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MAGNETIZATION

To get the magnetization of 4-d Ising model in the infi-
nite system, we have to solve the following two equations
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Dividing the two equations by each other gives
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which has the solution
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We want to coarse grain till ¢(¢) = 1 or equivalently
t(u) = 1. Tt also helps to define s = 1/(Du) — 1. This is
just a convenient variable for calculations. Then

—logto =2D(s — so) + (2D — A)log s/so,  (5)

where sg = 1/(Dug) — 1. This is almost the standard
form for the equation of a Lambert-W function defined by
W(2)eW ) = 2 or equivalently, log W (z)+ W (z) = log z.
The solution is

s = (2D — A)/(2D)W (aty/ 4720, (6)

where z = (2D)/(2D — A)sge?P/(2P=4)s0 We also have
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= D(s—so+logs/sp). (9)

We are only interested in the dependence of the magne-
tization on ty because ug is an irrelevant variable, and so
we can ignore the dependence on it. However, we have
to be careful because u is a dangerous irrelevant variable
and contributes to the leading singularity of the magne-
tization. One quick way to get the magnetization is to

use the result from mean field theory
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where we have used the identity eV (®) = z%/W (z)°

which follows from the definition of the W function. Fi-
nally, near the critical point as tg — 0, the W function
goes to infinity. So, ignoring the 1, we get

M ~ t(l)/Qw(xt(l)/(A—zD))1/27A/2' (15)
For the 4-d Ising model, A = 1/3, D = 17/27, giving
M ~ tPW (Yt /203, (16)

which is the result quoted in the main text.

CHANGING THE LENGTH PARAMETER /¢ IN
NORMAL FORM THEORY

The form of the equation for the irrelevant variables
u in the 4-d Ising model motivates another change of
variables
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where / is defined so 48 = 1/(1 + Du). So far, we have
been considering changes of variables in our coordinates
but have left the flow parameter ¢ unchanged. This pa-
rameter usually corresponds to a physical length or mo-
mentum scale. However, there is nothing in principle
which stops us from allowing ¢ to depend on the coordi-
nates. This would be somewhat strange from a physical
point of view but is not disallowed. The t equation is
changed to

dt

i 2t — (A — 2D)tu — 2ADtu?. (19)



However, we can now make another change of variables
in ¢ which removes the 24 Dtu? term (since that will leave
the flow equations for u unchanged) and so the new nor-
mal form (after renaming ¢ to t is)

dt
— =2t — (A —2D)tu. 20
=2 (4-2D) (20)

This is a simpler set of equations. Currently, we have
not been able to distinguish between these two possible
normal forms. This is because for the 4-D Ising model,
our scaling form that we derived in the previous section
implicitly rely on the equation for L

dL

— =L (21)

We have treated L as a special variable and not included
it in our normal form calculations. However, if we in-
clude changes in the coarse graining length ¢, it would be
naturally modified to

dL

=7 =—L(1+ Du). (22)

Since the extra term is a resonance, it cannot be removed
by a change of variables. In effect, this leaves du/dL and
dt/dL unchanged. Hence, this analysis does not seem
to matter for the finite scaling analysis of the 4-d Ising
model. However, it is quite possible that such an analysis
could be carried out in other cases where it does funda-
mentally change the form of the scaling and then it would
be interesting to test it.



