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Macroscopic measure of the cohesive length scale: Fracture of notched single-crystal silicon
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We study atomistically the fracture of single-crystal silicon at atomically sharp notches with opening angles
of 0° (a crack, 70.53°, 90° and 125.3°. Such notches occur in silicon that has been formed by etching into
microelectromechanical structures and tend to be the initiation sites for failure by fracture of these structures.
Analogous to the stress intensity factor of traditional linear elastic fracture mechanics which characterizes the
stress state in the limiting case of a crack, there exists a similar parakh&ethe case of the notch. In the
case of silicon, a brittle material, this characterization appears to be particularly valid. We use three interatomic
potentials; that which gives criticd values closest to experiment is the modified embedded atom method
(MEAM). Because the units &€ depend on the notch angle, the shape ofkheersus angle plot depends on
the units used. In particular when an atomic length unit is used the plot is almost flat, showing—in principle,
from macroscopic observations alone—the association of an atomic length scale to the fracture process.
Moreover the normal stress on the actual fracture plane at this distance from the notch tip turns out to be even
flatter and emerges as a possible fracture criterion, namely 33 MPa at a distance offonMBAM silicon).
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[. INTRODUCTION function of notch opening angle. The material properties
which enter this formula are the elastic constants and the

This paper presents computational work on the atomistiparameters of the cohesive law, the peak steessand the
mechanisms of fracture. Fracture is a difficult problem inwork of separatiol’,. This recent activity has prompted us
general because it is inherently multiscale. We have identito investigate the phenomenon of fracture in notched silicon
fied a geometry—the so-called notch geometry—which isusing atomistic simulations. In this paper we present direct
suitable for atomistic calculations of fracture processes fomeasurements of the critical stress intensity for different ge-
the following three reasongl) Unlike simulations involving  ometries(i.e., notch opening anglesnd compare them to
cracks, there is no need to introduce “seed” cracks, sincehe experimental results of Suwied al. We apply a load by
there is already an opening—and hence a singular stress fiefghecifying a pure field of a given strengtlistress intensity
when any load is applied2) There is reason to believe that factor on the boundary of the system. In doing this we are
the experimental specimens are atomically sharp and thusffectively using the result of Suwitet al. that the notch
that there is a good correspondence at the atomic level batress intensity factor is indeed the quantity which deter-
tween the experimental and simulated syste@sThe de- mines fracture initiation, so we can ignore higher order terms
pendence of the experimental critical stress intensity orin the local stress field.
notch angle allows one to infer an atomic length scale even Elastic fields near a notchlhe essential geometry of a
before any atomistic calculations have been done. Apart fromotch is shown in Fig. 1. The notch opening angle is denoted
understanding fracture processes, this system is a useful tegtand the half angle within the material, which is the polar
of interatomic potentials; the variation in observed behaviorangle describing the top flank, 8 (thus 8= m7— v/2). As
with interatomic potential is one of the themes of this paperdiscussed in detail by Suwitet al.?? it is fairly straightfor-

There has been recent experimehtdand theoreticdlin-  ward to solve the equations of anisotropic linear elasticity for
terest in fracture in sharply notched single-crystal silicona notched specimen. The formalism used is known as the
samples. Such samples have technological importance b&troh formalisnf, which is useful for dealing with materials
cause silicon is a commonly used material in the fabricatiorwith arbitrary anisotropy in arbitrary orientations, as long as
of MEMS devices; the etching process used tends to creat@one of the fields depend on theoordinate(this will be the
atomically sharp corners due to highly anisotropic etchingout-of-plane coordinate; note that this does not restrict the
rates® Failure in such devices is often a result of fracture
which initiated at sharp cornerdn the case of a notch, there a)
exists a parametdf analogous to the stress intensity factor
of traditional fracture mechanics, which parametrizes the
elastic fields in the vicinity of the notch. Suwiet al?*have
carried out a series of experiments which h&yestablished
the validity of the stress intensity factor as a fracture criterion
in notched specimens an@) measured the critical stress
intensities for several notch geometries. On the theoretical
side Zhan§ has carried out an analysis which models the
separation of cleavage planes by a simple cohesive law, and FIG. 1. (a) Notch schematic and notation afig) silicon crystal
thereby derived a formula for the critical stress intensity as avith a notch; the darker layer is fixed boundary atoms.
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FIG. 2. Critical stress intensitl{ versus notch opening angle (a) Units based oreVand A and(b) Sl units. The unusual, fractional
units of length in the critical stress intensity make the shapes of these curves dependent on the choice of length units. In Sec. IV B and Fig.
7 we will discuss how the unit of length which makes the critical stress intensity nearly flat is a natural material-dependent length scale,
perhaps a macroscopic manifestation of a kind of cohesive length. Also sha@nignthe quantityK” for the MEAM potential only(see
text).

deformation itself to be in planeHere we only consider validity of this approach hinges on the validity of linear elas-
mode | (symmetrig loading. The displacement and stressticity to well within the region in which the&K field domi-

fields for a notch can be written as nates.
Our main results are the plots of Fig. 2, which show the
ui=Kr*gi(6), (1) dependence oK. on notch opening angle, in two different
systems of units. The dependence of the shape on the units is
= er—lfij(e)' ) very significant, as we will see. To understand this, first no-

tice from Eq.(2) that the units ofK and thereforeK, are

where ) plays a role similar to an eigenvalue; its value is Stress/length * which depends continuously on the notch
determined by applying the traction-free boundary condi-2ngley throughi. Hence the shape of a plot & against
tions to the notch flanks. There is an infinity of possibleNotch angle depends on the units used to make the plot. In
values for\ of which we are interested in those in the rangeMetric/SI unitsK, changes by an order of magnitude be-
0<\<1, which give rise to a singular stress field, often tween 70° and 12_5° whereas |f_an atomic scale unit of length
known as theK field, at the notch tip. This is entirely analo- iS used the plot is nearly fldFigs. 2b) and 2a), respec-
gous to the singular field near a crack tip, which is simply thelively]. The significance of this fact will be discussed further
limiting case wherey goes to zero §— ), and\ becomes bPelow.

one half. Further details of the Stroh formalism, as applied to

the notch geometry, are given in Appendix B. The complete Il. SIMULATIONS

elastic solution involves the whole infinity of values fior
corresponding to different multipoles of the elastic field.
Negative values of\ correspond to more singular fields  We simulated a cylindrical piece of silicon with a notch,
which are associated with properties of the core region stenmaking a shape as in Fig(l), consisting of an inner core
ming from the nonlinear atomistic nature of this region; theyregion and an outer boundary region. By focusing on just the
do not couple to the far-field loading.>1 corresponds to initiation of fracture we avoid the need for large systems
fields which are less singular, and do not influence conditionsince we are not interested in the path the crack takes after
near the notch tip, since the displacements and stress vanigie fracture(if we were, we would have a problem when the
there. They are, however, essential to represent the full elasrack reached the edge of the core region and hit the bound-
tic field throughout the body, and ensure that boundary loadsry which is only a few lattice spacings awayVe consider

and displacement$whatever they may beare correctly three notch geometries, which we call the 7@ctually
taken into account. This is the basis for asserting that only0.529°), 90°, and 125actually 125.264°) geometries, re-
theK field is important. This field is unique among the mul- spectively, referring to the notch opening angles. The 70°
tipoles in that it both couples to the far-field loading and issample hag111 surfaces on the notch flanks and the plane
singular at the notch tip. Thus the stress intensity factor musdf the sample is 4110 surface. The 90° sample hgklQ
characterize conditions at the crack tip, and therefore a critisurfaces on the flanks and the plane {4@0 surface(in this

cal valueK is associated with the initiation of fracture. The case the crystal axes coincide with the coordinate JaXd®e

A. Geometry
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125° sample has @111} on the bottom flank and &00  been used successfully to simulate dynamic fracture in
surface on the top flank, while the plane of the sample is ailicon,'® and we have found it to be the most reliable poten-
{110 plane. In addition, we studied the zero degree notchial in our studies of notch fracture.
geometry, corresponding to a standard crack. The crack plane
is a{111} surface and is th&z plane in the simulation, and N
the direction of growth is thé211) direction, which is the C. Boundary conditions
direction in the simulation. The radius of the inner, core re- The boundary conditions are as follows: in thdirection
gion in almost all the cases presented is 5 lattice spacings @dout of the paggthere are periodic boundary conditions. The
about 27 A. The exceptions were the crack geometry for thehickness of the sample in this direction is always one or two
EDIP potential (core radius was 7.5 lattice spacings—therepeat distances of the lattice in that direction. For the 70°
ductile behavior of the potential necessitated a larger) sizeand 125° geometries the repeat distancgds, wherea is
and the 90° geometry with the MEAM potenti@ore radius  the cubic lattice constant; for the 90° geometry it &. 2n
was four lattice spacings because this potential is computahe plane, the boundary conditions are that a layer of atoms
tionally more demanding The coordinate system in each on the outside of the system has the positions given by the
case is oriented so that the plane of the sample igfipane  analytic formula(1) for displacements from anisotropic lin-
and the notch is bisected by the plane. ear elasticity, with a specified stress intensity fadtorThe
thickness of the layer is twice the cutoff distance of the po-
) tential, in order that the core atoms feel properly surrounded
B. Potentials by materia?® We interpret the displacement formulas in

The question of the reliability of interatomic potentials terms of Eulerian coordinates, using an iterative procedure to
continues to plague researchers, particularly in the context gfompute the current positions. The numbers of core atoms
simulations of brittle fracturéfor a review of potentials used were 890, 894, 1260, and 892, for the @tack, 70°, 90°,
for brittle fracture of silicon see Holland and MarderThe  and 125° systems, respectivelgxcept for the EDIP/crack
purpose of this work is not to claim that a particular potentialcase where the core radius was 7.5 lattice constants; there the
is superior to others, but to investigate a particular geometrfiumber of core atoms was 200Zhe number of boundary
with atomistic simulations. To avoid limitations that might atoms depends on the potentiérough the cutoff distangp
be associated with a particular potential, we have used threkis typically about 500 atoms. For the most part no special
different silicon potentials. The first is a modified form of the consideration was given to the lattice origin, which meant
Stillinger-Webef potential(mSW), in which the coefficient that by default it coincided with the notch ffp.In a few
of the three body term has been multiplied by a factor of 2cases it was necessary to shift the position of the origin in
This has been noted by Hauehal?® to make the SW poten- order to make sure that the notch flanks were made cleanly,
tial brittle; they were unable to obtain brittle fracture with the in particular so that th¢111} flanks in the 70° and 125°
unmodified SW potential. However it worsens the similarity geometries were complete close packktll} surfaces, rather
to real silicon in other respects such as melting point andhan having dangling atoms.
elastic constants:!! The second potential is a more recent
silicon potential known as the environment-dependent inter-
atomic potential EDIP),*>*which is similar in form to SW
but has an environmental dependence that makes it a many- The simulation consists of alternating the following two
body potential. Bernstein and co-workkfs'® have used steps.(1) We increment the value d by a small amount,
EDIP to simulate fracture in silicon. They reported a fracturechanging the positions of the boundary atoms accordingly.
toughness about a factor of 4 too large when compared witk2) We relax the interior atoms as follows. First we run about
experiment, and that fracture proceeds in a very ductile marb0 steps of Langevin molecular dynamics with a temperature
ner, accompanied by significant plastic deformation and disef 500—600 K; the purpose of this is to break any symmetry
order. A reason for the failure of empirical potentials pro-(the 70° and 90° samples are symmetric aboutxthglane.
posed in Ref. 16 is that their short-ranged nature necessarily is still a zero temperature simulation; these finite tempera-
requires large stresses to separate bonds. This possibly éxwe steps are simply a way to introduce some noise. Next we
plains the differences found with our third potential, therun 500 time steps of the dynamical minimization technique
modified embedded atom methdEAM ) of Baskes:’ This  known as “MDmin” (a Verlet time step is carried out, but
is a many-body potential similar to the embedded atonmfter each velocity update, atoms whose velocities have
method but with angular terms in the electron density; it hasiegative dot products with their forces have their velocities
been fit to many elements including metals and semiconducset to zerd Finally 500 time steps of conjugate gradient
tors. A significant feature of this potential is its use of “three- minimization are carried out. We observe that the combina-
body screening” in addition to the usual pair cutoff distance.tion of both types of minimization is more effectieon-
This means that atoms in the bulk see only their nearesterges to a zero force state more quigkiyan either alone.
neighbors, while surface atoms, on the other hand, can sékhe procedure generally results in the atoms having forces of
any atoms above the surfaffer example, on the other side around 10° eV/A.
of a cracK within the pair cutoff distance. The pair cutoff has  The initial value forK could be zero, however, it turns out
been setd 6 A toallow the crack surfaces to see each other to be possible to start from a fairly large value Kf by
even after they have separated. The MEAM potential haspplying the analytic displacements to the whole system at

D. Critical stress intensities
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iy IIA:;T‘; IO ety lIII II ETI 59068069 are (_ji_scussed i.n__Sec. IV_. Hovx_/ever, this behayipr is quite

L LTI f*ljwl ot II'IIII' L IIJI,II,I,,I,IJ Y Bjﬁf LI sensitive to the initial configuration: when the origin was not

e T T T lIiI"_,Ig'f:",II’,IrlrIrI;'I,II U;B/,I;,I'IJJ shifted as mentioned in Sec. Il D, so that the notch flanks had
e 908088008 e Lk ZﬁI,I'IfI;II;:I'fr%Ii, dangling atoms, the EDIP behavior was quite different: the

889 *IIAEIIII notch blunted to a width of several atomic spacings.
T In the 90° geometry the easy cleavage planes are the

. 00008 3 8808
'E;;; xrz '1{111115&_%;&‘1;: 'II'III'IIE"‘I: IY‘*‘TVI.KIIII*LY‘II*I -IjIrLiIVIIIVIIIJTvI": {110 planes \{vhich are e>_<tensions of the notch flgnks. The
X :"‘I, T AI'.,,I ‘1"’111"2‘ sessclbesessee ‘I,I,l" 18969088 MEAM potential behaves in the manner most consistent with
20080001 »' I h 1X11 )98 I'IIII LA L experiment, namely, cleaving dt1G planes, and switching
1 A0 ',I;I,_If:;;;fr IIIIKILU, from one to the other—this is illustrated dramatically in Fig.
el R Feigrrerun iy 4(b). Experimentally, switching between planes, when it hap-

pens, occurs over longer length scales (2% for the 70°
FIG. 3. Crack geometry, before and after crack growth, MEAM casé), although the behavior at atomic length scales has not
potential. been examined. Too much should not be read into the switch-
ing we observe, because once cleavage has occurred over
first. When the criticalK value K. is not yet known the such distances the proximity of the boundary probably has a
increment size is chosen reasonably large to quickly find théarge effect on the effective driving force on the crack.
K.. When this has been found, the simulation is restarted For the 125° geometryFig. 4(c)], there are again two
from a value below the critical value with smaller increments{111} planes to choose from but they are not symmetrically
and a more accurate value fsg, found. The increment is a placed. Fracture occurs for the mSW and MEAM potentials

measure of the uncertainty I, . on the one closest to the plane, i.e., closest to the plane of
maximum normal stress, which is the (J)1filane. The di-
Ill. RESULTS rection of growth i 211], and growth proceeds much more

readily than in the other notch geometries, presumably be-
cause it is almost along the maximum stress plane. A more
We observe brittle cleavage of the simulated crystals atomplete presentation of the fracture behavior for the differ-
definite values oK for all geometries using the mSW and ent geometries and potentials can be found in an earlier ver-
MEAM potentials, but only for the 70° geometry when using sion of this manuscriptRef. 20.
the EDIP potential. Figures 3 and 4 show snapshots of the
system just after fracture initiation process for the different
geometries with the MEAM potentidin Fig. 3, which is the
case of a crack, the process is strictly growth rather than The values oK., for the different potentials as well as
initiation, and the configuration immediately before the crackfrom experiment, are listed in Table | and plotted in Fig. 2.
extended is also shown for comparigolVe also show in The increment size foK is listed as an estimate of the error
Figs. 5 and 6 the corresponding snapshots for the mSW arid K. The values for ductile fracture from the EDIP poten-
EDIP potentials, respectively, in the 90° geometry; here wdial are marked with an asterisk as an indication that the
observe three different behaviors for three differentdefinition of K. in these cases is problematic. The experi-
potentials—providing a cautionary demonstration of themental value for the crack geometry is from Ref. 21. Notice
limitations of empirical potentials. that the critical stress intensities for different angles are al-
In the 70° systenfiFig. 4@)] fracture occurs alongd11}  most the same in atomic units, and differ by more than a
plane. There are two choices for this, symmetrically placedactor of 10 in standard unit§. To check for finite size ef-
with respect to thexz plane. Here all three potentials pro- fects, we repeated the measurement on the 70° geometry, but
duced brittle behavior; this was the only geometry in whichwith larger radius of 8 A, using the MEAM potential. In this
the EDIP potential did so. Possible reasons for this exceptionaseK. was determined to be 0.262.001, or about 1.7%

A. Observed fracture behavior

B. Critical stress intensities

Bossorse 1Y FIG. 4. Snapshots after frac-
I d ture initiation in notched geom-
gy etries with the MEAM potential.
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TABLE |. Critical stress intensity values for different geom-
etries and potentials, including experimental data from Refs. 2,3.

WA K WA B WA A
‘-‘:’;\;x-"'\r:‘f*‘lﬁ'lx\

070 a0
R,
PaTatol g e
e et s’
X x_,x;'\- WK
L,

Potential Geom. K, Error  Griffith Kc(SI)
mSW 0 0.3068 0.00036 0.1951 X90°
mSW 70 0.3832 0.00036 9610°
mSW 90 0.3863 0.00035 1.7810°
mSW 125 0.3304 0.00016 1.8m0
EDIP 0 0.6* 0.02  0.1463 9:%10°
EDIP 70 0.2465  0.001 6:410°
) EDIP 90 0.5-0.6* 0.0005 2.4-2810°
90° geometry, mSW potential, K = 0.3871. S
EDIP 125 0.5-0.6* 0.001 1.5-2810
MEAM 0 0.184 0.0005 0.1641 810°
FIG. 5. 90° geometry, mSW potentia(,=0.3871. MEAM 70 0.2665 0.0005 65?105
oL MEAM 90 0.2935 0.0005 1.4210°
Iower_ than f[he value from the smaller system_. Thls |nd|cate§v|EA,vI 125 0.22 0.0005 6.4% 10P
that finite size effects are small, but not negligible. To com- ot 0 0.2060 01776 35310°

pensate for them without using larger systems a flexibl

boundary method could be used, involving higher orde(:EXIOt 70 0.31 102/0 731?

“multipoles” of the elastic field, appropriate for the notch Expt 90 0.43 10% 241

(i.e., solutions with\ <0), which could be relaxed. Expt 125 022 10% 6510°
For the crack cases we can make a comparison of our

results with the so-called Griffith criterion for crack propa-

gation. This comes from setting the energy release rate equal IV. DISCUSSION

to twice the surface energy. An expression for the mode | A. Comparison of computed and experimentalK .

energy release rate in terms of the stress intensity factor is ] ] ] )

given in Ref. 22; setting it equal to twice the surface energy COmparisons between simulations and experiment are

leads to the following expression for the critical stress inten£asiest when the data are plotted in atomic scale units
whereby the apparent dependence on notch angle is much

sity factor:
weaker: the data for the two brittle potentials make a gentle,
2y 12 almost horizontal, curve. The experimental data mostly lie
K Griffith = (3)  between that for the MEAM potential and that for the mSW

oML (k1 + o)l (mape)] potential, but significantly closer to the former. The excep-
whereuw; andu, are the roots of a characteristic polynomial tion is the 90° case where the experimental value jumps to
which depends on the elastic constants bagds an element higher than the mSW value. Since the curves from the two
of the compliance tensor for plane strain. The ratiopotentials are very similar in shape—the main difference
K./Kgrisitn iS associated with lattice trapping, when fractureseems to be an overall shift or factor—and the jump in the
is brittle. This ratio is 1.57 for the mSW potential and 1.12 experimental value at 90° is a departure from this shape, it
for MEAM. These values are, respectively, somewhat largewould not be meaningful to assert that the mSW potential
and somewhat smaller than the ratio 1.25 determined byloes a better job in predictinij. in the 90° case. For the
Paez and Gumbsch using total energy pseudopotentiadther angles the MEAM values are more or less within ex-
calculationg® (our K, corresponds to thel ). In the EDIP  perimental error of experiment: the err@tandard deviation
case, where fracture proceeds only accompanied by signifacross all the tested samplés close to 10% in all casdthe

cant plastic deformatiorK . is four times the Griffith value. error is not available for the crack casand the percentage
differences of the MEAM values with respect to the experi-
mental values are- 10, — 14, — 32, and—0.5% for the 0°,

70°, 90°, and 125° geometries, respectively. The 0.5% is
clearly fortuitous. Note that the experimental error bar is not
enough to account for the anomalously high value for the
90° case; there must be some feature of the physics or ener-
getics of fracture initiation in this geometry that is missing
from the others, and missing from the simulation.

It should be noted that part of the difference between the
mSW and MEAM values can be ascribed to the difference in
surface energies of these two potentials. For {ttEl} sur-
face, mSW predicts an 18% larger surface energy than

T {
2 95095 0. 0"y 0.9
S0 0.855 000" "
Fo. 92" ",l_(-,_l " 1“)‘“1 R A
SIS ANE AR AN

el i A MEAM (23% for the{110} surfacé. If we assume that the
square root dependence Kf on ys given by the Griffith
FIG. 6. 90° geometry, EDIP potentia,=0.6. criterion remains valid for arbitrary notch angles then we
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count. Using the Stroh formalism we compute the angular
factors needed to obtain the normal stress at the fracture
plane for each geometry. For the MEAM potential these fac-
tors are 1, 0.839935, 0.739143, and 0.990571 for the
0°, 70°, 90°, and 125° geometries, respectivéhey are
almost the same for other potentjal®ultiplying K’ (or K
measured in length units af) by these factors gives the
normal (opening stress on these planes at the distadce
which we denot&K”. The long-dashed curve in Fig. 2 shows
K for the MEAM potential. It noticeably flatter than
K¢(K{). This degree of flatness allows us to propose that the
quantity K” may in fact be used as a fracture criterion in
these notched systems. The mean valu/ofor the MEAM

FIG. 7. Illugtration of physical significance of the length scéle potential is 0.21 eV/A33 MPa, thus the fracture criterion
and the quantit . is simply that fracture is expected to occur when the normal

stress at a distance of one A from the notch or crack tip

would expecK_ values roughly 10% larger than the MEAM reaches 33 MPa. We wish to stress that even in the absence
ones. However, the difference ranges between 30 and 65 %f knowledge of the fracture planes we can infer the length
so differences in surface energies cannot alone account f@cale fromK_ itself, showing that one is seeing here the
the differences irK.. The mSW potential is, of course, not signature of microscale physics imprinting itself on macro-
meant as a quantitative potential for Si. The artificial dou-scopic measurements.
bling of the three-body term makes it brittle but spoils the
SW fit to the properties of Si.

C. How closely do the model notches match experiments?

In our simulations, for a given potential, only one fracture
behavior is observed, in contrast to what was observed in the
The most interesting feature of the unit dependence is thagxperiments of Suwitet al? Specifically, in the case of the

it seems to provide a direct link from macroscopic measure70° geometry, they observed three different “modésot to
ments to a microscopic length scale. From a continuum poinibe confused with loading modesncluding propagation on

of view, one incorporates atomistic effects into fracture via athe (110 plane, yet we have observed cleavage onlyidr}
cohesive zone, a region ahead of the crack tip where materiglanes in this geometry. It is possible that finite temperature,
cleaves according to a specified force-separation law. One @ind the relative heights of different lattice trapping barriers,
the parameters of such laws is the length scale—the distanqgay an important role here. More likely it is related to ex-
two surfaces must separate before the attractive force goes perimental microcracks or defects near the crack tip. In any
zero—which for a brittle material is an atomic length scale.case, it would be of great benefit to systematically calculate
It is this scale that one would identify from the plot Kf ~ the barriers for different processes that can occur at a notch
versus angle. Note that one can only identify a scale, and nd@br crack tip, as a function of applied load. It should be
an actual length parameter, in particular because the differemioted that in comparing simulations involving such very
geometries that are involved in the plot involve differentsmall length scale€7 A) to experiment it is appropriate to
fracture surfaces, with presumably different force-separatiomonsider the question of whether the experimental notches
parameters. A more intuitive way to see the emergence dare indeed as sharp as we have made our simulated notches.
this length is to note that the angle-dependent fatsgfor ~ Suwitoet al2 could only put an upper limit of 0.gm on the

the 22 component of stress in @) is unity for =0. If we  radius of curvature of their notches, although notch radii of
define a new stress intensity whose units are independent tfe order of 10 nm have been reported in etched silicBne
notch geometry a&=K’8'* by introducing an explicit addition of just a few atoms right at the notch tip would
length parameted, it is clear from dimensional analysis that presumably have a significant effect on the energetics of
K’ will be independent of angle whefis chosen to corre- cleavage initiation. We have not made any investigation of
spond to the unit of length which makes te- y plot flat.  this, and this question should be borne in mind given the
K’ has a physical interpretation as the valuesof on the  absence of experimental data characterizing the notch tip at
plane that bisects the notch, at a distaéc front of the  the atomic scale. Nevertheless, the success of our simulations
notch tip(see Fig. 7. From a critical stress intensity factor as provides an important indication that these notches are in-
a function of notch angle we have inferred something muctdeed atomistically sharp.

more intuitive—independent of notch geometry, there is a
critical normal stress associated with a particular distance
ahead of the notch tip, this distanfer Si, and likely also
for other brittle materiajsbeing an atomic length scale, of  We have determined by atomistic simulation the critical
order A. As explained above, this is not an exact statemenstress intensities to initiate fracture in notched single crystal
since the curve is not exactly flat. We can in fact go furthersilicon samples. The samples had angles of(@°crack,

by taking knowledge of the actual fracture plane into ac-70.5233°, 90°, and 125.264°—chosen so that the flanks of

B. Emergence of cohesive length scale and fracture criterion

V. SUMMARY
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the notches were low index crystal planes. These geometries TABLE Il. Unit conversion factors foK.
correspond to those studied experimentally in measurements——

of critical stress intensities for fracture initiation. Of the three Potential Geometry A Factor
e tmaendon st o, "W o
environment-dependent interatomic_pote » & mSW 70 0.51954 2510000

modified embedded atom methdEAM), MEAM pro-

duced the most realistic behavior, which is consistent withmzw 19205 g"zgzj; ;532208(;)(?0
simulations of dynamic fracture. The most interesting resulf” '
of this paper is the near independenceg@fon notch angle EDIP 0 0.5 1602000

when referred to an appropriate length scale. This is afrP'" 70 0.51922 2490000
atomic length scale, and we assert that it is the length scafeP!P 90 0.54708 4730000
associated with cohesive zones in continuum models of frad=PIP 125 0.62844 30840000
ture. Furthermore, the value of the normal or opening stres¥EAM 0 0.5 1602000
on the observed fracture plane at this length scale is almoMEAM 70 0.51875 2467000
exactly flat and thus suggests a plausible fracture criterioMEAM 90 0.54794 4832000
for these system@vhich include cracks whether the open- MEAM 125 0.62639 29420000

ing stress at a characteristic distance attains a critical value
(33 MPa at 1 A for MEAM Sj. In all, the notch system . o _ _
offers excellent opportunities for well controlled investiga- have modified the potential itself to make it more brittle so
tions of fracture with direct connection to experiment, in- the resemblance to real silicon is reduced noticeably. When
cluding the use of a variety of atomistic simulation tech-€xpressing quantities in terms of eV-A units we use the
niques going beyond those discussed in this pajier second scaling which is more common. The EDIP and
example, the systematic calculation of energy barriers foMEAM potentials havee=1 eV ando=1 A built in as

cleavage and dislocation nucleation as a function of crackheir units. Since o~Kr*~*, the units of K are
slip system, etc [ stres$/[length* ~1=[energy/[length>**, so to convert a

value forK in atomic units to Sl units, one uses the conver-
sion factore/o>™*. Table Il gives the factors for the three
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Here we summarize the application of the Stroh formal-
ism to the notch problem. More details are available in Refs.
2,3,25. We can write the solution for the displacement field
Gand the stress functiog as

the Naval Research Laboratory. 6
u= > a,f.(z,), (B1)
APPENDIX A: UNITS AND CONVERSIONS o«
Three different sets of units are used in this paper. To each o
atomic potentialStillinger-Weber, EDIP, MEAM is associ- ¢:Zl bofa(Za). (B2)

ated a set of atomic unit€EDIP and MEAM use the same
units); also we often wish to use Sl units to compare toThe independent variable here is the complex variahle
experiment. In the context of this paper there is the further=x;+p,X,. The stress functiorp determines the stresses
subtlety that the units of the chief quantity under considerthrough oj;=—¢;, and o;,=¢;,. The p,, a,, and b,
ation, namely, the stress intensity factdy are not simple come from solving the following eigenvalue problem:
powers of base units but involve a nontrivial exponant
which is a function of geometry and potential. In fact the SI [Q+p(R+R")+p?T]a=0, (B3)
units forK are Pa b~ which for brevity we simply refer to
as “standard units” in the paper.

~The units for an atomic potential are determined by speci- Cyn Cis Cis Ci Cip Cis
fying the unit of energy and that of lengtfor dynamics the
unit of time is determined from these and the particle mass Q=|Ciws Ces Cos|,

where

R=| Ces Co6 Cusl,

The SW potential as originally written down did not have Ci5 Cs6 Css Css Cos5 Cys
units built into it. By taking the energy unit to be
=2.1672 e\=3.4723<10 ° J and the length unit to be Ces Cas Cus

=2.0951 A, the authors modeled molten silidoHowever T=|Co C., C (B4)
other author® have taken the energy unit to be 26 w22 24
=2.315 eV. The difference is not really important since we Cse Cos Cuy
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The above is general within the context of two-dimensionalFor a given\, the vector is determined up to a normaliza-

anisotropic elasticity. To specify the notch problem wetjon which is related to how one defines the stress intensity
choose a form of the arbitrary functidnto which we can  factor K. Thus we obtain expressions for the displacements
apply the boundary conditions of the problem—that notchwhich are used in the simulation to place the boundary at-
flanks are traction-free. The following choice does the trick:oms. In the crack case, becaudeand\' are degenerate at
the value 1/2, the definition of modes | and Il is a little
&,(0) subtle. The{111} plane is not a plane of symmetry of the
m cube, and thus one cannot expect to separate modes by their
(B5) symmetry properties as in for example, the isotropic case;
following Ref. 22, mode | is defined as that for which
where&(0) = cos@)+p,sin(f) andq is to be determined. The &,,(§=0)=0 and mode Il that for whiclr,,(6=0)=0.

N

A
Za _1)\ qu

foz(za): E —bTaq_ N
Mg (=B A

traction with respect to a radial plane at anglés given by For the purpose of the simulations described in this paper,
6 \ we calculated the Stroh parameters as follows. For each po-
tzrk’lE £4(0) b bT q:£¢ (B6) tential, the elastic constants were determined by standard

= E(=B)] T T methods(straining the supercell, relaxing, measuring the re-

laxed energy per unit undeformed volume and fitting to a
parabola. This givesCy4, C1,, andC,,4, which are the three
independent constants for a cubic crystal. In the formulas for
the displacements and stresses given above, the coordinate
K(\)g(\)=0. (B7) system is aligned_with the notc(l'r_n that the negativex axis
bisects the notch itsglfand not with the crystal axes. So we
The appropriate value of is determined by setting the de- must transform the elastic constants accordingly. Once we
terminant of the matrix equal to zero and solving the resulthave the transformed constants we can construct the Stroh
ing equation numerically. In the range<Q. <1, two values matricesQ, R, andT, and compute the Stroh eigenvalues

With the above form the traction condition is already satis-
fied on the bottom flankk= — 8. Applying the condition on
the top flank leads to a matrix equation

can be found, corresponding to modes | and\land\". and eigenvectors as above.
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