = ξ2(1 − ξ2
3)

N14 = ξ1(1 − ξ2
3)

5.C Quadratic shape functions for

tetrahedral elements

Here are the shape functions for 10-noded (quadratic) tet-elements, as shown in

Fig. 5.C. First define τ = (1 − ξ1 − ξ2 − ξ3).

254

ξ1

ξ2

ξ3

0

1

2

3

4
5

6

7

8

9

Figure 5.19: Node-numbering for 10-noded tetrahedron elements.

N0 = (2ξ1 − 1)ξ1

N1 = (2ξ2 − 1)ξ2

N2 = (2ξ3 − 1)ξ3

N3 = (2τ − 1)τ

N4 = 4ξ1ξ2

N5 = 4ξ2ξ3

N6 = 4ξ1ξ3

N7 = 4ξ3τ

N8 = 4ξ2τ

N9 = 4ξ1τ

255

5.D Transformations between natural

coordinates in cracked-cube model

Here is the table listing the vector v and matrix m needed to construct the ξ′ → ξ

transformation for all 24 orientations of tet.

Table 5.2: Transformation vectors and matrices for trans-

forming tetrahedron natural coordinates.

(LRAB) v m

(0,1,2,3) (1
2
,1
2
,0)













− 1√
2

0 − 1√
2

− 1√
2

0 1√
2

0 1 0













(0,1,3,2) (1
2
,1
2
,0)













0 − 1√
2

− 1√
2

0 − 1√
2

1√
2

1 0 0













(0,2,1,3) (1
2
,0,1

2
)













− 1√
2

0 − 1√
2

0 1 0

− 1√
2

0 1√
2













(0,2,3,1) (1
2
,0,1

2
)













0 − 1√
2

− 1√
2

1 0 0

0 − 1√
2

1√
2













(0,3,1,2) (1
2
,0,0)













0 0 −1

0 1 0

1 0 0













256

Table 5.2: Transformation vectors and matrices for trans-

forming tetrahedron natural coordinates.

(LRAB) v m

(0,3,2,1) (1
2
,0,0)













0 0 −1

1 0 0

0 1 0













(1,0,2,3) (1
2
,1
2
,0)













− 1√
2

0 1√
2

− 1√
2

0 − 1√
2

0 1 0













(1,0,3,2) (1
2
,1
2
,0)













0 − 1√
2

1√
2

0 − 1√
2

− 1√
2

1 0 0













(1,2,0,3) (0,1
2
,1
2
)













0 1 0

− 1√
2

0 − 1√
2

− 1√
2

0 1√
2













(1,2,3,0) (0,1
2
,1
2
)













1 0 0

0 − 1√
2

− 1√
2

0 − 1√
2

1√
2













(1,3,0,2) (0,1
2
,0)













0 1 0

0 0 −1

1 0 0













(1,3,2,0) (0,1
2
,0)













1 0 0

0 0 −1

0 1 0













257

Table 5.2: Transformation vectors and matrices for trans-

forming tetrahedron natural coordinates.

(LRAB) v m

(2,0,1,3) (1
2
,0,1

2
)













− 1√
2

0 1√
2

0 1 0

− 1√
2

0 − 1√
2













(2,0,3,1) (1
2
,0,1

2
)













0 − 1√
2

1√
2

1 0 0

0 − 1√
2

− 1√
2













(2,1,0,3) (0,1
2
,1
2
)













0 1 0

− 1√
2

0 1√
2

− 1√
2

0 − 1√
2













(2,1,3,0) (0,1
2
,1
2
)













1 0 0

0 − 1√
2

1√
2

0 − 1√
2

− 1√
2













(2,3,0,1) (0,0,1
2
)













0 1 0

1 0 0

0 0 −1













(2,3,1,0) (0,0,1
2
)













1 0 0

0 1 0

0 0 −1













(3,0,1,2) (1
2
,0,0)













0 0 1

0 1 0

1 0 0













258

Table 5.2: Transformation vectors and matrices for trans-

forming tetrahedron natural coordinates.

(LRAB) v m

(3,0,2,1) (1
2
,0,0)













0 0 1

1 0 0

0 1 0













(3,1,0,2) (0,1
2
,0)













0 1 0

0 0 1

1 0 0













(3,1,2,0) (0,1
2
,0)













1 0 0

0 0 1

0 1 0













(3,2,0,1) (0,0,1
2
)













0 1 0

1 0 0

0 0 1













(3,2,1,0) (0,0,1
2
)













1 0 0

0 1 0

0 0 1













259

5.E Symmetry considerations for internal

relaxation parameter in a

diamond-cubic lattice

We present the derivation of eqn. 5.46. Consider the what the form of K must

be using cubic symmetry considerations. First note that it must be symmetric

in the last two indices since these are contracted with the ǫ which is symmetric.

Then using the equivalence of the three crystal directions we can write down ~v as

(looking at the 1 component for convenience):

v1 = Aǫ11 +B1(ǫ22 + ǫ33) +B2(ǫ12 + ǫ21 + ǫ13 + ǫ31) + C(ǫ23 + ǫ32) (5.50)

So far we have used the symmetry of the undeformed cube, since K corresponds to

derivatives of ~v evaluated in the undeformed state. In addition we can impose for

certain deformations additional symmetry constraints. For example for a uniform

dilation, the crystal still has cubic symmetry, so ~v must do also, which constrains

~v to be zero in this case. Setting ǫ proportional to the identity matrix gives

A+ 2B1 = 0, so now we have (renaming B2 → B):

v1 = A(ǫ11 − 1
2
ǫ22 − 1

2
ǫ33) +B(ǫ12 + ǫ21 + ǫ13 + ǫ31) + C(ǫ23 + ǫ32) (5.51)

Next consider a uniaxial strain along a crystal axis, say the z axis. The un-

deformed lattice has the symmetry that if we rotate about the given axis by 90

degrees and reflect in the xy plane, the lattice goes to itself. The reflection is

necessary to make sublattice B come back to itself after the rotation. Now, let

260

both sublattices deform normally; then we ask whether a further motion of atom

0 breaks any symmetry of the normally deformed lattice. The rotation plus reflec-

tion symmetry is not broken by a ǫzz strain, thus any relaxation must preserve the

symmetry too. Clearly motion in any direction will break either the rotation part

or the reflection part (and they cannot cancel out, because there is just one atom

to consider). The result of this consideration is that the coefficient A above must

vanish. Finally consider a shear in the xy plane, ǫxy. The normally deformed state

no longer has the 90◦ rotation plus reflection symmetry, but it does have a 2-fold

rotation symmetry (no reflection). If atom 0 displaces in the xy plane it breaks the

2-fold rotation symmetry. However it is allowed to move in the z-direction because

this does not break that symmetry. The result of this is that coefficient B vanishes

but not coefficient C. Thus only components of K with all indices different are

nonzero; one way we could write it is thus:

5.F Nodal forces due to symmetric force dipole

at the center of a cubic element.

For a dipole moment of strength m, the nodal forces are

261

Fnode =
m

24





































































































































1 1 1

1 1 −1

1 −1 1

1 −1 −1

−1 1 1

−1 1 −1

−1 −1 1

−1 −1 −1

−2 −2 0

−2 2 0

2 −2 0

2 2 0

−2 0 −2

−2 0 2

2 0 −2

2 0 2

0 2− −2

0 −2 2

0 2 −2

0 2 2





































































































































(5.52)

Bibliography

[1] F. F. Abraham, N. Bernstein, J. Q. Broughton, and D. Hess. Dynamic fracture

of silicon: Concurrent simulation of quantum electrons, classical atoms, and

the continuum solid. Materials Research Society Bulletin, 25:27, 2000.

[2] F. F. Abraham, J. Q. Broughton, N. Bernstein, and E. Kaxiras. Spanning the

continuum to quantum length scales in dynamic simulation. Europhys. Lett.,

44:783, 1998.

[3] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford

University Press, 1987.

[4] T. L. Anderson. Fracture Mechanics: Fundamentals and Applications. CRC

Press, second edition, 1995.

[5] Adaptive software project, 2002. (Cornell University, Mississippi State Uni-

versity, College of William and Mary).

[6] N. P. Bailey, T. Cretegny, M. Rauscher, C. R. Myers, and J. P. Sethna. Func-

tional forms for anisotropic materials properties in multiscale modeling. To

be published, 2003.

[7] H. Balamane, T. Halicioglu, and W. A. Tiller. Comparative study of silicon

empirical interatomic potentials. Phys. Rev. B, 46:2250, 1992.

262

263

[8] M. I. Baskes. Modified embedded-atom potentials for cubic materials and

impurities. Phys. Rev. B, 46:2727–2742, 1992.

[9] M. I. Baskes, 2002. Private communication.

[10] M. Z. Bazant, E. Kaxiras, and J. F. Justo. Environment-dependent inter-

atomic potential for bulk silicon. Phys. Rev. B, 56:8542, 1997.

[11] D. M. Beazley and P.S. Lomdahl. Message-passing multi-cell molecular dy-

namics on the connection machine 5. Parallel Computing, 20:173–195, 1994.

[12] N. Bernstein et al. . In Proceedings of the 9th DoD HPC Users Group Con-

ference, Monterey, CA, 1999.

[13] N. Bernstein and D. Hess. Multiscale simulations of brittle fracture and the

quantum-mechancial nature of bonding in silicon. Materials Research Society

Symposium Proceedings, 653:Z2.7.1, 2001.

[14] J. Q. Broughton, F. F. Abraham, N. Bernstein, and E. Kaxiras. Concurrent

coupling of length scales: methodology and application. Phys. Rev. B, 60:2391,

1999.

[15] Cornell fracture group home page.

[16] T. R. Chandrupatla and A. D. Belegundu. Introduction to Finite Elements

in Engineering. Prentice Hall, 1991.

[17] C. P. Chen and M. H. Leipold. Am. Cer. Soc. Bull., 59:469, 1980.

[18] Xi Chen. A Lennard-Jones potential smoothly cut-off after third neighbors .

1999. Private communication.

264

[19] W. Curtin, 2002. Private communication.

[20] H. d’Amour, W. Denner, H. Schultz, and M. Caradona. A uniaxial stress ap-

paratus for single-crystal X-ray diffraction on a four-circle diffractometer: ap-

plication to Silicon and diamond. Journal of Applied Crystallography, 15:148,

1982.

[21] B. Devincre and L. Kubin:. Mesoscopic simulations of dislocations and plas-

ticity. Mat. Sci. Eng. A, 234:8–14, 1997.

[22] M. L. Dunn, W. Suwito, S. J. Cunningham, and C. W. May. Fracture initiation

at sharp notches under mode I, mode II, and mild mixed mode loading. Int.

J. Fract., 84:367–381, 1997.

[23] J. D. Eshelby, W. T. Read, and W. Shockley. Anisotropic elasticity with

applications to dislocation theory. Acta Metallurgica, 1:251–259, 1953.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[25] P. C. Gehlen, J. P. Hirth, R. G. Hoagland, and M. F. Kanninen. A new

representation of the strain field associated with the cube-edge dislocation in

a model of α-iron. J. Appl. Phys., 43:3921–3932, 1972.

[26] P. C. Gehlen, A. R. Rosenfield, and G. T. Hahn. Structure of the 〈100〉 Edge

Dislocation in Iron. J. Appl. Phys., 39:5246–5254, 1968.

[27] D. M. Goodstein, S. A. Langer, and B. H. Cooper. An efficient algorithm for

the simulation of hyperthermal energy ion scattering. Journal of Vaccuum

Science and Technology A, 6:703–707, 1988.

265

[28] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems,

and Bifurcations of Vector Fields. Springer-Verlag, 1983.

[29] J. A. Hauch, D. Holland, M. P. Marder, and H. L. Swinney. Dynamic fracture

in single crystal silicon. Phys. Rev. Lett., 82:3823, 1999.

[30] G. Henkelman, G. Jóhannesson, and H. Jónsson. Methods for finding saddle

points and minimum energy paths. In S. D. Schwartz, editor, Progress on

Theoretical Chemistry and Physics. Kluwer Academic Publishers, 2000.

[31] G. Henkelman and H. Jónsson. Improved tangent estimate in the nudged

elastic band method for finding minimum energy paths and saddle points. J.

Chem. Phys., 113:9978–9985, 2000.

[32] G. Henkelman, B. Uberuaga, and H. Jónsson. A climbing image nudged elastic

band method for finding saddle points and minimum energy paths. J. Chem.

Phys., 113:9901–9904, 2000.

[33] Konrad Hinsen. The molecular modeling toolkit: A new approach to molecular

simulations. Journal of Computational Chemistry, 21:79–85, 2000.

[34] J. P. Hirth and J. Lothe. Theory of Dislocations. Krieger Publishing Company,

second edition, 1982.

[35] B. L. Holian, A. J. DeGroot, W. G. Hoover, and C.G. Hoover. Time-reversible

equilibrium and nonequilibrium isothermal-isobaric simulations with centered-

difference Stoermer algorithms. Physical Review A, 41:4552–4553, 1990.

[36] B. L. Holian, A. F. Voter, N. J. Wagner, R. J. Ravelo, S. P. Chen, W. G.

Hoover, C. G. Hoover, J. E. Hammerberg, and T. D. Dontje. Effects of

266

pairwise versus many-body forces on high-stress plastic deformation. Physical

Review A, 43:2655, 1991.

[37] D. Holland and M. Marder. Ideal brittle fracture of silicon studied with molec-

ular dynamics. Phys. Rev. Lett., 80:746, 1998.

[38] D. Holland and M. Marder. Erratum: Ideal brittle fracture of silicon studied

with molecular dynamics [phys. rev. lett. 80, 746 (1998)]. Phys. Rev. Lett.,

81:4029, 1999.

[39] H. B. Huntington, J. E. Dickey, and R. Thompson. Dislocation energies in

NaCl. Phys. Rev., 100:1117–1128, 1955.

[40] Erin Iesulauro, 2002. Private communication.

[41] K. W. Jacobsen and J.J. Mortensen, 2002. Private communication.

[42] C. B. Jiang, S. Patu, Q. Z. Lei, and C. X. Shi. Dislocation velocities in Ni3Al

single crystals. Philosophical Magazine Letters, 78:1–8, 1998.

[43] H. Jónsson, G. Mills, and K. W. Jacobsen. Nudged elastic band method for

finding minimum energy paths of transitions. In B. J. Berne, G. Ciccotti, and

D. F. Coker, editors, Classical and Quantum Dynamics in Condensed Phase

Simulations. World Scientific, 1998.

[44] J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov, and S. Yip. Interatomic

potential for silicon defects and disordered phases. Phys. Rev. B, 58:2539,

1998.

[45] C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton. Dislocation nucleation

267

and defect structure during surface indentation. Physical Review B, 58:11085–

11088, 1998.

[46] L. Kleinman. Deformation Potentials in Silicon. I. Uniaxial Strain. Physical

Review, 128:2614, 1962.

[47] P. E. W. Labossiere and M. L. Dunn. Calculation of stress intensities at sharp

notches in anisotropic media. Eng. Fract. Mech., 61:635–654, 1998.

[48] C.R. Myers, R. Loge, C.-S. Chen, and P.R. Dawson. unpublished.

[49] NetCDF home page. http://www.unidata.ucar.edu/packages/netcdf.

[50] K. Ohsawa and E. Kuramoto. Flexible boundary condition for a moving

dislocation. J. Appl. Phys., 86:179–185, 1953.

[51] M. Ortiz and R. Phillips. Nanomechanics of defects in solids. Advances in

Applied Mechanics, 35:1–79, 1999.

[52] R. Pérez and P. Gumbsch. Directional anisotropy in the cleavage fracture of

silicon. Phys. Rev. Lett., 84:5347, 2000.

[53] Python home page.

[54] S. Rao, C. Hernandez, J. P. Simmons, T. A. Parthasarathy, and C. Wood-

ward. Green’s function boundary conditions in two-dimensional and three-

dimensional atomistic simulations of dislocations. Philosophical Magazine A,

77:231–256, 1998.

[55] RasMol home page. http://www.umass.edu/microbio/rasmol.

268

[56] K. W. Schwarz. Interaction of dislocations on crossed glide planes in a strained

epitaxial layer. Phys. Rev. Lett., 78:4785–4788, 1997.

[57] J. P. Sethna et al. LASSPTools: Graphical and Numerical Extensions to Unix,

1990.

[58] G. C. Sih, P. C. Paris, and G. R. Irwin. On cracks in rectilinearly anisotropic

bodies. Int. J. Fract. Mech., 1:189–202, 1965.

[59] J. E. Sinclair. Improved atomistic model of a bcc dislocation core. J. Appl.

Phys., 42:5321–5329, 1971.

[60] J. E. Sinclair, P. C. Gehlen, R. G. Hoagland, and J. P. Hirth. Flexible bound-

ary conditions and nonlinear geometric effects in atomic dislocation modeling.

J. Appl. Phys., 49:3890–3897, 1978.

[61] M. R. Sorensen and A. F. Voter. Temperature-accelerated dynamics for sim-

ulation of infrequent events. J. Chem. Phys., 112:9599, 2000.

[62] F. H. Stillinger and T. A. Weber. Computer simulation of local order in

condensed phases of silicon. Phys. Rev. B, 31:5262, 1985.

[63] S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison-Wesley, 1994.

[64] A. H. Stroud. Approximate Calculation of Multiple Integrals. Prentice Hall,

1971.

[65] W. Suwito, M. L. Dunn, and S. J. Cunningham. In Transducers 97, Proceed-

ings of the 1997 International Conference on Solid-State Sensors and Actua-

tors, page 611, 1997.

269

[66] W. Suwito, M. L. Dunn, and S. J. Cunningham. Fracture initiation at sharp

notches in single crystal silicon. J. Appl. Phys., 83:3574, 1998.

[67] W. Suwito, M. L. Dunn, S. J.Cunningham, and D. T. Read. Elastic mod-

uli, strength, and fracture initiation at sharp notches in etched single crystal

silicon microstructures. J. Appl. Phys., 85:3519, 1999.

[68] Swig home page. http://www.swig.org.

[69] E. B. Tadmor, M. Ortiz, and R. Phillips. Quasicontinuum analysis of defects

in solids. Philosophical Magazine A, 73:1529–1563, 1996.

[70] E. B. Tadmor, R. Phillips, and M. Ortiz. Mixed atomistic and continuum

models of deformation in solids. Langmuir, 12:4529–4534, 1996.

[71] E. B. Tadmor, G. S. Smith, N. Bernstein, and E. Kaxiras. Mixed finite element

and atomistic formulation for complex crystals. Phys. Rev. B, 59:235, 1999.

[72] Cristian Teodosiu. Elastic Models of Crystal Defects. Springer-Verlag, 1982.

[73] T. C. T. Ting. Anisotropic Elasticity: Theory and Applications. Oxford

University Press, New York, 1996.

[74] T. L. Veldhuizen. Arrays in Blitz++. In Proceedings of the 2nd International

Scientific Computing in Object Oriented Parallel Environments(ISCOPE’98),

1998.

[75] L. Wickham, K. W. Schwarz, and J. S. Stölken. Rules for forest interactions

between dislocations. Phys. Rev. Lett., 83:4574–4577, 1999.

[76] Zhiliang Zhang. A failure criterion for mode I fracture initiation of brittle

solids with sharp notches. To be published, 2002.

