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Summary. Normal forms allow the use of a restricted class of coordinate transforma-
tions (typically homogeneous polynomials) to put the bifurcations found in nonlinear
dynamical systems into a few standard forms. We investigate here the consequences of
relaxing the restrictions of the form of the coordinate transformations. In the Duffing
equation, a logarithmic transformation can remove the nonlinearity: in one interpreta-
tion, the nonlinearity is replaced by a branch cut leading to a Poincar´e section. When
the linearized problem is autonomous with diagonal Jordan form, we can remove all
nonlinearities order by order using these singular coordinate transformations.
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Normal form theory is a technique for transforming the ordinary differential equations
describing nonlinear dynamical systems into certain standard forms. Using a particular
class of coordinate transformations, one can remove the inessential part of higher-order
nonlinearities. Unlike the closely related method of averaging, the standard development
of normal form theory involves several technical assumptions about the allowed classes
of coordinate transformations (often restricted to homogeneous polynomials). In a recent
paper [1], the second author considered the equivalence of the methods of averaging and
of normal forms. The references given there, particularly Chow and Hale [2], should be
consulted for a full treatment of Lie transforms.
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In this paper, we relax the restrictions on the transformations allowed. We start with
the Duffing equation and show that a singular coordinate transformation canremovethe
nonlinearity associated with the usual normal form. We give two interpretations of this
coordinate transformation, one with a branch cut reminiscent of a Poincar´e section. We
then show that, when the generating problem is linear and autonomous with diagonal
Jordan form, we can remove all nonlinearities order by order using singular coordinate
transformations generated by the solution to the first-order linear partial differential
equation produced by the Lie transform method of normal form theory. A companion
paper [4] discusses these methods in a more general context and treats a specific example
with a nondiagonal Jordan form for the generating matrix. The methods developed
here are a specific and illuminating example of a recently developed “nonlinear Stokes
phenomena” approach to bifurcation theory [5], [6].

1. Duffing’s Equation: Removing the Nonlinearities

The second-order problems modeled by Duffing’s equation or van der Pol’s equation
under near-resonance forcing are examples of the behavior that concerns us here. We
use the notation of the Duffing example in [1, eqn. (37)]:

ẍ + ω2x + εc̃ẋ + εh̃x3 = ε R̃cos(Ät) (1)

whereÄ ≈ ω, ε is a small parameter, and the other constants are positive. If we manip-
ulate the variables and parameters in a standard way (see [1]) by choosing

R̃= Ä2R, h̃ = Ä2h, c̃ = Äc, ω2 = Ä2(1+ εσ ), τ = Ät, y = dx/dτ = x′

and changing to complex state variables

p(τ ) = 1

2
(x + iy), . . . , p̄ = 1

2
(x − iy),

then eqn. (1) becomes

p′ = −i p + i ε

{
−1

2
(σ − ic)p− 1

2
(σ + ic) p̄− h

2
(p+ p̄)3+ R

4
(ei τ + e−i τ )

}
(2)

and its conjugate.
In [1], standard methods are used to show that the coordinate transformation

p = z+ εW(z, z̄, τ ), . . . , p̄ = z̄+ εW̄(z, z̄, τ ) (3)

with

W = −1

4
(σ + ic)z̄+ R

8
ei τ + h

4

(
z3− 3zz̄2− z̄3

2

)
(4)

can transform thep-equation into the normal form

z′ = −i z+ ε f1(z, z̄, τ )+ O(ε2), (5)
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where

f1 = K1z+ K2z2z̄+ K3e−i τ ,

K1 = − i

2
(σ − ic), K2 = −3ih

2
, K3 = i R

4
. (6)

It is thez2z̄ term that standard normal form theory considers as essential to keep at the
cubic order for equations of this type.

Now consider the coordinate transformation from(p, p̄) to (u, ū) given by

p = u+ εV(u, ū, τ )
= u+ ε

[
W(u, ū, τ )+ i

2
f1(u, ū, τ ) ln

(u

ū

)]
(7)

and its conjugate. Explicit computation shows thatu(τ ) satisfies a differential equation
of the form

u′ = −iu + O(ε2). (8)

By using a coordinate transformation with a logarithmic singularity atu = 0, we have
removed the first-order term inε, including theu2ū term which normal form theory tells
us is essential and irremovable.

A special case of equation (5) occurs whenf1 = z− z2z̄ (note that this does not
correspond to a Duffing equation with real coefficients). For this special case, the exact
solutionz(τ ) = r (τ ) exp(i θ(τ )) to the nonlinear equation through orderε terms can be
written down for initial conditionsr (0) = r0 6= 1, θ(0) = θ0:

r (τ ) = r0√
r 2

0 + (1− r 2
0) exp[−2ετ ]

, θ(τ ) = +θ0− τ. (9)

Our transformation equation (7) generates the approximate solution

r (1)(τ ) = r0+ r0(1− r 2
0)(ετ ), θ (1) = θ(τ ) = θ0− τ. (10)

Graphs of both types of functions starting from the same initial conditionsz(0) = (1+i )/2
are shown in Figures 1 and 2.

Figure 1 shows the trajectory corresponding to the exact solutionr (τ ) for ε = 0.05.
Figure 2 shows the corresponding graph of the approximate solutionr (1)(τ ). It is clear

that the approximate solution spirals outward, crossing the limit cycle after a finite time
τ0 of order 1/ε. One can verify that our approximate solution is the first term in the power
series expansion of the exact solution in the parameterε. Notice that the approximation
is good to first order inε, but not uniformly accurate in time.

Figure 3 shows trajectories for various initial conditions generated by our coordinate
transformationV . Here we have restrictedV to a single Riemann sheet of the logarithm:
hence the discontinuity at the branch cut along Re[z] < 0, Im[z] = 0. This branch
cut is what allows the logarithm to “unwrap” the singularity of the Duffing equation.
Thus it is naturalnot to continue increasingθ with time, but to restart the approximate
solution every time one crosses the negative real axis. This may at first seem strange, as
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Fig. 1. Solutionr (τ ) for the Duffing equation, equation (9), with
ε = 0.05.

we are making a jump in the nonphysical variableu(τ ). On the other hand, we are forced
into this to make the coordinate transformationV(u, ū, τ ) a single-valued function: the
discontinuity inu is needed to make the dynamics ofp = u + εV continuous. Our
O(ε) solution now systematically approximates aPoincaŕe first-return map Talong the
negative real axis:

T (1)(r ) = r + r (1− r 2)(2πε), (11)

giving a systematic approximation for the next intersectionT(r ) of a curve which crosses
Im[z] = 0 atr = Re(z) < 0. This interpretation of the dynamics preserves the qualitative
behavior of the original dynamical system, although admittedly it does not produce an
explicit analytical solution for the dynamics.

2. Solving the Lie Differential Equation

Why does normal form theory miss this useful transformation? (Alternatively, how does
normal form theory avoid this nasty singular transformation?) We must look more closely
at how the transformation of state variables is found by solving the partial differential
equation produced by the Lie transform process.

For the case when the state equations have linear generating terms in diagonal Jordan
form (A = diag(λα) with no λα = 0, α = 1, 2, . . . , N), the state equation governing
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Fig. 2. Approximate solutionr (1)(τ ) for the Duffing equation,
equation (10), withε = 0.05.

the componentxα of x will be

dxα
dt
= λαxα + ε f (1)α (t, x)+ ε

2

2
f (2)α (t, x)+ · · · . (12)

The equation for the corresponding componentW(1)
α ≡ Wα(t, y) in the transformation

x = y+ εW(1) + (ε2/2)W(2) + · · · is the Lie equation

L(Wα) ≡ ∂Wα

∂t
+
∑
β

λ
β
y
β

∂Wα

∂y
β

− λαWα = f (1)α (t, y). (13)

For autonomousf (1), the ∂/∂t term on the left is dropped fromL. In that case, by
restricting the class of coordinate transformations to homogeneous polynomials, normal
form theory cannot remove any nonlinearities inf (1) that lie in the null space of the Lie
operator. These nonlinear terms therefore comprise the “normal form”: all other terms
are removed by the coordinate transformation. But why should the null space ofL (the
set of functions satisfyingL(W) = 0) have anything to do with finding a particular
solution to the equationL(W) = f ?

To understand this, consider a different linear operator, corresponding to solutions of
the forced harmonic oscillator:

H(x) ≡ ẍ + x = f (t). (14)
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Fig. 3. Approximate solutionsr (1)(τ ) (equation (10),ε = 0.05)
for various initial conditions, each confined to one sheet of
the Riemann surface (beginning and ending along Re[z] < 0,
Im[z] = 0). The dashed line shows the limit cycle.

There is something special about solutionsx(t) for forcing functions in the null space of
H . If we force at resonancef (t) = sin(t), then f is in the null space ofH : H( f ) = 0,
and we see that the particular solutionx(t) = t sin(t) is qualitatively different from
the solution for f (t) = sin(ωt) for other frequenciesω. If we restrict the class of
perturbations and solutions to finite sums of harmonic waves, then there would be no
solution toH( f ) = sin(t). Normal form theory makes precisely this kind of restriction:
by restricting the perturbations and solutions to be homogeneous polynomials or in the
Hamiltonian case to canonical transformations, they have defined away the possibly
singular coordinate transformations that we study here.

We now demonstrate, for perturbations of the formf(1)(t, y) above, that we can find
solutionsW to the Lie operator partial differential equation

L(Wα) ≡ ∂Wα

∂t
+
∑
β

λ
β
y
β

∂Wα

∂yβ
− λαWα = f (1)α (t, y) (15)

in complete generality by reducing it to an ordinary one. Using the method of charac-
teristics, one discovers (see Courant and Hilbert [3, p. 11] for a related transformation)
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that the coordinate transformation from(y, t) to (ξ, τ ) given by

ξ1 = y1,

ξβ = (y
1/λβ
β )/(y1/λ1

1 ), β = 2, 3, . . . , N, (16)

τ = y1 exp(−λ1t)

will reduce the partial differential equation to the ordinary differential equation

λ1ξ1
∂Vα

∂ξ1
= Gα(ξ1, ξ2, . . . , ξn, τ ) = 1

yα
f (1)α (t, y), (17)

where theVα = Wα/yα are now to be considered as functions of(ξ, τ ) and theG’s
are equal to the functions on the far right evaluated in the new variables. Our solution
(7) removing theO(ε) term in the Duffing equation was generated using precisely this
method.

3. Concluding Remarks

We have studied the Duffing equation using a new approach to the calculation of an
approximate solution. What about our methods in general? Where do they fit into the
mathematical literature on bifurcations?

Our use of the method of characteristics is perfectly general: the same coordinate
transformations used in the theory of normal forms can be shown [4] to remove all
nonlinearities if the space of allowed functions is not restricted. Important questions
remain about the nature of the higher order terms inε and about the estimates of the
finite time for which the approximate solution is valid. (Here we find results valid to
times of order 1/ε, but for the example of [4] times of order 1/ε(1/4) are found.)

Our simple interpretation of the resulting logarithmic transformation as a Poincar´e
return map on coordinate patches has a well-developed context in the mathematical
literature. For example, the study of singularities in complex analytic bifurcations [5]
(equations of the form (5) but independent ofz̄) uses transformations defined on sectors
which covered a punctured neighborhood of the origin—exactly like the overlapping
patches we would use to unwrap the Riemann sheet of the logarithm. The corresponding
work on real-analytic bifurcations [6] (their Andronov-Hopf family) analyzes the form
and transformation properties of the first-return map and uses it to prove the existence
of “linearizing charts.” Our paper can be viewed as a less technical introduction to this
mathematical method, emphasizing the calculational aspects derived from the alternative
Lie transform approach to normal forms.

To summarize, one can take a dynamical system at a bifurcation and cast it into one
of a small number of “normal forms” using a sequence of coordinate transformations
restricted to homogeneous polynomials. We notice here that, abandoning this restriction,
one can take a nonlinear bifurcation (the Duffing equation) and make it completely
linear—with a coordinate transformation that has a branch cut through to the origin.
The method naturally introduces the Poincar´e first-return map as the transition function
across the branch cut.
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