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Macroscopic measure of the cohesive length scale: Fracture of notched single-crystal silicon
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We study atomistically the fracture of single-crystal silicon at atomically sharp notches with opening angles
of 0° ~a crack!, 70.53°, 90° and 125.3°. Such notches occur in silicon that has been formed by etching into
microelectromechanical structures and tend to be the initiation sites for failure by fracture of these structures.
Analogous to the stress intensity factor of traditional linear elastic fracture mechanics which characterizes the
stress state in the limiting case of a crack, there exists a similar parameterK for the case of the notch. In the
case of silicon, a brittle material, this characterization appears to be particularly valid. We use three interatomic
potentials; that which gives criticalK values closest to experiment is the modified embedded atom method
~MEAM !. Because the units ofK depend on the notch angle, the shape of theK versus angle plot depends on
the units used. In particular when an atomic length unit is used the plot is almost flat, showing—in principle,
from macroscopic observations alone—the association of an atomic length scale to the fracture process.
Moreover the normal stress on the actual fracture plane at this distance from the notch tip turns out to be even
flatter and emerges as a possible fracture criterion, namely 33 MPa at a distance of one Å~for MEAM silicon!.

DOI: 10.1103/PhysRevB.68.205204 PACS number~s!: 81.05.Cy, 81.40.Np, 83.60.2a
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I. INTRODUCTION

This paper presents computational work on the atomi
mechanisms of fracture. Fracture is a difficult problem
general because it is inherently multiscale. We have ide
fied a geometry—the so-called notch geometry—which
suitable for atomistic calculations of fracture processes
the following three reasons.~1! Unlike simulations involving
cracks, there is no need to introduce ‘‘seed’’ cracks, si
there is already an opening—and hence a singular stress
when any load is applied.~2! There is reason to believe tha
the experimental specimens are atomically sharp and
that there is a good correspondence at the atomic level
tween the experimental and simulated systems.~3! The de-
pendence of the experimental critical stress intensity
notch angle allows one to infer an atomic length scale e
before any atomistic calculations have been done. Apart f
understanding fracture processes, this system is a usefu
of interatomic potentials; the variation in observed behav
with interatomic potential is one of the themes of this pap

There has been recent experimental1–3 and theoretical4 in-
terest in fracture in sharply notched single-crystal silic
samples. Such samples have technological importance
cause silicon is a commonly used material in the fabricat
of MEMS devices; the etching process used tends to cr
atomically sharp corners due to highly anisotropic etch
rates.3 Failure in such devices is often a result of fractu
which initiated at sharp corners.5 In the case of a notch, ther
exists a parameterK analogous to the stress intensity fact
of traditional fracture mechanics, which parametrizes
elastic fields in the vicinity of the notch. Suwitoet al.2,3 have
carried out a series of experiments which have~i! established
the validity of the stress intensity factor as a fracture criter
in notched specimens and~ii ! measured the critical stres
intensities for several notch geometries. On the theoret
side Zhang4 has carried out an analysis which models t
separation of cleavage planes by a simple cohesive law,
thereby derived a formula for the critical stress intensity a
0163-1829/2003/68~20!/205204~8!/$20.00 68 2052
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function of notch opening angle. The material propert
which enter this formula are the elastic constants and
parameters of the cohesive law, the peak stressŝ, and the
work of separationG0. This recent activity has prompted u
to investigate the phenomenon of fracture in notched silic
using atomistic simulations. In this paper we present dir
measurements of the critical stress intensity for different
ometries~i.e., notch opening angles! and compare them to
the experimental results of Suwitoet al. We apply a load by
specifying a pureK field of a given strength~stress intensity
factor! on the boundary of the system. In doing this we a
effectively using the result of Suwitoet al. that the notch
stress intensity factor is indeed the quantity which det
mines fracture initiation, so we can ignore higher order ter
in the local stress field.

Elastic fields near a notch.The essential geometry of
notch is shown in Fig. 1. The notch opening angle is deno
g and the half angle within the material, which is the po
angle describing the top flank, isb ~thus b5p2g/2). As
discussed in detail by Suwitoet al.,2,3 it is fairly straightfor-
ward to solve the equations of anisotropic linear elasticity
a notched specimen. The formalism used is known as
Stroh formalism,6 which is useful for dealing with material
with arbitrary anisotropy in arbitrary orientations, as long
none of the fields depend on thez coordinate~this will be the
out-of-plane coordinate; note that this does not restrict

FIG. 1. ~a! Notch schematic and notation and~b! silicon crystal
with a notch; the darker layer is fixed boundary atoms.
©2003 The American Physical Society04-1
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FIG. 2. Critical stress intensityK versus notch opening angleg. ~a! Units based oneV and Å and~b! SI units. The unusual, fractiona
units of length in the critical stress intensity make the shapes of these curves dependent on the choice of length units. In Sec. IV B
7 we will discuss how the unit of lengthd which makes the critical stress intensity nearly flat is a natural material-dependent length
perhaps a macroscopic manifestation of a kind of cohesive length. Also shown in~a! is the quantityK9 for the MEAM potential only~see
text!.
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deformation itself to be in plane!. Here we only consider
mode I ~symmetric! loading. The displacement and stre
fields for a notch can be written as

ui5Kr lgi~u!, ~1!

s i j 5Kr l21f i j ~u!, ~2!

wherel plays a role similar to an eigenvalue; its value
determined by applying the traction-free boundary con
tions to the notch flanks. There is an infinity of possib
values forl of which we are interested in those in the ran
0,l,1, which give rise to a singular stress field, oft
known as theK field, at the notch tip. This is entirely analo
gous to the singular field near a crack tip, which is simply
limiting case whereg goes to zero (b→p), andl becomes
one half. Further details of the Stroh formalism, as applied
the notch geometry, are given in Appendix B. The compl
elastic solution involves the whole infinity of values forl,
corresponding to different multipoles of the elastic fie
Negative values ofl correspond to more singular field
which are associated with properties of the core region st
ming from the nonlinear atomistic nature of this region; th
do not couple to the far-field loading.l.1 corresponds to
fields which are less singular, and do not influence conditi
near the notch tip, since the displacements and stress va
there. They are, however, essential to represent the full e
tic field throughout the body, and ensure that boundary lo
and displacements~whatever they may be! are correctly
taken into account. This is the basis for asserting that o
theK field is important. This field is unique among the mu
tipoles in that it both couples to the far-field loading and
singular at the notch tip. Thus the stress intensity factor m
characterize conditions at the crack tip, and therefore a c
cal valueKc is associated with the initiation of fracture. Th
20520
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validity of this approach hinges on the validity of linear ela
ticity to well within the region in which theK field domi-
nates.

Our main results are the plots of Fig. 2, which show t
dependence ofKc on notch opening angle, in two differen
systems of units. The dependence of the shape on the un
very significant, as we will see. To understand this, first n
tice from Eq. ~2! that the units ofK and thereforeKc are
stress/lengthl21 which depends continuously on the notc
angleg throughl. Hence the shape of a plot ofKc against
notch angle depends on the units used to make the plo
metric/SI unitsKc changes by an order of magnitude b
tween 70° and 125° whereas if an atomic scale unit of len
is used the plot is nearly flat@Figs. 2~b! and 2~a!, respec-
tively#. The significance of this fact will be discussed furth
below.

II. SIMULATIONS

A. Geometry

We simulated a cylindrical piece of silicon with a notc
making a shape as in Fig. 1~b!, consisting of an inner core
region and an outer boundary region. By focusing on just
initiation of fracture we avoid the need for large system
since we are not interested in the path the crack takes a
the fracture~if we were, we would have a problem when th
crack reached the edge of the core region and hit the bou
ary which is only a few lattice spacings away!. We consider
three notch geometries, which we call the 70°~actually
70.529°), 90°, and 125°~actually 125.264°) geometries, re
spectively, referring to the notch opening angles. The 7
sample has$111% surfaces on the notch flanks and the pla
of the sample is a$110% surface. The 90° sample has$110%
surfaces on the flanks and the plane is a$100% surface~in this
case the crystal axes coincide with the coordinate axes!. The
4-2
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MACROSCOPIC MEASURE OF THE COHESIVE LENGTH . . . PHYSICAL REVIEW B68, 205204 ~2003!
125° sample has a$111% on the bottom flank and a$100%
surface on the top flank, while the plane of the sample
$110% plane. In addition, we studied the zero degree no
geometry, corresponding to a standard crack. The crack p
is a $111% surface and is thexz plane in the simulation, and
the direction of growth is thê211& direction, which is thex
direction in the simulation. The radius of the inner, core
gion in almost all the cases presented is 5 lattice spacing
about 27 Å. The exceptions were the crack geometry for
EDIP potential ~core radius was 7.5 lattice spacings—t
ductile behavior of the potential necessitated a larger s!
and the 90° geometry with the MEAM potential~core radius
was four lattice spacings because this potential is comp
tionally more demanding!. The coordinate system in eac
case is oriented so that the plane of the sample is thexy plane
and the notch is bisected by thexz plane.

B. Potentials

The question of the reliability of interatomic potentia
continues to plague researchers, particularly in the contex
simulations of brittle fracture~for a review of potentials used
for brittle fracture of silicon see Holland and Marder7!. The
purpose of this work is not to claim that a particular poten
is superior to others, but to investigate a particular geom
with atomistic simulations. To avoid limitations that mig
be associated with a particular potential, we have used t
different silicon potentials. The first is a modified form of th
Stillinger-Weber8 potential~mSW!, in which the coefficient
of the three body term has been multiplied by a factor of
This has been noted by Hauchet al.9 to make the SW poten
tial brittle; they were unable to obtain brittle fracture with th
unmodified SW potential. However it worsens the similar
to real silicon in other respects such as melting point a
elastic constants.9–11 The second potential is a more rece
silicon potential known as the environment-dependent in
atomic potential~EDIP!,12,13 which is similar in form to SW
but has an environmental dependence that makes it a m
body potential. Bernstein and co-workers14–16 have used
EDIP to simulate fracture in silicon. They reported a fractu
toughness about a factor of 4 too large when compared
experiment, and that fracture proceeds in a very ductile m
ner, accompanied by significant plastic deformation and
order. A reason for the failure of empirical potentials pr
posed in Ref. 16 is that their short-ranged nature necess
requires large stresses to separate bonds. This possibl
plains the differences found with our third potential, t
modified embedded atom method~MEAM ! of Baskes.17 This
is a many-body potential similar to the embedded at
method but with angular terms in the electron density; it h
been fit to many elements including metals and semicond
tors. A significant feature of this potential is its use of ‘‘thre
body screening’’ in addition to the usual pair cutoff distanc
This means that atoms in the bulk see only their nea
neighbors, while surface atoms, on the other hand, can
any atoms above the surface~for example, on the other sid
of a crack! within the pair cutoff distance. The pair cutoff ha
been set to 6 Å to allow the crack surfaces to see each othe18

even after they have separated. The MEAM potential
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been used successfully to simulate dynamic fracture
silicon,19 and we have found it to be the most reliable pote
tial in our studies of notch fracture.

C. Boundary conditions

The boundary conditions are as follows: in thez direction
~out of the page! there are periodic boundary conditions. Th
thickness of the sample in this direction is always one or t
repeat distances of the lattice in that direction. For the 7
and 125° geometries the repeat distance isA2a, wherea is
the cubic lattice constant; for the 90° geometry it is 2a. In
the plane, the boundary conditions are that a layer of ato
on the outside of the system has the positions given by
analytic formula~1! for displacements from anisotropic lin
ear elasticity, with a specified stress intensity factorK. The
thickness of the layer is twice the cutoff distance of the p
tential, in order that the core atoms feel properly surround
by material.26 We interpret the displacement formulas
terms of Eulerian coordinates, using an iterative procedur
compute the current positions. The numbers of core ato
were 890, 894, 1260, and 892, for the 0°~crack!, 70°, 90°,
and 125° systems, respectively~except for the EDIP/crack
case where the core radius was 7.5 lattice constants; ther
number of core atoms was 2002!. The number of boundary
atoms depends on the potential~through the cutoff distance!;
it is typically about 500 atoms. For the most part no spec
consideration was given to the lattice origin, which mea
that by default it coincided with the notch tip.27 In a few
cases it was necessary to shift the position of the origin
order to make sure that the notch flanks were made clea
in particular so that the$111% flanks in the 70° and 125°
geometries were complete close packed$111% surfaces, rather
than having dangling atoms.

D. Critical stress intensities

The simulation consists of alternating the following tw
steps.~1! We increment the value ofK by a small amount,
changing the positions of the boundary atoms accordin
~2! We relax the interior atoms as follows. First we run abo
50 steps of Langevin molecular dynamics with a temperat
of 500–600 K; the purpose of this is to break any symme
~the 70° and 90° samples are symmetric about thexzplane!.
It is still a zero temperature simulation; these finite tempe
ture steps are simply a way to introduce some noise. Nex
run 500 time steps of the dynamical minimization techniq
known as ‘‘MDmin’’ ~a Verlet time step is carried out, bu
after each velocity update, atoms whose velocities h
negative dot products with their forces have their velocit
set to zero!. Finally 500 time steps of conjugate gradie
minimization are carried out. We observe that the combi
tion of both types of minimization is more effective~con-
verges to a zero force state more quickly! than either alone.
The procedure generally results in the atoms having force
around 1025 eV/Å.

The initial value forK could be zero, however, it turns ou
to be possible to start from a fairly large value ofK by
applying the analytic displacements to the whole system
4-3
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NICHOLAS P. BAILEY AND JAMES P. SETHNA PHYSICAL REVIEW B68, 205204 ~2003!
first. When the criticalK value Kc is not yet known the
increment size is chosen reasonably large to quickly find
Kc . When this has been found, the simulation is restar
from a value below the critical value with smaller incremen
and a more accurate value forKc found. The increment is a
measure of the uncertainty inKc .

III. RESULTS

A. Observed fracture behavior

We observe brittle cleavage of the simulated crystals
definite values ofK for all geometries using the mSW an
MEAM potentials, but only for the 70° geometry when usin
the EDIP potential. Figures 3 and 4 show snapshots of
system just after fracture initiation process for the differe
geometries with the MEAM potential~in Fig. 3, which is the
case of a crack, the process is strictly growth rather t
initiation, and the configuration immediately before the cra
extended is also shown for comparison!. We also show in
Figs. 5 and 6 the corresponding snapshots for the mSW
EDIP potentials, respectively, in the 90° geometry; here
observe three different behaviors for three differe
potentials—providing a cautionary demonstration of t
limitations of empirical potentials.

In the 70° system@Fig. 4~a!# fracture occurs along a$111%
plane. There are two choices for this, symmetrically plac
with respect to thexz plane. Here all three potentials pro
duced brittle behavior; this was the only geometry in wh
the EDIP potential did so. Possible reasons for this excep

FIG. 3. Crack geometry, before and after crack growth, MEA
potential.
20520
e
d

t

e
t

n
k

nd
e
t

d

n

are discussed in Sec. IV. However, this behavior is qu
sensitive to the initial configuration: when the origin was n
shifted as mentioned in Sec. II D, so that the notch flanks
dangling atoms, the EDIP behavior was quite different:
notch blunted to a width of several atomic spacings.

In the 90° geometry the easy cleavage planes are
$110% planes which are extensions of the notch flanks. T
MEAM potential behaves in the manner most consistent w
experiment, namely, cleaving on$110% planes, and switching
from one to the other—this is illustrated dramatically in Fi
4~b!. Experimentally, switching between planes, when it ha
pens, occurs over longer length scales (25mm for the 70°
case2!, although the behavior at atomic length scales has
been examined. Too much should not be read into the swi
ing we observe, because once cleavage has occurred
such distances the proximity of the boundary probably ha
large effect on the effective driving force on the crack.

For the 125° geometry@Fig. 4~c!#, there are again two
$111% planes to choose from but they are not symmetrica
placed. Fracture occurs for the mSW and MEAM potenti
on the one closest to thexzplane, i.e., closest to the plane o
maximum normal stress, which is the (111)̄ plane. The di-
rection of growth is@211̄#, and growth proceeds much mor
readily than in the other notch geometries, presumably
cause it is almost along the maximum stress plane. A m
complete presentation of the fracture behavior for the diff
ent geometries and potentials can be found in an earlier
sion of this manuscript~Ref. 20!.

B. Critical stress intensities

The values ofKc , for the different potentials as well a
from experiment, are listed in Table I and plotted in Fig.
The increment size forK is listed as an estimate of the erro
in Kc . The values for ductile fracture from the EDIP pote
tial are marked with an asterisk as an indication that
definition of Kc in these cases is problematic. The expe
mental value for the crack geometry is from Ref. 21. Not
that the critical stress intensities for different angles are
most the same in atomic units, and differ by more than
factor of 10 in standard units.28 To check for finite size ef-
fects, we repeated the measurement on the 70° geometry
with larger radius of 8 Å, using the MEAM potential. In thi
caseKc was determined to be 0.26260.001, or about 1.7%
-
FIG. 4. Snapshots after frac
ture initiation in notched geom-
etries with the MEAM potential.
4-4
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lower than the value from the smaller system. This indica
that finite size effects are small, but not negligible. To co
pensate for them without using larger systems a flex
boundary method could be used, involving higher ord
‘‘multipoles’’ of the elastic field, appropriate for the notc
~i.e., solutions withl,0), which could be relaxed.

For the crack cases we can make a comparison of
results with the so-called Griffith criterion for crack prop
gation. This comes from setting the energy release rate e
to twice the surface energy. An expression for the mod
energy release rate in terms of the stress intensity facto
given in Ref. 22; setting it equal to twice the surface ene
leads to the following expression for the critical stress int
sity factor:

KGriffith5S 2g

pb22Im@~m11m2!/~m1m2!# D
1/2

, ~3!

wherem1 andm2 are the roots of a characteristic polynom
which depends on the elastic constants andb22 is an element
of the compliance tensor for plane strain. The ra
Kc /KGriffith is associated with lattice trapping, when fractu
is brittle. This ratio is 1.57 for the mSW potential and 1.
for MEAM. These values are, respectively, somewhat lar
and somewhat smaller than the ratio 1.25 determined
Pérez and Gumbsch using total energy pseudopoten
calculations23 ~our Kc corresponds to theirK1). In the EDIP
case, where fracture proceeds only accompanied by sig
cant plastic deformation,Kc is four times the Griffith value.

FIG. 5. 90° geometry, mSW potential,K50.3871.

FIG. 6. 90° geometry, EDIP potential,K50.6.
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IV. DISCUSSION

A. Comparison of computed and experimentalKc

Comparisons between simulations and experiment
easiest when the data are plotted in atomic scale u
whereby the apparent dependence on notch angle is m
weaker: the data for the two brittle potentials make a gen
almost horizontal, curve. The experimental data mostly
between that for the MEAM potential and that for the mS
potential, but significantly closer to the former. The exce
tion is the 90° case where the experimental value jumps
higher than the mSW value. Since the curves from the t
potentials are very similar in shape—the main differen
seems to be an overall shift or factor—and the jump in
experimental value at 90° is a departure from this shape
would not be meaningful to assert that the mSW poten
does a better job in predictingKc in the 90° case. For the
other angles the MEAM values are more or less within e
perimental error of experiment: the error~standard deviation
across all the tested samples! is close to 10% in all cases~the
error is not available for the crack case!, and the percentage
differences of the MEAM values with respect to the expe
mental values are210, 214, 232, and20.5 % for the 0°,
70°, 90°, and 125° geometries, respectively. The 0.5%
clearly fortuitous. Note that the experimental error bar is n
enough to account for the anomalously high value for
90° case; there must be some feature of the physics or e
getics of fracture initiation in this geometry that is missin
from the others, and missing from the simulation.

It should be noted that part of the difference between
mSW and MEAM values can be ascribed to the difference
surface energies of these two potentials. For the$111% sur-
face, mSW predicts an 18% larger surface energy t
MEAM ~23% for the$110% surface!. If we assume that the
square root dependence ofKc on gs given by the Griffith
criterion remains valid for arbitrary notch angles then w

TABLE I. Critical stress intensity values for different geom
etries and potentials, including experimental data from Refs. 2,

Potential Geom. Kc Error Griffith Kc~SI!

mSW 0 0.3068 0.00036 0.1951 4.93105

mSW 70 0.3832 0.00036 9.63105

mSW 90 0.3863 0.00035 1.783106

mSW 125 0.3304 0.00016 1.073107

EDIP 0 0.6* 0.02 0.1463 9.63105

EDIP 70 0.2465 0.001 6.13105

EDIP 90 0.5–0.6* 0.0005 2.4–2.83106

EDIP 125 0.5–0.6* 0.001 1.5–1.83107

MEAM 0 0.184 0.0005 0.1641 33105

MEAM 70 0.2665 0.0005 6.573105

MEAM 90 0.2935 0.0005 1.423106

MEAM 125 0.22 0.0005 6.473106

Expt 0 0.2060 0.1776 3.33105

Expt 70 0.31 10% 7.63105

Expt 90 0.43 10% 2.13106

Expt 125 0.22 10% 6.53106
4-5
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NICHOLAS P. BAILEY AND JAMES P. SETHNA PHYSICAL REVIEW B68, 205204 ~2003!
would expectKc values roughly 10% larger than the MEAM
ones. However, the difference ranges between 30 and 6
so differences in surface energies cannot alone accoun
the differences inKc . The mSW potential is, of course, no
meant as a quantitative potential for Si. The artificial do
bling of the three-body term makes it brittle but spoils t
SW fit to the properties of Si.

B. Emergence of cohesive length scale and fracture criterion

The most interesting feature of the unit dependence is
it seems to provide a direct link from macroscopic measu
ments to a microscopic length scale. From a continuum p
of view, one incorporates atomistic effects into fracture vi
cohesive zone, a region ahead of the crack tip where mat
cleaves according to a specified force-separation law. On
the parameters of such laws is the length scale—the dist
two surfaces must separate before the attractive force go
zero—which for a brittle material is an atomic length sca
It is this scale that one would identify from the plot ofKc
versus angle. Note that one can only identify a scale, and
an actual length parameter, in particular because the diffe
geometries that are involved in the plot involve differe
fracture surfaces, with presumably different force-separa
parameters. A more intuitive way to see the emergence
this length is to note that the angle-dependent factorf 22 for
the 22 component of stress in Eq.~2! is unity for u50. If we
define a new stress intensity whose units are independe
notch geometry asK5K8d12l by introducing an explicit
length parameterd, it is clear from dimensional analysis tha
K8 will be independent of angle whend is chosen to corre-
spond to the unit of length which makes theK2g plot flat.
K8 has a physical interpretation as the value ofs22 on the
plane that bisects the notch, at a distanced in front of the
notch tip~see Fig. 7!. From a critical stress intensity factor a
a function of notch angle we have inferred something mu
more intuitive—independent of notch geometry, there is
critical normal stress associated with a particular dista
ahead of the notch tip, this distance~for Si, and likely also
for other brittle materials! being an atomic length scale, o
order Å. As explained above, this is not an exact statem
since the curve is not exactly flat. We can in fact go furth
by taking knowledge of the actual fracture plane into a

FIG. 7. Illustration of physical significance of the length scaled
and the quantityKc9 .
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count. Using the Stroh formalism we compute the angu
factors needed to obtain the normal stress at the frac
plane for each geometry. For the MEAM potential these f
tors are 1, 0.839935, 0.739143, and 0.990571 for
0°, 70°, 90°, and 125° geometries, respectively~they are
almost the same for other potentials!. Multiplying K8 ~or K
measured in length units ofd) by these factors gives th
normal ~opening! stress on these planes at the distanced,
which we denoteK9. The long-dashed curve in Fig. 2 show
Kc9 for the MEAM potential. It noticeably flatter than
Kc(Kc8). This degree of flatness allows us to propose that
quantity K9 may in fact be used as a fracture criterion
these notched systems. The mean value ofKc9 for the MEAM
potential is 0.21 eV/Å533 MPa, thus the fracture criterio
is simply that fracture is expected to occur when the norm
stress at a distance of one Å from the notch or crack
reaches 33 MPa. We wish to stress that even in the abs
of knowledge of the fracture planes we can infer the len
scale fromKc itself, showing that one is seeing here th
signature of microscale physics imprinting itself on mac
scopic measurements.

C. How closely do the model notches match experiments?

In our simulations, for a given potential, only one fractu
behavior is observed, in contrast to what was observed in
experiments of Suwitoet al.2 Specifically, in the case of the
70° geometry, they observed three different ‘‘modes’’~not to
be confused with loading modes!, including propagation on
the~110! plane, yet we have observed cleavage only on$111%
planes in this geometry. It is possible that finite temperatu
and the relative heights of different lattice trapping barrie
play an important role here. More likely it is related to e
perimental microcracks or defects near the crack tip. In a
case, it would be of great benefit to systematically calcul
the barriers for different processes that can occur at a n
~or crack! tip, as a function of applied load. It should b
noted that in comparing simulations involving such ve
small length scales~27 Å! to experiment it is appropriate to
consider the question of whether the experimental notc
are indeed as sharp as we have made our simulated not
Suwitoet al.2 could only put an upper limit of 0.8mm on the
radius of curvature of their notches, although notch radii
the order of 10 nm have been reported in etched silicon.3 The
addition of just a few atoms right at the notch tip wou
presumably have a significant effect on the energetics
cleavage initiation. We have not made any investigation
this, and this question should be borne in mind given
absence of experimental data characterizing the notch ti
the atomic scale. Nevertheless, the success of our simula
provides an important indication that these notches are
deed atomistically sharp.

V. SUMMARY

We have determined by atomistic simulation the critic
stress intensities to initiate fracture in notched single cry
silicon samples. The samples had angles of 0°~a crack!,
70.5233°, 90°, and 125.264°—chosen so that the flank
4-6
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the notches were low index crystal planes. These geome
correspond to those studied experimentally in measurem
of critical stress intensities for fracture initiation. Of the thr
potentials used, modified Stillinger-Weber~mSW!,
environment-dependent interatomic potential~EDIP!, and
modified embedded atom method~MEAM !, MEAM pro-
duced the most realistic behavior, which is consistent w
simulations of dynamic fracture. The most interesting res
of this paper is the near independence ofKc on notch angle
when referred to an appropriate length scale. This is
atomic length scale, and we assert that it is the length s
associated with cohesive zones in continuum models of f
ture. Furthermore, the value of the normal or opening str
on the observed fracture plane at this length scale is alm
exactly flat and thus suggests a plausible fracture crite
for these systems~which include cracks!: whether the open-
ing stress at a characteristic distance attains a critical v
~33 MPa at 1 Å for MEAM Si!. In all, the notch system
offers excellent opportunities for well controlled investig
tions of fracture with direct connection to experiment, i
cluding the use of a variety of atomistic simulation tec
niques going beyond those discussed in this paper~for
example, the systematic calculation of energy barriers
cleavage and dislocation nucleation as a function of cra
slip system, etc!.

ACKNOWLEDGMENTS

We thank Zhiliang Zhang for inspiration and helpful di
cussions, and Noam Bernstein for helpful discussions.
also thank Mike Baskes for help in coding the MEAM p
tential. This work was financed by NSF-KDI Grant N
9873214 and NSF-ITR Grant No. ACI-0085969. Atomic p
sition visualization figures were produced using theDAN pro-
gram, developed by N. Bernstein at Harvard University a
the Naval Research Laboratory.

APPENDIX A: UNITS AND CONVERSIONS

Three different sets of units are used in this paper. To e
atomic potential~Stillinger-Weber, EDIP, MEAM! is associ-
ated a set of atomic units~EDIP and MEAM use the sam
units!; also we often wish to use SI units to compare
experiment. In the context of this paper there is the furt
subtlety that the units of the chief quantity under consid
ation, namely, the stress intensity factorK, are not simple
powers of base units but involve a nontrivial exponentl
which is a function of geometry and potential. In fact the
units forK are Pa m12l which for brevity we simply refer to
as ‘‘standard units’’ in the paper.

The units for an atomic potential are determined by spe
fying the unit of energy and that of length~for dynamics the
unit of time is determined from these and the particle ma!.
The SW potential as originally written down did not ha
units built into it. By taking the energy unit to bee
52.1672 eV53.4723310219 J and the length unit to bes
52.0951 Å, the authors modeled molten silicon.8 However
other authors24 have taken the energy unit to bee
52.315 eV. The difference is not really important since
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have modified the potential itself to make it more brittle
the resemblance to real silicon is reduced noticeably. W
expressing quantities in terms of eV–Å units we use
second scaling which is more common. The EDIP a
MEAM potentials havee51 eV and s51 Å built in as
their units. Since s;Kr l21, the units of K are
@stress#/@ length#l215@energy#/@ length#21l, so to convert a
value forK in atomic units to SI units, one uses the conv
sion factore/s21l. Table II gives the factors for the thre
potentials and the geometries studied in this paper.

APPENDIX B: STROH FORMALISM FOR NOTCHES

Here we summarize the application of the Stroh form
ism to the notch problem. More details are available in Re
2,3,25. We can write the solution for the displacement fieldu
and the stress functionf as

u5 (
a51

6

aa f a~za!, ~B1!

f5 (
a51

6

ba f a~za!. ~B2!

The independent variable here is the complex variableza
5x11pax2. The stress functionf determines the stresse
through s i152f i ,2 and s i25f i ,1 . The pa , aa , and ba
come from solving the following eigenvalue problem:

@Q1p~R1RT!1p2T#a50, ~B3!

where

Q5FC11 C16 C15

C16 C66 C56

C15 C56 C55

G , R5FC16 C12 C14

C66 C26 C46

C56 C25 C45

G ,

T5FC66 C26 C46

C26 C22 C24

C46 C24 C44

G . ~B4!

TABLE II. Unit conversion factors forK.

Potential Geometry l Factor

mSW 0 0.5 1602000
mSW 70 0.51954 2510000
mSW 90 0.54597 4620000
mSW 125 0.63047 32320000
EDIP 0 0.5 1602000
EDIP 70 0.51922 2490000
EDIP 90 0.54708 4730000
EDIP 125 0.62844 30840000
MEAM 0 0.5 1602000
MEAM 70 0.51875 2467000
MEAM 90 0.54794 4832000
MEAM 125 0.62639 29420000
4-7
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The above is general within the context of two-dimensio
anisotropic elasticity. To specify the notch problem w
choose a form of the arbitrary functionf to which we can
apply the boundary conditions of the problem—that no
flanks are traction-free. The following choice does the tri

f a~za!5
1

l

za
l

ja~2b!l
bT

aq5
1

l
r lF ja~u!

ja~2b!G
l

bT
aq,

~B5!

wherej(u)5cos(u)1pasin(u) andq is to be determined. The
traction with respect to a radial plane at angleu is given by

t5r l21 (
a51

6 F ja~u!

ja~2b!G
l

babT
aq5

l

r
f. ~B6!

With the above form the traction condition is already sa
fied on the bottom flanku52b. Applying the condition on
the top flank leads to a matrix equation

K ~l!q~l!50. ~B7!

The appropriate value ofl is determined by setting the de
terminant of the matrix equal to zero and solving the res
ing equation numerically. In the range 0,l,1, two values
can be found, corresponding to modes I and II,l I and l II .
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